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Abstract 

Functional neuroimaging and brain lesion studies demonstrate that secondary motor areas of the frontal lobe 

play a crucial role in the cortical control of hand movements. However, no study so far has examined frontal 

white matter connections of the secondary motor network, namely the frontal aslant tract, connecting the 

supplementary motor complex and the posterior inferior frontal regions, and the U-shaped dorsal and ventral 

premotor fibers running through the middle frontal gyrus. The aim of the current study is to explore the 

involvement of the short frontal lobe connections in reaching and reach-to-grasp movements in 32 right-

handed healthy subjects by correlating tractography data based on spherical deconvolution approach with 

kinematical data. We showed that individual differences in the microstructure of the bilateral frontal aslant 

tract, bilateral ventral and left dorsal premotor tracts were associated with kinematic features of hand actions. 

Furthermore, bilateral ventral premotor connections were also involved in the closing grip phase necessary 

for determining efficient and stable grasping of the target object. This work suggests for the first time that 

hand kinematics and visuomotor processing are associated with the anatomy of the short frontal lobe 

connections. 
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1. Introduction  

 

   Advances in our understanding of visuomotor processing showed that frontal lobe circuits are crucial for 

generating motor commands for simple hand movements such as reaching and reaching-to-grasp 

(Jeannerod et al., 1995; Castiello, 2005; Grafton, 2010). Reaching refers to a transport of the hand in space, 

whereas reach-to-grasp action consists of an additional grasping component, which implies hand shaping 

according to the target object’s physical properties (Jeannerod, 1995). 

   In addition to the primary motor cortex (M1), secondary motor areas including supplementary motor 

complex and premotor regions are active during reaching and reach-to-grasp movements (Castiello, 2005; 

Filimon, 2010). Functional neuroimaging and lesion studies implicate these areas in a variety of motor-

related processes, such as initiation, generation and control of voluntary hand movements (supplementary 

motor complex) (Picard and Strick, 1996; Nachev et al., 2008); visuomotor transformations and generation of 

finger and hand configurations (ventral premotor cortex, PMv) (Davare et al., 2006; Raos et al., 2006), and 

planning, control and online monitoring of hand actions (dorsal premotor cortex, PMd) (Begliomini et al., 

2007, 2008; Glover et al., 2012).  

   A dual model of visuomotor processing suggested that PMd and PMv are part of two independent circuits, 

originating from the posterior parietal cortex, which control both the reaching and the grasping components 

of prehensile movements, respectively (Jeannerod et al., 1995; Matelli and Luppino, 2001). However, this 

view has been challenged recently, when overlapping PMv and PMd activations were reported for both 

reaching and grasping actions (Grol et al., 2007; Begliomini et al., 2014, 2015; Fabbri et al., 2014; Tarantino 

et al., 2014). It was shown that PMv and PMd interact based on the motor planning and online control 

required, but not on the basis of movement type (Grol et al., 2007; Glover et al., 2012). The importance of 

the connections between PMv and PMd has been further corroborated by our previous work showing 

modulation of the PMv-PMd functional connectivity during precision grasping (i.e. index finger-thumb 

opposition; Begliomini et al., 2015). This is in line with the idea that the most appropriate grip type is selected 

in PMv (F5 in monkey), and then supplied to PMd (F2 in monkey), whose neurons keep a memory trace of 

the motor representation in order to continuously update hand configuration and orientation during target 

acquisition (Raos et al., 2004). This intra-hemispheric cross-talk between PMv and PMd is enabled by the 

underlying local white matter connections (Grafton, 2010).  
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   Overall, research in monkeys and humans provided a comprehensive view on the cortical control of hand 

actions, but the underlying white matter received little attention. The likely contribution of the short frontal 

lobe connections mediating local connectivity is essentially unknown. Our study aims to fill this gap by 

investigating the hodology of white matter networks connecting secondary motor regions, and their role in 

reaching and reach-to-grasp movements. Specifically, the frontal aslant tract and the system of short U-

shaped premotor fibers running superficially to the frontal aslant tract will be considered. 

   The frontal aslant tract is among the newly described intralobar frontal tract that links the cortical nodes of 

the secondary motor network, possibly enabling PMv-PMd cross-talk. It connects the supplementary motor 

complex in the dorso-medial frontal regions of the superior frontal gyrus (SFg), and the most posterior part of 

the Broca’s territory (pars opercularis, BA44, pars triangularis, BA45, but also precentral regions, BA6) (Ford 

et al., 2010; Catani et al., 2012; Thiebaut de Schotten et al., 2012; Vergani et al., 2014). The supplementary 

motor complex consists of two areas (Nachev et al., 2008), namely the supplementary motor area (SMA) 

supporting online control, and the pre-SMA responsible for movement planning during reach-to-grasp 

movements (Glover et al., 2012). The SMA, unlike the pre-SMA, has direct connections to M1 and the spinal 

cord, and it is thus considered as a premotor area (Dum and Strick, 1991). The frontal aslant tract’s ventral 

terminations lie within PMv, which includes precentral BA6 and Broca’s area BA44 (Vogt and Vogt, 1919; 

Binkofski and Buccino, 2004). Cytoarchitectonically, BA44 represents the most likely human homologue of 

monkey’s F5, crucially involved in hand movements (for reviews see Rizzolatti et al., 2002; Binkofski and 

