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Abstract 

ABSTRACT OF THESIS submitted by Ross Morgan 

For the degree of Doctor of Philosophy and titled 

Image-Based Modelling of the Electrophysiological and Structural Effects of Fibrosis 

on the Mechanics of Atrial Fibrillation 

April 2016 

Atrial fibrillation (AF) is a degenerative cardiac arrhythmia characterised by high 

incidence rate and limited effectiveness of clinical treatments. Fibrosis is one of the 

major pathological factors linked with AF progression. However, mechanistic links 

between this pathology and AF arrhythmogenesis are incompletely understood. 

This project investigates the diverse arrhythmogenic effects of fibrosis using 

computational model of the human atria, which integrates electrophysiological and 

structural changes associated with fibrosis. Structural data is reconstructed based 

on magnetic resonance imaging (MRI) from AF patients. 

The computational model of the 3D human atria integrated the Visible Female 

cardiac geometry, rule-based fibre orientation, region-specific atrial 

electrophysiology and its changes due to AF-induced ionic remodelling. Fibrosis was 

modelled by integrating (i) a novel electrophysiologically detailed model for a single 

atrial fibroblast, (ii) electrotonic myocyte-fibroblast (M-F) coupling, (iii) structural 

effects of fibrosis on the anisotropy of atrial tissue and (iv) either random or 

patient-specific distributions of fibrosis in the 3D atrial model. Patient-specific 

distributions were reconstructed from late-gadolinium enhanced (LGE) MRI.  

At the single-cell level, electrotonic M-F coupling via gap junctions resulted in 

changes of the atrial myocyte electrophysiological properties, including the resting 

membrane potential, action potential duration (APD) and its restitution, regional 

APD heterogeneity, effective refractory period and cell excitation threshold. At the 

3D atria level, these changes translated into the altered susceptibility for atrial re-

entry. Additional changes of the tissue anisotropy and heterogeneity, both 

associated with non-uniform fibrosis in the atria, resulted in the breakdown of re-

entry into multiple rotors and wavelets, which is characteristic of AF.  

Application of LGE MRI enabled the segmentation of patchy fibrosis from AF 

patients. An image processing and modelling pipeline was developed to maps the 

distributions of fibrosis into the 3D atrial model and investigate the effects of 

regional fibrosis patches on the genesis of AF. Simulations the patient-specific 
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model revealed pinning of re-entrant waves primarily at the border zone of dense 

fibrosis patches. Patient-specific atrial wall thickness was also reconstructed using 

novel PSIR MRI protocol and integrated into the 3D model. This non-uniform 

structural feature provided additional locations for the wave pinning in regions of 

minimum atrial wall thickness.  

In summary, the developed MRI processing and computational modelling pipeline 

has been applied for dissecting the multiple effects of fibrosis in the genesis of AF. 

Novel insights provided by the image-based models pave a way for understanding 

of the disease and providing treatment on a patient-by-patient basis.   
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1. Introduction 

Atrial fibrillation (AF) is a common degenerative cardiac arrhythmia. The incidence 

rate of this condition is high, however current clinical treatments have limited 

effectiveness. It develops in the atria and produces an irregular heart rate, reducing 

the cardiac output of the organ. Although the condition is largely confined to the 

upper chambers of the heart and may be relatively benign, it is known to lead to 

severe complications such as stroke or congestive heart failure. The patient 

suffering from AF also has reduced quality of life due to the lower cardiac output 

which can cause fatigue and requires long-term medication.  

The progression of the disease is such that up to 24% of paroxysmal patients will 

progress to persistent AF1 and 31% will progress to permanent AF2. This process is 

self-sustaining, as described by the idiom "AF begets AF". A further complication is 

that treatments become less effective as the duration of AF increases.1 A definitive 

cause for the disease progression is unknown, but various functional and structural 

factors have been associated with arrhythmogenesis.  

The risk of stroke in AF patients is 5 times greater than non-sufferers.3 Due to the 

lack of organised atrial contraction, blood can stagnate within the atria, and lead to 

thrombus formation. Over a quarter of patients diagnosed with AF also have 

congestive heart failure (CHF), with 16% of AF diagnoses developing CHF later in 

life4. The co-morbidity of these conditions leads to greatly increased risks of 

cardiovascular events and fatalities.5 The lifetime risk of developing the disorder 

after the age of 40 is 26% for men, and 23% for women6 with global prevalence in 
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2010 being 33.5 million7.  With a globally aging population and continued 

improvements to life expectancies, this number will continue to grow.  

Existing treatments have varied and limited levels of success which leads to high 

rates of recurrence. Treatments such as, front-line anti-arrhythmic drug therapy 

and emerging catheter ablation are characterised by ~30-50% recurrence. This 

shows that a better understanding of the disorder is required for the development 

of more effective treatments. Due to the complexity of AF and a large number of 

underlying structural and electrophysiological factors, a single definitive cause has 

not yet been identified. The limitations of current in-vivo electrophysiology 

recording methods are a major hindrance for experimental AF studies. 

Biomedical engineering is increasingly relying on computational modelling in order 

to investigate the physiological and pathological factors that contribute to 

cardiovascular disease, including AF arrhythmogenesis. Modelling allows in-silico 

simulation of atrial electrophysiology and non-invasive dissection of the complex 

cell-to-organ factors underlying the development and progression of AF.  

1.1. Aims of the thesis 

Atrial fibrosis is one of the major pathological factors associated with AF 

progression. There is a strong correlation between AF duration and increased atrial 

fibrosis, which has been used for AF condition stratification. This form of structural 

remodelling leads to increasing collagen deposits within the tissue and it has been 

hypothesised that fibrotic invasion of the myocardium has arrhythmogenic effects. 

Moreover, ablation of fibrotic areas identified from clinical imaging or electro-

anatomical mapping can significantly improve the ablation therapy success rates8,9. 
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However, due to the difficulty in matching the recordings of AF patient 

electrophysiology with the underlying tissue structure, this has not yet been 

supported with solid evidence.  

The aim of this thesis is to develop a computational model to investigate the effects 

of fibrosis on the generation and sustenance of AF. To accomplish this goal, a multi-

scale 3D whole-atria model was created to integrate several state-of-the-art 

elements developed in collaboration with leading groups. The model includes 

human image-based atrial structure and established cell electrophysiology models.  

Individual aims for each chapter have been identified to investigate the overall 

effects of fibrosis and atrial structure: 

1. Investigate the effects of myocyte-fibroblast coupling in single cell 

simulations, 

2. Investigate the 3D effects of homogenous fibrosis, 

3. Investigate patient specific aspects of fibrosis, 

4. Investigate the variations and effects of atrial wall thickness on 

arrhythmogenesis. 

The modelling results will be used to provide a mechanistic explanation for the 

success of ablation around fibrotic areas. 

1.2. Thesis overview 

The thesis is divided by topic of investigation; an overview of the structure of the 

thesis is detailed below.  
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Chapter 2 introduces the problems faced in AF research and gives background 

information, from basic cardiac anatomy to mathematical modelling techniques, 

and outlines the methods used for the modelling, imaging and image processing. 

Chapter 3 provides details of the development of single cell models, including a 

single atrial fibroblast model and the myocyte-fibroblast coupling model. This 

chapter also explores the dynamic effects of these models, such as the effects of 

fibroblasts on myocyte electrophysiology. 

