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Abstract 

 

Background: Infants born prematurely may need cardio pulmonary 

resuscitation soon after birth. The infant’s responses to resuscitation have rarely 

been monitored in real time, yet can influence the effectiveness of resuscitation. 

 

Aim: Using a respiratory function monitor to assess physiological responses 

during the resuscitation of prematurely born infants  

 

Methods:  A series of studies were undertaken and the main objectives were 

 To evaluate current resuscitation techniques and the physiological 

responses of prematurely born infants 

 To determine the efficacy of current resuscitation methods  

 To evaluate the use of respiratory function monitoring during the 

resuscitation of prematurely born infants 

 
Results: During the first five inflations delivered by a face mask, clinicians 

rarely maintained the inflations beyond two seconds. The median tidal volume 

was low with mechanical lung inflations but significantly increased when 

combined with the infant’s respiratory efforts (median 2.1 vs 5.6 ml/kg; 

p=0.007). Similarly, expired carbon dioxide levels were significantly higher with 

a combination of inflation and inspiratory effort (median 0.3 vs 2.3 kpa; p< 0.01). 

Similar findings were demonstrated when resuscitation was performed though 

an endotracheal tube. A survey of clinicians who used respiratory function 

monitoring (RFM) during preterm resuscitation, demonstrated that they thought 

that the RPM was useful, but their interventions were not evidence based  

 

Conclusions: Respiratory function monitoring demonstrated variability in the 

initial resuscitation of preterm infants and highlighted the importance of the 

infants’ respiratory efforts contributing to the efficacy of resuscitation 
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1.1 Background 

The immediate postnatal period is the most challenging and hazardous time 

for a newborn infant.  Rapid adaptation to extra-uterine life is crucial for survival. 

Worldwide approximately 135 million infants are born each year and 12.9 million 

are born prematurely (1). A large proportion of prematurely born infants require 

respiratory support to assist in the transition and rapid cardio- pulmonary 

adaptation is needed for survival (2). The need for support is inversely related to 

the gestational age at birth, that is extremely premature infants are more likely 

to require support than those born at greater gestational age. 

Resuscitation of the newborn infant is one of the most cost effective, 

lifesaving interventions in medical care, yet resuscitation of prematurely born 

infant is one of the least studied interventions in newborn medicine.(3) The 

current resuscitation practices used to help support the breathing and 

circulation of premature infants are based largely upon evidence from infants 

born at term. In preterm infants, the lungs are immature and vulnerable to 

damage, this is further complicated by the need for higher pressures and 

oxygen supplementation in infants having severe surfactant deficiency. The 

estimated airway opening pressure needed during resuscitation of term born 

infant is estimated to be 30 cm H2O (4) however in preterm born infants this 

must be variable across gestational, hence using evidence from the 

resuscitation of term born infants may potentially be damaging to the immature 

lungs. 
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1.2 Historical perspectives  

Newborn death due to respiratory failure and asphyxia has been recognised 

for many centuries. The Chinese emperor and philosopher Huang Ti in the 2600 

BC observed respiratory failure was more common in prematurely born infants. 

Subsequently, in the 16th Century BC Papyrus Ebers (5)commented on the 

prognosis of a baby immediately after birth, “If it cries nee, it will live, if it moans 

“ba”, it will die”, likely suggesting respiratory distress in the newborn infant. 

Inflating the lung and artificial breathing has been described in newborn lambs 

and in humans in the “The Babylonian Talmud”(6) and by Hippocrates.  

“Reviving” newborn babies by numerous resuscitation techniques has been 

documented since the 1600s, however current approaches to resuscitation of a 

newborn has its origin since the eighteenth century.  

  In the 1750s, initially Smellie and later Pugh, described their experiences in 

resuscitating asphyxiated infants by blowing into the lung through a straight 

endotracheal tube inserted in to the trachea. With concerns regarding the use of 

exhaled air, Hunter, an influential obstetrician at the time, devised a bellow 

system to inflate the lungs. Nevertheless, mouth to tube inflation continued to 

be favoured. François Chaussier, an obstetrician in Paris, and James Blundell, 

an obstetrician at Guy’s Hospital, both described their techniques of manual 

intubation with straight endotracheal tubes and lung inflation to resuscitate 

newborn infants. During this period, numerous other techniques were also 

described by Cangiamila(7). The techniques include insufflation of warm human 

breath through a tube into the infant’s mouth, sucking the infant’s nipples, 

tickling its soles, giving it a warm bath, burning the umbilical cord, rectal 

insufflation of tobacco smoke and placing the infant in a chicken carcass.  
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Francis Chaussier in 1780 first initiated oxygen use in clinical medicine when 

he invented a pressure – limited ventilator device that was used for newborn 

resuscitation, subsequently the use of oxygen became popular throughout 

Europe(8). 

In 1827, Leroy d’Etiolles described the association between lung inflation and 

pneumothoraces. During the next one hundred years, there was significant 

interests and developments in respiratory support with better understanding of 

fetal and neonatal lung physiology. Lung inflation techniques were modified and 

newer equipment designed for clinical application. The first mechanical 

ventilators were introduced in the 1870s, but due to their size they were not 

available to use in the labour ward.  

Since the 1870s alternative methods were also used and included techniques 

such as swinging the infant upside down (the Schultze method), squeezing the 

chest (Prochownich method), moving the arms up and down while the assistant 

compressed the chest (the Sylvester method), tickling the chest, yelling, 

slapping, pinching, and rhythmic traction of the tongue. 

A commercial automatic mask ventilator “Pulmotor” was developed in 1907 

and subsequently “Baby Pulmotor” was developed and used in most delivery 

rooms across Europe until the 1950s. 

The current practices evolved rapidly since Yandell Henderson(9) published 

his  use of a face mask, carbon dioxide and oxygen  flow and a t-piece for 

intermittent obstruction with a blow off pressure measuring system during 

newborn resuscitation. Flagg believed that  Henderson’s method of 

administration could be improved and described the straight tube, neonatal 
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laryngoscope technique(10). Mathieu and Holman instead advocated the use of 

the operator’s finger as a guide to perform “blind intubation” with an 

endotracheal tube and the operator’s own breath, which they argued could 

deliver appropriate amounts of oxygen and carbon dioxide. Although they 

advocated the use of carbon dioxide gas during resuscitation arguing that it 

stimulated the respiratory centre, the efficacy of this approach was not 

described. 

In the 1930s Nicholson J Eastman studied the effects of hypoxia and 

hypercarbia levels and its association with the initiation of respiration. He 

published a series of five articles on foetal blood studies and concluded that: 

“There seems to be only one urgent indication in the treatment 

of asphyxia neonatorum, and that is to introduce oxygen into 

the circulating blood of the infant. Whether this is effected by 

manual artificial respiration, by mouth to mouth breathing, or by 

some form of apparatus such as the Drinker respirator, seems 

to us of minor importance, so long as the air passages have 

been carefully cleared of mucus and a constant supply of 

oxygen (or air) is maintained into the pulmonary alveoli”(11). 

Eastman’s research findings influenced the work done by JB Blaikley and GF 

Gibberd (12)who were obstetricians based at the Guy’s Hospital, London. In 

March 1935, they published their method of tracheal intubation using a modified 

laryngoscope followed by lung inflation with up to pressures of 35cm H2O, 

calculating that an inflation pressure of only 15cm H2O was generated as there 

was leak around the tube. This was maintained until the infants commenced 

breathing, effectively maintaining a positive end expiratory pressure (PEEP). 

Numerous novel newborn resuscitation techniques were introduced for the 
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treatment of asphyxia neonatorum, including Henderson’s inhalatory method 

and Pauluel Flagg’s intubation with positive pressure insufflation. Henderson 

was influenced by his research on adults suffering from asphyxia, and using 

applied physiology, he argued that asphyxia should be treated with inhalation of 

carbon dioxide mixed in oxygen(13). Henderson believed that the respiratory 

centre should be stimulated chemically by carbon dioxide, and recommended 

the use of a mask inhalator, which was attached to the gas cylinder via a 

manometer which controlled the gas pressure. His inhalatory method involved 

placing a mask over the infant’s nose and mouth and supplying a mixture of 

carbon dioxide and oxygen as a steady stream(9) (Figure 1-1). Pauluel agreed 

with Henderson that a resuscitation technique should supply a mixture of 

carbon dioxide and oxygen to the newborn, but felt that Henderson’s method of 

administration could be improved by use of a laryngoscope and endotracheal 

tube (Figure 1-2)(10) Those two techniques came to be viewed as 

representative of a ‘modern’ and ‘scientific’ approach to newborn resuscitation 

at a time when newborn care was accused of lacking a scientific basis and of 

being empirical in nature. 
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Figure 1-1: Henderson's Inhalatory Method.  

Image taken from Henderson (1938) Adventures in Respiration. 

[Appendix III for copyright status]. 
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Figure 1-2: Flagg's method of endotracheal intubation and positive pressure 

insufflation.  

Image taken from DeLee & Grennhill (1943) The Principles and Practice of 

Obstetrics [Appendix III for copyright status]. 

 

Since Eastman’s conclusions on the benefits of using oxygen during newborn 

resuscitation, one approach described was the Bloxon positive pressure 

oxygen-air lock(14). Infants with asphyxia were placed in a metal chamber and 

humidified and warmed oxygen was introduced, the oxygen level was raised to 

60%. The pressure in the chamber was then increased to three pounds of 

pressure for 30-40 seconds, then reduced to one pound pressure for 15 

seconds before the cycle was repeated. This apparently reduced the mortality 

of infants treated by 25% compared to historical controls. An alternative method 

was to deliver oxygen to the gastrointestinal tract on the assumption that 

oxygen would then be absorbed into the blood(15). James et al (16) reported 
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that the technique did not add any benefit during resuscitation of newborn 

infants. James Hutchinson and colleagues reported their experience in using 

hyperbaric oxygen in asphyxia neonatorum. They raised the ambient oxygen to 

up to three atmospheres for 30 minutes after placing the asphyxiated infant in a 

compression chamber. They reported that this technique was beneficial but 

needed further investigation.  Subsequently, the same group conducted a 

randomised controlled trial of hyperbaric oxygen versus tracheal intubation and 

intermittent positive-pressure with oxygen as methods of neonatal resuscitation 

was conducted in two maternity hospitals. Two hundred and eighteen infants 

were recruited into the trial over a 16-month period. There were no significant 

differences in mortality between the two groups, with 15 deaths in the intubated 

infants and 19 in the hyperbaric group. The authors claimed that the main 

benefit of hyperbaric oxygen therapy was that less skill was required than 

tracheal intubation (17). Some of these methods continued until 1950s despite 

growing evidence on the efficacy of lung inflation techniques.  

  In 1960’s, Saling (18-21) published his findings of comparisons on the value 

of different methods of treating asphyxia as assessed by measuring the 

umbilical artery and venous blood oxygen content. He found that thorax 

compression, mouth to mouth breathing and intragastric oxygen were 

ineffective, but intubation and ventilation using 100% oxygen led to a more rapid 

response in the blood gas parameters and was similar to that of spontaneously 

breathing infants. He also recommended that the cord should be left uncut for 

as long as possible and that there should be no delay in commencing 

resuscitation after the delivery of asphyxiated infants. 
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1.2.1 Lung inflation technique and devices 

In the 1930s, Yandell Henderson popularised the use of a face-mask to 

supply positive pressure during resuscitation of an asphyxiated newborn infant. 

He argued that it was only the flaccid infant who required active resuscitation 

and with the introduction of an endotracheal tube and resuscitative gas reached 

the lungs much more efficiently via an endotracheal tube if the infant was 

intubated. Flagg stressed that the use of a face-mask could not guarantee a 

patent airway and was therefore not as effective as an endotracheal tube. In 

March 1935,  Blaikley and  Gibberd published an important paper describing 

their method of tracheal intubation using a modified laryngoscope(12).Blaikley 

and Gibberd shared Flagg’s concerns that a face-mask was not the most 

effective means of supplying positive pressure ventilation in a severely 

asphyxiated baby. They believed that in the majority of cases simple methods of 

clearing airways and supplying oxygen and carbon dioxide would be enough to 

help the newborn to initiate spontaneous respiration.  

 
In 1952 Roberts published the results of a trial conducted on severely 

asphyxiated newborns treated with intubation and insufflation(22). She had 

treated sixty-six ‘severely asphyxiated’ infants using endotracheal insufflation 

with oxygen. Intermittent positive pressure at 20 cm H2O of water at 10-15 lung 

inflations per minute was administered with oxygen,  she reported only 14 

deaths(22).  Blaikely and Gibberd, by this time had been practicing this 

technique for 17 years and reported that they did not have any adverse event 

with this technique(23). 
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Furthermore, in a bid to address the concerns over the use and safety of 

positive pressure resuscitation, Day et al. began to investigate pressure-time 

relations needed to inflate atelectatic lungs in animals.(24). He made 

comparisons of animals to the newborn human lung and hypothesized that in 

asphyxiated infants, high positive pressures of up to 40 cm H2O, over short 

intervals of 0.15 seconds would be needed. 

 

Goddard and Bennet conducted post-mortem studies on the human infant 

lung. They concluded that when a positive pressure of 30 cm H2O was applied 

over a 0.2 second interval there was patchy lung aeration and pressures up to  

50 cm H2O  at short intervals was needed for more uniform lung expansion(25). 

Based on the physiological principles and scientific observations from published 

studies they developed the Goddard-Bennett-Lovelace (GBL) infant hand 

resuscitator, which used a face mask attached to a reservoir bag, which could 

be used to employ intermittent positive pressure ventilation by the bed side 

(Figure 1-3). 
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Figure 1-3: Goddard-Bennett-Lovelace (GBL) infant hand resuscitator in clinical 

use.  

[Appendix III for copyright status].  

The introduction of the anaesthetic bag in 1958(26) in combination with the 

face mask and pressure vales, made it more simper to administer positive 

pressure ventilation by the bedside. The optimum pressure to inflate the 

newborn lung still remained a mystery as it had not been possible to measure 

the airway opening pressure of the first breaths of a newborn infant. Then 

Karlberg et al (27)in 1954 demonstrated that many term born infants generated 

pressures greater than 20cm H2O in their first breath. Further studies by Hull et 

al(28), however, reported that the inflation pressures needed during newborn 

resuscitation were variable and often exceeded 30 cm H2O. The peak inflation 

pressures needed for newborn resuscitation is still currently being debated. In 
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preterm birth, due to the severity of lung disease across gestational ages, it had 

caused more difficulty in understating the airway opening pressure needed for 

resuscitation in prematurely born infant. 

1.3 Pulmonary adaptation in a newborn born infant 

Immediately after birth, the newborn infant lung has to achieve adequate 

exchange of oxygen (O2) and carbon dioxide (CO2) to cope with high metabolic 

demands of the body. For newborn infants to survive after birth, they must be 

able to match alveolar ventilation in proportion to metabolic demand such that 

blood gas (carbon dioxide and oxygen) tensions and pH in tissue can be 

maintained within a relatively narrow range. In order to achieve adequate gas 

exchange, lung fluid must be cleared from the alveolar spaces and air 

introduced into the lungs, establishing a functional residual capacity (FRC). 

Pulmonary blood flow must increase to match ventilation. An air/liquid 

interface needs be maintained to achieve adequate ventilation, this is facilitated 

by surfactant which minimises the surface tension at the air/liquid interface, thus 

facilitating alveolar expansion and preventing the collapse of small alveoli. 

1.4 Fetal Breathing movements 

Fetal breathing movements are irregular and can be episodic with intermittent 

periods of apnea during early pregnancy (29). In humans, they become 

detectable as early as at 10-11 weeks gestation by ultrasound (30, 31). Fetal 

breathing movements become more regular and uniform as gestational age 

increases(32).In the 1970s Merlet et al(33) and Dawes et al(29) published their 

work on fetal lambs demonstrating that irregular breathing movements 

increased with increasing gestation age. Wiggelsworth et al(34) and Nagai et 
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al(35) demonstrated that  eliminating fetal breathing movements by cervical 

cord transection resulted in immature and underdeveloped lungs. 

Mechanical stretch, promotes differentiation (36) and proliferation of 

respiratory epithelial cells, including type II pneumocytes(37, 38). It is evident 

from animal studies that draining of the lung fluid (39) or abolition of fetal 

breathing movements (34, 40) leads to lung hypoplasia. The tonic hydrostatic 

distention and cyclical mechanical deformation of the lung provides crucial 

physical signals for normal fetal lung growth. While the importance of fetal 

breathing movements is now widely accepted as a mechanism of lung 

development, their role in establishing spontaneous respiratory activity and gas 

exchanged is still under investigation. 

1.5 Fetal Lung fluid  

Fluid is present in the lung lumen as early as the sixth week of gestation (41). 

Fetal lung fluid, amniotic fluid and plasma differ in their constituents (42) with 

the lung fluid having significantly higher levels of chloride. In the fetal lamb lung, 

transport of chloride ions takes place against the existing electrochemical 

gradient (43). The main force driving fluid in to the lumen is the active transport 

of chloride into the lumen from the interstitial space (44). In animal models, the 

lung is filled with approximately 4-6ml/kg of fluid for body weight and at mid 

gestation to about 20ml/kg of fluid for body weight by term. The rate of lung fluid 

production increases from 2ml/kg/hr to 5ml/kg/hr by term, contributing to about 

one half of amniotic fluid production per day.  

Secretion of fluid into the lung lumen results in increased intrapulmonary 

pressure by approximately one cm H2O greater than the amniotic fluid. 
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Additionally, during the periods of apnoea the closed vocal cords and larynx and 

nasopharynx constriction prevent the outflow of lung fluid (45, 46) , thus raising 

the intrathoracic pressure higher than the amniotic fluid. Vilos et al (47)studied 

the intrathoracic pressures of fetal lamb and observed that during the period of 

apnoea, the pressure in the trachea exceeded the intra-pleural space by at least 

2.9 cm H2O. It was postulated that the positive pressure was generated by the 

continuous production of lung fluid and maintained by an increased resistance 

to the outflow. This is essential for lung development and pathological states 

where there is chronic drainage of amniotic fluid results in hypoplastic 

lungs(48). This can also be due to other congenital abnormalities such as 

congenital diaphragmatic hernia, skeletal dysplasia or diaphragmatic paralysis 

(49, 50), where the intrapulmonary pressure is lower than in the normal healthy 

fetus. 

1.6 Lung fluid absorption 

Although lung fluid is critical for lung growth, this needs to be expelled or 

reabsorbed immediately after birth and be replaced by air. There is a better 

understanding of the mechanisms associated with clearance of fetal lung fluid 

soon after birth It has been demonstrated that lung fluid remains fairly constant 

at 90-95% of the total lung weight up to the third trimester suggesting that lung 

fluid is not reabsorbed during this period(51). Kitterman(52) and others(53, 54) 

demonstrated that lung fluid production starts to decrease a few days before 

spontaneous vaginal delivery and the alveolar fluid volume decreases from 

approximately 25 to 18 ml/kg. Bland et al (55-57) demonstrated that preterm 

delivery and surgical delivery without the onset of labour results in retention of 

lung fluid in preterm rabbits, and in fetal lambs. More recently, Berger et al (58) 
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evaluated the effect of postnatal lung liquid volume on respiratory performance 

following caesarean section in lamb fetuses.  

Using chronically catheterized fetal lambs, the investigators found that lambs 

born with reduced lung liquid volume improved their arterial blood gas and acid 

base status quicker than those lambs born without a prenatal decrease in their 

lung liquid volume. The investigators concluded that postnatal gas exchange is 

enhanced by a reduction in the volume of liquid remaining in the lungs when 

breathing starts.  

Amongst many, three main factors contributing to lung fluid clearance is 

thought be due to the (i) sodium channels (ii) hormones and (iii) trans 

pulmonary pressures, due to their effect on fetal lung fluid clearance in animal 

models. 

1.6.1 Role of Sodium channels in lung fluid absorption 

Nearing the end of gestation, the direction of ion and fluid flow across the 

alveolar epithelium rapidly changes from secretion to absorption. In fluid-

absorbing fetal lungs, Na+ reabsorption is a two-step process. The first step is 

passive movement of Na+ from lumen across the apical membrane into the cell 

through Na+ permeable ion channels. The second step is active transport of Na+ 

from the cell across the basolateral membrane into the serosal space. Several 

investigators have demonstrated that the initial entry step involves amiloride-

sensitive Na+ channels. Amiloride-sensitive sodium transport by lung epithelia 

through epithelial sodium channels (ENaC) is a key event in the trans epithelial 

movement of alveolar fluid(59-65).The lung epithelial sodium channel (ENaC) 

has at least three sub types(α, β, and γ). Hummler et al(66) have demonstrated 
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that genetically knocking out the α-subunit of the epithelial Na+ channel leads to 

defective lung liquid clearance and premature death in mice. Similarly, 

numerous experiments(59, 61, 64, 67-70) in  various animal models involving 

either inhibiting or knocking out the ENaC channels have resulted in decreased 

lung fluid absorption. Thus, there appears to be direct evidence that, ENaC 

constitutes the limiting step for Na+ absorption in epithelial cells of the lung, and 

is essential for the adaptation of newborn lung to air breathing. It has also been 

proposed that different combinations of the various subunits comprising the 

ENaC channels (α, β, and γ) could produce varying conductance and regulatory 

properties(71). The three subunits expressed together produce a 100-fold 

channel activity in comparison with that of α-ENaC alone(66, 72, 73). Single-

channel studies for each of the subunits reveal high, moderate, or low selectivity 

for sodium over potassium (71). Although these channels also show differences 

in other characteristics, including conductance and amiloride sensitivity, they all 

appear to play a role in alveolar fluid balance (74-76). 

Amiloride is a specific inhibitor of sodium channels and has served as a 

means of studying sodium transport(77) in the alveolar epithelium. O’Brodovich 

and co-workers(59) using newborn guinea pigs, they demonstrated that 

intraluminal instillation of amiloride delays lung fluid clearance. In their 

experiment, guinea pigs who received saline intratracheally, breathed normally 

and had arterial O2 saturations (SaO2) > 94%. In contrast, guinea pigs that had 

instillation of amiloride, had chest wall retractions and low oxygen saturations 

(88 ± 3.6% (SD) SaO2) (P < 0.01). Extravascular lung water (EVLW) per gram 

of dry lung weight four hours after birth was significantly greater in newborns 

that received amiloride (8.3 ± 1.1, n = 5) than in those that received saline (5.6 ± 
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0.9, n = 7, P < 0.01). This demonstrated that intratracheal amiloride before the 

first breath resulted in respiratory distress, hypoxemia, and an abnormally high 

EVLW, concluding that epithelial sodium transport contributes to normal lung 

liquid clearance after birth. Furthermore in animal studies, by either inactivating 

or blocking the ENaC subunits, numerous investigators have demonstrated 

abnormality in the alveolar fluid balance (55, 57, 78, 79). 

In healthy newborn infants,  experimental studies on airway epithelial ENaC 

expression suggest a distinct sensitivity profile of each subunit for Na+ and K+ 

over a period of 48hrs postnatally (80, 81) . In preterm infants, ENaC 

expression is dependent on gestational age (80)(Figure 1-4) Hence, low 

expression of subunits in preterm infants during the first day after birth may 

contribute to respiratory distress syndrome. 

Lack of expression of ENaC leads to decrease in the sodium transport across 

the lung epithelia through ENaC channels and hence a net decrease in the  

trans epithelial movement of alveolar fluid (55, 59, 60, 63, 64),this has been a 

contributory factor in  in several disease states, including transient tachypnea of 

the newborn, sepsis, preterm labour, and Respiratory distress syndrome(RDS) 

(82). 

Gowen et al(82) were the first to demonstrate that human neonates with 

Transient Tachypnoeic of the Newborn(TTN) had immature lung epithelial 

sodium transport. More recently Barker et al (83) measured the nasal 

transepithelial potential difference in 31 premature infants born less than 30 

weeks gestation. The nasal transepithelial potential difference (N-PD) is a 

measure of the net electrogenic transport of Na+ and Cl- across the epithelial 
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layer, this is a correlate to the EnaC activity in the lung epithelium. In their study 

on premature infants, Barker and colleagues assigned infants to a diagnosis of 

RDS (22 infants) or non-RDS (9 infants) on the basis of clinical and chest x-ray 

criteria. They observed that the maximum N-PD increased with gestational age 

at birth (−1.5 mV/wk.; p <0.05) and birth weight (−1.2 mV/100 gm; p <0.01) and 

N-PD was lower in infants with RDS (-16.5 +/- 0.6 mV) than in those without 

RDS (-22.0 +/- 1.3 mV) (p<0.001). Infants without RDS had N-PD values similar 

to normal full term infants. Hence they concluded that that Na+ absorption 

across nasal epithelium increases with increasing birth weight and gestation. 

