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by Angela Faragasso

During the last few decades, advanced instrumentations have been widely explored for

research and diagnostic applications in medical and life sciences. Traditionally, these in-

struments have been primarily found in laboratory environments. Yet, as the technology

finds its way from research facilities to the point of care, diagnostic tools are increasingly

used in hospitals and other near-patient settings.

In medical diagnosis, physicians palpate the anatomical surfaces with their fingertips to

assess variations in stiffness across the surface of organs. Hence, they locate abnormally

stiff areas by relying on their sense of touch. However, palpation is a highly sophisti-

cated manual skill, which can only be performed in areas that are accessible to the hands,

therefore it cannot be employed in minimally invasive procedures. Several instruments

have been developed with the aim of reproducing the physician’s “sense of touch”. These

devices should be inexpensive and thus affordable to point-of-care providers. They should

also be versatile so that multiple tests can be performed to improve efficiency and, at

the same time, reduce costs. Moreover, since operators may not be trained technicians,

these devices need to be intuitive and easy to use. Furthermore, if designed for minimally

invasive procedures, they should be small enough to fit through a standard trocar port.

This thesis presents a novel vision-based sensor for soft tissue stiffness estimation, mea-

suring multiple tool-tissue interaction forces in parallel employing a set of deformable

elements. By means of an analysis of the differences between the measured forces the

stiffness of the material the sensor is interacting with can be computed. The motion

of the deformable elements whilst in contact with the environment are captured by a

camera sensor and related to force and, subsequently, to stiffness exploiting knowledge

of the spring constant of the deformable elements.

The developed system provides quantitative measurements of the tissue stiffness which

can be used to diagnose abnormalities. The proposed sensing principle has been used



to develop a hand-held stiffness probe for tumour identification. In order to retrieve

the “sense of touch” in minimally invasive procedures, a clip-on stiffness sensor has been

developed that can be integrated with a surgical endoscopic camera. The new, integrated

system extends the sensing capabilities of the camera: the system can be used to visualise

the anatomical areas inside the human body as well as measure the stiffness of these

abdominal structures. Adding a purely mechanical device to an endoscopic camera,

proves to be a cost-effective way to introduce remote stiffness measurement capabilities to

minimally invasive intervention. The experimental results demonstrate the effectiveness

and accuracy of the proposed system, successfully discriminating soft tissues over a wide

range of tissue stiffness values. To make the system intuitive, a colour-coded stiffness

map that is generated in real-time is used to visualise the stiffness distribution of the

examined soft object surface. Moreover, the sensory mechanism can be manufactured at

a low price, does not use any electronic components; it is easy to use and does not require

any calibration. The measurement range and resolution can be easily customised.
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CHAPTER 1

Introduction

Over the last centuries, there have been many changes in the field of healthcare and

medicine. In the 1970s, the AI boom triggered the development of diagnosis tools in

the form of physical robot and software expert systems. Technological advances involving

the creation of robotic devices and of complex imaging have revolutionised the medical

field. However, health providers have been relatively slow to endorse robotic systems and

this is due mainly to safety concerns. Nonetheless, the introduction of the first robotic

surgical device in 1985 promised to dramatically change the way surgeons operate and

diagnose pathologies [1]. Although the developments in medical robotics have made op-

erations much less invasive and improved medical examination, robotics systems have

disadvantages and limitations that prevent them from replacing medical experts. For in-

stance, although highly desirable, a surgical device able to compute soft tissue stiffness in

real time is still lacking. Such a device would be beneficial in medical inspection allow-

ing quantitative measurements of the mechanical properties of soft tissues; in minimally

invasive interventions, it would allow the reproduction of the sense of touch which is

completely lost during non-invasive procedures. The aim of this thesis is the development

of a sensory mechanism that uses vision to compute soft tissue stiffness. This chapter

provides a comprehensive outline of the motivation of this thesis as well as the background

to the research and its objectives, the contributions and structure of the thesis.

1
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1.1 Background

During the last century, scientific advances have been continually reshaping the practice

of medicine. From innovative tests in tertiary medical centres to the advanced technology

available nowadays in outpatient settings, it is clear that new discoveries have redefined

the way in which physicians diagnose, treat and alleviate diseases [2]. New methods and

paradigms for training and teaching the clinicians how to perform physical examinations

are continuously being proposed and tested in order to improve the diagnostic assessment.

In general, clinicians learn and practice their skills during their training years and refine

them with experience. The physical examination is one of the most important skill for a

clinician to develop. It can also be one of the most challenging. It has been proved that

skills not honed during the training stage are unlikely to improve with time. Moreover,

the learning curve, that is, the rate in which experience and new skills are gained when

using the latest technologies, increases for seasoned physicians.

Although the physical exam remains a milestone of clinical medicine all over the world,

doctors rely on physical touch as a diagnostic tool much less than in earlier times, and the

mastery of examination skills at every level of training has decreased over the years [3].

Quantification of stiffness variation may provide important diagnostic information and

aid in the early detection of minor abnormalities before they become serious; therefore,

there is a need for medical instruments able to reproduce the same sensations that

practitioners have when performing a physical examination through direct contact, i.e.

palpation of the skin and anatomical landmarks to assess mechanical properties of soft

tissue.

Diagnosis can be defined as the process whereby a disease or condition is identified by

examining the patient’s symptoms. Formerly, few diagnostic tests were available to assist

clinicians and the primary presenting symptom of a cancer was a palpable mass, often

initially detected by the patient. In the 20th century, numerous technological advances

in medicine occurred, resulting in the development of a range of diagnostic techniques.

The fusion of physical exam, technology and research made clinical diagnoses quicker

and more accurate, leading to considerable improvement of patient care. Early cancer

diagnosis means a more effective therapeutic strategy, with increased chances of recovery

and prolongation of the patient’s life expectancy.

Manual palpation is an important determinant of both sensitivity and specificity of the

diagnosis and is used by medical experts to evaluated soft tissue stiffness without exten-

sive and expensive medical tests. However, manual palpation is not completely reliable

because subjective to the clinician’s experience. In response to this problem, several

devices have been developed to objectively quantify tissue tone, allowing researchers to
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study the effectiveness of tissue therapies used by clinicians. The mechanical properties

of soft tissues have been the focus of a number of medical applications because of the di-

agnostic information they provide. The links between biomechanics and human diseases

have been the subject of scientific research for several decades. It has been proved that

an easy-to-use instrument and the use of objective methods for quantitative analysis of

soft tissue stiffness is needed to enhance the outcome of the diagnosis.

1.1.1 Manual Palpation

Palpation is the traditional diagnostic technique, classically defined as the “act of feeling

with the hand”. It involves the examination of the patient by means of direct physical

contact [4]. During physical investigation, texture, size, consistency and location of

soft tissue areas are examined by clinicians using vision combined with the sensations

received from their finger tips. This diagnostic technique is called “manual palpation”.

Manual palpation can be employed on every part of the body accessible to the examining

fingers: all external structures, all the structures accessible through body orifices, the

bones, the joints, superficial nerves, abdominal viscera, etcetera. In most cases, the

clinician aims to evaluate the stiffness distribution of the examined soft tissue organ or

body part, and to distinguish between areas of higher and lower stiffness, since these

stiffness variations can indicate the presence of abnormalities. The final diagnosis is a

function of kinesthetic sensations: the indentation depth (i.e. how much the soft surface

deforms) and the experienced reaction force. Thus, palpation is historically one of the

most effective methods used by medical experts to determine pathologies [5]. When

practitioners attempt to detect tumours in some specific area of the human body, they

discriminate between healthy and abnormal areas through stiffness differences, as the

stiffness of a tumour is different from the surrounding healthy tissue [6], [7], [8]. For

instance, during breast examination, palpation should be conducted in a methodical way

and performed over the entire breast. Suspicious breast lesions are hard and fixed rather

than movable, as is the case for healthy tissue. Besides, it is noted that cancerous tumours

are usually not tender, whilst benign lesions are more likely to be round, elastic or firm,

movable, and well-defined [9]. Similarly, with the aim of early detection of prostate

cancer, a digital rectal examination (DRE) is widely used to establish the presence of

a tumour and to distinguish between malignant and benign tumours. Urologists insert

a gloved and lubricated finger into the rectum of the patient and palpate the posterior

region of the prostate in an effort to establish whether tumours are present in the prostate

or its posterior region. Due to early detection and improvements in the treatment of

prostate cancer, the 5-year relative survival rate for all patients has increased from 69 % to

nearly 99 % in the last 25 years [5]. During medical examination, the stiffness variation of
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(a) (b)

(c) (d)

Figure 1.1: Medical specialities employing palpation procedure: (a) Physical exami-
nation of the armpit is performed during lymph node inspection. (b) Feline abdominal
palpation is used for training and examination in veterinary medicine (c) A training
device for breast cancer detection (d) Palpation of the structures of the head, neck, and
oral cavity it is performed during oral examination.

the area to be examined can be detected by moving the fingertip on the soft tissue with a

certain level of force and perceiving the tissue’s reaction force. During a manual palpation

procedure, clinicians adjust the contact depth and force on the tissue in order to obtain

the best tactile feedback according to their experience. For example, if the finger tip

touches an object which is a little harder and the clinician senses an increased force level

during the process, the exploration can be repeated with deeper contact depth in order

to enhance the tactile feeling of hardness. Therefore, the result of the diagnosis is strictly

related to the exploration scheme chosen by the clinician as well as his/her experience and

tactile sensitivity. Many medical specialities, such as dermatology, gynaecology, oncology,

dentistry, paediatrics, veterinary medicine, employ manual palpation procedures both

during consultation and intra-operatively. Some of these procedures are shown in Figure

1.1.

It is reported that the sensitivity of palpation procedures, i.e. the clinician’s ability to

correctly identify the tumour, is subjective and highly dependent upon the skill and
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the experience of the practitioner - a skill often difficult to master [4] [10] [11]. Inad-

equate training may contribute to a low and variable sensitivity range during medical

examination. Tactile information is crucial in the early stage of diagnosis. However, a

system able to give a quantitative measurement of the tissue stiffness does not yet exist.

Such a system would improve the quality of the diagnosis and help clinicians during the

examination [3].

1.1.2 Surgical Palpation

Besides direct palpation on the patient’s skin, palpation of organs and anatomical areas

can also be performed during surgery. In open procedures, it is possible to directly access

soft tissue and organs. Hence, surgeons can use their sense of touch to identify organ

margins and features as well as buried structures, such as nerves or arteries and prevent

undesired cuts to healthy tissue. They can directly investigate the force-displacement

response to acquire distributed tactile information which is then used to identity tu-

mours, as the mechanical proprieties of a soft tissue can be altered by a pathological

condition [12]. Moreover, tactile feedback is widely used to gather valuable information

about the stiffness of the tissue which is an indicator of the tissue’s health. Tumorous

regions that cannot be visually identified can often can be detected using tactile feedback

as they tend to be harder than the surrounding healthy tissues [7] [8].

Minimally invasive surgery (MIS), also called laparoscopic or keyhole surgery, is a new

surgical technique which involves operating through small surgical cuts on the patient

body using long and thin instruments that are inserted in one or more trocar ports

(incisions of 10/12 mm in diameter), [13] [14] [15]. Robotic-assisted procedures represent

the latest development in minimally invasive surgical techniques - surgeons are provided

with precision tools that enter the abdominal cavity through the same small incisions

as conventional laparoscopic tools. A key difference is that the robotic system can offer

precision control and often a very intuitive control of the surgical instruments. With

its stereoscopic, 3-D imaging and precision-guided wrist movements, robotic-assisted

systems, such as the da Vinci surgical system, allow surgeons to combine the best of

both laparoscopy and regular open surgery techniques [16].

Minimally invasive surgical procedures have become a well established practice and the

preferred approach over open surgeries due to the substantial benefits they provide to

the patients, such as improved therapeutic outcome, shortened postoperative recovery,

reduced immunological stress response of the tissue and tissue trauma, and less postop-

erative pain. MIS is also cost-effective [17]. However, MIS hinders the surgeon’s ability
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to directly manipulate the tissue [18]; it is reported that the absence of physical tissue

interaction is a major limitation of MIS compared to traditional open surgeries [19].

MIS has become a well-established and preferred approach to a growing number of major

surgeries ranging from relatively simple procedures such as prostatectomy [20], cholecys-

tectomy [21], and cystectomy [22] to more complex surgical operations which are very

difficult to conduct laparoscopically such as coronary artery revascularization and mitral

valve repair [23] [24]. Hence, haptic (force and tactile) feedback has become essential in

MIS. In palpation procedures for tumour localization, clinicians press their fingers on the

patient’s body to assess the interaction forces and use the tactile feedback to distinguish

between different types of tissues [25]. Stiffness variation of anatomical surfaces can be

used to identify abnormal tissues (such as tumorous lumps), blood vessels, ureters, as

well as bones and fatty tissues [16]. Since minimally invasive tools have been proven to

noticably improve the outcome of surgical operations, they have been developed beyond

the investigation stage. Currently, these devices continue to evolve as they become more

ergonomic [26]. Although vision has been improved in MIS through the introduction

of high-definition 2D and 3D vision systems, methods of direct palpation and haptic

feedback in MIS are still in their infancy. The force applied to soft organs can only

be estimated through visual feedback by observing the deformation of the tissue in the

transmitted camera images, as shown in Figure 1.2. The need to perform surgeries safely

in limited space and dynamic environments where surgeons have a restricted view and

no sense of touch has created a growing demand for surgical vision techniques and sensor

systems whereby to retrieve tactile feedback similar to traditional open surgery. Anal-

ysis shows that a new design is required to address these problems that occur with the

current equipment [19].

(a) (b)

Figure 1.2: Surgical Palpation: (a) Manual palpation of soft tissue area performed
in open surgery scenario. (b) Surgical setup for a minimally invasive procedure; only
visual feedback is available for the medical team to retrieve mechanical properties of
the anatomical areas.
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Overall, touch is an important sensory modality used by clinicians during different types

of surgical procedures to identify subcutaneous or subserous inclusions such as blood

vessels or tumorous that cannot be visually detected. In the last few years, researchers

have increasingly developed instrumentations for soft tissue characterization which may

be reliable, but are often difficult to use in a clinical setting. It is noted that, albeit

highly desirable, a medical system able to provide real-time quantitative measurements

of soft tissue properties such as stiffness, does not yet exist. [27] [28]. Satisfying the

operating room requirements that put strict limits on size and robustness, and steriliza-

tion remain major hurdles when attempting to incorporate sensory systems in medical

applications. Furthermore, the sensors must conform to surgical device regulations such

as those imposed by the European Medicines Agency (EMA) or the American Food and

Drug Administration (FDA) and, needless to say, ought to be made available to the cus-

tomer at a reasonable cost. A very critical issue in the design of sensing instruments to

be inserted inside the human body is sterilization. The most common method of steril-

ization is applying saturated steam to the instruments for a duration of about 15 minutes

(autoclave) [29]. Therefore, any sensors used in such a device must be robust to heat,

pressure and humidity. Another solution is to employ chemical agents for sterilization

which increases the duration of sterilization. Equipment which cannot be sterilized by

any of the sterilization methods cannot be reused and need to be economically disposed

of [30].
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1.1.3 Research Problem

Tactile information is crucial at the early stage of diagnosis when conditions such as

breast and prostate cancer alter the elastic stiffness of tissue [8]. Manual palpation

procedures are not thoroughly reliable as they are subject to human interpretation and

therefore not repeatable. In response to this problem, several devices have been developed

to objectively quantify the mechanical properties of soft tissue, and in particular the

stiffness [31, 32].

In the last two decades, with the increased use of minimally invasive procedures in hos-

pitals, research on palpation devices strived to restore tactile and kinesthetic sensation

in minimally invasive intervention. This was pursued by performing tissue palpation

with different techniques, such as indenting [33], grasping [34] or rolling [35]. These

techniques have not as yet been incorporated into clinical practice. The design require-

ment of a palpation device for use in MIS heavily depends on the medical application it

will be used in and presents several challenges in that the sensor must meet demanding

size constraints, withstand temperature variations without affecting its sensing accuracy,

address issues of sterilization, and use biocompatible materials, while achieving appro-

priate performance in terms of resolution and sensing range. Besides, surgeons do not

welcome the option of devoting a surgical trocar port to an additional instrument such

as a palpation device - the genreal approach is to keep the number of trocar ports, used

to insert surgical instruments into the inside of the human, to a minimum. An objective

in-vivo measurement technique for assessing the material properties of soft tissue will

definitely be a valuable tool in the diagnosis of pathologies. For instance, a stiffness

sensing tool is likely to improve the surgeon’s appreciation of the tumour location and

distribution within an organ such as the prostate, and thus lead to an improved outcome

of a robot-assisted laparoscopic radical prostatectomy [36, 37]. The computation of the

stiffness of the anatomical surfaces in minimally invasive practice will revolutionise this

new technology and serve as a substitute to palpation by furnishing the surgeon with a

sense of touch.

This thesis focuses on the development of a vision-based stiffness sensing mechanism.

The system is composed of a camera sensor and a designed mechanical structure which

encompasses elastic elements. The mechanical properties of soft tissue are computed

relying only on the visual information provided by the camera. An image processing

algorithm tracks the movements of the elastic mechanism in real time. A mathematical

model relates the visual appearance of the elastic element in the images to the interaction

forces which are used to estimate the stiffness of the examined soft tissue. Using a

surgical endoscopic camera (a medical tool always present in the surgical theatre), the

proposed mechanism could be integrated in minimally invasive scenario. Hence, the
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integrated system could be used as a dual sensor: to visualise the anatomical area and

to evaluate its stiffness, without making use of an additional trocar port. Hence, the

proposed sensory mechanism can potentially improve the quality of the diagnosis and

enhance the surgeon’s understanding of tumour location and surgical margins during a

minimally invasive intervention while solving some of the issues that currently preclude

more widespread use of minimally invasive procedures.

1.2 Aims and Objectives

The aim of this thesis is to present a novel sensing mechanism which uses vision to

determine the stiffness of soft tissue. The creation of the system requires the development

of a sensorised device and the implementation of image processing algorithms.

The main objectives are:

1. to create a disposable mechanism for commercially available cameras

capable of measuring the stiffness of soft objects.

This innovation can be used in medical applications to define properties of tissue

during operations or to find abnormal areas during medical inspection. However,

the sensing principle can be used in other applications which involve probing and

stiffness measurement.

2. to implement real-time image processing algorithms that relate the move-

ments of visual features to applied forces.

The image processing algorithm should filter the noise while robustly tracking the

elastic movements of visual features.

3. to map the measured stiffness to the anatomical surface.

The information acquired through the image processing can be used to compute a

real time stiffness map of soft tissue surface.

4. to make the system versatile and suitable for different medical applica-

tions.

The visual system can be adapted in several medical inspection procedures, for

instance in external diagnosis but also in minimally invasive applications. The

system has to be versatile to adapt to specific medical practice requirements.



1 Introduction 10

1.3 Research Contributions

Research into soft tissue characterization provides the field of robotics with a fundamen-

tal road-map for developing advanced medical diagnostic tools and systems. Researchers

have developed technologies that try to recover the sense of touch by estimating kines-

thetic and tactile information. However, most of these methods use costly commercial

electronic sensors. Here, the target is to develop low-cost mechanism that can operate in

conjunction with available, generic cameras in order to characterize the stiffness of soft

objects. The contributions of this thesis are:

1. A consolidated literature review on different stiffness sensing mecha-

nisms and methodologies for soft tissue characterization in order to de-

termine the research gap and needs is provided;

2. The design of a novel sensory system that uses deformable elements and

vision to compute forces is accomplished;

3. Algorithms for the robust computation of tissue stiffness as a function of

relative forces inferred from the deformation of elastic elements under

load are created;

4. A intuitive user interface for real-time stiffness mapping of soft tissues

is designed, implemented and tested.

1.4 List of the Publications Arising from this Thesis

The contributions of this thesis has led to the following publications:

[1] Angela Faragasso, Joao Bimbo, Yohan Noh, Allen Jiang, Sina Sareh, Hongbin Liu,

Thrishantha Nanayakkara, Helge A Wurdemann, and Kaspar Althoefer. Novel uni-

axial force sensor based on visual information for minimally invasive surgery. In

Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages

1405–1410. IEEE, 2014.
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[2] Angela Faragasso, Agostino Stilli, Joao Bimbo, Yohan Noh, Hongbin Liu, Thris-

hantha Nanayakkara, Prokar Dasgupta, HA Wurdemann, and Kaspar Althoefer.
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national Conference of the IEEE, pages 6517–6520. IEEE, 2014.
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review), 2016.

[7] Allen Jiang, Samson Adejokun, Angela Faragasso, Kaspar Althoefer, Thrishantha

Nanayakkara, and Prokar Dasgupta. The granular jamming integrated actuator. In

Advanced Robotics and Intelligent Systems (ARIS), 2014 International Conference

on, pages 12–17. IEEE, 2014.
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Fingertip proximity sensor with realtime visual-based calibration. In IEEE/RSJ
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method using haptic palpation based on soft tissue probing data. In Robotics and

Automation (ICRA), 2014 IEEE International Conference on, pages 4188–4193.

IEEE, 2014.

[10] Yohan Noh, Sina Sareh, Jessica Back, Helge A Wurdemann, Tommaso Ranzani,

Emanuele Lindo Secco, Angela Faragasso, Hongbin Liu, and Kaspar Althoefer. A

three-axial body force sensor for flexible manipulators. In Robotics and Automation

(ICRA), 2014 IEEE International Conference on, pages 6388–6393. IEEE, 2014.
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gasso, Jessica Back, Hongbin Liu, Elizabeth Sklar, and Kaspar Althoefer. A contin-

uum body force sensor designed for flexible surgical robotics devices. In Engineering

in Medicine and Biology Society (EMBC), 2014 36th Annual International Confer-

ence of the IEEE, pages 3711–3714. IEEE, 2014.

[12] Sina Sareh, Allen Jiang, Angela Faragasso, Yohan Noh, Thrishantha Nanayakkara,
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thoefer. Bio-inspired tactile sensor sleeve for surgical soft manipulators. In Robotics

and Automation (ICRA), 2014 IEEE International Conference on, pages 1454–1459.

IEEE, 2014.

[13] A. Shiva, A. Stilli, Y. Noh, A. Faragasso, I. De Falco, G. Gerboni, M. Cianchetti,

A. Menciassi, K. Althoefer, and H. A. Wurdemann. Tendon-based stiffening for a

pneumatically actuated soft manipulator. IEEE Robotics and Automation Letters,

PP(99):1–1, 2016.
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Althoefer. A non-linear model for predicting tip position of a pliable robot arm

segment using bending sensor data. Sensors & Transducers, 199(4):52, 2016.

[15] Helge A Wurdemann, Sina Sareh, Ali Shafti, Yohan Noh, Angela Faragasso,
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1.5 Thesis Structure

This thesis contains eight chapters which explain the steps taken to achieve the aim

presented in chapter 1.2. In line with the objectives, a detailed structure of this thesis

is shown in Figure 1.3.

Chapter 1 presents the research motivation of this thesis, the research aim and objec-

tives, the main contributions and the thesis’ structure.

Chapter 2 introduces medical diagnostic techniques for tumour localization. The liter-

ature on palpation methods is reviewed. Among these methods, instrumented palpation

based on force and tactile feedback is further investigated. Additional details on the
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stiffness sensing mechanism based on the relative force principle are provided. In gen-

eral, these systems employ elastic mechanisms used to indent the soft surface which will

exhibit several deformations measured by sensory devices.

Chapter 3 presents the sensing principle. The development of a vision-based force sen-

sor demonstrated that uni-axial interaction forces can be accurately estimated as means

of visual processing algorithms.

Chapter 4 presents an uni-axial stiffness sensor for endoscopic camera. The estimation

of the stiffness is a function of the relative force which is generated by the interaction of

several elastic elements with the soft tissue.

Chapter 5 investigates the sensing principle and how it was improved with the addition

of multi-directional capabilities. The development of a vision-based stiffness probe for

medical palpation of a body part accurately evaluates the stiffness independently of the

approaching direction.