Chapter 4 describes the investigation into the 3D dynamics of the human atrial 

model. Specifically, it looks into the electrophysiological effects of uniform diffuse 

fibrosis within 3D atrial tissue. In addition the investigation of the effect of fibrosis-

related tissue anisotropy on arrhythmogenesis is also described. 

Chapter 5 describes the investigation into patient-specific fibrosis. The image 

processing pipeline is described, which was developed to process late gadolinium 

enhanced MRI into a volumetric dataset compatible with the 3D atrial model. This 

chapter concludes with the in-silico findings of the 3D re-entrant wave dynamics in 

heterogeneous fibrosis distributions.  

Chapter 6 details the investigation into atrial wall thickness reconstructed from 

novel MRI data and its additional effects on AF arrhythmogenesis. Atrial wall 

thicknesses were measured from both AF patients and volunteers, and an atlas of 

volunteer thicknesses was created. Simulations using the reconstructed 3D atrial 

geometries were preformed to show the effects of wall thickness on 

electrophysiology. 
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Chapter 7 provides an overview of the whole thesis, linking the conclusions for each 

chapter. It also assesses the clinical relevance for this work as well as assessing the 

limitations  
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2. Background  

2.1. Cardiac anatomy 

The heart is the primary mechanical driver for the human cardiovascular system. It 

is responsible for driving the transport of blood, containing oxygen and nutrients to 

and from all tissues in the body. The organ comprises of four chambers (Figure 1).  

 

Figure 1. Illustration of cardiac anatomy. A. Right ventricle, B. Left ventricle, C. Right atrium, 

D. Left atrium, E. Aortic Arch, F. Pulmonary trunk, G-J. Carotid arteries, K. Superior Vena 

Cava, L. Pulmonary veins. This image is an open source resource. Black scale bar is 10mm. 
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The two lower and larger chambers, the ventricles, provide the muscular 

contraction as the driving force for blood circulation. The atria are the two smaller 

superior chambers of the heart. The walls of the atria are much thinner (1-5mm) 

than the ventricles (11mm) due to lower mechanical workload. They also have no 

valves on the inflow vessels and therefore have a lower pressure capacity. The four 

chamber structure of the heart enables the separation of the pulmonary from the 

systemic circulation systems. This partitions the oxygenated blood and the de-

oxygenated blood within the heart.  

The left atrium (LA) is supplied with blood by the pulmonary veins (PV), the most 

common configuration of the veins is two entering on both the left and right sides. 

The chamber empties into the left ventricle (LV) via the mitral valve. The right 

atrium (RA) is supplied by the superior and inferior vena cava (SVC and IVC) and fills 

the right ventricle (RV) via the tricuspid valve. 

The atria have several unique anatomical structures (Figure 2), which directly 

influence their functional and electrophysiological properties. Examples include the 

sinoatrial node (SAN) which generates the stimulus for cardiac contraction to the 

atrial septum (AS) which separates the blood volumes of the atria.  

The atrial appendages in the LA and RA (LAA and RAA respectively) extend beyond 

the atria and over their respective ventricles. These chambers contain high density 

networks of pectinate muscles (PM), which are large muscle fibre bundles. The 

function of the appendages is disputed but it has been suggested that they increase 
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chamber volume prior to ventricular filling or act as a decompression chamber for 

periods of atrial hypertension10.  

The two atria are separated by the AS which prevents blood transfer between the 

atria, except in the foetus, where transfer is permitted through a leaflet opening 

known as the foramen ovale. At birth the decrease in pulmonary circulation 

pressure permanently closes the foramen ovale. The septum has a bilaminar 

muscular structure separated by connective tissue,11 which reduces 

electrophysiological conduction across the structure and between atria. 

The SAN is difficult to identify by observation due to its small size and macroscopic 

similarity to the surrounding myocardium. It can be identified histologically by the 

finer and more irregular fibre structure or by the presence of proteins responsible 

for its pacemaking function. The SAN is comprised of autonomously activating 

myocardial cells, moderated by the adrenergic and vagal nerves. It is responsible for 

initiating the electrophysiological waves that cause the organ to contract.  

Several fibrous bundles facilitate trans-septal conduction between the atria. The 

largest of these is the Bachmann’s bundle (BB). It runs from the top of the RA into 

the anterior tissue of the LA, the origin of the BB is located close to the SAN 

providing rapid progression of the wave into the LA. The coronary sinus (which is a 

coronary vein) and other smaller posterior septal conduction pathways have also 

been shown to promote trans-septal conduction12. 

The crista terminalis (CT) is a large fibrous bundle that is the junction between the 

right atrium and the right atrial appendage. It runs from the SVC to the IVC. As with 
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the BB, the CT accelerates conduction along the bundle. This increases the speed of 

wave propagation from the SAN (which is located at superior end of the CT) 

towards the ventricles.  

Figure 2. Atrial structures and features. A is a schematic diagram of a coronal dissection 

through both atria. The main structures of the LA are the PV (1), the mitral valve (2), the 

LAA and the AV node (3). The main structures of the RA are the SVC and IVC (4,5), the 

tricuspid valve (6), RAA, CT (7) and SAN (8). Some structures are shared between the atria, 

and control conduction pathways: the atrial septum (9) which electrically separates the 

atria and the BB (10), a fibrous tissue which facilitates controlled inter-atrial conduction. B 

shows a lateral dissection through both atria and is sourced from Ho et al.13 

The tissue of all cardiac chambers is comprised of striated muscle and is relatively 

homogeneous in terms of cell diversity, with the main cell mass comprising of 

myocytes.  Myocytes (Figure 3) provide the mechanical force for all muscular tissue. 

They are elongated, tubular cells and contain longitudinal myofibrils which allow 

the cell to contract. Unlike skeletal myocytes, cardiac myocytes have a single 

nucleus. The cells are connected end to end via intercalcated disks (ICD) which 

contribute to tissue synchrony by allowing ionic transfer between cells and act as 

anchoring points for myofibrils. The structure of bundles of fibres is optimal for 

continuous contractile effort, but it also promotes anisotropic conduction.  

A B

1

2
3

4

5
6

7810 9
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Figure 3. Illustration of the structure of atrial tissue using histology. The image is a 

trichrome stained histological slide of atrial myocardium. It shows the fibrous structure of 

the tissue and parts of the cell including the inter-calated disks (ICD) the nucleus (N) and 

fibrosis (F, stained in blue). A whole myocyte length of approximately 100 μm is indicated by 

the line M (myocytes are stained in red). Image reproduced with permission from 

WebPath(R)14 

Although the main function of the cell is to provide mechanical force for tissue 

contraction, the cell also acts as an electrical signal transceiver. This function is 

explored in more detail throughout the following section along with the facilitation 

of anisotropic conduction.   

2.2. Atrial function 

The main mechanical function of the atria is to facilitate the passage of blood to the 

ventricles uni-directionally via the atrio-ventricular (AV) valves. The stages of this 

process have passive (conduit phase) and active (booster pump phase) phases as 

well as an inactive filling (reservoir) stage.  The atria also allow for the generation 

and ordered conduction of electrical excitation waves through the heart. These 

ICD 

N 

F 

M 
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waves originate in the SAN and initiate contraction of the cells as they pass through 

atrial and then ventricular tissues, regulating the contraction order of the heart 

chambers. 