Impairment of Na+ absorption across the respiratory epithelia of very premature 

infants may contribute to the absence or poor lung fluid absorption in these 

infants, thus contributing to the respiratory distress associated with surfactant 

deficiency. 

Helve et al (81) studied the expression of ENaC in term(N=61) and 

preterm(N=29)neonates and demonstrated that all the ENaC subunit levels are 

significantly lower in preterm infants(α-ENaC: p < .0001; β-ENaC: p = .0038; γ-

ENaC: p = .0065), also expression of ENaC subunits correlated with gestational 

age (Figure 1-4)(80).  
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1.6.2 Role of hormones in lung fluid clearance 

Walters and Olver(84) found that intravenous infusion of epinephrine or 

isoproterenol led to the absorption of liquid from potential airspaces and this 

effect was blocked with propranolol (a β-adrenergic blocking agent). That 

finding suggested that β-adrenergic agonists stimulate sodium uptake by the 

lung epithelium, driving liquid from the lung lumen into the interstitium(57) for it 

to be absorbed through the pulmonary circulation or lung lymphatics . 

Figure 1-4: Correlation between ENaC subunit expression and gestational age 

in airway epithelium in newborn infants 1–5 h after birth: A: α -ENaC, B: β-

ENaC, and C: γ-ENaC.  

[Appendix III for copyright status].  
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Faxelius and colleagues (85) measured the lung function of 42 infants who 

were born either vaginally or by caesarean section. They performed lung 

function tests at 30 minutes and at two hours of age. Umbilical arterial blood 

was also analysed simultaneously for pH, concentrations of catecholamine and 

cortisol. Tidal volume and minute ventilation measured at 30 minutes and two 

hours after birth were lower in infants delivered by caesarean section than in 

those delivered vaginally. Similarly, dynamic compliance was lower at 30 

minutes in the group that were delivered by caesarean section rather than 

vaginally and this difference was significant at two hours(p<0.01). The 

catecholamine and cortisol concentrations at birth were higher in the vaginal 

group than in the group delivered by caesarean section. Two hours after birth 

there was a significant correlation (r= 0.84) between the catecholamine 

concentrations of the infants born vaginally and dynamic lung compliance. They 

postulated that the lower dynamic lung compliance in infants delivered by 

elective caesarean section was due to the delayed absorption of liquid in the 

lung secondary to a lack of catecholamine surge. 

Thyroid hormones have an important role in lung fluid absorption by 

increasing the sensitivity to catecholamine released during birth(86-88). Closer 

to term, the ability of epinephrine and cAMP to switch lung liquid secretion to 

absorption increases progressively(86) . Barker and co-workers (87) 

demonstrated that in thyroidectomised fetal sheep triiodothyronine restored the 

inhibitory effect of epinephrine on lung liquid production. In their experiment, 

they compared the effect of lung fluid absorption in thyroidectomised and non-

thyroidectomised ewes. They later infused epinephrine to investigate the effect 

of lung fluid absorption in both the groups. The lung fluid reabsorption in the 
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controls (-17.8 ± 4.8 ml/hr) was significantly higher than the thyroidectomised 

ewes (3.7±4.0) (p<0.001) and some of the ewes were still in the secretory 

phase. Chan et al(89) also demonstrated that antenatal treatment of preterm 

fetal sheep with thyroxine improved postnatal pulmonary function. Both cortisol 

and T3 are required for epinephrine-induced lung liquid absorption and act 

synergistically via mechanisms that depend on protein synthesis(88, 90).  

In further studies with terbutaline (β-adrenergic agonist) and aminophylline 

(phosphodiesterase inhibitor) Chapman et al demonstrated the effect of 

intrapulmonary terbutaline and aminophylline on net production of lung luminal 

liquid over time. In their experiments terbutaline, increased lung fluid resorption 

from 11 ± 2 to -3 ± -2 mL/h and aminophylline further increased lung fluid 

reabsorption to -8 ± 2 mL/hr. This effect was reversed by amiloride. Thus, 

phosphodiesterase inhibition enhances the beta-adrenergic effect of terbutaline 

on sodium-dependent absorption of liquid from the lung lumen of fetal 

lambs(91).  

1.6.3 Role of trans pulmonary pressures in lung fluid clearance 

Large forces applied to the infant’s chest and abdomen by the vaginal 

‘squeeze’ during delivery can cause significant reductions in lung fluid 

volume(56, 57, 92). The intrathoracic pressures produced during delivery range 

from 88-265 cm H2O(93, 94). Following the delivery of the head, fluid is noted to 

be expelled from the nose and mouth. Since the thorax and abdomen offer 

relatively little resistance compared to the head and the shoulder the “vaginal 

squeeze” of the chest and abdomen increases the trans-pulmonary pressure 

leading to the expulsion of the lung fluid(95).  
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In a study, Berger and colleagues(96) aimed to determine the volume of lung 

fluid of the fetal lamb just before a normal vaginal delivery at term, to assess the 

extent to which an excess of liquid in the airspaces might contribute to the 

respiratory morbidity that accompanies elective caesarean delivery. In their 

experiment, they instilled an impermeable tracer (1251-labeled human serum 

albumin) through a cannula in to the trachea two weeks before the expected 

date of delivery. They then measured the volume of lung liquid just before the 

vaginal delivery in eight fetal lambs. This volume was compared with that 

measured in a second group of 10 fetal lambs studied 7 days before the 

expected date of delivery (term = 147 days). The volume of lung liquid present 

just before delivery was 6.8± 1.0 ml /kg (n = 8) compared with 28.2 ±1.8 ml/kg 

(n = 10) in the second group of lambs studied before the onset of labour at 140 

days of gestation. They concluded that the bulk (>75%) of the liquid that fills the 

lungs of the fetal lamb at 140 days of gestation is cleared at some time before 

normal term birth, suggesting that the adverse respiratory impact of elective 

caesarean delivery may be largely explained by denying the fetus this important 

adaptive mechanism. Similar animal experiments suggest that the explanations 

which relied on “Starling forces” and “vaginal squeeze” account for less than 

25% of the fraction of the fluid absorbed (58, 96, 97). A higher occurrence of 

respiratory morbidity in near-term and term infants delivered by elective 

caesarean sections has been observed by many investigators(98-104),a higher 

incidence of transient tachypnea of the newborn was observed in these studies.  

The delay in expulsion of lung fluid is postulated to contribute towards the 

increased respiratory morbidity in infants born by Caesearn section. Unlike 

animal studies, it is ethically and physically challenging to establish the precise 
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mechanisms contributing to the high incidence of respiratory morbidity in infants 

delivered by elective caesarean section.  

1.7  Establishing and maintaining  functional residual capacity  

Avery and Mead(105) based on calculating anatomical dimensions of the 

alveoli and the surface tension properties of the lung suggested that a 

pressure of 25-30 cm H2O may be needed to aerate the alveoli soon after 

birth. Furthermore, Grunewald et al(106) in his experiment on fresh still born 

infants of various gestational ages, established that a critical pressure in the 

order of 20-25 cm H2O was needed to open the alveoli. The clearance of lung 

fluid and the commencement of breathing leads to air entry in to the alveolar 

spaces. This rapid change to gas exchange at the alveolar level commences 

at the end of the first inspiratory effort, however in infants who do not take their 

first breath, positive pressure ventilation is needed to inflate their lungs. On the 

first lung inflation either spontaneously or by mechanical ventilation, and at the 

end of expiration some gas is retained, this is crucial for establishing a 

functional residual capacity (FRC) of the lung. An FRC is the volume of gas in 

the lung at the end of expiration and is in continuity with the airways. Optimal 

lung mechanics and alveolar surface area for efficient ventilation and gas 

exchange is crucial for normal FRC formation. The establishment of an FRC at 

birth represents one of the important aspects of the respiratory adaptation. In 

the immediate postnatal period, a combination of lung surfactant properties 

and various mechanical factors such as magnitude of the inspiratory effort, 

respiratory muscle strength, chest wall and lung compliance, lung fluid 

clearance are some of the main contributors to the formation FRC.  
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1.7.1 Infant’s first Breath 

In the early 1960s, Fawcitt, Lind and Wegelius (107) used a high speed 

roentgenographic technique to study lung aeration immediately after birth of full 

term infants. They reported that the upper airway muscles seemed to be 

involved in the initial inflation of the newborn lung. In their observational study, 

they reported that before the first lung inflation, the upper part of the rib cage is 

drawn in and following a successful inspiration the intrathoracic trachea dilates 

and the air fills the posterior lung bases. All parts of the lung do not aerate 

immediately after the first breath and following expiration some air remains in 

the lung which contributes to the formation of the functional residual capacity 

(FRC). During the same period Karlberg and colleagues(108) reported changes 

in tidal volume and intra-oesophageal pressure changes during the onset of 

breathing in full term infants. They obtained volume and pressure loops from the 

18 of the 79 infants and concluded that the respiratory adaptive changes 

occurred rapidly and a residual volume was established with the beginning of 

the first breath. The total intra-thoracic pressure changes in the first breath 

varied between 40-100 cm H2O, this magnitude of pressure decreased in the 

subsequent breaths following the first breath, suggesting the need for a high 

airway opening pressure during resuscitation of a new born infant. Milner and 

colleagues designed a measuring system which contained a low-resistance 

pneumatograph and dual pressure transducer to estimate the lung volumes and 

oesophageal pressure during the first breath in 24 term born infants. They 

reported that the term born infants generated a mean negative intrathoracic 

pressure of 52.3 cm H2O during the first inspiration and a positive pressure of 

71.3 cm H2O during expiration. They reported that the mean inspiratory volume 
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of the first breath was 37.7ml and the FRC was 15.1 ml(94) .Furthermore, 

during the first phase of expiration a high positive pressure was generated and 

nearly 40% (~15 mls) of the inhaled air was retained which contributed to the 

formation of FRC. Some of the key findings reported by Milner’s study related to 

the first breath were, that the peak transpulmonary pressure  was greater than 

30 cm H2O reaching up to 100 cm H2O during inspiration i.e. much greater than 

the pressures of 5-7 cm H2O recorded in self ventilating infants(109), in addition  

the airway opening pressure varied during the first breath and large airway 

opening pressures were unnecessary as previously thought.  

The first breath is probably the largest (i.e. generating the highest negative 

intra-thoracic pressure) breath during the neonatal period, with inspiratory 

volumes of above 40 mls in term born infants (4, 110, 111).  

1.7.2 The role of the first breath in establishing an FRC 

 Karlberg et al (111, 112) studied lung volumes and trans-pulmonary pressure 

changes during the spontaneous first breaths. In a small a group of 11 newborn 

infants they observed that five infants produced a negative intra thoracic 

pressure of 20-40 cm H2O, before the lung expansion occurred. This high 

negative intra-thoracic pressure is thought to be caused by an increase in 

volume of the surrounding thoracic cage following lung expansion.  

Roentegraphic studies (113-115) on first breath demonstrated that there 

were changes in the shape of the thoracic cage before or after the first breath 

and the contraction of the diaphragm seem to be responsible for this negative 

intra-thoracic pressure. In some of the respiratory loops recorded during their 

first breath studies, Karlberg demonstrated that for lung inflation of any 
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magnitude to happen, a negative intrathoracic pressure of 20-40 cm H2O was 

created. Thus, they concluded that similar airway “opening pressure” was 

necessary for lung inflation. This is in support with the findings of Gruenwald et 

al’s observation of the still born infant lung and also Avery and Mead’s 

calculations of the influence of surface tension as discussed previously. 

However, if there was a positive pressure at the mouth which helped in lung 

inflation, there should have been a small negative intra-thoracic pressure which 

was not demonstrated in all Karlberg’s respiratory loops. What was clear from 

their observations was that some infants managed to open the lung with very 

little negative intra-thoracic pressure (<20 cm H2O). Similar findings were 

reported by Milner’s team in their earlier studies(116). One possible explanation 

for this was that both Milner et al(116) and  Karlberg et al (27) had 

underestimated the true efforts of the baby. It is well established that if a 

pressure device is placed too high in the oesophagus, the pressure will be 

under-recorded. Milner’s group therefore carried out a further set of 

measurements using a dual pressure transducer, only accepting data when the 

lower pressure transducer was obviously in the stomach and the upper 

pressure transducer in the oesophagus(93). This inevitably meant that the lower 

pressure transducer was in the lower 2±3 cm of the oesophagus, that is, 

optimally placed. They reported that similar inspiratory volumes inspiratory 

volume of 37.7 mls and an FRC of 15.1 ml was generated with a mean negative 

intrathoracic pressure of 52.3 cm, a positive pressure during expiration of 71.3 

cm H2O. This confirmed that some of the previous oesophageal pressure 

measurements had under recorded the intrathoracic pressure changes 

associated with the first inspiration. Milner and Saunders (4, 117) repeated the 
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work of Karlberg using an oesophageal balloon and reverse plethysmography to 

measure the intra-thoracic pressure and lung volume respectively. They 

demonstrated that the airway opening pressures needed for lung expansion 

was in the range of 30 cm H2O.Furthermore, in their series of investigations in 

to infant’s first breath mechanics, they observed that on an average 40mls of air 

was drawn in during their first breath. The mean FRC at the end of the first 

breath was 18 ml(5ml/kg)(93).In a further study by the same group in term born 

infants, they observed a strong correlation between inspiratory volume and 

FRC(r=0.77, p<0.004). Analysis of the first breath in newborn rabbits(118) 

showed similar patterns of inspiratory gas volumes and FRC formation 

associated with the first breath. 

Currently, there are no data on the formation of FRC in preterm infants and 

its association with the first inspiratory effort. 

1.7.3 Role of initial lung inflation  

The first lung inflation either by spontaneous inspiration or artificial lung 

inflation during resuscitation is required to overcome the surface tension and 

the viscosity of the lung fluid. To achieve this, large trans-pulmonary pressures 

are needed, hence the infant’s first spontaneous breath is characterized by a 

deep inspiration, and usually an equally prolonged expiration. In a study, twenty 

asphyxiated term infants were resuscitated with positive pressure ventilation 

with a set pressure of 30 cm H2O which was delivered through an endotracheal 

tube immediately after birth. Milner and colleagues(119) demonstrated that only 

five of the twenty infants had formed an FRC after the first inflation and a mean 

FRC of 36.9 mls were formed by 30 seconds. Furthermore, there was no 
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significant difference between the FRC at 30 seconds in babies who had 

breathed and those who had not. They also reported that on 12 occasions 

sudden changes in FRC were associated with active inspiratory efforts. These 

inspiratory efforts were frequently prolonged, suggesting that, spontaneous first 

breath by the infant compared to non-breathing infants rapidly improves FRC. 

This may also suggest that an increased muscle tone in the diaphragm and 

chest wall, may aide in the formation of FRC. Furthermore, on four occasions, 

they observed a stepwise increase in FRC that were produced by mechanical 

lung inflation, during resuscitation, this presumably indicates the point at which 

the physical characteristics of the lungs have changed sufficiently to allow the 

lungs to remain inflated. In the same study, the first mechanical lung inflation 

only produced an FRC in 5 of the 20 infants producing a mean FRC of 7.5 mls. 

This is in contrast to spontaneously breathing babies in whom there was a 

mean increase in FRC of 17.3 ml following the first breath. In all the infants 

studied by Milner’s group, only one of 41 babies was there no gas retention 

following the first spontaneous breath(4, 116).  

There was progressive sequential increase in lung volume with the first few 

inflations during resuscitation of asphyxiated infants. Despite the fact that an 

FRC was not formed, progressive increase in tidal volume in response to the 

same inflation pressure and progressive fall in the opening pressures was 

observed. It was also interesting to note that an active inspiratory effort 

produced a further rise in tidal volume in the absence of a change in FRC. It 

was usually only in association with the baby's respiratory efforts that the tidal 

volume increased from an initial mean value of 18.6 to 28.5 ml (4, 93, 

116),which was comparable with the mean volume of the first spontaneous 
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breath. The progressive change in the mechanical properties of the lungs may 

be caused by release of surfactant from the respiratory epithelium. It is difficult, 

however, to explain on the basis of surfactant alone why some babies retained 

gas within their lungs on mechanical lung inflation and why others failed to do 

so. 

Maintaining an FRC after birth has been described in several different animal 

models [7] and spontaneous breathing plays a significant role. For instance, 

procedures that reduce spontaneous breathing activity, such as intra-thoracic 

sectioning of the vagus nerve, was associated with an inability to maintain an 

FRC [50].  

1.7.4 Role of active expiration 

The expiratory effort following the first inspiration is often slow and prolonged 

(108, 116, 120), a pattern clearly documented for the first hours of extra uterine 

life. Large oesophageal pressure (intra-thoracic pressure) swings have been 

recorded (4, 94, 108, 116), suggesting active recruitment of the expiratory 

muscles in generating a positive airway pressure. This promotes clearing of the 

fluid from the lung and a more even lung expansion. The average amount of air 

retained in the lung after the first expiration have been estimated to be 11-19 ml 

in different studies(4, 27, 94, 116, 120), with a large inter-subject variability. This 

represents 10-20% of the FRC at rest in a 48 hrs old infant. 

Spontaneously breathing infants demonstrate some degree of “braking” 

during the early part of the expiration phase. The expiratory flow is interrupted 

by a period of low or zero flow, ending in a short expiratory flow peak or multiple 

expiratory flow peaks. This is known as expiratory braking and can result in high 
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positive airway pressure when accompanied by abdominal muscle contraction. 

Kosch and colleagues aimed to investigate determinants of the end expiratory 

volume in newborn infants. They studied the airflow, tidal volume and 

respiratory muscle EMG in eight full term spontaneously breathing infants. They 

observed that the EMG evidence of respiratory muscle activity was absent 

during the latter part of expiration in both the supine and upright postures, 

consistent with passive expiration, also expiratory breaths frequently were 

associated with marked retardation of expiratory airflow (braking) without any 

diaphragm muscle activity in the EMG, which led to an increase in the 

expiratory lung volume. (121, 122). “Braking” during early expiration was more 

prevalent following the establishment of FRC, therefore contributing to the 

maintenance of FRC rather than the formation during the first hours after birth. 

In contrast the infants also used other respiratory manoeuvres  were a forced 

expiratory manoeuvre generated by the abdominal muscles to move air through 

a closed or constricted glottis(123) was thought to contribute to maintaining to 

FRC. These respiratory manoeuvres which include grunting are also widely 

assumed to contribute towards lung fluid absorption(110). 

1.7.5 Role of surfactant  

Pulmonary surfactant reduces airway collapse and provides stability to the 

peripheral lung units by reducing the surface tension at the air/liquid interface, 

thus maintenance of air reservoir at the end of expiration. Surfactant deficiency 

impedes this process hence there is a failure of creation of an end expiratory 

lung volume (FRC) after the initial lung inflations. In animal models, it has been 

demonstrated that the presence of surfactant improves lung aeration and 

maintaining FRC (124-126). The surface tension acting along the concave 
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curvature of the air/liquid interface must act to reduce the hydrostatic pressure 

in addition to reducing lung recoil and its tendency to collapse at end-expiration. 

In addition, the surfactants may contribute to the clearance of the lung fluid 

by reducing lung recoil and by acting as a water repellent(127). 

1.7.6 Mode of delivery and FRC formation 

The mode of delivery and its effect on the magnitude of FRC has been 

thought to be due to the increased volume of lung fluid in infants born by 

caesarean section.  Various studies have demonstrated the effect of the mode 

of delivery on FRC formation in term infants. An FRC of approximately 30ml/kg 

of body weight (128) is usually achieved within the first two hours in vaginally 

delivered term infants (129), but much later (5-6h hours) in infants delivered by 

elective lower segment caesarean  section (LSCS)(130). 

Milner and colleagues (130) measured lung volumes in 26 infants born by 

vaginal delivery and 10 infants delivered by elective LSCS. The mean thoracic 

gas volume in vaginally born infants in the first six hours of life was 32.7 ml/kg 

body weight and this was significantly higher than that of infants delivered by 

elective LSCS (19.7 ml/kg body weight) (P<0.001). They also measured the 

chest circumference of all infants and there was no significant difference 

between the groups, suggesting that the total lung volumes were similar. The 

lower thoracic gas volumes in infants born by caesarean section, suggested a 

higher amount of lung fluid when compared to infants born by vaginal delivery.  

Boon and colleagues(131) studied thoracic gas volumes(TGV) in 25 infants 

born by vaginal delivery (32.2 ml/kg) and 15 infants born by elective LSCS (21.6 
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ml/kg). They demonstrated that (TGV) was significantly greater in the first six 

post-natal hours versus but not at 48 hours (35.4 ml/kg and 30.4 ml/kg 

respectively). They suggested that by 48 hours the fluid had been drained by 

the pulmonary lymphatics and the pulmonary circulation, which closely parallels 

the time course for resolution of transient tachypnea in the newborn infant. The 

seven infants born by emergency CS had intermediate values, which increased 

from 28.3 ml/kg at two-six hours to 35.5 ml/kg at 18-30 hours, the latter being 

similar to vaginally delivered infants. This differential effect of emergency CS 

when compared to elective caesarean section, may be an effect of 

catecholamine release during labour, ameliorating the rate of lung fluid 

reabsorption in emergency CS compared to elective CS babies. Vyas and 

colleagues (94) also demonstrated a significant difference in the mean initial 

FRC between infants delivered by elective caesarean section (10.8 ml ) or 

vaginal delivery (18.9 ml ) (P<0.01). The same group in a further study showed 

that vaginal squeeze pressures (mean of 145.4 cmH20) affected  the inspiratory 

volume of the first breath and hence formation of FRC, probably by enhancing 

the clearance of lung fluid (132). Thus, both mechanical (delivery pressures) 

and non-mechanical factors (ephinephrine surge) induced by labour are 

important in the clearance of lung fluid and help with the formation of an FRC. 

1.7.7 Functional Residual Capacity  in prematurely born infants 

Preterm infants have weak respiratory muscles, a highly compliant chest wall 

and inadequate surfactant. These factors lead to inadequate inspiratory 

pressure to overcome the high surface tension and the frictional forces to 

achieve lung aeration. The highly compliant chest wall deforms during 

diaphragmatic contraction, thereby reducing the inspired tidal volume and is 
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unable to resist lung recoil, resulting in a lower lung volume at the end of 

expiration (133-135). Furthermore, the preterm lungs are less responsive to 

lung fluid reabsorption mechanisms including sodium reabsorption through the 

ENaC channels, thus are less efficient in clearing lung fluid (83, 136, 137) as 

discussed previously. The degrees of respiratory effort and surfactant deficiency 

vary significantly according to the gestational age of the infants with more 

extremely premature infants having the weakest respiratory effort and severe 

surfactant deficiency. Thus, extremely premature infants usually require 

respiratory support to establish and maintain FRC and pulmonary gas exchange 

at birth (70, 110) (Fig 1-5). 

The trans-pulmonary pressure gradients achieved during spontaneous 

breathing can be replicated by mechanical lung inflation, enabling it also to drive 

airway liquid clearance in preterm infants. Most very preterm infants now are 

exposed to maternally administered antenatal corticosteroids, which greatly 

improve postnatal pulmonary function. In a study assessing the effect of 

antenatal steroid on FRC formation, McEvoy and colleagues measured FRC in 

prematurely born infants born between 25-34 weeks’ gestation. They 

demonstrated that infants exposed to a full course of antenatal steroids had a 

significantly higher FRC (29.5 ml/kg) than 20 age matched, untreated infants 

(19.3 ml/kg) (p<0.001). Static compliance was also higher in the treated versus 

the untreated group. The authors concluded that the higher FRC may be due to 

structural changes or may be secondary to the changes in surfactant production 

or a combination of both (138). 
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Figure 1-5: Formation of FRC in a prematurely born infant following an 

inspiratory effort by a preterm infant born at 26 week gestation.  