Chapter 6 shows the realization of a clip-on sensor for endoscopic camera which uses

cantilever beams to generate interaction force. Hence, the endoscopic camera becomes a

dual sensor used for visualization but also for stiffness estimation without requiring the

integration of additional instruments in the operating room.

Chapter 7 presents the real time stiffness mapping of the examined surface. The al-

gorithm combines the 3D position of the stiffness probe (which is recorded by using a

tracking system or robotics kinematics) with the estimated stiffness to create an intuitive

representation of the overall soft surface through a colour-coded stiffness map.

Chapter 8 summarises the research findings and the contribution of the thesis to science

and medical practice. Finally, future work resulting from the limitations of the proposed

sensory mechanism is suggested and discussed.
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Figure 1.3: Thesis Outline



CHAPTER 2

Techniques for Soft Tissue Stiffness Estimation: a Review

This chapter describes the state of the art in stiffness sensing related technologies for

medical diagnosis. In order to define a theoretical foundation for exploring diagnostic

solutions in medical palpation, the importance of the “sense of touch” in tumour iden-

tification is examined. The main tumour identification methodologies, such as manual

palpation, medical imaging and instrumented palpation are reviewed. This thesis focuses

on instrumented palpation which employs palpation systems which induce deformation

onto soft tissues and sensing technologies to measure it . The use of different palpation

mechanisms generate different forces, thus, different deformations of the soft tissue. The

stiffness of the soft tissue can be measured by means of the relative force.

15



Chapter 2. Techniques for Soft Tissue Stiffness Estimation: a Review 16

2.1 Introduction

It has been proved that the mechanical properties of the skin vary for different layers or

areas of skin [12, 32]. Age, sex, race as well as skin disorders are parameters that may

alter these properties. Tumours that cause structural changes in human tissues also affect

these tissues’ mechanical properties, for example their elasticity. Physicians describe the

size of a cancer, where it is located and how far it has grown, using the TNM (primary

Tumour size, lymph Nodes, Metastases) scoring system, a standard developed by the

AJCC (American Joint Committee on Cancer). According to this standard T tumours

are classified according to their size in four categories: T1 stage tumours are less than 2

cm, T2 stage tumours are between 2 and 5 cm, T3 stage tumours are more than 5 cm

but without extraglandular extension, T4 stage tumours are of any size and present the

local extension of adjacent structures. The TNM stage describes the site and size/extent

of primary tumours. The TNM system is a widely used cancer staging system by means

of which cancer reporting is done, for instance a T1, N0, M0 cancer would mean that the

primary tumour is less then 2 cm across (T1), has not affected any lymph nodes (N0) and

has not spread in any other part of the body (M0). Successful medical treatment of cancer

depends on timely and correct diagnosis. Early cancer detection, which literally means

detection of T1 stage tumours, will in many cases lead to successful cancer treatment or

a better prognosis [38]. Experts have proven that there is a link between the mechanical

stiffness of the tumour and its invasiveness. Additionally, based on the affected area

or organ, T1 tumours are between 3 and 6 times stiffer than the surrounding healthy

tissues [39].

Soft tissue stiffness is traditionally evaluated by the subjective method of manual palpa-

tion during medical examination [6–8]. During palpation, the physician pushes a finger

tip into the tissue with a certain level of force and observes the amount of displacement

to gauge the reaction force. Manual palpation is the most commonly used method, al-

though it is not completely reliable because it is subject to human interpretation and

not repeatable [40–42]. Moreover, palpation can only be performed in areas accessible

to human hands. This thesis proposes a novel sensing mechanism for soft tissue stiff-

ness computation that uses visual information to retrieve the physician’s sense of touch.

Although, the sensing principle can be adapted and used in different applications, this

chapter analyses the requirements of tactile sensing technologies in medical diagnosis.

The research conducted in soft tissue characterization and the scientific findings are

described and analysed.
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2.2 Human Touch Sensing: Inspiration for Robotic Tactile

Devices

The human skin acts as a protective barrier between the internal body system and the

environment. The skin’s ability to perceive touch sensations, that is, its capability to

sense the physical properties of surfaces it comes into contact with, communicates to

the brain a wealth of information about the outside world. The somatosensory system

controls the human sense of touch. This system is involved in the inter-related and

conscious perception of position of body parts (proprioception) and movements of the

body (kinesthesis). Although some of our most intense sensory experiences originate from

the acute sensitivity and intimate contact of touch, all three senses are fundamentally

important and the absence of any one can be severely debilitating [43]. Traditionally,

the process of exploring a three-dimensional object is believed to be the result of a cross-

modal perception [43–47]. In this model, visual and haptic information are combined to

obtain the representation of the object [46, 47]. Recently, new scientific findings, have

challenged the common belief that the brain areas supporting object recognition are

“multisensory”. In support of this new theory, Snow et al. [48] have demonstrated that

there are areas of the brain that allow humans to recognize and manipulate objects with

their hands alone, without engaging the visual sensory system.

In 1987, Lederman and Klatzky [49] created the taxonomy for purposive hand movements

that achieve object representation and classified them as exploratory procedures (EPs).

The EPs are related to the desired knowledge about the object, as shown in Table 2.1.

Table 2.1: Correlation between object’s model and EPs [49].

Knowledge about the object Exploratory Procedure

Substance-related Properties

Texture Lateral Motion

Hardness Pressure

Temperature Static contact

Weight Unsupported Holding

Structure-related Properties

Weight Unsupported Holding

Volume Enclosure, Contour Following

Global shape Enclosure

Exact shape Contour following

Functional Properties

Part Motion Part Motion Test

Specific Function Function Test
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Table 2.2: Robotic Tactile Sensors: Design guideline [50].

Parameter Guidelines

Force Direction Normal and tangential.

Temporal Variation Dynamic and Static.

Time Response 1 ms.

Force Sensitivity 0.01− 10 N.

Linearity/Hysteresis Stable, repeatable and monotonic with low hystere-
sis.

Robustness Withstand application defined environment.

Tactile cross-talk Minimal cross-talk.

Shielding Electronic and/or magnetic shielding.

Spatial Resolution 1 mm fingertips up to 5 mm in palm of hand.

Integration and Fabrication Simple mechanical integration Minimal wiring Low
power consumption and Cost.

Additional Requirements Temperature tolerance. Size.Weight. Durability.
Power Consumption.

In [50] the suggested guidelines for the design of tactile sensors are inspired by the human

hand whose fingertips contain a very high density of mechanoreceptors; the authors

outline the limitations and alternatives, as shown in the Table 2.2.

Following the biological inspiration used in [50], Yousef et al. [51] proposed the minimum

functionality requirements for a robotic tactile sensing system emulating human in-hand

manipulation: it should be able to detect contact; to lift, replace and release objects; to

detect dynamic and static forces; to track the variation of the contact point during the

manipulation and detection of the tangential force to prevent the slip. Multi-purpose

sensors that address the requirements outlined in Table 2.2 remain a big challenge. In

general, the constrains and limitations of the specific application are identified in the

designed sensors in order to reduce the cost and complexity.

During the last decades, tactile sensors based on different sensing principles have been

explored and used in many robotics applications, mainly in medical applications. Many

classifications and taxonomies exist in the literature, based on:

• the transduction technique (capacitive, piezoresistive, piezoelectric, strain gauge

and optoelectric) [52–54];

• the target industry (robotics, biomedical, sport, agriculture, aerospace and auto-

motive industry);
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• the sensor dimension (zero, one or two dimensions);

• the location of the sensor (intrinsic and extrinsic tactile sensing) [50];

• the sensing principle (array sensor or force/torque sensor) [51];

• the task to be accomplished (perception for action, action for perception) [50].

Developments in robotics technologies have had a consistent impact on industry, medicine,

military, space and ocean exploration, domestic and household environments and hobby

pursuits [55]. Medicine and in particular surgical applications have particularly benefited

from robotics technologies[56]. Medical robotics has been revolutionising medical care

both outside and inside the operating rooms. It is a field in which collaboration between

medical practitioners and engineers is essential. The main fields of medicine employ-

ing robotics technologies are rehabilitation, surgery, pharmacy automation, disinfection,

training, and medical diagnosis. In addition, telepresence robots can be used to remotely

perform different medical tasks ranging from examination to surgery [34, 57].

Traditionally, medical diagnosis involved manual palpation, which requires physicians

to palpate with their fingers the anatomical surfaces in order to asses the stiffness and

size of tumours. Clinicians use distributed tactile feedback to localize lumps and de-

tect abnormalities. Manual palpation is limited to tissues accessible to the physician’s

hands and highly dependent on the physician’s skills. Additionally, manual palpation is

completely impracticable in laparoscopic, robot-assisted and and remote procedures. Di-

agnostic robots (diagnosis tools in the form of physical robot or software expert system)

supplement or replace the traditional palpation procedures to improve the outcome of

the medical diagnosis.

Given the expected benefits of tactile feedback, many researchers have turned to sensory

substitution techniques based on synaesthetic perception, wherein cutaneous perception

is presented via an alternative feedback channel, such as vibrotactile, auditory, or visual

cues [58, 59]. Although it has been shown that palpation based on electro-mechanical

systems equipped with tactile/force sensors is more sensitive than human manual palpa-

tion [60], no current sensor is able to measure all the quantities perceived by the human

finger. The challenge lies in developing effective systems that deliver realistic cues while

fulfilling constraints on size, cost, compatibility, and sterilization [61].

Touch can reveal position, size, shape, texture, friction, force, temperature and other

object properties. Gwilliam et al. [62] compared the performance of capacitive tactile

sensors in lump detection with the performance of palpation with the human finger, as

shown in Figure 2.1. The results showed that tactile sensing technologies can detect

lumps at lower indentation depths and pressure than the human fingers.
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Figure 2.1: Human vs. Robotic Tactile Sensing [62]: (a) Human subject test: the
hand was fixed under a servo-controlled linear motor indenting the rubber models. (b)
Sensor test: the tactile sensor was mounted on a rigid platform, the rubber models are
pushed against the sensor by the linear guide. (c) Error bars of the standard error for
the required pressure. (d) Error bars of the standard error for the required indentation
depth.

This chapter explores tactile sensing technologies developed for medical diagnosis fo-

cusing in particular on how indentation devices attempt to mimic the human “sense of

touch”.

2.3 Methodologies for Soft Tissue Stiffness Measurements

The properties of soft tissues have been widely investigated using compression, shear,

tensile, aspiration or indentation methods. A compression test is a mechanical method

in which the Young’s modulus, that is the stiffness of the material, is estimated by

measuring the compressive force and the corresponding deformation of the material. If

F is the compression force, A the contact area, w the deformation and h the original
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thickness of the material, then the Young’s modulus can be expressed as:

E =
F
A
w
h

. (2.1)

In equation 2.1, the size of the compressor is assumed to be bigger than the size of

the material. If the compression force acts along one axis, the material exhibits lateral

extension. The ratio of the axial deformation over the lateral deformation represents

Poisson’s ratio which expresses the compressibility of the material.

In the shearing test, the force applied is parallel to the material surface and the material

deformation is evaluated. For a linear elastic material, the relationship between Young’s

modulus and the Poisson’s ratio is:

µ =
E

2(1− v)
; (2.2)

where µ is the shear modulus, E is the Young’s modulus and v the Poisson’s ratio.

During tensile stress, pulling force is provided on the material and the tensile modulus,

which is the ratio of the tensile stress to the deformation, is measured. If the specimen

is pulled until fracture, it is then possible to calculate the tensile strength.

Aspiration which relies on pulling force is another method for computing properties of

the material. In this procedure, a cylindrical probe endowed with a camera is applied

on the material surface. This creates a negative pressure inside the cylindrical probe for

sucking the material under test into the circular probe with unknown radius. The defor-

mation of the material is captured by the camera. Tissue properties can be computed

using the negative applied force and the visual information on the material deformation.

Indentation is another approach, similar to compression, and widely used in many ap-

plications. In contrast to the compression method, the device used in the indentation

method is smaller in size than the material to analyse. In general, the diameter of the soft

tissue at stake is at least five times bigger than the indenter’s diameter. The main ad-

vantage of this technique, when compared with compression methods, is that an in-vivo

test can be performed non-invasively, as shown in Figure 2.2. Indentation devices that

attempt to reproduce the human sense of touch have been developed and used for char-

acterizing the mechanical properties and in particular the stiffness of various soft tissues,

such as breast, buttocks, skin, muscles and plantar foot [63]. The typical application of

such type of devices is the detection and localization of soft tissue abnormalities.
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(a) (b)

Figure 2.2: Contact Based Approaches for Soft Tissue Characterization: (a) Com-
pression test: the specimen (S) is placed between two plates; a load (P) pushes one
plate toward the other decreasing their distance (H) and compressing the material. (b)
Indentation device palpating a soft material.

2.4 Limitations of Minimally Invasive Interventions

Surgical procedures fall in three main categories: invasive procedures, also know as open

surgeries, minimally invasive procedures, and non invasive procedures. While in non-

invasive and open procedures manual palpation is limited to tissues accessible to the

clinician’s hands and highly dependent on the clinician’s skills, more challenges arise in

minimally invasive procedures in which manual palpation is completely impracticable.

Minimally Invasive Surgery (MIS), also known as keyhole surgery or laparoscopic surgery,

is one of the most effective methods of modern surgical intervention. MIS involves

procedures performed by entering the human body using instruments that are inserted via

12-15 mm incisions (trocar ports) or natural orifices using surgical tools and endoscopic

cameras. Laparoscopy is a form of MIS that is performed in the abdominal area. Its

inception has revolutionised the surgical care significantly reducing postoperative pain,

recovery time and hospital stay with marked improvements in cosmetic outcome and

overall cost-effectiveness [14]. Since the early 1990s, surgeons have been pushing the

limits of MIS by attempting the most complicated procedures known in surgery. During

the last 10 years, minimally invasive surgery has influenced the techniques used in every

speciality of surgical medicine. MIS has being applied not only in relatively routine

operations such as prostatectomy [15], cholecystectomy [64], and gynaecology [65] but

also in challenging procedures which are very difficult to conduct laparoscopically such

as coronary artery revascularization and mitral valve repair [23] [13].
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(a) (b)

Figure 2.3: Surgical Theatre for: (a) Conventional Endoscopic Surgery (CES) in
which the surgeon manipulates the surgical instruments using his hands and (b)
Robotic-assisted Minimally Invasive Surgery (RMIS) in which the surgeon operates
remotely moving the robots from a console.

Among the various applications of MIS, a distinction can be made between conventional

endoscopy surgery (CES) and Robotic assisted Minimally Invasive Surgery (RMIS). In

CES the surgeon operates directly on the patient by using an endoscopic interface,

whereas for RMIS a computer-instrumented interface (surgical robot) is positioned be-

tween the surgeon and the patient. The setup of the surgical theatre for both is shown in

Figure 2.3. A potentially major drawback of RMIS is the absence of haptic feedback. In

CES, force feedback is experienced by the surgeon through the laparoscopic instrument

handles; force feedback is a product of the interaction of the laparoscopic instruments’

tips with the tissue. In RMIS, the operation is performed by robotic arms, teleoperated

through a console on which the surgeon executes his gestures [66]. No force feedback

resulting from the interactions with the patient’s tissue is provided.

Robot-assisted surgery is enhancing the ability of surgeons to perform minimally inva-

sive procedures by scaling down motion and adding additional degrees of freedom to the

instruments’ tips. The number of surgery robots is growing rapidly. The most famous

surgical robotic systems are the Da Vinci surgical System produced by Intuitive Surgical,

the ZEUS robotic surgical system and the Automated Endoscopic System for Optimal

Positioning (AESOP). These advanced robotic systems give doctors greater control and

vision during surgery. In a typical robotic assisted surgery, surgeons operate from a

console equipped with two master controllers that manoeuvre four robotic arms. The

3-D images of the operating site are shown to the surgeons on the console, as shown in

Figure 2.3(b). Computer software takes the place of actual hand movements and can

perform operations with high precision. Although rapidly developing, robotic surgical

technology has not achieved its full potential owing to a number of limitations. In the

current robot-assisted surgical system market which is heavily dominated by Intuitive

Surgical, the main disadvantages of commercially-available robotic surgical systems are
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(1) the purchase costs and (2) system maintenance. Other high costs are incurred for op-

erative consumables per case, which often overshadow savings gained by shorter hospital

stays. Other drawbacks to robotic surgery include the bulkiness of the robotic equipment

currently in use and the lack of tactile and force feedback to the surgeon [67].

During open and non-invasive procedures, surgeons have direct access to affected organs

and body parts. This allows clinicians to identify tumours and boundaries through man-

ual palpation to ensure the removal of tumours with low positive and negative margins.

Surgeons investigate manually the force-displacement response to acquire distributed

tactile information. Tissue areas that are stiffer than the surrounding areas can be

recognized as potentially abnormal [16]. Although vision has been improved in MIS

through the introduction of high-definition systems, methods feeding back the sense of

touch, kinaesthetic and tactile sensation are still in their infancy. The force applied to

soft organs can only be estimated through visual feedback by observing the deformation

of the tissue in the transmitted camera images, as depicted in Figure 2.3. The lack of

direct palpation during MIS may lead to insufficient feedback and thus hamper identifi-

cation of tumours. The importance of force feedback has been experimentally evaluated

in [68] for a blunt dissection, a surgical manipulation task frequently employed in min-

imally invasive surgery. Although the force feedback is widely assumed to enhance the

performance in robotic surgery, its implementation cost is prohibitive, due to the strin-

gent design requirements imposed by the surgical environment. It is reported that the

absence of physical tissue interaction is one of the most important limitations of MIS

compared to traditional procedures [19].

In telerobotic systems, the surgeon operates from a console, which can be thousands of

miles away from the slave robotic arm situated near the patient; the surgeon’s commands

are relayed to the slave manipulator through the telecommunication infrastructure. Us-

ing such a tele-operated approach to surgery, it is very difficult to preserve perceptual

transparency, which quantifies human perception of the remote environment. A perfect

teleoperation system must be perceptually transparent, meaning that the interface ap-

pears to be nearly nonexistent to the operator, allowing him or her to focus solely on the

task environment, rather than on the teleoperation system itself. Furthermore, the ideal

teleoperation system must give the operator a high sense of presence, meaning that the

operator feels as though he or she is physically immersed in the remote task environment

[69]. For this purpose, the human operator is coupled with the telerobotic system with

all necessary senses: visual, auditory and haptic modalities. The first telerobotic surgery

was performed by Professor Jacques Marescaux at the IRCAD/Hôpital Civil, Strasbourg,

France on 7th September 2001 using the Zeus TS Surgical System. A dedicated asyn-

chronous transfer mode (ATM) network was used to connect the surgical console of the

Zeus TS system situated in New York City to three robotic arms at IRCAD/Hôpital
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Civil, the site where the laparoscopic cholecystectomy was performed. The reported

latency for this procedure was 155 ms. At this latency, Professor Marescaux reported

no significant impact on his ability to perform fine surgical movements and successfully

complete the procedure in 54 min [70]. Since then, many telerobotic operations have

been performed. However, tele-surgery over longer distances is not yet feasible. Unpre-

dictable time-delays, although brief, pose a major challenge and can lead to mechanical

instabilities for such remote teleoperation that can disrupt procedures and injure pa-

tients [67]. A promising alternative is telementoring, which permits an expert surgeon,

who remains in his/her own hospital, to guide another surgeon in a remote location;

both surgeons “share” the view of the surgical field and control of the robotic system

and communicate via an audio system. Telemonitoring —- TELEMENTORING??—

can provides a superior degree of collaboration between surgeons in teaching hospitals

and rural hospitals [71, 72].

In RMIS, transparency implies not only the matching between the position of the master

and the slave but also between the indentation force applied at the tool tip and the

feedback perceived remotely by the clinicians. At the current stage, the force feedback is

not present in telerobotic systems. Thus, visual force feedback is considered as the only

option. However, analysis performed in [66, 68] shows the minimization of palpation task

error when direct force feedback is used.

While telepresence surgery holds much potential for fulfilling many of today’s remote

surgery requirements, it also brings with it a set of new challenges. First, the cost of

equipment and communication links is high. Training surgeons with the technology and

setting the equipment is time consuming. Second, it is essential that an adequately

trained surgical team is present at the surgical site, ready for emergency intervention

in case the equipment malfunctions, or the communications line is severed. With the

possibility of telemedicine and robotics new legal and ethical issues arise. Questions

about responsibilities and potential liabilities of healthcare professionals, duty to main-

tain confidentiality and privacy of patients’ records, jurisdictional problems associated

with cross-border consultations, must be answered before remote surgery can be widely

adopted [73].

2.5 Instruments and Technologies for Tumour Identification

in Medical Diagnosis

Although palpation has been successfully employed for centuries to assess soft tissue

quality, it is a subjective test, and is therefore qualitative and depends on the experience

of the practitioner. Medical Imaging is one of the main pillars of comprehensive cancer
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care, has many advantages including real time monitoring, provides accessibility without

tissue destruction, is minimally or non-invasive and can function over wide ranges of time

and size scales with regards to biological and pathological processes. However, imaging

modalities suffer from deficiencies in sensitivity and/or resolution that preclude their abil-

ity to solve important clinical problems in cancer screening, staging, and treatment [74].

Therefore, researchers have been developing diagnostic instruments for different medical

specialities in order to analyse stiffness distribution on the skin or internal body parts.

For this purpose, different sensing mechanisms have been exploited. A general distinction

can be made between sensors measuring force and those measuring tactile properties of

the anatomical surface.

Haptic or kinaesthetic devices are used to relay the sense of touch to the user through the

transmission of forces, vibration or motion. These technologies are used in telerobotics

and computer simulations to virtually reproduce the behaviour of the interaction with the

environment back to the user. The incorporation of sensors on the remote side allows the

evaluation of the forces exerted by the user. For instance, in haptic teleoperation, robotics

tools are remotely controlled by the operator using the haptic interface, while force

feedback is employed to characterise the interaction between the external environment

and the tools. Thus, the operator receives “virtual” sensations which guide him or her to

generate forces on to the environment.

This survey analyses the sensing technologies for tumour localization in medical di-

agnosis. Among these technologies, instrumented palpation is analysed in detail and

classified in accordance to the sensing technique used to evaluate soft tissue properties,

i.e., sensors based on electromechanical, piezoelectric, piezoresistive, vision/optics based

methods. Additionally, palpation instruments where stiffness is determined based on the

difference of measured forces are reviewed.

2.5.1 Palpation Instruments based on Force Feedback

Force feedback is a widespread method used in medical diagnosis to sense the mechanical

properties of soft tissues and identify specific features that are difficult to access visually.

Additionally, direct force feedback can prevent the exertion of inadequate forces which

could damage tissues and soft organs.

Commercial force sensors, such as the Nano-17 (ATI, Industrial Automation), a steril-

isable commercial 6 DOF force/torque sensor with a diameter of 17 mm, are frequently

utilized to estimate force feedback in indentation and MIS-related research studies [35, 75]

as they provide a good accuracy and sensitivity. Indentation is the most used technique

for developing sensing devices in medical applications. Indentation sensors have been
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manufactured using different transduction principles, such as strain gauges, Fibre Bragg

Grating (FBG), fibre optics or induction.

Piezoelectric and strain gauge sensors

Piezoelectric transducers have been used to create many force and tactile sensors for

medical applications [76–78]. For instance, Yegingil et al. [76] developed cantilever piezo-

electric fingers (PEF) to compute both tissue elastic modulus and tissue shear modulus

in breast tumour characterization. A dual piezoelectric layer design is used to apply

force and detect the indentation depth electrically. The ratio between the shear modulus

and the elastic modulus, G/E, is used to model tumour inter-facial roughness the mea-

sure of which is employed to differentiate between invasive malignant and non-invasive

breast cancers. Experimental results show that the PEF can determine the invasive-

ness, malignancy, and size of the tumour with high accuracy. The investigation of 1D

anisotropic corrugated inclusions and 3D isotropic spiky-ball inclusions showed that for

smooth inclusions G/E is the same in both tissue models regardless of the shear direc-

tion; for rough inclusions the G/E increases following the increase of the angle between

the shear direction and the corrugation in the 1D model, while it depends on the degree

of roughness in the 3D model.

