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It is essential for a successful completion of a robot object grasping and manipulation task to accurately
sense the manipulated object’s pose. Typically, computer vision is used to obtain this information,
but it may not be available or be reliable in certain situations. This paper presents a method where
tactile and force sensing together with the robot’s proprioceptive data are used to find a suitable
object pose. This method is used to either improve an estimate of the object’s pose given by vision or
globally estimating it when no vision is available. Results show that the proposed method consistently
improves an initial estimate. Also, an experiment is carried out where the robot is handed a small
object (a pencil) and inserts it into a narrow hole without any use of vision.

Keywords: sensing; grasping; global search; tactile; pose estimation

1. Introduction

Robot grasping and manipulation in unstructured environments is often hindered by the inability
of the robot to accurately estimate the pose (position and orientation) of the grasped object.
This can lead to wrong assumptions on the stability of a grasp or failure in “pick and place”
tasks.

Much research effort has been put into strategies which rely solely on vision (monocular, stereo
and RGB-D). Vision-based object tracking to be combined together with grasping planning was
first proposed by Kragic et al [1]. Yilmaz et al [2] presented a review on different tracking
strategies, and the state-of-the-art in vision-based object tracking has recently seen further
improvement [3-5]. Object tracking and pose estimation for grasping applications has also been
a subject of recent work [6, 7]. These strategies however, have limitations, particularly during
manipulation tasks, where occlusions on the object are bound to occur as the robot fingers get in
front of the object or it leaves the camera’s field of view. Furthermore, in hazardous environments
such as disaster scenarios, robots need to operate in settings with reduced visibility. Examples
include underwater operation, burning and smoke filled buildings or total darkness. Hence, object
tracking systems need to be complemented with other sensing modalities, such as touch. In fact,
an experiment by Rothwell et alproves that even humans fail to perform accurate manipulation
tasks when their tactile sensory system is impaired [8].

Early work that combined vision and force sensing for robot grasping can be traced back to Son
and colleagues [9], who investigated the advantages of combining these two sensing modalities
and Allen et al [10] who, by adding different sensing capabilities to a robotic hand, showed the
advantages of vision, force, tactile sensing and their combination. In Honda et al [11] vision is
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used to track the object and tactile sensing to further refine its estimated pose by minimising
the distance from the finger to the object’s surface. Another approach uses a description of the
object’s facets that is done offline and, during runtime, finds possible combinations of facets that
match the current sensor measurements [12].

More recently, significant research has been focusing on the combination of vision and tactile
information to address the uncertainty on an object’s pose. Different combinations of tactile, force
and vision information for locating the handle and opening a door were tested and it was proved
that the combination of all three modalities outperformed any other possible arrangement [13].
A particle filter approach was used to estimate a tube’s pose using both positive and negative
contact information — the knowledge of which fingers are touching the object and which are
not [14]. Another approach was to model discrete states that contain the possible combinatorial
arrangements between fingers and object surfaces using an hybrid systems estimator, estimating
these discrete contact modes as well as continuous state variables — i.e. the object’s pose [15].
Another method used Bayesian Filtering together with a technique called Scaling Series, which
allows for successive refinement of the object pose estimate by increasing the granularity of the
search region [16]. Koval et al [17] presented a method to continuously track a continuously
pushed object in two dimensions using a modified particle filter. Object pose uncertainty can
also be reduced by gaining tactile information from attempted grasps and replanning the grasp
to increase the chances of success [18]. A collision checker combined with a particle filter was also
used to estimate the in-hand object pose, starting from a initial pose acquired from vision and
estimating the pose according to the hand’s movements [19]. Extensively literature exists which
deals with the uncertainty of the object’s location and offer strategies to tackle the problem
of unreliable information, proposing methods to increase the robustness of a grasp, but do not
attempt to estimate the pose of objects [20-26].

The method proposed on this paper is based solely on force and proprioceptive data, and
can estimate the pose of a grasped object given only its current state, using a global search
method based on an evolutionary algorithm. The algorithm uses the rich contact information
given by custom designed sensors and finds object poses which are coherent with the measured
contact information. It extends the authors’ previous work [27, 28], by making a global search
instead of a gradient-based optimisation. The proposed method is extended to work under two
different circumstances: correcting the pose information given by a 3D vision-based system and
finding the pose of a known object given no prior knowledge of the object’s pose. It uses the
joint encoders and the contact position and force normal from tactile sensors and requires the
object’s geometry. Objects with any degree of complexity can be tracked as long as there is a
sufficient number of contacts to discriminate between similar poses.