Buccino, 2004; Fadiga and Craighero, 2006), such as grasping and other manipulative actions (Binkofski et 

al., 1999a, 1999b, 2000; Gerardin et al., 2000; Nishitani and Hari, 2000; Grèzes et al., 2003; Hamzei et al., 

2003). To date, the frontal aslant tract has been associated with different aspects of speech and language 

(Catani et al., 2013; Kinoshita et al., 2014; Kronfeld-Duenias et al., 2014; Mandelli et al., 2014; Vassal et al., 

2014; Fujii et al., 2015; Kemerdere et al., 2015; Sierpowska et al., 2015) and orofacial movement control in 

Foix-Chavany-Marie syndrome (Martino et al., 2012). But its contribution to voluntary hand movements 

remains unknown. In addition, a system of short U-shaped fibers running superficially to the frontal aslant 

tract has been described, interconnecting SFg and inferior frontal gyrus (IFg) to the posterior portion of the 

middle frontal gyrus (MFg) (Catani et al., 2012). We use the terms dorsal (MFg-SFg) and ventral (MFg-IFg) 

premotor connections, having in mind the proposed PMv-PMd border at the level between the superior and 

inferior frontal sulci in humans (Tomassini et al., 2007). The functions of these premotor U-shaped fibers are 

unknown. Nevertheless, based on their cortical topography, it was suggested that the dorsal connections 

might play a role in initiating and coordinating complex eye, hand and arm movements for reaching actions, 



 

 

 

5 

while the ventral connections may support the ‘grasping’ network (Catani et al., 2012).  

 

    Here we used diffusion imaging tractography, based on the spherical deconvolution approach, to 

dissociate the role of the short frontal connections underlying secondary motor areas in visually guided hand 

movements. Spherical deconvolution has the advantage, over the classical diffusion tensor model, to resolve 

the crossing fibers problem and improve tractography reconstructions of short intralobar tracts by reducing 

the presence of false negatives (Tournier et al., 2004; Dell’Acqua et al., 2010, 2013). We dissected the 

frontal aslant tract and the premotor U-shaped connections in 32 right-handed healthy participants, whose 

hand kinematics was separately recorded for reaching and reach-to-grasp movements. The hindrance 

modulated orientational anisotropy (HMOA) was used as a measure of white matter microstructure, being a 

true tract-specific index, and better reflecting the microstructural organization (e.g. myelination, axonal 

density, axon diameter, and fiber dispersion) than the traditional voxel-specific diffusion indices (e.g. 

fractional anisotropy) (Dell’Acqua et al., 2013). We hypothesized that individual differences in the 

microstructure of the short frontal lobe connections linking secondary motor areas would be associated with 

the kinematic markers of reach and reach-to-grasp movements. Furthermore, according to previous literature 

outlining the evidence of a crucial involvement of the bilateral PMv in hand shaping and grip formation, we 

expected to find a higher involvement of the ventral premotor connections in the grasp-specific components 

of reach-to-grasp actions, compared to the dorsal premotor fibers, expected to be more involved in reaching. 
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2. Materials and Methods 

2.1 Participants 

A sex and age-balanced sample of 32 healthy participants (14 males, 18 females; mean age 24.6±2.7, age 

range: 20-31 years) was recruited. All participants were right-handed according to the Edinburgh 

Handedness Inventory (Oldfield, 1971), which ranges from -100 for purely left handed to +100 for purely 

right-handed participant. No history of neurological and psychiatric disorders was present in the study 

sample. All participants gave informed written consent in accordance with the ethics approval by the 

Institutional Review Board at the University of Padova, in accordance with the Declaration of Helsinki (Sixth 

revision, 2008).  

2.2 Behavioral Experiment 

Task and stimulus.  Participants were requested to perform two tasks: a reach-to-grasp task, in which they 

were asked to reach toward and grasp the stimulus with a precision grip, and a reaching task in which they 

were asked to perform a movement toward the stimulus and touch the stimulus frontal surface with their 

knuckles, maintaining the hand in a closed fist (Figure 1). The fist’s posture was chosen as to minimize distal 

involvement. Participants fixated the target object during both the reaching and the reach-to-grasp actions. 

The stimulus consisted of a spherical object (2 cm diameter) that would normally be grasped with a precision 

grip (PG; using the index finger and thumb). All participants were explicitly asked to use a PG for grasping 

the object. Participants were informed as to which task to perform by an auditory cue (high-pitch: reach-to-

grasp; low-pitch: reaching). The sound also had a ‘go-signal’ function in the sense that participants were 

asked to start their actions toward the stimulus only after the sound was delivered. Trials in which the 

participants did not comply with the task or did not fixate the stimulus were not included in the analysis. 

Procedure. Each participant sat on a height-adjustable chair in front of a table (900 x 900 mm) with the elbow 

and wrist resting on the table surface and the right hand in the designated start position (Figure 1). The hand 

was pronated with the palm resting on a pad (60 x 70 mm), which was shaped to allow for a comfortable and 

repeatable posture of all digits, i.e., slightly flexed at the metacarpal and proximal interphalangeal joints. The 

starting pad was attached 90 mm away from the edge of the table surface. The object was placed on a 

platform located at a distance of 300 mm between the platform and the sagittal plane of the hand’s starting 

position on the right side of the table.  
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Figure 1. Descriptive example of the experimental set up showing (a) designated start position for (b) reach-to-grasp and 

reaching movements. 

