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ABSTRACT 

The complement system represents an evolutionary old and critical component of 

innate immunity where it forms the first line of defence against invading pathogens. 

Originally described as a heat-labile fraction of the serum responsible for the 

opsonisation and subsequent lytic killing of bacteria, work over the last century firmly 

established complement as a key mediator of the general inflammatory response but 

also as an acknowledged vital bridge between innate and adaptive immunity.  

However, recent studies particularly spanning the last decade have provided new 

insights into the novel modes and locations of complement activation and highlighted 

unexpected additional biological functions for this ancient system, for example in 

regulating basic processes of the cell. In this review, we will cover the current 

knowledge about complement’s established and novel roles in innate and adaptive 

immunity with a focus on the functional differences between serum-circulating versus 

intracellularly active complement and will describe and discuss the newly discovered 

cross-talks of complement with other cell effector systems particularly during T cell 

induction and contraction.  

 

INTRODUCTION 

The immune system of eukaryotes has evolved under the constant selective 

pressures driven by ever-changing pathogenic organisms trying to exploit the host 

for their own survival. The broad range of disease-causing pathogens and their 

various modes of ensuring procreation within the host are staggering, however 

infectious agents can generally be sub-grouped into being either intracellular or 

extracellular bacteria and toxins, protozoans, fungi, viruses or complex extracellular 
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parasites (1). The immune system has evolved complex and multifaceted defence 

mechanisms involving the interrelated innate and adaptive arms to sense and 

combat such a variety of pathogens. The innate immune system forms the first line 

of defence and stands guard at potential sites of entry such as the skin, gut and lung 

epithelial cells and layers where secreted antimicrobial peptides help to protect the 

integrity of these physical barriers (2). If a microbe has nonetheless been able to 

invade the host, a range of ‘cellular patrols’ such as macrophages and neutrophils 

within tissues are poised to detect highly conserved pathogen-associated molecular 

patterns (PAMPs) using a variety of germ-line encoded receptors such as the toll-like 

receptors (TLRs), the Nod-like receptors (NLRs) and complement system-derived 

receptors that are called pattern recognition receptors (PRRs) (3, 4). Activation of 

these PRRs leads to immune cell activation, with the induction of appropriate 

protective effector responses, specific for the cells that receive these signals, and 

clearance of the invading pathogen. The host’s ability to differentiate between self 

and non-self is a central governing paradigm of immunology that allows the immune 

system to clear infection whilst controlling unwanted injury to host tissues. 

Particularly, the innate responses are important in controlling the early stages of 

infection and in subsequently guiding the formation of specific cellular and humoral 

responses. However, although all PRR systems have initially been discovered and 

defined as sensor and effector systems fighting pathogens, it is now understood that 

they also play central roles in the detection and removal of harmful self-derived 

molecules, so-called danger-associated molecular patterns (DAMPs), commonly 

generated during cell (hyper)activity, stress responses and cell death (5, 6). 

Furthermore, emerging data is also demonstrating that PRRs are involved in the 

post-inflammatory tissue repair phases and in general immune homeostasis – and 
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that PPRs effector functions in all phases of the immune response are unexpectedly 

closely linked to cellular pathways that direct basic cell physiological processes such 

as survival, cell death and metabolic reprogramming (7, 8).  

The complement system is one of the most ancient of the preformed 

mediators of host defence and comprises over 50 serum-circulating proteins and 

cell-surface receptors and regulators which act in concert to form a large and 

complex effector system (9). Complement circulating in serum and the lymphatic 

fluids is considered a sentinel system that ‘idles’ mostly in an inactive pro-enzyme 

form. It is, however, triggered and activated almost immediately upon pathogen entry 

and plays a crucial role in controlling the early stages of infection by direct lysis of 

pathogens and by facilitating the recruitment and activation of various types of 

leukocytes (9). This critical role of complement as a PPR is underpinned by the fact 

that complement-deficiencies lead to recurrent severe infections – and were, in fact, 

a sure death sentence before the discovery of antibiotics (10). Similar to the TLR and 

NOD PRR systems, complement also recognizes DAMPs and is instrumental in the 

removal of apoptotic cells (11). However, complement’s activity goes well beyond 

these innate functions during the early phases of the immune response and also 

heavily impact both B and T cell immunity (12, 13). Furthermore, the recent 

discovery of intracellular complement activation in immune cells and its importance 

for normal cellular functioning has led to the emerging concept of an intracellular 

“complosome” which exists and functions independently of liver derived complement 

(7, 14). These intracellularly-generated complement products can induce signalling 

events through their respective receptors located either on intracellular 

compartments and/or, after secretion of the intracellularly generated fragments, via 

their receptors expressed on the cell surface (7, 15) and govern, for example, human 

Page 4 of 51Immunological Reviews: Submitted manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

5 

 

Th1 responses by driving the signalling pathways and metabolic reprogramming 

necessary for effector responses (8). In this review we will briefly cover the known 

roles of liver-derived complement in controlling the early stages of an immune 

response against a pathogenic invader (‘out-side’ function of complement) and then 

discuss in depths the emerging roles of the complosome (‘in-side’ function of 

complement) as an independently functioning arm of the complement system in 

driving the cellular machinery required for the initiation and regulation of T effector 

cell responses. By the end of this review, we would like to make the case that 

complement is active in an unexpectedly wide array of cellular processes, of which 

many are not related directly to immunity and that much remains yet to be 

discovered about the complement system – for the basic scientist, the clinician and 

pharmacological industry alike. 

 

‘Classic’ serum complement activation and regulation 

The modes of activating complement are well defined and traditionally divided into 

three separate activation pathways - the classical, the lectin and the alternative 

pathway (9) (Figure 1). All three pathways share several common components but 

differ in the nature of their respective initiation trigger and recognition molecules due 

to differences in microbial sensing modes (9). This is obviously advantageous to the 

host as it allows for the detection and subsequent clearance of a broad range of 

pathogens. The classical pathway, which was the first of the pathways to be 

discovered and defined, is initiated by the binding of C1q to complement fixing 

antibodies (primarily IgM and IgG1, 2 and 3 subtypes) bound to their specific antigen 

on the pathogen’s surface. Subsequent to the C1q-antibody interaction, the C1q-

associated proteases C1r and C1s undergo auto-activation and transactivation, 
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respectively, leading to the proteolytic cleavage of C4 into C4a and C4b and then C2 

into C2b and C2a. The protein complex of C4bC2a forms the classical pathway C3 

convertase, an enzyme complex that activates the complement key component C3. 

Mannose-binding lectin (MBL), ficolins and collectin-11 of the lectin pathway 

recognise carbohydrate moieties on the surfaces of pathogens such as those found 

on members of the Salmonella spp, and utilize the mannose-binding protein-

associated serine proteases (MASPs) 1 and 2, to activate C4 and C2 to then form 

the lectin pathway C3 convertase (which is the same as the classical pathway C3 

convertase). Activation of the alternative pathway is initiated when C3b-like 

molecules that are continuously generated in blood via spontaneous hydrolysis 

(C3[H2O]) bind covalently to target surfaces and recruit factors B and D to then form 

the alternative pathway convertase (C3bBb). The alternative pathway is also called 

the ‘amplification pathway’ since it potentiates the activity of the lectin and classical 

pathways (9) (Figure 1). C3b is highly reactive by virtue of its activation-exposed 

thioester group, and binds covalently to nucleophilic groups present on cell surfaces 

(16). C3b deposition is also the first step towards C5 convertase formation, which 

cleaves C5 into C5a and C5b fragments. The classical and lectin pathway C5 

convertases are C4bC2aC3b and the alternative pathway C5 convertase is 

C3bBbC3b. C5b is required for the assembly of the membrane attack complex (MAC, 

a multimeric structure containing complement components C5b-C6-C7-C8-polyC9), 

which forms transmembrane channels on the surfaces of pathogens or infected cells 

causing membrane instability and cellular lysis due to osmotic stress (17). C3b and 

C4b are opsonins and tag pathogens for uptake and destruction by phagocytic cells 

such as neutrophils and macrophages (18). It is important to note here that it is now 

becoming increasingly clear that convertase-independent cleavage of C3 and C5 by 
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specific proteases is of substantial physiological importance. For example, several 

proteases of the co-agglutination system (19) and of the ancient protease families 

representing cathepsins and granzymes (7, 14, 20, 21) cleave C3 and C5 into 

bioactive fragments and these non-classical means of complement activation play 

key roles not only in the activation of normal Th1 cell responses (see below) but also 

in several disease settings including trauma and sepsis (14).  

It is critical that complement activation is tightly regulated as activated C3b and C4b 

not only bind to pathogens but also non-discriminatively to host cells where they 

could induce unwanted tissue damage and inflammatory disease (18). This vital 

complement control is achieved through a range of fluid-circulating and membrane-

bound complement inhibitors and regulators (18) (Figure 1). A central focus of 

complement control is on the alternative pathway amplification loop and mediated by 

proteolytic inactivation of deposited C3b and C4b (cofactor activity by CD46, factor 

H, C4b binding protein, and complement receptor 1, CR1; CD35), rapid disassembly 

of C3 and C5 convertases (decay accelerating activity, CD55, and CR1), and 

inhibition of MAC formation and insertion (CD59, vitronectin) (18) (Figure 1). 

