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Abstract: We explore the possibility that physics at the TeV scale possesses approximate

N = 2 supersymmetry, which is reduced to the N = 1 minimal supersymmetric extension

of the Standard Model (MSSM) at the electroweak scale. This doubling of supersymmetry

modifies the Higgs sector of the theory, with consequences for the masses, mixings and

couplings of the MSSM Higgs bosons, whose phenomenological consequences we explore in

this paper. The mass of the lightest neutral Higgs boson h is independent of tan β at the

tree level, and the decoupling limit is realized whatever the values of the heavy Higgs boson

masses. Radiative corrections to the top quark and stop squarks dominate over those due

to particles in N = 2 gauge multiplets. We assume that these radiative corrections fix

mh ' 125 GeV, whatever the masses of the other neutral Higgs bosons H,A, a scenario

that we term the h2MSSM. Since the H,A bosons decouple from the W and Z bosons in

the h2MSSM at tree level, only the LHC constraints on H,A and H± couplings to fermions

are applicable. These and the indirect constraints from LHC measurements of h couplings

are consistent with mA & 200 GeV for tan β ∈ (2, 8) in the h2MSSM.
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1 Introduction

Since the Standard Model is chiral, it can accommodate only N = 1 supersymmetry, as in

the minimal supersymmetric extension of the Standard Model (MSSM). On the other hand,

any new physics beyond the Standard Model would contain vector-like representations of

the SU(2)×U(1) gauge group of the Standard Model. As such, it could accommodate

N = 2 supersymmetry. One could even argue that it should possess the maximum possible

degree of supersymmetry, namely N = 2. Indeed, there are plenty of theoretical set-ups

that lead naturally to a chiral N = 1 supersymmetry model at the electroweak scale with a

vector-like N = 2 extension at the TeV scale, including models invoking extra dimensions

and superstring model constructions [1–9].

Studies of possible N = 2 extensions of the Standard Model have a long history, with

considerable attention paid to the gauge and matter sectors of such models. An N = 2

vector multiplet would contain more degrees of freedom than in the MSSM. In particular,

gauginos would no longer be Majorana particles, but Dirac. Moreover, additional adjoint

scalar fields would appear, namely a new singlet S, triplet T and octet O. The phenomenol-

ogy of the Dirac gauginos has been explored in a number of papers [10–36], and attention

also been paid to the Higgs sector of an N = 2 extension of the Standard Model, which

has interesting differences from the Higgs sector of the MSSM [1–4]. This is a natural

entry point into phenomenological studies of N = 2 models, since the Higgs sector of the

MSSM is necessarily vector-like, and hence readily modified to realize N = 2 supersymme-

try. Moreover, the exploration of Higgs phenomenology is well underway, with important
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experimental constraints coming from measurements of the h(125) Higgs boson [37] and

searches for the heavier MSSM Higgs bosons.

As has been pointed out in previous studies, the N = 2 version of the tree-level super-

symmetric Higgs potential (2.3) contains an extra term 1
2(g2

1+g2
2)|H1H2|2, which has impor-

tant phenomenological consequences [1–4]. In particular, the masses of the Higgs bosons are

independent of tan β at the tree level, and the rotation from the doublet basis H1, H2 to the

mass eigenstate basis h, H is trivial, so that at the tree level the N = 2 model realizes au-

tomatically the decoupling limit of the MSSM. Hence the tree-level couplings of the lighter

neutral scalar Higgs boson h are necessarily identical to those of a Standard Model Higgs,

and the heavier neutral scalar boson H plays no role in electroweak symmetry breaking.

These observations are modified by the radiative corrections to the Higgs sector, of

which the most important are those due to the top-stop sector, as in the MSSM.1 As in

the MSSM, a practical way to analyze Higgs phenomenology in the model with N = 2

supersymmetry is to use the measured mass of the observed Standard Model-like Higgs

boson mh ' 125 GeV as a constraint on the other parameters of the model. In the MSSM

case, this has been called the hMSSM scenario: the analogous scenario we propose here is

termed the h2MSSM scenario.

As we show, an important difference between the hMSSM and h2MSSM scenarios is

that the latter can be realized with smaller stop masses than the former for any value of

mA & mh, and for smaller mA for any fixed values of the stop masses and tan β. This

observation then raises the question how light the heavier Higgs bosons H,A can be in the

h2MSSM, for what range of tan β.

The LHC constraints on H →W+W−, Z0Z0 and A→ Zh decays are not relevant for

the h2MSSM, since it realizes automatically the decoupling limit at the tree level, and the

HW+W− and HZ0Z0 couplings induced at the loop level are relatively small. On the other

hand, LHC constraints on decays of the heavy Higgs bosons into fermions are in principle

relevant. Specifically, the constraint from the search for H± → τ±ν decays is the same as

in the hMSSM. Before saying the same for the LHC constraint on A/H → τ+τ−, one must

check the near-degeneracy of the H and A, as assumed in the experimental analyses. As

we show, in the h2MSSM mH −mA is actually typically significantly smaller in magnitude

than in the hMSSM. Consequently, the LHC constraints on A/H → τ+τ− are directly

applicable to the h2MSSM.

Also, measurements at LHC Run 1 of the couplings of the h(125) to fermions impose

important indirect constraints on the h2MSSM in the (mA, tanβ) plane, though they are

weaker than in the hMSSM. As we show, the principal constraints are those on the ratios of

h couplings to up-type quarks, down-type quarks and massive vector bosons, and that on

the hγγ coupling. We find that the direct searches for heavy Higgs bosons exclude ranges

of mA when tan β & 7, and the h coupling measurements require mA & 185 GeV in the

h2MSSM, compared with & 350 GeV in the hMSSM.

1There are also tree-level corrections due to the N = 2 gauge sectors of the theory, but it was found

in [38] that the contributions of the additional adjoints S and T to the Higgs boson masses are typically

two orders of magnitude smaller than the loop contributions we consider below, for values of mS,T ∼ mt̃.
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This paper is organized as follows. In section 2, we show the differences between the

MSSM and the N = 2 Higgs sector, at the tree level in section 2.2 and including radiative

corrections in section 2.3, and we use the dominant loop corrections from the stop sector

in both the hMSSM and the h2MSSM to evaluate possible stop masses in section 2.4.

Constraints from the LHC are studied in section 3, where we discuss the current direct

constraints from searches for H,A and H± in section 3.1, bounds on the N = 2 Higgs

sector from hff̄ , hW+W− and hZ0Z0 couplings in section 3.2 and those from the hγγ and

hgg couplings in section 3.3. We also discuss the sizes of anomalous couplings of h(125)

that could be constrained by future measurements in section 3.4. We conclude in section 4.