Kinematics recording. A 3D-Optoelectronic SMART-D system (Bioengineering Technology and Systems, 

BTS) was used to track the kinematics of the participant’s right upper limb. Three light-weight infrared 

reflective markers (0.25 mm in diameter; B|T|S|) were taped to the following points: (i) thumb (ulnar side of 

the nail); (ii) index finger (radial side of the nail); and (iii) wrist (dorsodistal aspect of the radial styloid 

process). Six video cameras (sampling rate 140 Hz) detecting the markers were placed in a semicircle at a 

distance of 1–1.2 meters from the table. The camera position, roll angle, zoom, focus, threshold, and 
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brightness were calibrated and adjusted to optimize marker tracking, followed by static and dynamic 

calibration. For the static calibration, a three-axes frame of five markers at known distances from each other 

was placed in the middle of the table. For the dynamic calibration, a three-marker wand was moved 

throughout the workspace of interest for 60s. The spatial resolution of the recording system was 0.3 mm over 

the field of view. The standard deviation of the reconstruction error was below 0.2 mm for the x-, y-, and z-

axes. 

Data processing. Following data collection, each trial was individually checked for correct marker 

identification and the SMART-D Tracker software package (B|T|S|) was used to provide a 3-D reconstruction 

of the marker positions as a function of time. The data were then filtered using a finite impulse response 

linear filter (transition band = 1 Hz, sharpening variable = 2, cut-off frequency = 10 Hz; D’Amico and 

Ferrigno, 1990, 1992). Movement onset was defined as the time at which the tangential velocity of the wrist 

marker crossed a threshold (5 mm/s) and remained above it for longer than 500 ms. For the reach-to-grasp 

task the end of movement was defined as the time at which the hand made contact with the stimulus and 

quantified as the time at which the hand opening velocity crossed a threshold (-5 mm/s) after reaching its 

minimum value and remained above it for longer than 500 ms. For the reaching task the end of movement 

was defined as the time at which the hand made contact with the stimulus and quantified as the time at 

which the wrist velocity crossed a threshold (5 mm/s) after reaching its minimum value and remained above 

it for longer than 500 ms. For both reaching and reach-to-grasp tasks the following kinematic parameters 

were extracted for each individual movement using a custom protocol run in Matlab 2014b (The 4 

MathWorks, Natick, MA, USA): the time interval between movement onset and end of movement (Movement 

Time), the time at which the tangential velocity of the wrist  was maximum from movement onset (Time to 

Peak Wrist Velocity) and its amplitude (Amplitude of Maximum Peak Velocity), the time at which the 

acceleration of the wrist was maximum from movement onset (Time to Peak Acceleration) and its amplitude 

(Amplitude of Maximum Peak Acceleration), the time at which the deceleration of the wrist was maximum 

from movement onset (Time to Peak Deceleration) and its amplitude (Amplitude of Maximum Peak 

Deceleration). For the reach-to-grasp task three grasp specific measures were also assessed, namely the 

time at which the distance between the 3D coordinates of the thumb and index finger was maximum, 

between movement onset and hand contact time (Time to Maximum Grip Aperture); and the time and 

amplitude of the maximum closing grip velocity.  
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2.3 MRI data acquisition 

Diffusion imaging data was acquired using a Siemens Avanto 1.5T scanner housed in Padova University 

Hospital with actively shielded magnetic field gradients (maximum amplitude 45mT/m
-1

). The body coil was 

used for RF transmission, and an 8-channel head coil for signal reception. Protocol consisted of a localizer 

scan, followed by a single-shot, spin-echo, EPI sequence with the following parameters: TR = 8500, TE = 97, 

FOV = 307.2 x 307.2, matrix size = 128 x 128, 60 slices (no gaps) with isotropic (2.4 x 2.4 x 2.4 mm
3
) voxels. 

The maximum diffusion weighting was 2000 sec/mm
2
, and at each slice location 7 images were acquired 

with no diffusion gradients applied (b = 0 s/mm
2
), together with 64 diffusion-weighted images in which 

gradient directions were uniformly distributed in space and repeated 3 times, in order to increase signal to 

noise ratio (SNR). Gains and scaling factors were kept constant between acquisitions. Scanning lasted 

approximately 30 minutes. 

2.4 Correction of motion and eddy current distortion, and estimation of the fiber orientation distribution 

Each subject’s raw image data were examined before proceeding on to further analyses to detect any 

outliers in the data, including signal drop-outs, poor signal-to-noise ratio, and image artifacts such as ghosts. 

Any subject whose raw data contained volumes with significant image quality issues was removed from 

further analyses. The remaining 32 participants were processed as follows. 

DWI datasets were concatenated and corrected for subject motion and geometrical distortions using 

ExploreDTI (http://www.exploredti.com; Leemans et al., 2009), which by default rotates b-vectors. Spherical 

deconvolution (Tournier et al., 2004, 2007; Dell'Acqua et al., 2007) approach was chosen to estimate 

multiple orientations in voxels containing different populations of crossing fibers (Alexander, 2005). Spherical 

deconvolution was calculated applying the damped version of the Richardson-Lucy algorithm with a fiber 

response parameter α =1.5, 200 algorithm iterations and η=0.15 and ν=15 as threshold and geometrical 

regularization parameters (Dell’Acqua et al., 2010). Fiber orientation estimates were obtained by selecting 

the orientation corresponding to the peaks (local maxima) of the Fibre Orientation Distribution (FOD) profiles. 