The problem is presented in the next chapter, as well as the description of the proposed method
along with some implementation details. Section 3 describes the results both in simulation and
with a real system. Section 3.2.3 presents a possible scenario where the method is used in
interaction with humans. Section 4 presents the conclusions of this work.

2. Object Pose Estimation

2.1 Problem Description

The objective of this paper can be formulated as the estimation of a set of parameters x which
describe a pose of an object — position and orientation — which matches the current tactile
and kinematic information. In other words, given a certain hand posture and current contact
information, what object pose(s) satisfy these measurements. The parameters to be estimated
are a rotation and a translation (a vector and a quaternion), as shown in (1). The choice of
quaternions for parametrising the rotation was made taking into account the computational and
mathematical advantages over other notations, such as Euler angles or rotation matrices [29-31].



April 13, 2014

Advanced Robotics .mcpe2.tex

T
X = [qu qxa qy7q27tx7ty7tz}

Besides the geometric shape of the object, which needs to be known a priori, the available
sensor information consists of the contact location on the fingertips and the interaction forces.
This approach takes advantage of the fact that, for rigid contacts, the surface normal coincides
with the measured normal force direction. Taking into account this normal force information
not only improves the overall accuracy of the fitting but clearly discriminates on which of the
object’s face the finger is touching, which is fundamental for the success of a manipulation
task. The objective is then to find z such that the distance between our measured contact
location and the angle between the object surface normal vector and the measured contact normal
are both minimised. Since objects models usually consist of thousands of vertexes, applying
transformations on all these points and their respective normals would be computationally very
expensive. Instead, the goal becomes to find the transform applied on the contacts until a result
is found. The inverse of this solution is then applied to the object.

The devised cost function shown in (2) consists a sum of two factors: the distance from the
contact location on the finger f to a point on the surface s and the angle between the measured
surface normal at that point n and the measured normal force direction @. This sum is mediated
by a weighting factor w,, that depends on the confidence on the object model, as inaccuracies in
the geometric models can yield incorrect normals.

G(z) = Y min ([(af g +7) — sill +wa(1 — (ga™g", 7)) (2)
m=1

As mentioned in the previous section, this paper presents two scenarios for a manipulation
task. First, the method can be used together with a vision tracker, starting from an initial guess
detected by vision and setting a reduced search space, allowing for a very fast detection of the
correct pose. The second method starts with no knowledge of the object pose and searches the
whole space around the robot hand to find suitable pose(s), ranking them according to their
likelihood.

2.2 Method

2.2.1 Set up

The first step of the algorithm takes the object polygon mesh and computes the normal vector
for each face, using the cross product between two vectors defined by the vertices. Active contacts
(contact force above a threshold) are then selected and transformed to be expressed on a common
coordinate frame with object mesh being transformed likewise. A k-d tree is constructed with
the object pointcloud to allow for easier distance queries. The creation of this k-d tree is done
using PCL kdtree flann implementation [32, 33].

2.2.2  Search Algorithm

The search method used to obtain the transformation parameters belongs to a class of methods
commonly called Monte Carlo, originally developed in the 1940’s by Metropolis and Ulam [34].
These methods, while originally devised for mathematical physics problems, have been exten-
sively used in the field of robotics, particularly in localisation problems for mobile robots [35-37].
The idea behind this class of methods is to randomly draw samples from an unknown distri-
bution. The applications range from approximating parameters such as the expected value of
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a probabilistic event, simulate stochastic processes or, as is the case in this paper, to estimate
parameters in an optimisation problem. More specifically, the used method can be classified as
an Evolutionary Algorithm, where the purpose to find a set of parameters that minimise the
cost function (2) by sequentially replicating the most suitable guesses (henceforth referred to as
particles) with a probability related to each particle’s fitness (coherence with the sensor data).