For in vivo estimation Arokoski et al. [79] developed a hand-held computerised soft

tissue stiffness meter (STSM) which uses two force transducers. The device is composed

of a measurement rod joined to a handle. The rod embeds a cylindrical indenter that

is pressed against the soft tissue with a certain amount of force. Thus, a constant

deformation is applied on the material . The force applied to the indenter by the tissues

is used to evaluate the tissues stiffness. The STSM has an adjustable diameter (between

0−20mm) and a length of 100mm. The exploded and assembled views of the sensor are

shown in Figure 2.4(c). Two force transducers, fixed in the handle-hand device, evaluate

the compressing and the indenter force signals which feedback to a computer in real-

time. The STSM has been used to evaluate the stiffness of different parts of the human

body (neck, shoulder and forearm areas) in in vivo tests. The experimental results show

that the device is capable of distinguishing between muscles and soft tissue tones with

a high rate of reproducibility in the measurements. However, further investigations will

be required to determine the reliability of STSM in different patients and its usefulness

in monitoring of different soft tissue treatment schedules and medication [32].

Significant advances towards incorporating force feedback into laparoscopic tools have

been made in the last decade [68, 80–82]. Commercially available force sensors, such as

strain gauges, have been used to record the forces at the tool tip through indirect meth-

ods. Researchers have also designed new laparoscopic tools or systems which incorporate
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sensing technologies in the design. For instance, [83] developed an automated laparo-

scopic grasper that can compute grasping as well as lateral and longitudinal forces. The

mechanism has low friction and its modular design allows interchangeability between

various effectors (cutter, grasper, dissector). Experimental results show the capability of

this novel device to measure probing forces and characterize artificial tissue samples. Tool

force-feedback has also been incorporated in the MiroSurge, a robotic master-slave tele-

operated system developed by DLR [84]. The haptic master interface can reflect forces in

all directions. The MiroSurge scenario includes a master console with a 3D-display and

two haptic devices as well as a teleoperator consisting of three MIRO robot arms. Usually

two MIROs carry surgical instruments (MICA) equipped with miniaturised force/torque

sensors to capture reaction forces on the manipulated tissue, as shown in Figure 2.4(b),

while the third MIRO is used for carrying the camera. The incorporation of force feed-

back in the system allows the surgeon to feel the contact with the anatomical areas under

examination.

Force feedback can be achieved by using strain gauges and piezoelectric transducers that

are relatively cheap, thus disposable. However, these force sensors cannot be integrated in

the medical setup as they are not MRI compatible and are very sensitive to temperature.

Optical Sensors

Noh et al. [85, 86] proposed a 3-axis force/torque force sensor for a flexible manipulator

made of acrylonitrile butadiene styrene (ABS) and based on light intensity modulation.

The multi-axis sensor uses fibre optics to compute the tissue interaction forces. Force and

Moments arranged at a specific angle to each other are computed using a pair of optical

fibres, one emitting the light and the other receiving it. Additionally, the proposed force

sensor employs mirrors as reflective surfaces and a flexible ring-like structure. When a

force acts on the upper plate of the sensor, three cantilever beams bend changing the

reflected light as shown in Figure 2.4(a). A multiple linear regression method is used to

compute the force along the z-axis, Fz and the moments Mx and My. The sensor can

compute forces up to 6 N along the z axis with 2.1% of error, and moments in a range

of +/- 3.5 Ncm and +/- 2.5 Ncm with errors of 14.2% and 3.0 % along the x and y

axis respectively. Although the sensor is MRI compatible and presents high sensitivity,

problems in the calibration, hysteresis, error, crosstalk, influence of the temperature, non

linearity and repeatability should be solved. Moreover, the sensor’s diameter of 30 mm

doesn’t fit in a standard trocar port, thus problems arising from miniaturization should

be explored.

In [87], elastomer elements were used to develop an MRI compatible uniaxial force sensor

for mitral valve annuloplasty utilised within a beating heart. The sensor uses a pair of

optical fibres to sense forces in a range of 0 − 4 N with less than 3 % of error. The
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sensor’s size is 5.5 mm in diameter and 12 mm in length, it is waterproof and electrically

passive. However, it can only compute the force along one axis, thus bending of the

fibres may degrade the sensor’s sensitivity. In addition, it is affected by temperature and

it is subject to hysteresis.

In order to have multi-axial capabilities, researchers have been exploring rolling inden-

tation mechanisms which enable the scanning and computation of forces on a surface

rather than at a single point. For instance Liu et al. [33, 88] proposed a rolling inden-

tation device that can slide on the soft tissues and compute the reaction force as well

as identify tissue stiffness distribution. Optical fibres are employed to sense both axial

force and indentation depth and are used to estimate the stiffness distribution of the soft

surface. Light modulation is also the principle used in the distal force sensor realized

(a) (b)

(c) (d)

Figure 2.4: Palpation devices based on force feedback: (a) The design of the 3-axis
force/torque sensor developed in [86]. (b) The MICA instrument for minimally invasive
surgery; it is composed of an intra corporal universal joint with 2 DOF, a functional
tip and one force/torque sensor connected to the input device which is remotely ma-
nipulated by the surgeon in the master console. (c) Stiffness meters by Aroskoski et al.
[79]: (1) The sensing principle (2) Exploded view (3) Assembled view (d) Optical-based
air-cushion sensor for MIS by Zbyszewski et al. [89].

in [90]. The sensor can measure forces in a range of 3 N in axial and 1.5 N in radial

direction with less than 5 % of error. Given a constant indentation depth, the tissue

stiffness can be calculated.
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A rolling mechanism and a pair of fibre optics are the components of the sensing principle

used in the air-cushion mechanism developed in [89]. This sensor allows the mechanical

characterization of soft tissues without any constraints on the sensor’s movements. The

optical fibres are positioned in the sensor’s structure to a predefined distance from the

roller which slides over the tissue and indents it by air flow. The variation in stiffness of

the examined surface causes the sliding of the roller towards and away from the fibres,

as shown in Figure 2.4(d). Knowing the initial sphere-fibre distance, the stiffness of

the tissues can be estimated by means of light variation. However, a mathematical

formulation between the air and the behaviour of the sensor is needed to improve the

sensor’s performance.

Optical sensors are sensitive to the light changing and bending of the fibres. Besides,

their use requires a laborious calibration process and in some cases pre-registration of

the soft surface. Thus, these technologies are noisy and cannot be used in real medical

applications.

2.5.2 Palpation Instruments based on Tactile Feedback

Tactile sensing technologies are fundamental in robotics, biomedical instruments and

industrial applications. A tactile sensor can be defined as a device that can measure a

given property of an object or a contact event between sensor and object [91]. In MIS,

tactile feedback can be used to evaluate tissue properties in a whole region rather than

at a specific point as is the case with force feedback. Figure 2.5 shows a haptic user

interface for medical training. The haptic information is computed using the Geomagic

Touch Haptic Device (formerly Phantom Omni), one of the most used haptic devices, that

provides 3-DOF navigating parameters and force feedback in case of collision detection.

A standard simulator is used to visualize augmented images in the screen [92]. The

adaptive control for the master robot can be implemented to support manipulation tasks

during the operation. A tactile sensing system to be used in MIS should be composed

Figure 2.5: Haptic user interface: Geomagic Touch Haptic Device and Virtual Reality
Simulator.
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by a tactile sensor which extracts the tactile data acquired through contact, a tactile

data processing which filters data keeping only relevant information,and a tactile display

that presents the information to the surgeon. The tactile sensor comprises of sensing,

electronics, protective and support layers [93, 94]. The sensing layer can be a single

element or an array of elements. In MIS two types of tactile sensors are used, namely

elastomer-based tactile sensors and silicone tactile sensors. They differ in that in the

former the sensing layer is made of carbon or silver-impregnated rubber while the latter

is made out of silicone. Determining the pressure spatial distribution enables surgeons

to retrieve information of the internal structure [95].

Trejos et al. [29] reviewed the current state of the art in sensing technologies for surgical

applications in order to underline the current limitations and evaluate the benefits of

haptic information. Starting from the early 1990s, several devices have been developed

and explored in order to enhance the outcome of physical examinations and objectively

quantify soft tissue properties. Many haptic systems have been used either in medical

training or to improve the functionality of medical tools in minimally invasive surgery.

Frei et al. in [96] realized a device able to measure viscoelastic properties of human

tissue, particularly, when applied to breast examination. Small piezoelectric elements in

the form of spaced fingers are arranged in a suitable array and can be fixed in a glove.

Thus, the user can press the finger into the soft tissue applying about the same pressure

to each element which will develop an output related to the consistency of the tissue

beneath the individual transducer element. A difference in the output produced by any

one of the transducers can identify a border or a thickened tissue region, thus a potential

tumour. Although this instrument can compute the thickness of a very small tissue

region by evaluating differences in the output of the adjacent transducers, the measured

soft tissue’s proprieties are influenced by temperature.

A Tactile Tumour Detector (TTD) for breast examination is presented in [9]. Numerical

analysis is used to derive and simulate a simplified model of physician examination

behaviour. A tactile probe has been used to evaluate the accuracy of the derived mode

experimentally. The tactile sensing instrument is composed by a tactile probe employing

a force sensor resistor (FSR), an electrical circuit, a data processor and a tactile display.

This device is able to detect abnormal objects embedded in soft tissue and presents high

sensitivity when compared with clinical manual breast examination and self examination.

However, the derived model assumes that the thickness of the tissue, the distance between

the sensor’s centre and the tissue’s centre, and the depth and shape of the mass are

known. Thus, this mechanism works only with specific simulated models and cannot be

used in real applications. A schematic representation of the device is shown in 2.6(b).
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A combination of piezoelectric transducer (PZT) and a pressure sensor element was

used to develop the tactile sensor in [97]. Upon contact with a test object, this system

responds to its physical properties by changing its resonance frequency in accordance

with the object’s acoustic impedance. This device is able to sense the difference in

degrees of hardness and/or softness of different objects but the PZT transducer used is

5 mm in diameter and 1 mm in thickness and thus is not suitable for MIS.

A micro version of this probe was presented by [98]. The Micro-Tactile-Sensor (MTS) is

able to measure elasticity with high sensitivity and detect the instant of the contact using

the contact compliance and phase shift methods. The probe is shown in Figure 2.6(c).

Basically, the shift of the piezoelectric sensor between loaded and non-loaded condition

was used to retrieve information about the loaded object. A Finite Element Analysis

(FEA) was performed to determine the vibration modes. A tactile mapping method was

employed to obtain a contour image and Young’s modulus map of the sample surface.

Although tactile-resonance-frequency-based sensors can measure both elastic and viscous

properties of soft tissue, issues in repeatability and reliability make them impractical.

An endoscopic grasper with miniaturized PVDF-sensing elements, as shown in Fig-

ure 2.6(a), was developed in [99]. The system comes with a graphical interface but

its functionality is limited by the dimension of the grasper, which can cover only a small

area. Thus, this sensor can not be used to recover stiffness information of big organs.

The design of a passive tactile sensor, capable of tissue elasticity measurements and able

to detect contact force and pressure distribution, was developed in [100]. The sensor has

a compliant structure which is the result of the combination of sensing elements with

different stiffness values. This sensor can compute elasticity with a resolution of 0.1 MPA

for elasticity measurement and 5 mN for the force. The microstrain gauges used present

high force sensitivity, high dynamic range, good linearity, and high signal-to-noise ratio.

However, they require precise handling in the positioning process and the measurement

should be performed under a microscope and with great care.

Despite the increasing research interest in tactile sensing technologies for MIS, the use

of these sensors in evolved systems has been minimal. Although most of the proposed

solutions can characterize soft tissue properties with high accuracy, they have been con-

fronted with many issues, e.g. biocompatibility, miniaturization, robustness, acceptance

from the medical community and surgeons, cost, ergonomics and integration. Further-

more, the associated regulation and standard make their commercialization challenging.
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(a) (b)

(c)

Figure 2.6: Palpation devices based on Tactile feedback: (a) The endoscopic grasper
developed in [99] (b) Schematic representation of the tactile tumour detector [9] (c)
The Micro-Tactile-Sensor (MTS) by Murayama et al. [98].

2.5.3 Diagnostic Imaging Techniques

Mechanical Imaging (MI), also known as diagnostic imaging, is a new modality of med-

ical diagnostics based on visualizing the internal soft tissue structures in terms of their

elasticity modulus. During the last decade, MI technology has been used in various med-

ical applications, such as the visualization and evaluation of prostate conditions, breast

cancer screening, the differentiation of benign and malignant lesions, and the charac-

terization of vaginal wall elasticity. MI is simple, fast, inexpensive and safe. Different

approaches have been proposed to estimate and image in vivo the elastic properties of the

tissues. Most of these techniques try to evaluate the tissues’ response to stimuli [47] [101].

Heat, water jets, vibration share waves and compression are the stimuli evaluated so far.

They produce different types of information and images, but their response falls into a

common spectrum of elastic behaviour [102]. In addition, MI methods are influenced

by boundary conditions between different tissues and tissues’ elasticity distribution [60].

Nowadays, there are six imaging techniques available to medical experts for diagnosis,

staging and treatment of human cancers [74]:

1. Computer Tomography (CT), which uses X-rays to make cross-sectional pictures

of the body.
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2. Magnetic Resonance Imaging (MRI), which involves radio waves and strong mag-

netic fields to picture organs and tissues.

3. Position Emission Tomography (PET), an expensive nuclear imaging technique,

which uses radioactive tracer material and detection of gamma rays. This tech-

nique allows the creation of computerized images of chemical changes, e.g. sugar

metabolism.

4. Single-Photon Emission Computed Tomography SPECT, is similar to PET but

presents lower resolutions and is less expensive.

5. Optical Imaging, which uses reflection and absorption of photon, thus not-ionizing

radiation, to retrieve molecular and cellular information of the living body.

6. Ultrasound (US) in which high frequency sounds waves are used to create images

of the inside the body.

Among these, only the first four can produce three-dimensional representations. These

imaging techniques are used in pre-operative registration; intra-operative use is chal-

lenging and troublesome because it is prone to registration errors due the movement of

organs and deformation of soft tissues that occur during surgery.

Recently, with the advances in image processing and graphical systems, analysis of intra-

operative images has been improved and used to compute tissue properties. Elastogra-

phy, or Elasticity Imaging (EI), is an emerging medical imaging technique which maps

the soft tissue strain induced by applying stress [103]. Elasticity measurements involve

the application of a force or stress which can be performed using compression devices,

external vibrators or acoustic and radiation force, and the measurement of the mechan-

ical response through magnetic resonance, ultrasound, optical or acoustic signals [104].

Elastography allows clinicians to visualize mechanical properties of the soft tissues, i.e.

stiffness, and detect even small and deep seated lumps [105]. Elastography is often used

for tumour localization in medical palpation, as stiffer and thus potentially abnormal tis-

sue experiences low strains. Real-time ultrasound elastography has been used to evaluate

tissue properties and identify tumours in many diagnostic procedures [103]. However,

the interpretation of the output images is a limiting factor as shown in Figure 2.7.

Although elastography imaging techniques, such as magnetic resonance elastography

(MRE) and ultrasound elastography (USE), provide accurate multidimensional images,

they cannot always be used intra-operatively. In relation to the spatial resolution used,

the reconstructed image can be effected by a significant level of noise. Techniques used to

filter and smooth the images are complex and computationally expensive. The combina-

tion of haptic and imaging seems to be promising, but it comes with severe limitations.
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Figure 2.7: Ultrasound vs Elastography of papillary thyroid carcinoma: The super-
sonic shear imaging (top) maps the malignant cancer, which is much stiffer than the
healthy tissue, in red. The results of the conventional ultrasonography (bottom). The
image obtained with the Shear Wave Elastography provides a more reliable distinction
between benign and malignant nodules [106].

Issues related to in situ 3D reconstruction, biomechanical modeling under large scale

tissue deformation, recreation of tactile sensing and feedback, and instrument dexterity

are some of the major obstacles to be tackled [104, 107].

2.6 Stiffness Sensing Palpation Instruments based on Rela-

tive Force

The stiffness of a pure elastic material can be computed by applying on its surface

two different forces, F1 and F2, which will produce two different deformations, xh and

xs. The material’s stiffness is the ratio between the relative force (F1 − F2) and the

relative deformation of the material(∆xh − ∆xs) [100]. Figure 2.8 gives a schematic

representation of this concept. Following this principle, researchers have been developing

medical sensors which employ elastic elements that present different degrees of stiffness.

When interacting with external surfaces the elastic elements generate different forces

which are used to estimate the material’s properties.

In [99] authors developed a sensor that can determine the stiffness of a relatively large

object during palpation procedures. The sensing mechanism consists of two coaxial cylin-

ders of polyvinylidene films (PVDF) presenting various moduli of elasticity. Exploded

and assembled view of the sensor are shown in Figure 2.9(a). During contact it is not

required to know any information about the displacement of the sensor’s components.

However, the functionality of this system is limited by the dimension of the grasper that

can cover only a small area. In addition, the proposed sensory system needs the appli-

cation of a load driven by a vibrating unit. Furthermore, the miniaturization of PDVF

and the embedded rubber cylinder is extremely challenging. The major limitation of the
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(a) (b)

Figure 2.8: Principle of Stiffness Sensing based on Relative Force: (a) Two elastic
elements presenting different and known elastic constant, kh and ks, are embedded in
the sensor. (b) The contact with a tissue will generate two different forces, i.e. the still
elastic element, kh, will move less than the softer ks. The relative displacement of the
sensing elements can be used to compute the stiffness [100].

sensor is its perception of the small elasticity range of the rubber cylinder which influ-

ences the range of the Young’s moduli. The same sensing principle has been used in [100]

by employing an array of Microelectromechanical (MEMS) capacitive sensor membranes

presenting different elasticity in order to estimate the stiffness of a probed soft tissue,

as shown in Figure 2.9(b). Preliminary tests on polymers with different compliances

confirm the ability of the proposed sensor to evaluate forces and stiffness, but only in a

very small range.

A micro-machined piezoresistive tactile sensor for compliance detection has been pre-

sented in [93]. The sensor has a zigzag structure which acts as a spring, with MESAs

(Miniature Electrostatic Accelerometers) at the tip, as shown in Figure 2.9(c). The

elasticity of the piezoelectric elements is considerably different and the choose depends

on the mechanical properties of the soft tissue to be analysed. A finite element model

is developed to investigate the sensor performance with the designed parameters using

two types of element ends with a cubic and spherical shape. The derived mathematical

model considers the cross-talk effect, i.e. the effect the tissue between the two points

the springs are in contact with has on the force generated on each spring. Although the

preliminary results obtained in simulations are promising, the range of forces that the

sensor can evaluate is extremely small. Additionally, the integration and miniaturization

of the electrical circuit is very challenging.
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(a) (b)

(c)

Figure 2.9: Sensors using Relative Force principle: (a) The sensor proposed in [99]
is composed by two coaxial cylinders made of polyvinylidene film which have different
moduli of elasticity. (b) The MEMS sensor developed in [100]. (d) The micro-machined
piezoresistive tactile sensor proposed in [93].

2.7 Vision-based Palpation Instruments for Medical Diag-

nosis

Up to now most of the research efforts in tactile sensing technologies for soft tissue

characterization have used electrical components and/or technologies that are expensive

and not ergonomic. Thus, problems related to sterilization and integration with the

medical setting prevent them from being used in real applications. Regarding these

limitations, some researchers exploited indirect methods for measuring deformation of

the soft tissue subject to a force by means of image processing algorithms. Usually,

vision-based methods employ a camera sensor to capture the deformations of the soft

tissues, and a contact or non-contact approach for generating the force. It has been

proven that endoscopy could become more useful when combining visual and tactile

information [108]. The vision-based sensing mechanism could be adapted in an MIS

scenario by embedding sensing technologies to the endoscopic camera, a widely used

medical instrument that visualizes and examines the interior of a hollow organ or cavity

of the body. Hence, the endoscope could be used as a dual-sensor for visualization and

examination of anatomical areas.
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(a) (b)

(c)

Figure 2.10: Vision-based Diagnostic Instruments: (a) The stiffness imager presented
in [109] can avoid image occlusions by generating through air jet. (b) Design of the
stiffness probe by Li et al. [110]: the microscope visualises the variation of the circular
contact area that is used to evaluate the indentation depth. (d) The structure of the
tactile sensing system for endoscopic camera proposed in [111]: the movements of the
reference circle and the elastic body are related to different elasticity, thus the relative
displacement is used to estimate the stiffness.

Along these lines, Kawahara et al. [109] proposed a non-contact stiffness imager for en-

doscopic camera, as shown in Figure 2.10(a). An air puff applies a force in a particular

point and the displacement pattern in the surrounding area is captured by a CCD cam-

era. However, experiments conducted in a human stomach environment showed that

the sensor is very sensitive to light changing. Hence, light changing can be erroneously

interpreted as variation of the distance due to pushing force. Moreover, the head of the

endoscope moves dynamically by a reaction force during the air jet. Consequently, the

movements of the camera’s head make the estimation of the given force problematic. A

tissue diagnosis probe, which is based on stiffness measurements using force combined

with vision, has been presented in [110]. The sensing mechanism comprises a digital mi-

croscope, a transparent tip mounted on a shaft and a commercially available force/torque

sensor. The probe can simultaneously measure the indentation depth and the reaction

force generated during contact with soft objects. The indentation of the soft tissues is
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mapped on the circular area captured by the digital microscope. The indentation depth

increases as the circular area increases. The correlation between the contact area, cap-

tured by the microscope, and the indentation depth is combined with the indentation

force to estimate the soft tissue stiffness. The design and work principle of the sensor

is shown in Figure 2.10(b). Experimental results showed that the proposed sensor can

successfully detect abnormalities embedded in silicon phantoms. However, the system

can not be used in real time since it is time consuming and cannot identify deep tumours

embedded in the surface.

Takashima et al. [111] presented a tactile sensor system for endoscopic camera based

on infrared cut pattern and image processing algorithm. The sensor can detect three-

axis force and stiffness by employing an image processing algorithm. The computation

of the force between the endoscope and the calibre wall can be used to improve the

manipulation of the endoscope, while the estimation stiffness can help clinicians in the

detection of abnormalities. The tactile sensor is composed by a transparent window, the

infrared cut pattern, a reference circle, an elastic body and an attachment between the

sensor and the endoscope, as shown in Figure 2.10(c). At rest position, the z-axis of the

transparent window is aligned with the axis of the endoscope. Thus, the force along the

z-axis is expressed by means of the area occupied by the IR cut pattern, while the forces

along x-axis and y-axis are expressed in function of the displacement of the transparent

window. During indentation, both the elastic body and the circle will deform as they

are subject to different forces; measurement of the deformation will allow the estimation

of the compressive modulus modulus as function of the indentation depth, the thickness

of the tissue and the radius of the circle. Hence, the proposed sensing system cannot

be used in real applications as it requires prior modelling of the tissue to be examined.

Furthermore, it can only estimate forces in a small range and cannot be used in real-time.

Additionally, noises due to light reflection and complexity of the overall system make this

solution impractical.

Nowadays, researchers embed sensing mechanisms in instruments already present in the

medical setup, for example in a fibrescope or an endoscope [78]. In this fashion, Iwai et al.

[113] developed force sensing technologies for endoscopic/fibrescopic cameras. A flexible

pin, which is in the field of view of the endoscopic camera, is used to indent the tissue.

The movements of the pin are related to a highly elastic hosiery fabric which can deform

even if the applied force is extremely small. Thus, the interaction force is estimated

by tracking the area of the visual pin in the image, as presented in Figure 2.11(a).