FOD is defined as a spherical function describing for each voxel the total number of distinct fibre 

orientations, their actual orientations and the estimated density.  
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2.5 Tractography Algorithm 

Whole brain tractography was performed selecting every brain voxel with at least one fibre orientation as a 

seed voxel. To identify the main fibre orientations and exclude spurious local maxima, we applied both an 

absolute and a relative threshold on the FOD amplitude. The first “absolute” threshold corresponding to a 

Hindrance Modulated Orientational Anisotropy (HMOA) threshold of 0.015 was used to exclude small FOD 

local maxima due to noise or partial volume effects with isotropic tissue (Dell’Acqua et al., 2013). This 

threshold can be considered the equivalent of the FA threshold in classical DTI tractography and is used to 

select from each FOD only major peaks and exclude low amplitude spurious FOD components derived from 

noise, grey matter and cerebrospinal fluid contamination and not consistent with real orientations. The 

second “relative” threshold of 5% of the maximum amplitude of the FOD was applied to check and remove 

remaining local maxima with values that might be still greater than the absolute threshold but that represent 

only a small fraction of the overall HARDI signal and therefore still produce spurious or unreliable 

orientations (Dell’Acqua et al., 2013). In practice, for the large majority of brain voxel the absolute threshold 

is always the largest of the two thresholds and effectively used as the only threshold.  

From each voxel, and for each fiber orientation, streamlines were propagated using a modified Euler 

integration with a step size of 1 mm. When entering a region with crossing white matter bundles, the 

algorithm followed the orientation vector of the least curvature. Streamlines were halted when a voxel without 

fiber orientation was reached or when the curvature between two steps exceeded a threshold of 45°. All 

spherical deconvolution and tractography processing was performed using StarTrack, a freely available 

Matlab software toolbox developed by one of the authors (F.D.  NatBrainLab, King’s College London), and 

based on the methods described in Dell’Acqua et al. (2013).  

2.6 Tractography dissections of the frontal aslant tract and premotor connections 

To visualize fibre tracts and quantify tract-specific measures we used TrackVis software 

(http://www.trackvis.org; Wang et al., 2007). We used two regions of interest (ROIs) approach to isolate the 

frontal aslant tract and premotor U-shaped tracts connecting the middle frontal gyrus with the inferior (MFg-

IFg ventral tract) and superior frontal gyri (MFg-SFg dorsal tract), according to a dissection method 

previously described in Catani et al. (2012) and Rojkova et al. (2015). Three separate frontal ‘AND’ ROIs 

were manually delineated on the FA maps of each subject in each hemisphere. The ‘AND’ ROI is used to 

represent an obligatory passage for the tract, and thus includes the desired streamlines passing through it. 

http://www.trackvis.org/
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We delineated on axial slices an ‘AND’ ROI around the white matter of the superior frontal gyrus (SFg ROI) 

and a sagittal ‘AND’ ROI around the white matter of the inferior frontal gyrus (also including the pars 

opercularis, triangularis and orbitalis) (IFg ROI). Finally an ‘AND’ ROI was delineated around the white 

matter of the middle frontal gyrus (MFg ROI) in axial and sagittal sections. Frontal aslant tract was dissected 

using SFg ROI and IFg ROI; MFg-IFg tract using MFg ROI and IFg ROI, and lastly MFg-SFg tract was 

visualized using MFg ROI and SFg ROI. An example of tractography reconstructions in a representative 

subject, together with the ROIs used, is shown in Figure 2. 

 

Figure 2. Tractography reconstructions of the left and right frontal aslant tract (cyan) and U-shaped connections of the 

middle frontal gyrus with the inferior (MFg-IFg ventral tract; dark blue) and the superior frontal gyri (MFg-SFg dorsal tract; 

light blue) in a representative subject. Frontal ‘AND’ ROIs including superior frontal gyrus (SFg ROI), middle frontal gyrus 

(MFg ROI) and inferior frontal gyrus (IFg ROI) are shown for the right hemisphere, together with the rules employed for 

the dissection. 

2.7 Statistical analysis 

Statistical analysis was performed using SPSS software (Version 21) (SPSS, Chicago, IL). Gaussian 

distribution was confirmed for kinematic and tractography HMOA variables using the Shapiro–Wilk test (α-

level: p < .05) (Shapiro and Wilk, 1965) allowing the use of parametric statistics. The mean value for each 

kinematic parameter of interest was determined based on 12 individual observations for each participant, 

and then entered into separate paired-samples t-tests for comparing reaching versus reach-to-grasp 

conditions. To estimate the effect size we calculated Cohen’s d for dependent t-tests, from formula described 

in Dunlop et al. (1996, S. 171) - as cited and calculated at: http://www.psychometrica.de/effect_size.html 

(January 2016). 