Interestingly, the complement receptors and regulators not only protect host cells 

from complement attack but are also able to transmit intracellular signals upon 

activation (22, 23) – and this is likely the reason why complement is such an active 

participant in a wide range of effector responses of immune cells during inflammatory 

processes (13, 22) (see below).   

 

Complement in innate immunity and the inflammatory reaction  

The early stages of infection are typically confined to a localized area such as a 

wound or other portal of entry of infectious agents, and are met with an acute phase 
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of localized inflammation mediated by a combination of inflammatory cytokines 

produced primarily by tissue resident macrophages, and, critically, the 

anaphylatoxins C3a and C5a generated via complement activation. This local 

inflammation is driven by increased permeability of small blood vessels and smooth 

muscle contraction (24, 25) allowing plasma proteins and immune cells to enter 

tissues and this phase is typically associated with the characteristic symptoms of 

fever, malaise and localised swelling. The anaphylatoxins C3a and C5a are small, 

soluble mediators of inflammation which have pleiotropic effector functions that 

orchestrate both local inflammation and the development of adaptive immune 

responses (26, 27). They exert their effects by binding to their specific receptors, the 

C3a receptor (C3aR) and the C5a receptor (C5aR1 or CD88), which belong to the 

superfamily of seven transmembrane spanning G-protein coupled receptors 

(GPCRs). Additionally, a second C5a receptor, C5aR2 (GPR77) exists which is 

uncoupled from G-proteins and has a high affinity for the des-Arginated form of C5a 

(C5a-desArg) (28). Anaphylatoxin receptors are widely expressed on cells of myeloid 

origin including neutrophils, monocytes/macrophages, basophils, eosinophils, mast 

cells and dendritic cells as well as on non-myeloid cells such as the epithelia (29), 

endothelia (30) and smooth muscle cells (31). Anaphylatoxins are key to the influx of 

innate immune cells into tissue as they possess potent chemotactic properties, with 

C5a promoting the recruitment of neutrophils, macrophages, DCs and basophils 

while C3a gradients attract mast cells (32-36). C5a is also required for normal 

neutrophil degranulation and the oxidative burst in these cells that mediates killing of 

intracellular bacteria (37, 38), while histamine release from mast cells is driven by 

C3a (39). Further, C5aR1 signalling activates the lipoxygenase pathway and 

arachidonic acid metabolism (40) leading to increased eicosanoid production in 
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neutrophils and monocytes. The anaphylatoxins are also heavily involved in the 

priming and activation of ‘incoming’ leukocytes, enhancing their ability to produce 

pro-inflammatory cytokines. For example, ligation of the C3aR on the surface of 

macrophages and DCs synergizes with TLR ligation by bacterial endotoxin to induce 

the assembly of an active NLRP3 inflammasome, which is crucial for the production 

of the core pro-inflammatory cytokine IL-1β (41). IL-1β exerts numerous effects on 

the vascular endothelium, and can increase endothelial expression of chemokines 

and adhesion molecules, thus promoting leukocyte recruitment and extravasation, 

respectively (42). Furthermore, C5aR stimulation of the endothelium leads to up-

regulation of genes encoding various molecules involved in cellular adhesion and 

transmigration such as E-selectin, intercellular adhesion molecule 1 (ICAM1) and 

vascular cell adhesion molecule 1 (VCAM1), thereby initiating immune cell rolling 

and adhesion and the first steps of leukocyte extravasation into tissues (43). 

Together with the anaphylatoxins, the opsonins C4b, C3b, iC3b, C3dg and 

C3d are also generated during serum complement activation. These latter fragments 

bind to the surface of particles or cells and enhance their uptake by phagocytes (44). 

For example, CR1 (CD35) is a transmembrane glycoprotein that can bind C3b and 

C4b that has been deposited onto the pathogen or other target surface upon 

complement activation. CR1 engagement on neutrophils and macrophages induces 

the phagocytic uptake of opsonised pathogens (45) – an event that is synergistically 

supported by C5aR1 activation (46). The Complement Receptors 3 (CR3, CD11c-

CD18) and 4 (CR4, CD11b-CD18) belong to the β2 integrin family of adhesion 

molecules (47). They are also present on neutrophils, monocytes and macrophages 

and can bind the inactivated form of C3b (iC3b) attached to a pathogen surface or 

cell (48, 49). Activation of CR3 has recently been shown critical to the induction of 
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phagocytosis in neutrophils, monocytes and macrophages and to the neutrophil 

oxidative burst (50). In addition, CR1 activation on macrophages induces secretion 

of the proinflammatory cytokine interleukin (IL)-12 which is a potent activator of T 

cells. In sum, serum-derived complement activation fragments are critical mediators 

of the immediate inflammatory reaction driven by innate immune cells and aiming at 

containing pathogen breach in its earliest stages.  

 

Complement as key instructor of adaptive immunity  

Direct effects of complement on APC function  

The increasing awareness over the last decades that complement is not a mere 

pathogen killing machine but that complement receptors and regulators evoke 

catered effector responses by a range of immune cells delivered an explanation for 

the long-known but ill-understood fact that complement dysregulation also 

contributes to autoimmune diseases including systemic lupus erythematosus (SLE), 

rheumatoid arthritis (RA), multiple sclerosis (MS) etc. Among the first identified cells 

(aside from B cells, see below) that demonstrated a clear need for incoming 

complement-mediated signals for normal maturation and effector functions were 

macrophages and antigen presenting cells (APCs) – the cells that are key to bridging 

innate and adaptive immunity. It is in the tissues, that immature professional APCs, 

namely dendritic cells, capture antigens and process them for presentation as MHC-

peptide complexes to T cells in the draining lymph nodes. In the immature state, DCs 

are highly efficient at capturing antigen, but are poor stimulators of T cells as they 

lack the co-stimulatory molecules CD40, CD54 and CD86 required for effector cell 

differentiation (51). Upon receiving maturation signals the DCs lose their ability to 
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take up antigen but, instead, increase their costimulatory molecule expression (52). 

Mouse studies have shown a strict requirement for anaphylatoxin-mediated signals 

for normal and efficient DC maturation and the production of polarizing cytokines that 

subsequently direct T cell differentiation and therefore adaptive immunity (53, 54). 

C1q is now also emerging as an important regulator of APC function as C1q 

enhances surface expression of CD83, CD86, HLA-DR, and CCR7 on DCs (55) and 

‘C1q-experienced’ DCs secrete more IL-12p70 compared to immature DCs, with 

C1q-primed mature DCs inducing production of IFN-γ by co-cultured T lymphocytes 

(55). Furthermore, to ‘meet’ and stimulate cells of the adaptive immune system, the 

activated DCs must migrate to the draining lymph nodes and complement has been 

shown to play a role in this activation induced migration of the DCs to the secondary 

lymphoid organs: Lack of serum complement C3 affects CCR7 expression, a lymph 

node homing chemokine receptor, on pulmonary DCs, thus altering their traffic to the 

draining lymph node upon pathogen challenge (56). However, aside from impacting 

adaptive immunity via the ‘DC route’, complement has also profound direct effects on 

adaptive immune cells.  

 

Direct effects of complement on B and T cell effector responses  

Both B cells and T cell express a range of complement receptors and regulators (57-

59). A prominent role for complement in B cell response had been suggested already 

in the 1970’s by the observation that B cells bound C3 fragments to their surface and 

that mice depleted of serum-circulating C3 via cobra venom factor treatment have an 

impaired humoral response against T cell-dependent antigens (60, 61). Subsequent 

studies then established that CD21 (CR2), and to a lesser extent CD35 (CR1), is 
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required for normal antibody production (62, 63). On mature B cells, engagement of 

the CD21-CD19-CD81 coreceptor complex by C3d-opsonized antigen favours their 

migration to the B/T cells interaction zone within the lymph node and lowers the 

threshold of B cell activation. Thus, C3 plays the role of an natural adjuvant during B 

cell function (64, 65). Interestingly, CD21 is also involved in the actual shaping of the 

specificity of the B cell population itself. The source for protective natural antibodies 

in the immune system is a subset of B cells termed B-1 cells. B-1 cells are positively 

selected during development and CD21 signalling on B cells has been shown being 

important for the expansion and maintenance of these cells (66). Furthermore, CD21 

contributes also to the maintenance of memory B cell responses. Indeed, it has been 

shown that CD21 plays a crucial role for the function of the follicular dendritic cells 

(FDCs) which are central to the initiation of the adaptive immune response. FDCs 

capture complement-opsonized antigen via CD21 and allow thus for long-term 

retention of the antigen in germinal centres and (re)presentation of the antigen to 

previously primed B cell (67). In line with the growing understanding that 

complement is also required for cell homeostasis and negative control of immunity, 

CD21 seems to also contribute to the negative selection of self-reactive B cells as 

mice lacking either C4 or CD21/CD35 fail to induce B cell anergy towards self-

antigen (68). The complement-mediated mechanism preventing the production of 

autoantibodies is not fully understood but may operate through lowering the 

threshold of B cells for apoptosis induction during the negative selection process 

(69).  