2 The N = 2 supersymmetric Higgs sector

2.1 Model framework

The Lagrangian for an N = 2 extension of the Standard Model possesses an R symmetry,

and its SU(2)R×U(1)N=2
R -invariant form can be written in the N = 1 language as [8, 9]:

L =
1

8g2
[WαWα]F + [

√
2igY ΦVX]F + h.c.

+[2Tr(Φ†V e2gV ΦV e−2gV +X†e2gVX + Y †e−2gV T
Y )]D , (2.1)

where ΦV ≡ Φa
V T

a and V ≡ V aT a, where the T a are the gauge group generators. The

second F -term in the upper line of (2.1) is the superpotential, whose only free parameter

is the gauge coupling constant g. The coupling constant of the Yukawa term in the super-

potential is determined by the gauge coupling due to the SU(2)R global symmetry. The

SU(2)R symmetry forbids any chiral Yukawa terms, so that fermion mass generation in the

N = 2 sector is linked to supersymmetry breaking. We note also that the U(1)N=2
R symme-

try forbids any mass terms of the form W2 3 µ′XY , and specifically that the usual N = 1

µ term W ∼ µH1H2 is forbidden by the full R-symmetry. A theory with no µ-term would

lead to unacceptably light charginos [39–41], but couplings of the Higgs multiplet to the

adjoint scalars of an N=2 gauge sector provide mechanisms to lift the chargino masses and

additional µ-like contributions to the scalar potential [36]. Note that, unlike the SU(2)R
global symmetry, the U(1)N=2

R symmetry can survive supersymmetry breaking.

Finally, the N = 2 Higgs sector belongs to a hypermultiplet H = (Hc,H) whose

interactions with the gauge sector are given by the Lagrangian∫
d4θ

{
H†eVH+Hce−VHc†

}
−
{√

2

∫
d2θHcχH+ h.c.

}
. (2.2)

In the following we analyze the phenomenology of this N = 2 framework for the Higgs

sector of the MSSM.

2.2 Tree-level analysis

We can write the tree-level N = 2 Higgs potential in the usual MSSM notation where H1,2

are the lowest components of the chiral superfields H and Hc respectively. The H2 field

– 3 –
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gives masses to up-type quarks and the H1 field gives masses to down-type fermions. The

potential for these neutral components of the Higgs doublets is

V = m2
1|H1|2 +m2

2|H2|2 −m2
3(H1H2 + h.c.)

+
1

8
(g2

1 + g2
2)(|H1|2 − |H2|2)2 +

1

2
(g2

1 + g2
2)|H1H2|2 , (2.3)

where m2
i = m2

Hi
+ µ2 are the effective low-energy mass parameters including the soft

supersymmetry-breaking and µ terms. In the last line of (2.3),2 the first quartic term is

the usual D-term of the N = 1 MSSM, whereas the second is a specific N = 2 effect. This

extra quartic term in the potential has interesting consequences for the minimization of

the potential and the Higgs spectrum, as we now review.

The conditions to have a vacuum that breaks electroweak symmetry with the correct

value of mZ for a specific value of tan β are:

m2
Z

2
= −µ2 +

1

tan2 β − 1

(
m2
H1
−m2

H2
tan2 β

)
, (2.4)

m2
A = m2

H1
+m2

H2
+ 2µ2 +m2

Z . (2.5)

We note the difference between (2.5) and the corresponding MSSM minimization condition

m2
A = m2

H1
+ m2

H2
+ 2µ2, which has the consequence that the value of mA in the N = 2

model is larger than that in the MSSM for the same input mass parameters.

In the (H1, H2) basis for the two Higgs doublet fields, the CP-even h/H mass matrix

can be written in terms of the Z and A boson masses and the angle β. In the MSSM, the

tree-level mass-squared matrix is

M2,MSSM
tree =

(
m2
Z cos2 β +m2

A sin2 β −(m2
A +m2

Z) cosβ sinβ

−(m2
A +m2

Z) cosβ sinβ m2
Z sin2 β +m2

A cos2 β

)
. (2.6)

On the other hand, if the Higgs sector has N = 2 supersymmetry, the tree-level mass-

squared matrix is [1–4]:

M2,N2
tree =

(
m2
Z cos2 β +m2

A sin2 β −(m2
A −m2

Z) cosβ sinβ

−(m2
A −m2

Z) cosβ sinβ m2
Z sin2 β +m2

A cos2 β

)
, (2.7)

where we note the crucial change: m2
A+m2

Z → m2
A−m2

Z in the off-diagonal terms from the

MSSM case (2.6).3 The eigenvalues of the matrices (2.6), (2.7) correspond to the physical

masses-squared of the neutral CP-even Higgs bosons. In the MSSM case they are

m2,MSSM
h/H =

1

2

(
m2
A +m2

Z ∓
√
m4
A +m4

Z − 2m2
Am

2
Z cos 4β

)
(2.8)

2On should note that in the absence of Majorana mass from adjoint superfields [10], no low-energy D-

term quartic couplings will be present (including the Higgs quartic terms). As customary, we then assume

the presence of Majorana masses, which would lead to non-vanishing quartic couplings. We assume the

Bino-Wino masses are of the order of the TeV scale, hence they do not modify substantially the Higgs

phenomenology and do not open new decay channels for the Higgs.
3We note in passing that there is a missing minus sign in the off-diagonal terms in Equation (3.12) of [1–4].
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Figure 1. The tree-level CP-even Higgs masses mh (red lines) and mH (green lines) in the MSSM

(left panel, for tan β = 1 (solid lines) and tan β = 10 (dashed lines)) and for the N = 2 MSSM

(right panel), as functions of the CP-odd Higgs mass mA.

and the mass of the charged Higgs boson is

mMSSM
H± =

√
m2
A +m2

W (2.9)

at the tree level,4 whereas in the N = 2 case they are

mN2
h = mZ ; mN2

H = mA , (2.10)

and the charged Higgs boson mass is

mN2
H± =

√
m2
A + 2m2

W . (2.11)

We see that, as in the MSSM, the spectrum of the N = 2 Higgs sector is controlled by mA.

However, in contrast to the MSSM, it has no dependence on tan β at the tree level.

The left panel of figure 1 shows the tree-level N = 1 MSSM CP-even neutral Higgs

boson masses as functions of mA for different values of tan β, and we see that mh increases

with tan β, its upper limit being mZ . The right panel of figure 1 shows the corresponding

N = 2 CP-even neutral Higgs boson masses at the tree level, where we see that mh = mZ

independently of mA and tan β, and that mH crosses mh without the ‘level repulsion’ effect

seen in the left panel.