In sinus rhythm, the conduction of the electrical waves through the tissue must 

follow a regimented route. The electrical signal (action potential) is initiated in the 

RA by autonomously activating cells of the SAN. The wave then propagates across 

the RA aided by fast conduction along the CT and pectinate muscles, resulting in 

their contraction. Accelerated trans-septal conduction is promoted through the BB. 

The wave passes through the LA from top to bottom, ensuring its contraction after 

the RA. Simultaneously, propagation in the RA has reached the inferior wall and the 

AV node, which promotes conduction into the ventricles via the bundle of Hiss.  

Figure 4. Atrial action potentials and traces of underlying ionic channel currents. The top 

plot shows a membrane voltage trace of two action potentials marking phases 1-4 as well 

as the active currents. IKur, IKACh are unique to atrial myocytes. 
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The excitation waves responsible for initiating the heart contractions are sustained 

by a cascade of action potentials generated in each cardiac cell. Due to the 

capacitive properties of the cell membrane and ionic concentrations gradients 

across the membrane, myocytes can maintain a resting potential across the 

membrane. Through a series of voltage-dependent opening and closing of specific 

ionic channels in the membrane and the subsequent fluxes of ions across the 

membrane, the cells can create a “voltage spike” known as an action potential (AP). 

The ionic fluxes are driven by the potential and concentrations gradients across the 

membrane, whereas the voltage-dependence of ionic channels is based on 

conformational changes of the channel-forming proteins.  

The major ionic channel currents seen in Figure 4B are activated in a specific 

sequence to generate a cardiac AP (Figure 4A). This differs from a neuronal AP by 

the plateau phase (phase 2), which gives cardiac AP a longer duration. This allows 

for a larger influx of calcium at this phase which activates the myofibrils, facilitating 

cellular contraction.    

Phase 0 (depolarisation). The sodium current drives sodium ions into the cell, which 

rapidly increases the membrane potential.  The sodium activation gate opens when 

a threshold membrane potential is exceeded, due to current flowing into the cell, 

from neighbouring cells or through an electrode injected through the cell 

membrane.  

 



29 
 

Table 1. Description of main ion channel currents responsible for the consecutive AP phases. 

Phase 1 (early repolarisation), as the sodium channels close, the transient outward current 

(Ito) activates causing a rapid repolarisation and the characteristic ("notch") in membrane 

potential.  

Phase 2 (plateau) is determined by L-type calcium channels opening and Ca2+ ions 

entering the cell, which prevents the cell being immediately repolarised. During this 

period the cell physically contracts as the calcium ions initiate the contraction of the 

microfilaments. During this phase the major currents are in quasi-equilibrium, with 

calcium (inward) and potassium (outward) balancing each other and resulting in 

low net current15.  
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INa In Fast sodium current: Rapid depolarisation 
current that initiates the AP 

0 NaV1.5 

Ito Out Transient outward current: Response to 
depolarisation, begins to repolarise cell. 

1 Kv4.3 

ICl In Chloride current: Response to depolarisation, 
similar action to Ito 

1  

IKur Out Ultra-rapid potassium current: Response to 
depolarisation, begins to repolarise cell 

1/2 Kv1.5 

ICaL In L-type calcium current: Sustains the long AP 
plateau, responsible for contraction 

2 Cav1.2 

IKs Out Slow potassium current: Acts to repolarise the 
membrane later during the plateau 

2/3 Kv7.1 

IKr Out Rapid potassium current: Acts to repolarise 
the membrane early during the plateau 

3 Kv11.1 

IK1 In/ 
Out 

Inward rectifier potassium current: 
Repolarises the cell determining the resting 
potential 

4 Kir2.1-
2.3 

IKACh Out Acetylcholine-activated potassium current: 
Repolarising current and only active in the 
presence of acetylcholine 

4 Kir3.1/3.
4 
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Phase 3, when the Ca2+ channels are closed, the net current is dominated by K+ 

outflow from the cell, which starts to repolarise the cell and ultimately restores the 

resting potential (Phase 4). 

The propagation of the AP waves through the tissue is permitted by the gap 

junctions, which are non-specific ionic channels present in the intercalated disks at 

the junction between cells. The gap junctions allow connected cells to exchange 

ionic charge and change the membrane potential; once a cell reaches a threshold 

potential, the sodium channel will activate and the AP will be triggered.  

Abnormalities of AP generation at the single cell level are considered pro-

arrhythmogenic. There are two main types of abnormal impulse, which are defined 

by the time they are activated within the action potential. Early after 

depolarisations (EADs) are activated during phases 2-3 and are more likely to occur 

when the action potential duration is longer.  Delayed after- depolarisations (DADs) 

occur in late phase 3 or phase 4, when the cells are predominantly depolarised. 

Both EADs and DADs can act as initial triggers of abnormal waves leading to AF.  

At the tissue level, the overall wave dynamics can be significantly affected by 

minimum reactivation time, known as the effective refractory period (ERP). The ERP 

effectively defines the wavelength of the propagating wave which is a determining 

factor in the generation of fibrillatory re-entrant circuits (see section 2.3 below). 

Wavelength (WL) isn’t wholly defined by the ERP, but is a product of ERP and the 

conduction velocity (CV) (equation 1).   

𝑊𝐿 = 𝐶𝑉 × 𝐸𝑅𝑃        ( 1 ) 
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The latter, in turn is dependent on the number of active gap junctions between the 

cells, the proximity of cells and the viability of the tissue. In sinus rhythm, the 

wavelength of propagating waves is sufficiently long (17cm16) that the atria can only 

accommodate a single wave (the average longitudinal diameter of the LA is 

5.7cm17), effectively preventing re-entry of the wave. Therefore, structural or 

electrophysiological changes are required in order for AF to occur.  

 

Figure 5. Recurrence rates of AF after treatments. Standard anti-arrhythmic drug 

(Sotalol/Propafenone) treatment has a long-term success rate of only about 40%. Although 

Amiodarone shows a higher effectiveness, it is toxic to the patient18, limiting its longterm 

application. B. The follow up of a single ablation attempt has a minimum arrhythmia free 

survival of 30% (at 5 years). C. The follow up of arrhythmia free survival after multiple 

ablations, which increases to 65% at 5 years. Images from Weerasooriya et al.19  

A 

  

                      

B              C            
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2.3. Atrial Fibrillation 

AF is the most common sustained cardiac arrhythmia6 with an incidence of 2.66 

million cases in the US in 2010. Although the arrhythmia may be relatively benign, 

the condition is known to lead to severe complications such as stroke or congestive 

heart failure. AF is often chronic and progressive, exhibiting a self-sustained and 

treatment-resistant nature. The aging population is a major contributing factor for 

the recent increase in AF incidence. AF is characterised by rapid and chaotic 

electrophysiological activation of the atrial tissue and is distinct from atrial flutter 

by its higher and more irregular frequency.  

2.3.1. Current treatments  

Current treatments for AF are limited, have low success rates and high rates of 

reoccurrence. There are currently three main therapeutic options for patients 

diagnosed with AF: drug therapies, cardioversion and catheter ablation. 