The lateral forces can be derived in function of the movement of the visual pin along

image axes [113, 114]. Although the sensing system does not use any electronics and

is extremely inexpensive, authors did not consider the movement of the endoscope that
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(a) (b)

(c) (d)

Figure 2.11: Visual-based sensing system for endoscopes proposed in [112]: (a) The
interaction force is related to the area in the image occupied by the visual pin along the
longitudinal axis. (b) The stiffness of the indented object can be derived by considering
the force/displacement rate. (c) The design of the sensor (d) The experimental setup
of the stress test

may effect the computation of the forces. In addition, authors have validated the sensor

only through stress tests. A more thorough investigation needs to be conducted to prove

the reliability and accuracy of the proposed sensor. The same principle has been used

to develop a stiffness sensor to be attached at the tip of the endoscopic camera [112].

The sensor is composed by a flexible part made of silicone that is placed between the 3D

printed base and the head, as shown in Figure 2.11(c). When a force acts on the head

of the sensor, the area occupied by the visual pin in the image increases. The stiffness

of the indented soft object is derived from the relation between the applied load and

the amount of changing of the feature in the image, which reflects the indentation depth

(Figure 2.11(b)). Although this work promotes an innovative research area, the stiffness

sensor works only if the endoscope is pressed perpendicularly to an ideal flat surface. In

addition, experimental results showed that the accuracy of the proposed sensing system

decreases with the softness of the indented surfaces. This is not desirable in medical



Chapter 2. Techniques for Soft Tissue Stiffness Estimation: a Review 41

applications.

2.8 Summary

Robotics solutions have been applied to medical applications to facilitate complex inter-

ventions, including surgeries. The advances in sensing technologies have led to a growing

number of diagnostic systems which have the potential to provide effective and low-cost

solutions. The general purpose of diagnostic devices for medical applications is to replace

manual palpation and provide qualitative characterization of soft tissue. Indentation is

one of the most exploited diagnostic techniques used to measure reaction forces as well

as stiffness of a probed tissue. Generally, indentation systems employ an indenter, which

is used to compress the soft tissue, and sensing technologies that are used to compute

the reaction force and the indentation depth. Combining the indentation depth and the

reaction force the soft tissue stiffness can be estimated. Various approaches have been

used to retrieve tactile information during indentation and novel imaging techniques are

employed in order to improve the outcome of the diagnosis. The existing indentation

devices can not be miniaturized and cannot be easily integrated in the medical envi-

ronment. Additionally, they are complex and expensive. Novel imaging techniques are

promising but, in general, they cannot be used in real-time and are computationally

heavy. Thus, errors due to registration make these solutions not reliable. Overall, most

of the existing engineering methods for medical examination are still at an experimental

stage. Further research in this field is needed in order to mimic the sense of touch and

acquire accurate information about soft tissues.

This chapter classified and compared the current techniques used to develop systems for

medical diagnosis. It provided a broad overview of the current literature with particular

focus on the stiffness sensing technologies based on relative force and diagnostic technolo-

gies employing image processing algorithms. Table 2.3 presents a general overview of the

current technologies for tumour localization in medical diagnosis, such as manual palpa-

tion, medical imaging and instrumented palpation. Although medical experts prefer man-

ual palpation of skin and inner body parts to other diagnostic techniques, this method

cannot be used either in remote applications or in minimally invasive interventions. Be-

sides, it is limited in the area accessible to the human hands and strictly dependent on

the clinician’s skills and experience. Imaging techniques, such as ultrasound, computer

tomography and magnetic resonance, are pre-operative methods able to visualize multi-

dimensional representations of internal structures and identify abnormalities. However,

the position of the tumours during the surgical procedure is challenging, as movement
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Table 2.3: Diagnostic Techniques for Tumour Localization

Technique Methods Limitations Advantages

Manual
Palpation

Single or two
hands

On the skin
or inner

body part
Light or
deep

Restricted accessibility
Qualitative
Difficult to master

Immediate results
No electronics
Low-cost

Preferred by surgeons

Medical
Imaging

Radiography
Nuclear
imaging

Tomography
Ultrasound

Registration error
Noisy intra-operatively
Computationally heavy

Representation of the
inner body parts
Multidimensional

images

Elastography

Ultrasound
Magnetic
resonance

Computationally
expensive

Limited acquirable
characteristics

Limited indentation depth
Lack of quantitative
measurements
User-dependent

Artefacts

Mapping of the
elastic properties
Non-invasive

Low-cost

Instrumented
Palpation

Tactile
feedback

Force
feedback

Sensing array size
Sterilisability

Integration MIS tools
Complexity and hysteresis
Miniaturization problem

No-ionizing radiations
High sensitivity

Precision

of the organs and deformation of the soft tissues causes registration errors. Moreover,

imaging techniques are computationally heavy and noisy if used intra-operatively.

Elastography is a new medical diagnostic technique which investigates variation in soft

tissue stiffness in order to identify tumours. Elastography maps soft tissue strain by ap-

plying stress and visualizing the tissue’s response by using different imaging modalities,

such as ultrasound or magnetic resonance. Although elastography methods are promising

imaging modalities, the algorithms used to process and display the elastographic images

are computationally expensive and may affect the medical findings. Furthermore, the

determination of the correct pressure to be applied, the lack of quantitative measure-

ments, the limited reproducibility and artefacts are some of the limitations to be resolved

if elastogaphy techniques are to be useful in real applications.

Instrumented palpation techniques involve mechanical or electrical devices which are

used to induce pressure on the tissue and determine the deformations. Most of the

developed instruments are based on tactile and/or force feedback. Despite all the research
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efforts, problems related to miniaturization, ergonomics, integration in the medical setup,

complexity and reproducibility have to be solved if these instruments are to be used in

medical diagnosis.

Instrumented palpation tools are analysed in more detail in Table 2.4 which proposes

a classification of the developed devices in accordance to the sensing technology used

to characterize the physical contact. Force and tactile feedback can help clinicians to

retrieve palpation sensations and localize tumours with high accuracy. However, the

limitation of these mechanisms prevent their application in real scenarios.

The diagnostic instruments present in literature can only evaluate the interaction force

generated by a contact. In the last decade, researchers have been exploring sensing

instruments able to map the stiffness of the anatomical surface.

The soft tissue stiffness can be evaluated by means of the relative force generated during

a contact. Table 2.5 shows the sensing technologies employing this principle. In general,

these instruments are accurate and reliable. However, fabrication costs and complexity,

are only some of the limitations that make their use in the medical setting challenging.

Camera sensors can be used to evaluate the tissue deformation during palpation pro-

cedures. Thus, image processing algorithms are used to track the tissue deformation

generated by the contact. This sensing solution can be embedded in an endoscopic cam-

era and applied in an MIS scenario. An overview of the reviewed vision-based palpation

systems is shown in Table 2.6. At present, the proposed technologies cannot be used in

real time and present numerous limitations.

This review has shown that no unified sensing system exists in which mechanical prop-

erties of the soft tissue are evaluated by using the relative force and image processing

algorithm.
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CHAPTER 3

Vision-based Stiffness Sensing Principle

This chapter analyses the principle of a vision-based stiffness sensing mechanism. The

proposed sensory system employs the development of a mechanical structure in which

multiple elastic components are embedded as well as a camera sensor used to capture

their movements. Each elastic element is jointly linked to a small body, a representative

feature of a specific geometric shape, which is always enclosed in the camera’s field of view.

Hence, when the interaction with an external surface triggers the movement of the elastic

element, the geometric feature changes its position and size in the camera’s field of view.

The interaction force exerted by each elastic element is computed by tracking the correlated

geometric feature in the image. To validate the sensing principle a vision-based force

sensor has been developed and tested. Experimental results with a benchmarking sensor

showed that the derived model can compute the interaction force with high accuracy.

Therefore, if contact force can be derived by employing only one elastic element, two

elastic elements of different springiness can be used to generate two different forces.

Thus, the contact stiffness can be estimated by means of the relative force.

47



Chapter 3. Vision-based Stiffness Sensing Principle 48

3.1 Introduction

Changes in tissue stiffness may be an indication that cancer is present and thus one

of the points of interest within the robotics and haptics research community has been

the development of methods of tissue elasticity measurement. Researchers have explored

several instruments and methodologies to describe organ response to an applied load and

estimate the indentation forces. These forces can be used to evaluate the mechanical

properties of the soft tissue. Linear elastic modelling of soft tissues is the most widely

used approach. This model assumes that the tissue obeys the generalized Hooke’s law;

thus, similarly to springs, it is able to resume its configuration after the application of a

force. Fung et al. [115] demonstrate that if the displacement induced in the soft tissue is

small, the physical response can be modelled using the linear approximation but as the

displacement increases, the linear elastic model becomes inaccurate.

In this thesis, the stiffness of the soft tissue is computed by means of the relative force

generated during indentation. The developed sensory system comprises an indentation

device in which several elastic elements are embedded; these elements are related to

small bodies (spheres in this case), and a camera sensor. During palpation procedures,

the movements of the elastic elements trigger the sliding of the spherical features towards

the camera; thus, the deformations induced in the tissues are computed by relying on an

image processing algorithm. A mathematical model estimates the contact forces by track-

ing the visual appearance of the geometric features in the camera images. Chapter 2.6

presents the current state of the art in palpation instruments based on the relative force

principle. Despite the research efforts, the limitations showed in Table 2.5 make their

use impractical. The vision-based stiffness sensory system proposed here overcomes these

limitations, as it works in real-time and does not make use of any electronic components.

In addition, it has a customisable range and resolution and can be easily miniaturised.

Therefore, it is suitable for medical applications. Moreover, the sensing principle can be

applied in situations where it is required to estimate forces and stiffness of soft objects,

e.g. robot navigation [27], manipulation and grasping of deformable objects [116, 117].

The computation of the force is the basis of the sensing principle. This chapter proves

the validity of the proposed model by presenting a vision-based force sensor.

3.2 Vision-based Stiffness Sensing: Working Principle

The customised sensor makes use of small spheres, which are always in the camera’s field

of view and connected to elastic elements, e.g. linear springs of known elasticity. The
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Figure 3.1: Camera Projection Model: A 3D world point P=(X,Y, Z) is projected
into 2D pixel coordinates Q=(u, v) in the camera image.

movements of the springs trigger the movements of the spheres generating a variation of

their visual appearance in the camera images.

During the interaction with external soft surfaces, the force applied by each elastic ele-

ment is retrieved by tracking the movements of the visual features in the images. The

elastic elements present intrinsic Young’s modulus, thus, when indenting soft tissues they

generate specific reaction forces. A mathematical model computes the interaction forces

in real-time relying only on a visual processing algorithm.

The pinhole camera model, described in Appendix A, has been used here as a first order

approximation of the mapping from a 3D scene to a 2D image.

Considering a point P in the global coordinate system at P =(X,Y, Z) and its projection

Q = (u, v) in the camera frame, it is possible to define the relation between the 3D

coordinate of P and the coordinate of Q in (u,v) as shown in Figure 3.1. From the

properties of similar triangles, using homogeneous transformation, it follows that:(
u

v

)
= − f

Z

(
X

Y

)
(3.1)

Assuming that the 3D spheres in the camera’s visibility cone are visible in the camera

image and their dimensions are known, it is possible to relate the dimensions of the

spheres’ representation in the 2D camera image to the actual distance between the camera

and the spheres, as the dimension of the imaged object is inversely proportional to the

camera-object distance, as shown in Figure 3.2.
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Figure 3.2: Object-Camera Distance Relation: The projection of a 3D object on the
camera image depends on its distance to the camera. Objects that are close to the
camera (red sphere) will appear bigger on the projected image than objects that are
further away (green sphere).

In the proposed sensing mechanism, the visual appearance of the features in the images

is related to the movements of elastic elements presenting different and known degrees

of stiffness. The analogy between the distance of an object from the camera’s centre and

its projection onto the image is used for evaluating the reaction force generated through

indentation.

3.2.1 Uni-axial Force Sensing Principle

The uni-axial indentation of a single degree of freedom (DOF) elastic body, for example a

spring with spring constant k, onto a soft surface, generates a reaction force F, as shown

in Figure 3.3. Modelling the soft surface as a linear-elastic material, if the indentation

∆x is small, the reaction force follows Hooke’s law as :

F = k∆x. (3.2)

In uni-axial indentation, the force applied by the elastic element acts only on the axis

Figure 3.3: Force sensing principle: Contact between the soft surface and an elastic
element showing the interaction force(F, Fs) and the displacement of the tissue ∆x.
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perpendicular to the surface, thus the reaction force is in the opposite direction and it

follows Equation 3.2. Therefore, the reaction force is dependent on the indentation depth

and the stiffness of the elastic element.

The deformation of the soft tissue, thus the value of ∆x in Figure 3.3, can be estimated

by using various sensing systems. Here, visual information is used to estimate ∆x, thus

to derive the reaction force.

3.2.2 Uni-axial Stiffness Sensing Principle

The contact between a soft surface and two elastic bodies, for example two springs with

different elasticity, k1 and k2, with k1 > k2, will generate two different reaction forces.

If the elastic elements are pushed by the same force against a soft surface, they exhibit

different displacements (i.e. the elastic element with a lower elastic constant is displaced

more than the element with a higher elastic constant as shown in Figure 3.4). Since the

Figure 3.4: Stiffness sensing principle: Contact between the soft surface and
two elastic elements of different elasticity showing the applied and reaction forces
(F1, F2, Fs1, Fs1) and the differential displacement (∆d).

two indenters are very close to each other, the deformation sensed by one indenter may be

caused by the contact of the other indenter. Modelling the soft surface as a homogeneous,

linear elastic material, Hooke’s law can be used to describe the interaction:

F1 = k1∆x1 = ks∆s1 = Fs1; (3.3)

F2 = k2∆x2 = ks∆s2 = Fs2. (3.4)

From Equations 3.3 and 3.4, the stiffness of the surface ks is derived as:

ks =
F1 − F2

∆s1 −∆s2
=

(k1∆x1 − k2∆x2)

∆d
. (3.5)
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F1

F2

∆d
F

Figure 3.5: Computation of the stiffness: Applying forces F1 and F2, the soft surface
will be deformed by S1 and S2 respectively. These two values will define a line in the
F - ∆d space. The slope of this line represents ks.

Applying forces F1 and F2, the soft surface is deformed by S1 and S2 respectively. These

two values define a line in the F - ∆d space. The slope of this line represents ks as shown

in Figure 3.5.

3.3 Real-time Feature Tracking

The image processing algorithm employs open source computer vision (OpenCV), a cross-

platform library of programming functions for real time computer vision applications.

The OpenCV library is interfaced in Robot Operating System (ROS), a collection of soft-

ware frameworks for robot software development, through the “vision_opencv” package.

The image processing algorithm detects and tracks coloured geometric features in an

image. The ROS camera calibration toolbox was used to estimate the intrinsics param-

eter of the camera and the distortion coefficients used to rectify the images . After the

rectification, each image is filtered in the HSV colour space in order to select the feature’s

colour. The HSV colour space is a cylindrical representation of points in an RGB colour

model. In each cylinder, the angle around the central vertical axis correspond to “hue”,

the distance from the axis correspond to the “saturation” and the distance along the axis

correspond to the “value”, as shown in Figure 3.6. A script enables the specification of

the colour associated to the feature on-line, thus the HSV interval can be adapted to the

illumination of the environment or the change of colour of the visual features.

During the interaction with external surfaces, visual features of a predefined shape, in

this case spherical, appear and move in the images. The tracking of the spherical features

is performed in the filtered grayscale image which is the output of the HSV colour filter.

Morphological image operators are applied in the black and white image to select the

pixels corresponding to the spherical features and remove the noise. On the filtered image,
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S

V

H

Figure 3.6: Cut-way 3D model of the HSV Colour Space: A color Hue is described
in terms of its Saturation and Value or luminance.

Gaussian blur is employed to eliminate false positives, while maintaining the minimum

time-bandwidth product. Sequence applications of two morphological primitives, such

as dilatation and erosion, are performed to fill inner fragmentary regions and eliminate

the bays along the corners. Hence, the implemented algorithm successfully detects the

geometric properties of the visual features in the image, as shown in the block diagram

in Figure 3.7.

New Image Image Adjustment
“Rectification"

Colour Detection
“ Features’s HSV Interval"

Morphological Operator
“Dilation & Erosion"

Geometric Propreties
“Feature’s Area"

Noise filtering
“Gaussian Blur"

Figure 3.7: Schematic Representation of the overall Image Processing algorithm.

3.4 Vision-based Force Sensor

The sensing system uses visual feedback to determine physical interaction forces with soft

tissues. The correct estimation of the force is crucial for modelling the stiffness which is

dependent on the relative force, i.e. the differential force between the elastic elements.

To prove the feasibility and test the accuracy of the model, an uni-axial vision-based

force sensing device has been manufactured and tested. The next sections present the

design of the prototype, the visual processing algorithm, the mathematical model and

the results of the experimental tests.
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Figure 3.8: Vision-based Single Axial Force Sensor: CAD drawing showing the spring
embedded inside a linear joint.

3.4.1 Vision-based Force Sensor Design and Image Processing Algo-
rithm

A CAD drawing of the developed sensory device is shown in Figure 3.8. The disassembled

parts and the manufactured sensor are shown in Figure 3.9. The vision-based force

sensor consists of a spring-driven linear shaft which is inserted into a cylindrical housing

in order to prevent lateral movement of the embedded spring. A spherical feature is

used to “visualize” interaction forces. This assembled mechanism is attached to a camera

as presented in Figure 3.9(b). The spherical visual feature is always in the visibility

cone of the camera. As the sphere interacts with soft tissues, the spring embedded in

the structure is compressed and the distance between the camera and end-effector is

modulated. The sensor is small in size as shown in Figure 3.9(a) where it is compared to

a 50 pence sterling coin. The spherical feature has a diameter of 5 mm, the spring length

is 35 mm and the linear shaft is 15 mm long. The commercial USB camera has an outer

diameter of 7 mm, a resolution of 640x480 and a frame rate of 30 frames/s. The approach

to sensor design was guided by the following points: the final system was expected to

Linear Module

Feature

Spring

Sensor Housing

Camera

(a)

Linear Module

Feature

Spring

Sensor Housing

Camera

(b)

Figure 3.9: Vision-based Force Sensor: (a) Disassembled and (b) Assembled Force
Sensor Prototype.
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be compatible with minimally invasive scenarios and the geometric feature to be easily

miniaturised and integrated with a generic endoscopic camera. Satisfying these design

considerations, the geometric feature has been placed on the optical axis. The sphere

can be mounted directly on the linear sliding shaft or on the end-effector and is in direct

contact with the surrounding objects. The mechanical structure of the sensor has been

designed in SolidWorks and manufactured with a rapid prototyping machine (Project

HD-3000 Plus, 3D Systems). The Project rapid prototyping machine employs a large

number of printing jets to print objects in 3D. Using this machine to manufacture the

novel sensing mechanism allows miniaturisation. The range of force that the sensor can

measure is relative to the elastic constant of the spring embedded in the mechanism and

the camera-sphere distance, thus it can be easily customised. The minimum observable

change in force that defines the sensor’s resolution corresponds to the force needed to

change the area of the visual feature by 1 pixel. This value depends on the resolution

of the camera and the camera-sphere distance and it increases when the object comes

closer.

The visual processing algorithm, presented in Section 3.3 has been used here to track

the spherical visual feature in real-time. The OpenCV’s function "HoughCircles" that

implements the Circle Hough Transform (CHT) using the Gradient Method has been

used to track the spherical visual features. This method finds the parameters of a circle

when a number of points that fall on the perimeter are known. The HCT function firstly

performs the edge detection using the OpenCV function “cvCanny()”, and then evaluates

the local gradient for every non-zero pixel in the edge image.

The Hough Circle Transform is proved to be sensitive to light disturbance in the envi-

ronment, a fact that affects the threshold of the edge detector and results in noisy and

inaccurate detection of the circle, as shown in Figure. 3.10(a). Instead of using the HCT,

after filtering the image in HSV colour space, this problem is overcome by using the

morphological operators in the black and white image to select the equivalent pixels in

the HSV interval.

Two morphological operators, dilation and erosion, are then applied in sequence in order

to fill inner fragmentary regions and remove bays along the corners. Gaussian blur is

employed to eliminate false positives and reduce the noise. Finally, important properties

of the images, such as area, can be determined.

A comparison between the proposed algorithm and the the OpenCV’s implementation

of the Circle Hough Transform is shown in Figure 3.10(a). The improvement in the

detection and robustness to occlusions can be observed in Figure 3.10(b). The image

processing algorithm detects and tracks the radius of the spherical visual feature which

is used to model the interaction force.
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(a) (b)

Figure 3.10: Visual processing algorithm: (a) Feature Detection using OpenCV
HoughCircle (in red) and the proposed Algorithm (in orange) (b) Vision Performance
during Occlusions. The image at the bottom left illustrates the transformation of the
input image into HSV colour space. The output of the morphological operation is shown
on the image at the top right. The bottom right image shows the blurred image.

3.4.2 Computation of the Spring Parameter

The validation of the proposed method and a system stability analysis have both been

performed through stress tests with a benchmarking sensor, namely the force/torque sen-

sor NANO 17 by ATI (SI-12-0.12, resolution 0.003 N employing a 16-bit data acquisition

card).

In the experimental setup the ATI Nano17 is fixed on a motorised linear track and pushed

against the vision-based force sensor. This generates a force that compresses the spring

embedded in the sensor’s structure.

The force exerted by the force/torque sensor is recorded using LabView software in order

to compute the spring constant, while the image processing algorithm tracks the spherical

feature in the image, as shown in Figure 3.11. The results of the experimental tests are

shown in Figure 3.12. The relation between the force and the displacement is defined

by the constant of the spring embedded in the sensor’s structure and was computed

using Matlab linear fitting. The estimated value is 177.9 N/m; this results match the

weight displacement trend which was evaluated by applying a weight and measuring the

displacement of the spring.

3.5 Tracking of the Feature’s Radius to Estimate Force

The pinhole camera model described in Appendix 3.2 has been used here to model the

relation between the sphere’s dimension in the 2D image and the distance computed by
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Single Axial 

Force Sensor

Motorised Linear Module 

ATI Nano 17 

Sensor

Data Acquisition Software

Feature Analysis Algorithm

Figure 3.11: Vision-based force sensor stress test: The benchmarking sensor is fixed
on a motorised linear module and pushed against the proposed force sensor. The image
processing algorithm computes the visual feature’s radius in real-time and simultane-
ously the force from the ATI Nano17 sensor is recorded.

the sensor during the contact. The visual feature has a spherical shape and due to the

structure of the sensor it can only move along the axis perpendicular to the camera.

The changing dimension of the visual feature, thus the variation of the sphere’s radius

in the image, is related to the sphere-camera distance. If r is the sphere’s radius, x

the sphere-camera distance and h the projection of the radius in the image plane, from

Equation 3.1 follows:
h

x
=
r

f
. (3.6)

Equation 3.6 can be used to express every new position of the feature in function of

initial camera-sphere distance x0 and the initial value of the radius in the projected

image r0. The value of x0 and r0 are known and chosen during the design process.

Figure 3.13 shows the relation between these parameters and the current value of the
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ce
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Force Measurement

Linear Fit (m=0.1779)

Figure 3.12: Experimental Result of the Stress Test: The elastic constant of the
spring is the slope of the line obtained through linear fitting of the experimental data.
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Figure 3.13: Sphere’s Projection in the Image Plane: The dimension of the projected
sphere in the image is inverse proportional to the sphere-camera distance.

spherical feature’s radius “x”. From geometrical consideration follows:

x =
hf

r
=
x0r0

r
; (3.7)

from which follows the expression of ∆x:

∆x = x0 −
r0

r
x0. (3.8)

Replacing the expression of ∆x, derived in Equation 3.8 in the Hooke’s law for the force

response of springs, it follows the expression of the force value in function of the circle

radius:

F (r) = kx0

(
1− r0

r

)
. (3.9)

In Equation 3.9, k represents the constant of the compression spring embedded in the

sensor’s structure. For the designed sensor, the camera-sphere distance in rest conditions

(i.e. when no force is applied to the sensor), x0 is equal to 42 mm and the corresponding

value of the visual feature’s radius in the image r0, is 94 pixels. The mathematical model

computes the force in function of the initial radius r0 and initial feature-camera distance

x0, thus a changing in the sensor design requires their redefinition. The analysis of the

performance considers the Root Mean Squared Error (RMSE) that represents the square

root of the mean/average of the square of all of the error. Thus, RMSE amplifies and

severely punishes large errors. The RMSE is expressed as :

RMSE =

√∑n
t=1 (y − F (r))2

n
(3.10)

The relationship between the force computed by the ATI Nano17 and the radius in the

image is reported in Figure 3.14. The mathematical model derived has a RMSE of 0.0404

and does not fit exactly with the experimental data.
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Figure 3.14: Mathematical Model: Linear Regression between the visual feature’s
radius and the force computed by the benchmarking.