The work of several groups on the direct role of complement in the modulation 

of T cell responses over the last decade has led to two surprising findings. Firstly, 

direct complement receptor-mediated signalling is critically required for normal 
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induction of T helper type 1 (Th1) responses but appear to affect Th2 and Th17 

responses only indirectly. Secondly, Th1 induction both in mice and humans requires 

complement activation fragments generated by the APCs and/or T cell itself and 

seems to be mostly independent of serum-derived complement (27, 70). The first in 

vivo evidence demonstrating an impact of local complement on T cell responses has 

been revealed using a transplant model. In these studies, C3-deficient kidneys were 

protected from T cell-mediated graft rejection when transplanted into a wild type 

(WT) host, despite a normal systemic complement compartment (71). Furthermore, 

T cells in chimeric mice with C3-deficient bone marrow-derived cells did not respond 

to alloantigenic stimuli with IFN-γ production (27, 72). Although the liver is generally 

viewed as the main source of systemically circulating complement, several groups 

have demonstrated over the years that immune and non-immune cells can locally 

produce complement components (73-76). In regards to T cell activation, 

subsequent studies using mouse models demonstrated that during the cognate 

interaction between T cells and APCs, T cell receptor (TCR) activation in conjunction 

with CD28 costimulation, induce complement production and secretion of the key 

components C3, C5, Factor (F) B, and FD in both cells. This is followed by 

extracellular C3 and C5 convertases formation and the generation of the 

complement activation fragments C3b, C3a, C3a-desArg and C5a and C5a-desArg 

in the T cell-APC synaptic space. Simultaneously, the APC-T cell interaction in mice 

also upregulates the C3aR and C5aR expression on both cells which then allows 

these receptors to bind the extracellularly generated anaphylatoxins and to initiate 

C3aR and C5aR-driven signals for the specific production of IFN-γ and Th1 induction 

(27, 70, 72). This model of locally and autorine functioning complement aligns with 

the findings that APCs from C1q-, C3-, FB- and FD-deficient mice exhibit a less 
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activated phenotype and have a reduced capacity to stimulate antigen specific T 

cells (53, 70, 77, 78) while T cells and APCs from Daf–/– mice produce locally 

increased anaphylatoxins (because of unrestrained local C3 and C5 convertase 

activity) and have, thus, hyperactive Th1 responses (27, 72, 79). 

As mentioned above, although it is well-understood that complement also 

impacts on Th2 and Th17 responses, these effector responses appear to be 

regulated by ‘complement-instructed’ epithelial cells and APCs, respectively, rather 

than by T cell-expressed complement receptors. Furthermore, data generated about 

this subject are currently mostly derived from mouse models (80). For example, 

C3aR and C5aR signalling cyclic adenosine monophosphate (cAMP), extracellular 

signal-regulated kinases (ERK), nuclear factor kappa-light-chain enhancer of 

activated B cells (NF-kB) stimulate dendritic cells to secrete pro-inflammatory 

cytokines such as IL-12, IL-23, IL-6 and TGF-β which are instrumental in mediating 

either Th2 or Th17 responses (81-83). C5a particularly affects the generation and 

modulation of proinflammatory T cell effector responses of the Th17 type by 

regulating IL-6 and IL-1-β produced by DCs and/or macrophages (84). Interestingly, 

while, TLR2 and C5aR induced signals synergize in mouse DCs to induce IL-12p70 

production, C5aR-deficient DCs from the spleen generate more IL-6 and IL-23 

compared to C5aR-sufficient DCs when stimulated with the TLR ligand Pam3Cys 

(85). This strongly indicates that the specific impact of the anaphylatoxins on Th17-

instructing cytokine production is dependent on the type of APC sensing the C5a 

signal and the TLR that is concurrently stimulated. Aligning with this notion, Lajoie 

and colleagues found that C5a inhibits house dust mite-induced IL-23 production 

from bone-marrow derived DCs in an asthma model, while C5aR-deficient bone 

marrow-derived DCs are fail to produce IL-1β, IL-6 or IL-23 upon combined 
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ovalbumin (OVA) and lipopolysaccharide (LPS) activation (86). A similar role for the 

anaphylatoxins in the regulation of human Th17 is supported by two recent 

observations: Candida albicans triggers IL-6 secretion in human peripheral blood 

mononuclear cells (PBMC) in a C5a-dependent manner (87) and C3aR engagement 

induces IL-1β production in human monocytes through the induction of the NLPR3 

inflammasome. Such C3a-instructed monocytes subsequently induce strong Th17 

response in activated human CD4+T cells while leaving Th1 and Th2 responses 

unaltered (41). Although our understanding of the ‘complement-T cell relationship’ is 

in its early hours and the exact underlying mechanism through which complement 

impacts on T cell immunity are clearly far from being defined, the idea that 

complement forms a critical bridge between innate and adaptive immunity is now 

becoming firmly integrated into mainstream immunology.  

 

The role of intracellular complement activation in human Th1 induction.  

The intracellular C3 system 

Although the importance of anaphylatoxin receptor signalling - at minimum on the 

APC level - for the normal induction of Th1 responses in mice has been conclusively 

demonstrated in several studies using pertinent disease models and C3aR and/or 

C5aR1 knock out animals, the complement-mediated pathways regulating Th1 

immunity in humans are quite distinct. In humans, combined signalling by the 

C3b/C4b-binding complement regulator CD46 and the C3aR, stimulated in an 

autocrine fashion by cell derived complement fragments, has been established as an 

absolute pre-requisite for Th1 induction, and more specifically production of the pro-

inflammatory cytokine IFN-γ (figure 2a) (7, 22, 88, 89). Accordingly, patients that are 
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deficient in CD46 cannot mount normal Th1 responses and suffer from life-long 

infections. In some cases, CD46-deficient patients even develop common variable 

immune deficiency (CVID) and require monthly immune globulin (IgG) infusions. 

Similarly, patients that are deficient in serum C3, also have incidences of recurrent 

infections in early childhood, however, C3-deficient patients seem to acquire immune 

protection with age as their infections cease to occur during adulthood (7, 13, 15, 

89). CD46 was initially discovered as a ubiquitously expressed complement regulator 

that functions as a cofactor for the serine protease FI during the proteolytic 

inactivation of C3b and C4b deposited on host tissue (90). It became quickly clear 

that CD46 also transduces signals upon activation and can regulate macrophage 

and T cell function (22, 88, 91). Importantly, although mice have a gene (Cd46, Mcp) 

that has homology to the human CD46 gene, mice (and also rats and rabbits) only 

express mCD46 in immune-privileged tissues such as the testis, the brain and the 

eye (45, 92, 93). Furthermore, while human CD46 is expressed in different isoforms 

due to splicing from a single gene and the distinct intracellular domains have clear 

signalling capacities (94) (see below), the mouse CD46 protein is only expressed in 

a single isoform and its intracellular domain does not contain any known signalling 

motifs (95). While the rodent-specific protein Crry/p65 has cofactor activity for mFI in 

the cleavage of mC3b and is indeed expressed on mouse lymphocytes, its activation 

favours rather Th2 induction via IL-4 secretion (96) and Crry–/– mice have increased, 

instead of defective Th1 responses (97). Thus, the current mechanistic models of 

complement-driven effector cell responses in mice do not integrate autocrine C3b-

mediated signals.  

Another unexpected and likely paradigm-shifting observation has as yet only been 

made in the ‘human system’: Complement activation is, surprisingly, not confined to 

Page 16 of 51Immunological Reviews: Submitted manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

17 

 

the extracellular space, but occurs intracellularly and is required for homeostatic T 

cell survival and the induction of Th1 effector function (figure 2) (7, 8). Importantly, 

engaging intracellular complement receptors induces signalling pathways distinct 

from those triggered by the same receptors when expressed on the cell surface (7, 

14, 89). This implies that the location of complement activation dictates the functional 

outcome of complement activation and the existence of a novel concept in which 

complement can induce ‘inside-in’ and ‘outside-in’ signalling (14) (see below). 