The physical CP-even Higgs bosons are obtained from the Higgs doublet fields (H1, H2)

by rotation through an angle α:(
H

h

)
=

(
cosα sinα

− sinα cosα

)(
H1

H2

)
. (2.12)

4We note also that the supersymmetric radiative corrections to this relation are known to be small in

general in this model.
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The MSSM mass-squared matrix (2.6) is diagonalized by the following mixing angle:

αMSSM =
1

2
arctan

(
tan 2β

m2
A +m2

Z

m2
A −m2

Z

)
, (2.13)

which satisfies the relation −π/2 ≤ α ≤ 0. On the other hand, the N = 2 mass matrix (2.7)

is diagonalized by the following mixing angle:

αN2 = β − π

2
, (2.14)

which also satisfies the relation −π/2 ≤ α ≤ 0.

This implies that at the tree level the N = 2 theory realizes automatically the decou-

pling limit, in which the lighter CP-even neutral Higgs boson h has Standard Model-like

couplings and the heavier one, H, does not couple to gauge bosons.

2.3 Radiative corrections

In our approach, the Higgs sector is described in terms of just the parameters entering

the tree-level expressions for the masses and mixing, supplemented by the experimentally-

known value of mh. In this sense, the hMSSM and h2MSSM approaches can be considered

as ‘model-independent’, as the predictions for the properties of the Higgs bosons do not

depend on the details of the unobserved supersymmetric sector. We write the mass matrix

for the neutral CP-even states as

M2
Φ =M2

tree +

(
∆M2

11 ∆M2
12

∆M2
12 ∆M2

22

)
, (2.15)

where the tree-level matrix M2
tree is given in (2.6) and (2.7) for the MSSM and its N = 2

extension, respectively, and the ∆M2
ij are the radiative corrections.

The importance of radiative corrections is manifested by the experimental measure-

ment mh = 125 GeV. The most important quantum corrections ε to the CP-even neutral

Higgs masses come from top and stop loops, which alter only the ∆M2
22 element of the

mass-squared matrix. In the MSSM we have:

M2,MSSM
Φ =

(
m2
Z cos2 β +m2

A sin2 β −(m2
A +m2

Z) cosβ sinβ

−(m2
A +m2

Z) cosβ sinβ m2
Z sin2 β +m2

A cos2 β + εMSSM

)
, (2.16)

where εMSSM depends on the top quark mass, the stop masses through the combination

MSUSY ≡
√
mt̃1

mt̃2
, and the mixing parameter in the stop mass matrix, Xt. A useful

approximate expression for εMSSM is:

εMSSM =
3m4

t

2π2v2

(
ln
M2
SUSY

m2
t

+
X2
t

2M2
SUSY

(
1− X2

t

6M2
SUSY

))
. (2.17)

In general MSSM models, the value of mh is a complicated function of the model parame-

ters, particularly if one takes into account two- and more-loop effects.

Other radiative corrections to the Higgs mass matrix have been studied in [42–46].

Direct analysis of the dominant one-loop contributions from top-stop loops shows that

– 6 –
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the corrections to the ∆M2
11 and ∆M2

12 elements of the CP-even Higgs mass matrix are

proportional to powers of the quantity µXt/M
2
SUSY . Consequently, they are negligible to

the extent that µXt/M
2
SUSY . 1.

In MSSM-like scenarios with MSUSY up to a few TeV, the consideration of the full

one-loop contributions or of the known two-loop contributions does not alter this simple

picture.5 When the SUSY scale is very large, additional checks on the value of mh are

required at low tan β, for which a comparison with an effective field theory calculation is

necessary. Results of such an analysis [47, 48] indicate that, even in such heavy-MSUSY

scenarios, the predictions of the hMSSM agree within a few percent with the exact results

for mH , α and λHhh, as long as the condition µXt/M
2
SUSY . 1 is satisfied.

For the purposes of our N = 2 study here, which is restricted to the Higgs sector, we

follow the philosophy proposed in [42–46], in which the hMSSM scenario was introduced

to discuss the N = 1 MSSM Higgs sector. The idea is again to use the known output mh

instead of the unknown input ε, adjusting ε so as to obtain mh = 125 GeV. Here we extend

this idea to the N = 2 case, in a scenario we call the h2MSSM.

In the N = 1 case, diagonalizing the one-loop corrected mass-squared matrix (2.16)

and requiring that one of the eigenvalues of the mass matrix be mh = 125 GeV yields the

following simple analytical formula for ε:

εMSSM = ∆M2,MSSM
22 =

m2
h(m2

A +m2
Z −m2

h)−m2
Am

2
Z cos2 2β

m2
Z cos2 β +m2

A sin2 β −m2
h

. (2.18)

In this hMSSM approach the mass of the heavier neutral CP-even H boson and the mixing

angle α that diagonalises the h,H states are given by the following simple expressions:

m2,MSSM
H =

(m2
A +m2

Z −m2
h)(m2

Z cos2 β +m2
A sin2 β)−m2

Am
2
Z cos2 2β

m2
Z cos2 β +m2

A sin2 β −m2
h

,

αMSSM = − arctan

(
(m2

Z +m2
A) cosβ sinβ

m2
Z cos2 β +m2

A sin2 β −m2
h

)
, (2.19)

in terms of the inputs mA, tanβ and the mass of the lighter CP-even eigenstate mh =

125 GeV.

Turning now to the N = 2 Higgs sector, we can perform the same analysis as before,

starting with the mass matrix where the most important quantum corrections ε to the

CP-even neutral Higgs masses come from top and stop loops, which alter only the ∆M2
22

element of the mass-squared matrix,

M2,N2
Φ =

(
m2
Z cos2 β +m2

A sin2 β (m2
Z −m2

A) cosβ sinβ

(m2
Z −m2

A) cosβ sinβ m2
Z sin2 β +m2

A cos2 β + εN2

)
. (2.20)

Requiring mN2
h = 125 GeV, we then obtain

εN2 = ∆M2,N2
22 =

2(m2
A −m2

h)(m2
h −m2

Z)

cos 2β
(
m2
Z −m2

A

)
+m2

A − 2m2
h +m2

Z

. (2.21)

5For more details about this particular point, the reader should consult references in [46].
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The heavier CP-even mass-squared eigenvalue and the rotation angle of the mass matrix

are then found to be

m2,N2
H = m2

A −m2
h +m2

Z +
2(m2

A −m2
h)(m2

h −m2
Z)

cos 2β
(
m2
Z −m2

A

)
+m2

A − 2m2
h +m2

Z

,

αN2 = − arctan

(
sin 2β(m2

A −m2
Z)

cos 2β
(
m2
Z −m2

A

)
+m2

A − 2m2
h +m2

Z

)
. (2.22)

We note that in both the hMSSM and the h2MSSM scenarios there is the same minimal

value for mA:

mA =

√
m2
h −m2

Z

sin2 β
+m2

Z . (2.23)

The general form of the one-loop stop/top contribution to the ∆M2
22 element of the CP-

even Higgs mass matrix, εMSSM , is the same as in the N = 1 MSSM, see (2.17), and

one can apply the same arguments about the relative unimportance of other MSSM loop

contributions.