http://www.psychometrica.de/effect_size.html
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The mean HMOA was calculated for each tract in each subject, defined as the absolute amplitude of each 

lobe of the FOD, and representing a quantitative index of the degree of tract anisotropy. HMOA was chosen 

over fractional anisotropy (FA) as it is considered to be a tract-specific index sensitive to axonal myelination, 

fiber diameter, and axonal density (Dell’Acqua et al., 2013). The main difference between FA and HMOA is 

that FA is a traditional voxel-based metrics providing an average measure of anisotropy of the entire voxel 

derived from fitting the data according to the Diffusion Tensor model. On the contrary, HMOA is a new tract 

specific metrics based on the Spherical Deconvolution approach. The main advantage of this metric is to 1) 

resolve partial volume contamination of different white matter tracts crossing within the same voxel or brain 

region and 2) provide a distinct and therefore a more “true” tract-specific quantification of anisotropy and 

microstructural organization along each white matter tract (i.e. if two fibres are crossing the same voxel, two 

distinct and independent HMOA values are assigned to each tract) (Dell’Acqua et al., 2013). Pearson 

bivariate correlation analysis was used to detect the strength of the correlation between the tract-specific 

HMOA measure and the kinematic markers of reaching and reach-to-grasp movements. We employed a 

false discovery rate (FDR) correction (Benjamini and Hochberg, 1995) for 102 comparisons using the q-

value of 0.05 for significant results (FDR p < .05). We used Fisher’s r-to-z transformation and asymptotic z-

test to statistically test the difference between the two dependent correlations with one variable in common – 

the amplitude of closing grip velocity (Lee and Preacher, 2013). Degree of manual dominance (mean value 

97±6, ranging from +70 to +100) had no significant effect on the measured variables and the correlations 

reported. 

3. Results 

3.1 Behavioral results 

Means, standard deviations and statistical tests are summarized in Table 1. We explored the determinants of 

the movement kinematics by comparing the conditions in which the participants were requested to reach 

towards and grasp the stimulus (reach-to-grasp) or solely reach the stimulus (reaching). For all seven 

dependent measures a statistically significant effect of the task was found. Reaching was significantly faster 

than reaching-to-grasp, and the time to peak velocity, acceleration, and deceleration was reached earlier. 

The amplitude of peak velocity, acceleration and deceleration was higher for the reaching than for the reach-

to-grasp task. Time to maximum grip aperture, and time and amplitude of closing grip velocity are grasp-

specific measures, shown only for the reach-to-grasp task (Table 1.) 
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Table 1. Movement time and kinematic values showing statistically significant differences between reaching and reach-

to-grasp movements. M = means, SD = standard deviation, d = Cohen’s d.  

Variable 
M ± SD 

t (df) d p 

Reaching Reach-to-Grasp 

Movement Time (ms) 655 ± 53 733 ± 55 -17.3 (31) -1.45 < .0001 

Time to Peak Velocity (ms) 262 ± 24 308 ± 29 -11.2 (31) -1.74 < .0001 

Time to Peak Acceleration (ms) 165 ± 15 218 ± 19 -15.6 (31) -3.06 < .0001 

Time to Peak Deceleration (ms) 426 ± 30 500 ± 28 -11.5 (31) -2.56 < .0001 

Amplitude Peak Velocity (mm/s) 814 ± 53 698 ± 63 12.7 (31) 1.96 < .0001 

Amplitude Peak Acceleration (mm/s
2
) 7907 ± 245 6733 ± 480 20.3 (31) 2.38 < .0001 

Amplitude Peak Deceleration (mm/s
2
) 7507 ± 385 6508 ± 493 15.9 (31) 2.18 < .0001 

Time to Maximum Grip Aperture (ms) n/a 509 ± 22 n/a n/a n/a 

Time of Closing Grip Velocity (ms) n/a 684 ± 29 n/a n/a n/a 

Amplitude of Closing Grip Velocity (mm/s) n/a -396 ± 68 n/a n/a n/a 

 

3.2 Group average visualization of the frontal aslant tract and premotor connections 

To visualize fibre tracts at the group level, we calculated group average probability maps of the three 

bilateral frontal lobe tracts (see Figure 3). We first performed elastic transformations to a standard space 

(MNI) from each subjects’ FA maps using FLIRT/FNIRT (FSL software; Jenkinson et al., 2012). 

Tractography density maps for each tract were then transformed applying the same deformation 

fields, binarized and averaged together to generate for each tract a group-averaged probability map ranging 

from 0 (i.e. no subject has the tract passing through that voxel) to 1 (all subjects have the tract in that voxel).   
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Figure 3. Group-averaged visualizations of the frontal aslant tract, ventral and dorsal premotor connections. Tracts are 

displayed when at least 20% of subjects have a tract passing through the same voxel. 

 

3.3 Relating inter-individual differences in movement kinematics to the anatomy of the frontal aslant tract and 

premotor U-shaped connections  

3.3.1 Kinematics and the frontal aslant tract 

We observed a significant relationship between the white matter microstructure, as measured by HMOA, of 

the bilateral frontal aslant tract and the acceleration and deceleration amplitudes of both reaching and reach-

to-grasp movements (Table 2; Figure 4). Higher HMOA in the bilateral frontal aslant tract corresponded to 

lower acceleration and deceleration amplitudes for both hand movements. Before the FDR correction, 

correlation with the time to peak acceleration of reaching and reaching-to-grasp and the right frontal aslant 

tract was also significant. 
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Table 2. Correlations between HMOA measure of the frontal aslant tract and the U-shaped connections between the 

middle and the inferior frontal gyri (MFg-IFg; ventral tract), and the middle and the superior frontal gyri (MFg-SFg; dorsal 

tract) and kinematic variables, with correlation coefficient estimates and raw p-values in brackets. Significance codes 

show corresponding FDR adjusted p-values at '***' p <.001 '**' p <.01 '*' p <.05 '.' p <.1.  R: reaching, RG: 

reach-to-grasp.  