Specifically, in resting human CD4+ T cells, activation of C3 occurs intracellularly 

continuously via cathepsin L (CTSL)-mediated cleavage, and C3a generated via this 

‘pathway’ stimulates intracellular C3aR signalling on lysosomes, thereby sustaining 

homeostatic T cell survival (figure 2b) (see below). Upon sensing of danger, in the 

case of T cells, TCR activation, this intracellularly generated C3a and C3b rapidly 

translocate to the cell surface, where they engage cell surface C3aR and CD46, 

respectively, events together driving IFNγ production. Although the biologic 

function(s) of intracellular complement activation is, at this point, mostly studied in 

human CD4+ T cells, it occurs in all cells analyzed so far – and hence is likely of 

broad physiological relevance (7). Importantly, this intracellular C3 system regulates 

the magnitude of Th1 responses and its dysregulation contributes to human 

autoimmune disease: CD4+ T cells isolated from the inflamed joints of patients with 

juvenile idiopathic arthritis (JIA) have significantly increased intracellular C3 

activation that drives their hyperactive Th1 responses. Excitingly, the pathogenic C3 

activation levels are amendable to pharmacological intervention as activation of the 

patient’s T cells in the presence of a cell-permeable CTSL inhibitor fully normalized 

intracellular C3a generation and Th1 responses in culture (7). The latter data though 

have been generated in vitro and fast translation into in vivo application is currently 
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not realistic as CTSL has many additional functions (98) and any therapeutic would 

need to be carefully targeted to not only specific cells but likely also to specific 

cellular sub-compartments. Nonetheless, the discovery of ‘targetable’ CTSL as C3 

activating protease further funnels into our understanding that complement-activating 

proteases in general may be of more physiological and therapeutic importance than 

previously thought. Although intracellular C3 activation occurs in a broad range of 

cells, the activating protease(s) most likely differ from one cell type to another.  While 

the lysosomal protease CTSL also processes C3 in human monocytes, C3 activation 

in human epithelial cells is CTSL-independent (7). Thus, each cell type may possibly 

rely on a different intracellular C3 activating machinery. In fact, convertase-

independent activation of complement in serum or on the cell surface has been 

described early on (21, 99, 100), and one can envision that this plays an important 

role for the control and activation of the immune responses at microenvironmental 

level by providing a mode for more rapid processing of the complement compounds. 

For example, cathepsin D (CTSD) has been shown to cleave C5 to generate active 

C5a in vitro (20) and various proteases from the coagulation pathway including 

Factors Xa and XI are well known to be potent C3 and C5 activators (19, 99, 101). 

Most of these proteases are produced by the liver and pancreas and therefore might 

have a preponderant role as sentinel proteases patrolling the host tissues and 

digestive track. On the other hand, immune cells such as mast cells can produce 

various proteases as granzyme B, tryptase, carboxypeptidases which can act more 

locally and timely (21, 102, 103) – thus, this ‘systemic versus local versus 

intracellular’ scheme for complement function may also extend to the complement-

activating proteases.  
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The intracellular C5 system 

After the discovery of the intracellular functional C3 activation system, it was natural 

to inquire if T and other immune cells contain also an intracellular C5 system and 

whether this system may contribute to cell effector function(s). Indeed, non-activated 

human CD4+ T lymphocytes contain intracellular stores of C5 and produced low 

levels of C5a in the resting state (89). TCR activation, and particularly in conjunction 

with CD46 costimulation, increases the amounts of intracellular C5a, which is 

associated with secretion of portions of this intracellularly generated C5a to the cell 

surface (figure 2a). Human CD4+ T cells also demonstrate a specific C5aR 

expression pattern: while the C5aR1 is exclusively expressed intracellularly in resting 

and activated cells, the C5aR2 can be found both intracellularly and on the cell 

surface (89). A subsequent assessment of functional consequences of intracellular 

C5 activation revealed that it surprisingly drives the assembly of the NLRP3 

inflammasome in T cells. Inflammasomes are multiprotein complexes consisting of 

caspase 1, PYCARD, and NALP and assemble upon PAMP or DAMP sensing via 

their upstream PPRs (104). The exact composition of an inflammasome depends on 

the inducing signal which initiates inflammasome assembly, e.g. dsRNA derived from 

pathogens will trigger one inflammasome composition whereas self-derived danger, 

such as cholesterol crystals will generate a different variant (5, 105). The NLRP3 

inflammasome activates caspase-1 which in turn then processes the proenzyme 

forms of the key host pro-inflammatory cytokines Interleukin 1β (IL-1β) and 

Interleukin 18 (IL-18) into their active forms. NLRP3 inflammasome function requires 

a priming signal 1 (which induces NLRP3 and IL1B gene transcription) and a signal 2 

that induces functional inflammasome assembly (105). The NLRP3 inflammasome is 

present in myeloid innate immune cells and in several non-immune cell types such 
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as microglia, endothelial and epithelial cells (106-108). However, canonical NLRP3 

inflammasome activity had previously not been described in lymphoid adaptive 

immune cells – thus, the presence of a (C5-driven) NLRP3 inflammasome in T cells 

was a surprising observation. Mechanistically, intracellular engagement by the 

C5aR1 upon T cell stimulation increases IL1B gene expression (while CD46 

simultaneously drives NLRP3 gene expression) and induces the generation of 

mitochondrial reactive oxygen species (ROS) (109) and via this provides signals 1 

and 2 for NLRP3 inflammasome activation (figure 2a). NLRP3 inflammasome-driven 

caspase-1 activation leads to IL-1β secretion, which subsequently promotes 

specifically interferon (IFN)-γ production and Th1 differentiation (but not Th2 and 

Th17 induction) in an autocrine fashion. The biological relevance of complement-

induced IL-1β production by T cells is supported by the finding that T cells from 

patients with distinct gain-of-function mutations in NLRP3, and that suffer from 

cryopyrin-associated periodic syndrome (CAPS), have a hyperactive Th1 response 

that can be re-set in vitro to normal levels with a specific NLRP3 inhibitor, MCC950 

(89, 110, 111). Furthermore, utilization of T cells from mice that are Nlrp3-deficient 

showed that normal Nlrp3 inflammasome activity in T cells in not only required for 

optimal protective IFN-γ immunity during viral infection but also controls the balance 

of Th1 versus Th17 responses during intestinal inflammation (89, 112). 

In sum, T cells contain intracellular C3 and C5 activation systems and the 

regulated crosstalk between intracellularly activated complement components, the 

complosome, (14) and the NLRP3 inflammasome emerges as fundamental to 

normal IFN-γ production in human CD4+ T cells. The unexpected finding that 

established innate immune pathways previously not thought to be operative in 

adaptive immune cells are critical to the initiation of Th1 immunity expands our 

Page 20 of 51Immunological Reviews: Submitted manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

21 

 

current knowledge about the evolution and function of the immune system 

substantially. Importantly, and similar to the intracellular C3 system, intracellular C5 

activation is not confined to T cells but also present in other immune cells, and we 

observed that intracellular C5aR1 activation in human monocytes is required for 

appropriate cellular responses to self-derived DAMP signals which indicates that this 

system is also important during the initiation of sterile inflammation (unpublished 

data). Thus, while serum-circulating complement constitutes a vital sentinel system 

for direct pathogen sensing and removal, the complosome emerges as critical 

regulator of (adaptive) immunity via crosstalk with other intracellular effector 

systems. The recent observations that the NLRP3 protein functions as transcription 

factor regulating Gata3 gene expression in the nucleus of mouse CD4+ T cells (113) 

and that secreted NLRP3 inflammasome amplifies as extracellular danger signal the 

inflammatory response of macrophages (114) fits into the emerging concept that 

these old PRR systems likely have additional and yet to be discovered functions at 

novel locations.  

 

The role of complement in T cell homeostasis  

Complement in the maintenance of the resting T cell pool 

Our perception of complement as mostly pro-inflammatory effector system is now 

changing slowly as a body of work shows that the complement system also plays 

prominent roles in the negative control of immune cell effector responses, and, thus, 

general immune homeostasis (9, 14, 115). For example, the intracellular ‘tonic’ 

generation of C3a via CTSL cleavage is critically required for T cells to survive in the 

resting and circulating state. C3a binds to the C3aR expressed on lysosomes and 
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sustains low-levels of mTOR required for such survival (figure 2b). Neither the exact 

signalling pathways driven by the lysosomal C3aR1 mediating this function nor the 

modes of regulation of intracellular CTSL-mediated C3 activation are currently 

defined (7).  This unexpected finding, however, also initiated further assessment of 

the intracellular 'C3 system' in patients with serum C3 deficiency because T cells 

from these individuals are unable to mount in vitro Th1 responses but have no 

survival defect in vitro and in vivo. This led to the discovery that all immune cells 

from patients with systemic C3-deficiency generate sufficient intracellular C3a from 

the mutated C3 protein to survive, but fail to secrete the C3 and activation fragments 

(7). Thus, homeostatic pro-survival signals are normally generated, while autocrine 

cell surface activation of complement receptor pathways required for T cell effector 

responses cannot be induced (7). We have noted a similar ‘situation’ for immune 

cells from patients with serum C5-deficiency: T cells and monocytes from these 

individuals generate intracellular C5a and engage intracellular C5aR1 pathways – 

but cannot secrete C5 and its activation products (unpublished data). The autocrine 

C5 system is also required for homeostatic survival of APCs and T cells in mice as 

studies performed with C5ar1–/– mice showed that circulating immune cells in non-

challenged animals have a decreased lifespan (27) because of failure in sustaining 

the phosphatidylinositol 3-kinase (PI3k) - protein kinase B (Akt) -  mammalian target 

of rapamycin (mTOR) pathway, PI(3)K–Akt–mTOR pathway, which inhibits apoptosis 

(27, 116-118). Whether C5ar1-mediated survival signals in mouse immune cells 

require intracellular C5ar1 activation has so far not been assessed. Nonetheless, 

these data support that immune cell-generated anaphylatoxins emerge as important 

drivers of cell homeostasis and survival and advocate that – although serum C3 and 
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C5 deficiencies associated with recurrent infections clearly exist (119, 120) – 

intracellular complete absence of C3 and C5 may not occur in humans.  