3.6 Experimental Results

A mathematical function that computes the value of the force in terms of the feature’s

radius was derived using Matlab’s Curve Fitting Tool. Figure 3.15 shows the fitted curve

which is obtained using the rational function in Equation 3.11. As the mathematical

model was derived in the previous chapter, there is no risk of overfitting.

F (r) = a1(1− a2

r
). (3.11)

In Equation 3.11 the values of a1 and a2 are 7.143 and 91.94, respectively. The RMSE

for this fitting is 0.03 and has a prediction interval of 95 %.
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Figure 3.15: Experimental Model: The Rational Function in Equation 3.11 represents
the best fitting of the experimental data.
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Figure 3.16: Experimental Results: During the test, the vision-based force sensor was
manually pushed against the benchmarking sensor. The plot shows the force exerted
on the ATI Nano17 F/T sensor (in blue) and the forces computed using the derived
model based sensor data (in red).

The validation of the models was obtained performing experimental tests in which the

vision-based force sensor was manually pushed against the benchmarking sensor ATI

Nano 17. Both models perform well, failing only when the force goes above the sensors’

range, which is lower than the benchmarking sensor, saturating it as shown in Figure 3.16.

This value can be customised as it depends on the camera-sphere distance and the value

of the spring constant. The sensor is also affected by friction, thus its response in speed

is low (Figure 3.16). However, in medical examinations, high speed responses are not an

essential requirement. When the vision-based force sensor was not saturated, the RMSE

was 0.15 for the mathematical model and 0.14 for the experimental model. The spring

allowed a range of 0 − 1.96 N and a variable resolution between 0.0439 N and 0.0787 N.

3.7 Summary

In this chapter, a vision-based force sensing principle was presented. The sensing mecha-

nism computes the indentation force, which is exerted on the tissue by an elastic element,

by tracking the correlated visual appearance of a spherical feature in the images. Ex-

perimental results have shown that the mathematical model derived presents a good

approximation of the experimental data obtained through benchmarking with a very

accurate commercial force sensor, such as the ATI Nano17.

The vision-based force principle is the mathematical foundation of the proposed stiffness

sensing mechanism, as the contact between a soft surface and two elastic mechanism of

different elasticity will produces two different forces. The stiffness of the soft surface is
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related to the relative force between the elastic elements which is computed by an image

processing algorithm.



CHAPTER 4

Vision-based Stiffness Sensor for Endoscopic Examination

Endoscopic cameras are inspection instruments widely used in non-invasive medical pro-

cedures to visualise and examine organs and inner body parts. The endoscope can be

inserted into the patient’s body through a natural opening or by using a trocar port (a

small incision in the patient’s skin). In minimally invasive procedures, several trocar

ports are made to serve as insertion points for surgical instruments. One of those tro-

car ports is reserved for the endoscopic camera through which the surgeon can visualise

the procedure in a magnified image on a video monitor. This chapter presents a novel

stiffness sensor which is fashioned for a surgical endoscopic camera. A clip-on sensing

mechanism is used to enhance the functionalities of the endoscopic camera that can be

converted from a traditional visualization sensor to a stiffness sensor. The computation

of soft tissue stiffness will help clinicians to diagnose abnormalities and recover the "sense

of touch" that is completely absent in minimally invasive and remote applications.

The developed vision-based sensing mechanism has been used to estimate the stiffness of

silicon phantoms. The experimental results have shown that the accuracy and sensitivity

of the system increases with the softness of the examined tissue, hence, the system is

potentially suitable for medical examination. This chapter presents the design, the image

process algorithm, the modelling and the experimental results of the sensory system.
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4.1 Introduction

Minimally invasive procedures use state of the art technology to reduce damage to hu-

man tissues that can occur during medical interventions. In the diagnosis and treatment

of diseases, it is crucial to localise malignant tissues and identify abnormalities while

preserving blood vessels and nerves. In traditional open surgeries, soft tissue characteri-

sation is performed directly by surgeons through manual palpation. This simple process

becomes challenging in minimally invasive procedures where electronic instrumentations

and sophisticated signal processing techniques have to replace and mimic the clinician’s

hands to recover tactile sensations. Currently, minimally invasive and remotely per-

formed medical procedures are limited by the lack of tactile feedback. In addition, all

palpation instruments developed to date require a dedicated port. Hence, clinicians can

only rely on their vision in order to estimate the interaction forces between a surgical

device and a soft tissue, that is, they depend on their visual observations of the tis-

sue’s deformations as these appear on the images fed back by the endoscopic camera in

real-time.

In the last decade, computer vision techniques, which are directly implemented on the

endoscopic camera images, have been largely investigated [118]. The use of these images

does not require the sensor to be integrated and tested in a clinical setting, as is the case

with other sensing systems, because the endoscopic camera is already part of the medical

equipment [119]. However, visual approaches estimate the 3D shape of the anatomical

surfaces by employing costly image processing algorithms which can not be used in

real-time. Alongside surgical vision solutions, endoscopic camera images have also been

explored in order to retrieve tactile information by combining mechanical devices, which

interact with the soft tissue, and image processing algorithms, which estimate the tissue

properties [109–112].

In this chapter, the sensing principle introduced in Chapter 3 is used to develop a stiffness

sensor tailored for a surgical endoscopic camera. The estimation of the stiffness is asso-

ciated to the forces generated by two springs presenting different elasticity; these springs

are embedded in the mechanism and jointly-related to small spheres. Image processing

is employed to track the spherical features and measure the interaction forces. The soft

tissue stiffness depends on the relative force between the two springs which is generated

during contact. The proposed sensory mechanism enhances the utility of the endoscopic

camera by adding tactile capability to the traditional visualization functionality. Tactile

capability is used to characterize the soft tissue and in particular to estimate its stiffness.
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(a) (b)

Figure 4.1: The ENDOCAM R© Performance HD: (a) A picture of the camera system.
(b) The images obtained by using different zoom lens.

4.2 Endoscopic Examination

Endoscopy is a medical procedure in which a thin tube with a camera (endoscope)

is inserted into the body to diagnose or to treat a health condition. Endoscopes are

part of a family of optical devices used by clinicians to see inside the human body. The

optical instrument is inserted into the patient via body orifices or trocars. The endoscope

moves through body cavities, hollow organs or passageways and captures images that

clinicians can show on a screen and use for the examination. In general, endoscopes

have a diameter between 10mm and 12mm, and contain a light delivery system, which

is usually fibre optic with the light source outside the body, an image system for the

visualization, and an optional channel used for the insertion of other instruments or

manipulators [120]. Doctors use endoscopy to investigate a specific part of the body

to either diagnose disease or find the cause of a patient’s symptoms. The length and

flexibility of the endoscope depends on which part of the body needs to be viewed. In

addition to being a diagnostic tool, an endoscope can be used to treat or prevent a disease

from occurring. For example, during colonoscopy, an endoscope can be used to remove a

colon polyps, which could potentially develop into cancer if left in place. An endoscope

may also be used to perform laparoscopic surgeries through small incision in the skin.

There are three imaging systems used with endoscopes: fibre optic endoscope, rod lens,

and the charge-coupled device (CCD). The fibre optic endoscope is the oldest type of

endoscope in continuous use despite it being limited by the resolution of image it can

provide. The rod lens system provides a much more detailed image than fibre optics. It is

also capable of a much wider viewing angle than older conventional lens endoscopes and

laparoscopes. The charge-coupled device (CCD) uses the same integrated circuit chip as

the one found in digital cameras. In this type of imaging system an CCD chip is placed

at the end of the laparoscope, where it can directly capture the video image without

having to transmit it through other optical elements. The image is then projected on to
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Figure 4.2: Vision-based stiffness sensor mounted on a surgical endoscopic camera
inside a phantom torso

a monitor for the doctor to view it. The rod lens systems are often referred to as digital

endoscopes laparoscopes. Endoscopes can be rigid or flexible depending on the intended

usage. Generally speaking, a rigid endoscope is easier to control and less expensive

to manufacture. Therefore, rigid endoscopes are much more common. The stiffness

sensor presented in this chapter has been designed for rigid surgical endoscopic camera

ENDOCAM R© Performance HD by Richard Wolf GmbH (30 fps at 60 Hz), currently

used in the surgical theatre, but the sensor can be adapted to any surgical camera. The

ENDOCAM R©Performance HD shown in Fig. 4.1(a) has been designed for universal

endoscopic application. If combined with a zoom lens, ENDOCAM can cover the entire

spectrum of endoscopy as shown in figure 4.1(b).

4.3 Vision-based Stiffness Sensor: Design

The assembled prototype of the designed probe mounted on the surgical ENDOCAM R©
by Richard Wolf and inserted into a human phantom torso is shown in Figure 4.2. An

exploded view of the probe’s drawing is shown in Figure 4.3(a). The prototype has been

manufactured with a rapid prototyping machine (Project HD-3000 Plus, 3D Systems).

The stiffness sensor consists of a support structure, two linear modules connected to

two spheres, a cap and two steel springs of different dimensions and elasticity (see Fig-

ure 4.3(a)). The smallest spring has an outer diameter of 12.19 mm, a wire diameter

of 0.51 mm and an elastic constant of 40 N
m ; the other spring has an outer diameter of

16.76 mm, a wire diameter of 0.74 mm and an elastic constant of 190 N
m . Both springs are

made of SS316 steel which is MR-compatible. These springs are commercially available

from Lee Spring Company and are enclosed in a hollow cylindrical support structure
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(a) (b)

Figure 4.3: CAD Drawing of the Vision-based Stiffness sensor: (a) Exploded view
and (b) Section view showing the camera Field of View (FOV).

which is mounted on the endoscopic camera. Two linear modules with diameters equiv-

alent to the size of each spring are attached at the end of the springs. The tip of each

linear module incorporates a pair of indenters containing two spheres with a diameter of

2 mm. Hence, each pair of indenters is related to one of the springs and able to move

independently. A cap fixes the linear guide and the springs inside the support structure.

In rest position, the four spheres will be at the same distance from the camera lens.

The spheres are symmetrically arranged and have the same offset to the centre of the

image plane as shown in Figure 4.3(b). The maximum indentation depth is 18 mm for

this prototype. Nevertheless, the sensing range and resolution can be customised by

changing the embedded springs or the distance between the camera and the spheres.

The diameter of the camera embedded with the sensory system is 19.5 mm. The size of

the sensor can easily be reduced to 15 mm or less by using either a different material,

for example medical steel, or customised springs or by using an endoscopic camera of a

small diameter. Hence, this device is compatible with minimally invasive interventions.
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4.4 Vision-based Stiffness Sensor: Image Processing Algo-

rithm

The image processing algorithm presented in Chapter 3.3 has been modified and used

here to track the spherical features in the endoscopic camera image. In order to minimise

errors in the computation of the radii of the spheres, here the image has been subdivided

into four Regions of Interest (ROIs). In each of the ROIs, tracking of the spheres is

performed as shown in Figure 4.4. The tracking algorithm is robust to occlusions and

small reflections due to disturbing lighting (specularity). This is demonstrated in ROI 4

where the orange circle shows the successful detection of the sphere. The spherical feature

in ROI 1 is detected even if specularity occurs. This algorithm allows accurate computing

of the radius of the spherical features. The variation of the spherical feature’s radius,

thus their changing dimensions, will be used to characterise the stiffness properties of

phantom tissue. The interaction force applied by each linear model is computed using

the method presented in Chapter 3.2.2. Hence, the stiffness of the probed soft tissue is

estimated as function of the relative force between the two springs, thus as function of

the relative distance between the two linear modules. The sensor’s structure allows the

sliding of the module only along the axis which is perpendicular to the camera, thus the

variation of the spherical feature’s radius in the image can be related to the its distance

to the camera lens. The model derived in Chapter 3.4 assumes that the sphere lies and

moves only along the optical axis. In the new prototype presented here, there is an offset

between the position of the spheres and the camera’s centre, thus the spheres need to be

projected onto the optical axis. If x identifies the distance between the camera’s centre

and the projection of the sphere’s position on the optical axis, h the distance between the

sphere and the optical axis, and p the line between the sphere’s centre and its projection

Figure 4.4: 4 Regions of Interest (ROIs). The white arrows represent the possible
direction of movement of each detected sphere (orange). In ROI 1, light reflection
occurred and the sphere is partially occluded. ROI 4 shows that the algorithm can
detect the sphere even in the case of 50% of occlusion.
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on the image plane that passes through the camera centre, it is possible to express ∆x

in function of h and p which yields:

∆x = x0 − x1 = x0 −
√
p2

1 − h2. (4.1)

In Equation 4.1, x0 and h represent the projection of the spheres onto the optical axis at

rest condition. These two parameters are known and chosen at the design. The sensor’s

structure creates geometrical constraints, thus p1 can be expressed as function of the

sphere’s radius:

p1 =
r0

r
p0. (4.2)

If the response is linear, Equation 4.1 can be used in Hooke’s law to model the contact

force generated by each indenter, so that:

F (r) = K∆x(r) = K

(
x0 −

√
r2

0

r2
p2

0 − h2

)
. (4.3)

Here, K represents the spring constant. The returned force value depends on the design

of the sensor and the size of the visual feature, i.e. the initial radius r0 and projection

of the feature-camera distance x0 on the optical axis. In addition, the sphere’s radius

can be substituted with other geometrical parameters making its validation independent

of the visual features shape. Knowing the elastic constant of the two springs embedded

in the sensor, K1 and K2 respectively, the soft tissue stiffness can be computed as the
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Figure 4.5: Operating optical principle. The projection of the sphere at distance p0
from the camera centre is smaller than the projection of the sphere at distance p1. The
focal length f is the distance between the camera centre and the image plane.
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Figure 4.6: Experimental Results. (a) and (b) The pattern of (∆x1) and (∆x2)
displacements for forward and backward motion and the recorded forces, (F1) and
(F2), are represented in blue and red respectively. In (b) the sum of the forces, F1 and
F2, is compared with a benchmarking, illustrated in green.

relative difference of the forces generated by each spring, thus:

Ks =
K1(x01 −

√
p2

11 − h2)−K2(x02 −
√
p2

12 − h2)

∆s1 −∆s2
=

(K1∆x1 −K2∆x2)

∆d
. (4.4)

In Equation 4.4 the variable x01, p11, x02, p12 represent the mean values of x0 and p1

associated to the pairs of spheres embedded in each linear module.

4.5 Experimental Results

The vision-based stiffness sensor was used to palpate silicon phantoms of different elas-

ticities and to evaluate their stiffness. During the experimental tests, the silicon was

placed on top of an ATI Nano 17 F/T sensor (used as ground truth) and moved to-

wards the sensing device using a linear guide. Endoscopic images were processed in

real time and used to estimate the forces applied by each spring. The force obtained

from the benchmarking sensor is the sum of the two forces computed with our model.

Hence, the stiffness of the tissue can be measured by considering the ratio between the

relative forces and the relative displacement as expressed in equation 4.4. The relative

displacement, ∆d, is the difference between the projection of the spheres’ radius onto

the optical axis. The value of ∆d increases with the softness of the palpated tissues as

a result of considerable displacement between the coupled features. The stiffness of four

silicon phantoms was estimated though stress tests with a benchmarking force sensor.

The values obtained were compared to the real-time stiffness values computed by using

Equation 4.4. Figure 4.6(a) shows the linear trends ∆x for the soft spring (∆x1) and
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Stiffness material (N/m) Computed Stiffness (N/m) Accuracy
0.08 0.08 99%
0.64 0.61 96%
1.89 1.83 96%
2.23 2.14 95%
∞ (division by 0) → undefined 100%

Table 4.1: Experimental Results: The stiffness of the silicon phantom measured by
a benchmarking sensor and with Equation 4.4 are compared to prove the accuracy of
the proposed model.

the stiffer (∆x2) during a forward (indentation) and backward movement of the linear

guide. The displacement ∆x increases with time in the forward motion because of the

elasticity difference of the springs and decreases with the backward motion. The relative

forces are compared with a benchmarking in Figure 4.6 (b).

The experimental results evidence the high accuracy of the vision-based stiffness sensor.

However, the accuracy decreases with the increasing of the tissue stiffness, as shown in

Table 4.1, as a rigid body exhibits infinite stiffness which results in ∆d = 0 in our model

due to a null displacement between the coupled features. In this case, the stiffness is

undefined as reported in the last column of Table 4.1 .

4.6 Summary

In this chapter, the design and the testing of a novel stiffness sensor mechanism have

been presented. The sensor utilizes visual information to compute the stiffness of soft

tissue by tracking linear elastic movements of visual features. The advantages of our

system are as follows:

1. The evaluation of soft tissue stiffness is based on vision data provided by a surgical

endoscopic camera. Since endoscopic cameras are often used in minimally invasive

procedures, their visual functionality is enhanced by using the data they acquire

for stiffness measurements.

2. The device has a simple mechanical structure that can be miniaturised. Hence,

the prototype for endoscopic cameras described here is expected to meet the size

limitations of minimally invasive procedures.

3. The sensing range and resolution can be easily modified by adjusting the two springs

embedded inside the mechanism. Springs with a lower spring constant enable high

force resolution by sacrificing range and vice versa.

4. The sensor’s accuracy increases with the softness of the tissue. This feature makes

the system most suitable for medical applications.
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The limitations and inaccuracies of the sensor are mostly due to friction and the parallel

mechanism of the springs. These issues will be addressed in the next chapters.



CHAPTER 5

Multi-directional Stiffness Probe for Medical Diagnosis

During the last decades, researchers have been trying to reproduce the clinician’s sense

of touch by developing sophisticated sensing devices. However, most of the proposed

solutions work only if the orientation of the sensor does not change during the procedure.

This limitation prevents the use of these devices in real applications. To overcome the

shortcomings of current devices, the stiffness sensing principle derived in this thesis has

been used to realise a multi-directional stiffness sensing probe for medical palpation. This

chapter presents the design of the device, the modelling and the experimental results.
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5.1 Introduction

Nowadays, there is a growing demand for kinaesthetic displays in medicine, robotics

and other fields of engineering and scientific research, as well as in medical training

and rehabilitation, sport, games and entertainment [121]. During the last two decades,

researchers have developed several instruments able to mimic the traditional manual

palpation techniques; many experimental and theoretical papers have been published and

a number of patents have been filed reflecting these advances [122]. Kinaesthetic devices

usually provide information about contact with end-effectors, but they should not exclude

other components of the haptic sense, such as the reflected forces and displacements.

Many medical applications focus on assessing tissue elasticity because of the diagnostic

information it provides. Nowadays, the mechanical properties of soft tissue can be eval-

uated by combining imaging, elastography and computational modelling [123]. Com-

puter Tomography (CT), Ultrasound Imaging (US) and Magnetic Resonance Imaging

(MRI) are advanced and sophisticated technologies used for soft tissue characterisa-

tion [124] [125].

In Chapter 3.4, a uni-axial vision-based force sensor device has been presented. The

sensing principle is based on the tracking of the movements of a feature in an image

which are correlated to the compression of a spring. In Chapter 4 the same principle

has been used in order to estimate soft tissue stiffness in minimally invasive procedures.

In this chapter, multi-directional capabilities are added to the sensing mechanism. The

new sensor is shown in Figure 5.1. Four springs, three of which have the same spring

constant, are embedded in the sensor’s structure and related to four indenters. The

Figure 5.1: Multi-directional stiffness probe in contact with a soft surface. The pan
and tilt angles between the sensor and the soft object are α and θ respectively.
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indentation of the soft tissues results in the sliding of the indenters which will compress

the related springs. The compression of the springs is captured by the camera and used

to evaluate the stiffness. The physical relation between the three equal springs allows the

definition of the contact plane between the stiffness probe and the soft surface, hence,

the measurement of the approaching pan and tilt angles.

5.2 Multi-directional Stiffness Sensing Principle

In Chapter 2 the literature on diagnostic devices for medical applications has been re-

viewed. Most of the proposed solutions can measure soft tissue properties only if the

device is indented perpendicularly to the soft surface. Hence, errors and inaccuracies

arise if the orientation of the sensor changes during the procedure. In Chapter 4, an

innovative vision-based stiffness sensor was developed and tested. Experimental results

showed that the sensor can evaluate the stiffness of soft tissues with high accuracy. How-

ever, it works only if its orientation does not change while indenting the surface. This

limitation has been solved by enclosing in the sensor’s structure a triple of elastic el-

ements with the same elasticity. The palpation probe contains four elastic elements,

i.e. four springs, three with the same elastic constant and one stiffer. A drawing of the

Figure 5.2: Multi-directional stiffness sensing principle. Contact between the soft
surface and the elastic elements showing the interacting forces and the differential force
between the elastic element with higher stiffness (HS) and the three elements with softer
stiffness(SS1, SS2, SS3).
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sensor interacting with a soft object is shown in 5.1. If the sensor is pushed perpendic-

ularly on a soft object, the elastic elements presenting the same elasticity will exhibit

the same compression. However, if the approaching direction is not perpendicular to the

soft surface, the springs will exhibit different compressions. Consequently, the sliding

length of each indenter will be different. The position of the three elastic elements in

the 3D space identify a plane which is used to evaluate the orientation of the probe dur-

ing the indentation procedure. Moreover, the three elastic elements with a lower elastic

constant are displaced more than the stiffer one. This difference in movements is used

to measure the soft tissues’ stiffness. A mathematical model evaluates the value of the

stiffness by considering the orientation of the probe during the interaction. A schematic

representation of the sensing principle is shown in Figure 5.2.

5.3 Multi-directional Stiffness Probe Design

The hand-held stiffness probe is composed of four indenters, each connected to a spring,

a spherical feature, and a standard USB camera, and tightly assembled in a 3D printed

shell. Exploded and assembled views of the stiffness sensor are shown in Figure 5.3. The

USB camera has an outer diameter of 7 mm, a resolution of 640x480 and a frame rate

of 30 frames/s. The stiffness probe has been manufactured with a high resolution 3D

printer (HD-3000 Plus from 3D System) which has an accuracy of 16 µm along the z-axis

Figure 5.3: CAD Drawing of the stiffness probe showing in green the softer springs
and in red the stiffer : (a) Exploited View, (b) Camera View and (c) Assembled.
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and 42 µm along the x- and y-axes) using acrylonitrile butadiene styrene (ABS) high

density material. The springs are made of SS316 steel, a material that is suitable for

medical applications. Hence, the fabrication costs are relatively low. Three of the springs

have the same spring constant of 0.05 N/mm; the fourth has been chosen to be stiffer

and has a spring constant of 0.25 N/mm. The softer springs are placed on the vertices

of a triangle and the stiffer one on its barycentre, as in Figure 5.3(a). The movements

of each indenter and its associated rods depend on the related spring, hence the three

indenters related to the same spring present a softer behaviour when compared to the one

related to the fourth indenter. During interaction with a soft object, the indenters slide

over their rods leading to a compression or decompression of the corresponding spring

that in turn generates movement in the related spherical features. The analogy between

the movements of the spring, the related indenter and the spherical feature is regulated

by the elasticity of the springs: i.e. contact with external soft surfaces will produce a

bigger compression of the three softer springs in respect to the stiffer one. Consequently,

the indenters associated to the softer spring will slide more than the indenter associated

to the stiffer spring. This will generate different displacements of the spherical features

along the horizontal axis.