(Trace obtained during the resuscitation of the infant in this research study) 

1.8 The role of neonatal pulmonary reflexes  

Pulmonary reflexes are active in the newborn period and the lung afferents 

play an important role in regulation and timing of breathing in the newborn 

infants. 

1.8.1 Hering-Breuer inflation reflex  

The pulmonary stretch receptors are stimulated when the  inspiratory lung 

volume(139) is increased, this leads to a shortening of the inspiratory time, or 
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by prolonging the expiratory time (140). This reflex also is  known as the 

Hering–Breuer inflation reflex(HBIR), and is mediated through the vagus 

nerve(141).In preterm infants, the Hering-Breur reflex are stronger and the 

preterm infants depend on this for their respiratory rate, than the term born 

infants. Olinsky et al.(142) used airway occlusion in 16 preterm and 14 term 

born infants. Occluding the airway at the end of expiration, resulted in no 

volume change in the subsequent inspiratory effort hence no lung distension 

signals through the lung receptors were produced. Preterm infants had a more 

prolonged inspiratory time following the occlusion (53%) compared to term 

infants (25%), suggesting that in preterm infants the afferent information were 

important and stronger for the duration of lung inflation. They demonstrated a 

strong correlation between the inspiratory period and total respiratory period, 

thus concluding that the effect of HBIR reflex is to increase the respiratory rate. 

They suggested that the purpose of such an exaggerated reflex is likely to 

prevent full emptying of the lung and maintain lung volume at end expiration.  

In a more recent study Hassan et al (143)measured the strength of the 

HBIR in 22 term infants between 1-5 days after birth. They observed that there 

was a progressive increase in strength of the HBIR with maximal stimulation of 

the reflex at ~ 4ml/kg above FRC. The strength of the HBIR significantly 

correlated with respiratory rate, suggesting that HBIR influences respiratory 

patterns in the newborn. The strength of the  reflex was found to be weak in 

infants of 32 weeks' gestation, increasing in strength at 36–38 weeks and 

decreasing thereafter(144). 
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1.8.2 Hering-Beurer deflation reflex 

The Hering–Breuer deflation reflex (HBDR) is activated on deflation of the 

lung and results in inspiratory augmentation. Hannam et al.(145) in their study 

evaluated the Hering-Breuer deflation reflex in term and preterm infants, they 

observed that unlike term infants who responded to the deflation reflex by 

shortening their expiratory time followed by prolonging their inspiratory time, 

preterm infants responded to the deflation reflex by a rapid reduction in lung 

volume and a shortened inspiratory effort and a tendency to have a brief 

apnoea. This may be due to the immaturity of the reflex arc responsible for the 

transmission of the HBDR in the preterm infants. Stimulation of the Hering 

Beurer deflation reflex would limit preterm infants making spontaneous 

respiratory efforts during resuscitation due to the cessation of inspiration, this 

may prevent the baby from taking their first breath. In contrast, Head observed 

that newborn mammals responded to lung inflation by making an inspiratory 

effort, i.e. Head’s paradoxical reflex (146, 147) This reflex has been 

demonstrated in newborn infants and is thought  often to be responsible for the 

first inspiratory lung volume and contributes towards the formation of an 

FRC(28, 148). 

1.8.3 Head’s paradoxical reflex 

In 1889, Head demonstrated that, when conduction in the cervical vagus 

nerves of rabbits was partially blocked by cold, inflation of the lungs caused a 

strong and prolonged inspiratory effort which is usually referred to as Head's 

paradoxical reflex(146, 149). This contrary to the inhibition of breathing seen 

when vagal conduction was intact (the Hering-Breuer inflation reflex). 
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Hoskyns et al (119) in a study of term and preterm infants, aimed to study the 

adequacy of initial inflations (first three lung inflations) in these infants.  They 

observed a reflex in 41% of the preterm infants and of these 80% demonstrated 

a Head’s paradoxical reflex. They also reported that there was a significant 

(p<0.001) correlation between the presence of reflex and achieving an 

adequate tidal volume (4.4ml/kg) during the initial lung inflation, however this 

was not significant in term infants. Boon et al(148) studied the total gas volumes 

and intra oesophageal pressures during resuscitation of twenty term infants. In 

their study although 47% of the mechanical lung inflations was associated with 

a HBIR, eleven percent demonstrated the Head’s paradoxical response. These 

studies suggest that triggering the Head’s reflex which increases the inspiratory 

volume hence a rapid formation of FRC which is crucial for adequate gas 

exchange during neonatal resuscitation. This indicates that Heads paradoxical 

reflex may also augment the ventilation (Fig 1-6) of premature infants with low 

lung compliance. 
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Figure 1-6: Infant’s inspiratory effort in response to lung inflation, this is also 

associated with augmentation of tidal volume. This physiological trace was 

obtained during the stabilisation of a 24-week infant included in the current 

research study. 

1.9 Pulmonary circulation and gas exchange 

1.9.1 Pulmonary circulation 

Oxygenation in the fetus is through the placenta and oxygenated blood flows 

into the fetus through the umbilical veins. The oxygenated blood enters the left 

atrium from the right atrium through the foramen ovale. This then enters the left 

ventricle and then to the aorta.  The blood received back to the right ventricle is 

mainly from the superior and inferior vena, which is poorly oxygenated. Less 

than 20% of the cardiac output enters the pulmonary arteries due to high 

pulmonary vascular resistance, the larger portion enters the aorta through the 

ductus arteriosus(150, 151) The oxygen tension in fetal pulmonary arterial blood 

is ∼18 mmHg and the oxygen saturation ∼50%(150, 152).Since, however, fetal 

blood contains high levels of fetal haemoglobin which has a higher affinity to 
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oxygen than adult haemoglobin, there is sufficient oxygen delivery to the lung to 

support it growth and metabolic functions(153). 

After birth, the lung is the organ for gas exchange. Pulmonary blood flow 

increases from 21% of  the ventricular output in the fetus to the total cardiac 

output after birth(151). Following the establishment of respiration, the 

pulmonary arterial pressure gradually decreases while the systemic pressure 

increases. The mean pulmonary arterial pressure drops to nearly 50% of mean 

systemic pressure by the end of the first day and drops to the adult level within 

the first two  weeks of life(152, 154). Once the systemic pressure is greater than 

the pulmonary, the foramen closes. The ductus arteriosus begins to close within 

the first few hours after birth and by 15 hours of age there is very little blood 

flow across the ductus arteriosus (155, 156). This dramatic change in the 

pulmonary circulation of the newborn is primarily attributable to the marked 

decrease in pulmonary vascular resistance (PVR) postnatally. Numerous 

events, which include ventilation, oxygenation, increasing shear stress of blood 

flow, changes in the activities of a number of vasoactive agents such as  nitric 

oxide and prostaglandins(157-159) contribute to the drop in PVR and 

maintenance of a low PVR postnatally. 

 In the fetal circulation the PVR is much higher than the systemic circulation 

resulting in the right to left shunting through the ductus arteriosus and foramen 

ovale. Following the cessation of the placental flow which happens immediately 

after the cord is clamped following birth, the PVR falls rapidly to approximately 

10 percent of the fetal values hence the pulmonary blood flow increases 

tenfold(160). 
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Several mechanisms lead to the fall in PVR. Tietel and colleagues(161) 

studied the sequential effect of three important components of the birth process: 

ventilation, oxygenation, and umbilical cord occlusion on the blood flow patterns 

in the near-term sheep fetus. In their study of 16 term or near term lambs, lung 

inflation alone increased the pulmonary blood flow by four-fold and a further 

increase was observed if 100% oxygen was used. They concluded that the 

majority of the transition from the fetal to neonatal circulation is initiated by 

ventilation alone and can be explained by a decrease in pulmonary vascular 

resistance. The further decrease in pulmonary vascular resistance was caused 

by oxygenation and umbilical cord occlusion. On further evaluating each of 

these components on its own, they observed there was only a small increase in 

the ventricular, however a combination of ventilation, oxygenation and cord 

occlusion led to a significant increase in the ventricular output similar to that 

seen at birth. Inflation of the lung also stimulates pulmonary stretch receptors 

which leads to reflex vasodilation of the pulmonary vascular bed(162) through 

the sympathetic system(vagus nerve). A combination of endogenous mediators 

like nitric oxide, prostaglandins, bradykinin, adenosine, and histamine(163) 

contribute towards decreasing and maintenance of pulmonary vascular tone. 

1.9.2 Gas exchange in the newborn lung 

Studies investigating the pulmonary gas exchange in term and preterm 

infants have been performed by collection of expired gases over a five-minute 

period immediately after birth. At the same time oxygen uptake during and 

immediately after ventilation through an endotracheal tube was also studied. 

The rates of expired carbon dioxide rose from 6.5ml/kg/min at 15 seconds to 

10ml/kg/min by two minutes. The oxygen uptake mimicked the CO2 elimination 
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with a rapid rise to 12ml/kg/min at two minutes and stabilising to 8ml/kg/min at 

five minutes of age. Rates of expired CO2 in spontaneously breathing infants 

born vaginally were compared to the infants born by caesarean section. Infants 

born by caesarean section had a much slower rise (below 6ml/kg/min) in CO2 

for the first 90 minutes after birth, subsequently to 8-9ml/kg/min at four minutes 

of age. The preterm infants showed a similar pattern to infants born by 

caesarean section. The results of this study are in agreement with earlier 

findings that pulmonary adaptation to extrauterine life is completed rapidly in 

healthy, vaginally delivered infants, whereas those who are born by caesarean 

section have a slower adaptation. 

More recently, improvements in arterial oxygenation in minutes after delivery 

have been studied by pulse oximetry. Dawson et al(164) reported reference 

ranges of oxygen saturation levels and heart rate in the first 10 minutes of life. 

Of the 468 infants who did not need any intervention or supplemental 

oxygeno121ne hundred and twenty one infants were born between 32-36 

weeks of gestation and 39 infants were born <32 weeks of gestation. The 

median saturation levels in preterm infants at one, five and ten minutes were 

62% (range 47–62%), 86% (86–92%) and 94% (91–97%) respectively. The 

patient in their study achieved a mean heart rate of 96/min (72–122) at one 

minute of age and all infants had a heart rate >100/min after two minutes of 

age. The gold standard for measuring oxygen levels is co-oximetry, from an 

arterial blood gas, however this is challenging at birth. Variations in pulse 

oximetery methods may affect findings, furthermore in their study some of the 

SPO2 during the first few minutes were less than 70%. At this level, the 
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oximeter may not measure the SpO2 accurately. Hence, adapting these findings 

may not always be possible, during the stabilisation of prematurely born infants. 

1.10 Resuscitation in term born infants 

Approximately 5-10% of term born infants need some form of support to 

establish breathing at birth (165-168). The decision to commence resuscitation 

is based on the clinical condition at birth. ILCOR recommends (169) that 

resuscitation should be commenced if the infant does not breathe and the heart 

rate is below 100 beats per minute soon after birth.  

1.10.1 Stabilisation and suctioning 

 All newborn babies need to be stabilised by keeping warm and aim to 

maintain the body temperature between 36.5 - 37.5 ○C, suctioning of the oral 

cavity is only necessary in a floppy infant and if there is plenty of fluid or 

meconium in the oral cavity. It has been advised to not blindly suction the hypo 

pharynx and all oropharyngeal suction should be performed under direct vision 

through a laryngoscope(170, 171).  

1.10.2 Ventilation 

Ventilation is required in approximately 3–5% of all newborn infants and in 

preterm infants there is even a greater need (172-174). Once ventilation is 

achieved, heart rate will increase rapidly and normalise. There is a strong 

association between gas exchange and heart rate; this is demonstrated to be 

achieved between 1 and 2 min in vaginally born infants and a few minutes 

further in infants born by caesarean section (175). Currently, positive pressure 

is delivered though a self-inflating bag or t-piece device. The peak inspiratory 
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pressure is set at 30 cm H2O and is decreased or increased based on the 

assessment of chest rise. An expiratory pressure [continuous positive airway 

pressure (CPAP)] has been shown to improve ventilation and to help establish 

an adequate functional residual capacity (176).Although the ILCOR do not 

recommend prolonged inflation times during the first five lung inflations(177) 

due to lack of scientific evidence, the UK resuscitation council continue to 

advocate prolonged inflation times of 2-3 seconds for the first five lung inflation 

during resuscitation of term born infants(178) as there is no evidence to refute 

that prolonged lung inflations helps to achieve FRC earlier. 

1.10.3 Endotracheal intubation 

 The indication for endotracheal intubation is failure to ventilate by bag and 

mask. Intubation was reported to be needed in 1 in 600 infants by Leone et 

al(173). With improvement of mask design including cushioned rim and 

adequate sizes for every birth weight, endotracheal intubation is becoming rarer 

including in in preterm infants. Moreover, recent studies indicate that 

apparently, the use of non-invasive ventilation in the delivery room may be 

associated with less oxygen need and days of ventilation (179); however, a 

reduction in the incidence of chronic lung disease has not been definitely 

established. 

1.10.4 Oxygen during resuscitation of term born infants 

Clinical studies have shown that resuscitation with ambient air (21%) 

compared to 100% oxygen reduces neonatal mortality, time to first breath and 5 

min Apgar score(180). Recent international guidelines recommend starting 

resuscitation of term or near term babies with air instead of supplemental 
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oxygen (169) . This advice is based on animal studies and 10 clinical studies. 

The meta-analysis and systematic review that summarised the 10 studies 

included 2134 enrolled term or near term infants in need of resuscitation. 

Neonatal mortality was 12.8% in infants resuscitated with 100%, and 8.2% in 

those with 21% oxygen [relative risk (RR): 0.69; 95% confidence interval (CI): 

0.54–0.82]. The number needed to treat with 21% O2 to save one life was 25. 

When the six strictly randomised studies were analysed separately, neonatal 

mortality was 3.9 and 1.2% in 100% and 21% groups respectively. The Relative 

risk was 0.32 for those babies resuscitated with 21% oxygen (95% CI).  

1.10.5 Chest compressions 

In newborn babies who have been ventilated adequately for 30 s without a 

rise in heart rate >60 bpm is an indication indications for chest compressions. 

This is carried out with 30 breaths and 90 compressions/min, however it is a 

difficult task to accomplish and there are no clinical studies to refute a 3:1 ratio 

of cardiac compression to ventilation. 

1.11 Prematurity and postnatal adaptation 

The preterm infant has several disadvantages regarding extra uterine 

adaptation of the respiratory system. The chest wall of preterm infants is very 

complaint and weak respiratory muscles make it difficult for these infants to 

generate large inspiratory pressure to overcome the high surface tension and 

frictional forces to achieve effective lung aeration. In addition, the lungs of 

preterm infants are less responsive to mechanisms such as sodium 

reabsorption and so are less efficient at clearing lung liquid (83, 137, 181). 
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Retention of lung liquid in the air spaces reduces lung gas volumes, 

promotes non uniform aeration and delays the formation of FRC (83, 137, 181). 

Currently, most preterm infants receive antenatal corticosteroids, which 

stimulate surfactant production and greatly improve postnatal pulmonary 

function and mature liquid clearance mechanisms, thereby enhancing lung 

aeration at birth(70, 182). 

With the use of antenatal steroids many very preterm infants breathe and 

establish an FRC with only nasal continuous positive airway pressure (NCPAP) 

as support(183). In infants who do not adapt rapidly, mechanical lung inflation 

may be necessary. Most studies have investigated the first breaths of term 

infants; it cannot be assumed that the results of these studies can be applied to 

preterm infants. The lungs of very preterm infants are vulnerable, and 

inappropriate ventilatory support immediately after birth can cause lung injury, 

and may be closely associated with the development of bronchopulmonary 

dysplasia(184, 185). 

1.11.1 Resuscitation of prematurely born infants 

Many preterm infants will need additional support in the form of oxygen 

supplementation or mechanical ventilation to allow adequate oxygenation and 

ventilation even if they are breathing spontaneously. Similar to term born 

infants, the prematurely infant must replace fetal lung fluid with air, establishing 

functional residual capacity (FRC) in the lung, and increase pulmonary blood 

flow, transitioning from placental to pulmonary gas exchange. The lung is also 

stiff due to the lack of surfactant and may need high airway opening pressure to 

overcome the airway resistance. The lung tissue is extremely fragile and is 
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prone to injury and inflammation if inadvertently high airway pressures are used 

during resuscitation. Mechanical lung inflation requires delivery of an 

appropriate tidal volume to achieve adequate gas exchange. Clinical 

assessment including colour, tone, heart rate and chest rise are recommended 

by ILCOR (169)to evaluate the response to ventilation during neonatal 

resuscitation. The tidal volume (TV) delivered is rarely measured hence the 

airway pressure is not adjusted to optimize TV to avoid volutrauma or under 

ventilation (186-188).  

Positive pressure ventilation during resuscitation may cause lung injury 

through various mechanisms, including high airway pressure (barotrauma),over 

distention (volutrauma), repeated alveolar collapse and re-expansion 

(atelectrauma). Antenatal  infection and inflammation (biotrauma)(189) also 

contributes towards lung injury acquired during resuscitation of prematurely 

born infants. These injuries cause leakage of proteinaceous fluid and blood into 

the airways, alveoli, and lung interstitium, inhibiting surfactant function, and 

contributing to lung injury(189). Hence, extreme caution and close monitoring of 

lung inflation during resuscitation is crucial to prevent long term morbidity. 

1.11.2 Lung injury during preterm resuscitation 

Inflating the lung immediately after birth exposes the preterm lung to injury 

and the degree of injury is hypothesised to be proportional to the inflating 

pressures and tidal volumes(190, 191), hence the consensus to use “gentle” 

ventilation strategies during resuscitation of prematurely born infants. 

Numerous animal experiments have been performed to evaluate the degree 

of lung injury comparing different lung inflation strategies during resuscitation in 
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a surfactant deficient preterm lung. Björklund and co-workers(184) compared 

lung function during resuscitation of premature lambs. The control group 

received standard mechanical ventilation support and the experimental group 

received large volume(35-40ml/kg) initial inflation breaths followed by standard 

ventilation. Both groups received surfactant at 30 min of age. They reported that 

the lambs inflated with large lung volumes had a lower mean lung compliance 

(0.99 ml/cm H2O) compared to 2.87 ml/cm H2O in controls at four hours of age, 

they also needed higher inspiratory pressures (37cm H2O compared to 25 cm 

H2O in controls) and had a reduced mean inspiratory capacity (24 ml/kg 

compared to 37ml/kg) compared to the lambs not exposed to high lung volumes 

during resuscitation. This suggests that even a few large volume, lung inflations 

are detrimental to lung mechanics.  

In a more recent study(192) evaluating the effect of tidal volume and lung 

inflammation in preterm lambs, tidal volumes of 8ml/kg and 15ml/kg were found 

to induce high levels of pro inflammatory cytokines IL-1β, IL-6 , IL-8 and protein 

carbonyls (a marker for oxidative injury) when compared to the non-ventilated 

lambs(controls). Similarly, Hilman et al (191)found that preterm lambs ventilated 

with 50 cm H2O and a tidal volume of 15ml/kg had increased protein and 

inflammatory cell counts in the bronchoalveolar lavage fluid (BALF) when 

compared to lambs who were maintained on placental support with no ventilator 

support (controls). Wada et al.(193), found that although increasing tidal 

volumes to 20 ml/kg improved FRC, it resulted in a reduced compliance and 

increased protein in the alveoli in the lungs of premature lambs compared to 

those ventilated with tidal volumes of 5-10ml/kg. 
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Over inflation of a preterm lungs with large tidal volumes increased 

microvascular protein permeability contributing to lung oedema(194). Many 

experiments evaluating lung injury, have focussed on the relationship between 

volume and end expiratory pressures, lung volumes that approach total lung 

capacity(TLC) stretches the lung and initiates an inflammatory cascade and 

induces lung injury(195) during resuscitation. Similarly, ventilation of the injured 

lung from volumes below the normal FRC results in a similar inflammatory 

cascade and induces lung injury(196), the injuries are amplified in the presence 

of other pro inflammatory mediators such as  oxygen exposure or presence of 

endotoxins(197). 

The level of inspired oxygen to be used during preterm resuscitation has 

been controversial (198-201), however there is an increasing body of evidence 

demonstrating the effect of oxygen free radical injury in prematurely born infants 

(202, 203).This has led to international consensus on the need for blood oxygen 

level monitoring during preterm resuscitation (169). 

1.11.3 Resuscitation techniques in preterm infants 

Newborn resuscitation equipment and practices vary within and between 

countries (172-174, 204).In the UK, the equipment used and techniques 

practiced are guided by the UK Resuscitation Council. All staff involved in new 

born care should undertake a standardised Newborn Life support provider 

course, however whether these standards are achieved in the UK is yet to be 

established. 
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1.11.4 Positive pressure ventilation 

The aim of resuscitation in a newborn infant is to effectively mimic the infants’ 

respiratory effort aiding the formation of the FRC, exchange and stimulate tidal 

breathing. Positive pressure ventilation with a peak inspiratory pressure (PIP) of 

20-25cm H2O and a prolonged inflation time of 2 to 3 seconds is recommended 

during the resuscitation of prematurely born infants (Resuscitation Council UK, 

2010). 

The use of continuous positive airway pressure (CPAP) with positive end 

expiratory pressure (PEEP) in resuscitation of preterm infants may prevent 

collapse on end expiration which helps in maintaining the FRC thus reducing 

the need for intubation (205-207). Use of PEEP in resuscitation has shown to 

have many advantages including preserving surfactant(208), improving gas 

exchange(209) and preventing airway collapse(210, 211). In rabbits, addition of 

PEEP during resuscitation was found to increase the FRC (pups ventilated with 

PEEP (19.9ml/kg) compared to pups where no PEEP(2.3 ml/kg)) (212). Naik 

and colleagues (213) further investigated the effects of PEEP during the 

resuscitation of preterm lambs. In their study, use of PEEP during resuscitation 

achieved tidal volumes (9-11ml/kg) with significantly lower PIP compared to the 

group where no PEEP was used. Following the experiment, the lambs were 

euthanised and the right lung was inflated and fixed. Morphometric 

measurements of the proportion (percentage fractional areas) were performed. 

They observed that the percentage of collapsed alveoli was reduced to 5% with 

7 cm H2O PEEP and 10% with 4cm H2O PEEP compared to 38.5% with no 

PEEP. Furthermore, using 4cm H2O was associated with significantly lower 

levels of total protein, IL-13, IL-6 and neutrophil counts in the alveolar fluid 
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compared to that of lungs receiving PEEP of 0 and 7 cm H2O. Those findings 

indicate that using a PEEP of 4 cm H2O can improve lung function and reduce 

lung inflammation during preterm resuscitation. In preterm neonates receiving 

ventilation following surfactant therapy, Da Silva et al.(214) measured 

pulmonary mechanics in 21 preterm infants. They observed that using a PEEP 

of 5 cm H2O rather than 2 cm H2O increased the FRC from 18.4 ml/kg to 26.2 

ml/kg. They also observed a non-linear but significant (p<0.01) increase in the 

FRC with increase in PEEP from 2 to 5 cm H2O. Polgolase et al.(215), found 

that increasing PEEP gradually in ventilated preterm infants, from 4 to 10 cm 

H2O, increased the oxygen index and had potentially deleterious effect on the 

pulmonary blood flow. Similarly, Herman et al.(216) found that increasing PEEP 

in ventilated preterm infants, from 0 to 5 cm H2O, increased arterial oxygenation 

but further increasing PEEP to 10cm H2O provided no additional improvement. 

The effect of increasing PEEP also has detrimental effect on systemic and 

pulmonary blood flows and cardiac function(217). Those results suggest a 

PEEP of 4-5 cm H2O may be beneficial but increasing the PEEP beyond 5 cm 

H2O may be detrimental to pulmonary blood flow and gas exchange.  

The peak pressure needed during resuscitation of preterm infants is variable. 

Resuscitation guidelines recommend 20-25 cm H2O initially; however higher 

levels may be needed. Hoskyns et.al(218) reported that during lung inflation  via 

an endotracheal tube, a PIP of 25-30 cm H2O rarely achieved tidal volume 

greater than 4ml/kg. In contrast, Hird et al(219) found that a median of 22.8 cm 

H2O was needed at preterm resuscitation and rarely a PIP of > 30 cm H2O was 

needed. “Adequate chest rise” has been used in clinical studies to evaluate lung 

expansion during new born resuscitation, however visual assessment of chest 
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expansion and tidal volume is subjective. In a recent study, Poulton et.al(220) 

compared the assessment of chest rise made by observers with measurements 

of tidal volume during resuscitation of prematurely born infants. The clinicians 

underestimated the tidal volume by at least 3.5 mls and the agreement between 

the clinical assessment and tidal volume was poor.  