  Importantly, the C3b portion of activated C3 is also critical to human T cell 

function. It has been shown that CD46-mediated signals regulate the expression of 

the IL-7 receptor (CD127/CD132) (121, 122), which provides an important survival 

signal for circulating non-activated T cells through STAT5-mediated activation of Akt 

and sustained expression of anti-apoptotic B-cell lymphoma 2 (BCL-2) (123-125). 

Importantly, although the expression of the IL-7 receptor is normal on quiescent cells 

from CD46-deficient patients (which explains their normal peripheral T cell counts), 

upon activation, their T cells fail to down-regulate CD127, which leads to the 

disruption of signalling through the general common γ-chain cytokine family (121).  

Another important function for CD46 on resting human T cells is that of a 

‘homeostatic brake’ (121) – and this function for CD46 is mediated via a crosstalk 

between CD46 and the Notch system. Indeed, the Notch protein family member 

Jagged-1 has been recently identified as a new physiological ligand for CD46, with a 

binding site located in the N-terminal part of CD46 (the first two so-called short 

consensus repeat (SCR) domains) (121). In the resting state, CD46 sequesters 

Jagged1 and via this prevents a ‘inadequate’ Jagged1-Notch1 interaction that would 

lead to CD4+ T cell activation (figure 2b). Upon TCR engagement, however, T cell-

derived C3b will engage CD46 (but in SCRs 3 and 4, thus a domain different from 

the Jagged1 binding site), which induces CD46 signalling but also shedding of CD46 

from the T cell membrane via metalloproteinases (121, 126). This then ‘frees’ 

Jagged1 and allows for a concurrent Jagged1-Notch1 interaction that is also 

required to full Th1 induction (121). The importance of the functional crosstalk 

between CD46 and Notch is exemplified by the observation that patients with 
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mutations in Jagged1 have, similar to CD46-defiecient patients, also a defect in Th1 

induction and suffer from recurrent upper chest viral infections (127). As discussed 

above, such contributions for immune cell-expressed C3b have so far not been 

defined in the mouse, further underpinning the differences in complement-mediated 

signals impacting on T cell regulation between these species.  

 

Complement in Th1 contraction and Treg induction 

Aside from its prominent role in Th1 induction, CD46 turned out to be also a critical 

component of the ‘Th1 contraction programme’, thus, in the shut down of IFN-γ 

secretion by CD4+ T cells. This occurs, when CD46-mediated signals integrate 

signals from the IL-2R that respond to increases in high environmental IL-2 

generated during the expansion of productive Th1 responses. This CD46-IL-2R 

crosstalk induces the coproduction of the immunosuppressive cytokine IL-10 in Th1 

cells and with that a shift in the effector response toward a (self)regulatory T cell 

phenotype (88), with the cells finally ‘collapsing’ into IL-10 single producing T cells.  

This CD46-driven switch of Th1 cells (from IFN-γ+ IL-10– to IFN-γ+ IL-10+ and then to 

IFN-γ– IL-10+) is associated with the upregulation of the ICER CREM transcriptional 

regulator of the IL-2 gene and suppression of IL2 expression (13). IL-10 co-

producing Th1 cells themselves proliferate strongly despite their production of this 

usually anti-proliferative cytokine, but suppress the responses of bystander CD4+, 

CD8+ and γδ T cells via IL-10 secretion to a similar extent as natural regulatory T 

cells (nTregs) and other sets of induced regulatory T cells (iTregs) (88, 128). In 

addition, these cells are capable of mediating contact dependent cytotoxicity toward 

activated T cells via the expression of granzyme B and perforin (129). It is thought 

that this CD46-driven molecular switch regulates the ‘natural life-cycle’ of Th1 cells 
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with the purpose of keeping immune responses under tight control and preventing 

the local over-production of IFN-γ that would usually lead to tissue pathologies. In 

support of this model is the observation that dysregulations in this molecular switch 

towards a self-regulatory phenotype has indeed been identified as one strongly 

contributing factor to the hyperactive Th1 response in T cells from patients with RA 

and MS (13, 130). T cells from these patients, when stimulated in vitro demonstrated 

disturbed IL-10 switching and produced up to 10x more IFN-γ than IL-10 when 

compared to T cells from healthy individuals. The ability to prevent or induce this 

CD46-driven switch in Th1 cells at will, would possibly constitute a therapeutic 

means to stop or reduce chronic infection and cancer or autoimmunity and organ 

rejection, respectively. However, while we have now a reasonable understanding 

about the CD46-driven signalling pathways inducing Th1 responses (see below), 

little is known about the CD46 and IL-2R crosstalk that is vital in switching a Th1 cell 

into the regulatory IL-10 program. A better mechanistic understanding of this switch 

though is a declared goal of our laboratory and as the signal transducer and activator 

of transcription (STAT) and the Janus kinase (JAK) protein families are key 

mediators of cytokine receptor signalling pathways (131), inquiring for a potential 

connection between CD46 and STATs and JAKs may be a suitable strategy. 

Similar to the C3b-CD46 interaction that directs Th1 induction but also 

contraction, T cell C5-derived activation fragment C5a not only support the Th1 

response via ROS generation and NLRP3 inflammasome assembly – C5a also 

contributes to the negative control of human Th1 responses. As mentioned above, 

activated T cells use intracellularly generated C5a to drive signals via the exclusively 

intracellularly expressed C5aR1 but they simultaneously secrete a proportion of C5a 

to the cell surface. Here, the C5a (or C5a-desArg) engages the surface expressed 
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C5aR2 and this interaction exerts negative control over C5-driven NLRP3 

inflammasome activation, autocrine IL-1β secretion and hence the levels of IFN-γ 

produced by human CD4+ T cells (figure 2a) (89, 111). The exact mechanisms by 

which C5aR2 negatively regulates NLRP3 inflammasome activity are currently not 

delineated but could include suppressive effects on intracellular C5aR1 signalling but 

also yet to be defined direct effects on inflammasome assembly. Thus, a balanced 

and concurrent engagement of C5aR1 Th1 driving signals versus C5aR2 

‘dampening’ signals also contributes to the tight control of human Th1 responses 

through an inflammasome axis. Our observation that T cell-derived IL-1β is needed 

for normal IFN-γ production in vitro and in vivo (89) was initially surprising, given that 

APCs provide usually rather large amounts of IL-1β during the cognate APC-T cell 

interaction. We suggest, however, that APC-derived IL-1β supports initial Th1 

priming, but that successful ‘imprinting’ and then maintenance of the Th1 phenotype 

during differentiation and migration into tissues relies on autocrine NLRP3 activity. 

The likely reason for the firm control of IL-1β secretion via the C5 system, on the 

other hand, is that IL-1β is a strong suppressor of IL-10 production (132) and would 

likely block CD46-indced IL-10 switching if produced at uncontrolled levels. In line 

with this notion, specific blockade of C5aR2 signalling during T cell activation or 

addition of  rIL-1β the IFN-γ:IL-10 ratio in CD4+ T cells and, importantly, T cells from 

CAPS patients (which produce increased IL1-β) have significantly reduced IFN-γ to 

IL-10 switching (89).  

Of note, the protease cathepsin G has recently been shown to cleave and 

inactivate the C5aR1 (133). Although this novel activity of cathepsin G was 

discovered on the surface of neutrophils, T cells and monocytes also express 
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cathepsin G and one can envision that this event may also occur within cells where it 

may constitute a mechanism of intracellular C5aR1 signalling control.  

Given the participation of the intracellular C3 and C5 activation fragments in 

the induction and regulation of Th1 responses, it will now be interesting to explore 

whether IFN-γ secretion by CD8+ T cells (54), natural killer T (NKT) cells, and/or 

innate lymphoid type 1 (ILC1) cells also involves the activity of the complosome. 