However, in the N = 2 Higgs sector, there are additional loop contributions to the

CP-even mass matrix from singlet and triplet adjoint scalars. We use the estimate of their

contribution from [38, 49], where more details about the assumptions behind this estimate

can be found:

32π2

v2
∆εN2 =

g2
1

2
ln
m2
S

v2
+

3g4
2

2
ln
m2
T

v2

+
g2

1g
2
2

m2
S −m2

T

[
m2
S ln

m2
S

v2
−m2

T ln
m2
T

v2
− (m2

S −m2
T )

]
m2

S→m
2
T−→ 1

2

(
g4

1 + 2g2
1g

2
2 + 3g4

2

)
ln
m2
T

v2
, (2.24)

where mS ,mT are the masses of the adjoint singlet and triplet scalars, respectively. In the

last line of (2.24) we show the limiting value when these additional scalars are degenerate

in mass. In our approximation, the total radiative correction to the mass matrix is then

εN2 = εMSSM+∆εN2. The relative orders of magnitude of these two pieces can be estimated

from their ratio when the adjoint singlet and triplet are mass degenerate:

εMSSM

∆εN2
' 36

ln(
M2

S

m2
t

)

ln(
m2

T
v2

)
. (2.25)

This shows that ∆ε̃N2 is relatively unimportant for our current purposes: in our subsequent

numerical estimates we use mS = mT = 1 TeV as a default and we have neglected the

scale dependance of the couplings between the Higgs fields and the singlet/triplet adjoint

scalars [50].

Figure 2 displays the differences between the hMSSM scenario in the N = 1 case and

the h2MSSM scenario in the N = 2 case. The left panel of figure 2 compares the values

of the mass of the heavier CP-even Higgs boson H in the h2MSSM (red curve) and the
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Figure 2. Left panel: the values of the mass of the heavier scalar Higgs boson H as functions of mA

for tanβ = 1, when the leading one-loop radiative correction to the Higgs mass matrix, ε, is chosen

such that the lighter scalar Higgs boson h has a mass of 125 GeV. Here and in the other panels, the

red curve is for the N = 2 h2MSSM scenario, and the green curve is for the N = 1 hMSSM. Middle

panel: the mass differences mH −mA for mh = 125 GeV in the N = 2 h2MSSM scenario and in

the N = 1 hMSSM scenario as functions of mA for tanβ = 3. Right panel: analogous curves as

functions of tan β for mA = 300 GeV.

hMSSM (green curve) as functions of mA for tanβ = 1. We see that the H boson has quite

a different mass in the h2MSSM as compared to the hMSSM. An interesting point is that,

in both scenarios, mH diverges for some specific value of mA slightly above 125 GeV, the

exact value depending on tan β as shown in (2.23). This corresponds to the fact that there

is no value of ε that satisfies the requirement mh = 125 GeV for a region of the (mA, tanβ)

parameter plane. However, in the N = 2 h2MSSM scenario, the divergence in the required

value of mH is less severe.

The eagle-eyed reader will notice that the red curve for mH in the left panel of figure 2

lies extremely close to the green curve for mA. As we see in the other panels of figure 2, it is

a general feature of the h2MSSM that mH−mA is smaller than in the MSSM. In the middle

panel of figure 2, we plot the mass splitting mH −mA in the h2MSSM as a function of mA

for tanβ = 3 (red curve). The right panel of figure 2 shows the corresponding calculation

of the mass splitting mH −mA in the h2MSSM as a function of tan β for mA = 300 GeV

(red curve). The similar feature of a smaller magnitude is again apparent. The fact that

mH −mA is small is relevant to the LHC experimental searches for H/A→ τ+τ− that we

discuss later, since they assume that this mass difference is smaller than their experimental

resolution.

Figure 3 displays contours of cos2(β − α) in the (mA, tanβ) plane for the hMSSM

scenario (left panel) and the N = 2 h2MSSM scenario (right panel). This quantity deter-

mines the coupling of the heavier CP-even Higgs boson H to the electroweak gauge sector.

We can see that this coupling is significantly reduced in the h2MSSM, compared to the

hMSSM, reducing the impact of the experimental constraints, as we also discuss later.
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Figure 3. Contours of cos2(β − α) in the (mA, tanβ) plane for the hMSSM scenario (left panel)

and the N = 2 h2MSSM scenario (right panel).

2.4 The stop sector in the hMSSM and the h2MSSM

Thus far, we have simply assumed that the stop sector is such that mh = 125 GeV. Now we

study what properties the stop sector must have in order for this to be possible. We recall

from (2.17) that the two relevant parameters in εMSSM are MSUSY and Xt. As can be

seen there, the radiative correction increases monotonically with MSUSY , but depends in

a nontrivial and nonlinear way on Xt. This means that any statement about the required

size of MSUSY is dependent on the assumed value of Xt, and more than one value of Xt

may yield mh = 125 GeV with the same value of MSUSY . These remarks apply to both the

hMSSM and the h2MSSM. Looking at figure 1, however, we recall that the tree-level value

of mh is larger in the N = 2 extension of the MSSM than in its N = 1 version. This implies

that the required magnitude of εMSSM is smaller in the h2MSSM than in the hMSSM and

hence that, for any fixed value of Xt, the required value of MSUSY is also smaller, as we

now discuss in more detail.

We display in figure 4 the values of MSUSY that are required in the hMSSM (green

dotted lines) and the h2MSSM (red full lines) to yield mh = 125 GeV, as functions of

Xt/MSUSY . The first point visible in these plots is that the required value of MSUSY is

very sensitive to Xt, in both scenarios. It is occasionally said that mh = 125 GeV requires,

within the MSSM, values of MSUSY in the multi-TeV range. We see that this is true in

the hMSSM for Xt = 0 and tan β = 1 (left panel), but is not true in general. For example,

as seen in the middle panel, for most values of Xt, MSUSY < 1000 GeV is sufficient in the

hMSSM if tan β = 3, and even MSUSY < 600 GeV for a suitable choice of Xt. The trend

to lower MSUSY continues for tan β = 10 (right panel) and larger.