Ablation therapy is used to block conduction in certain areas to in order to prevent 

AF stabilisation. The pulmonary veins have been identified empirically as sources of 

electrical activity sustaining AF and are most commonly used as a target for 

ablation20.  The pulmonary veins are electrically isolated to prevent electrical 

interaction with the rest of the atria. The isolation is accomplished using a high 

energy radiofrequency (RF) catheter to cauterise the endocardial surface of the 

atria. The resulting thermal damage of the tissue leads to the creation of non-

conductive areas. PV isolation has been shown to be effective in the treatment of 

paroxysmal AF  with success rates of 65-80% for multiple surgeries and 40%19 for 

single ablations (see Figure 5B). However, ablation procedures are invasive, can be 
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up to 5 hours long with significantly damage to the atrial tissue and have high 

recurrence rates. 

The effects of different anti-arrhythmic treatments have been investigated using 

computational modelling. For example, Trayanova et al. have reviewed the impact 

of current modelling studies on the understanding of resynchronisation therapies 

and drug treatments. The review is focused on the application of highly detailed 

biophysical models and suggests that these can augment clinical studies and 

elucidate novel treatment methods.21 Furthermore, computation modelling is 

suggested as particularly useful for predicting ablation therapy targets22. Ablation 

therapy requires more information about electrophysiological substrate and wave 

dynamics that currently cannot be accurately measured in the clinic. Therefore, 

modelling can be used to bridge the gap between available measurements (such as 

patient MRI and electroanatomical mapping, as well as ex-vivo, data) and therapy23.  

Figure 6. Flow diagram of the factors contributing to the genesis of AF. It shows the positive 

feedback loop that describes the notion “AF begets AF”.  
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2.3.2. Mechanisms of AF 

High-frequency electrical activity in AF is believed to be sustained by multiple re-

entrant circuits. For re-entry to occur a trigger and suitable substrate are required, 

both of which are facilitated by atrial remodelling. The extent of remodelling is 

increased during AF progression and completes a positive feedback loop (Figure 6) 

which explains both the progressive nature of the disorder and the notion “AF 

begets AF”.24 

Figure 7. Current theories for re-entrant AF drivers. A: the leading circle theory, although 

the core is excitable, it is maintained in a refractory state by impingement of the wave tip. B 

and C: the rotor theory, where the broken wave forms a tip and rotates as a spiral 

waveform around and functionally non-excitable core (the arrows indicate conduction 

velocity). The wave is formed around a core of a minimum radius of rotor propagation. D: 

the multiple wavelet theory that chaotic small waves randomly activate the tissue. Images 

A and B from Zipes & Jalife25 and C and D from Schotten et al.26 
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Figure 8. Mechanisms for AF initiation and sustenance. See Figure 7 for the flowchart of AF 

genesis. A shows the mechanisms for ectopic triggers, in this case focussing on the potential 

role of calcium currents. B shows the determinants for the dynamics of re-entry arising from 

the triggers, particularly its dependence on the wavelength.  Figure from Nattel & Dobrev.27 

When the wavelength is sufficiently short the tissue can provide substrate for the 

wave to re-enter (Figure 7).  Due to the repolarised tissue ahead of the wave this 

cyclic propagation is not self-terminating. Re-entry can occur around an obstacle 

(Figure 7A) such as a pulmonary vein or around damaged non-excitable tissue. 

However this may not always be the case, a further theory predicts a functional 

rotor as the main mechanism for cyclic re-excitation during AF28,29. The theory 

states that the rotor has a tip arising from a wave break and rotates around this 

singular point. This has been shown to occur in multiple simulations and animal 

tissue experiments, but is still contested in patients due to limited clinical 

observation30. It may be the case that because rotors meander, i.e. the tip or core 

meanders throughout the tissue that it becomes hard to identify it as a single 

A 

 

B 



36 
 

source. Recently published data from panoramic electro-anatomical mapping of AF 

patients have provided the first direct  evidence for the existence of rotors in a 

clinical setting.31 

There is much debate concerning the specific dynamics of re-entry, particularly 

whether the atria can sustain multiple separate re-entrant circuits or if the 

stochastic behaviour of AF is caused by the after effects of a single mother rotor.32  

The former, first hypothesised by Moe et al.33, suggests there is no single re-entrant 

source but rather, the wave breaks into multiple wavelets, propagating and 

colliding and breaking into further small waves (Figure 7D).    

2.3.3. AF Triggers 

When the wavelength is sufficiently short and structural or functional obstacles are 

present in the atria, fibrillatory re-entry cannot occur without an initial stimulus or 

trigger. Spontaneous ectopic activity in atrial or PV cells has been observed in-vivo34 

and can produce high frequency waves that propagate throughout the atria. The 

mechanisms for myocytes developing autonomic activation is not fully understood, 

and in-silico modelling and in-vitro cell experiments can only partially reproduce 

these effects. Re-entry can be triggered in patients and large animal models 

through rapid pacing, which mimics rapid spontaneous bursts of action potentials 

associated with ectopic triggers for AF. During high frequency pacing uni-directional 

block can occur, which can initiate re-entry35. EAD and DAD (Figure 8) have been 

suggested as mechanisms for this behaviour.  
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2.3.4. AF Substrate 

Substrate for re-entry refers to various electrophysiological and structural 

properties of the atria that make re-entrant conduction and AF possible. The 

mechanisms for re-entry initiation are commonly due to wave slowing and 

subsequent wave break, with diverse underlying causes ranging from atrial 

geometry and structural obstacles, to ionic heterogeneity and non-uniform 

refractoriness. Re-entry sustenance is not only facilitated by slow conduction but 

also reduced refractoriness, as both factors contribute to a reduced wavelength. 

Such factors are enhanced by AF-induced remodelling.  Remodelling can lead to 

altered densities of ionic channels and gap junctions, reduction of the action 

potential duration (APD), loss of cell-to-cell coupling, as well as fibrosis and 

increased atrial size due to dilatation or hypertrophy36,37,38.  

Moreover, due to the fibrous structure of the tissue and the predominantly end-to-

end coupling of the cells, the propagation of the wave is biased along the fibre. If a 

wave travels transversally across these fibres, part of the wave can travel faster 

causing deformation, which could break the wave and create a rotor. In some 

regions of atrial tissue, sharp changes of fibre orientation occur (e.g. PV trunks,CT 

and pectinate muscle junctions). It has been suggested that high local anisotropy 

can cause autonomic activation to produce ectopic waves. 34 These areas may 

increase the likelihood of wave breakdown or blockage due to the longer 

refractoriness of lateral propagation across fibres.  

A closely related effect occurs due to the intrinsic heterogeneity of the 

myocardium. Different atrial regions have different electrophysiological properties 
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and different APD/ERP. If the wave crosses perpendicularly to a border of two 

regions with different APDs, one could be excitable and the other still refractory, 

which can result in the breaking of the wavefront.37,39    

The geometry of the atria provides another complex contributing factor for AF. The 

irregular atrial wall thickness has been suggested as a substrate for AF 40 due to the 

sink-source relationship. The theory states that due to the curvature or increase of 

thickness of atrial wall the current has to diffuse into a larger volume. Due to the 

current being divided between a much larger number of cells, they each have a 

lesser electrotonic current, which slows the conduction and facilitates wave breaks 

and re-entry.  This effect can also occur as a result of high wavefront curvature.41   

2.3. 5. Ionic Remodelling 

The progressive and treatment-resistant nature of AF suggests a physiological 

positive feedback loop as mentioned in section 2.3.4. Functional and structural 

remodelling have been suggested as mechanisms for this and has a profound effect 

on arrhythmogenesis.  