 
 
 
 
Tract 

Time to Peak 
Acceleration 

 

Amplitude of Peak 

Velocity 

 

Amplitude of Peak 

Acceleration 

 

Amplitude of Peak 

Deceleration 

 

Amplitude of 

Closing Grip 

Velocity 

R RG R 
 

RG R RG R RG RG 
 
 
 
Frontal 
Aslant 
Tract 

 

 
 

Left 

 

-.235 
(.195) 

.005 
(.977) 

-.282 
(.118) 

-.322 
(.073) 

-.475* 

(.007) 

-.487* 

(.009) 

-.625** 

(<.001) 

-.550** 

(.001) 

.107 
(.575) 

 
 

Right 

 

-.420. 

(.019) 

-.433 

(.021) 

-.397 
(.030) 

-.325 
(.075) 

-.478* 

(.006) 

-.442. 

(.013) 

-.620** 

(<.001) 

-.521* 

(.003) 

.124 
(.521) 

 
MFg-IFg 

Ventral 

Tract 

 

 
Left 

 

.009 
(.962) 

.345 
(.053) 

-.193 
(.290) 

-.197 
(.281) 

-.483* 

(.005) 

-.552* 

(.001) 

-.745*** 

(<.0001) 

-.585** 

(.001) 

.408. 

(.028) 

 
Right 

 

-.233 
(.208) 

.095 
(.611) 

-.331 
(.069) 

-.163 
(.382) 

-.369 
(.041) 

-.337 
(.064) 

-.558** 

(.001) 

-.377 

(.037) 

.521* 

(.004) 

 
MFg-SFg 

Dorsal 

Tract 

 

 
Left 

 

-.008 
(.965) 

.302 
(.098) 

-.443. 

(.013) 

-.405. 

(.023) 

-.504* 

(.004) 

-.560** 

(.001) 

-.516* 

(.003) 

-.395. 

(.028) 

.138 
(.474) 
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Figure 4. Correlations between the kinematic variables of reaching and reaching-to-grasp (amplitudes of peak 

acceleration and deceleration (mm/s
2
)) and the HMOA of the frontal aslant tract (FAT; in cyan) and U-shaped tracts 

(ventral MFg-IFg and dorsal MFg-SFg; in blue) in the left and the right hemisphere.Significance codes represent FDR 

adjusted p-values: '***' p <.001 '**' p<.01 '*' p <.05. 

 

3.3.2 Kinematics and the ventral premotor U-shaped tract 

Regarding the ventral U-shaped connections between the middle and inferior frontal gyrus (MFg-IFg), we 

found significant relationship between this bilateral tract and deceleration amplitudes for reaching 

movements, and the right ventral premotor tract with the reach-to-grasp movements, with higher HMOA 

corresponding to lower deceleration amplitudes (Table 2; Figure 4). Furthermore, the left ventral premotor 

tract was significantly associated with the acceleration amplitudes, with higher HMOA corresponding to lower 

acceleration amplitudes in both reaching and reach-to-grasp conditions (Table 2). Lastly, right ventral 
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premotor connections were significantly associated with the grasp component of the reach-to-grasp action, 

while the left counterpart showed only a trend towards significance after the FDR correction. Higher HMOA 

corresponded to higher amplitudes of closing grip velocity (Figure 5). In contrast, the frontal aslant tract and 

the dorsal premotor connections did not correlate with grasp-specific measures, and this difference was 

significant. Hence, the correlation with the right ventral tract was significantly different from correlations with 

the left (z = 2.90, p = .003) and the right frontal aslant tract (z = 2.60, p = .009) and the left (z = 2.44, p = 

.014) and the right dorsal premotor tract (z = 3.01, p = .002). 

 

 

Figure 5. Correlations between the bilateral ventral premotor (MFg-IFg) U-shaped connections and the  

grasp-specific measure (amplitude of closing grip velocity; mm/s). Significance codes represent FDR adjusted p-

values: '*' p <.05 '.' p <.1. 

 

3.3.3 Kinematics and the left dorsal premotor U-shaped tract 

We found significant relationship between the left U-shaped dorsal premotor (MFg-SFg) connections and 

acceleration amplitudes of reaching and reach-to-grasp movements. Also, the left dorsal premotor tract was 

significantly associated with the deceleration amplitude during reaching, while during reaching-to-grasp it 

showed only a trend towards significance after the FDR correction. Overall, higher HMOA of the left dorsal 

premotor tract corresponded to lower amplitudes of acceleration and deceleration (Table 2, Figure 4). The 

correlations with the amplitudes of velocity of reach and reach-to-grasp movements showed only a trend 

towards significance after FDR correction. No significant correlations were found for the right dorsal premotor 

connections. 
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4. Discussion 

 

   This work demonstrates, for the first time, a direct relationship between short frontal lobe connections of 

the secondary motor areas and the kinematical organization of human upper limb movements. The 

microstructure of the bilateral frontal aslant tract and the premotor connections was significantly associated 

with variation in hand kinematics, especially with arm acceleration and deceleration amplitudes for both 

reaching and reach-to-grasp movements. Our results suggest that these connections might be important for 

specifying movement trajectory features that relate to dynamic properties of the arm. This might occur by 

anticipating and accounting for dynamic properties of the proximal limb muscles and the environment 

(Schaefer et al., 2007; Mani et al., 2013; Mutha et al., 2013). Furthermore, the bilateral ventral premotor tract 

was associated with the closing grip phase during which contact points are determined in order to assure an 

efficient and stable contact with the target object. 