However, the key new point of our analysis is that the required values of MSUSY are

indeed significantly lower in the h2MSSM than in the hMSSM. For example, MSUSY =

1000 GeV is now possible for tan β = 1 (left panel), MSUSY = 200 GeV is possible for

tanβ = 3 (middle panel), and even smaller values of MSUSY are possible for tan β = 10

(right panel).
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Figure 4. Contours of MSUSY as functions of Xt/MSUSY that yield mh = 125 GeV in the hMSSM

scenario (green dotted lines) and the N = 2 h2MSSM scenario (red full lines). The left panel is for

mA = 500 GeV and tan β = 1, the middle panel is for mA = 500 GeV and tan β = 3, and the right

panel is for mA = 500 GeV and tan β = 10, and we assume mS = mT = 1 TeV in the h2MSSM cases.

Some caveats are in order. As discussed earlier, in this analysis we consider only the

stop contributions to the ∆M2
22 element in the CP-even Higgs mass matrix. However, as

argued previously, the contributions to other entries in this mass matrix are subdominant,

at least for small µ. Secondly, we have neglected two- and multi-loop effects, but these

should not change our qualitative results. Finally, as also argued previously, the specifically

N = 2 one-loop corrections due to the adjoint scalar fields are also expected not to affect

significantly our results: for definiteness, we have chosen mS =mT = 1 TeV in the h2MSSM

plots in the right panels of figure 4.

A different way of visualizing our results for the hMSSM and h2MSSM is shown in

figure 5. Comparing the two panels, we see that much lower values of MSUSY are required

for the maximal-mixing scenario Xt =
√

6MSUSY (right panel) than for Xt = 0 (left

panel). However, the most striking and novel feature is that, as remarked above, the

h2MSSM requires much smaller values of MSUSY . When Xt = 0 (left panel), for tan β ∼ 3

in the hMSSM values of MSUSY ∼ 2000 GeV are required, whereas MSUSY > 1000 GeV

are sufficient in the h2MSSM. In the maximal-mixing scenario these values are reduced to

MSUSY ∼ 900 GeV in the hMSSM and MSUSY ∼ 250 GeV in the h2MSSM.

3 Constraints from LHC measurements

In light of these differences between the masses and couplings of the Higgs bosons in the

h2MSSM and hMSSM, we now examine the impacts of LHC constraints in the (mA, tanβ)

plane.
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Figure 5. Contours of MSUSY as functions of mA and tanβ that yield mh = 125 GeV in the

hMSSM scenario (dotted lines) and the N = 2 h2MSSM scenario (full lines), assuming mS = mT =

1 TeV in the h2MSSM cases. The left panel is for Xt = 0, and the right panel is for the maximal-

mixing scenario with Xt =
√

6MSUSY . The grey areas correspond to the region disallowed in our

scenarios, cf, (2.23).

3.1 Constraints from H/A/H± searches

Since the mixing angle of the tree-level scalar mass matrix is exactly α = β − π/2 in the

h2MSSM, the heavy Higgs bosons decouple from pairs of gauge bosons at this level, and

the loop-induced HW+W−, HZ0Z0 and AZh couplings are relatively small. The limits in

the (mA, tanβ) plane of the N = 1 hMSSM coming from H decays to W+W− and Z0Z0

and A decay to Zh [42–45, 51] are therefore not applicable to the h2MSSM. Only the

constraints from H,A and H± couplings to Standard Model fermions are applicable to the

h2MSSM. As we have seen, the H − A mass difference is smaller in the h2MSSM than in

the hMSSM, so the LHC constraints on A/H → τ+τ− are applicable without modification.

This is shown in figure 6 as a grey excluded region excluding a range of mA for tanβ & 7.

We do not display the constraint from H± → τ±ν searches, which exclude a small region

at small mA and large tan β that is contained within the grey area [42–45].

3.2 Constraints from h(125) coupling measurements

The couplings of the Standard Model-like Higgs boson h(125) [37] can be analysed using

the following effective field theory (EFT):

Lh-EFT = κV ghWW h W+
µ W

−µ + κV ghZZ h Z0
µZ

0µ (3.1)

−κt yt ht̄LtR − κt yc hc̄LcR − κb yb hb̄LbR − κb yτ hτ̄LτR + h.c. ,

where yt,c,b,τ = mt,c,b,τ/v are the Standard Model Yukawa couplings in the mass eigenbasis,

the subscripts L/R label the left and right chirality states of the fermions, and we consider
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Figure 6. We show in grey the direct exclusion from searches for heavy scalars in the H/A→ ττ

final state, which apply to both the hMSSM and the h2MSSM. We also show the indirect bounds

from measurements of Higgs couplings to fermions and massive bosons at Run 1 of the LHC for the

hMSSM (green) and N = 2 h2MSSM (red), where the regions to the left of the lines are excluded

in each case.

only the fermions with the largest couplings to the Higgs boson. The quantities ghWW =

2m2
W /v and ghZZ = m2

Z/v are the couplings of h to the electroweak gauge bosons, and

v is the vacuum expectation value of the Higgs field. The parameters κX are the free

parameters of this EFT.

These parameters can be constrained using the Higgs signal strengths in various chan-

nels, denoted by XX:

µX ≡
σ(pp→ h)× BR(h→ XX)

σ(pp→ h)SM × BR(h→ XX)SM
, (3.2)

as measured in all the Higgs production/decay channels available from the LHC Run

1. A full analysis requires performing an appropriate three-parameter fit in the three-

dimensional (κV , κt, κb) space, where we assume that κc =κt, κτ =κb, which is consistent

with the current experimental accuracies, and κV =κW =κZ , the custodial symmetry rela-

tions that should hold to a good approximation in the supersymmetric models of interest.

In our two supersymmetric models, the N = 1 MSSM and the N = 2 h2MSSM

scenario, the κ parameters take the following similar forms:

κV = sin(β − α) , κt =
cosα

sinβ
, κb = − sinα

cosβ
(3.3)
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where α is the rotation angle that diagonalizes the Higgs mass-squared matrix in the

hMSSM or h2MSSM, respectively, after including the dominant one-loop radiative correc-

tions as discussed above. The expressions (3.3) do not include the effects of subdominant

loop corrections, which may not be negligible if the supersymmetric particles are not very

heavy, in which case there are direct radiative corrections to the Higgs couplings that are

not contained in the expression of the mass matrix. We neglect such possible effects in the

present study.