Ionic remodelling has been shown to promote AF42. By changing the electrical 

properties of the cells it reduces the APD/ERP and wavelength, increasing the risk of 

re-entry. The APD/ERP reductions are promoted by the underlying changes of ion 

channel currents. Specifically, the decreased plateau phase is mostly due to down-

regulation of Ca2+ currents and the acceleration of repolarisation due to up-

regulation of K+ currents. 
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The reason for this response is incompletely understood, but it may be 

compensatory and preventative; one example of this is the case of Ca2+, overload 

where ionic remodelling prevents cell death43. During rapid electrical activations, 

myocytes risk calcium overload, which can become cytotoxic43 and contribute to 

cardiac failure24. To counteract this, the cells remodel the L-type calcium channels 

to reduce the influx of calcium. Although this “last ditch” preventative reaction has 

the negative effect of reducing the ERP, which in turn perpetuates AF.    

Figure 9. Cellular effects of AF-induced ionic remodelling. A shows changes of AP 

morphology due to remodelling during AF39 (four different AF cases are shown). B shows the 

underlying changes in the ionic channel current densities for the case of AF-4. These are 

based on experimental data from literature.42 Image A is reproduced from Colman et al. 39 

The remodelling effects in the repolarisation phase are mediated predominantly by 

changes of IK1 and IKAch, with the latter current activated by the vagal nerve 

stimulation which releases acetylcholine (Figure 9). Increased acetylcholine release 

is known to stabilise AF44. Remodelling of some other currents, such as IKur, and its 

effects on AF are debated and reported experimental results are variable.43,45 
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2.3.6. Structural remodelling 

Structural remodelling changes tissue morphology, and hence affects conduction 

pathways, and may affect re-entrant circuits. Cardiac hypertrophy or dilatation 

enlarges the atria, increasing the potential size of the circuit which promotes re-

entry. This form of remodelling is often a response to hypertension. Structural 

remodelling can also affect the gap junctions, with altered levels of expression and 

localisation on the myocytes, although precise changes during such a re-localisation 

are debatable43.  

Structural remodelling can also be expressed as fibrosis which is a process that 

deposits collagenous matrix in response to mechanical stress on the atria, which in 

turn may be induced by a number of factors. Fibrosis is the formation of excessive 

extra-cellular matrix and collagenous tissue deposited by fibroblasts and can occur 

in all tissues in the body.  

Fibrosis may be initiated by a number of factors such as cell damage, hypertension, 

paracrine stimulation and AF progression46. It is initiated by transforming growth 

factor beta (TGF-β)46 which causes fibroblasts to proliferate and begin depositing 

collagenous matrix.  

Fibroblasts account for up to 60% of the cellular population within cardiac 

tissues47,48, and are reparatory cells, responsible for the deposition of extra cellular 

matrix. However due to the low regenerative ability of cardiac tissues, pathological 

fibrotic scarring can occur due to the high density of fibrous matrix. This can result 

in reduced functionality of the tissue and creates several compounding effects on 

the electrophysiological properties of the tissue.  
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Large areas of naturally occurring dense fibrosis can be referred to as ‘scar’ or 

compact fibrosis (Figure 10); this is functionally similar to fibrotic ‘scar’ induced as a 

result of ablation. To prevent confusion, in this work, scar will refer to fibrosis from 

ablation lesions and dense as disease related compact fibrosis. Dense fibrosis be 

imaged in AF patients using delayed gadolinium enhanced MRI (see Chapter 5). This 

type of fibrosis can block the conduction of waves, initiating re-entry, and may 

become sites of rotor anchorage 49. 

Less severe regional collagen density, where strands of functional tissue are still 

present and conduction can still occur is known as patchy fibrosis (Figure 10). This 

morphology of fibrosis is inhomogeneous. The collagen deposits effectively slow 

conduction. From a macroscopic viewpoint the tissue is proportionally less 

excitable, with current from the fewer cells being diffused over a larger area. At a 

microscopic level, the wave has to travel in a more emphasised zig-zag pattern 

(Figure 11) due to the alignment of collagen deposits and the myofibres50. This 

latter case also suggests that higher anisotropy is associated with patchy fibrosis as 

the longitudinal propagation is relatively unhindered 51.  
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Figure 10. Types of fibrosis (from left to right); interstitial fibrosis, which is present in 

normal healthy tissue as extracellular matrix. Compact fibrosis (often referred to as scar) 

consists of dense fibrosis devoid of myocardial cells. Diffuse fibrosis describes a uniform low 

level increase in fibrosis throughout the organ. Patch fibrosis, which describes larger, 

elongated collagenous bundles that run in parallel with the myocardial fibres.52 Scale bars 

are 1mm. 

Diffuse fibrosis (Figure 10) describes the least severe type of fibrosis. It consists of 

small deposits of collagen spread evenly throughout an area. Diffuse fibrosis usually 

occurs throughout the whole tissue, and is indicative of a systematic disorder rather 

than a regional one.  Diffuse fibrosis also reduces the conduction velocity but to a 

lesser extent than patchy fibrosis53.  

In addition to the structural effects of fibrosis, the fibroblast cells may also 

contribute to arrhythmogenesis. It has been shown that they have a paracrine 

influence on the myocardium54 and may influence the structural55 and 

electrophysiological properties.47 Although they do not produce an AP they can 

conduct current through gap junctions with myocytes56, and hence act as an 

electrotonic load on myocytes. They also possess active ion channels (Chapter 

3)57,58  and can generate a resting potential which is more positive than that of 

myocytes.59  
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Figure 11. Conduction slowing as a result of zig-zag propagation. Lateral conduction across 

the tissue sample is reduced due to the tortuousness of the conduction pathway.52 

The combination of gap junctional coupling and the resting potential difference 

between myocytes and fibroblasts creates a current between the two cell types. 

The coupled fibroblasts (one or more) produce a damping effect to the myocyte, 

reducing the AP upstroke and affecting the repolarisation and ERP. This could also 

reduce the conduction velocity due to the loss of current to the fibroblasts by 

reducing the current transferred to the next myocyte.  

2.4. Mathematical modelling 

Clinical investigation of AF is problematic, since direct measurements of atrial 

electrophysiology in patients is mostly limited to minimally invasive methods that 

have poor resolution or are confined to small areas of endocardium. Many studies60 

are focused toward the inverse problem, which uses body surface 

electrophysiological mapping to non-invasively to calculate the wave dynamics in 

the atria. However neither approach gives insights to the role of underlying 

structures or ionic properties of the tissue, and therefore currently have limited 

uses in determining the mechanisms of AF.  

100µm 
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Animal testing has been useful in developing knowledge of AF as it allows for more 

invasive measurement of the disorder in combination with dissection of the tissue 

structure. The histology identified from this method has informed detailed cell 

models and provided physiological information that cannot be obtained from 

patients. However animal experiments also have limitations, predominantly the 

inherent differences between animals and human anatomy and physiology.61 

Therefore unequivocal conclusions about human electrophysiology may not be 

made. Moreover, animal studies can rarely achieve true integration of in-vitro cell 

and tissue data and in-vivo organ level experimental data. 