Monitoring respiratory functions during resuscitation may improve gas 

exchange and reduce lung damage by providing the clinicians accurate and 

immediate feedback during resuscitation. 

1.11.5 Assisted ventilation devices used during preterm resuscitation 

Lung inflation devices used during preterm resuscitation vary across 

countries (172-174, 204). The ILCOR have made attempts to standardise 

equipment used at preterm resuscitation (221). The devices to be used should 

be operator controlled, easy to use, and achieve adequate lung inflation to aide 

gas exchange. Commonly the interfaces used for lung inflation in preterm 

resuscitation include face masks or endotracheal tubes, the use of laryngeal 

mask has rarely been studied. 

Self-inflating bags had been the most commonly used device for newborn 

resuscitation, however they have been replaced by the T-piece resuscitator in 

developed countries. In mechanical models, inflation pressures were achieved 

more consistently when using T-piece resuscitators than with self-inflating bags 

or flow-inflating bags(222, 223). It has been reported that ventilation devices 

that produce the largest tidal volumes are those that achieve high pressures for 

sustained periods and that most bag and mask ventilation systems fail to reach 

adequate tidal volumes(224). A T-piece face mask resuscitation device which is 



 

65 
 

more commonly used is a pressure limiting device, the pressure is delivered by 

the clinician by occluding the port on the t-piece with their finger. This system is 

designed to allow maintenance of the desired inflation pressures for longer 

durations if necessary. Resuscitation studies using manikins have 

demonstrated that using a t-piece system resulted in less variation in the 

pressures delivered more frequently than bag operated devices(225).  In 

mechanical models the ability to deliver a sustained inflation and maintaining 

PEEP was consistent with a T-piece resuscitator than a self-inflating bag (225, 

226).   

In preterm infants PPV administered via a t-piece rather than a self-inflating 

bag produced longer inflation times during resuscitation (227).  

1.11.6 Lung inflation times during positive pressure ventilation 

Maintaining a sustained inflation during the initial lung inflations during 

newborn resuscitation has been found to improve the formation of FRC. In a 

study of 10 term infants Vyas et al (228) found that using an inflation time of five 

seconds increased the inspiratory lung volumes (33.6 ml/kg) compared to one 

second (18.6 ml/kg) and that this may aide with the formation of FRC by the end 

of the first inflation. It has been hypothesised that by limiting peak pressure and 

using sustained inflations will lead to a higher tidal volume and rapid formation 

of FRC. A study investigating the effects of sustained lung inflation in preterm 

rabbits found that the first inspiratory volume significantly increased with 

inflation duration from a median of 0.2 ml/kg for 1 second inflation to 4.5 ml/kg 

for 5-second inflation, 10.4 ml/kg for 10-s inflation and 23.4 mL/kg for 20-s 
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sustained inflation. The lung was uniformly aerated, and the FRC fully recruited 

after a 20-second sustained inflation. (229) .  

In a study in human infants, aimed to investigate the effects of prolonged 

lung inflation on lung injury, Harling and co-workers(230) compared the effects 

of five second inflation times to one second inflation time during initial 

resuscitation of prematurely born infants (<31 weeks gestation) by assessing 

the levels of inflammatory markers in the bronchial lavage fluid. They found no 

significant differences in cytokine levels at 12 hours and the requirement for 

ventilation was the same in both groups at four hours of age. 

Numerous studies on preterm infants have attempted to study the effect of 

prolonged lung inflation and respiratory outcomes. Linder and colleagues(231) 

performed a randomized controlled trial to compare their sustained pressure –

controlled inflation strategy to routine intubation and ventilation. They found no 

differences in the number of infants subsequently requiring intubation or 

mechanical ventilation. Te Pas and Walther(232) randomized 207 preterm 

infants to a sustained initial inflation of 10 seconds followed by early nasal 

CPAP or repeated inflations using a self-inflating bag followed by CPAP. They 

observed a significant reduction in the incidence of intubation at 72 hours in the 

sustained inflation group (37% versus 51% p=0.04) and further noted a 

reduction in the incidence of BPD in the group (22% vs 34%;p=0.015).  

Although sustained inflations appear to be a method of opening the lung and 

achieving an initial FRC there are no data suggesting that it reduces lung injury 

or BPD. More importantly, monitoring lung inflation volumes may restrict lung 

injury by preventing volutrauma. 
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1.11.7 Efficacy of Preterm resuscitation 

Currently positive pressure ventilation via a facemask interface is 

recommended to be used as the initial mode for supporting the pulmonary 

transition in the prematurely born infants(169). During preterm resuscitation, the 

pressure delivered to inflate the premature lung is limited to 20-25cm H2O to 

prevent lung damage, however this is only achieved if there is no leak in the 

system. In a study on newborn resuscitation simulation, administering PPV to 

manikins, Wood et al. demonstrated that on average, 55% of the inspiratory 

volume given was lost due to face mask leak(233).When a respiratory function 

monitoring (RFM) was introduced during manikin resuscitation, the display of 

tidal volume and  face mask leak during simulation reduced face mask leak by 

over 50% (234). Schmölzer and colleagues (235)measured tidal volumes and 

facemask leak during the resuscitation of preterm infants. They compared the 

resuscitators’ assessment of the leak and tidal volume against the values 

recorded by the RFM. The median face mask leak was estimated to be 29% 

(range 16-63%) of the inspired tidal volume and more importantly, the 

resuscitators underestimated the extent of the leak. Furthermore, the median 

expiratory tidal volume was 8.3ml/kg and varied widely (5.3-11.3 ml/kg). In 

addition, assessing chest rise did not provide an accurate impression of the tidal 

volumes delivered during resuscitation. This suggests that the desired tidal 

volumes are not being consistently achieved due to facemask leak, hence 

respiratory function monitoring during resuscitation of preterm infants might 

improve the efficacy of resuscitation. 
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1.12 Monitoring resuscitation of prematurely born infants 

The assessment of the response to resuscitation in the clinical setting is 

similar to term born infants, this includes chest rise, clinical signs like tone, 

colour and respiratory effort. ILCOR recommends the routine use of 

transcutaneous oxygen saturation monitoring to measure blood oxygen levels 

and heart rate, however these do not provide information on the respiratory 

functions during resuscitation. It is widely accepted that these methods may be 

inadequate to accurately guide the clinician to effectively resuscitate the 

preterm infant nor the infant’s response to the resuscitation [52-54].  

 A recent and an important development in this field has been the introduction 

of respiratory function monitors (RFM) as a tool for monitoring respiratory 

parameters in real-time, during newborn resuscitation. Clinical studies(233, 234, 

236) have shown them to be beneficial in identifying face mask leaks and in 

teaching correct mask hold and positioning techniques during simulation-based 

mannequin. 

The superiority of RFM over traditional techniques has been repeatedly 

demonstrated (237). They can be extremely useful in providing resuscitators 

with information about the magnitude of face mask leaks, pressure and tidal 

volume being delivered which are central to the efficacy of resuscitation. 

Furthermore, most infants being resuscitated begin to breathe on their own 

eventually and these spontaneous breaths, as well as their interaction with 

mechanical inflations, can provide valuable information to the clinician during 

stabilisation of a prematurely born infant (238, 239).  
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There is a lack of data describing the acute responses of preterm infants to 

resuscitation. The use of respiratory function monitoring during preterm 

resuscitation has the potential to provide vital information and also help to 

develop robust evidence based guidelines to be followed at preterm 

resuscitation. This may also inform us about the minimum pressures necessary 

to provide adequate tidal exchange, and the formation of an air reservoir 

(functional residual capacity). In combination with a heart rate and oxygen 

saturation monitor, the RFM has the potential to inform the clinicians of the 

heart rate and oxygen saturation responses during resuscitation. These data 

are essential to enable the development of resuscitation strategies aimed at 

establishing effective tidal ventilation and oxygenation, while minimising the 

potentially injurious effect of lung over distension in this vulnerable group of 

infants. 

1.12.1 Pulse Oximetry monitoring during preterm resuscitation 

Pulse oximetry non-invasively measures blood oxygen saturation (SpO2) and 

heart rate (HR) continuously. In most modern medical monitoring equipment, 

calibration is rarely needed before the commencement of monitoring and the 

values closely correlates with arterial oxygen saturation(240).Pulse oximetry is 

based on the changes in the infrared light absorption characteristics of 

oxygenated and deoxygenated haemoglobin. The sensor consists of two light 

emitting diodes (LED) which are placed around a hand or foot. The changes in 

absorption during the arterial pulsatile flow and non-pulsatile component of the 

signal are analysed. SpO2 is estimated from the change in light absorption 

across the pulsatile vascular bed. Since the light absorption peaks occur with 

each heartbeat, heart rate can also be measured accurately. 
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Numerous studies (241-245) have reported variable rates(20-100%) of 

success in accurately measuring SpO2 by the first minute of birth, the success 

rose to 63-100% by five minutes of age. In these studies, the most common 

reason for failing to obtain a measurement was motion artefact, however the 

presence of vernix, poor perfusion, oedema, high ambient light and 

acrocyanosis also resulted in artefacts. With advance in pulse oximetry 

technology, artefact has been less of a problem. 

Supplemental oxygen to preterm infants have been a major area of research 

due to the morbidities of retinopathy of prematurity, lung injury and long term 

neuro-developmental concerns secondary to oxygen free radical injury. 

Previously oxygen therapy at preterm resuscitation had been ignored, however 

increasing body of evidence related to oxygen free radical injury has been 

established in animal studies(246). Optimising supplemental oxygen therapy in 

preterm infants and the reduction of oxygen related morbidity has led to 

establishment of physiological oxygen limit is preterm infants. Dawson and co-

workers (164, 247) established a reference range for oxygen saturation during 

resuscitation of prematurely born infants. The current ILCOR guidelines(169) 

advocate the use of oxygen blenders and oxygen saturation monitoring to 

optimise oxygen saturation based on these reference ranges.  

1.12.2 Monitoring pulmonary end-tidal carbon dioxide  

 There is limited evidence on the monitoring of expired carbon dioxide levels 

during preterm resuscitation. Currently, two non-invasive methods of monitoring 

carbon dioxide levels are available, (i) transcutaneous (TcPCO2) monitoring and 

(ii) exhaled carbon dioxide (EtCO2) detection by qualitative or quantitative 
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methods. A CO2 detector (qualitative) has been recommended by the current 

ILCOR to confirm correct Endo tracheal tube(ETT) placement during intubation 

of a newborn infant(221). A mainstream capnography (quantitative) device is 

placed in line with the respiratory gas stream and a side stream capnography 

device utilizes a sampling line that continuously samples gas through a 

sampling line. Both capnography methods provide a continuous visual display 

of carbon dioxide values.  

The use of a CO2 detector has been shown to significantly reduce the time to 

confirm ETT placement (248). Misplacement of ETT can result in increased 

adverse outcomes due to hypoxia or lung collapse (249, 250). In most studies, 

the use of ETCO2 in estimating gas exchange, however has demonstrated a 

poor correlation with blood PaCO2 levels (251-253). 

Advances in technology and a more robust main stream capnography could 

help clinicians analyse the resuscitation responses and facilitate understanding 

of expired carbon dioxides levels and their relation to tidal volume, FRC and 

infant’s respiratory efforts during preterm resuscitation. The expired CO2 levels 

could be a potential surrogate marker for lung aeration and gas exchange. 

Hence monitoring expired CO2 would help in better understanding of pulmonary 

gas exchange immediately after birth. 
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1.13 Hypothesis  

Respiratory function monitoring will determine the efficacy of initial 

resuscitation of prematurely born infants and the contribution played by the 

infant’s respiratory efforts. In addition, the following were hypothesised to be 

true: 

1. The delivered inflation pressure, duration of inflation and expired tidal 

volumes will be variable during the first five inflations. 

2. Prolonged inflation times will not improve tidal volumes during the first 

five inflations. 

3. Infants’ respiratory efforts will immediately increase end tidal CO2 levels 

and maintain higher levels with subsequent lung inflations. 

4. Efficacy of resuscitation would be better through an endotracheal tube 

compared to face mask due to large leaks in the later. 

5. Clinicians would find the Respiratory Function Monitoring useful during 

preterm resuscitation. 

6. Newborn resuscitation practices will be consistent across the UK, 

regardless of the level of neonatal care provided by the local units. 

1.14 Aims  

 To study the initial five lung inflations during face mask resuscitation of 

prematurely born infants and the influence of the infant's inspiratory efforts 

on tidal volume. 

 To assess the length of inflation times used during preterm resuscitation and 

determine the effect of prolonged inflations on inflation flow times. 
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 To study the temporal changes in end tidal CO2 levels during initial lung 

inflation and the effect of the infant's first inspiratory effort. 

 To study the effects of increasing inflation pressures on tidal volume and 

end tidal CO2 during resuscitation of prematurely born infants. 

 To assess and compare the initial responses to lung inflation delivered via 

an endotracheal tube and a face mask, and to evaluate the magnitude of 

expired tidal volumes in relation to the infant’s first inspiratory effort. 

 To determine the factors affecting the formation of initial functional residual 

capacity in preterm infants resuscitated at birth. 

 To evaluate the use of respiratory function monitoring at resuscitation of 

prematurely born infants. 

 To survey current new born resuscitation practices in the United Kingdom. 
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All preterm labour were identified by the clinical and research team at King’s 

College Hospital NHS foundation trust and Guy's and St Thomas' Hospital NHS 

Foundation Trust over the period of the study. Imminent delivery of a preterm 

infant was communicated to the clinical team by the labour ward staff. The 

neonatal clinician team or the research team set up the research equipment in 

conjunction with the routine resuscitation equipment used during preterm 

delivery. The research equipment was left on a standby mode, the recordings of 

the physiological data were commenced immediately following the delivery of 

the preterm infant by clicking the “on” button. The physiological parameters 

were displayed and recorded on a laptop computer which can be reviewed at a 

later date. Parents were approached for an informed consent to use of the 

recorded data, once the mother is stable and transferred to the postnatal ward.  

2.1 Subjects 

All preterm infants born before 34 weeks of gestation King’s College Hospital 

NHS foundation trust and Guy's and St Thomas' Hospital NHS Foundation 

Trust, between 1st March 2010 and 31st April 2012 were eligible for this study. 

Infants with antenatal diagnosis of congenital respiratory, cardiovascular and 

abdominal abnormalities were excluded from this study. 

2.2 Ethical approval 

The study was approved by the Outer London North Research Ethics 

committee (Ref no: 09/H0724/38); their opinion was that, as this was an 

observational study, parental consent was needed only for analysis of the data. 

Informed written consent was obtained once the mother was transferred to the 

post-natal ward. Research and development departmental approval were 
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obtained from both hospitals. Recruitment for the study commenced King’s 

College Hospital NHS foundation trust and Guy's and St Thomas' Hospital NHS 

Foundation Trust on the 1st March 2010. 

2.3 Standard Resuscitation protocol 

The practice at both units during the study period included compulsory 

attendance of junior / senior trainee paediatrician at all deliveries of infants born 

less than 34 weeks of gestation, in anticipation of them needing resuscitation at 

birth. All paediatricians were trained in standardised newborn resuscitation 

according to the Resuscitation Council, UK guidelines(2005)(254) and were 

aware of the principles and guidelines to be followed at preterm resuscitation. 

Labour ward staff informed the neonatal team of all imminent preterm deliveries.  

Prematurely born infants who needed resuscitation at birth were clinically 

assessed by the clinician and positive pressure ventilation was delivered with a 

t-piece device (Neopuff Infant resuscitator, Fisher & Paykel Healthcare, 

Auckland, New Zealand), which is a continuous flow, pressure limiting device 

with a build in manometer and a positive end expiratory pressure (PEEP) valve. 

The t- piece was attached to a face mask (Marshall, Bath, UK); and the clinician 

selected a size 0 or 1 sized face mask aiming to achieve adequate face mask 

seal during the resuscitation. An oxygen saturation probe was placed on the 

infant’s right hand and connected to the monitor. An oxygen blender was 

incorporated in the ventilation circuit which would help the clinician to titrate 

oxygen delivery according to the infant’s oxygen saturation. Clinicians were 

requested to avoid hyperoxia and titrate oxygen according to clinical needs as 

advised by the UK newborn resuscitation guidelines (2005). There was no clear 
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guidance on the levels of supplemental oxygen to be used at preterm 

resuscitation.  

2.4 Research Protocol 

Labour ward staff informed the neonatal team of all imminent deliveries of 

less than 34 weeks of gestation. The research monitoring equipment was set up 

by the clinicians/research team as part of a standard check of the resuscitation 

equipment in preparation of an imminent preterm birth.  The laptop was left on a 

standby mode and switched to a recording mode as soon as the preterm infant 

was delivered. Standard ILCOR resuscitation recommendations were being 

followed(254). Thus, infants who were cyanosed with no respiratory effort, but 

had a heart rate of at least 60/min received face mask ventilation immediately, 

using 50% oxygen. The recommendation is to maintain lung inflation for 2-3 

seconds during the first five lung inflations. Infants failing to respond within 30 

seconds, or who had a heart rate of less than 60 beats/minute on initial 

assessment were intubated and ventilated using peak inflation pressures of 20-

25 cm H2O and a PEEP of 5cm H2O, with 50% oxygen, maintaining the first 

inflation for 2 to 3 seconds. If this failed to produce apparent chest wall 

movement, inflation pressures were increased incrementally by 2-5 cm H2O 

until there was effective chest wall movement. If the heart rate failed to 

increase, external cardiac massage was commenced in combination with 

positive pressure ventilation. Where clinically indicated, intravenous drug like 

Ephinephrine and sodium bicarbonate were administered based on the national 

guidelines(254). The delivered oxygen concentration was titrated to achieve a 

saturation level between 85-92%. The monitoring equipment displayed (RFM 

and laptop computer) air flow, airway pressure, end-tidal CO2, saturation and 
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pulse rate in real time. This provided the clinician an immediate feedback on the 

tidal volume, end-tidal CO2levels, oxygen saturation and heart rate in real time 

during the resuscitation. The clinicians were able to view the presence of end-

tidal CO2 to confirm air way patency during face mask ventilation and more 

importantly, correct placement of endo tracheal tube during resuscitation. They 

were able to assess the adequacy of ventilation support from tidal volume levels 

and titrate oxygen delivery based on infants oxygen saturations measured by 

the in-built pulse oximetry. 

2.5 Equipment 

A NM3 Respiratory profile monitor (Philips Respironics®) was connected to a 

Laptop (Dell latitude, Bracknell, UK) with customised Spectra software (version 

3.0.1.4; Grove medical, London, UK) and mounted on a mobile trolley. The NM3 

respiratory profile monitor (RPM) has a combined flow and carbon dioxide 

sensor, which was placed between the t-piece and the face mask (Figure 2-1). 

The RPM and the laptop were connected to an isolating transformer and UPS 

for stable power during the recording of the resuscitation (Figure 2-2). One 

mobile trolley with the equipment was readily available at each site for 

immediate use at preterm resuscitation.  
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Figure 2-1:Dual flow and CO2 sensor attached between the T-Piece and face 

mask  

[Copyright details in Appendix III] 
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Figure 2-2 : Diagrammatic representation of the equipment used to monitor 

resuscitation of prematurely born infants 

[Copyright details in Appendix III] 
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2.5.1 NM3 Respiratory Profile monitor 

The NM3 monitor is a respiratory profile monitor which displays various 

respiratory parameters including expired CO2, oxygen saturation (Figure 2-2).  

Equipment 
Measuring 
Parameter 

Range 
Accuracy 

(at 760mmHg,room air) 

Flow Sensor 

Air flow 0.25 to 25 l/min ± 3% 

Tidal Volume 1 - 100 ml ±  3% 

Airway pressure 
-120 to +120 

 (cm H2O) 
± 2% 

CO2 Sensor End tidal CO2 0-150 mmHg 

0-40 mmHg- ± 2mm Hg 

41-70 mmHg- ± 5% 

71 – 100 mmHg - ± 8% 

101- 150 mmHg - ± 12% 

SpO2 Sensor 

Oxygen 
Saturation 

0-100% ± 3% 

Pulse Rate 25- 240 bpm ± 3 bpm 

Table 2-1: Range and accuracy of the measured parameters with NM3 

monitoring 

(Reproduced from NM3 RPM manual) 

2.5.2 Research equipment maintenance 

Equipment was cleaned prior to use and disinfection/sterilization of all non-

disposable equipment carried out using manufacturer and hospital infection 

control approved techniques after each patient contact. The flow sensor circuit 

was single use only. Perasafe (0.2% peracetic acid) was used for non-

disposable parts as approved by the company. External housings of the monitor 

and other equipment were cleaned according to the unit policy. The RPM was 

bought new and safety checks were undertaken by the company and by the 

department of Clinical Engineering at the respective hospitals before it was 
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used. A further service and parameter check was performed by the company 

(Philips Respironics®), one year after the initial safety check. 

2.5.3 Airway Pressure measurement 

Airway pressure measurements in the NM3 monitor were made by a fixed 

orifice differential pressure pneumotachometer. Differential pressure flow 

sensors incorporated some restriction (point orifice, variable flap, vena 

constriction, annular obstruction, target or linear flow restrictor) that generates a 

pressure difference across the sensor. Flexible tubing, attached to either side of 

the flow obstruction, transmitted the pressure signals to a differential pressure 

sensor located inside the monitor. Factors that influence the measurement of 

flow for this type of sensor include the gas molecular weight, temperature and 

airway pressure (Table 2-2). 

2.5.4 Air flow and tidal volume measurement 

Airflow was measured using a fixed orifice differential pressure 

pneumotachograph (Figure 2-1) inserted between the endotracheal tube and 

the T-piece as described for measurement of airway pressure. The signal from 

the differential pressure pneumotachograph was amplified in the RPM and was 

displayed in the monitor. Tidal volume was digitally integrated from the air flow 

signal in the RPM and was displayed on the RPM monitor. 
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Compensation Settings Gas Compensation Effects on Flow 

Insp O2 
(%) 

Gas 
Balance 

N2 N2O Helium Temp Humidity 
Measurement 

Error 

21 N2 79 0 0 35° C 50% --- 

60 N2 40 0 0 35° C 50% -2.50% 

40 N2O 0 60 0 35° C 50% -14.90% 

60 N2 35 0 0 35° C 50% -19.60% 

30 He 0 0 70 35° C 50% 56.70% 

21 N2 79 0 0 35° C 0% -0.50% 

Table 2-2:Gas composition effect on flow (Reproduced from NM3 RPM manual) 

2.5.5 Differential pressure flow sensor 

The NM3 Respironics flow sensor is a fixed orifice differential flow sensor 

and is inserted between the T-piece and the face mask (Figure 2-1) during 

resuscitation. The pressure drop across the fixed orifice flow sensor is in 

proportional to the square of the flow (Figure 2-3). Microprocessors in the NM3 

RPM were programmed to store the parameters of these flow sensors and to 

compensate for this non-linear pressure-flow relationship. In addition, recent 

advances in differential pressure sensor design and technology have made it 

possible to measure the very low flows reliably. The neonatal flow sensors 

feature a target geometry composed of a central strut to maintain an acceptable 

level of flow resistance. In order to reduce mechanical dead space, the neonatal 

CO2/flow sensors are single piece designs (Figure 2-4). 
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Figure 2-3: Flow versus Pressure Drop for a “Linear” device (i.e. Fleisch 

pneumotachograph) and “Non-Linear” device (fixed orifice flow sensor)(255) 

[Copyright status details in Appendix III] 

 

Figure 2-4: Neonatal Flow sensor—side, top and end sections(256). 

[Copyright status details in Appendix III] 
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Respired gas flowing through the flow sensor caused a small pressure drop 

across the two tubes connected to the sensor. The pressure drop was 

transmitted through the tubing to a differential pressure transducer located 

inside the monitor, and was correlated to flow according to the factory stored 

calibration. User calibration was not required due to the ability of the plastic 

injection mould to repeatedly produce precision flow sensors. The pressure 

transducer was automatically “zeroed” to correct for changes in ambient 

temperature and electronics. 