At tree level, α only depends on two unknown quantities, namely tan β and mA.

Moreover, only two of the three quantities κV , κt and κb are independent. This is still the

case when we include the dominant one-loop radiative corrections and fix mh = 125 GeV

as discussed above. In both the hMSSM and the h2MSSM we can derive κV (tanβ,mA),

κt(tanβ,mA) and κb(tanβ,mA) for any pair of values of (tan β,mA).

The values may be derived by plugging the explicit expressions for αMSSM in (2.19)

and αN2 in (2.22) into (3.3). Alternatively, one can proceed directly from the MSSM

or N = 2 mass-squared matrix, associating the mass eigenvalue mh with the normalized

eigenvector Vh = (Vh1, Vh2) such that the physical field is h = VhiHi with i = 1, 2 and

the mass eigenvalue mH with the normalized eigenvector VH = (VH1, VH2) such that the

physical field is H = VHiHi with i = 1, 2. We then have

κt =
1

sinβ
Vh2(tanβ,mA) , κb =

1

cosβ
Vh1(tanβ,mA) ,

κV = sin β Vh2(tanβ,mA) + cos βVh1(tanβ,mA) . (3.4)

In terms of tan β we find

κt =

√
1 + tan2 β

tanβ
Vh2(tanβ,mA) , κb =

√
1 + tan2 β Vh1(tanβ,mA) ,

κV =
1√

1 + tan2 β
(tanβ Vh2(tanβ,mA) + Vh1(tanβ,mA)) , (3.5)

where in the case of the hMSSM:

VMSSM
h2 (tanβ,mA) =

1√
1 +

(
(m2

A+m2
Z) tanβ

m2
Z−m

2
h(1+tan2 β)+m2

A tan2 β

)2
, (3.6)

VMSSM
h1 (tanβ,mA) =

(m2
A +m2

Z) tanβ

m2
Z −m2

h(1 + tan2 β) +m2
A tan2 β

Vh2 , (3.7)

and in the case of the N = 2 h2MSSM:

V N2
h2 (tanβ,mA) =

1√
1 +

(
(m2

A−m
2
Z) sin 2β

m2
A−2m2

h+m2
Z+(m2

Z−m
2
A) cos 2β

)2
, (3.8)

V N2
h1 (tanβ,mA) =

(m2
A −m2

Z) sin 2β

m2
A − 2m2

A +m2
Z + (m2

Z −m2
A) cos 2β

Vh2 . (3.9)

These results can be used to apply the constraints on Higgs couplings derived from a com-

bination of CMS and ATLAS data at Run1 [52]. In particular, the analysis relevant to con-

straining the hMSSM and h2MSSM scenarios tests for deviations from the Standard Model
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in couplings to up- and down-type quarks and to vector bosons via the ratios λdu and λV u:

λdu =
κd
κu

= 0.92+0.12
−0.12 ,

λV u =
κV
κu

= 1.00+0.13
−0.12 . (3.10)

The results of this fit are shown in figure 6, where the excluded region in the hMSSM lies

to the left of the green line, whereas in the N = 2 case the bounds (in red) are very much

weakened.

We conclude from figure 6 that mA & 200 GeV is allowed in the h2MSSM for tan β ∈
(2, 8), whereas mA & 350 GeV would be required in the hMSSM.

3.3 Constraints from Γ(h → gg, γγ)

We now analyze the corrections to the couplings of the SM-like Higgs boson to gluons and

photons that arise at the loop level, and the corresponding constraints on the hMSSM and

h2MSSM.

The decay width of the Standard Model-like h(125) into pairs of gluons and photons

can be expressed as [53, 54]:

Γ(h→ gg) =
GFα

2
sm

3
h

64
√

2π3

∣∣∣∣∣∑
i

Aggi (τi)

∣∣∣∣∣
2

, Γ(h→ γγ) =
GFα

2m3
h

128
√

2π3

∣∣∣∣∣∑
i

Aγγi (τi)

∣∣∣∣∣
2

, (3.11)

where the variable τi ≡ m2
h/4m

2
i , mi being the mass of the particle propagating in the loop.

In the case of the loops for the hgg coupling, whereas one has only contributions from quarks

in the Standard Model, in the MSSM additional contributions are provided by the scalar

partners of those quarks. The normalized amplitudes of these two contributions are

Aggf = ghff F1/2(τf ) , Agg
f̃i

= ghf̃if̃i
M2
Z

m2
f̃i

F0(τf̃i) . (3.12)

In the case of the loop for the hγγ coupling, in the Standard Model the W boson and

charged fermions are the only contributors, whereas in the MSSM there are additional

contributions from the two chargino fermionic fields, the scalar partners of the fermions

and the charged Higgs boson. The normalized amplitudes of these contributions are

AγγW = gΦWW F1(τW ) , Aγγf = NcQ
2
fgΦff F1/2(τf ) , Aγγχi

= gΦχ+
i χ

−
i

MW

mχi

F1/2(τχi) ,

Aγγ
f̃i

= NcQ
2
fgΦf̃if̃i

M2
Z

m2
f̃i

F0(τf̃i) , Aγγ
H± = gΦH+H−

M2
W

M2
H±

F0(τH±) , (3.13)

where Nc is the color factor and Qf the electric charge of the fermion or sfermion in units

of the proton charge.

The spin 1, 1/2 and 0 amplitudes are [53]

F1(τ) = [2τ2 + 3τ + 3(2τ − 1)f(τ)]/τ2 ,

F1/2(τ) = −2[τ + (τ − 1)f(τ)]/τ2 ,

F0(τ) = [τ − f(τ)]/τ2 , (3.14)
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with the function f(τ) defined as

f(τ) =

 arcsin2√τ τ ≤ 1 ,

−1
4

[
log 1+

√
1−τ−1

1−
√

1−τ−1
− iπ

]2
τ > 1 .

(3.15)

The amplitudes are real when mh < 2mi, but are complex above that threshold. In the

regime τ � 1, i.e., heavy masses in the loop, the amplitudes reach asymptotic values

F1 → +7 , F1/2 → −
4

3
and F0 → −

1

3
. (3.16)

Standard Model particle loops give finite contributions in the heavy-mass limit, whereas

the new supersymmetric contributions decouple in the limit of large mass, since their

amplitudes Ai are divided by their masses.

As we have discussed in the previous section, the top quark superpartners are re-

sponsible for a substantial shift in the tree-level Higgs mass of ∼ 34 GeV in the h2MSSM

(and more in the hMSSM). We will focus in the following on the loop-level correction to

the hgg and hγγ couplings due to the stops, neglecting other potential supersymmetric

contributions.