 

   To better understand the role of the frontal lobe for the control of hand actions, we moved on from the 

relatively detailed knowledge of the cortical motor mechanisms to investigate the role of the corresponding 

white matter. Recent diffusion imaging studies provide converging evidence that fronto-parietal white matter 

structures are a significant determinant of motor performance (Koch et al., 2010; Budisavljevic et al., 2016). 

Our results extend knowledge on the hodology of motor control (Catani, 2007), and show an important role 

for the secondary motor white matter networks in hand movements. The bilateral involvement of the frontal 

aslant tract and ventral premotor U-shaped connections parallels the findings of bilateral secondary motor 

activations during reaching and grasping movements (Ehrsson et al., 2000; Begliomini et al., 2007, 2015; 

Martin et al., 2011; for a review see Castiello and Begliomini, 2008).  

   Our results show that higher microstructural organization of the bilateral frontal aslant tract corresponds to 

lower acceleration and deceleration amplitudes of reach and reach-to-grasp movements, i.e. more efficient 

visuomotor processing leading to smoother movement trajectories. The involvement of the frontal aslant 

tract, connecting portions of the dorsal and ventral promotor cortex (PMd-PMv), is consistent with functional 

neuroimaging and lesion studies implicating its cortical endpoints in reaching and reach-to-grasp 

movements. The supplementary motor complex (SMA/pre-SMA) in the dorso-medial frontal lobe is active 

during hand actions (Grafton et al., 1996; Ehrsson et al., 2000; Cavina-Pratesi et al., 2010; Glover et al., 

2012; Monaco et al., 2015); and so is BA44 of the posterior Broca’s area (Binkofski et al., 1999a, 1999b, 

2000; Ehrsson et al., 2000, 2001; Gerardin et al., 2000; Kuhtz-Buschbeck et al., 2001), the putative 
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homologue of monkey’s PMv (F5) where visuomotor transformations of object properties into appropriate 

hand configurations occur (Rizzolatti et al., 2002). The contribution of the human BA44 to hand movements, 

in terms of associative sensorimotor learning and sensorimotor integration has been well documented 

(Rizzolatti et al., 2002; Binkofski and Buccino, 2004; Fadiga and Craighero, 2006). Together with the 

precentral BA6 regions, BA44 is thought to represent the human PMv (Vogt and Vogt, 1919; Binkofski and 

Buccino, 2004). The importance of the intra-hemispheric PMd-PMv cross-talk was previously inferred from a 

number of functional connectivity studies (Crosson et al., 2001; Binkofski et al., 2000; Begliomini et al., 

2015). For instance, it has been recently reported that functional connectivity between the human PMd and 

PMv, corresponding to the frontal aslant fibers, was significantly modulated during reach-to-grasp 

movements (Begliomini et al., 2015). Also, it was proposed that automatic reach and grasp actions induced 

by intraoperative cortical stimulation of medial frontal wall areas, including pre-SMA, are due to a release of 

reach- and grasp-specific motor programs stored in other areas including PMv (Chassagnon et al., 2008). 

Our results support the notion that the frontal aslant tract underlies the intra-hemispheric cross-talk between 

PMd and PMv regions, and plays an important role in hand movements. 

   Another aspect of the present findings is that the bilateral ventral premotor connections were associated 

with the grasp component of the reach-to-grasp movements. Higher microstructural organization of the 

bilateral ventral premotor tracts corresponded to higher amplitudes of closing grip velocity, possibly implying 

more efficient visuomotor processing in terms of finger positioning. We suggest that the ventral premotor 

connections might be especially important for controlling the final hand closing phase around the target 

object during precision grip, a complex motor act with a high degree of sensorimotor control (Ehrsson et al., 

2000, 2001). Importantly, both the left and the right PMv were found to play a role in precision grasping 

(Ehrsson et al., 2000, 2001; Dettmers et al., 2003; Davare et al., 2006, 2008; Chouinard, 2006; Raos et al., 

2006; Schmidlin et al., 2008) consistent with our results. It was previously suggested that bilateral PMv 

controls the correct positioning of the fingers upon the object, a prerequisite for an efficient grasp, whereas 

the left contralateral PMv recruits intrinsic hand muscles (Davare et al., 2006). Our results go beyond the 

cortical regions, suggesting that the underlying ventral premotor connections in both hemispheres determine 

grasp point selection for the correct and stable position of the fingers around the target object (Lukos et al., 

2007, 2008; Sartori et al., 2011).  