As previously mentioned, with a fixed orifice device, the differential pressure 

varied as the square of the flow. The measured flow was corrected by use of 

empirically determined coefficients due to variations from the relationship and 

the assumptions made in developing the flow equations. The relationship 

between the measured differential pressure to flow (L/min) can be described by 

the equation,  

𝑃𝑚 𝑇𝑠𝑡𝑑

𝑃𝑠𝑡𝑑  𝑇𝑚
√△ 𝑃

𝐾
 

 
 
where Pm Pstd Tm and Tstd are the measured and standard pressures (in mmHg) 

and temperatures (in Kelvin), respectively; K is a correction factor that includes 

gas composition, and other factors like gas temperature, compressibility, 

density and molecular mass.  ΔP is the differential pressure (in mmHg).  

Ideal gas law(257) is applied for correction of calculated flow to standard 

temperature conditions. Inspiratory and expiratory phases were treated 

separately with regards to temperature and gas composition due to variable gas 

temperatures during the respiratory cycle. The NM3 monitor system software 
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compensations allow accurate flow and volume measurements in the presence 

of high oxygen concentrations. When compensated, gas density and viscosity 

effects do not cause significant errors in flow measurement (Table 2-2).  

The monitor included an automatic and manual purge feature which provided 

a flow rate of room air to keep the sensor tubing free from water condensation 

and patient secretions. The automatic purge cycle used in the neonatal mode 

was fixed at every three minutes regardless of circuit pressure. Only one side of 

the sensor tubing was purged during each purge cycle.  

Unlike the adult purge mode, the neonatal or paediatric purge mode does not 

use the full force of the internal pump, but rather pressurized an internal 

reservoir which was used for the purge. This minimizes the pressure delivered 

to the circuit to prevent inadvertently high pressures in the ventilator circuit, but 

does deliver a sufficient pressure to purge the sensor tubing.  

Tidal volume is then calculated as the integral of flow: 𝑽 = ∫ 𝑭 ∆𝒕  (V = Tidal 

volume and ∆t is change in time). 

This integration represents a summation over time; the volume traces seen 

(Figure 2-5) during the resuscitation are obtained by adding successive 

sampled values of the flow signal and scaling the sum appropriately. The 

integral is automatically set to zero every time a recording is started. 
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Figure 2-5: Display of air flow, airway pressure, end tidal carbon dioxide, tidal 

volume and plethysmography traces during resuscitation. 

2.5.5.1 Calibration of airway pressure and air flow 

Calibration for airway pressure was undertaken every time a new batch (box 

of 10) of differential flow sensors were used. A two-point calibration check of 

pressure transducers was performed using a portable digital pressure meter 

(Comark, Welyn Garden city, UK). The portable pressure meter was calibrated 

against a water manometer and found to be linear. The linearity of the NM3 

differential pressure sensor was tested against the portable digital pressure 

meter.  

The calibration of air flow was performed using a low flow rotameter (0-12 

L/min Platon, Roxspur Measurement & Control Ltd, Bramley, Hants, UK). The 

tidal volume was calibrated at the same time with 2,4,6,8,10,20,25 and 50ml 

calibration syringe (Model 5510 and 5520, Hans Rudolph Inc). 
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2.5.5.2 Levels of agreement for airway pressure and air flow estimation 

The levels of agreement of airway pressure sensor and linearity was 

assessed by plotting the digital output acquired by Spectra Software, against 

applied pressure measured with a digital pressure meter (Comark, Welwyn 

Garden City, London UK). The airway pressure transducer was tested for both 

RPM monitors used at King’s College Hospital(KCH) and Guy’s and St Thomas’ 

Hospital(GSTT) used in the project. This was tested using 5 cmH2O increments 

in both instruments, across the range ± 40 cm H2O.The acquired values were 

plotted against the measured values. There was a strong positive correlation 

between the airway pressure measured and the values from the RPM (R2= 1, 

P<0.001) and this was the same for KCH and GSTT monitors (R2 =1; p<0.001). 

The Bland-Altman plots (Figure 2-6) revealed good agreement between the 

KCH and GSTT monitor, with all the measurements clustering around the 

mean. Difference between the two monitor readings for airway pressure flow 

were within the two standard deviation lines. 

 

Figure 2-6 : Bland-Altman analysis of difference for airway pressure measured 

by KCH and GSTT monitors 
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The levels of agreement of the airway flow sensor was assessed by plotting 

the digital output acquired by Spectra Software, against air flow measured using 

a low flow rotameter (0-12 L/min Platon, Roxspur Measurement & Control Ltd, 

Bramley, Hants, UK). The values of the airway flow were tested for both RPM 

monitors used during the project demonstrated good levels of agreement.  This 

was tested using one litre/min increments in both instruments, across the range 

± 12 litre/min and was found to be linear. Air at 1 to 12 L/min was passed 

through the pneumotachograph and the results were plotted against the actual 

flow delivered by the rotameter. The acquired values were plotted against the 

measured values. There was a strong positive correlation between the airflow 

measured and the values by the RPM (R2= 1, P<0.001) and this was the same 

for KCH and GSTT monitors (R2 =1; p<0.001).The Bland-Altman analysis 

revealed good agreement between the KCH and GSTT monitor overall (Figure 

2-7), including when tested with 21%, 50% and 100% O2, with all the 

measurements clustering around the mean(Figure 2-8). Difference between the 

two monitor readings for air flow were within the two standard deviation lines. 
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Figure 2-7:Bland-Altman analysis of the difference for measured airflow in KCH 

and GSTT monitors. 

  

 

 

 

 

Figure 2-8 :Bland-Altman analysis for 

airflow in 21% (A),50%(B) and 100%(C) 

oxygen. 
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2.5.5.3 Levels of agreement for tidal volume estimation 

A set volume of gas volume was delivered to the flow sensor through a 

calibration syringe at different volumes. The gas volumes acquired through the 

NM3 RPM was analysed and plotted. The effect of gas composition on the 

calibration of the pneumotachograph was also investigated. A strong positive 

correlation between the tidal volume measured by the KCH and GSTT monitors 

(R2 =1; p<0.001). The Bland-Altman analysis revealed good agreement 

between the KCH and GSTT monitor overall (Figure 2-9), including when tested 

with 21%, 50% and 100% O2, with all the measurements clustering around the 

mean (Figure 2-10). Difference between the two monitor readings for air flow 

were within the two standard deviation lines.  

 
Figure 2-9: Bland-Altman analysis of difference for tidal volume measured 

by the KCH and GSTT monitors 
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Figure 2-10: Bland-Altman analysis for 

tidal volume in 21% (A),50% (B) and 

100% (C) 

 

2.5.6 Exhaled Carbon dioxide measurment 

The NM3 monitor uses the CAPNOSTAT® 5 CO2 Sensor to measure CO2 by 

using the infrared absorption technique. The principle is based on the fact that 

CO2 molecules absorb infrared (IR) light energy of specific wavelengths, with 

the amount of energy absorbed being directly related to the CO2 concentration. 

When an IR beam is passed through a gas sample containing CO2, the 

electronic signal from the photo detector (which measures the remaining light 

energy) can be obtained. This signal is then compared to the energy of the IR 

source and calibrated to accurately reflect CO2 concentration in the sample. 

The CAPNOSTAT® 5 CO2 sensor’s response to a known concentration of CO2 

is stored at the factory in the sensor’s memory. A reference channel accounts 

for optical changes in the sensor, allowing the system to remain in calibration 
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without user intervention. The sensor was able to measure end-tidal CO2 in the 

range of 0-150mmHg. The CO2 sensor slide over the flow sensor and clicked in 

place once connected (Figure 2-11). 

 

Figure 2-11 : Connecting and removing of Flow and CO2 sensor 
Copyright status details (Appendix III)] 

2.5.6.1 Levels of agreement for exhaled carbon dioxide measurement 

To evaluate the levels of agreement and linearity of CO2 estimation, various 

concentrations of CO2 gas at 8 litres/ min was connected to one end of the flow 

sensor. The acquired values were plotted against the measured values. There 

was a strong positive correlation between the end-tidal CO2 levels acquired 

from the RPM and the know concentration of CO2 (R2= 1, P<0.001) and this 

was the same for KCH and GSTT monitors (R2 =1; p<0.001). Bland-Altman 

analysis revealed good agreement between the KCH and GSTT monitors, with 

all the measurements clustering around the mean. The acquired measured 

values were plotted against the known concentration of CO2 and was observed 

to be linear for up to 20% CO2 concentration (Figure 2-12). 
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Figure 2-12 : Estimation of CO2 by the sensor and know concentration of CO2 

gas 

 

 
Figure 2-13: Bland-Altman analysis of the difference for measured end tidal 

CO2 in KCH and GSTT monitors 

R² = 1

0%

5%

10%

15%

20%

25%

0% 5% 10% 15% 20% 25%

M
e

a
s
u

re
d

 C
O

2
b

y
 R

P
M

 (
in

 %
)

% of CO2 in calibration gas



 

95 
 

2.5.7 Pulse rate and oxygen saturation measurement  

Oxygen saturation (SpO2) was determined using sensors containing infrared 

light emitting diodes (LEDs). The light from the LEDs are beamed through a 

pulsating vascular bed such as the infant’s finger or toe. The remaining light not 

absorbed by the tissue reached a photodiode light receptor in the sensor. 

Oxygen saturated blood absorbs different amounts of light at each wavelength 

as compared to unsaturated blood. Therefore, the amount of light absorbed by 

the blood in each pulse can be used to calculate oxygen saturation. 

The NM3 monitor was calibrated to measure and display “functional” 

saturation. This differed from the “fractional” saturation value displayed by most 

co-oximeters. Functional saturation represented the amount of oxyhaemoglobin 

as a percentage of the haemoglobin that can be oxygenated. Dysfunctional 

haemoglobins, [carboxy haemoglobin(COHb) and Meth Haemoglobin(METHb)] 

are not included in the measurement of functional saturation. 

                    Functional Saturation = HbO2
*/100-(COHb+METHb) 

* HbO2 is oxyhaemoglobin (fractional) 

Pulse Rate, derived from the pulse oximetry sensor, was calculated by 

measuring the time interval between the peaks of the infrared light waveform. 

The inverse of this measurement was displayed as pulse rate. 

2.5.8 Frequency response of the monitoring system 

The “time constant” of the measuring system gives a measure of its dynamic 

response to an input step change and is related to its frequency response. The 

frequency response of the entire system (transducers – respiratory function 

monitor (NM3) – computer) was assessed by bursting a pressurised balloon 
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with a hot wire for airflow and airway pressure (Figure 2-14. The frequency 

response for end tidal CO2 was assessed by changes in CO2 concentration 

using a solenoid valve used in switching between room air and 5% CO2. The 

response to an instantaneous change in signal was recorded on a laptop 

computer (MacBook, Apple Computer Corp, Cupertino, California, USA) using 

Chart software (Version 5.0, AD Instruments Pty Ltd, Bella Vista, NSW 

Australia) with analogue to digital sampling at 40KHz (Powerlab, AD 

Instruments Pvt Ltd, Bella Vista, NSW Australia). 

The Fourier transformation of the response time (Tr) gives the frequency 

response of the system. The 90-10% response time (Tr) for airflow, airway 

pressure and end tidal CO2 were 19 milliseconds, 11 milliseconds and 50 

milliseconds respectively. The frequency response of the system was calculated 

from the equation. 

𝒇𝟑𝒅𝒃 =  𝟏
𝟑𝑻𝒓

⁄  

f3db = frequency response and Tr = time taken for the pressure change from 10 

to 90% of the final resting pressure. The frequency response was 17.5 Hz, 30.3 

Hz and 6.6 Hz for airflow, airway pressure and end tidal CO2 respectively. 
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Figure 2-14: The response to a sudden decrease in pressure associated with 

the bursting of a balloon on the measurement of pressure 

 

2.5.9 Data acquisition and storage 

The data from the NM3 monitor was transferred as a digital signal through a 

RS232 interface. The data was transferred as an ASCII signal to a laptop 

computer (Dell, UK) which was preloaded with a customised data acquisition 

software (Spectra, version 3.0.1.4; Grove medical, London, UK). The Spectra 

software was a type of ‘digital chart recorder’ and was used to record signals 

from clinical transducers, patient monitors and life support equipment. In real 

time the software captured, displayed and performed complex analyses and 

displayed the results. It also marks events, replay and re-analyse data.  

Waveforms were recorded in real time, and displayed in graphical form. The 

display of recorded data was time-based. All datasets were stored on a 

customised Microsoft Access patient database, which could be reviewed and 

amended in real time without interruption to the data collection process. The 
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software was upgraded in December 2009 from the previous version to 

establish a digital interface with the NM3 monitor. The laptop computer 

recorded and displayed real time data traces to the clinicians during the 

resuscitation of preterm infants. The laptop computer was secured to the trolley 

by a laptop lock. The data stored in the laptop computer was encrypted and 

transferred on to a secure computer in the research office immediately after 

data acquisition. 

2.5.10 Statistical analysis 

Data were analysed for normality using the Kolmogorov-Smirnov, Shapiro-

Wilk tests. Student’s t-test was used to compare two normally distributed groups 

and ANOVA with post hoc correction used for more than two groups. 

Nonparametric data were analysed using the Mann Whitney U test and the 

Freidman’s test for analysis of variance with Dunn’s test for multiple 

comparison. The relationships between variables were examined using 

regression analysis and Spearman rank correlation, the Chi Squared and 

Fisher’s Exact test were used where appropriate. Data were deemed significant 

if the p value was less than 0.05. SPSS for windows (version 20 SPSS Inc, 

Chicago IL, USA) and GraphPad Prism (version 3 for Windows, GraphPad 

Software, San Diego California USA) were used.  
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Chapter 3 :  The first five inflations during resuscitation of         

prematurely born infants 
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The aim of this study was to use a respiratory function monitor in the 

delivery suite to assess the response of prematurely born infants to initial 

resuscitation, that is, the first five inflations delivered by face mask and t-piece.  

A respiratory function monitor was used to record the magnitude of the inflation 

pressures, inflation durations and expired tidal volumes. An additional aim was 

to determine any impact of the infant’s respiratory efforts during the first five 

inflations on the expired tidal volume. 

We hypothesised that the delivered inflation pressure, duration of 

inflation and expired tidal volumes will be variable during the first five inflations. 

3.1 Patients and methods 

The study was conducted at King’s College and Guy’s and St Thomas’ NHS 

Foundation Trusts between February and July 2010. All infants born before 34 

weeks of gestation were eligible for entry into the study unless they had major 

congenital anomalies. Ethical approval was given by the Outer North London 

Ethics Committee. The Committee required parental consent only for the 

analysis of the data; this was obtained once the mother was transferred to the 

postnatal ward. The monitoring equipment used and the routine resuscitation 

protocol are described in Chapter 2.  

3.1.1 Sample size 

The sample size of 30 with five repeated measures was used as it was 

feasible and the number of observations was sufficient to detect a reasonably 

small-single sample correlation of 0.55 (two-sided, α=0.05, β=0.90). The 

correlation between the five repeated inflations was unknown at the outset (but 
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is reported here to inform future research), and the correlation that could be 

detected would be smaller than this. 

3.1.2 Analysis 

The first five inflations given to each infant via the face mask were analysed. 

The recordings were examined to determine if the infant had made an 

inspiratory effort during an inflation (Figure 3-1). Inflations with inspiratory efforts 

were described as ‘active’ and those without inspiratory efforts as ‘passive’. The 

overall results were analysed, and the active and passive inflations were 

analysed separately. An arbitrary tidal volume of 4.4ml/kg was used to define an 

‘appropriate’ level of tidal volume, as this is twice the anatomical dead 

space(258). Expiratory volumes were analysed, as it was anticipated that there 

would be leaks around the face mask and hence the inspiratory volumes might 

be artificially high. The percentage of ‘face mask’ leak was calculated from the 

difference in the inspired and expired volumes expressed as a percentage of 

the inspired volume. 

Differences in inflation pressure and expired tidal volume were assessed by 

one-way analysis of variance(ANOVA). Inflation pressure and expired tidal 

volume were positively skewed and so were log-transformed (natural log) for 

analysis. A value of 0.01 was added to all values for the expired tidal volume to 

deal with zeros. Random effects linear (logistic) models were used to analyse 

the continuous (binary) serial data and estimate the effects of inflation pressure 

and face mask leak on expired tidal volume. The results of the models are given 

as regression coefficients and 95% CI with the percentage of variability between 

subjects. All statistical analyses were carried out with STATA v 11. 
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3.2 Results 

Seventy-two infants of less than 34 weeks of gestation were born during the 

study period. The resuscitation monitoring equipment was available at 54 of the 

deliveries, but 12 of the infants did not need resuscitation at birth. Six deliveries 

were multiple births (one triplet pregnancy and five twin pregnancies), as only 

one respiratory function monitor was available at each hospital only the first 

infant born of each multiple birth was monitored. Five infants were intubated 

immediately after birth and so were excluded from this study. Thus, data from 

30 infants were included in this study. The 30 infants had a median gestational 

age of 30 (range 23–34) weeks and the median birthweight of 1445 (range 596–

2370) g, 17 (56%) were males and 23 (76%) had been exposed to antenatal 

Figure 3-1 Recording of 

two inflations, a passive 

inflation (left) and an 

active inflation (right). 

Inflations with the infants 

own inspiratory efforts are 

described as ‘active’ and 

those without inspiratory 

efforts as ‘passive’. 

During the positive 

pressure plateau of the 

active inflation, there is a 

negative deflection 

indicating the infant’s 

inspiratory effort, which is 

associated with 

inspiratory flow and a 

greater tidal volume as 

compared with the volume 

of the passive inflation. 



 

103 
 

steroids. The majority (73%) were delivered by caesarean section. The median 

Apgar scores of the 30 infants were 6 (range 2–9) at 1 min and 9 (range 3–10) 

at 5 min. The results from four inflations could not be analysed due to the poor 

quality of the volume trace, the results from the other 146 inflations were 

analysed; 22 (15%) were active and 124 (85%) were passive. On no occasion 

was there more than one inspiratory effort during an inflation. Overall, the 

median peak pressure delivered during the first five inflation breaths was 23.7 

(range 11.5–38.0) cm H2O. On only seven inflations were the peak pressures 

above 30 cm H2O, and this was during the resuscitation of two babies. The 

median peak inspiratory pressures for the active and passive breaths were 

similar, 24.3 (range 19.9–38.0) cm H2O and 23.5 (range 11.5–37.5) cm H2O, 

respectively. Overall, the median inflation pressure (peak pressure minus 

PEEP) used during the first five inflation breaths was 19.2 (range 11.5–32.4) cm 

H2O, with no significant difference between the active and the passive inflations 

(ratio of geometric means 1.10; 95% CI 0.59 to 2.04; p=0.76)(Figure 3-2). 

Overall, the median expired volume was 2.5 (0–19.8) ml/kg. Expiratory flow 

occurred only early in expiration, suggesting that there was no leak around the 

face mask in expiration. The median expiratory volume of passive inflations was 

2.1 (range 0–19.8) ml/kg and of active inflations was 5.6 (range 1.3–12.2) ml/kg 

(ratio of geometric means 1.85, 95% CI 1.18 to 2.89; p=0.007) (Figure 3-3).  



 

104 
 

 

Figure 3-2: Dot plots of inflation pressure (PIP minus positive end expiratory 

pressure) for passive and active inflations showing values for individual infants. 

This shows the range of values (vertical axis) and the frequency with which 

each value occurs is depicted horizontally. 

 

 

Figure 3-3: Dot plots of expiratory tidal volumes for passive and active inflations 

showing values for individual infants. This shows the range of values (vertical 

axis) and the frequency with which each value occurs is depicted horizontally. 
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The expired volumes were greater than 4.4 ml/kg in 30% of all inflations, 

in 68% of active inflations and in 22% of passive inflations (p<0.01). Overall, the 

median inflation time was 1.1 (range 0.25–3.7) s; 1.1 (range 0.64–3.7) s for 

active inflations and 1.0 (range 0.25–3.4) s for passive inflations, (ratio of 

geometric means 1.12, 95% CI 0.95 to 1.32; p=0.20). Overall, the median 

percentage of the leak around the face mask was 54.5% (range 0–100%), 

34.5% (range 0–81.6%) for active inflations and 60.7% (range 5.2–100%) for 

passive inflations (mean difference in % leak 12.4%, 95% CI 0.9 to 24.0%; 

p=0.0354). 

The inflation pressures were positively correlated (R2 between 

subjects=0.19; p=0.04; regression coefficient (both variables on log scale) 2.21, 

95% CI 0.09 to 4.33). The face mask leaks were negatively correlated [R2 

between subjects= 0.051; p<0.001, regression coefficient (expiratory tidal 

volume on log scale) 0.020, 95% CI 0.026 to 0.013] with the expiratory tidal 

volumes. Since the correlation coefficient of face mask leaks (0.051) is so small, 

it explains little of the variance between the two factors. There was no 

significant correlation between the inflation times and the expired tidal volumes 

(R2 between subjects=0.05; p=0.38; regression coefficient (both variables on 

log scale) 0.21, 95% CI 0.25 to 0.67). Intra-class correlation coefficients were 

0.929 (inflation pressure), 0.507 (expiratory tidal volume) and 0.406 (face mask 

leak). 

3.3 Discussion 

This study demonstrated that during the first five inflations delivered by 

bag and mask resuscitation of prematurely born infants, the expired tidal 
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volumes, inflation times and inflation pressures were very variable. This was 

despite all the clinicians having undergone a recognized resuscitation training 

course(178) and the neonatal unit having a standard resuscitation protocol. Our 

data highlight that, despite training, the clinicians can perform very differently 

during the stress of resuscitating prematurely born infants. The overall median 

expiratory tidal volume (2.5 ml/kg) was similar to the anatomical dead space 

(2.2 ml/kg)(259) and so unlikely to produce any alveolar ventilation. Upton et 

al(260) reported similar findings in intubated infants, but we highlight even lower 

tidal volumes. One reason may be that the current use of PEEP has effectively 

reduced the inflation pressure by 4 to 5 cm H2O. Thus, although in our study, 

the mean peak inflation pressure was 23.6 cm H2O, the use of PEEP resulted in 

a reduction in the ‘effective’ inflation pressure of about 20%. The inflations 

associated with the infant’s respiratory effort (active inflations) had a median 

expired tidal volume of 5.6 ml/kg, but the median expired tidal volume for 

passive inflations was only 2.1 ml/kg. Those findings support the 

suggestion(148, 149, 261) that face mask resuscitation depends on the 

stimulation of Head’s paradoxical reflex, rather than by achieving adequate tidal 

exchange per se. The higher expired tidal volumes of active compared with 

passive inflations would suggest that active inflations do not contribute more to 

the formation of a functional residual capacity. 

Infants were eligible for entry into this study if they were born prior to 34 

weeks of gestation without congenital anomalies and required face mask 

resuscitation rather than immediate intubation and ventilation or no 

resuscitation. Hence, in many respects they were a relatively homogeneous 

group. There were, however, a wide range of gestational ages and birth 
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weights, but a much larger study would be required to see if there were 

differences in the results in subgroup analysis by gestational age or birth 

weight. The other group of infants who were excluded were the second and 

third of multiple births, as only one set of equipment was available at each site.  

A further study would be required to determine if prematurely born infants of 

multiple pregnancies respond differently to bag and mask resuscitation. The 

unit’s protocol was to use 4–5 cm H2O of PEEP which may have influenced 

variability in the results, but we are unaware of any evidence to support such a 

hypothesis. It has been reported (262)that 25% of infants suffered airways 

obstruction during face mask resuscitation. The definition of airways 

obstruction, however, included a 75% reduction in the expired tidal volume 

compared with a baseline of the expired tidal volumes of the 10 inflations prior 

to the obstructed inflation(262).It is possible that such results reflected large 

leaks, not least as mask leaks of up to 100% have been previously 

reported(235).Achieving an adequate seal during face mask resuscitation is 

crucial to its success. In a study (236)assessing the efficacy of resuscitation on 

manikins, the leaks did not vary significantly between masks, but overall were 

about 50%. It has been highlighted that training using manikins can result in a 

reduction of face mask leak(263), but whether this impacts on the performance 

under clinical conditions remains to be tested.  