The loop-level corrections from stops to Higgs production via gluon-gluon fusion and

to h→ γγ decay are given, respectively, by

σ(gg → h)

σSM (gg → h)
' Γ(h→ gg)

ΓSM (h→ gg)
' |κg|2,

Γ(h→ γγ)

ΓSM (h→ γγ)
' |κγ |2 , (3.17)

with

κg = 1 +
Agg
t̃1

+Agg
t̃2∑

i∈SM Aggi
, κγ = 1 +

Aγγ
t̃1

+Aγγ
t̃2∑

i∈SM Aγγi
. (3.18)

It has been shown that, to a good approximation [55], κg,γ reduce to

κg ' 1 +
At̃∑

i∈SM Aggi
, κγ ' 1 +

NcQ
2
t̃
At̃∑

i∈SM Aγγi
, (3.19)

where

At̃ = −1

3

(
m2
t

m2
t̃1

+
m2
t

m2
t̃2

− 1

4
sin2(2θt)

(m2
t̃2
−m2

t̃1
)2

m2
t̃1
m2
t̃2

)
, (3.20)

with θt the mixing angle of the scalar mass matrix. We remind the reader that the physical

stop masses are

m2
t̃1,t̃2

= m2
t +

1

2

[
m2
t̃L

+m2
t̃R
∓
√

(m2
t̃L
−m2

t̃R
)2 + (2mtXt)2

]
, (3.21)

where Xt = At−µ/ tanβ, and At, mt̃R
and mt̃L

are parameters of the soft supersymmetry-

breaking Lagrangian, and the squark mixing angle, θt, is defined by

sin 2θt =
2mtXt

m2
t̃1
−m2

t̃2

, cos 2θt =
m2
t̃L
−m2

t̃R

m2
t̃1
−m2

t̃2

. (3.22)
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The stop sector can be parametrised by the three inputs mt̃L
, mt̃R

and Xt or, alternatively,

by the physical stop masses mt̃1
, mt̃2

and Xt. If the mixing parameter is large, the two

stop masses are strongly split, mt̃1
� mt̃2

, and the t̃1 has a large coupling to the h(125)

state, gt̃1 t̃1 ∝ mtXt.

If we consider the [mt̃1
,mt̃2

] plane for fixed values of mA and tan β, we can fix X2
t

by the requirement that mh = 125 GeV when just the dominant stop contributions to the

radiative corrections in the MSSM Higgs sector are considered [56]. In this case, the shift

of the Higgs mass is given by (2.17) and (2.24) in the hMSSM and h2MSSM, respectively.

There are at most two solutions for X2
t , denoted by |Xmax

t | and |Xmin
t |. Having traded

the stop mixing parameter by the requirement mh = 125 GeV, we can now compute the

couplings between the stops and the h(125) and then κg,γ .

The available experimental constraints on κγ are shown in green (red) for the hMSSM

(h2MSSM) in figure 7 for mA = 500 GeV and tan β = 1.5 (upper panels), tan β = 5 (middle

panels) and tan β = 10 (lower panels). In the case of the h2MSSM, we always consider

a generic common adjoint scalar mass mS = mT = 1 TeV. The constraints on κg are less

severe than those on κγ , so we do not display them in figure 7.

The Higgs mass requirement has, in general, zero, one or two solutions for X2
t , and it

is possible that one or more of them might be in conflict with the constraint coming from

the soft masses:

(m2
t̃L
−m2

t̃R
)2 = (m2

t̃1
−m2

t̃2
)2 − (2mtXt)

2 , (3.23)

from which we can derive the maximum allowed value for Xt, |Xsoft
t |, which is given by

Xsoft,2
t =

(m2
t̃1
−m2

t̃2
)2

4m2
t

. (3.24)

When scanning the (mt̃1
, mt̃2

) plane, we must ensure that our solutions in Xt are below

this maximal value. The grey regions in figure 7 with dotted (full) border contours are

forbidden by this consideration in the case of the hMSSM (h2MSSM). There are no values

of Xt able to accommodate mh = 125 GeV in the hMSSM (h2MSSM) in the regions at low

mt̃1
and/or mt̃2

that are shaded yellow (blue).

The left panels of figure 7 consider the maximal value of Xt allowing mh = 125 GeV,

including the case where there is only one possible choice for Xt. The right panels of

figure 7 consider the minimal value of Xt allowing mh = 125 GeV, including the case where

there is only one possible choice for Xt. This explains the particular shape of the grey

region for relatively high stop masses.

The current constraints on κg,γ in the hMSSM and the h2MSSM are outlined in green

(red) in figure 7. We see that they are generally weak. Indeed, for mA = 500 GeV and

tanβ = 1.5 (top two panels) there is no constraint at all. However, for higher values of

tanβ (middle and bottom panels) these constraints do exclude some scenarios with low

supersymmetry-breaking scales.

3.4 Anomalous h(125) couplings

In addition to these modifications of the h couplings measured in Higgs production and

decay, integrating out the heavy scalars can also induce anomalous couplings of the Higgs
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Figure 7. Compilation of the constraints in (mt̃1
, mt̃2

) planes fixing Xt so as to obtain

mh = 125 GeV in the hMSSM and h2MSSM, assuming MA = 500 GeV and tan β = 1.5 (top panels),

tanβ = 5 ( middle panels) and tan β = 10 (bottom panels). In the case of the h2MSSM we assume

mS = mT = 1 TeV. For any given pair of stop masses, the mh = 125 GeV requirement allows at most

two solutions for the stop mass mixing parameter,X2
t . The left (right) panels correspond to the max-

imal (minimal) solution, |Xmax
t | (|Xmin

t |). The grey regions bounded by dashed (full) contours are

disallowed by the mixing hypothesis in the hMSSM (h2MSSM). Regions where there are no values of

Xt that yield mh = 125 GeV in the hMSSM (h2MSSM) are shaded yellow (blue). The regions inside

the red (green) contours are forbidden by the LHC h→ γγ constraint in the h2MSSM (hMSSM).
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h A,H,H±

W+

W�

h A,H,H±

W+

W�

Figure 8. Loop contributions of the heavy scalars to anomalous h(125) couplings.

to vector bosons with non-standard momentum dependence. One can parametrize these

effects in the coupling of the Higgs to two W bosons as follows [57]:

∆LW = −
g

(1)
hWW

2
WµνW †µνh−

[
g

(2)
hWW W ν∂µW †µνh+ h.c.