Aligning with such scheme that complement activation fragments are initially needed 

for protective T cell responses, recent studies demonstrate that lack of C3aR and 

C5aR1 signalling on human and mouse CD4+T cells induces the default generation 

of Foxp3+ Tregs with strong suppressive capacities (82, 83). It should be noted 

though that the expression of the anaphylatoxin receptors by mouse T cells is still 

controversial in the field with some groups observing the expression of these 

receptors on activated cells while others fail to detect them in either resting or 

stimulated cells (134). The reasons for these discrepancies are not resolved but 

could be rooted in distinct experimental approaches and model systems employed 

by the different groups or also in the sensitivity levels of the reagents used for the 

detection of the anaphylatoxin receptors. The C3aR, C5aR1 and C5aR2 expression 

patterns in human T cells, however, are now better defined and here, a picture 

emerges in which CD46 (or rather a controlled deviation in its function) is also 

connected with nTreg function: Human nTregs express all complement components 

required for proinflammatory cytokine production and generate intracellular C3a (7) 

and C5a (unpublished data), however these cells have disengaged the signalling 

capacity of CD46 that usually drives IFN-γ (see below) enabling this particular T cell 

sub-population to remain in an anti-inflammatory and suppressive state. Thus, 

CD46-deficient patients have perfectly normal numbers of fully functional nTreg cells 
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(7). The understanding that complement is also critical to the negative control of Th1 

immunity aligns well with a recent change of thinking in the field and the growing 

recognition of complement as a true mediator of general homeostasis. For example, 

regulated (local) complement activation is needed for normal tissue and organ 

development and also for tissue repair after injury or insult (for an excellent review 

on this subject, please see (9)) and targeting complement therapeutically should take 

this ‘spatial-temporal’ action of complement into consideration.  

 

Complement’s functional crosstalk with cell physiological effector systems  

Work performed on understanding the CD46-mediated signalling pathways 

regulating Th1 induction and contraction have led to the additional discovery that the 

complement system also plays a central role in basic physiological pathways of the 

cell and particularly those of metabolic nature. For example, CD46 co-stimulation 

during T cell activation drives the nutrient influx and specific metabolic 

reprogramming that accompanies Th1 cell induction (8, 135). T cell differentiation 

into effector cells induces significant changes in cellular metabolic pathway 

utilization. Among the hallmarks of such metabolic ‘remodelling’ that occurs in 

activated T cells is the up-regulation of aerobic glycolysis (Warburg effect), which is 

needed for cell growth, proliferation and acquisition of effector function. Glycolytic 

metabolites are essential for biomolecular synthesis in dividing cells (136) and T cell 

stimulation also enhances mitochondrial biogenesis and oxidative phosphorylation 

(OXPHOS), as well as the uptake of glucose and amino acids (AAs) (137, 138). The 

metabolic-checkpoint kinase mTOR senses and integrates incoming environmental 

nutrient signals, which then trigger glycolysis, OXPHOS and lipid synthesis, and via 

this support proliferation and differentiation of resting T cells into effector cells (139-
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141). CD46 is expressed in different isoforms that arise from differential splicing of a 

single gene in CD4+ T cells and these isoforms vary in the expression of their 

cytoplasmic tails, termed CYT-1 and CYT-2. Both domains can transduce 

intracellular signals in several cell types (126, 142-144) and non-stimulated T cells 

express predominantly the CYT-2-bearing isoforms (13, 145). Upon TCR stimulation, 

the CD46-CYT-1 isoforms are strongly upregulated (through a mechanism that is 

currently not understood) and engaged via T cell autocrine C3b production. The 

CD46-CYT-1 isoforms then induce the increased expression of genes coding for the 

glucose (GLUT1) and amino acid channels (LAT1), SLC2A1 and SLC7A5 

respectively, and thereby mediate the nutrient influx needed to meet the T cell’s 

increased requirement for ‘food’ upon activation (figure 2a). Simultaneously, CD46-

CYT-1 also upregulates the late endosomal/lysosomal adaptor, MAPK and MTOR 

activator 5 (LAMTOR5), which is an important scaffolding protein required for the 

assembly of the nutrient-sensing complex mechanistic target of rapamycin complex 

1 (mTORC1) and mTOR at the lysosomes (8). T cells from CD46-deficient patients 

fail to induce these critical metabolic events upon activation. Thus, although these 

metabolic pathways are initiated in mouse CD4+ T cells by TCR and CD28 

costimulation (146), human T cells show an absolute requirement of CD46-CYT-1-

mediated signals for the induction of the glycolytic levels needed for IFN-γ secretion 

(135) and CD28 costimulation alone is not sufficient for successful Th1 induction (8). 

Furthermore, CD46 is – similar to receptors of the Notch family - processed on the 

surface via metalloproteinases and intracellularly by γ-secretase (147, 148) and we 

have recently demonstrated that the nuclear translocation of the cleaved intracellular 

tails of CD46 are required for increased glycolysis and OXPHOS induction in 

activated T cells (8).  
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Congruent with its role in Th1 ‘shut down’, CD46-mediated signals also induce 

the switch from a high glycolytic state back to steady-state glycolysis levels in CD4+ 

T cells and, via this, subsequently IL-10 coproduction and finally Th1 contraction. 

This switch from high to low glycolysis is driven by CD46-CYT-2-expressing 

isoforms, which become again the predominant CD46 isoforms in contracting T cells 

(figure 2b) (8). CD46-CYT-1 also increases OXPHOS levels in activated T cells. As 

the induction of an OXPHOS ‘burst’ in activated T cells is a prerequisite for normal 

memory cell generation, it may be worthy to assess whether intracellular and/or 

autocrine complement also contributes to the development of central and/or effector 

memory pools. Furthermore, the contributions of CD46 to key metabolic pathways in 

T cells may explain the unusual ‘propensity’ of autocrine-functioning complement to 

directly regulate Th1 lineage induction with relatively little direct impact on Th2 and 

Th17 responses as CD4+ T cell subsets have distinct metabolic requirements. For 

example, effector T cells demand high levels of glycolysis, whereas Treg cells are 

more dependent on OXPHOS. Furthermore, mTORC1 activity is required for Th1 

and Th17 cell responses, whereas mTORC2 drives Th2 cell function (140, 149, 150). 

Since it has been shown that IFN-γ production requires a particularly high induction 

of glycolysis (135), it is feasible that CD46-mediated signals can specifically meet 

this demand. Of note, only complete absence of CD46 led to absence of Th17 cell 

responses (8), further suggesting metabolic threshold differences between induction 

of Th1 and Th17 cell effector populations. And finally, as T cells from CD46-deficient 

patients proliferate normally, these differences likely relate to non-bioenergetic 

aspects of subset-specific metabolic reprogramming (151). 

Aside from directly impacting on metabolic pathways, CD46 also contributes 

to cell physiology via its impact on the assembly of key cytokine and growth factor 
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receptors on T cells during activation. CD46 regulates the expression of CD127 and 

CD132 on these cells (121) which are components of the receptors for IL-2, IL-4, 

IL-7, IL-9, IL-15 and IL-21 (the IL-2R family), most of which are involved in normal 

lymphocyte function. IL-2-mediated signalling through the high-affinity IL-2R - 

composed of CD25 (also known as IL-2RA), CD122 (also known IL-2RB) and CD132 

(also known as common gamma chain IL2RG) - is required for Th1 cell induction. 

Thus, CD46 partakes also in an important cytokine network that directs T cell 

responses by integrating environmental nutrient cues and subsequent modulation of 

catabolic and anabolic pathways. In mice, C3aR and C5aR1-mediated signals can 

regulate the expression of the IL-12Rβ chain (81, 152) but a direct impact on the 

regulation of the IL-2R family has not been observed.  

The ‘C5 system’ also contributes to the modulation of key physiological 

pathways in T cells via the induction of oxygen metabolism: As detailed above, 

intracellular C5aR1 activation in human CD4+ T cells through intracellularly 

generated C5a induces there generation of mitochondrial ROS (89). ROS is now 

established to play indispensable roles as signalling molecules in various redox-

sensitive pathways – also in the modern adaptive immune system with ROS 

generation within T cells being required for successful Th1 induction (153). 

Furthermore, the ability of the C5aR1 to induce assembly of the NLRP3 

inflammasome will highly likely also impact on basic cell pathways aside from the 

‘simple’ induction of pro-inflammatory IL-1β secretion. Although complement, the 

TLRs, and the inflammasomes were initially discovered as pathogen sensors, it is 

now understood that the ability of these systems to recognize imbalances in normal 

cell metabolic processes and their capability to evoke appropriate reactive responses 

is of equal importance to cell and tissue homeostasis (154). For example, NLRP3 
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inflammasome priming and activation are strongly driven by increased glucose influx, 

heightened glycolysis and increased ATP production, as demonstrated in several 

human cells types (41, 155), all events generally required for cell activation, 

proliferation and effector function (156). Importantly, metabolic by-products can also 

inhibit NLRP3 inflammasome activation and particularly increased AMP generation 

leads to activation of the nutrient sensor AMP-dependent protein kinase (AMPK) 

which subsequently inhibits NLRP3 inflammasome function. This is mediated by the 

ability of AMPK to switch the cell from energy-consuming processes such as 

glycolysis to oxidative metabolism associated with anti-inflammatory and quiescent 

states and favours mitochondrial biogenesis and reduction in NLRP3 activation (157, 

158). Thus, the regulated crosstalk between complement, the inflammasome and 

growth factor receptors dictate the metabolic state of a cell during the induction of T 

cell effector function but also during the contracting and quiescent phases of the T 

cell life cycle. Furthermore, although this complement-inflammasome-metabolism 

axis (111) has been discovered in T cells, it is highly likely that this system also 

operates in other immune cells. 