Biophysically detailed modelling presents an opportunity to observe cell-to-organ 

electrophysiological dynamics with clinically relevant properties, ethically and with 

reduced expense. Due to the quantitative nature of computational modelling, it is 

possible to dissect individual parameters of the simulation that cause the largest 

changes to the arrhythmogenic wave dynamics in order to identify more significant 

factors for the development and sustenance of AF. 

2.4.1. Cell electrophysiology modelling 

The foundation of all electrophysiological modelling was laid by Hodgkin and Huxley 

earning them the Nobel Prize in Physiology or Medicine in 1963. Their model 

simulates the action potential in a giant squid axon. This was achieved by 

approximating each excitable cell as an electric circuit, a capacitance represents the 

cell membrane, time and voltage dependant conductances represent specific ionic 

currents and electrochemical gradients are represented by batteries.  
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In their model all specific ionic channel current kinetics are simulated with 

activation and inactivation variables, which represent the relative proportion of 

channels within a cell in either active or inactive states. From this relationship it is 

possible to calculate the ionic current of a particular ion across the cell membrane 

(equation 2).  

𝐼𝑖𝑜𝑛 = 𝑚𝑎ℎ𝑏𝑔𝑚𝑎𝑥(𝑉𝑚 − 𝐸𝑖𝑜𝑛)            ( 2) 

Where m and h are activation and inactivation gating variables, gmax is the 

maximum conductance, Vm is the membrane voltage, Eion is the Nernst equilibrium 

potential. The Nernst equilibrium potential is the point of equilibrium between the 

gradient of charge and the gradient of concentration so that transmembrane ionic 

flux is zero. 

𝐸𝑖𝑜𝑛 =
𝑅𝑇

𝑧𝐹
𝑙𝑛 

[𝑖𝑜𝑛]𝑒

[𝑖𝑜𝑛]𝑖
               ( 3 ) 

Where R is the universal gas constant, T is the absolute temperature (Kelvin), F is 

the Faraday constant, z is the valence number and [ion]e/i are extracellular and 

intracellular ionic concentrations. Using the Nernst equilibrium potential it is 

possible to calculate the driving force. This describes the difference between the 

membrane potential and the equilibrium potential, which then drives the ionic flux, 

Iion , through conducting channels, collectively characterised by the conductance 

gmax. In cases where currents are not ion-specific and are dependent on multiple 

ions, the ionic current (2) is considered as the linear sum of the currents carried by 

individual ions, with each current characterised by a relevant Nernst potential (3).  
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Hodgkin and Huxley used voltage clamping, an experimental method for 

characterising ionic channel currents in vitro, by incrementally increasing a constant 

voltage applied across the cell membrane. From these experiments they were able 

to formulate the time and voltage dependence of activation and inactivation gates.  

Considering pi as the probability that gates of type i are open (for example m or h in 

equation with a range of 0-1 and pi(t) is the fraction of gates open at time t then 1-

pi(t) is the fraction that are closed.  To transition between open and closed states 

two rate coefficients are required; αi and βi, both of which are voltage dependant. 

Percentage closed  αi(t)  Percentage open 

1-pi(t)  βi(t)  pi(t) 

   

So therefore the change in probability of the state of the gates is 

𝑑𝑝𝑖

𝑑𝑡
= 𝛼𝑖(𝑉𝑚)(1 − 𝑝𝑖) − 𝛽𝑖(𝑉𝑚)𝑝𝑖                                           ( 4 ) 

If the voltage is fixed or clamped at value Vm, the gates will tend towards a steady 

state probability value p∞: 

𝑝∞(𝑉𝑚) =
𝛼𝑖(𝑉𝑚)

𝛼𝑖(𝑉𝑚)+𝛽𝑖(𝑉𝑚)
                                                         ( 5 ) 

The time for this equilibrium to occur is denoted by a time constant τi (Vm) 

𝜏𝑖(𝑉𝑚) =
1

𝛼𝑖(𝑉𝑚)+𝛽𝑖(𝑉𝑚)
                       ( 6 ) 

Therefore, equation 4 can be written in the following alternative form: 

𝑑𝑝𝑖

𝑑𝑡
=

𝑝∞(𝑉𝑚)−𝑝𝑖

𝜏𝑖(𝑉𝑚)
                                                           ( 7)  
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For example, 

𝑑𝑚

𝑑𝑡
=

𝑚∞(𝑉𝑚)−𝑚

𝜏𝑚(𝑉𝑚)
                                                               ( 8) 

The total membrane current, Im, is a sum of the capacitive and ionic currents and 

must be equal zero by Kirchhoff's law for the balance of currents: 

𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
= − ∑ 𝐼𝑖𝑜𝑛 = −𝐼𝑡𝑜𝑡                      ( 9) 

Where; Cm is the membrane capacitance, Itot is the total ionic current carried by 

various ions. This ordinary differential equation (ODE) can be solved with the simple 

Euler method with a time step of 0.005ms, which has been shown to work well for 

most existing ODE-based cardiac cell models48, including the one used in this study 

(section 2.5). 

2.4.2. Tissue modelling 

While it is possible to model discrete tissue, where cells are individually modelled 

and coupled, it is computationally expensive and not viable for large-scale 3D 

simulations. Continuum models are used to approximate the simulated tissue 

domain in the 3D space. Two main types of continuum model are used; the 

monodomain model (equation 10) which assumes the intra and extracellular 

conductivities are the same and the bidomain model which does not. Although the 

bidomain is arguably a better approximation of reality, in larger-scale simulations it 

has been shown to yield little difference in results62 although useful if simulating 

external stimuli63. The monodomain equation can be written as: 

𝜕𝑉𝑚

𝜕𝑡
= 𝛻 ∙ (𝑫𝛻𝑉𝑚) −

𝐼𝑡𝑜𝑡

𝐶𝑚
            ( 10 ) 
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where ∇ is the 3D gradient operator and D is the diffusion coefficient, which can be 

a tensor if the tissue is anisotropic. 

2.4.3. Numerical solvers 

The continuous equations, such as equation 10, require discretisation in order to be 

solved using an iterative numerical procedure in simulations. This is because 

analytical solutions are not generally possible for nonlinear partial differential 

equations (PDEs). There are various numerical methods such as finite element and 

finite volume, which provide approximate solutions for these PDEs and have been 

applied specifically to electrophysiological modelling. In this section we will only 

consider the method used in this thesis.  

The finite difference method (see equation 12) is the most common method of 

calculating spatially discretised voltages in 3D tissue described by the monodomain 

equation. The method divides the simulation space into a regular grid with a 

spacing Δx. Although Δx can generally vary throughout the geometry, in this work it 

will be constant.  

The numerical solver used is the forward Euler method. It provides a simple 

numerical algorithm for differential equation integration by assuming that the 

change in y is constant for a small change in t. A generalised method is shown 

(equation 12) for the ordinary differential equation (equation 11). The space step 

used was 0.33mm as this was compatible with the established geometric datasets 

used in this work (Chapter 4 ). 