2.2.3 Generating the Population

An initial “population” of pseudo-random particles is created, ensuring a distribution inside
the search space which is suitable for each of the two applications concerned in this paper. For
the local search, starting from a rough pose estimate given from vision, it is sufficient to create
random particles in a Gaussian distribution around the initial estimate. As for the global search,
where there is no initial estimate, we need to ensure the search space is evenly covered. For the
translation vector, this is done simply by creating uniform pseudo-random distribution. For the
rotation quaternion it is accomplished both through the method suggested by Marsaglia [38]
and creating a small set of particles which contain binary randoms in their elements. After
normalisation, this ensures there will be quaternions in all eight quadrants.

2.2.4 Resampling

After the initial population has been generated, the algorithm should replicate the estimates
which best minimise the cost function. As such, an equation was devised which inversely relates
the probability of a particle to be replicated (its “weight” W) to its cost G. Equation (3), shows
the chosen equation where p, can be adjusted, again depending on the desired application. A
higher p, is used for a local search, allowing a quicker convergence and a more “aggressive”
search, sacrificing however the possibility of finding multiple solutions. As for the global search,
where it is crucial not to be trapped in local minima, this value is lowered. Figure 1 represents
how the parameter p, affects this cost to weight conversion.

W4

Figure 1.: Cost to Weight Function

2.2.5 Noise addition

The addition of noise, or according to some authors, perturbation or variation, is another essen-
tial step for the algorithm, as it allows the search to be performed locally around the resampled
particles. The selected scheme for adding noise consisted of creating normal pseudo-random val-
ues with decreasing variance on each iteration. Also, only two parameters were changed at one
time — one in the rotation and one in the translation. These normal pseudo-random numbers
were created using Box-Muller transform [39], which conveniently creates a pair of normally dis-
tributed numbers each time. The way the standard deviation evolves over the particle number
k, given a desired total number of iterations n, is shown in (4). This noise tends to zero as it
approaches the end of runtime and the speed at which it decreases is defined by changing the

POWET pr,.
k Pn
o= (1 - ) (4)
Tp
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2.2.6 Evolution of the algorithm

The algorithm runs for a fixed number of iterations and the best cost is saved, along with the
last 1% of all particles. The fact that the population is always increasing and not replaced as
it is commonly done in Genetic Algorithms has to do with the computational efficiency, as it
would not present any advantage in terms of performance.

Figure 2 shows the evolution of the particle cost (note the log scale) where each particle is
shown as a blue dot, the average cost is shown in red and the current best estimate in green. It
can be seen that the algorithm keeps converging to particles with lower cost.

Particle cost
Current minimum
Moving average

Cost
=

L L Il L 1 1 Il 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iterations

Figure 2.: Progress of algorithm — cost over iterations

2.2.7 Post processing

When finding the pose of an object without any initial estimate, some objects can yield
multiple solutions. This can arise from having few fingers touching the object or from object
symmetry. As such, the algorithm outputs a number of possible poses which can then be kept
for posterior evaluation. The algorithm requires that two solutions have sufficiently different
positions or orientations to be deemed different.

After a group of solutions is obtained, these solutions are tested for collisions with the robot.
In order to have a computationally fast evaluation, the collision checking was made as simple
as possible, requiring only that the object does not have any of the points in its surface in a
vicinity of a number of points inside the robot (knuckles, palm, etc.). If a possible pose violates
this condition it is discarded.

Finally, a Levenberg-Marquardt gradient search [40] is performed, further improving the esti-
mate. The details of this step were previously shown by the authors [28]. This step ensures that
the solution found is a minimum in that region.

2.2.8 Computational Remarks

In order to improve the computational performance of the algorithm, different tactics were
used on each step to allow the local search to be run at similar frequency as the vision tracker and
the global search with no initial estimate to run within reasonable time (around two seconds).

The first strategy, as already described concerned the use of quaternions, allowing rotations to
be applied without the use of trigonometric functions, known to be computationally expensive.
The second consideration was to find the transformation on the finger, avoiding the operation
to be done on the object, which could contain tens of thousands of vertexes and normal vectors
at every iteration. Thirdly, the use of a k-d tree allowed evaluations of the cost function to be
done much more efficiently.