The use of a respiratory function monitoring during simulated neonatal 

resuscitation in 25 participants who had received training to improve their face 

mask technique was also shown to reduce the face mask leak from 27% to 

11%.7 In a further study, written instruction and demonstration of the optimal 
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techniques of positioning and holding the face mask during manikin 

resuscitation reduced the face mask leak from 57% to 32% with one mask type 

and 55–33% with another face mask type(264). In our study, the median 

facemask leak during resuscitation of prematurely born infants was high 

(54.5%), but similar to that recorded in a previous study (51%)(262)and was 

significantly inversely correlated with the expiratory tidal volume. 

In conclusion, this study demonstrates that although the clinicians were all 

trained according the NLS, UK guidelines, there were wide variations in inflation 

pressure, times and expired tidal volumes. A median inflation pressure of 23.6 

cm H2O was used which was in keeping with ILCOR guidelines, a significant 

correlation was observed between the inflation pressure and expired tidal 

volume during face mask ventilation (r2 = 0.19, p=0.04) suggesting that there 

may be a need for higher inflation pressures during initial resuscitation in 

prematurely born infants.  
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Chapter 4 :  Inflation times during the resuscitation of preterm 

infants and inflation flow times 
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4.1 Introduction 

Studies of the resuscitation of term infants indicated that inflation 

pressures of 25–30 cm H2O led to tidal volumes of less than 5 ml/kg and a 

functional residual capacity (FRC) was rarely formed before the infant made 

spontaneous breaths in association with lung inflations. Inspection of the tidal 

volume traces indicated that, although the inspiratory pressure plateau had 

been maintained for up to 1 s, the tidal volume had not reached equilibrium. 

When, however, a pressure of 30 cm H2O was maintained for up to 5 s for the 

first inflation, the tidal volumes and FRCs generated were similar to those found 

in spontaneously breathing term infants(228). Those data led to guidelines 

recommending that the first five inflations given by a face mask resuscitation 

system should be maintained for 2 to 3 s. Although the International Liaison 

Committee recommendations of 2006 and 2010 advised that the risk and 

benefits of that practice have not been evaluated, prolonged inflations continue 

to be recommended. Data on the effects of the use of a prolonged inflation time 

during the resuscitation of prematurely born infants are limited. One small 

randomised trial found no effect on short or long-term outcomes when the first 

inflation was prolonged for either 2 or 5 s delivered via an endotracheal tube 

(230). 

 In a subsequent study, an inflation pressure of 20 cm H2O maintained 

for 20 s was associated with a significant reduction in the need for subsequent 

intubation and use of surfactant and a lower incidence of bronchopulmonary 

dysplasia(232). In that study, in addition to the prolonged inflation, PEEP was 

used, and hence, the effect seen could also have been explained by the 

combination of the prolonged inflation and PEEP or indeed PEEP alone. 
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Currently, the recommendation in the UK for prematurely born infants is to 

follow the practice for term infants and use an inflation of 2–3 s for each of the 

first five inflations of face mask resuscitation(265). In an observational study of 

the resuscitation of prematurely born infants in the labour suite(266), we 

reported that, despite apparently adequate training on manikins, inflations were 

rarely maintained for more than one second. No significant correlation was 

found between the inflation times and the expired tidal volume, which led us to 

speculate that prolonging inflation times may not further improve ventilation 

during the resuscitation of prematurely born infants. To test that hypothesis, a 

further observational study was undertaken to determine whether there was a 

relationship between the inflation times and inflation flow times during 

resuscitation in the labour suite. If prolonged inflation times were to improve 

ventilation, then it would be expected that inflation flow would continue 

throughout inflation. 

4.2 Materials and methods 

The study was conducted at King’s College Hospital and Guy’s and St 

Thomas’ NHS Foundation Trusts. Infants born before 34 weeks of gestation 

were eligible for entry into the study. Ethical approval was provided by the Outer 

North London Ethics Committee. The Committee required parental consent only 

for analysis of the data; this was obtained once the mother was transferred to 

the postnatal ward. The same equipment and resuscitation protocol were used 

as described in Chapter 2(Figure 2-2). 
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4.3 Analysis 

The first five inflations delivered via the face mask were identified. Inflations 

associated with an infant’s inspiratory effort were excluded from the analysis. 

The inflation pressure (peak pressure—PEEP), inflation time, inflation flow time 

and expired tidal volume were analysed. The inflation flow time was measured 

from the start of the positive deflection in the flow trace until the flow trace 

returned to zero or, in the presence of face mask leak, until the flow trace had 

dropped back to a plateau. Inflations during which there was a large leak 

(expiratory tidal volume <25% of the inspiratory tidal volume) were excluded 

from the analysis. The leaks were divided into constant and variable. A constant 

leak was defined as one in which the flow rate was constant during inflation, 

and a variable leak was defined as one in which the inspiratory flow varied 

during inflation. All inflation measurements were positively skewed and so 

presented as median with ranges for ease of interpretation. For analysis, it was 

necessary to log transform the data as the analysis requires normally distributed 

data. Random effects linear models were used to explore associations to take 

into account the repeated observations within subjects. Analyses were done 

using Stata v11. 

4.4 Results 

Forty infants were included in the study. They had a median gestational age 

of 30 (range 26–32) weeks and birth weight of 1,225 (range 878–1,525) g; 23 

infants were male, 36 had been exposed to antenatal steroids, and 22 were 

delivered vaginally. The infants had a median Apgar score of 6 (range 4–8) at 1 

min and 9 (range 7–9) at 5 min. Two hundred inflations were assessed, 35 were 
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excluded from the analysis as the infant’s respiratory efforts coincided with the 

inflations, and none were excluded because of a large leak. In six infants, there 

was no leak; in 24, there was a constant leak; and in ten, there was a variable 

leak. The median inflation flow times for the three groups were 0.12, 0.11 and 

0.13 s, respectively, indicating that the inflation flow times were not being 

underestimated in the presence of variable leak. Overall, the median inflation 

pressure was 17.6 (range 12.2 27.4) cm H2O, inflation time (Ti ) 0.89 (range 

0.33–2.92) s, expiratory tidal volumes (VTE) 1.01 (range 0.02-11.41) ml/kg and 

inflation flow time 0.11 (range 0.04–0.54) s. In the infants in whom there was no 

leak, the median inflation pressure was 17.7 (range 14.4– 25.3) cm H2O, 

inflation time 0.78 (range 0.46–1.62) s, expiratory tidal volumes (VTE) 1.1 

(range 0.2–7.0) ml/kg and inflation flow time 0.11 (range 0.04–0.35) s, which did 

not differ significantly from the overall results. 

There were no significant relationships between Ti and either the inflation 

flow time (p=0.83) or VTE (p=0.80) or between the inflation flow time and VTE 

(p=0.10). There was a significant but weak relationship between the inflation 

pressure and inflation flow time (R2 =0.02, p=0.024) (Figure 4-1). 
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Figure 4-1: Scatter plot of the results of inflation flow time related to inflation 

pressure of all subjects. Data are plotted on a log scale to reflect the analysis 

performed. Overall R2=0.02 and p=0.02 (derived from the random effects 

model). 

4.5 Discussion 

No significant correlations between the inflation time and the inflation flow 

time or the expired tidal volume were demonstrated. Indeed, the median 

inflation flow time was only 0.11 s, with a median inflation time of 0.89 s. Those 

results suggest that further prolongation of inflation time would not increase the 

inflation flow time. A wide variation in the inflation times was recorded, this has 

been previously reported and the inflation time shown to vary with operator 

experience and distraction(267) . In this study, all of the inflation times were 

below the recommended two seconds. 
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It has recently been suggested that 25% of infants suffer airway 

obstruction during face mask resuscitation (262). Airway obstruction, however, 

was defined as a 75% reduction in the expired tidal volume compared with a 

baseline of the expired tidal volumes of the ten inflations prior to the obstructed 

inflation(262). It is possible that those results reflect large leaks as mask leaks 

of up to 100% have been reported(235). In this study, we initially analysed the 

results only from inflations in which there was no leak, but then analysed 

inflations in which there were leaks, and our results remained unchanged. In 

this study, we used a t-piece device and a face mask to resuscitate the 

prematurely born infants; such a device has been shown in a comparative study 

to provide the most consistent peak inflating pressure(268). 

In a study in which an anaesthetic rebreathing bag without a blow-off valve 

was used to resuscitate term born infants, the bag was squeezed sufficiently to 

produce visible chest wall movement. Inflation pressures of 50 cm H2O 

maintained for 0.5 s resulted in inspiratory tidal volumes of 10–12 ml/kg and the 

formation of an FRC by the end of the first inflation(260). Those data suggest 

that high inflation pressures may be needed to generate adequate tidal 

exchange. 

In this study, a significant, albeit weak, correlations between inflation 

pressure and inflation flow time was found. Those results suggest that the use 

of higher inflation pressures might have resulted in longer inflation flow times. In 

addition, unless sufficient inflation pressures are used to generate adequate 

tidal volumes, increasing the frequency of inflations would not improve gas 

exchange. 
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In conclusion, we have reported that clinicians maintained mean lung inflation 

times of 0.89 seconds which is much lower than the 2-3 seconds as 

recommended by the UK resuscitation council. The medial inflation flow times 

was only 0.11 s, with a median inflation time of 0.89 s. Furthermore, there were 

no significant relationships between inflation time and either the inflation flow 

time (p=0.83) or expired tidal volume (p=0.80) or between the inflation flow time 

and expired tidal volume (p=0.10). There was a significant but weak relationship 

between the inflation pressure and inflation flow time (R2 =0.02, p=0.024) This 

suggests that prolonged inflation times would not lead to better tidal volume 

exchange during face mask resuscitation of prematurely born infants. 

 

 

 

 

 

 

 

 

 

 

 



 

117 
 

Chapter 5 :  End tidal carbon dioxide levels during the 

resuscitation of prematurely born infants 
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5.1  Introduction 

Immediately after birth, carbon dioxide elimination only occurs if there is 

effective ventilation of the lungs and associated vasodilation of the pulmonary 

vascular bed. In the absence of pulmonary vasodilation only 10% of the 

cardiac output is available to perfuse the lungs, greatly restricting the delivery 

of carbon dioxide (CO2) to the lungs. Thus, assessment of expired CO2 levels 

could be used to indicate that pulmonary vasodilation had occurred during 

resuscitation. Palme-Kilander et al. reported, in infants breathing 

spontaneously(269) and those who required intubation in the labour 

suite(175), that expired CO2 was rarely detected until the infants had made a 

spontaneous breath, suggesting that the infant's inspiration influenced 

pulmonary vascular bed vasodilation. In those studies (269), however, 

expired gas was collected in 15 second aliquots and hence the temporal 

relationship between the first spontaneous breath and any change in the 

ETCO2 levels could not be investigated. In this study, the temporal changes 

in ETCO2 levels and the infant's respiratory efforts during face mask 

resuscitation in the labour suite were studied. The aim was to determine if the 

infant's first respiratory effort was associated with a rise in the ETCO2 levels, 

suggesting that pulmonary vasodilation had occurred. A second aim was to 

determine whether the ETCO2 levels remained elevated with subsequent 

inflations not associated with inspiratory efforts, as such data would suggest 

that the increase in the pulmonary blood flow was maintained. 

We hypothesised that infants’ respiratory efforts will immediately increase 

ETCO2 levels and maintain higher levels with subsequent inflations. 



 

119 
 

5.2 Methods 

The study was conducted at King's College and Guy's and St Thomas' NHS 

Foundation Trusts between March 2010 and December 2010. Infants born 

before 34 weeks of gestation were eligible for entry into the study. Infants who 

made an inspiratory effort immediately after birth and before the start of 

resuscitation were excluded. Ethical approval was provided by the Outer North 

London Ethics Committee. The Committee required parental consent only for 

analysis and reporting of the data, this was obtained once the mothers were 

transferred to the postnatal ward. The monitoring equipment and resuscitation 

protocol were as described in Chapter 2. 

5.2.1 Analysis 

The first five inflations given to each infant via the face mask were identified. 

As leak was expected, expiratory rather than inspiratory tidal volumes were 

measured. The inflations were subdivided into those in which the inflation was 

passive, that is not associated with the infant's respiratory efforts and those in 

which the infant made an inspiratory effort during the inflation (active inflation) 

as previously described (Figure 5-1).If the infant had not made a spontaneous 

respiratory effort during the first five inflations, subsequent inflations were 

examined and the first active inflation was identified. The tidal volumes and 

ETCO2 levels of the two passive inflations before and after the first active 

inflation were compared with each other and with the first active inflation. The 

percentage leak associated with the two passive inflations prior to the active 

inflation was calculated by relating the expiratory volume to the inflation volume, 

                   (
𝑇𝑉𝑖  − 𝑇𝑉𝑒    

𝑇𝑉𝑖
)    × 100 
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Figure 5-1: Trace showing the air flow, pressure, ETCO2 and tidal volume 

levels during resuscitation of prematurely born infants. The infant's inspiratory 

effort is indicated by ↓ and is associated with a positive deflection in the airflow 

trace, negative deflection of the pressure trace and an increase in the 

ETCO2 levels and tidal volume. 

 

Further analysis was undertaken excluding inflations with expiratory tidal 

volumes of less than 2.2 ml/kg, which is the anatomical dead space, as 

ventilation of less than the anatomical dead space was unlikely to achieve any 

clearance of CO2, even in the presence of normal pulmonary blood flow. The 

ratio of the ETCO2 levels to the expiratory tidal volume expressed per kg body 

weight was then calculated for each infant for the first active inflation and the 

two passive inflations before and after the first active inflation. 

The data were tested for normality using Shapiro–Wilk test and found not to 

be normally distributed. Differences, therefore, were assessed for statistical 
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significance using the Mann–Whitney U-test or Fisher's exact test as 

appropriate. Statistical analysis was performed using SPSS version 17 (SPSS 

Inc, Chicago, Illinois). A p value of < 0.05 was accepted as significant. 

5.3 Results 

Sixty-eight prematurely born infants had respiratory function monitoring 

during the study period. Data from 28 infants were excluded as the infants had 

made at least one visible respiratory effort prior to the delivery of the first 

inflation. 

 Forty infants with a median gestational age of 30 weeks (range 23–34) and 

birth weight of 1226g (range 545–2826) were included in the study. Nineteen of 

the 40 infants (47%) were males, 33 (83%) had been exposed to antenatal 

steroids and 19 (47%) were delivered by caesarean section. Their median 

Apgar scores were 6 at 1 min and 8 at 5 min. The mean time from the infant's 

delivery to the onset of resuscitation was 34 seconds (standard deviation 

(SD) ± 5.4). The median number of inflations to the first spontaneous inspiratory 

effort was 4 (range 0–77). 

5.3.1 First inspiratory breath (FB) 

Two infants made an inspiratory effort with the first inflation and five infants 

made an inspiratory effort with the second inflation, data for one inflation after 

the first spontaneous breath was not analysable. Thus, 71 passive inflations 

preceding the first active inflation (pre-FB), 40 active inflations (FB) and 79 after 

the first active inflation (post-FB) were analysed. ETCO2 levels tended to 

increase with increasing expiratory tidal volumes (Figure 5-2).The median leak 

associated with the pre-FB inflations was 31% (1–71). The median expiratory 
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volumes of the active inflations (FB) and the subsequent two passive inflations 

(post-FB) were significantly higher than the two preceding passive inflations 

(pre-FB) (p < 0.0001, 0.001 respectively) (Table 5-1;Figure 5-3). The median FB 

and the post-FB ETCO2 levels were both significantly higher than the 

ETCO2 levels pre-FB (p < 0.0001, p < 0.0001 respectively), but not significantly 

different from each other (p = 0.38) (Table 5-1;Figure 5-4). There were no 

significant differences between the median inflation pressures of the active 

inflation and either the pre-FB inflations (p = 0.79) or the post-FB inflations 

(p = 0.84). The inflation pressures [peak pressure–positive end expiratory 

pressure (PEEP)] of the pre-FB inflations and post-FB inflations were similar 

(p = 0.90) (Table 5-1). 

 

Figure 5-2: Scatter plot of expiratory tidal volumes and ETCO2 levels. • pre-FB; 

× FB; Δ post-FB. 
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Table 5-1: Expired tidal volume, ETCO2 levels and inflation pressures for the 

two passive inflations before the active inflation (pre-FB), the first active inflation 

(FB) and the two inflations after the first active inflation (post-FB). 

 

 
 

Figure 5-3:Box and whisker plot for tidal volume for the two inflations before the 

first active inflation (pre-FB), the first active inflation (FB) and the two inflations 

after the first active inflation (post-FB). The median and interquartile ranges are 

displayed. 

 
 

 Pre-FB FB Post-FB 

Expired tidal volume 
(ml/kg) 

1.8 
(0.7–7.3) 

6.3 
(1.9–18.4) 

4.5 
(0.5–18.3) 

ETCO2 
(kPa) 

0.3 
(0.1–2.1) 

3.4 
(0.4–11.5) 

2.2 
(0.3–9.3) 

Inflation pressures 
(cm H2O) 
(Peak–PEEP) 

20.0 
(13.8–26.7) 

19.6 
(13.7–25.9) 

20.2 
(13.4–25.9) 
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Figure 5-4:Box and whisker plot for ETCO2 levels for the two inflations before 

the first active inflation (pre-FB), the first active inflation (FB) and the two 

inflations after the first active inflation (post-FB). The median and interquartile 

ranges are displayed. 

 

When inflations associated with an expiratory volume of less than 2.2 ml/kg 

were excluded, there remained 25 passive inflations prior to the first active 

inflation (pre-FB), 38 active inflations (FB) and 72 passive inflations after the 

first active inflation (post-FB) for analysis. The median ratio of ETCO2 levels to 

expiratory tidal volume for the passive inflations (pre-FB) was lower than that for 

the first active inflation (FB) (p < 0.0001). The ratio for subsequent passive 

inflations (post-FB) was similar to that for the active inflations (FB) (p = 0.97) 

(Table 5-2). 
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Pre-FB FB Post-FB 

Expired tidal volume 
(ml/kg) 

3.4 
(2.4–13.3) 

6.5 
(2.2–18.4) 

4.7 
(2.2–18.3) 

ETCO2 
(kPa) 

0.3 
(0–1.3) 

3.4 
(0.4–11.5) 

2.3 
(0.3–9.3) 

ETCO2/TVe 
(kPa/ml/kg) 

0.09 
(0–0.38) 

0.41 
(0.06–2.56) 

0.41 
(0.04–2.77) 

 
Table 5-2: Expired tidal volume, ETCO2 levels and ratio of ETCO2 levels to 

expired tidal volume for the two passive inflations before the active inflation 

(pre-FB), the first active inflation (FB) and the two inflations after the first active 

inflation (post-FB) (excluding inflations with tidal volumes less than 2.2 ml/kg). 

 

5.4 Discussion 

These results suggest that pulmonary vasodilation was occurring with the 

infant's first inspiratory effort during face mask resuscitation, as inflations 

preceding the infant's respiratory efforts resulted in minimal ETCO2levels, 

whereas, the median ETCO2 level associated with an active inflation was 

3.4 kPa. Our findings are consistent with previous results(269)  and (175). 

Palme-Kilander found that CO2 could only be identified in the 15 second aliquot 

of expired gas in which spontaneous inspirations had occurred(269)  and (175). 

In addition, we found that the two passive inflations following the active inflation 

had a median tidal volume of 4.5 ml/kg and an ETCO2 level of 2.2 kPa despite 

no increase in inflation pressures. Those findings suggest that pulmonary 

vasodilation was maintained following the first active inflation. The higher 

expiratory tidal volumes of the passive inflations after compared to before the 
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first active inflation, despite no increase in the inflating pressures, suggest that 

there was also an improvement in lung mechanics after the first active inflation. 

The increase in ETCO2 levels with the active inflation, however, could also 

have been due to the increase in tidal volume. My findings suggest that both 

were involved as the ETCO2 levels and expiratory tidal volumes were 

significantly higher with the first active inflation than before it (Table 5-1) and 

there was a significant correlation between the ETCO2 levels and the expiratory 

tidal volumes (Table 5-2). When, however, considering inflations with expiratory 

tidal volumes greater than 2.2 ml/kg, the ratio of the ETCO2 level to the 

expiratory tidal volumes was similar for the post-FB and FB inflations despite a 

lower tidal volume for the post-FB inflations indicating that ETCO2 levels were 

not only influenced by tidal volume (Table 5-2). 

A limitation of the study is that particularly in very prematurely born infants it 

is not always possible to identify inspiratory efforts and so some of the infants 

may have made an inspiratory effort before the onset of face mask 

resuscitation. We, however, consider this as unlikely, as the ETCO2 levels were 

always less than 2.1 kPa, with a median of 0.3 kPa before the first active 

inflation, i.e. the infant's inspiration occurring with an inflation. A further limitation 

of our study was that as the expiratory tidal volumes were often less than 

2.2 ml/kg, the dead space of the face mask (1–2 ml) could have had a dilutional 

effect, so that the true ETCO2 levels might have been up to 100% higher. This, 

however, would only have increased the median ETCO2 levels to 0.6 kPa prior 

to the first spontaneous breath. Face mask leak could also have resulted in a 

reduction in the ETCO2 levels. This proved not to be a problem, as examination 
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of the flow traces indicated that although leaks occurred during inflation, flow 

during the expiratory phase was consistently zero after tidal expiration despite a 

PEEP level of 4 to 5 cm H2O. Nevertheless, it would be interesting to undertake 

a further study which focused on intubated infants, in whom leaks would be 

lower, to determine if our findings can be replicated.  

Low CO2 levels assessed by qualitative colorimetric measurements have 

been used to indicate airway obstruction during resuscitation (270)and (271). 

Airway obstruction, defined as at least a 75% reduction in the delivered expired 

tidal volume, has been reported to be common during face mask resuscitation 

of prematurely born infants(262). In this study, none of the infants had evidence 

of airway obstruction as previously defined(262) prior to the infant's first breath. 

Hence, we do not feel that airway obstruction explained the significantly lower 

ETCO2 levels prior to the first active inflation. Some prematurely born infants 

are effectively resuscitated in the labour suite, that is, they achieve an adequate 

heart rate, without making a spontaneous breath. Under such circumstances, it 

is likely that the inflating pressures were of sufficient magnitude to result in 

adequate alveolar ventilation. We have previously found a positive correlation 

between the magnitude of inflation pressures and the expired tidal 

volumes(272). 

Unless lung function is normal, ETCO2 levels will be lower than arterial 

CO2 levels, but the discrepancy is not so great as to explain the very low 

ETCO2 levels we report before the first active inflation. The ETCO2 levels 

associated with the first active inflation and the subsequent two passive 

inflations were still low compared to arterial CO2 levels (5–7 kPa) reported 
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immediately after birth(273-276), despite tidal volumes similar to those reported 

in newborn infants after adaptation at birth. Those results then suggest that the 

pulmonary circulation in these prematurely born infants being resuscitated may 

have remained partially constricted. That hypothesis is consistent with the 

findings of Dawes et al.(277)and Cook et al.(278) who reported that inflation of 

the lungs of newborn lambs with 100% nitrogen led to a partial vasodilation of 

the pulmonary vasculature, but that further vasodilation depended on an 

increase in the arterial oxygen content. Our study design did not allow 

documentation of the time to the stabilisation of the ETCO2 levels, so we are 

unable to comment as to whether or when further pulmonary vasodilation 

occurred.A clinical implication of our results is that the absence of detectable 

ETCO2 levels may not necessarily indicate that an endotracheal tube has been 

misplaced, although this study needs to be repeated with intubated prematurely 

born infants. Our results could explain why on certain occasions 

ETCO2measurements have failed to identify successful endotracheal 

intubation (279). 