𝜕𝑦

𝜕𝑡
= 𝑓(𝑦, 𝑡)                                                                   (11) 
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𝑦𝑡+𝑑𝑡 = 𝑦𝑡 + 𝑑𝑡 × 𝑓(𝑦𝑡 , 𝑡)                                         (12) 

When applied to the monodomain equation (expression shown here describes a 1D 

case) voltage can be calculated (at a time t=t+Δt): 

𝑉𝑡+∆𝑡 = 𝑉𝑡 +
𝐷∆𝑡

∆𝑥2 (𝑉𝑥+∆𝑥,𝑡 + 𝑉𝑥−∆𝑥,𝑡 − 2𝑉𝑥,𝑡) −
∆𝑡𝐼𝑖𝑜𝑛

𝐶𝑚
                 (13) 

Using this simple solver is less computationally expensive that other methods but 

can be prone to instability. For a stable simulation the criterion (equation 14) must 

be maintained. This is shown a constant diffusion coefficient in N-dimensional 

space, which can be also applied as a sensible practical estimate for non-linear 

problems (where a general criterion does not exist):  

∆𝑡 ≤
∆𝑥2

2𝑁𝐷
                                                                   (14) 

2.5. Cardiac electrophysiology modelling 

Most electrophysiological cell models are based on the Hodgkin-Huxley 

formulation, and have been modified to represent cardiac electrophysiology64,65. 

These models simulate a diverse range of pathophysiologies relevant to AF, e.g. 

chronic heart failure remodelling, or drug therapies. This section outlines the 

various cardiac models used in this work and details their properties.  

2.5.1. Courtemanche-Ramirez-Nattel atrial myocyte model  

Although other cardiac myocyte models exist (Fenton-Karma,66 Grandi et al.67), the 

Courtemanche-Ramirez-Nattel (CRN) was used in this work, as it provides high 

biophysical detail and has been extensively studied.  The CRN model64 developed in 

1998 is one of the earliest atrial myocyte models. It was developed to provide a 

useful model of the atrial AP based upon their specific formulations of K+, Na+ and 
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Ca2+ currents. The schematic in Figure 12 shows the relevant ionic channels and the 

sarcolemic calcium channels. AP morphologies simulated using the CRN model are 

illustrated in Figure 10. Properties of this model have been extensively studied.48 

Figure 12. Schematic of Courtemanche- Rameirez-Nattel model. The cell membrane, in light 

blue is representative of the phospho-lipid bilayer that maintains the capacitance of the cell. 

The yellow shapes along this membrane indicate the various currents present in this model. 

In the centre of the figure is a further membrane that isolates the sarcoplasmic reticulum 

(JSR and NSR) from the cytoplasm. Figure from CellML model repository. 

2.5.2. Modelling arrhythmogenic properties 

During AF multiple physiological properties change due to remodelling or have 

inherent parametric variation. There have been many previous studies38,42,68 that 

used existing models such as the CRN model and modified parameters (e.g., ion 

channel conductances) to simulate such pathophysiological conditions. Due to the 

wide range of the conditions associated with AF, there is an equal numerous 

models investigating these conditions.  In this study we utilised such modifications 
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of the CRN model for ionic remodelling, regional heterogeneity and myocyte-

fibroblast coupling.   

Within the atria there are natural electrophysiological variations between different 

tissues. These variations can culminate in gradients of AP variation that have been 

linked to arrhythmogenesis. Colman et al.69 created a comprehensive model of all 

the regional APs achieved by altering conductances of different channels to 

matching the model to experimental data. Figure 13 shows the resultant AP 

variations. This study applies this family of region-specific atrial cell models both in 

1D and 3D.  

Ionic remodelling (as discussed in section 2.3.5) was also investigated. The 

respective model, also developed by Colman et al.,42 modifies  ionic current 

densities based on experimental data (similarly to how this was done to introduce 

the regional heterogeneity), in order to simulate the effects of ionic remodelling in 

AF. The effects on ionic currents and AP can be seen in Figure 9.  

A further modification to the standard CRN model was the inclusion of myocyte-

fibroblast (M-F) coupling. A novel single fibroblast cell model was developed 

(Chapter 3) with ionic currents based on the CRN formulation. Another, existing 

ventricular fibroblast model was utilised for comparison. The details of these 

models are explained in the following chapter.  
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Figure 13. Regional heterogeneity of the Colman et al. atrial myocyte model. A, shows the 

simulated APs of the regions in the right atrium; PM, RAA, CT, BB and AS. B shows the 

simulated APs of the regions located within the LA, LAA, AVR, PV. C is a bar chart of the 

APDs of the regions throughout both atria. Graphs sourced from Colman et al.38 

2.6. Magnetic resonance imaging 

Various aspects of this study are reliant on structural data obtained from patients 

and healthy volunteers using magnetic resonance imaging (MRI). The method uses 

magnetic field to measure proton spin changes in water molecules. Different tissues 

of the body have different quantities of water in their structure and provide 

resonance contrast. A novel black-blood phase-sensitive inversion recovery 

sequence (PSIR) was used to maximise the contrast between the atrial wall, blood 

and lung70. This allowed us to investigate variance in the atrial wall (Chapter 6) and 

had an isotropic resolution of 1.4mm. Late gadolinium (Gd) enhanced (LGE) MRI 
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images were used to investigate fibrosis distributions in patients (Chapter 5). These 

images had a higher resolution of 2.5x2.5x4mm. This method uses an intravenous 

contrast agent, Gd, that perfuses into the myocardium71. Regions of high fibrosis 

have higher residual gadolinium content and higher image intensity.  

 

Figure 14. Cardiac MRI examples. A shows a LGE MRI of a patient with permanent AF. B 

shows a PSIR MRI image of a persistent AF patient. White scale bars are 10mm. 

2.7. Conclusion 

Due to the progressive treatment resistant nature of AF it is clear that better 

understanding is required to improve treatments. Furthermore, detailed 

measurement of in-vivo electrophysiology and atrial structure is currently 

unavailable. Computational modelling provides the perfect link for developing 

understanding   of this condition.  

A                            B 
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3. Myocyte-fibroblast coupling model 

3.1. Introduction 

Fibrosis is a multifactorial degenerative condition that is commonly associated with 

AF progression. Different pathophysiological mechanisms have been suggested as 

links between atrial fibrosis and AF. One of the primary links involves the 

intracellular deposition of collagenous matrix by cardiac fibroblasts. these cells are 

present in most tissues in the body and makes up 60-70% of the cardiac cell 

population72. Although fibroblasts are more abundant than the cardiac myocyte, 

they are much smaller than myocytes, at around 10-15µm compared to 100µm 

length of the myocyte. Thus, fibroblasts provide a smaller contribution to the atrial 

tissue volume. Fibrosis can affect atrial tissue structure through excessive collagen 

depositions and by electrophysiological function through electrotonic coupling 

between fibroblasts and myocytes. 

3.1.1. Cardiac fibroblasts 

In a healthy heart, fibroblasts are responsible for maintaining the structure of the 

tissue against stress and damage. They act dynamically, modifying and remodelling 

the atrial structure driven by changes in the mechanical requirements of the organ. 