5.4 Refinement of the Image Processing

The image processing algorithm presented in Chapter 3.3 has been modified and adapted

for the new sensor. The design of the palpation device, shown in Figure 5.3(a), allows the

four indenters to move only along one direction. Hence, the sliding of the indenters causes

the compression or decompression of the relative spring, which is reflected in horizontal

movements of the spherical features in the images. The image has been subdivided

into four Regions of Interest (ROIs). Each ROI is associated to one of the spherical

features and captures its full range of motion. The image processing algorithm uses

the HSV colour channel to detect the spherical features. Image moments and Kalman

filtering are employed to robustly track the spherical feature’s centroids in the associated

ROI. In order to create a generic image processing solution and for that solution to be

easily adapted to different sensor designs, the algorithm is individually executed on each

feature in the corresponding ROI. In the next sections, each stage of the image processing

algorithm will be explained in detail. The overall method is presented in Algorithm 1.
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5.4.1 Computation of the Feature’s Centroids using the Image Mo-
ment

Image moment is used to describe the image’s properties, i.e. area, thickness, orientation,

skewness, etc. These properties can be used to identify shapes in the image. The general

form for calculating the moment of a 2D continuous function f(x, y) of order (r+s) with

r, s ∈ N can be expressed as: ∫ +∞

−∞

∫ +∞

−∞
xrysf(x, y)dxdy. (5.1)

The discrete form of Equation 5.1 can be used for the image processing algorithm. Given

a grayscale image of width W, height H and pixels intensities I(x,y), the raw image

moments can be defined as:

Mi,j =

W∑
x=1

H∑
y=1

xiyj I(x, y). (5.2)

For i = j = 0 Equation 5.2 can be simplified down to:

M0,0 =
∑

I(x, y). (5.3)

A grayscale image is always going to be either one or zero, thus Equation 5.3 simply

counts all the pixels in the image that have value one; therefore, it calculates the area

of a binary image. From Equation 5.3 the position of the centroid, (Cx, Cy) can be

expressed as:

Cx =
M10

M00
Cy =

M01

M00
. (5.4)

5.4.2 Robust Tracking: Kalman Filter on the Image Centroids

The Kalman filter is used to track the horizontal position of each centroid in the related

ROI. The filter is applied to each new centroid and computed using Equation 5.4. For

more details on the implementation of the filter, please refer to Appendix B. Based on

empirical evaluation, the filter parameters have been initialised with the following values:

process noise q0 = 0.09, sensor noise r0 = 4 and initial estimated error p0 = 6. The initial

horizontal position of the centroids, Cxj0 in the correspondent RoIj is computed in the
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Algorithm 1 Image Processing
Input: current Image Ii, camera resolution cr
Output: current z coordinate of the indenters
1: procedure Initialization
2: if Ii is the first image (Ii = I0) then
3: set p = p0, r = r0 and q = q0
4: compute the centroid in every jth RoI:
5: Cxj0 = M10

M00
, Cyj0 = M01

M00

6: return Cxj0

cr (j = 1...4)
7: else
8: while there is an image in input Ii do
9: colour detection of Ii in HSV
10: convert Ii in grayscale
11: for j=1:4 do compute RoIj
12: Kalman filter prediction:
13: Ĉ−xji = Ĉ−xji−1

14: p−xji = pxji−1 + q
15: Kalman filter update:
16: kxji = p−xji/(p

−
xji

+ r)

17: Ĉxji = Ĉ−xji + kxji ∗ (M10/M00 − Ĉ−xji)
18: pxji = (1− kxji) ∗ p−xji
19: return Ĉxji/cr
20: end for
21: end while
22: goto 4
23: end if
24: end procedure

first image I0 using the image moments. After the prediction step, the state of the filter

Figure 5.4: Hand-held stiffness probe: (a) is the frontal view of the sensor showing
the position of the indenters (mm) expressed in the local reference system; the indenters
coupled to the corresponding spherical features are shown in (b). Each pair is repre-
sented by the same colour. The interaction of an indenter with the surface of a soft
object results in a displacement of ∆z; the corresponding sphere moves by the same
quantity, but appears in the camera images as a movement along the x-axis, hence, ∆x.
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is defined using p, q, Cxji as shown in Algorithm 1.

5.4.3 Spring-Indenter-Features Relation

In the designed stiffness probe, the camera is fixed, i.e. its movements are jointly liable

with the sensor structure, as shown in Chapter 5.3 . During interaction with an external

soft object, the indenter will slide and compress the springs embedded in the sensor’s

structure. Consequently, the spherical features will move in the camera images. The

relation between the 3D movements of the indenters and the movements of the spherical

features in the image can be modelled choosing a local reference system on the stiffness

probe cap, as shown in Figure 5.4(b). The x-z-plane of this system results in being parallel

to the image plane, thus, the sliding of the indenters in the local frame will be reflected on

the movements of the spherical features in the image as shown in Figure 5.4(a): when the

indenters move towards the origin of the local reference frame decreasing their z-position,

the spherical features will move away from the origin of the image plane increasing their

x-position. The resolution of the sensor is 12.7 pixels/mm, i.e. when the indenter

moves by 1 mm, the position of the correspondent centroid changes by 12.7 pixels. The

relation between the compression of the springs, the movements of the indenters and the

movements of the spherical features is used to show the connection between the position

of the spherical features’ centroids and the indentation depth as shown in Figure 5.4(b).

5.5 Methodology

5.5.1 Modelling Soft Tissue Properties

The mapping between the position of the spherical features in the image and the position

of the indenters is used to characterise the interaction between the stiffness probe and

the examined soft tissue. The sliding motion of the three indenters placed on the vertices

of the triangle makes use of the same type of spring, while the indenter in the centre

is connected to a spring with a higher spring constant, thus it moves less during the

interaction with the soft tissue. The stiffness of the surface in contact can be computed

using the forces applied by the harder indenter placed in the barycentre of the triangle

and the three “softer” indenters [126].

Seven parameters are sufficient to fully characterise a palpation procedure with the pro-

posed stiffness probe: the stiffness of the soft tissue, Kt, the four palpation depths of

the soft tissue caused by the interaction with the four indenters, the pan angle θ and the

tilt angle α as shown in Figure 5.1. A system of non-linear equations, F (x) = 0, can be
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used to express the relation between the seven unknown parameters, where:

F (x) =



dx1 ×Ks −Kt × dt1

dx2 ×Kh −Kt × dt2

dx3 ×Ks −Kt × dt3

dx4 ×Ks −Kt × dt4

dx2 + dt2 − dx1 − dt1 + tan(θ)× d12x + tan(α)× d12y

dx3 + dt3 − dx1 − dt1 + tan(θ)× d13x + tan(α)× d13y

dx4 + dt4 − dx1 − dt1 + tan(θ)× d14x + tan(α)× d14y

(5.5)

In Equation (5.5), dxi (i = 1...4) represents the position of the ith sphere, dijx and dijy
(i, j = 1...4) with i 6= j represents the distance between the ith and jth sphere in the

reference system of the sensor. Ks and Kh are the known spring constants of the soft

and hard springs, respectively. The seven unknown parameters are: the pan angle θ,

the tilt angle α, the displacement of the soft tissue in the points of contact, dti with

(i = 1...4) and the stiffness of the soft surface Kt, and are collected in the vector of the

problem’s unknowns, x = [Kt, dt1, dt2, dt3, dt4, α, θ]
T . Solving the system of nonlinear

equations F (x), in Equations (5.5), involves finding a solution such that every equation

in the nonlinear system is equal to zero, i.e. find a vector x? such that F (x?) = 0. The

major algorithms used for solving nonlinear equations proceed by minimizing a sum of

squares of the nonlinear equations, which is equivalent to a unconstrained nonlinear least

squares problem.

5.5.2 Soft Tissue Characterisation

The Levenberg-Marquardt algorithm (LMA) is applied here to solve Equation (5.5).

This algorithm is an iterative optimisation technique for solving nonlinear systems of

equations and least squares problems. To solve the convergence issues of the iterative

process, the LMA combines the advantages of the gradient-descent and the Gaussian-

Newton methods [127]. The LMA provides the best compromises between complexity,

stability and speed. A detailed analysis of the LMA is presented in Appendix C. The

optimization method is used to find at each iteration the update rule of the vector x:

xk+1 = xk − (H(xk) + λkdiag(H(xk)))
†J(xk)

TF (xk), (5.6)

where J(xk) is the Jacobian matrix of F (x) evaluated at xk, H(xk) ≈ J(xk)
TJ(xk) is

an approximation of the Hessian matrix and λk represents the non-negative damping

factor that is adjusted at each iteration to interpolate between the gradient descent and

the Newton’s method. Using high values for λ favours gradient descent, whereas using

lower values favours Newton’s method. The damping factor λ is increased by a factor of
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Algorithm 2 Iterative procedure solving Equations (5.5): LMA
Input:

F , the cost function
x0, an initial solution

Output:
x?, a local minimum of F

1. Begin
2. k ← 100
3. λ← 20
4. ε← 0.0001
5. µ← 10
6. xk ← x0

7. while g > ε and k < kmax do
8. Find λ such that (H(xk) + λkdiag(H(xk)))† = J(xk)TF (xk)
9. xk+1 ← xk + λk
10. if F (xk+1) < F (xk) then
11. xk ← xk+1

12. λ← λ
µ

13. else
14. λ← λµ
15. end if
16. k ← k + 1
17. end while
18. return xk
19. End

µ, if ‖F (xk+1)‖ is greater than ‖F (xk)‖ and decreases by a factor of µ otherwise. The

proposed method converges when the cost function, g = ‖F (xk+1)− F (xk)‖, is less than
a chosen threshold ε. Then, the current vector xk+1 is returned as the best-fit solution

x∗.

In order to be able to find a solution to the unknown parameters and to compute the

stiffness in real-time, in the implemented algorithm, the threshold ε and the maximum

number of iterations kmax are setted to 0.0001 and 100, respectively. The final threshold

value was found through a trial-and-error approach. Using this threshold, the algorithm

typically needs less than seven iterations to find a solution with high accuracy. The value

of µ used to adjust the damping parameter at each iteration is equal to 10. Algorithm 2

illustrates the procedure used to solve the system presented in Equation (5.5) .

5.6 Experimental Results

Two different experimental scenarios were used in order to analyse the performance of the

proposed stiffness probe. In the first setup, artificial stiffness samples of known stiffness

have been used in order to evaluate the accuracy of the proposed system in computing

the stiffness of the springs embedded in the samples. In the second scenario, the hand-

held device has been used to manually palpate silicone phantoms presenting different
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Figure 5.5: Evaluation test setup: (a) Soft tissue model. Each artificial stiffness
sample behaves as a series of parallel springs. (b) The experimental setup. Four different
artificial stiffness samples are used to mimic soft tissue. Four identical springs are
mounted on rods in parallel and are fixed on a linear module. The samples are pushed
against the device and the stiffness of the samples is computed in real-time.

elasticity and evaluate the ability of the system in distinguishing materials that present

different degrees of stiffness.

5.6.1 Evaluation Tests with Stiffness Samples

The linear elastic model was used here to mimic human soft tissue. In this model the

tissue is considered as a homogeneous, linear elastic material; the stress/strain relation-

ship is assumed to be linear too. Although biological tissues are much more complex,

this behaviour was found coherent for a relative strain under 10 to 15% [115]. Under this

assumption the material properties can be described using Hooke’s law. The complexity

of the model depends on the deformation range: under geometrical linearity, (i.e. small

deformations), the Green-Lagrange equation that relates stress and strain tensor is lin-

earised by neglecting the second order term [128]. Therefore, in this model a series of

parallel springs [129] can be used to represent the soft tissue.

Artificial stiffness samples, each embedding four parallel springs in series, have been

designed. Each sample contains four rods with self-centring shaped heads and their

movements are related to four linear springs with identical spring constants. During the

experiments, the stiffness probe was fixed on a motorised linear module and the artificial

stiffness samples were moved towards the indenters as shown in Figure 5.5 (b). In all

the experiments, the motor was moving by 18mm ; forces, displacements and stiffness

were computed using the image tracking algorithm and solving Equation 5.5. Table ??

summarises the results obtained for the four artificial stiffness samples. As the stiffness
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K K̄ σ RMSE Accuracy

0.29 0.29 0.01 0.01 99.23%

0.37 0.38 0.02 0.02 98.87%

0.62 0.65 0.03 0.05 96.54%

0.63 0.66 0.01 0.04 96.26%

Table 5.1: Summary of the evaluation tests performed using the test rig shown in
Figure 5.5 (b). K represents the real stiffness of the springs used for the test, K̄ is the
mean of the stiffness computed solving Equation (5.5), σ and RMSE are the standard
deviation and the root mean square, respectively. The last column represents the
percentage of accuracy of the proposed probe in computing the stiffness of the artificial
stiffness samples.

of the springs embedded in the samples increases so does the measurement error. When

interacting with “stiff” objects, the difference in displacement between the “softer” and

the “stiffer” springs embedded in the hand-held device decreases reducing the accuracy

of the estimation. Thus, the computation of the stiffness depends on the resolution of

the camera which is used to track the spherical features. The resolution of the stiffness

sensor is 12.7 pixels/mm, i.e. if the indenter moves by 1mm, the corresponding centroid

in the image will move by 12.7 pixels.

The experimental results and the stiffness distribution for the four artificial samples are

shown in Figure 5.6. The proposed system is able to compute the stiffness of the springs

embedded in the lower stiffness sample w i.e. 0.29N/mm with an accuracy of over 95%.

To evaluate the multi-directional capability of the system, the stiffness probe was man-

ually pushed against the artificial stiffness samples. The experimental results, shown in

the Figures 5.7, 5.8, 5.9 and 5.10, demonstrate that the computation of the stiffness

does not depend on the orientation at which the device approaches the samples: there

is no correlation between the computation of the stiffness and the pan and tilt angles of

the probe.
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(d) Sample stiffness: 0.37N/mm
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Figure 5.6: Evaluation tests results of the artificial stiffness samples. The figures on
the left column show the measured stiffness; the distribution of the data for each sample
is shown on the right column.
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Figure 5.7: Manual tests for the artificial stiffness sample with spring constant of
0.29N/mm: Correlation between the measured stiffness and the orientation of the
hand-held probe, which is defined by the pan angle θ (a) and the tilt angle α (b). (c)
Stiffness distribution of the data during the experiment. (d) The stiffness variation in
function of the two angles. The mean of the stiffness and the standard deviation are
0.29 and 0.01, respectively.
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Figure 5.8: Manual tests for the artificial stiffness sample with spring constant of
0.37N/mm: Correlation between the measured stiffness and the orientation of the
hand-held probe, which is defined by the pan angle θ (a) and the tilt angle α (b). (c)
Stiffness distribution of the data during the experiment. (d) The stiffness variation in
function of the two angles. The mean of the stiffness and the standard deviation are
0.36 and 0.01, respectively.
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Figure 5.9: Manual tests for the artificial stiffness sample with spring constant of
0.62N/mm: Correlation between the measured stiffness and the orientation of the
hand-held probe, which is defined by the pan angle θ (a) and the tilt angle α (b). (c)
Stiffness distribution of the data during the experiment. (d) The stiffness variation in
function of the two angles. The mean of the stiffness and the standard deviation are
0.62 and 0.06, respectively.
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Figure 5.10: Manual tests for the artificial stiffness sample with spring constant of
0.63N/mm: Correlation between the measured stiffness and the orientation of the
hand-held probe, which is defined by the pan angle θ (a) and the tilt angle α (b). (c)
Stiffness distribution of the data during the experiment. (d) The stiffness variation in
function of the two angles. The mean of the stiffness and the standard deviation are
0.68 and 0.08, respectively.
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5.6.2 Evaluation Test with Silicone Samples

It is shown in section 5.6.1 that the proposed stiffness probe can compute the stiffness of

linear elastic materials, i.e. springs, with high accuracy. To further evaluate the ability of

the sensor to distinguish materials presenting different degrees of stiffness, the hand-held

device was tested using four silicon phantoms with different stiffness values. Silicone is

a non-linear elastic material. For small displacements, however, the response is approxi-

mately linear [33, 130]. The experimentally tested silicone materials are: Oomoo R©30A,

Dragon Skin R© 20A, Ecoflex R©00-50 and Ecoflex R©00-10 by Smooth-On. The hardness

of plastic is measured by the Shore R© test which evaluates the resistance of the materials

to indentation. The silicone rubber used belongs to two Shore scales: the A00 scale,

which is used for rubbers and gels that is very soft, and the A scale, which measures the

hardness of flexible rubbers that ranges from very soft and flexible to hard with almost

no flexibility. The Shore hardness is an indirect measure of the stiffness of elastomeric

materials, i.e. a low hardness value is correlated to a low stiffness value. Analogously,

as the Shore hardness increases so does the stiffness of the materials but this relation is

not directly proportional.

The elastic properties of a specimen can be determined by analysing the elastic-plastic

contact between the specimen and a spherical indenter. The stiffness of the specimen,

which is function of the indentation depth and the elastic modulus of the material, is

estimated during the unloading process. If h is the indentation depth generated by the

contact between a spherical indenter of radius R and a specimen with elastic modulus E

and Poisson ratio v, the load-displacement relation can be expressed as:

P =
4

3

E

1− v2

√
Rh3; (5.7)

the unloading stiffness of the specimen is obtained by differentiating this equation with

respect to h [131, 132]:

S =
dP

dh
=

2E

1− v2

√
Rh. (5.8)

The value of the stiffness at the maximum depth, hmax, is estimated by replacing h with

hmax in equation 5.8. The tips of the designed stiffness probe can be approximated to

spheres with diameter of 0.38mm. The maximum indentation depth of this prototype

is 30mm. However, this value can be customised by changing the length of the springs

and the indenters embedded in the sensor.

During the experimental tests, the hand-held stiffness probe has been used to indent the

silicone phantom as shown in Figure 5.11(a). The test results in Figure 5.11(b) show that

our sensor is able to successfully distinguish materials with different stiffness levels even

if the difference is relatively small as for example when comparing Dragon Skin R©20A to



Chapter 5. Multi-directional Stiffness Probe for Medical Diagnosis 90

(a)

0 20 40 60 80 100 120
0

1

2

3

Time [s]

St
iff
ne

ss
[N

/m
m
]

(b)

0 1 2 3
0

100

200

Stiffness [N/mm]

Fr
eq
ue
nc
y

(c)

Ecoflex R© 00-10 Ecoflex R© 00-50
Dragon Skin R© 20A Oomoo R© 30A

Figure 5.11: Evaluation tests with four different types of silicone materials: the real-
time image processing and stiffness computation of the probed material are shown in
(a); the discrimination between the different stiffness values of the silicone samples is
visible in the coloured plot and the histogram presented in (b) and (c), respectively.
The four colours in (b) and (c) represent the different stiffness values of the material:
the pink colour is associated to the Oomoo R©30A, the red to the Dragon Skin R© 20A,
the green to the Ecoflex R©00-50 and the blue to the Ecoflex R©00-10.

Oomoo R© 30A - a scenario in which manual palpation fails. The values associated to those

two materials are represented in red and pink in Figure 5.11(b) and Figure 5.11(c). The

stiffness probe fails to distinguish between those two materials in 8% of cases. The elastic

properties of the silicone materials used during the tests and the experimental results

are shown in Table 5.2. The stiffness value at the maximum indentation depth, Khmax ,

which is computed using equation (5.8), represents the benchmarking reference used to

evaluate the accuracy of the stiffness values computed by solving Equation (5.5). The

error in the measurements increases as the silicone phantom hardness increases. When

interacting with hard material, the difference in displacement between the “softer” and

the “stiffer” springs embedded in the hand-held device decreases, reducing the accuracy

of the estimation. Hence, the computation of the stiffness depends on the resolution of

the camera which is used to track the spherical features and the spring embedded in the
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Material Khmax [N/mm] K̄ [N/mm] σ RMSE %

Ecoflex R© 00-10 0.365 0.355 0.063 0.026 96.6

Ecoflex R© 00-50 0.657 0.675 0.080 0.029 90

Oomoo R© A-30 1.095 1.034 0.197 0.128 76.7

Dragon Skin R© A-20 2.190 2.033 0.203 0.202 66.5

Table 5.2: Properties of the experimentally tested materials and summary of the
evaluation tests performed using the test rig shown in Figure 5.11(a). Khmax

represents
the stiffness computed using Equation (5.8), K̄ is the mean of the stiffness computed
solving Equation (5.5), σ and RMSE are the standard deviation and the root mean
square, respectively. The last column represents the percentage of accuracy of the
proposed probe in computing the stiffness of the silicone phantoms.

probe.

5.7 Discussion and Conclusions

In this chapter, the stiffness sensing principle, derived in Chapter 3, has been used to

develop a multi-directional stiffness probe for medical palpation. The proposed sensor

is able to estimate the stiffness of soft tissues independently of the orientation at which

palpation is performed. Experimental results show that the sensory system can success-

fully distinguish between materials of different stiffness values, thus, it can potentially

be used to detect tumours and suspicious masses, which are generally stiffer than the

surrounding healthy soft tissues. The working range and resolution of the stiffness probe

can be easily customised by replacing the springs embedded in the sensor, changing the

distance between the camera and the spherical features or using a camera sensor with

different resolution. If used for medical diagnosis, it can help clinicians to obtain valuable

information about the presence of a mass inside a soft tissue organ. Simple modification

in the design or the use of different fabrication material allow the customisation of the

sensor’s range and accuracy, which can be tailored according to the desired application.

Miniaturised versions of the probe can be integrated in endoscopic cameras [126] and

used for diagnosis in minimally invasive scenarios.



CHAPTER 6

Multi-directional Stiffness Sensor for Endoscopic

Examination

This chapter presents a preliminary design of a clip-on sensor for endoscopic cameras.

The proposed device is used to palpate anatomical areas during medical examination.

Multiple cantilever beams are indented into soft tissue. The movements of the cantilevers

result in shape variations of the related visual features in the endoscopic camera images.

Beams of different elasticity are integrated into the mechanical structure of the sensor

enabling the estimation of the stiffness properties of the examined soft tissue by tracking

the movements of the features in the image frames. This stiffness sensor is light, cheap,

disposable, passive and easy to integrate on the tip of a surgical endoscopic camera. The

additional sensing mechanism is very small, increasing only slightly the diameter of the

endoscopic camera allowing it to be inserted into the human body through a standard

trocar port.

92
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6.1 Introduction

An endoscope is a medical instrument used to examine the interior of a hollow organ

or cavity of the body. Endoscopes are like medical telescopes, and unlike other imaging

techniques, such as MRI and CT, are inserted directly into the body. Practitioners use

endoscopic instruments to inspect a specific part of the body, to diagnose a disease or

find the cause of a patient’s symptoms. Endoscopes are not only used for diagnostic

purposes, but also for treatment or as part of a procedure aiming to prevent future

health problems [120, 133]. There are different types of endoscopes of varying lengths

and flexibility, each suited to the examination of a specific area of the body; for instance,

the abdomen is examined by a laparoscope, the joints by an arthroscope, the stomach

by a gastroscope, and so on [134]. Endoscopic instruments have considerably improved

minimally invasive procedures and today they play an important role in medicine [135].

However, it has been proven that endoscopy would become more effective if it were

possible for endoscopes to relay both visual and tactile information [108].

Endoscopes are a key component of minimally invasive interventions. The benefits of

minimally invasive procedures have been well established. These include smaller inci-

sions (10 − 15 mm in diameter), fewer complications, shortened postoperative recovery,

reduced tissue trauma and postoperative pain. As a result MIS is cost-effective for both

hospitals and patients [13, 14]. The improvements in patients’ mental and physical qual-

ity of life have been analysed and statistically proven in [136]. During minimally invasive

procedures, clinicians make several small incisions on the patient’s skin, one of which

is usually reserved for the endoscopic camera. Images from the endoscopic camera are

projected onto monitors in the operating room. Thus, the medical team can see a clear

and magnified view of the analysed anatomical area. Other instruments are inserted in

the other openings and used to explore, remove or repair internal body parts. Notwith-

standing all the advantages that minimally invasive procedures brought into the clinical

settings, there is still a lack of haptic (force and tactile) feedback [34, 137] which can

enhance the outcome of minimally invasive examination for tumour localization.