 

 

What’s next? - Complement and the three ‘M’s’ 

We are now at a juncture in complement research were we clearly need to adjust our 

old view on complement: Away from a mostly innate, liver-derived and pro-

inflammatory system to a revised view in which complement is a major bridge 

between innate and adaptive immunity, operates within cells (and even in 

specialised intracellular subcompartments), cross-engages with other effector 

systems to regulate basic cellular pathways and actively partakes in cell and tissue 
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homeostasis (9, 14). Based on a range of studies, recent and less recent, it is 

becoming acknowledged that complement is critical for the initiation of the general 

inflammatory reaction upon pathogen breach, the subsequent instruction of normal 

APC maturation and function with subsequent priming of B and T cell in the lymph 

nodes, and finally in the induction of appropriate effector T cell responses in the 

tissue (Figure 3). The new and unexpected roles of complement give now rise to a 

wealth of questions that need to be answered. One direction of research would focus 

on moving further into the inside of cells and ask, for example, ‘What is the 

complosome composition in other immune cells?”, ‘What are the complosome 

functions?”, ‘How is it regulated?”, and ‘How do intra- and extracellular complement 

functions intersect?’. Our unpublished data suggest that core components such as 

C3 and C5 as well anaphylatoxin receptors are present in all cells but that the 

intracellular expression of complement regulators may differ, and there is also 

indication that the complosome regulates histone modifications (unpublished data). 

However, other areas, where our knowledge about complement is still remarkably 

limited, pertain to its place in the multitude of networks that orchestrate and define 

immunity on a whole organism level through life such as cell Migration, Memory 

development and the interaction with the Microbiome. Although complement has 

pioneered the research on the mechanisms underlying cell migration with the 

discovery of C5a as major chemoattractant (159-162), relatively little is known about 

the exact contributions of complement during extravasation, movement in and out of 

the lymph nodes and tissues (Figure 3) and the maintenance of tissue-resident 

immune cells. Cell migration and tissue occupancy are regulated by an extensive 

network of chemokine and integrin receptors and it is known that complement 

regulates important rolling and adhesion receptors including ICAM-1, VCAM and P-
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selectin on the endothelium (163) as well as CXCR4 on immune cells (164). It would, 

however, not be surprising if the functional crosstalk between complement and 

integrins and between complement and the extended chemokine receptor repertoire 

is much more extensive than initially thought and contributes to the ‘body-wide’ 

orchestration of immune cell movements (Figure 3).   

A role for complement in the development of normal B cell memory has been 

demonstrated previously, although the underlying complement-driven molecular 

mechanisms have not been delineated yet in detail (67). Given that intracellular C3 

activation occurs in B cells (7), it may be worthy to assess if the complosome could 

be a contributing component. Indeed, the observation that complement is important 

in the T cell metabolic reprogramming pathways (and possibly histone remodelling) 

that are ultimately also connected to T cell memory development, raises the 

possibility that the complosome activation state, or a specific complosome signature 

(for example, a particular CD46 CYT-1/CYT-2 expression profile in naïve versus 

memory cells), may be a component of both B and T cell memory-induction and -

function. Importantly, this concept may not be restricted to adaptive immune cells, 

but may also extend to innate immune cells: Previously, the inability of innate 

immunity to mount immunological memory was considered as key difference to 

adaptive immunity. However, this paradigm has recently been challenged with the 

delivery of evidence for innate immune memory that leads to increased responses to 

secondary infections in natural killer T cells and monocytes and macrophages (165, 

166).  The evolutionary close connection of complement with innate immune cell 

function thus makes it an intuitive question to ask whether complement may play a 

role in innate immune memory. Of course, a close look at complement towards the 

‘opposing end’ of immunological memory, the pathways directing the initial immune 
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cell lineage development in the thymus or bone marrow, is also worth consideration. 

C5a has recently been shown to promote human embryonic pluripotency (167) but a 

role for complement in thymic selection – either in the immune cell precursors or the 

‘instructing’ thymic epithelial cells - remains unexplored.  

The observation that complement is operative within cells and drives 

metabolism suggests that we may want to take a fresh look at the role of 

complement in infections with pathogenic microbes. The importance of CD46 as an 

immune-modulatory protein has not gone unnoticed by a brigade of pathogens with a 

range of important human pathogenic bacteria and viruses using CD46 as cell entry 

receptor (168). We previously favoured the hypothesis that this is due to the fact that 

CD46 drives the secretion of IL-10 that would generate an immunosuppressed and 

‘infection-conducive’ microenvironment. However, since particularly viruses rely on 

an activated high-glycolytic state of the host cell to ensure their successful replication 

and virion generation, the interplay between CD46 and CD46-binding pathogens 

may therefore, in addition, have a previously unappreciated ‘metabolic dimension‘. 

Similarly, the existence of the complosome in conjunction with the recent unexpected 

observation that intracellular pathogens trigger mitochondrial anti-viral signalling 

(MAVS) responses in a C3-dependent manner (169) imply that the complosome 

contributes to the control of intracellular bacteria/pathogens. Thus, deviations in 

complosome function will likely also alter the course of infections. Finally, the gut 

microbiota is critical for maintaining the host energy balance via regulation of dietary 

fat absorption and management through intestinal epithelial cells (170). Given the 

role of complement in the maintenance of intestinal epithelial cell integrity (144) and 

in the regulation of cell metabolism, we predict a functional relationship of biological 
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relevance between the complement system and the microbiome – which is currently 

a research area that remains unexplored.  
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FIGURE LEGENDS 

Figure 1: Activation and regulation of complement in serum. Liver derived serum 

circulating complement is on the front lines of host defense against invading 

pathogens. The pathways leading to complement activation on the pathogen cell 

surface membrane are traditionally divided into three separate pathways defined by 

their mode of pathogen recognition. The classical pathway molecule C1q binds to 

surface bound complement fixing antibody whereas the lectin pathway molecules 

MBL, ficolins and collectin 11 bind to carbohydrate moieties. Through the formation 

of C3 convertases (C4bC2a for the classical and lectin pathways and C3bBb for the 

alternative pathway) all three pathways result in the formation of the opsonin C3b 
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and the anaphylatoxin C3a. The subsequent formation of the C5 convertase 

(C4bC2aC3b for the classical and lectin pathways and C3bBbC3b for the alternative 

pathway) leads to generation of the membrane attack complex (MAC) initiating 

molecule C5b and the anaphylatoxin C5a. The anaphylatoxins play an important role 

in promoting chemotaxis, inflammation and cellular activation.  Complement 

activation must be tightly controlled to prevent damage to host tissue. Regulators of 

complement activation exist both in the fluid phase and bound to the host cell 

surface: C1 inhibitor (C1-inh) inhibits the proteases C1r and C1s, and mannan-

binding lectin associated serine protease-2 (MASP2). C3b and C4b are inactivated 

by the serine protease Factor I and one of several cofactor proteins (surface-bound 

CD46 and complement receptor 1 (CR1) or fluid phase Factor H and C4b-binding 

protein (C4bBP). C3 convertases are disassembled by regulators possessing decay 

accelerating properties such as surface bound CD55 and CR1 and fluid phase C4BP 

and Factor H. The membrane attack complex is regulated by CD59, which prevents 

MAC formation by preventing C9 polymerization. Vitronectin also inhibits MAC 

formation by preventing the partially assembled MAC from inserting into the cell 

membrane. 

 

Figure 2: The role of Complement in Th1 regulation. (A) The induction of T helper 

Th1 responses, initiated by TCR activation and CD28 co-stimulatiom, induces the 

shuttle of intracellular C3a and C3b storages to the cell surface and allows for CD46 

(via C3b) and C3aR (via C3a) engagement (1). Binding of C3b to CD46 initiates γ-

secretase-mediated cleavage and translocation of CD46 cytoplasmic tail 1 into the 

nucleus where it may act in concerts with transcription activators or repressors to 

regulate CD46 target gene expression (denoted by a questions mark) (2). This 
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CD46-tail 1 nuclear translocation triggers up-regulation of the genes encoding the IL-

2R α-chain for optimal IL-2R assembly, the glucose transporter GLUT1 (SLC2A1) 

and the amino acid channel LAT1 (SLC7A5), thus leading to an increased influx of 

glucose and amino acids into the cells. In addition, CD46-mediated signals up-

regulates the expression of LAMTOR5 which is part of the Ragulator complex and is 

involved in amino acid sensing and activation of mTORC1 (2). C3aR1 stimulation 

from the cell surface supports Th1 induction via supporting CD46-mediated 

mTORC1 activation. Hence, both C3aR- and CD46-mediated events stimulate the 

high glycolysis and OXPHOS levels required for IFN-γ secretion. At the same time, 

CD46 engagement induces gene expression of NLRP3 and IL1B to instruct the 

NLRP3 inflammasome as well as increased intracellular cleavage of C5 into C5a and 