]
+ g

(3)
hWW WµW †µh . (3.25)

We note that the coupling g(3) causes a shift in the usual Standard Model coupling struc-

ture. Indeed, the interpretation of the Higgs data described by the Lagrangian (3.2) cor-

responds to g(3) = (κV − 1)ghWW and setting g(1,2) to zero. However, with more precise

measurements of differential distributions in Run 2 one may be able to disentangle different

Lorentz structures, which could give a handle for discriminating between an anomaly due

to the MSSM and an underlying N = 2 supersymmetric structure.

Generic expressions for the effects of one-loop scalar contributions to Higgs anomalous

couplings can be found in [58]. These correspond to integrating out the heavy MSSM Higgs

bosons A, H and H± in loops, as shown in figure 8. It is important to note that electroweak

precision tests, particularly the constraints from the S and T parameters, require the values

of mA, mH and mH± to be relatively close to each other. The stops, adjoint scalars,

charginos and neutralinos are supposed to be sufficiently massive in our analysis such

that their contributions to the electroweak precision parameters are negligable [59–61]. In

particular, in a 2HDM the expression for ∆S and ∆T is given by [58]

∆S = −
g2

2 s
2
W (1− xA + 1− x0)

96π2 αEM
,

∆T =
m2
H±(1− xA)(1− x0)

48π2 v2 αEM
, (3.26)

where we define the splittings among the heavy scalars by the quantities x0,A:

x0 ≡
m2
H

m2
H±

, xA ≡
m2
A

m2
H±

. (3.27)

and have expanded at linear order in 1 − x0,A. As the splittings in this model are small,

imposing the current best fit values from the global analysis of the GFitter group [62] does
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not restrict further the parameter space of (mA, tanβ) from the Higgs coupling constraints.

Indeed, ∆S, ∆T ∼ 10−2 for mA & 100 GeV.

In this approximation, one can find compact expressions for the anomalous Higgs

couplings:

g
(1)
hWW =

−g2
2 v

192π2m2
H±

[
g0 + gA + 2g+

2
+ (1− x0)

4g0 + g+

10
+ (1− xA)

4gA + g+

10

]
,

g
(2)
hWW =

g2
2 v

192π2m2
H±

[
(1− x0)

g0 − g+

20
+ (1− xA)

gA − g+

20

]
,

g
(3)
hWW =

g2
2 v

192π2
[(1− x0)(g+ − g0) + (1− xA)(g+ − gA)] . (3.28)

Here g0,A,+ denote the trilinear scalar couplings, g0 ≡ ghHH/v, gA ≡ ghAA/v and g+ ≡
ghH+H−/v. These expressions are generic in a 2HDM model as long as the expansion in

x0,A is justified.

The values of the splittings in the MSSM and its N = 2 extension can be obtained by

inspecting (2.6) and (2.7), respectively. In the N = 2 case, one finds x0 = xA ' 1−m2
W /m

2
A.

Turning now to the trilinear Higgs couplings, we note that the new N = 2 term in

the scalar potential in (2.3) does not contribute, so the analytical formulae for the trilinear

couplings are the same as in the N = 1 MSSM, see, e.g., [63]. Therefore, at leading order

in m2
W /m

2
A, the effect of integrating out the heavy scalars in the N = 2 extension of the

MSSM is to generate anomalous couplings of the Higgs to vector bosons of the type g
(1)
hWW ,

namely a Higgs coupling to the square of the gauge field strength with magnitude

g
(1)
hWW =

−g2
2 v

192π2m2
A

[
1 + 2c2

W − 3
m2
h − ε
m2
Z

]
. (3.29)

Bounds on effective operators in an Effective Field Theory approach from Higgs data using

differential distributions [64, 65] can be used in our case by noting that the anomalous

couplings are related to operators defined there by [58]

g
(1)
hWW =

2g2

mW
c̄HW , (3.30)

g
(2)
hWW =

g2

2mW

[
c̄W + c̄HW

]
. (3.31)

This leads to a specific relation among the operators, namely c̄W = −c̄HW for this model.

A global fit to Higgs and electroweak boson properties in this particular case was made

in [64], leading to a bound from the Run 1 data: c̄HW ∈ (0.0004, 0.02), which places no use-

ful constraint on mA currently, as compared with the bounds on total rates discussed before.

However, this situation may change with the advent of Run 2 and subsequent Higgs data.

4 Conclusions

As discussed in the Introduction, whereas the chiral structure of the Standard Model

prevents it from accommodating any more than N = 1 supersymmetry, any extension of
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the Standard Model at the TeV scale would contain vector-like fermions, and hence could

accommodate N = 2 supersymmetry. A first window on this doubling up of supersymmetry

could be provided by the Higgs sector. The two Higgs supermultiplets of the MSSM form

a vector-like pair, and thus could accommodate N = 2 supersymmetry. Measurements of

the h(125) boson and searches for heavier Higgs bosons in LHC Run 1 can already be used

to probe this possibility.

In order to analyze this option, we have introduced an h2MSSM scenario in which the

stop sector is assumed to lift the h mass from its tree-level value to the measured mh =

125 GeV through one-loop radiative corrections. This scenario is exactly analogous to the

hMSSM scenario proposed previously within the usual N = 1 MSSM context [42–45]. An

interesting aspect of the h2MSSM scenario is that much smaller stop masses are required to

obtain mh = 125 GeV than are needed in the hMSSM, for any given values of mA and tanβ.

Another interesting feature of the N = 2 extension of the MSSM is that the heavy

Higgs bosons H,A,H± decouple from the massive vector bosons W±, Z0 at the tree level.

This observation is subject to radiative corrections, but the decoupling limit is a sufficiently

good approximation that current searches for H → W+W−, Z0Z0 and A → Zh do not

constrain the h2MSSM significantly. On the other hand, the constraints from the decays

of the heavy Higgs bosons to fermions are the same in the h2MSSM as in the hMSSM.

The most stringent constraints on the h2MSSM come from LHC Run 1 measurements

of the h(125) couplings, including those to fermions, massive and massless gauge bosons.

However, these constraints are considerably weaker than in the hMSSM. We find that mA &
185 GeV is possible in the h2MSSM, whereas mA & 350 GeV is required in the hMSSM.

Looking to the future, we have also calculated the possible N = 2 Higgs sector con-

tributions to anomalous couplings of the h(125) boson. Current limits on these couplings

do not constrain the N = 2 model, but this may be an interesting window for future

measurements at the LHC and elsewhere.

Doubling up supersymmetry opens up the possibility that supersymmetric Higgs

bosons and stop squarks could be significantly lighter than in the MSSM. Maybe Run 2 of

the LHC will discover not just one supersymmetry, but two?
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