Nowadays, the force applied to soft organs during minimally invasive procedures can

only be estimated through visual feedback by observing the deformation of the tissue in

the displayed camera images. Identification of abnormalities can be cumbersome for an

inexperienced practitioner, while the lack of direct palpation during minimally invasive

procedures may lead to insufficient feedback and errors. In response to the current

state of minimally invasive interventions, many force and tactile sensing technologies

for minimally invasive procedures have been developed [29]. However, problems in size,
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Figure 6.1: Beam Stiffness Sensor mounted on the tip of a medical endoscopic camera

compatibility with the medical settings, sterilisability, accuracy and reliability, make

these systems unsuitable for real applications.

In this chapter the multi-directional sensing principle presented in chapter 5 has been

adopted and embedded to a surgical endoscopic camera. In order to keep the size of

the device compatible with the requirements of minimally invasive procedures, the com-

mercial springs that have been used in the development of the previous stiffness sensors

have been replaced with elastic beams, reducing the sensor’s size significantly. The new

design not only makes the sensor lighter but also easier to remove. Additionally, the

sensory system is passive and does not require any electronics or an additional trocar

port. The addition of the proposed sensor enhances the functionality of the endoscopic

camera which can now be used both for visualisation and as a diagnostic instrument.

Additionally, by attaching an Aurora magnetic tracker to the sensor, the estimated stiff-

ness can be combined with the pose of the tracker to generate and record a colour-coded

stiffness map of the examined soft surface. A schematic representation of the system is

shown in Figure 6.1.

6.2 Methodology

The clip-on stiffness sensor has been fashioned for the medical rigid endoscope ENDO-

CAM Performance HD by Richard Wolf GmbH (30 fps at 60 Hz). The sensor is attached

to the tip of the endoscopic camera by a clip so as to be easy to fasten or remove. The

overall sensory system, composed by the endoscopic camera and the designed mechanism,

can be inserted into the human body through a standard trocar port of 10−15 mm diame-

ter, thus it fits the size requirements of minimally invasive procedures. The sensor’s range

depend on the design, i.e. the dimensions of the beams and the mechanical properties of
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Figure 6.2: Calibration device: the motorised linear module pushes the ATI Nano 17
Force/Torque sensor against the stiffness sensor whist recording the interaction forces
and the displacement.

the material used to fabricate it. In order to have a system compliant with endoscopic

procedures different prototypes have been designed and the response to normal forces

has been evaluated.

The finite element analysis (FEA) is a numerical technique that allows the evaluation of

the stress, strain and displacement that each point of a solid material exhibits when it is

subject to a given force. These techniques has been used to estimate how normal forces

will affect the material and design of the prototypes. The FEA simulations have been

performed using SolidWorks Simulation toolbox.

The simulation results have been compared with the results obtained using a calibration

device which ensures that the endoscopic camera is at a steady state during contact. The

system employs a motorised linear module which embeds the ATI Nano 17 Force/Torque

sensor, as shown in Figure 6.2. By sliding the linear module, and thus the Force/Torque

sensor, against the sensor prototype, the displacements of the beams and the interaction

forces generated by the contact are recorded in real-time. When normal forces act on

the tip sensor, the beams will move and bent. The movements of each beam in the

three dimensional space are related to the movements of the centroid associated to the

corresponding visual feature in the camera images. The same sensing principle presented

in Chapter 5 is used here to estimate the stiffness of the soft material during endoscopic

examination.
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Figure 6.3: CAD Drawings of the L-shaped stiffness sensor: (a) Exploded view of the
sensor and (b) sensor assembled at the tip of an endoscopic camera.

6.3 Mechanical sensor structure and analysis

Three different sensor prototypes have been designed. The first two are made of ABS

material and have been manufactured using a rapid prototyping machine. These sensors

suffer from certain limitations, such as the force and beam deflection ranges, To address

those a third prototype employing nitilon beams has been developed and tested.

6.3.1 ABS Cantilever Beam

The entire ABS cantilever beam sensor consists of only two parts manufactured of ABS

material using a rapid prototyping machine (Project HD-3000 Plus, 3D Systems). The

fabrication process is simple; the sensor is low cost and can be easily modified to suit the

tip of any camera. The high resolution of the prototyping machine (16µm of accuracy

on the z-axis and 42µm on the x and y-axis) allows miniaturisation which is essential in

order to use the device in MIS.

The sensor consists of two semi-cylindrical symmetrical parts with a cylindrical cavity

along the central axis which is used to mount the device onto the camera tip. Each part

has two L-shaped cantilever beams with an indenter and a small coloured sphere. The

exploded and assembled views of the L-shaped sensor are shown in Figure 6.3. When
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the device palpates soft tissue and forces are exerted on the indenters, the beams are

bent resulting in a displacement of the related sphere towards the camera. Three beams

have identical cross sections, hence identical elasticity. The fourth beam is printed with

a bigger cross section and thus has higher elasticity than the others. In the default

position, the four beams are within the same plane at an equal distance from the centre

of the image plane. Different sizes of indenters and spheres have been tested in order

to arrive at a sensor which is as small as possible and robust enough to endure at least

a normal force of 1 N. From this analysis the following dimensions for the sensor have

been chosen: overall outer diameter of 18 mm, spheres radius of 2 mm, the indenters have

a squared tip with area of 2.25 mm2, perimeters of 6 mm and length of 4.25 mm. The

cross section is 2.53 mm for the stiffer beam and 1.96 mm for the soft beams. The overall

length of the sensor is 25.28 mm.

At the side of the sensor, a fixture is created which accommodates a 6 degree of freedom

(DoF) Aurora magnetic tracker. Using the principle presented in Chapter 5, it is possible

to retrieve stiffness data from the sensory device and also map the tissue properties to

positional information of the Aurora sensor.

Finite Element Analysis and Calibration

The prototyping material used to fabricate the sensor is acrylonitrile butadiene styrene

(ABS) with a yield strength of 44 MPa. The simulated material properties have been

extracted from the material data sheet. During the simulation, normal forces have been

applied to the tip of the four indenters to evaluate partial and global displacements.

The FEA results are shown in Figure 6.4. When the same force is exerted on each beam,

the three beams with higher elasticity are displaced more than the beam with lower

elasticity. In Figure 6.5, the simulation results are compared with the results obtained

Figure 6.4: Finite Element Analysis of the L-shaped stiffness sensor: Forces (pink
arrows) are exerted perpendicular to the indenter surfaces. The displacement along the
vertical axis (a) is half of the displacement along the horizontal axis (b). In this case
the torsion effect causes the beams to touch each other.
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Figure 6.5: Simulation and calibration results of the L-Shaped stiffness sensor: the
interaction force and the relative displacements along the vertical axis for the soft beam
(a) and the stiffer beam (c) and along the horizontal axis for the soft beam (b) and the
stiffer beam (d).

using the calibration device. The measured forces for a single soft and stiff beams are

plotted against the displacement in z-axis. The results in Figure 6.5 (a) and (c) show

that both the stiffer and the softer beams will exhibit only small displacements along the

axis in which the force is applied. However, due to torsion, a considerable displacement is

observed in the lateral axis, as shown in Figure 6.5 (b) and (d). This unwanted movement

which effects the mechanism is due to the sensor structure and the fabrication materials.

The FEA results in Figure 6.4 (b) shows the torsion effect which will cause the collision

of the beams.

The relationship between measured force and displacement is linear up to 1 N. The yield

point is reached at that force value. In this case, the maximum displacement of the

beams is only 0.3 mm. The linear fitting for the soft beam has a slope of 1.2 with a Root

Mean Squared Error (RMSE) of 0.054; the stiff beam has a slope of 2.66 and a RMSE

of 0.119.

If the interaction force is less than 1 N, the sensor will return to its original position after

the load is removed. Beyond this displacement, the stress-strain curve is not linear and

the beams may fracture.
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Figure 6.6: C-shaped stiffness sensor: CAD drawings showing the exploited view (a)
and the assembled view (b). The results of the FEA simulation (c). The pink arrows
indicate the direction of the force.

The torsion effect in the first ABS prototype is caused by the squared indenters which

are interacting with the soft tissue. To eliminate these unwanted movements a C-shaped

prototype has been designed. The new sensor is a modification of the first prototype in

which the spheres are used to directly indent the soft tissue. Figure 6.6(a) and (b) illus-

trate the exploded and assembled views of the C-shaped prototype. The outer diameter

of this sensor is 18 mm, the spheres have a radius of 1.45 mm and area of 21.36 mm2, a

perimeter of 1.58 mm, and a length of 9.11 mm; the cross section is 2 mm for the stiff

beam and 1.70 mm for the soft beam. The total length of the sensor is 22 mm.

Although this new sensing prototype does not present any lateral movements, it is too
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Figure 6.7: Calibration and simulation results of the C-shaped stiffness sensor: The
displacements of the beams along the vertical axis in simulation and calibration of the
soft beam (a) and the stiffer beam (b).
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stiff and thus not suitable for medical applications. The results of the FEA simulation

are shown in Figure 6.6(c). In Figure 6.7 (a) and (b), the simulation results are compared

with the output of the calibration. The stiffer and the softer beams will exhibit only

small displacements along the vertical axis on which the force is applied. The relationship

between the applied force and displacement of the stiffer beam has a linear trend up

to 0.6 N. The yield point is reached at that force value. In this case, the maximum

displacement is only 0.16 mm for the soft beam and 0.15 mm for the stiff beam. The

linear fitting for the soft beam has a slope of 1.9 with a RMSE of 0.034; the stiff beam

has a slope of 3.4 and a RMSE of 0.059.

6.3.2 Nitinol Cantilever Beam

The problems and limitations of the ABS prototypes, e.g. the range of force and dis-

placement, are not only due to the design, but also due to the mechanical properties of

the fabrication material. A material with different properties, i.e. steel or aluminium,

could be used to fabricate the beams embedded in the sensor and to have the desired

force range and resolution. Nitinol is a complex, superelastic material whose properties,

such as MRI compatibility and corrosion, make it an attractive developing material for

medical devices used in minimally invasive intervention and endoscopic procedures [138].

Thus, a new prototype, which employs cantilever beams made by a metal alloy of nickel

and titanium (nitinol) with a Young Modulus of 40 GPa, has been manufactured.

The exploded and assembled views of the sensor are shown in Figure 6.8. The sensor

consists of two semi-cylindrical symmetrical parts with a cylindrical cavity along the

central axis which is used to mount the device onto the camera tip. Each part has two

Figure 6.8: CAD Drawings: (a) Exploded view of the sensor, (b) sensor assembled
at the tip of an endoscopic camera, (c) camera field of view.
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Figure 6.9: Nitilon cantilever beam for endoscopic camera : The displacements of the
nitinol beams along the vertical axis in simulation and calibration of the soft beam (a)
and the stiffer (b).

rectangular cantilever beams tapered with an angle of 40◦ as shown in Figure 6.8. Three

beams have identical cross sections, hence identical elasticity. The fourth beam has a

bigger cross section, thus it has a lower elasticity than the others. When the beams

palpate soft tissue they bent towards the camera, thus they change their positions in

the camera images. An image processing algorithm tracks the movements of the visual

beams which are related to the bending in the 3D space. The default positions of the

four beams are within the same plane are at equal distance from the centre of the image

plane. Therefore, due to the similarity between the beams and springs used in the sensor

developed in Chapter 5, the sensing principle can be fashioned and adopted to model

the cantilever sensor. The outer diameter of this prototype is 15 mm. The soft beams

are 6.29 mm in length, 2.38 mm2 in width and 0.25 mm in height. The stiffer beam is

6.29 mm long with a width and height of 2.9 mm and 0.40 mm, respectively. The total

length of the sensor is 16.59 mm. Exploded and assembled views of the sensor are shown

in Figure 6.8. The relationship between the measured force and displacement has a linear

trend up to 1.8 N. A normal force of 0.15 N will generates a displacement of 1 mm of the

soft beams and 0.5 mm of the stiff beam. The linear fitting for the soft beam has a slope

of 0.8 with a RMSE of 0.023; the stiff beam has a slope of 1.3 and a RMSE of 0.035.

The nitilon sensor has higher sensitivity and is smaller in size than the ABS prototypes.

The sensor’s diameter is only 15 mm, thus it is able fit in a standard trocar port. Ad-

ditionally, the occlusions of the camera’s field of view is minimal, thus it allows a wide

visualization of the anatomical area. The comparison between simulation and calibration

results are shown in Figure 6.9. Both beams bend consistently even when the applied

normal force is small. The elasticity of the soft beam is twice as high as the elasticity

of the stiffer beam. The sensor range and resolution can be customised by making the

cantilever beams out of a material with different Young Modulus, i.e. different elasticity.
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6.3.3 Tracking of the cantilever beams

Figure 6.10: Image processing algorithm for the nitinol cantilever beam stiffness sen-
sor. (a) Position of the beams in the image at the maximum displacement (indentation
of 2.5 mm). (b) Tracking of the centroid in their ROI during indentation.

The analysis of the results from the different sensor prototypes showed that the niti-

nol cantilever beams have higher sensitivity and better force/displacement ranges than

the ABS prototypes. Hence, this sensor was chosen and adapted to the stiffness sens-

ing mechanism developed in Chapter 5. The image processing algorithm evaluates the

relationship between the bending of the cantilevers and their visual appearance in the

images. The image has been subdivided into four Regions of Interest (ROIs), as shown

in Figure 6.10, where the tracking of each beam is performed. The trajectories generated

by the centroids of each visual feature during indentation are shown in Figure 6.10 (b) .

The results of the calibration tests performed in Chapter 6.3.2 demonstrate that the

relationship between the displacement of the nitinol beams and the applied normal force

is linear (Figure 6.9). The results of the image processing algorithm also show that

there is a linear relationship between the position of the centroids in the image and

the displacements of the beams, Figure 6.11 (a) and (b). The correlation between the

positions of the centroids and the displacements of the beams allows to directly link the

variation of the centroid to an applied force, Figure 6.11 (c) and (d). For instance, the

soft beam responds to a normal force of 0.1 N with a displacement of 0.6 mm, Figure 6.9

(a). This corresponds to a movement of 10 pixels of the centroid of the corresponding

visual beam, Figure 6.11(a). The relationship between the movements of the beams and

the variation of the centroids in the images allows to directly compute the applied force

as a function of the beams’ centroids, Figure 6.11(c). Thus, for small indentation, the

beams behave as springs. Therefore, the mathematical model derived in Chapter 5 can

be adopted to estimate the soft tissue stiffness as function of the relative forces which is

derived through the tracking of the centroids of the beams.
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Figure 6.11: Nitinol beam stiffness sensor results as a function of the visual appear-
ance in the camera images. Relation between tracked feature centroid and displacement
of the soft beam (a) and stiffer beam (b). The variation of feature centroids due to an
external force for the soft beam (c) and stiffer beam (d).

6.4 Discussion and Conclusions

In this chapter, the multi-directional vision-based stiffness sensing principle, derived in

Chapter 5, has been used to develop a clip-on stiffness sensor for endoscopic examination.

The sensor employs cantilever beams which are used to palpate soft tissues. The bending

of the beams, generated by the interaction with external soft surfaces, is captured by the

endoscopic camera. A vision processing algorithm uses the endoscopic camera’s images

to compute the interaction forces which are then used to model the stiffness of the soft

tissue.

To be compatible with minimally invasive procedures, the endoscopic sensor should be

small enough to be attached to the camera tip and still fit in a standard trocar port.

Additionally, the sensor should respond to normal forces up to 1 N with a considerable

displacement along the vertical axis. Three different prototypes have been designed

and their response to normal forces has been evaluated in simulation and by using a

customised calibration device. The mechanical drawing of the developed sensors is shown
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in Appendix D. The first two prototypes have been manufactured by using ABS material.

Due to the limitations of these sensors, a third prototype, which employs beams made

of nitilon, has been developed. The results of the investigation demonstrated that the

proposed system can be successfully integrated with a medical endoscopic camera and

used to estimate the stiffness of anatomical areas during minimally invasive procedures.

Furthermore, different materials could be used to manufacture the sensor and customise

its range and resolution. Table 6.1 summarises the findings of the analysis carried out:

the L-shaped prototype is effected by torsion and respond to a normal force by translating

along the horizontal axis. Both ABS sensors prototypes respond to normal force with

small displacements. However, the range and resolution of the endoscopic sensor can be

customised by using different manufacturing materials. Nitinol alloy has been used to

manufacture the cantilever beams embedded in the sensor prototype. The mechanical

properties of this material improves the force/displacement range and eliminates the

torsion which affected the ABS prototypes. Hence, this sensor has been further explored

and used to find the relationship between the movement of the beams and their visual

appearance in the camera images. The results of this investigation demonstrate that there

is a linear relationship between the movements of the beams in the three dimensional

space and the movements of the correlated visual features in the images. This findings

demonstrates that‘ the interaction force can be directly estimated as function of the

movements of the beams in the images. Furthermore, for a range of force up to 1N the

nitinol cantilevers behaves like linear springs, hence the mathematical model derived in

chapter 5 can be directly adopted to model this device.

L-Shaped C-Shaped Nitinol
F 1 1 0.15

∆vxsoft
∆vstiff
∆hsoft
∆hstiff

0.3 0.2 1
0.15 0.15 0.50
0.8 - -
0.10 - -

Table 6.1: Properties of clip-on stiffness sensor: Applying a normal F to the can-
tilever’s beam, they will exhibit an horizontal displacement of Dh and a vertical dis-
placement of Dv. The table shows the vertical and horizontal displacements of the soft
and stiff beams for each developed prototype.



CHAPTER 7

Real-time Mapping of Soft Tissue Stiffness

The technological advances in medical robotics are continuously revolutionising the medi-

cal setting with the introduction of sophisticated equipment and complex signal processing

methodologies. However, to be approved by the medical community the new systems should

be ergonomic and intuitive. For instance, a medical palpation device should include com-

puterised algorithms able to interpret the information acquired during the examination

and to develop an intelligible representation of it which has to be conveyed to the clin-

icians. An explicit and intuitive representation of the measured soft tissue stiffness is

obtained by a real-time colour codification. Hence, the stiffness distribution of anatom-

ical surfaces can be stored during the medical examination in a colour-coded stiffness

map. This map will help the clinicians to assess the stiffness distribution of the overall

examined area, thus to easily detect abnormalities.

105
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7.1 Introduction

Stiffness mapping techniques aim to measure the stiffness values of a soft object across

a wide region and relate individual stiffness measurements to their spatial occurrence

along the examined surface. These methodologies are employed in medical diagnosis

to visualise and record the mechanical properties of the anatomical areas. Palpation

instruments are able to sense mechanical properties of external body parts, i.e. breast,

or inner organs, during minimally invasive and robotic inspection procedures by analysing

the reaction of the tissue to a contact. These instruments have been widely explored in

the last few decades [139]. The aim of these instruments is to convey the information

acquired through the sensing mechanism in an intuitive and intelligible way to clinicians.

The colour-coded tissue stiffness map is the most used visualization method.

Tracking devices are essential components of medical inspection systems. These de-

vices are used to track the 3D position of the instrument in relation to the patient’s

anatomy. Optical tracking systems are very accurate and can work in a relatively large

workspace. However, the line-of-sight between the tracking device and the instrument

has to be maintained during the procedure. Therefore, electromagnetic tracking systems

(EMTS) that have no line-of-sight requirements have been quickly adopted in medical

examinations [140].

In robot-assisted procedures, the medical instrument is positioned on the end-effector

of the robotic arm. In this way, the kinematic of the robot can be used to retrieve the

position of the tool-tip and track its movements during the examination. Therefore, the

choice of the tracking system is application dependent and requires an evaluation of the

desired working volume and accuracy requirements.

To meet these needs, the developed multi-directional stiffness probe has been integrated

with an electromagnetic tracking system as well as a robotic arm. Thus, by tracking

the 3D position of the probe, stiffness values are recorded and a real-time colour-coded

stiffness map of the analysed tissue is generated.

7.2 Methodology

In order to map the stiffness of the soft tissues in real time when performing palpation

with a medical instrument, the pose of the device needs to be measured and recorded.

Different technologies can be used to assess the 3D position of an object in real time,

e.g. magnetic, optical and visual motion tracking systems. Moreover, in medical systems

employing robotic platforms, i.e. teleoperation, the device is attached to the end-effector
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Figure 7.1: NDI Aurora Tracking System: (a) The planar field generator which
can be mounted in a positioning arm for precise placement; the system control unit
(SCU) controls the field generator, collects tracking data, calculates the position and
orientation of each sensor and interfaces with the PC; the sensor interface unit (SIU)
amplifies and digitalises the electrical signals from the sensor while minimising potential
data noise. (b) The 6 DOF micro sensor and reference tool.

of a robot arm. Thus, the kinematic of the robot is used to retrieve the pose of the tool

attached to its end-effector.

The multi-directional stiffness probe, presented in Chapter 5 has been integrated with a

commercially available tracking system and used to evaluate the stiffness of soft tissues.

Hence, the pose of the device is used to record a colour-coded stiffness map in real-time.

In addition, to evaluate the performance of the proposed sensory mechanism in robot

assisted technologies, the device has also been fixed to the tip of a robotic arm, thus the

kinematic of the robot is used to map and record the measured stiffness.

7.2.1 Real time Stiffness Mapping using a magnetic motion tracking
system

When compared with the traditional optical tracking systems, electromagnetic tracking

systems are not hampered by line-of-sight limitations, so they are able to track objects

even through obstacles. Additionally, they allow the tracking of multiple targets at the

same time. Even though electromagnetic tracking systems are susceptible to distortion

from nearby metal sources and present limited accuracy, they are widely used in medical

applications. The multi-directional stiffness sensor is equipped with the Aurora system

from Northern Digital Inc. (NDI), a commercially available stand-alone electro-magnetic

tracker system for medical applications.
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Figure 7.2: Hand-held stiffness probe fixed at the tip of the robotic arm: the inter-
action with external objects generates the sliding of the indenters. Hence, the visual
features change their positions in the camera’s image. The correlation between the
indenters and the features allows for the measurement of the new positions of the in-
denters in the local reference frame. A static transformation maps the new positions of
the indenters from the local frame into the robot kinematic chain.

7.2.1.1 NDI Aurora Electro-magnetic Tracking System

The Aurora system is compliant with medical equipment safety standards, allows sub-

millimetric and sub-degree tracking with no line-of-sight restrictions, can be easily inte-

grated, and operates with medical-grade metals. Aurora uses an electromagnetic field

generator to track induction coils. The system control unit regulates the field generator

and collects data from the sensor interface units to measure the position and orientation

of each sensor. An alternating current excites the six differential coils enclosed in the

field generator and creates six induction voltages which are transmitted to the system

control unit by the sensor interface unit. As a result, the 3D position of the sensor coil

is tracked in real-time. The main components of the Aurora tracking system are shown

in Figure 7.1.

One Aurora tracker is fixed to an allocated position on the stiffness probe, as shown

in Figure 7.2(a). Thus, the position and orientation of the probe can be tracked and

recorded whilst examining a tissue area. The developed system does not use any elec-

tronic or metal sources, so there is no risk of affecting the performances of the electro-

magnetic tracking system.

The pose of each indenter at rest condition is expressed in a local reference frame which

is fixed on the stiffness probe as shown in Figure 7.2 (b). These positions are jointly

mirrored to specific positions of the visual features in the image. A static transformation
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Figure 7.3: Hand-held stiffness probe fixed at the tip of the robotic arm: the inter-
action with external objects generates the sliding of the indenters. Hence, the visual
features change their positions in the camera’s image. The correlation between the
indenters and the features allows to measure the new positions of the indenters in the
local reference frame. A static transformation maps the new positions of the indenters
from the local frame into the robot kinematic chain.

from the local reference frame into the Aurora tracker frame aTp, is used to record the

global positions and the orientation of the indenters:

tTp = tTa
aTp (7.1)

where tTa expresses the position of the tracker and aTp is the translation matrix, along

the z axis, between the tracker frame and the frame with origin on the stiffness probe.