 

   On the contrary, it was the left dorsal premotor tract, linking the superior and the middle frontal gyri, that 

was associated with the dominant right hand kinematics of both reaching and reach-to-grasp movements. 
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The dominance of the left dorsal premotor connections in controlling the right dominant hand is in line with 

previous studies showing the crucial role of the left, but not the right dorsal premotor cortex (PMd) in 

precision grasping and sequential hand movements (Haslinger et al., 2002; Hlustik et al., 2002; Davare et 

al., 2006). Furthermore, its relationship with the proximal limb dynamics and trajectory control (i.e. 

acceleration and deceleration amplitudes) is consistent with the observation that the left PMd is crucial for 

the recruitment of proximal muscles of the dominant right hand during precision grasping (Davare et al., 

2006), and that it intervenes in coding velocity and acceleration amplitudes during movement preparation 

(Davare et al., 2015). It is also in line with studies noting that the left hemisphere is important for the control 

of movement trajectories (Haaland et al., 2004), for sequencing and triggering of sequential movements 

(Winstein and Pohl, 1995; Hermsdörfer et al., 1999a, 1999b), and for limb dynamics (Tretriluxana et al., 

2008; Sainburg and Kalakanis, 2000; Sainburg, 2002; Sainburg and Wang, 2002). 

   Our study has important implications for the functional correlates of the newly described frontal aslant tract 

and the U-shaped premotor connections in the human brain. Besides being involved in language (Catani et 

al., 2013; Kinoshita et al., 2014; Kronfeld-Duenias et al., 2014; Mandelli et al., 2014; Vassal et al., 2014; Fujii 

et al., 2015) and voluntary movement control of orofacial muscles (Martino et al., 2012), we report that the 

frontal aslant tract supports visuomotor processing of hand movements such as reaching and reach-to-

grasp, important for planning (acceleration phase) and feedback control that guides the hand to the target 

object (deceleration phase). It is also possible that the frontal aslant tract could be involved in the inhibition of 

movement, since it connects the cortical nodes of the bilateral negative motor network: the pre-SMA and the 

posterior part of the inferior frontal gyrus (Filevich et al., 2012; Mandonnet and Duffau, 2014). This idea is 

supported by studies showing that unilateral subcortical stimulation of the white matter underneath the dorsal 

premotor cortex and the supplementary motor area, produces a complete arrest of the movement of both 

hands (Rech et al., 2014) or movement deceleration (Rutten, 2015). The association between movement 

deceleration and the bilateral frontal aslant tract noted in our study, could give support to its involvement in 

the negative motor network.  

 

   Our results might have several anatomical interpretations. Higher HMOA of the short frontal lobe tracts 

corresponded to lower acceleration and deceleration amplitudes of visually guided hand movements, leading 

to smoother movement trajectories. HMOA is a novel tract-specific index of anisotropy that is sensitive to the 

underlying white matter microstructure. However, like some other diffusion indices (Beaulieu, 2002), it is not 

very specific, since it reflects several features of white matter such as myelination, axon density, axon 
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diameter, and fiber dispersion (Dell’Acqua et al., 2013). Variation in any of these features can modulate 

conduction velocity, refractory time, transmission along an axon, and synchronization of signals across a 

distributed neuronal network (Johansen-Berg, 2010). Thus, individual differences in any of these properties 

can impact the motor performance. Nevertheless, as a true tract-specific measure HMOA was shown to be 

more sensitive than voxel-based fractional anisotropy (FA) index (Dell’Acqua et al., 2013), which in our 

analysis a posteriori did not yield any significant results. Currently, it is not possible to separate the individual 

contribution of these white matter components, and hence the interpretation of our correlations is not 

straightforward. HMOA can decrease with increasing radial diffusivity and the axonal radius, thus, it is 

possible that increased myelination can also decrease HMOA (Dell’Acqua et al., 2013). Therefore, caution 

should be taken in interpreting the observed correlations in the context of exact microstructural properties 

that may contribute to kinematic variation. 

   Lastly, it should be noted that tractography based on multifiber methods such as spherical deconvolution, 

can be biased toward false positive reconstructions, and can show artifactual tracts that do not correspond to 

the real anatomy (Dell’Acqua et al., 2013). To overcome these problems, we used HMOA thresholds as 

exclusion criteria for seeding, propagating, and stopping tracking. Also, we have visually inspected all the 

tracts to make sure they conform to their described anatomy. It is still possible that smaller branches of the 

U-shaped connections were not reconstructed in our dataset, due to the limitation of the spatial resolution. 

However repeating and averaging the measurements 3 times increased the signal-to-noise ratio. Further 

studies are needed to replicate our results in a larger data cohort, with the inclusion of functional 

neuroimaging measures. 
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5. Conclusions  

 

   This study is the first to demonstrate that hand kinematics and visuomotor processing is associated with 

the anatomy of the short frontal lobe networks. Individual differences in the microstructure of the frontal 

aslant tract and the U-shaped premotor connections were significantly related to the variation in motor 

performance, especially the acceleration and deceleration amplitudes of reaching and reach-to-grasp 

movements. We suggest that these networks support trajectory movement features that relate to dynamic 

properties of the arm. Furthermore, the ventral premotor tract was involved in the closing grip phase, during 

which efficient and stable contact points with the target object are determined. We contend that a better 

understanding of the white matter connections linking secondary motor areas in the context of visually 

guided hand movements provides important insights into motor organization related to planning and 

execution of hand actions. 
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- Hand kinematics is associated with the anatomy of the short frontal lobe 

connections 

- Frontal aslant and premotor tracts are related to variation in motor performance 

- Ventral premotor tract is associated with closing grip phase of grasping 

 

*4. Highlights (for review)