Finally, the implementation of the importance sampling scheme was made carefully considering
computational performance. Each time a particle is generated, its weight is saved into an array
and added to an accumulated sum oy. To generate a new particle, a uniform pseudo-random
number 7, € [0,1] is multiplied by this accumulated sum to obtain a number r in the interval
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[0, ow]. The particle 24 to be replicated will be the one which, on the array of these accumulated
weights, will be located where Zi:o W (k) > r . The procedure here is to begin the search from
the end of the array, taking advantage of the fact that, as the algorithm progresses, particles
with higher weight (lower cost) will be at the end of the array. Figure 3 shows an example of how
these weights may be distributed. If the particle to be resampled sits at the position pointed by
the red arrow, which is approximately in the middle point, much less operations will be needed
if one starts subtracting from the the end of the array than adding from the beginning. This
allows for a much faster resampling while maintaining the conditions for Importance Sampling.

Figure 3.: Weights of particles over time

Figure 4 shows the computation time to generate each particle. Typically, the generation of
each particle would require increasing time with the number of previous particle it resamples
from. Using these strategies however, allows the algorithm to maintain nearly a constant dura-
tion, making the algorithm’s computation time to depend linearly on the number of particles
required.

T T T T T
- Particle generation time
Moving average

Computation time [s]

. . . . . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iterations

Figure 4.: Performance — Computation time to
generate each particle

3. Results

This section presents the results obtained in both simulation and a real robot, validating the
proposed algorithm. The quantitative validation in section 3.1 takes place in a simulated envi-
ronment as accurate ground truth values can be obtained directly. Two sets of experiments were
carried out: On the first experiment, the object is displaced with a small rotation and a transla-
tion from its true location. This is done so as to simulate what is obtained from a vision-based
object tracker when the object is enveloped by the robot hand. The second experiment uses a
wine glass where no prior knowledge of its approximate location is available. To make the figures
clearer, the results are shown only in terms of the distance between the estimate and the ground
truth and their angle in the vertical axis. It should be noted that each data point on the plot is
a one-shot estimate and it does not rely on previously estimated poses. This choice was made in
order to show the performance of the algorithm on its own, although in a practical situation the
algorithm’s initial condition could be the previously estimated pose. Section 3.2 shows results for
a real system and qualitative evaluation, because of the difficulty to have a sufficiently accurate
ground truth values.
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3.1 Simulation

8.1.1 Pose correction

The first scenario uses the algorithm starting from a coarse estimate of the object’s pose. The
object was randomly displaced from its true location by a small amount in both rotation and
translation. The pose correction algorithm is then set to use a reduced search space — angle under
45° and a maximum translation of 5 cm. Figure 5 shows a result of the correction algorithm.
The tested object was a small 3D printed statue! and it can be seen that even for an object with
such complex geometry, the solution is very close to the ground truth. The algorithm ran at a
frequency of over 2 Hz.

Figure 5.: Pose correction. Initial esti-
mate in red, ground truth in green and
result pose in olive green, force nor-
mals are displayed as red arrows

Figure 6 shows the results for twenty consecutive executions of the proposed algorithm. The
blue dots represent the initial error in position and orientation before the execution of the
algorithm and the red dots the error after pose correction. The mean absolute error in translation
was reduced from 15.6 mm to 7.6 mm. As for orientation, the angular error in the z-axis was
reduced from 37.7° to 5.14°. Besides, it can be seen that the error is reduced in every trial in
both position and orientation.

0.035 701
Initial Corrected
0.03
_.0.025 = 50
E 3
g 002 5 40
[ =
S 0.015 ; 30
= (=)
|72 [=4
=3 ©
0.01 N 20
noee " \/\/\/M
0 0
0 5 10 15 20 0 5 10 15 20
trial trial

Figure 6.: Results for twenty executions of the pose cor-
rection algorithm with a reduced search space

3.1.2 Global pose estimation

This experiment shows how the pose of the object can be determined using no vision input,
relying solely on the robot’s proprioception and the force sensors on the fingertips. Applications

IThe bust of the poet Sappho was kindly provided by Artec3D — www.artec3d.com
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of this method could range from situations or environments where it is unfeasible to have a
functioning vision system. The proposed example uses a wine glass, which common image or
RGB-D tracking systems would fail to track as it is transparent. Figure 7 shows a result of a
trial where the object is put at an arbitrary location and the resulting estimated pose overlays
the ground truth. The grasp performed on the object uses the little finger to touch the glass
stem, allowing the estimation to detect the correct orientation, as such symmetric objects could
yield “upside down” poses if the fingers were only touching the glass bowl. Figure 8 plots the
results of the pose estimation. The mean absolute error was 9.9 mm for position and 10.6° for
the vertical angle.