In conclusion, initial face mask resuscitation did not result in adequate 

alveolar ventilation or adequate gaseous exchange as determined by 

CO2 clearance, unless the inflations were associated with an inspiratory effort 

by the infant. Our results suggest that the infant's inspiratory efforts led to an 

increase in ETCO2 levels, partly as a result of the increase in tidal volume, but 

also as a result of pulmonary vasodilation. A key observation of our study, is 

that improved carbon dioxide elimination, likely due to pulmonary vasodilation, 

occurred at the onset of the infant's respiration. 
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Chapter 6 :  Prematurely born infants' response to 

resuscitation via an endotracheal tube or a face 

mask 

 



 

130 
 

6.1 Introduction 

The United Kingdom advisory document on resuscitation of new born infants 

(280) recommends that the initial five inflations during resuscitation should be 

provided via a face mask proceeding to intubation if the infant fails to respond 

with an increase in heart rate and oxygen saturation and the onset of regular 

respirations. Unfortunately, the use of a face mask during resuscitation is 

associated with leaks, which can be as large as 90% (262, 266). There is 

evidence that resuscitation via a facemask is not producing significant gaseous 

exchange, as in Chapter 5,(281) the expired carbon dioxide level rarely 

exceeded 0.5kPa during the first five inflations (281). Furthermore as in Chapter 

3 (272) the median tidal volume delivered via a face mask, in the absence of 

inspiratory efforts by the infant, was in the region of 2.1ml/kg, which is less than 

the anatomical dead space. The expired tidal volume, however, was much 

larger if the infant made an inspiratory effort during the inflation(272). That 

results from Chapter 3 (272) supports the hypothesis that successful face mask 

resuscitation is dependent on stimulating the infants to make inspiratory efforts 

via the Head’s paradoxical reflex (218). An alternative approach to the ILCOR 

recommendations is to proceed immediately to intubation, but there is a paucity 

of information on the efficacy of resuscitation of prematurely born infants via an 

endotracheal tube. Hoskyns and colleagues(218) reported that a tidal volume of 

greater than two anatomical dead spaces (i.e. 4.4ml) was only generated in five 

of 21 intubated, prematurely born infants during the first three inflations when an 

inflation pressure of 30 cm.H2O was used(218). That inflation pressure is higher 

than the initial peak pressures of 20-25 cm.H2O as currently recommended. 

That recommendation is the result of anxieties about the adverse effects of 
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volutrauma documented in animal models during resuscitation (184, 195). We 

hypothesised that, using currently recommended pressures, the first five 

inflations via an endotracheal tube would not produce expired tidal volumes 

greater than 4.4 ml/kg unless the infant made an inspiratory effort. In addition, 

we hypothesised that due to leak around the face mask(262, 266), the expired 

tidal volumes and end tidal carbon dioxide levels during resuscitation would be 

significantly lower for inflations delivered by a face mask rather than an endo 

tracheal tube. 

 Our aim, therefore, was to assess prematurely born infants' responses to 

resuscitation via an endotracheal tube or via a face mask. In particular, we 

wished to determine if the first five inflations via an endotracheal tube produced 

expired tidal volumes greater than 4.4 ml/kg. An additional aim was to 

determine if the outcome of the first active inflation, the infant's inspiratory effort 

coinciding with an inflation, was similar by resuscitation via an endotracheal 

tube or a face mask. 

6.2  Methods 

Prematurely born infants without congenital anomalies, requiring 

resuscitation at birth at King's College Hospital NHS Foundation Trust or Guy's 

and St Thomas' NHS Foundation Trust, London, UK were eligible for entry into 

the study. The study was carried out between March 2010 and February 2012. 

Consecutive infants born at less than 29 weeks of gestation requiring 

resuscitation at birth using either oral intubation with a Cole's endotracheal tube 

(size 2 or 2.5) or a face mask (Marshall size 0) and who had respiratory 

monitoring were entered into the study. The decision to proceed to immediate 
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intubation at birth was made by the clinical staff caring for the infants, on the 

basis that the infant had a heart rate of less than 60/min and no respiratory 

effort as determined by clinical observation. 

The clinicians involved in the resuscitation of infants had all been trained in 

newborn life support and had received the Resuscitation Council, UK NLS 

provider certificates. Everyone had completed at least 12 month training on a 

tertiary level neonatal unit. They had also been trained to operate the 

respiratory function monitor. During resuscitation, the respiratory function 

monitor was set to display tidal volume, flow and inflation and positive end 

expiratory pressures. Ethical approval was granted by the Outer North London 

Research Ethics Committee who required parental written consent only for 

analysis of the data, which was obtained when the mother was on the postnatal 

ward. The resuscitation protocol and equipment used was as previously 

described.  

6.2.1 Analysis 

The inflation pressure [the peak inflation pressure minus the positive end 

expiratory pressure (PEEP)], inflation time, expiratory tidal volume, and leak 

and peak expiratory CO2 levels for each inflation were recorded. The first active 

inflation (the infant's inspiratory effort coinciding with an inflation) was identified 

as we have previously described(266). When the infant makes an inspiratory 

effort during inflation there is a downward deflection in the airway pressure 

trace(266). Data from the first active inflation and the two inflations immediately 

before and after the active inflations were analysed. The time from the onset of 

resuscitation to the onset of the first active inflation and, when available, the 
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time from birth to the first active inflation were recorded. Some of the results 

from infants resuscitated by the face mask have been previously reported(266, 

281), none of the data collected during resuscitation via an endotracheal tube 

have been previously reported. 

6.2.2 Statistical analysis 

Differences were assessed for statistical significance using either a paired 

Wilcoxon test or the Mann–Whitney U-test. Analysis was undertaken using IBM 

SPSS Statistics for Windows, version 20. 

6.3 Results 

Data were analysed from thirty-five infants (20 of whom required immediate 

intubation at birth) with a median gestation of 25 weeks. There were no significant 

differences in birth weight, gender, and use of antenatal steroids mode of delivery 

or Apgar scores at 1 and 5 min between the two groups (Table 6-1). Two of the 

infants receiving face mask resuscitation, but none of those intubated were 

observed to make a spontaneous breath before the onset of positive pressure 

ventilation. Two infants in the intubation group were extubated within 5 min of 

birth. The median time to intubation was 52 (range 39–78) s. Thirteen infants 

were intubated at the first attempt, four at the second attempt and three at the 

third attempt. 
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 ETT Face mask P 

n 20 15  

Gestation age (weeks) 25 (23–27) 25 (23–28) 0.98 

Birth weight (g) 670 (530–1035) 678 (545–1346) 0.56 

Male 9 (45%) 5 (33%) 0.72 

Antenatal steroids 17 (85%) 12 (80%) 0.98 

Vaginal delivery 17 (85%) 12 (80%) 0.98 

Apgar at 1 min 5 (2–8) 6 (2–9) 0.96 

Apgar at 5 min 8 (4–10) 8 (5–10) 0.87 

Table 6-1:Demographics by type of resuscitation. Data are presented as 

median (range) or n (%). 

Before the first active inflation, only 27% of the infants receiving resuscitation 

via an endotracheal tube had expiratory tidal volumes greater than 4.4 ml/kg. 

Both groups had significantly higher expiratory tidal volumes with the first active 

inflation compared to before it [7.7 versus 2.8 ml/kg in the intubated infants 

(p < 0.001) and 5.2 versus 1.6 ml/kg in the face mask infants (p < 0.001)]. The 

end tidal CO2 levels were significantly higher with the first active inflation than 

with the inflations before it and were 4.8 kPa and 0.36 kPa respectively in the 

intubated infants (p < 0.001) and for the infants resuscitated by a face mask 

3.2 kPa and 0.2 kPa respectively (p < 0.001). All the infants responded to 

resuscitation and were transferred to the neonatal unit. None of the infants had 

a pneumothorax in the labour suite or within the first 24 h after birth developed 

stridor or a pneumothorax. There were no significant differences in the neonatal 
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outcomes of the two groups, which are only reported to give an indication of the 

severity of the infants' conditions (Table 6-2). 

 ETT group Face mask 

n 20 15 

Death 
3 [15%] (respiratory = 2; 
sepsis = 1) 

2 [13.3%] (respiratory = 2) 

BPD (oxygen at 
corrected 36 weeks) 

6 (35%) 5 (38.5%) 

IVH (grades 3 and 4) 3 (17.6%) 2 (15.3%) 

 Table 6-2: Neonatal outcomes. 

(BPD= Bronchopulmonary dysplasia; IVH = Intraventricular Haemorrhage) 

 
The median inflation pressures and inflation times before during and after the 

first active inflation were similar with no significant differences between the two 

groups (Table 6-3). For the inflations before the first active inflation and the first 

active inflation, the expiratory tidal volumes (p < 0.01, p < 0.01 respectively) and 

the ETCO2 levels (p = 0.016, p = 0.026 respectively) were higher in infants 

resuscitated via an endotracheal tube compared to those resuscitated via a face 

mask. The median leak level was significantly higher during resuscitation via a 

face mask compared to via an endotracheal tube (p < 0.001). The time to the 

first active inflation from the onset of resuscitation was shorter with resuscitation 

via an endotracheal tube rather than via a face mask (p = 0.023). The time from 

birth to the first active inflation which was available in 15 of the face mask group 

and 12 of the intubated infants was similar (means of 64 and 61 s respectively; 

p = 0.42). 
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 Face mask ETT P 

n 20 15  

Inflation pressure (cm H2O) 

 Pre 16.9 (14.5–21.6) 17.2 (13.6–23.6) 0.14 

 Active inflation 16.9 (14.5–21.6) 17.2 (13.5–27.7) 0.47 

 Post 17.1 (14.5–21.6) 17.7 (14.9–22.4) 0.13 

Inflation time (seconds) 

 Pre 0.5 (0.3–1.3) 0.6 (0.3–2.1) 0.16 

 Active inflation 0.65 (0.5–1.1) 0.5 (0.3–2.1) 0.09 

 Post 0.62 (0.3–0.9) 0.4 (0.3–2.1) 0.1 

Expiratory tidal volume (ml/kg) 

 Pre 1.6 (0.2–13.3) 2.8 (0.2–9.9) < 0.01 

 Active inflation 5.2 (3–13.6) 7.7 (4.2–15) < 0.01 

 Post 4.3 (1.5–18.3) 6.0 (1.9–15) 0.18 

ETCO2 levels (kPa) 

 Pre 0.2 (0–0.9) 0.36 (0–1.8) 0.016 

 Active inflation 3.2 (0.4–6.9) 4.8 (0.53–11.5) 0.026 

 Post 2.8 (0.45–5.6) 3.4 (0.4–9.3) 0.49 

Time from onset of 
resuscitation to the first 
active inflation 
(seconds) 

24 (2–112) 12 (2–62) 0.023 

Leak during the two 
inflations pre-FB, FB 
and post-FB (%) 

44 (21–88) 14 (2–22) < 0.001 

Table 6-3: Comparison of inflation pressures, inflation time, expiratory tidal 

volume and ETCO2 levels by type of resuscitation. Data are presented as 

median (range). 
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6.4 Discussion 

In this study assessing prematurely born infants' response to initial 

resuscitation via an endotracheal tube, expired tidal volumes frequently did not 

exceed the anatomical dead space of 2.2 ml/kg before the first active inflation, 

as we have previously demonstrated in infants resuscitated via a face 

mask(266). The ETCO2 levels prior to the first active inflation in infants 

resuscitated by either method were close to zero indicating that effective 

ventilation was not occurring(281). The first active inflation was almost always 

associated with significantly higher expiratory tidal volumes and ETCO2 levels in 

infants resuscitated either by an endotracheal tube or a face mask. It is possible 

that the increased dead space due to the respiratory monitor might have 

affected the ETCO2 levels, but as the dead space was only 0.8 ml, the effect 

was likely to be small and was present throughout the study period so 

influencing the ETCO2 levels before, during and after the first active inflation. In 

one study(270), airway obstruction was reported as common during face mask 

resuscitation, but this was evidenced by low CO2 levels as detected by a 

colorimetric method. A low CO2 level, however, could also indicate lack of 

pulmonary vasodilation. Our results suggest that neither face mask nor 

endotracheal resuscitation produces adequate ventilation before the first active 

inflation and that pulmonary vasodilation, a prerequisite for adequate 

CO2 exchange, may be partly dependent on an active inflation. Recently, both 

Schilleman et al.(282) and Kaufman et al.(283) also found that expiratory tidal 

volumes during resuscitation were greater when associated with the infant's 

inspiratory efforts, confirming our previous results in infants resuscitated via a 
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face mask(266). Their studies, however, differed from the data we now report in 

that neither study (282) and (283) included intubated infants. 

We focused on the first active inflation and the two breaths before and after 

it, as we have previously demonstrated the expired tidal volumes are 

significantly greater during an active rather than a passive inflation(266). In both 

groups, expired tidal volumes and ETCO2 levels before the first active inflation 

were low. A possible explanation was the peak inflation pressure used, 20 to 

25 cm H2O. The advantages of using PEEP levels of 4–5 cm H2O have been 

highlighted (169), but adding PEEP reduces the inflation pressure to as low as 

15 cm H2O. It has been claimed that PEEP pressures of 4 to 5 cm H2O cannot 

be achieved using flows of 5 l/min (284). This was not our experience, we 

measured both the peak inflation and PEEP pressures in all infants and the 

required PEEP levels were always generated. The finding that the first active 

inflation was significantly earlier from the onset of resuscitation in the intubated 

infants, but there were no significant differences from the time of delivery to the 

first active inflation may reflect the additional time needed to pass an 

endotracheal tube. The initial inspired oxygen concentration was 21% in both 

groups, so differences in the inspired oxygen concentration did not account for 

the “delay” in the first active inflation in the face mask group. 

Only two infants were observed to make respiratory efforts before 

resuscitation. This is in contrast to the observations of O'Donnell and 

colleagues(285) who, using video cameras and microphones, found evidence of 

respiratory efforts in 80% of prematurely born infants. This suggests that 

breathing efforts may have been missed by the clinical staff in our study. The 
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ETCO2 levels in this study, however, were very low before the onset of the first 

active inspiration, 0.2 kPa in the face mask group and 0.36 kPa in those 

intubated at birth, indicating that any respiratory efforts missed by the clinical 

staff had not produced any effective respiratory exchange. The low 

ETCO2 levels might be interpreted as incorrect placement of the endotracheal 

tube. Repetto and colleagues (286), however, found that ETCO2 levels were 

unreliable in identifying misplaced endotracheal tubes. Similarly, Schmolzer and 

colleagues(287) evaluated air flow though the endotracheal tube and compared 

this to the colour change in the CO2 detector. They reported that in 

approximately one third of the cases, CO2  detectors did not correctly identify 

the tube placement. hence, we would not advise reintubation if any ETCO2 was 

detected, this information can be misleading before the lungs are open for gas 

exchange.  

Recently Hooper et al(288). demonstrated that monitoring changes in expired 

CO2 provided important information to guide PPV immediately after birth. In the 

absence of mask leak or airway obstruction, an inability to detect expired CO2 

indicates that gas has not reached distal alveoli to allow gas exchange. They 

observed that increasing expired CO2 levels in subsequent inflations indicated 

increasing aeration of distal gas-exchange regions. However, an increase in 

expired CO2 was not directly associated with the functional residual capacity nor 

the tidal volume. 

A possible explanation for the higher expiratory tidal volumes and 

ETCO2 levels during resuscitation via an endotracheal tube is the significantly 

higher leak during face mask resuscitation. It is also important to recognise that 
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all infants in the study were intubated with a Cole’s tube, hence may have 

lesser leak around the tube. These results may not be similar if a straight endo 

tracheal tube was used due to a higher leak in the later. As the infants in the 

two groups were of similar gestational ages and had similar Apgar scores at 1 

and 5 min, we have no evidence that the intubated infants were “sicker”. We 

would suggest that the higher ETCO2 levels in the intubated infants reflect their 

higher expired tidal volumes. A recent randomised trial (289) of non-invasive 

respiratory support via either a face mask or a nasal tube in the delivery room 

was terminated early on the grounds of futility. Those results(289), therefore, do 

not suggest if we had used a different method of delivering non-invasive 

respiratory support compared to intubation it would have influenced our results. 

Our study has strengths and some limitations. We studied consecutive 

infants who fulfilled the eligibility criteria and respiratory monitoring was 

available. We were able to monitor both expiratory tidal volumes and 

ETCO2 levels in both intubated infants and those resuscitated by a face mask. 

Despite all those involved in the resuscitations having been appropriately 

trained and a protocol being available, the latter was not always followed. In 

particular, the inflation times during the first inflations rarely were the 

recommended 2 to 3 s. Since there was no randomisation of the infants to the 

intubation or face mask group, there could be selection bias on which infants 

were intubated immediately after birth, which could confound the results. 

In conclusion, the first five inflations via an endotracheal tube rarely produced 

expiratory tidal volumes greater than 4.4 ml/kg. Resuscitation via an 

endotracheal tube or via a face mask was most effective, as indicated by higher 
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expiratory tidal volumes and ETCO2 levels, when the infant's inspiratory effort 

was provoked. How prematurely born infants' inspiratory efforts are most 

effectively provoked during resuscitation requires further investigation. In 

particular, studies should be undertaken to try and reduce leak, which is a 

particular problem during face mask resuscitation. In addition, studies need to 

be undertaken to assess the response to longer inflation times (2 to 3 s) and to 

compare higher peak inflation pressures (25 cm H2O) to 20 cm H2O. 

Assessments should also include expiratory tidal volumes, ETCO2 levels and 

the time to first active inflation. 
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Chapter 7 :  Evaluation of respiratory function monitoring at 

the resuscitation of prematurely born infants 
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7.1 Introduction 

Respiratory function monitoring has been used to assess how neonatal staff 

performs in “resuscitating” manikins(234, 263, 264, 290) and during the 

resuscitation of prematurely born infants(220, 235, 291) .The aim of this study 

was to determine whether trainees found respiratory function monitoring useful 

when resuscitating prematurely born infants in the labour suite, what decisions 

they made on the basis of the RFM and whether those decisions were evidence 

based. 

We hypothesised that the trainees would find RPM useful during preterm 

resuscitation. The availability of real time information would assist them in 

decision making during preterm resuscitation. 

7.2 Methods 

Trainees who had undertaken respiratory function monitoring were asked to 

anonymously complete an electronic web-based survey in 2012 indicating their 

trainee level (Appendix I), how often they used the monitoring and if they found 

the monitoring helpful. Trainees less than four years from qualification were 

classified as “Junior” and the rest were classified as “Senior” trainees. They 

were also asked if they adjusted the peak inflation pressure based on the tidal 

volume and if so what tidal volume they considered appropriate from a range of 

4 to 8 ml/kg. Further questions included whether they would reintubate if the 

expired carbon dioxide (CO2) monitoring showed a little or no expired CO2 or if, 

the chest was not moving but there was expired CO2, would they reintubate or 

increase the inflation pressures. Another question was, if the oxygen saturation 
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was less than 85 % at 1 min, would they increase the inflation pressure or 

increase the inspired oxygen concentration to 30–50, 50, 50–75, or 75–100 %. 

7.3 Results 

Fifty-one of the 57 trainees (90%) completed the survey; approximately half 

were junior trainees that are less than 4 years from qualification. Forty-one 

percent had used the monitoring between one and five times; 49 % between 

five and ten times; 8 % between 10 and 15 times; and 1 % more than 15 times. 

Thirteen found it extremely easy, 35 easy, and three hard to set up. 

Eighty-three percent said they found the delivery of tidal volume helpful and 

58 % said they adjusted the peak inflation pressure based on the tidal volume 

recorded by the monitor. A range of tidal volumes was considered adequate by 

the trainees: 5 ml/kg (52 %), 4 ml/kg (33 %), 6 ml/kg (13 %), and 7 ml/kg (2 %). 

If the end tidal carbon dioxide monitoring showed a little or no expired CO2, 

30 trainees said they would reintubate. Thirty two said that they would not 

reintubate but would increase the inflation pressures if the chest was not 

moving, but there was expired CO2; a third of junior trainees said they would 

reintubate. 

If the oxygen saturation monitoring showed the SaO2 was less than 85 % at 

1 min, no senior trainee said they would increase the inspired oxygen 

concentration, but 50 % of junior trainees said they would increase the inspired 

oxygen to between 30 and 50 % (n = 10); to 50 % (n = 13), to between 50 and 

75 % (n = 5), and to between 75 and 100 % (n = 4). 
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7.4 Discussion 

To my knowledge this is the first study evaluating RFM in clinical use. It has 

demonstrated that the usefulness of respiratory function monitoring during 

neonatal resuscitation, however this is dependent on the trainee’s level and 

their response to tidal volume titration and use of oxygen is often not evidence 

based. This could also due to the lack of robust evidence for tidal volume and 

oxygen levels during preterm resuscitation. Although animal studies have 

demonstrated that high rather than low levels are associated with poorer 

outcomes (185), but have not investigated volume targeted levels within the 

tidal volume range.  

In a study evaluating tidal volume levels in spontaneously breathing preterm 

infants, a wide range between 4-8 mls/kg are being reported(123). This is may 

be a reason for the wide levels of tidal volumes considered by the clinicians in 

our study, however majority considered 5mls/kg to be appropriate. This is 

despite the studies of prematurely and term born infants during ventilation on 

the neonatal unit demonstrating that volume targeted levels (VT) 6 ml/kg rather 

than lower volume targeted levels were associated with both lower amounts of 

desaturation (292)and levels of inflammatory markers (292).In addition, the 

work of breathing, as determined by measurement of the pressure time product, 

was only less at 6 ml/kg than as baseline (that is no volume targeting) both 

during weaning and acute respiratory distress in prematurely born infants(293, 

294).These variations in tidal volumes reported in preterm studies leads to 

uncertainty amongst clinicians on the levels of tidal volume targeting during 

resuscitation of prematurely born infants. 
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The majority of trainees reported that they would reintubate if the end tidal 

carbon dioxide monitoring showed a little or no expired CO2. This is done 

despite understanding that expired CO2  levels may not be detectable in poor or 

no cardiac output states. One study(270) evaluating the use of expired CO2  

levels during preterm resuscitation, suggested that many infants during positive 

pressure ventilation in the labour suite have airway obstruction as detected by 

the absences of expired CO2, however this cannot differentiate circulatory 

failure. It has subsequently been accepted that such device measuring expired 

CO2 cannot differentiate between airway obstruction and circulatory 

failure(295). In Chapter 5, I have demonstrated that the presence of expired 

carbon dioxide may reflect pulmonary vasodilation occurring with the onset of 

the infant’s respiratory efforts (281).  

Subsequently, in rabbits, Hooper and colleagues, with phase contrast X-ray 

imaging, demonstrated that that expired CO2 levels closely correlated to lung 

volumes at end inflation and were first detected when approximately 7 % of the 

distal lung volumes were aerated(288) . In the same study, they reported that 

an increase in expired CO2 was not directly associated with the functional 

residual capacity or the tidal volume during resuscitation of preterm rabbits. In a 

further study by Schmolzer et.al on preterm infants, they reported that expired 

CO2 levels during the preterm resuscitation could reflect the degree of lung 

aeration based on the tidal volume levels associated with expired CO2. In 

addition, expired CO2 levels in prematurely born infants also correlated with 

tidal volumes (296). Those data suggest that better lung aeration with higher 

lung inflation pressure may be necessary, rather than reintubate in some 

circumstances like very low lung compliance secondary to severe surfactant 
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deficiency. Senior rather than junior trainees increased the inflating pressure if 

expired CO2 was detected, but there was no chest movement, which given the 

above evidence is appropriate. 

Pulse oximetry, if placed immediately after birth, can give a signal within 

90 s(297). Recent studies have reported a wide range of pre-ductal SpO2 levels 

in newborns that do not need resuscitation. They reported that there was a 

steady increase in oxygen levels during the first 10 min(164). At 1 min, the 

median oxygen saturation is 66 % (10th and 90th centiles; 33 and 85 %), at 

5 min is 89 % (72 and 97 %), and at 10 min is 96 % (87 and 99 %)(297). Babies 

born prematurely or by caesarian section have lower SpO2 levels which 

increase more slowly. An algorithm has been developed which is adapted by 

ILCOR and is currently advocated for the use in oxygen titration during preterm 

resuscitation. Nevertheless, the junior trainees stated that they would increase 

the inspired oxygen concentration to a variety of levels if at 1 min the SpO2 was 

less than 85 %. 

This study has a number of strengths and some limitations. All of the trainees 

surveyed had been trained according to UK guidelines and in the use of the 

respiratory function monitoring. The survey was completed anonymously so 

there was no pressure on individual trainees, to give particular responses. The 

trainees’ responses, particularly those of the junior trainees reflected a lack of 

evidence-based guidelines, but also that they were unaware of certain aspects 

of the literature. The study was carried out in two tertiary centres, but the 

trainees had worked at various neonatal units as part of their structured training 

programme. 
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In conclusion, this study has demonstrated that respiratory function 

monitoring during neonatal resuscitation is dependent on the trainee’s level and 

that their response is often not evidence based. The majority of clinician’s 

reported that the display of tidal volume was very useful and more than half of 

them informed that they would titrate the expired tidal volume to 5-6ml/kg by 

modifying the peak pressure.  