7.2.2 Real time Stiffness Mapping using an industrial robot

The objective of using robots in medicine is to provide more accurate diagnoses and

improve the experience of patients by performing smaller and more precise interventions.
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Nowadays, robots are part of the medical equipment and used in many medical treat-

ments as well as in challenging surgeries, such as coronary artery bypass and removal

of cancerous tissue from sensitive parts of the body [141]. Generally, medical robotics

systems employ numerous arms, each arm carrying an instrument, such as a camera,

a gripper or various other surgical tools, on the tool tip. The physician controls the

robotics arms from a console that is equipped with a screen showing the surgical site

and the various instruments. Hence, he/she does not need to be in the same room, or

even in the same location as the patient. Moreover, the use of robots that are able to

perform steady and smooth movements ensure high precision and accuracy even in long

operations, as unlike physicians they do not experience fatigue and tremors. Perhaps

the downside of these innovative and sophisticated systems is that that surgeons need

to invest extensive training time in order to learn to use them. Additionally, the sense

of touch which the physician employs in open surgery is completely lost when robotic

systems are used. Therefore, in order to enhance or ameliorate the physician’s expe-

rience during robotic surgery, researchers have been exploring sensing technologies to

be attached at the tip of the robot arm. These sensors should be able to measure the

mechanical properties of anatomical areas and transmit them back to the physicians in

real time.

To evaluate the performance of the vision-based stiffness sensing mechanism in medical

robotics applications, the stiffness probe is fixed to the end-effector of the Lightweight

Arm LWA 4P by SCHUNK, an industrial 6 DOF robot arm. A multi-axis ATI force/-

torque sensor is attached to the end-effector of the robotic arm and the stiffness sensor

is fixed to the front plate to palpate silicone phantoms as shown in Figure 7.3. The

kinematics of the robotic arm are used to compute the pose of the stiffness probe while

recording the reaction forces measured by the force/torque sensor in real-time.

7.2.2.1 Kinematic Modelling of the Schunk Powerball Lightweight Arm

The Lightweight Arm LWA 4P is a reconfigurable modular robot arm composed of inter-

changeable modules, which are flexible, robust and inexpensive, compared to the fixed

structure counterparts. As a result, this robotic manipulator can be used in industry as

well as in research. This manipulator is composed of three Powerballs which are con-

nected through two links. It has a high gear ratio for each of its axes, thus it is insensitive

to gravitational loading. However, since the gearing is harmonic and the ratio is not too

high, it can still be back driven for impedance control and friction identification. The

robot arm can be used with any controller that supports multiple CANOpen devices;

here, it is used with the Robotic Operating System (ROS). Hence, the robot controller

is seamlessly integrated with the image processing algorithm to generate the real time
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Figure 7.4: Schunk LWA 4P Forward Kinematics: assigned coordinate frame for the
Denavit-Hartenberg Representation.

stiffness map.

The kinematic of a robotic arm provides an analytical description of its spatial move-

ments by relating the position and orientation of the end-effector and its joint vari-

ables. The kinematic modelling of a manipulator’s position is sub-divided into two sub-

problems: inverse and direct kinematics. The direct kinematics maps the joint angles

of the robot to a pose, that is, position and orientation, in the Cartesian space. The

inverse kinematics converts a pose in the Cartesian space into a set of joint angles. The

Denavit-Hartenberg (DH) convention defines a parametrization of each joint describing

the relative position and orientation of two consecutive links. The DH parameters are

d, a, θ, which is the input of variable of the rotational joint, and α, which is the input

variable of the prismatic joint. The transformation from one joint to the next in the

kinematic chain is defined by the four DH parameters: θ defines the rotation between

the z-axis; α defines the angle between z-axes of joints; d defines the distance along z-axis

between joints; a defines the distance along x-axis between joints. The Schunk LWA 4P

is composed by 6 rotational Powerballs, hence θ is the input variable for each set of the

DH parameters. Table 7.1 shows the DH parameters for the coordinate frame assigned as



Chapter 7. Real-time Mapping of Soft Tissue Stiffness 112

shown in Figure 7.4. The DH parameters allow the computation of each successive joint

i ai αi di θi

1 0 −π
2 0.205 θ1

2 0.35 0 0 θ2

3 0 π
2 0 θ3

4 0 −π
2 0.304 θ4

5 0 π
2 0 θ5

6 0 0 0 θ6

Table 7.1: Denavit-Hartenberg parameters for the Schunk LWA 4P: the coordinate
frame are shown in 7.4. The distance from the base to the first powerball d1 is 0.205
m, the length of the first link, a2, is 0.35 m and the length of the second link, d4, is
0.304 m.

transformation matrix, which is multiplied to derive the homogeneous transformation

matrix that expresses the pose of the end-effector in the base frame 0T6:

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6 (7.2)

where each i-1Ti has the form:

i-1Ti =


cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1

 . (7.3)

The transformation matrix which expresses the local frame with origin on the stiffness

probe into the base frame :

0Tp = 0T6
6Tp. (7.4)

Given the six joint values, [ θ1,. . . , θ6 ] and the DH parameters, the pose of the end-

effector is fully determined by the homogeneous transformation matrix 0T6. Conse-

quently, the position of the local frame with origin on the stiffness probe is obtained by
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multiplying the homogeneous matrix for the translation matrix 6Tp, which expresses a

translation along the z-axis.

7.3 Experimental Results

Manual and robotic palpations of silicone phantoms have been performed in order to

map the measured stiffness into a colour-coded three-dimensional map. The first set of

experiments was conducted to evaluate the ability of the stiffness probe to map the stiff-

ness of materials that present different elastic properties. In the second set, a customised

silicone phantom with an embedded area of different stiffness values was used to detect

stiffness changes.

During the manual palpation tests, the Aurora tracker is fixed to an allocated position

on the stiffness probe as shown in Figure 7.2(a). The movements of each indenter are

evaluated by tracking the corresponding spherical feature in the camera image. The pose

of the indenters into the local frame with origin on the stiffness probe is expressed in the

tracker reference frame by using equation 7.1. A schematic representation of the working

principle is shown in Figure 7.2(b). Equation 7.2.2.1 is used during the robotic tests to

relate the pose of the indenters with the position and orientation of the end-effector of

the robot, as shown in Figure 7.7.

The sliding of each indenter is mirrored on to the sliding of spherical features along

the horizontal axis of the camera image. Thus, the variation in position of the visual

features in the image is used to determine the movements of the indenters in the local

reference frame. The approaching pan and tilt angles, the displacements of the soft tissue

in the points of contact with the indenters, and the stiffness of the examined area are

measured in real-time using the mathematical model derived in Chapter 5.5.1, Three of

the indenters are allocated in the vertex of a triangle and one on its barycentre. The

mapping of the positions and orientations of the indenters is used to visualise and record

a triangle in a global colour-coded stiffness map. The colour of the visualised triangle is

function of the measured stiffness, i.e. light colours are associated to low values of the

soft tissue stiffness and dark colours to higher values.

The association of the stiffness of the examined area to the displayed colour in the map

allows for the easy determination of the variation of the mechanical properties of the soft

tissue. Besides, after the examination of the anatomical area, the colour-coded stiffness

map can be used to evaluate the stiffness distribution on the whole of the surface. The

sensory system works in real-time and does not require any model or prior knowledge of

the examined anatomical area.
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Figure 7.5: Stiffness mapping of homogeneous silicone phantoms: the experimental
setup. The real-time image processing and stiffness mapping of the probed material
are displayed in real-time during the examination. The stiffness values associated to
the examined areas are recorded and used to generate a colour-coded stiffness map.

7.3.1 Stiffness mapping of Homogeneous Silicone Phantoms

The hand-held stiffness probe is equipped with the Aurora reference disk tracker, as

shown in Figure 7.5, and used to palpate silicone phantoms presenting different stiffness

values while at the same time visualising and recording a colour-coded stiffness map.

Four homogeneous silicone phantoms made by different materials have been used during

these tests. The material used are: Oomoo R©30A, Dragon Skin R© 20A, Ecoflex R©00-

50 and Ecoflex R©00-10 by Smooth-On. The test results in Figure 7.6 show that our

sensor is able to successfully distinguish materials with different stiffness levels even if

the difference is relatively small as for example when comparing Dragon Skin R©20A to

Ooomo R© 30A - a scenario in which manual finger palpation fingers fails. The values

(a) (b)

Figure 7.6: Evaluation tests with four different types of silicone materials: the dis-
crimination between the different stiffness values of the silicone samples is visible in the
coloured points in (b); the post-processed stiffness map is illustrated in (c). In (b) and
(c), the four colours represent the different stiffness values of the material: the green
colour is associated with the Oomoo R©30A, the blue with the Dragon Skin R© 20A, the
cyan with the Ecoflex R©00-50 and the red with the Ecoflex R©00-10.



Chapter 7. Real-time Mapping of Soft Tissue Stiffness 115

Figure 7.7: Stiffness mapping of silicone phantom presenting different stiffness values:
The experimental setup. The stiffness probe is attached to the end-effector of the robot
arm and used to palpate the phantom. A real-time processing algorithm relates the
movements of the visual features in the camera images to the sliding of the indenters
by employing the forward kinematics of the robot arm.

associated to those two materials are represented in blue and green in Figure 7.6 (a) and

Figure 7.6 (b). The stiffness probe fails to distinguish between those two materials in

8% of cases.

7.3.2 Palpation of Silicone Phantom embedding area of different stiff-
ness

Evaluation tests have been performed using the SCHUNK Lightweight Arm LWA 4P.

A multi-axis ATI force/torque sensor was attached to the end-effector of the robotic

arm and the stiffness sensor was fixed to the front plate to palpate silicone phantoms,

as shown in Figure7.7. The forward kinematics of the robotic arm were used to com-

pute the pose of the stiffness probe while the force/torque sensor recorded the reaction

forces in real time. The silicone phantom used in this test is made of Ecoflex R©00-10

by Smooth-On, a material which is similar in its mechanical behaviour to the human

skin. The mathematical function that directly expresses forces measured in terms of

the indenters’ displacement is derived using Matlab Curve Fitting Tool, where the best

fit to the data points is found. Figure 7.8 shows the experimental results obtained from

the benchmarking sensor, the proposed visual processing algorithm and the fitted curve
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Figure 7.8: Experimental Results: the experimental data obtained from the bench-
marking sensor (blue), the output of the visual processing algorithm (green) and the
model fitting curve (red).

which is obtained using the linear function in Equation 7.5.

F (x) = p1 · x. (7.5)

The value of the parameter found was p1 = 1.3. The fit has a prediction interval of 95%

and its RMSE is 0.03.

A customised phantom presenting areas of different stiffness values as shown in Fig-

ure 7.9(a) has been used to validate the ability of the proposed system in mapping

the phantom’s stiffness in real time. The phantom mould has an embedded K-shaped

track, which is etched (2 mm depth) on the flat ABS surface, and has been filled with

Ecoflex R©00-10 by Smooth-On.

The experimental rig and the results of the tests are shown in Figure 7.9. The final

stiffness map is shown in Figure 7.9(c). Using the stiffness probe, it is possible to capture

the difference in stiffness between the embedded silicone and the K-shaped track as shown

in Figure 7.9(c) and Figure 7.9(d). For these reasons, our sensing mechanism has high

potential in applications where clinicians need to distinguish between soft and stiff tissue

areas for the detection of abnormalities.

7.4 Discussion and Conclusions

In this chapter, the multi-directional stiffness probe presented in chapter 5 has been used

in combination with an electro-magnetic tracking system and a robotic arm to create a

real time colour-coded stiffness map. Experimental results show that the proposed sensor
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Figure 7.9: Computation of the stiffness map: (a) shows the CAD model of the
phantom mould, the experimental setup is shown in (b), the post-processed map and
generated surface are shown in (c) and (d). The stiffness of the track (red) is successfully
distinguished from the surrounding silicone (green).

can successfully distinguish between materials of different stiffness values, thus, it has

the potential to detect tumours that are stiffer than the surrounding healthy soft tissue.

The obtained colour-coded stiffness map gives a clear-cut representation of the stiffness

of the examined area. Furthermore, it can be used to evaluate the stiffness distribution

of all the surface. If used for medical diagnosis, it can help clinicians to obtain valuable

information about the presence of a mass inside a soft tissue organ. That being so, it

can be potentially used for tumour localisation.



CHAPTER 8

Conclusions & Future Work

This chapter summarises and highlights the main achievements of this research. The

limitations of the vision-based stiffness sensing mechanism are also identified leading to

suggestions for future work.
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8.1 Summary of the main findings

This thesis proposed a novel vision-based sensing mechanism for soft tissue stiffness

estimation. The following conclusions are drawn:

1. A thorough and consolidated literature was presented to classify sensing devices

and technologies for medical diagnosis. The review determined that effective eval-

uation of the mechanical properties of soft tissues and accurate diagnosis highly

depends on the ability of robotic medical instruments to reproduce the sense of

touch. Medical imaging and instrumented palpation are novel technologies which

aim to replace manual palpation. However, due to some limitations, such as size,

costs, ergonomics, real-time requirements, accuracy, precision and compatibility

with the medical environments, most of the proposed solutions cannot be used in

real applications. There is a need for practical systems which are able to charac-

terise soft tissue stiffness.

2. The proposed sensing mechanism employs several elastic elements to indent soft

tissues, and a camera sensor to measure the tissue deformations. Each elastic

element is jointly linked to a geometric feature which is enclosed in the camera’s

field of view. The movements of each elastic element are retrieved by tracking the

movements of the correlated feature in the image. Moreover, knowing the elasticity

of the embedded element, the interaction force can be calculated by measuring the

feature’s displacements in the image. Experimental results demonstrate that the

model can estimate the interaction force with high accuracy.

3. A mathematical model relies on an image processing algorithm to robustly estimate

the soft tissue stiffness as a function of relative forces inferred from the deformation

of elastic elements under load.

4. While many of the tactile and force sensors have a subset of desired characteristics,

limitations such as repeatability, ease of manufacturing, sterilization and cost, have

slowed widespread adoption in clinical settings [78].

The sensory system described in this thesis measures stiffness mechanically. This

system can be adapted and customised for different medical applications where

stiffness sensing is likely to play a key role, such as diagnostic palpation of skin

or inner body part, teleoperation and medical training. It is easy to use, low-

cost, does not use any electronic components and does not require any calibration

process, thus can be used as a single-use devices. Additionally, the sensing range

and resolution can be easily customised.
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5. The literature revealed that most of the proposed diagnostic instruments work only

if the orientation of the tool is kept constant during indentation. Thus, such diag-

nostic instruments cannot be used in real applications. Further exploration of the

sensing mechanism has been conducted with the aim to add multi-directional capa-

bility to the system. As a result, a multi-directional stiffness probe for diagnostic

palpation has been developed. Experimental results showed that the accuracy of

stiffness measurements does not depend on the orientation of the probe during the

contact.

6. In minimally invasive procedures, long and thin instruments are used to visualise,

palpate or operate the anatomical surface. The use of these instruments prevent

physicians from directly assessing soft tissues by manual palpation and thus in

minimally invasive procedures the sense of touch is completely lost. In order to

retrieve touch sensations, researchers have been developing and exploring novel

sensing technologies. A solution to the sense of touch issue is yet to be found.

In view of these technological needs, the developed sensing mechanism has been

used to develop a clip-on stiffness sensor for the endoscopic camera. This sen-

sor enhanced the functionality of the endoscopic camera by giving a tool used to

visualise anatomical areas the additional function of a diagnostic instrument for

tumour localisations. Moreover, the endoscopic camera is already part of the op-

erating theatre equipment, thus the proposed sensor does not require either the

introduction of any additional instrument or any additional trocar port. Besides,

the developed sensory system is versatile and adaptable to different medical tasks.

For instance, detection of blood vessels and differentiation between the artery and

vein can be achieved with the developed system.

7. The knowledge of the 3D position of the device is required to compute the stiffness

distribution of the overall surface. The multi-directional stiffness probe has been

used to generate a global colour-coded stiffness map. The pose of the probe is

estimated through both a magnetic tracker and a fixed base robot arm of known

kinematics. The magnetic tracker was fixed to the device and used to reconstruct

the 3D position of the indenters which are in contact with the soft tissue. The hand-

held probe has been used to palpate silicone phantoms of different stiffness values.

During this procedure a colour-coded stiffness map was recorded and displayed into

a screen. In order to evaluate the performance of the probe in robotic applications,

such as teleoperation, the probe was attached to the end-effector of a robot arm

and used to palpate the soft tissues while recording the colour-coded stiffness map.

Results proved the effectiveness of the stiffness probe in both manual and robotics

palpations. The system provides a intuitive user interface for real-time stiffness

mapping of the stiffness distribution of anatomical surfaces. The colour-coded
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map allows to assess the stiffness distribution of the overall examined area, thus to

easily detect abnormalities.

8. Experimental tests with several silicone phantoms showed the accuracy of the stiff-

ness probe in distinguishing between materials presenting different stiffness. A

customised phantom, embedding a stiffer track, was used to test the ability of the

probe in detecting tumours. Results demonstrate the accuracy of the sensor in

discerning between different materials, thus this device can be potentially used for

localising tumours.

9. Experimental tests with silicone phantoms demonstrated the effectiveness of the

system for in vivo tests.

8.2 Directions for Further Research

The work presented in this thesis creates a base for developing novel stiffness sensory

technologies which can serve as the starting point for further research in soft tissue

characterization. The limitations of the system provide a basis for future work. More

specifically:

1. The cross talk effect between the elastic elements and the boundary condition

should be considered and modelled.

2. The design of the sensory mechanisms can be customised and improved in func-

tion of the specific application. For instance, the spatial resolution of the multi-

directional stiffness probe could be reduced using different springs and reducing

the distance between the indenters.

3. Different materials could be explored in order to determine which ones are the

most suitable for the beams embedded in the endoscopic camera sensor. Therefore,

Finite Element Analysis can be employed to determine the best size of the beams.

Furthermore, in order to preserve the visualisation function of the camera, the

sensors should not consistently affect the camera field of view.

4. Further validation tests with the designed sensors could be conducted in order to

determine the robustness of the sensory system. Besides, tests with medical experts

could reveal the ergonomics, practicality and benefit of the sensory system.

5. In this study, linear approximation has been used to model the soft tissue. In

order to increase the accuracy of the sensor the soft tissue should be modelled as

a inhomogeneous and non-linear viscoelastic material.
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6. The design of the cantilever beams integrated into the endoscopic camera should

avoid sharp corners which could cut the anatomical areas.



APPENDIX A

Pinhole Camera Model.

The pinhole camera model expresses the mathematical relationship between the coordi-

nates of a 3D point and its projection onto the image plane of an ideal pinhole camera

(where the camera aperture is described as a point and no lenses are used to focus light).

This geometric mapping is called perspective projection. The pin-hole camera is de-

scribed by its optical centre C (also known as camera projection centre) and the image

plane. The distance of the image plane from C is the focal length f. The line from the

camera centre perpendicular to the image plane is called the principal axis or optical

axis of the camera. The plane parallel to the image plane containing the optical centre

is called the principal plane or focal plane of the camera.

The projection of a 3D world point (X,Y, Z)T onto the image plane at pixel position

(u, v)T can be written as:

u =
Xf
Z

v =
Y f
Z

(A.1)

If the world and image points are represented by homogeneous vectors, then perspective

projection can be expressed in terms of matrix multiplication as:

λ


u

v

1

 =


f 0 0 0

0 f 0 0

0 0 f 0

0 0 0 1




X

Y

Z

1

 (A.2)

where λ = Z is the homogeneous scaling factor.
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APPENDIX B

Kalman Filter.

The Kalman filter is an algorithm that operates recursively on streams of noisy input

data to produce a statistically optimal estimate of the underlying system state. The

algorithm works in two distinct phases: the prediction phase and the update phase.

In the prediction phase an estimate of the current state variables is produced along

with their uncertainties. This predicted state estimate is also known as the a priori

state estimate. In the update phase the current a priori prediction is combined with the

current observation to refine the state estimate. If the state and the control inputs vectors

at the time t are xt and ut, and the state transition and the control input matrices are

At and Bt, then the vector of the process noise for each parameter in the state vector,wt,

can be drawn from a zero mean multivariate distribution given the covariance matrix

Qt. In this case, Kalman’s equations can be used to express the evolution of the state

vector xt from the prior state xt-1 as:

xt = Atxt-1 + Btut + wt, (B.1)

considering the vector of the measurements zt the state-measurements transformation

matrix Ht and the observation vector zt. The measurements of the system can be

expressed as:

zt = Htxt + vt, (B.2)

in which the measurement noise has been assumed with zero mean and covariance matrix

Rt.
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APPENDIX C

The Levenberg-Marquardt Algorithm.

Least squares problems arise when fitting a parameterized function to a set of measured

data points by minimizing the sum of the squares of the errors between the data points

and the function. Nonlinear least squares is the form of least squares analysis used to fit

a set of m observations with a model that is nonlinear in n unknown parameters (m >

n). The basis of the method is to approximate the model by a linear one and to refine

the parameters by successive iterations. The Levenberg-Marquardt algorithm (LMA) is

a standard technique used to solve nonlinear least squares problems.

Let the function f : Rn → R be the function to minimize. If f can be written as a sum

of squares of the form f(x) =
∑m

i=1(fi(x))2, where the functions fi : Rn → R are linear

with respect to x. Least squares, in general, is the problem of finding a vector x that is

a local minimizer of the function f . Which can be stated in matrix form as:

min
x
‖F (x)‖2 (C.1)

When at least one of the normal equations of F involves nonlinear functions, closed

form-solutions of Equation (C.1) are not always possible. Hence, numerical methods

are used to find an approximate solution. These methods are iterative algorithms, i.e.

they start from an initial value x0 which is then iteratively updated. Therefore, an

iterative optimization algorithm builds a sequence {xk}k∗k=1 that may converge towards

a local minimum of the cost function, i.e. xk∗ may be close to a local minimum of the

solution. With a cost function that has several minima, the initial value x0 determines

which minimum is found. An important aspect of iterative optimization algorithm is

the stopping criterion. For the algorithm to be valid, the stopping criterion must be a

condition that will be satisfied in a finite and reasonable amount of time. A stopping

criterion is usually the combination of several conditions. For instance, one can decide

to stop the algorithm when the change in the solution becomes very small, i.e. when
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‖xk+1 − xk‖ < ε with ε a small fixed constant. A standard stopping criterion is the

change in the cost function value: ‖F (xk+1)− F (xk)‖ ≤ ε2. A maximal number of

iterations must also be determined to guarantee that the optimization algorithm will

finish in a finite amount of time [142].

The LMA combines the advantages of two minimization methods: the gradient descent

method and the Gauss-Newton method, to solve non-linear least squares problems [127].

In the gradient descent method, the sum of the squared errors is reduced by updating the

parameters in the steepest-descent direction. In the Gauss-Newton method, the sum of

the squared errors is reduced by assuming the least squares function is locally quadratic,

and finding the minimum of the quadratic. The LMA acts more like a gradient-descent

method when the parameters are far from their optimal value, slow but guaranteed to

converge, and acts more like the Gauss-Newton method when the parameters are close

to their optimal value [143].

The general update rule of x, generated in one iteration of tan optimization algorithms,

is defined as:

xk+1 = xk + dk, (C.2)

where dk is a direction of descent. The LMA uses a search direction d that is a solution

of the linear set of equations:

(
J(xk)

TJ(xk) + λkdiag(J(xk)
TJ(xk))

)
dk = −J(xk)

TF (xk), (C.3)

where J(xk) is the Jacobian matrix of F evaluated at xk, J(xk)
TJ(xk) is an approxi-

mation of the Hessian matrix and λk represents the non-negative damping factor that is

adjusted at each iteration to interpolate between the gradient descent and the Newton’s

method. Using high values for λ favours gradient descent, whereas using lower values

favours Newton’s method. Thus, the choice of λ in the LMA affects both the search

direction and the length of the step d.The value of the damping parameter λ can be

updated along with the iterations using different strategies. Typically, if the current λ

results in an improvement of the cost function, then the step is applied and λ is divided

by a constant v. On the contrary, if the step resulting of the current λ increases of the

cost function, the step is discarded and λ is multiplied by v.



APPENDIX D

Stiffness sensor for endoscopic camera: Mechanical

drawings of the cantilever prototypes.
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