Figure 7.: Global pose estimation. Ini-
tial estimate in red, ground truth in
green and result pose in orange, force
normals are displayed as red arrows
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Figure 8.: Results for twenty executions of the global pose
estimation

3.2 Real System

3.2.1 Ezperimental Setup

The algorithm was implemented in a real system, using a Mitsubishi RV6SL robot and a
Shadow Dexterous Hand™! with only three force-torque sensors mounted on the fingertips. The
required contact information — contact location and normal force direction — are measured using
a scheme called intrinsic contact sensing, described in Bicchi et al [41]. Equation 5 and Figure 9
illustrate this scheme where, using a 6 axis force-torque sensing under a parametrisable convex

Lhttp://http:/ /www.shadowrobot.com/products/dexterous-hand
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shape — a semi-ellipsoid in this case — one can solve the system of equations consisting of the
force and moment balance, yielding a unique solution for the contact location p.. From here, it
is trivial to decompose the total measured force into its normal and tangential components. This
approach has been previously validated by the authors in Liu et al [42] showing an accuracy of
0.224 mm.

S(z,y,2) =0

Figure 9.: Sensor Information

A Microsoft Kinect™! together with PCL? implementation of a point cloud tracker using a
Particle Filter [32] was used for tracking.

3.2.2 Pose correction from vision

The first example of the application is analogous to the experiment done in 3.1.1. When the
object is lying on the table, vision can successfully track its pose, but as soon as the robot hand
grasps the object and creates occlusions, the performance of vision decays significantly. The pose
correction method is then applied, accurately estimating the object’s pose.

Pid

SR l.r.,ra."lr.l:“

Figure 10.: Pose correction result — Image tracking performance before and
after occlusions are created by the grasp in yellow. The pose corrected using
the proposed method is displayed in pink

3.2.3 Interacting with humans — Hand over and place

To illustrate a possible application of the proposed method, an experiment was set up, where
a robot collaborates with a human, in which the latter hands over an object to the robot, who
grasps the object and places it in a designed location.

The example object was a pencil, as it poses difficulties to a vision tracker due to its size. The
placing phase also entails some problems, as the pencil needs to be placed in a narrow hole in a
box, requiring the estimate to be very accurate. Figure 11(a) shows a situation where the robot
is grasping a pencil. The point cloud obtained with the RGB-D camera contains very few points

Thttp:/ /www.xbox.com/en-GB/Kinect
2Point Cloud Library — http://www.pointclouds.org
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belonging to the object, making it impossible to be tracked by vision. The method, however, can
successfully estimate the pencil’s orientation without any prior estimate of its pose. The result
of the experiment is shown in Figure 11(b).

(a) Clockwise from left: Robot grasping (b) Hand over and place experiment — a pencil is placed in the robot hand
the pencil; Point cloud overlaid with the by a human operator, the goal is to place the object inside a box.

robot model; Result of the pose estima-

tion

Figure 11.: Experiment - An operator hands over a pencil to the robot and the robot places it
through a hole in a box. The experiment uses solely tactile and proprioceptive sensing

4. Conclusions

Object grasping and/or manipulation typically relies on vision to estimate the pose of the target
object. However, when the robot creates occlusions between the camera and the object the
tracking performance decreases significantly. Furthermore, in some situations it is not feasible
to use vision. This paper presents a method to estimate this pose using current force, tactile
and proprioceptive information, where an evolutionary algorithm is used to find an object’s
pose which is coherent with this sensor information. The proposed method can be used both
to improve an estimate given by vision or globally estimating the pose when no prior estimate
is available. Validation has shown an error below 1 cm on the global search and a consistent
improvement from an initial estimate. An example application was presented where the robot
was handed over a pencil and accurately placed it through a narrow hole using no vision input.
Both the results in simulation and the successful experiment show the validity of the proposed
algorithm and the capabilities of an advanced tactile sensing system, particularly in situations
where vision might not be available or accurate.
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