 

149 
 

Chapter 8 :  Survey of UK newborn resuscitation practices 
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8.1 Background 

Surveys of newborn resuscitation practices (172-174, 204) have revealed 

differences between and in countries, but the equipment and techniques used in 

the UK are guided by the UK Resuscitation Council, and staff involved must 

undertake a newborn life support course(178).The course teaches the 

knowledge and skills required to undertake a structured approach in the 

management of a newborn infant during the first 10-20 minutes in a competent 

manner. The staff are taught to understand the processes underlying apnoea, 

bradycardia and poor condition at birth. They are expected to be competent in 

practical airway management and ventilatory support. We hypothesised, 

therefore, that in the UK there would be consistency of practice regardless of 

the level of neonatal care, and our aim was to test this hypothesis. 

8.2 Methods: 

A questionnaire (Appendix II) was sent to the lead paediatrician of 212 

hospitals with newborn units. The survey was undertaken between July 2011 

and October 2011.The 2010 ILCOR recommendations(178) were in place 

during the survey period. Differences in resuscitation practices according to the 

level of neonatal care were assessed for statistical significance using the χ2 

test. 

8.3 Results  

There was an 85% response. The majority of hospitals who responded were 

neonatal intensive care units (NICUs) (93%) and local neonatal units (LNUs) 

(98%), but only 40% of those with special care units (SCUs) replied. In most 
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hospitals (90%), resuscitation was performed in the delivery room, but a side 

room was used in 6% and in 4% for infants born by caesarean section. 

A pressure-controlled T-piece device with positive end expiratory pressure 

(PEEP) was the commonest mode (86%) of providing positive pressure 

ventilation (Table 8-1). There was, however, variation in the PIP used with 

different levels of neonatal care, for term (p<0.001) and prematurely born 

infants (p<0.001). There was also a difference in the level of PEEP used with 

different levels of neonatal care for term (p<0.001) and prematurely born infants 

(p<0.001). Oxygen blenders were more commonly used in hospitals with NICUs 

(p<0.001). A greater proportion of hospitals with NICUs initially used an FiO2 of 

0.21 for infants born at term (p<0.001) and prematurely born infants (p=0.001). 

 

 SCU (N=41) LNU (N=81) NICU (N=58) 

Positive pressure ventilation 

Equipment 

 T-piece with PEEP 37 (90.2%) 66 (81.5%) 52 (89.7%) 

 SIB with PEEP valve 2 (4.9%) 6 (7.4%) 3 (5.2%) 

 SIB without PEEP valve 2 (4.9%) 9 (11.1%) 3 (5.2%) 

Maximum PIP (cm H2O) used for term born infants 

 25–30 27 (65.9%) 71 (87.7%) 50 (86.2%) 

 20–24 12 (29.3%) 9 (11.1%) 5 (8.6%) 

 15–19 1 (2.4%) 1 (1.2%) 1 (1.7%) 

 No data 1 (2.4%) 0 (0%) 2 (3.4%) 

Maximum PIP (cm H2O) used for prematurely born infants 

 25–30 5 (12.2%) 5 (6.2%) 3 (5.2%) 

 20–24 30 (73.2%) 69 (85.2%) 51 (87.9%) 

 15–19 4 (9.8%) 1 (1.2%) 2 (3.4%) 

 No data 2 (4.9%) 6 (7.4%) 2 (3.4%) 

Set PEEP (cm H2O) for term born infants 

 No PEEP 8 (19.5%) 13 (16%) 3 (5.2%) 

 2–3 2 (4.9%) 3 (3.7%) 1 (1.7%) 

 4–5 27 (65.9%) 63 (77.8%) 48 (82.8%) 
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 SCU (N=41) LNU (N=81) NICU (N=58) 

 6–8 1 (2.4%) 0 (0%) 4 (6.9%) 

 No data 3 (7.3%) 2 (2.5%) 2 (3.4%) 

Set PEEP (cm H2O) for preterm infants 

 No PEEP 8 (19.5%) 10 (12.3%) 1 (1.7%) 

 2–3 2 (4.9%) 4 (4.9%) 1 (1.7%) 

 4–5 26 (63.4%) 63 (77.8%) 50 (86.2%) 

 6–8 2 (4.9%) 0 (0%) 4 (6.9%) 

 No data 3 (7.3%) 4 (4.9%) 2 (3.4%) 

Oxygen blender used 23 (56.1%) 55 (67.9%) 51 (87.9%) 

Initial set FiO2 for resuscitation of term infant 

 0.21 13 (31.7%) 32 (39.5%) 49 (84.5%) 

 0.3–0.5 6 (14.6%) 13 (16%) 4 (6.9%) 

 1 2 (4.9%) 6 (7.4%) 0 (0%) 

 No data 20 (48.8%) 30 (37%) 5 (8.6%) 

Initial set FiO2 for resuscitation of preterm infant 

 0.21 10 (24.4%) 18 (22.2%) 25 (43.1%) 

 0.3–0.5 10 (24.4%) 31 (38.3%) 27 (46.6%) 

 1 1 (2.4%) 3 (3.7%) 1 (1.7%) 

 No data 20 (48.8%) 29 (35.8%) 5 (8.6%) 

Oxygen saturation monitoring 
(term infant) 14 (34.1%) 33 (40.7%) 24 (41.4%) 

Oxygen saturation monitoring 
(preterm infant) 17 (41.5%) 53 (65.4%) 41 (70.7%) 

Temperature monitoring 13 (31.7%) 17 (21%) 7 (12.1%) 

CO2 detectors 4 (9.8%) 16 (19.8%) 14 (24.1%) 

Polythene bag for preterm<28-
week gestation 38 (92.7%) 77 (95.1%) 56 (96.6%) 

Adrenaline in less than 24 week 
gestation 5 (12.2%) 3 (3.7%) 6 (10.3%) 

Adrenaline in 25–28 week 
gestation 25 (61%) 58 (71.6%) 43 (74.1%) 

Sodium bicarbonate (in all 
infants) 17 (41.5%) 46 (56.8%) 27 (46.6%) 

Table 8-1: Resuscitation practices based on the level care provided by the 

hospital  

SCU: special care units; LNU: local neonatal unit; NICU: neonatal intensive care 

unit; PEEP: positive end expiratory pressure; PIP: peak inflating pressure; SIB: 

self-inflating bag 
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Use of oxygen saturation monitoring varied significantly between hospitals 

with different levels of neonatal care for term (p=0.005) and prematurely 

(p=0.002) born infants. Temperature and expired carbon dioxide (CO2) 

monitoring were used in a minority of hospitals, with significant variation 

between the level of neonatal care provided (p<0.01). In the majority of 

hospitals (95%), prematurely born infants were placed in a plastic bag. 

In a greater proportion of hospitals (70% vs 7.8%), epinephrine was given for 

resuscitation of infants born between 25 and 28 weeks of gestation compared 

with those born at <25 weeks (p<0.001). In all hospitals, a senior trainee, a 

junior trainee and a neonatal nurse attended deliveries of prematurely born 

infants. Consultants routinely attended deliveries of infants in 87% of hospitals 

for infants born at less than 24 weeks of gestation, almost all consultants in 

SCBU (97%) and LNU (93%) attended and only 80% of NICU consultants 

attended the delivery. In 25-28 weeks gestation birth, consultant attended the 

delivery in 68% of the units, of which 78%, 71% and 51% were from SCBU, 

LNU and NICU respectively. In 29 to 36 weeks gestation birth only 17% of 

deliveries were attended by a consultant. A transport incubator was used in 

44% of hospitals, a resuscitaire with T-piece or self-inflating bag by 44% and 

12% used either. 

In conclusion, with the exception of monitoring equipment and the use of 

resuscitation drugs, this survey highlights that the recommendations of the UK 

Resuscitation Council are followed in the majority of hospitals, but the aspects 

of practice differed according to the level of neonatal care provided. 
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Chapter 9 :  Discussion 
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The studies undertaken for this thesis used a novel way of monitoring, to 

understand physiological responses during the resuscitation of prematurely 

born infants. Clinicians attending preterm delivery are guided by the ILCOR 

recommendations, but these are not always based on evidence from clinical 

studies. At birth, the lungs of preterm infants are vulnerable, yet little distinction 

has been made between ventialtory approaches in term and prematurely born 

infants. The general aims of this thesis was to gather data that could lead to a 

better understating of the physiological responses following premature births 

and improve respiratory support for these vulnerable group of infants. This 

could be a knowledge base for developing large randomised control trials. 

Ventilation strategies in preterm infants has been least studied and the 

guidance has been extrapolated from studies on term born infants or mammals. 

It is now well established that large lung inflations can induce trauma to the 

preterm lung. Ventilation strategies include, limitations of peak inspiratory 

pressure to 20-25 cm H2O and using prolonged inflation times to establish an 

FRC. 

In our study (Chapter 3), although the recommended peak inspiratory 

pressures were used, clinicians never achieve the recommended lung inflation 

times. These lung inflations rarely achieved adequate tidal volumes(>4.4ml/kg) 

until the infant commenced breathing. We did observe a significant correlation 

between the inflation pressure and expired tidal volume during face mask 

ventilation (r2 = 0.19, p=0.04), suggesting that there may be a need for higher 

inflation pressures during initial resuscitation of prematurely born infants. It is 

also important to further explore the role of pulmonary reflexes during preterm 
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resuscitation. Currently, expired tidal volumes are measurable and has been 

used as an indirect marker for adequate lung inflation immediately, however this 

does not inform the formation of FRC.Neverthless, with current technological, 

this may be possible in the near future. Meanwhile, clinical studies using various 

lung inflation pressure could inform the effectiveness of such interventions on 

the formation of FRC in preterm infants.  

Clinicians hardly maintained a sustained lung inflation during all our studies. 

This intervention has been demonstrated to influence FRC formation in animal 

studies, however this is yet to be established in preterm infants. In our study 

(Chapter 4), there were no significant relationships between inflation time and 

either the inflation flow time (p=0.83) or expired tidal volume (p=0.80) or 

between the inflation flow time and expired tidal volume (p=0.10). While 

analysing the physiological traces, we observed that the flow drops to zero as 

soon as the peak pressure is reached. This suggests that prolonged inflation 

times would not lead to better tidal volume exchange during face mask 

resuscitation of prematurely born infants. Currently, large multicentred 

randomised controlled trials are recruiting patients and we await the outcomes 

of these trials.  

Gas exchange during any resuscitation is reflected by the levels of expired 

CO2, so far this has been used only to estimate correct endo tracheal tube 

position during preterm resuscitation. The expired CO2 levels are influenced by 

the lung inflation and pulmonary artery perfusion, with less understanding of the 

later. We evaluated (Chapter 5) the expired CO2 levels and observed that end-

tidal CO2 levels were significantly higher (p<0.001) when inflations were 
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associated with the infants’ respiratory effort. This was also associated with 

significantly higher levels of expired tidal volume. This likely indicates that 

pulmonary blood flow increases with the onset of spontaneous respiratory 

efforts. Measuring the volume of expired CO2 (volumetric CO2) may be a 

surrogate marker of lung aeriation which needs to be evaluated in future 

studies.  

Face mask leak has a negative effect on the efficacy of resuscitation and 

high face mask leaks up to 75% was observed in some of the infants studied for 

this thesis. We compared the efficacy of resuscitation though a face mask and 

endotracheal tube (Chapter 6). Tidal volume and expired CO2 were significantly 

higher in the ET group. However expiratory tidal volumes rarely were greater 

than 4.4 ml/kg unless associated with infants own inspiratory efforts. Similarly, 

the expired CO2 levels were higher following the infants own inspiratory effort. 

This suggests that mechanisms that stimulates infants’ own effort will improve 

the efficacy of preterm resuscitation, hence further research in this field is 

necessary. 

Respiratory function monitoring has influenced newborn resuscitation training 

and more recently has been used in monitoring preterm resuscitation. In our 

survey (Chapter 7) aimed to determine the usefulness at preterm resuscitation, 

the clinicians reported it to be useful and more than half of them informed that 

they would titrate the expired tidal volume to 5-6ml/kg by modifying the peak 

pressure. It is important to further study the short and long term outcomes of 

infants whose respiratory functions were monitored during resuscitation.  
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9.1 Strengths and weakness of the studies 

The study participants were all less than 34 weeks of gestation and 87% of 

the infants were exposed to antenatal steroids, hence they were relatively a 

homogenous group, infants were studied sequentially. There was only one 

monitor available at each site hence in multiple pregnancies only the first born 

infant received monitoring. Hence, a limitation is that these data do not 

represent the ‘whole’ population of preterm infants. 

The clinicians were trained to use and record data on the RFM, but did, as 

shown by the results, did not always follow guidelines. Nevertheless, this gave 

the opportunity to analyse different levels of inflation time and pressure. Since it 

was a prospective study the real time feedback from the RFM may have 

influenced some of the results. 

9.2 Subsequent studies to the initiation of this thesis 

Currently, the adequacy of inflation pressures during resuscitation is based 

on the observation of chest rise during lung inflation. In a observational study, 

Poulton et al(220) compared chest rise observed from two different angles 

(head view versus side view) and different level of experience (junior staff 

versus senior staff). Overall the accuracy of clinical assessment of chest wall 

movement was poor and did not appear to be influenced by either the 

observers’ position or the level of experience. Hence, clinical assessment on its 

own can lead to delivery of inadvertently high or low tidal volume during preterm 

resuscitation. 

Some studies (289, 298) have used a PIP of 30 cm H2O during resuscitation 

but did not report tidal volume levels during the initial lung inflations. In the study 
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described in Chapter 4 it was highlighted that clinicians rarely used inflation 

times beyond the recommended two seconds. Importantly, there was no 

significant correlation between the inflation times and tidal volume (p=0.83). 

In a recent study, Lista and colleagues (299) compared a group of premature 

infants treated with sustained inflations (15 seconds) to a historical cohort 

treated with CPAP at 5 cm H2O. They reported the “sustained-inflations group” 

was less likely to require mechanical ventilation or to develop Broncho 

pulmonary dysplasia(BPD). The study, however, was not prospective or 

randomized, which limits its usefulness. More recently, the same group, , 

randomized 291 preterm infants (25–28 weeks’ of gestation) to either a 

sustained inflation of 25 cm H2O for 15 seconds, followed by CPAP or CPAP 

alone in the delivery room, both delivered via a mask and a T-piece 

resuscitator. The primary endpoint was need for mechanical ventilation in the 

first 72 hours after birth. Secondary endpoints included the need for and 

duration of respiratory support and survival without BPD. They reported that 

fewer infants were ventilated in the first 72 in the sustained inflation group than 

in the control group (53 versus 65%; p = 0.04). In contrast to their earlier 

retrospective study, there was no significant difference in survival or the rate of 

BPD. Pneumothorax was seen in 6% in the sustained inflation group and 1% of 

the controls (p = 0.06). 

Monitoring exhaled CO2 during newborn resuscitation has been advocated 

for correct ETT positioning (170). Recently, Schmolzer et al(298) aimed to 

measure changes in exhaled carbon dioxide and tidal volume to assess lung 

aeration in preterm infants requiring respiratory support immediately after birth. 
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They reported the expired CO2 levels in 31/51 preterm infants who were 

spontaneous breathing since birth and placed on nCPAP had significantly 

higher levels of CO2 levels (ranging between 18–30 vs. 13–18 mmHg, p<0.05, 

respectively) compared to the infants who did not breathe at birth received PPV 

initially, this difference was not observed at 10 min of age. This may suggest 

that spontaneously breathing infants have better gas exchange which is similar 

to the findings from our study. More recently there has been increased interest 

in understanding the relationship between lung aeration, and pulmonary blood 

flow during resuscitation or preterm infants. Hooper and colleagues (288)aimed 

to determine the relationship between lung aeration and expired CO2 levels, 

they measured expired CO2 levels and lung volumes in ventilated newborn 

lamb and rabbits during phase contrast (PC) X-ray imaging. In both animal 

models, expired CO2 levels significantly (p<0.0001) related to tidal volumes and 

CO2 clearance/breath increased exponentially when tidal volumes were greater 

than 6 mL/kg. 

A recent randomized trial by Schmölzer et al. demonstrated that an RFM 

additional to clinical assessment was associated with significant reduction in 

leak during mask PPV in preterm infants(235). A recent systematic review 

(300)aimed to establish the role of respiratory function monitoring in reducing 

mortality and morbidity, concluded that there were no studies which qualified for 

the review.  
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9.3 Clinical implications of the results of this thesis: 

1. The presence of an RFM provides real time data during resuscitation, 

this should improve the efficacy of preterm resuscitation. 

2. Tidal volume in spontaneously breathing infants are 4-5ml/kg; there is 

increasing evidence of volume trauma with higher tidal volumes during 

preterm resuscitation. It is then essential to monitor tidal volume during 

resuscitation, which can minimise lung injury and contribute towards 

improved outcomes in extremely preterm infants Long term studies will 

be necessary to inform the benefits of this monitoring.  

3.  An integrated system to measure respiratory parameters and oxygen 

saturations and heart rate could help clinicians to rapidly assess and 

titrate respiratory support during resuscitation and stabilisation. 

4. Since the use of RFM at preterm resuscitation is being recognised as 

important, further training and protocols to interpret and intervene 

resuscitation responses may be necessary before routine use. 

9.4 Future Research: 

Respiratory function monitoring is rapidly emerging as a research tool during 

newborn resuscitation; over the last two years there has been more than 40 

published studies where RFM has been used in clinical research.  

1. It is important to determine whether such monitoring does impact on the 

effectiveness of resuscitation. Multi-centred randomised control trial will 

inform the effectiveness of such monitoring and more importantly, may 

help to delineate the contribution of interventions during preterm 

resuscitations to long term outcomes. 
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2. If brief use of higher inflation pressure but volume controlled resuscitation 

strategies may rapidly establish gas exchange and reduce lung injury 

during preterm resuscitation.  

3. Studies to explore the role of volumetric estimation of expired CO2 and 

its relation to the degree of lung aeration may be useful in clinical 

practice. 

 

9.5 Conclusions 

Initial lung inflation through a face mask or endotracheal tube produced very 

low tidal volume and expired CO2, unless it was associated with infant’s own 

respiratory effort. Current preterm resuscitation techniques are variable due to 

lack of robust evidence. 

  Monitoring respiratory function during preterm resuscitation is feasible and 

has the potential to improve clinical care by providing real time feedback during 

resuscitation of prematurely born infants.  
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APPENDIX I : RFM Evaluation questionnaire 

Respiratory function monitoring at resuscitation of prematurely born 

infants -  A user survey 

 
 

1. Have you used respiratory function monitoring at the resuscitation of 
prematurely born infants? 
Yes: □      No: □ 
If yes, please answer the questions below 

 
2. Are you a 

□ SHO 
□ ANNP 
□ SPR 
□ CONSULTANT 

 
3. How many times have you used the equipment? 

................................................................................... 
 

4. How easy was it to set up and use the equipment? 
□ Extremely Easy 
□ Easy 
□ Hard 
□ Extremely hard 

 
5. Was display of delivered tidal volume helpful during resuscitation? 

Yes: □   No: □ 
Please comment if it was useful. 

........................................................................................................................ 
 

6. Did you adjust the peak inflation pressure based on the tidal volume? 
Yes: □     No:  □ 

 
If so what tidal volume do you consider adequate 

□ 4 ml/kg    □ 5 ml/kg 
□ 6 ml/kg    □ 7 ml/kg 
□ 8 ml/kg 

 
7. Did the flow and volume trace help you to assess if you had an adequate 

face mask seal? 
Yes: □   No: □ 

 
8. Did you reintubate if the end tidal carbon dioxide monitoring showed little 

or no expired CO2? 
 

If so how often? 
........................................................... 
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9. If the chest wasn’t moving, but there was expired CO2, would you: 
□ Not reintubate but increase the pressures 
□ Reintubate 
 

10. Oxygen saturation monitoring at resuscitation of prematurely born 
infants: If the O2 saturation was <85% at one minute did you...... 

□ Do nothing 
□ Increase the FiO2 – if so to what level? 
□ Increase the inflation pressure 

 
11. If you increased the FiO2, to what level did you increase it? 

□ 30-50% 
□ 50% 
□ 50-75% 
□ 75%-100% 
 

12. Do you think respiratory function monitoring should be used routinely at 
resuscitation of prematurely born babies? 

Yes  □     No   □ 
 
Please add any other comments 
 
.............................................................................................................................. 

.............................................................................................................................. 

.............................................................................................................................. 
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APPENDIX II : Questionnaire: Survey of UK newborn resuscitation 

Name: .............................................................................................................. 

Hospital: .......................................................................................................... 

 
1. What level of intensive care do you provide (BAPM Standards,2010) 

   □ Level 1 (SCBU)         □ Level 2 (Local Neonatal Unit)    □ Level 3 (NICU) 

 

2. Is resuscitation conducted in:  

□ Delivery room             □ Separate room adjacent to the delivery room  

  

3. How do you provide positive pressure ventilation in the delivery 

room? 

□ T-piece resuscitation (e.g.: Neopuff®) 

□ Self- inflating bag with PEEP valves (e.g.: Ambu® PEEP valve) 

□ Self- inflating bag without PEEP valves 

□ Other (please specify): ................................ 

 

4. What are the initial pressures set for resuscitation?  

 

Term infant:      PIP................ cm H2O       PEEP .................. cm H2O 
 
Preterm Infant:  PIP.................cm H2O      PEEP ....................cm H2O 
 

5. Do you use oxygen blenders at resuscitation? 

□ Yes                                  □ No 

 
6. If you use oxygen blenders, what is the initial FiO2 set to be used 

during resuscitation? 
 
Term infants: .................... 

Pre-term infants: .............. 

7. Do you use a pulse oximeter during newborn resuscitation? 

Term infant:       □ Yes     □ No 

Preterm Infant:   □ Yes     □ No 
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8. Which other monitoring do you use during resuscitation? 

a) Temperature                               □  Yes                □ No 

b) Separate heart rate monitoring   □ Yes                 □ No 

 

9. Do you routinely apply plastic wrap/bag for all infants born less than 

28 week gestation? 

□ Yes                   □ No 

 
10. Do you routinely use CO2 detectors in the delivery room to confirm 

intubation? 

□ Yes – Colorimetric method (e.g.: Pedicap®) 

□ Yes – Capnography (e.g.: End tidal CO2) 

□ No 

 
11. Do you transport infants needing respiratory support from the 

delivery room to the newborn unit using a: 

□   Transport incubator                    

□  Resuscitatire with auto-breath 

□  Resuscitaire with T-Piece ventilation (e.g. neopuff® ) 

       □   Resuscitaire with self-inflating bag       

   □    Others (please specify): ....................... 

 

12. Do you give sodium bicarbonate during resuscitation? 

   □ Yes                              □    No 

 

13.  Do you give adrenaline to an infant of:  

 Less than 24 weeks  □ Yes  □  No 

 25-27 weeks   □ Yes  □ No 
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14. Which of the following staff routinely attend the newborn 

resuscitation team for prematurely born infants? 

              

Less than 24 weeks 25-28 weeks Greater than 29 weeks 

□   Consultant □   Consultant □   Consultant 

□   Registrar/Specialty 

trainee 3-8 

□Registrar/Specialty 

trainee 3-8 

□   Registrar/Specialty 

trainee 3-8 

□   SHO/Specialty trainee 

1-2/FY1-2 

□   SHO/Specialty 

trainee 1-2/FY1-2 

□   SHO/Specialty trainee 

1-2/FY1-2 

□   Neonatal Nurse 

practitioner 

□   Neonatal Nurse 

practitioner 

□   Neonatal Nurse 

practitioner 

□   Neonatal nurse □   Neonatal nurse □   Neonatal nurse 

   

COMMENTS: 

...............................................................................................................................

............................................................................................................................... 
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APPENDIX III : Permissions 

 Copyright is open for Figure 1-1, Figure 1-2 and  

 Figure 1-3 

 Copyright for Figure 1-4 (as below) 

 

 Figure 2-1 and Figure 2-2 are own drawings produced for this thesis. 

 Figure 2-3, Figure 2-4 and Figure 2-11 is reproduced from the NM3 

respiratory profile monitor, copyright of Respironics®. 
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