C5b by a yet unknown proteolytic mechanism. Intracellular engagement of C5aR1 by 

C5a induces ROS production which in turn activates the NLRP3 inflammasome and 

subsequent production of mature IL1β production (but not IL-18) (3) – which in turn 

sustains Th1 induction. (B) The role of complement in T cell homeostasis (left side) 

and ‘effector phase’ contraction (right side). On resting CD4+ T cells, CD46 

constitutively binds Jagged1 thereby limiting potential T cell-activating Jagged1 and 

Notch1 interactions (as the CD46 and Jagged1 interaction is of higher affinity 

compared to the Jagged1 and Notch1 interaction). Furthermore, CD46-mediated 

signals regulate the expression of the IL-7 receptor which provides an important 

homeostatic survival signal for circulating non-activated T cells. ‘Tonic’ intracellular 

C3a generation via cathepsin L cleavage leads to low-level mTOR activation, which 

is indispensable for homeostatic T cell survival. The crosstalk between CD46 and IL-

2R mediated signals and signals via the C5aR2 also regulate the Th1 contraction 

phase. Specifically, in the presence of high concentrations of environmental IL-2 
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(generated during Th1 expansion) CD46 induces a switch from IFN-γ production to 

IL-10 secretion and Th1 contraction is initiated. In parallel, the local levels of 

secreted C5a (or C5a-desArg) increase during the Th1 response and C5a engages 

the surface-expressed C5aR2, an interaction that exerts negative control over 

intracellular C5aR1-driven NLRP3 inflammasome activation and IL-1β secretion, and 

hence the levels of IFN-γ produced by human CD4+ T cells. 

 

Figure 3: The evolving view on complement in inflammation. (A) (1) Pathogen breach 

activates complement and leads to generation of anaphylatoxins (An, C3a and C5a) 

and opsonins (Op, C3b and C4b) which will engage the complement receptors (CRs) 

expressed on immune cells and mediates the acute inflammatory response, (2) tags 

pathogens or other noxious antigens for removal by phagocytes, and (3) promotes 

migration and activation of immunocompetent cells. In addition, (4) complement 

increases the phagocytic activity of APCs and initiates (5) their maturation and 

migration to the draining lymph nodes. (B) In the lymph node, APCs prime naïve B 

cells and T cells into effector B cells and T cells which involves several complement 

receptors, notably CR2, CD21. Following activation, B cells and T cells then egress 

into the peripheral circulation. Based on the evidence that complement regulates 

important rolling and adhesion receptors, we anticipate that complement play a role 

in the migration and the extravasion of immune cells in and out of the lymph nodes 

and tissues. (C). Complement also plays an important role in the induction and 

sustenance of Th1, Th2, Th17 and natural regulatory T cell responses once the cells 

returned to the site of infection and/or inflamed tissues. The key words within 

‘dashed boxes’ indicate areas that we anticipate will also, in the future, demonstrate 

functional impact by complement.  
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Activation and regulation of complement in serum. Liver derived serum circulating complement is on the 
front lines of host defense against invading pathogens. The pathways leading to complement activation on 
the pathogen cell surface membrane are traditionally divided into three separate pathways defined by their 

mode of pathogen recognition. The classical pathway molecule C1q binds to surface bound complement 
fixing antibody whereas the lectin pathway molecules MBL, ficolins and collectin 11 bind to carbohydrate 

moieties. Through the formation of C3 convertases (C4bC2a for the classical and lectin pathways and C3bBb 
for the alternative pathway) all three pathways result in the formation of the opsonin C3b and the 

anaphylatoxin C3a. The subsequent formation of the C5 convertase (C4bC2aC3b for the classical and lectin 
pathways and C3bBbC3b for the alternative pathway) leads to generation of the membrane attack complex 
(MAC) initiating molecule C5b and the anaphylatoxin C5a. The anaphylatoxins play an important role in 
promoting chemotaxis, inflammation and cellular activation.  Complement activation must be tightly 

controlled to prevent damage to host tissue. Regulators of complement activation exist both in the fluid 
phase and bound to the host cell surface: C1 inhibitor (C1-inh) inhibits the proteases C1r and C1s, and 
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mannan-binding lectin associated serine protease-2 (MASP2). C3b and C4b are inactivated by the serine 
protease Factor I and one of several cofactor proteins (surface-bound CD46 and complement receptor 1 
(CR1) or fluid phase Factor H and C4b-binding protein (C4bBP). C3 convertases are disassembled by 

regulators possessing decay accelerating properties such as surface bound CD55 and CR1 and fluid phase 
C4BP and Factor H. The membrane attack complex is regulated by CD59, which prevents MAC formation by 
preventing C9 polymerization. Vitronectin also inhibits MAC formation by preventing the partially assembled 

MAC from inserting into the cell membrane.  
190x254mm (96 x 96 DPI)  
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The role of Complement in Th1 regulation. (A) The induction of T helper Th1 responses, initiated by TCR 
activation and CD28 co-stimulatiom, induces the shuttle of intracellular C3a and C3b storages to the cell 

surface and allows for CD46 (via C3b) and C3aR (via C3a) engagement (1). Binding of C3b to CD46 initiates 

γ-secretase-mediated cleavage and translocation of CD46 cytoplasmic tail 1 into the nucleus where it may 
act in concerts with transcription activators or repressors to regulate CD46 target gene expression (denoted 

by a questions mark) (2). This CD46-tail 1 nuclear translocation triggers up-regulation of the genes 
encoding the IL-2R α-chain for optimal IL-2R assembly, the glucose transporter GLUT1 (SLC2A1) and the 

amino acid channel LAT1 (SLC7A5), thus leading to an increased influx of glucose and amino acids into the 
cells. In addition, CD46-mediated signals up-regulates the expression of LAMTOR5 which is part of the 

Ragulator complex and is involved in amino acid sensing and activation of mTORC1 (2). C3aR1 stimulation 
from the cell surface supports Th1 induction via supporting CD46-mediated mTORC1 activation. Hence, both 

C3aR- and CD46-mediated events stimulate the high glycolysis and OXPHOS levels required for IFN-γ 
secretion. At the same time, CD46 engagement induces gene expression of NLRP3 and IL1B to instruct the 
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NLRP3 inflammasome as well as increased intracellular cleavage of C5 into C5a and C5b by a yet unknown 
proteolytic mechanism. Intracellular engagement of C5aR1 by C5a induces ROS production which in turn 
activates the NLRP3 inflammasome and subsequent production of mature IL1β production (but not IL-18) 
(3) – which in turn sustains Th1 induction. (B) The role of complement in T cell homeostasis (left side) and 
‘effector phase’ contraction (right side). On resting CD4+ T cells, CD46 constitutively binds Jagged1 thereby 
limiting potential T cell-activating Jagged1 and Notch1 interactions (as the CD46 and Jagged1 interaction is 

of higher affinity compared to the Jagged1 and Notch1 interaction). Furthermore, CD46-mediated signals 
regulate the expression of the IL-7 receptor which provides an important homeostatic survival signal for 

circulating non-activated T cells. ‘Tonic’ intracellular C3a generation via cathepsin L cleavage leads to low-
level mTOR activation, which is indispensable for homeostatic T cell survival. The crosstalk between CD46 

and IL-2R mediated signals and signals via the C5aR2 also regulate the Th1 contraction phase. Specifically, 
in the presence of high concentrations of environmental IL-2 (generated during Th1 expansion) CD46 

induces a switch from IFN-γ production to IL-10 secretion and Th1 contraction is initiated. In parallel, the 
local levels of secreted C5a (or C5a-desArg) increase during the Th1 response and C5a engages the surface-

expressed C5aR2, an interaction that exerts negative control over intracellular C5aR1-driven NLRP3 
inflammasome activation and IL-1β secretion, and hence the levels of IFN-γ produced by human CD4+ T 

cells.  
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The evolving view on complement in inflammation. (A) (1) Pathogen breach activates complement and leads 
to generation of anaphylatoxins (An, C3a and C5a) and opsonins (Op, C3b and C4b) which will engage the 
complement receptors (CRs) expressed on immune cells and mediates the acute inflammatory response, (2) 

tags pathogens or other noxious antigens for removal by phagocytes, and (3) promotes migration and 
activation of immunocompetent cells. In addition, (4) complement increases the phagocytic activity of APCs 
and initiates (5) their maturation and migration to the draining lymph nodes. (B) In the lymph node, APCs 
prime naïve B cells and T cells into effector B cells and T cells which involves several complement receptors, 
notably CR2, CD21. Following activation, B cells and T cells then egress into the peripheral circulation. Based 
on the evidence that complement regulates important rolling and adhesion receptors, we anticipate that 

complement play a role in the migration and the extravasion of immune cells in and out of the lymph nodes 
and tissues. (C). Complement also plays an important role in the induction and sustenance of Th1, Th2, 

Th17 and natural regulatory T cell responses once the cells returned to the site of infection and/or inflamed 
tissues. The key words within ‘dashed boxes’ indicate areas that we anticipate will also, in the future, 

Page 53 of 51 Immunological Reviews: Submitted manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

demonstrate functional impact by complement.  
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