This action is modulated by paracrine signals which can increase the localised 

populations, proliferation and/or activity of fibroblasts.73 The causes for fibrosis 

initiation are unclear, but may be due to hypertensive stress response (i.e. 

mechanical stretch), localised ischemia or neuro-hormonal activity.  
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Under these  pathological conditions, which may be caused by heart failure or 

localised tissue damage, dormant fibroblasts can differentiate into the phenotype 

known as myofibroblasts74. In this activated form fibroblasts proliferate, migrate, 

activate an inflammatory response and produce more collagen, creating a higher 

level of matrix deposition75. The phenotypical differences between the 

myofibroblasts and the fibroblast are underlain by various gene expressions of the 

cell in its active form76. Atrial tissue is more susceptible to fibrosis than ventricular 

tissue,77 78 which may be due to TGF-β being higher in atrial than ventricle 

fibroblasts 79 or that atrial fibroblasts have a higher propensity to differentiate into 

the more active myofibroblast 78. A note must be made that for the rest of this 

report the term myofibroblast will be generalised and referred to as fibroblasts. 

3.1.2. Fibroblast electrophysiology 

Unlike myocytes, fibroblasts are not electrically excitable, however they can 

maintain a resting membrane potential (RMP), and hence affect and be affected by 

the tissue electrophysiology. Myocyte-fibroblast electrotonic coupling has been 

observed in-vivo and in vitro, current exchange between fibroblasts and myocytes 

was first confirmed in frogs80 and later in rats81 . The M-F coupling mechanism uses 

gap junctions, in the same manner as inter-myocyte coupling. These gap junctions 

are comprised of proteins connexin-43 and 45 (Cx43, Cx45), which have been 

observed in co-cultured neonatal rat fibroblasts and myocytes.81,82 This was 

followed with  in-vivo observation of Cx45 expressed by fibroblasts in rabbit SAN.83 

Tunnelling nanotubes or membrane nanotubes have been investigated as another 

gateway permitting M-F interaction. These pathways can directly link the 
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cytoplasms of myocytes and fibroblasts84 allowing for ionic transfer, in particular 

the active transport of calcium ions.84  

 

Table 2. Electrophysiological properties of cardiac fibroblasts. The table identifies ionic 

channel currents and RMP of fibroblasts as researched in literature. *(gadolinium 

sensitive),†(mechanosensitive), ‡  big conductance Ca2+, **(volume sensitive) -activated K+ 

current has been reported in some studies of cultured cells. 

The electrophysiological function of fibroblasts is determined by the presence of a 

range of ionic channel currents in their cell membrane.  It is known that both 

 Fibroblast 

RMP 

 

Currents 

 

Cell type 

 

Cell source 

Wu et al.85 -42.8mV  (LA) 

-44.9mV  (LV) 

IKur 

Ito 

Human atria 

and ventricle 

freshly 

isolated 

Li et al 57 - IBkCa, Ito, IK1, 

ICl** 

Human 

ventricle 

cultured 

Shibukawa et 

al.86 

-58 ±3.9mV Ins, IKv Adult  

rat ventricle 

 

Chilton et al.59 - IK1,IKv Rat ventricle isolated 

Kiseleva et al.87 -22mV - Rat atria isolated 

Rook et al. 81 -20 ÷ -30mV - Neonatal rat cultured 

Kamkin et al.88 -37±3 mV Ins
 * Rat atria  

Wang et al.89 - Ins
†, IBkCa

‡ Rat ventricle cultured 

Miragoli et al.90 -14 ÷ -25mV IK1 Neonatal rat 

ventricle 

cultured 

Kohl et al.80 -15mV - Rat atria  

and SAN 

isolated and 

cultured 

Kohl et al.80 - ICl, IKv, IK1, INa Frog SAN  
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cultured and freshly isolated fibroblasts express voltage dependant potassium 

channels (IKv)
59,74,85,90,80. A wide variety of currents have now been discovered in the 

cardiac fibroblast, predominantly potassium (IKur, IKir, Ito), but also non-specific ionic 

currents (Ins) which can be mechanically and non-mechanically activated and 

chlorine (ICl). The sources of data for these various currents are diverse, and are 

summarised in Table 2.  

Some of this data should be treated cautiously, due to the differences in cellular 

physiology between cultured and intact cells74,91. A further consideration is the 

variation between atrial and ventricular electrophysiology, which is also observed in 

fibroblasts85,91 as well as myocytes38. The differences in fibroblast electrophysiology 

have been suggested as potential drivers for the variation in fibroblast population 

between the atria and the ventricles, which is higher in the atria92. Due to these 

observed differences, ventricular models may not be suitable for investigating atrial 

electrophysiology. The most comprehensive study of atrial fibroblast 

electrophysiology has been published recently by Wu et al.,85 who explored the 

variations between atrial and ventricular fibroblasts in freshly isolated cells.  

The presence of ionic channel currents in fibroblasts leads to the generation of RMP 

in the fibroblast. Direct measurement of the RMP in fibroblasts shows more 

positive values (from -58 mV in the ventricles and up to -15 mV in the atria, shown 

in Table 2) than RMP in myocytes (about -80mV). Other electrophysiological effects 

of M-F coupling on the myocyte have been found. Miragoli et al. found in co-

cultured myocytes and fibroblasts that, as the relative concentration of fibroblasts 
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increased, conduction velocity and maximum upstroke were reduced. This may be 

due to the higher RMP of the fibroblast depolarising the myocytes.90 

3.1.3. Modelling of fibroblast electrophysiology 

There has been previous research using computational modelling to investigate the 

effects of M-F coupling and the subsequent electrophysiological effects of fibrosis. 

In-silico research is beneficial due to the difficulty of in-vivo measurement of 

cellular electrophysiology. These have ranged from simple passive models93, with 

only a resistive gap junction connection and no fibroblast ionic channels, to 

complex models with time and voltage dependant ionic currents58,94,95. 

The state of the art fibroblast model is the MacCannell et al.58 model and its 

derivatives. These are based of the electrophysiological findings on Shibukawa et 

al.86 which identify IK1 and IKv in ventricular fibroblasts. IKv is an amalgamated time 

and voltage dependant potassium current. The subsequent variations of this model 

vary parameters in order to identify different behaviours of M-F coupling, such as 

RMP influences92 of different coupling strengths and propagation95. Sachse et al.,94 

built a competitive model based on the same results and Chilton et al.59 

investigated the effects of M-F coupling on conduction. Zlochiver et al.96 utilised a 

cell culture and a fluoroscopic dye to initiate re-entry to validate their model. A 

passive (with no fibroblast ionic currents; simply a membrane resistance and resting 

potential) computational model was used to quantify the conduction. They found 

that the M-F coupling had complex effects on conduction velocity, re-entry stability 

and wave complexity. 
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A further passive model was developed by Maleckar et al.93  in for comparison with 

the MacCannell et al. model. The findings of the latter last study demonstrated that 

M-F coupling to an active fibroblast model created complex behaviour and changes 

to the AP which must be considered when investigating AF.  

Table 3. Summary of previous computational studies of cardiac fibroblasts. Showing the 

RMP, the modelled ionic currents of the fibroblast, the gap junction conductance (Ggap), 

the number of fibroblasts and the animal cell type. 

Due to the difficulty of obtaining human electrophysiological data, the sources of 

data for these models are varied. Most come from animal94,95 and/or ventricular 

studies58, neither of which are not ideal for the investigation for atrial fibrosis and 

its role in AF genesis. Therefore, there is a strong need to utilise more recent 

Model RMP 

(mV) 

Currents Ggap 

(nS) 

# coupled 

fibroblasts 

Animal Cell type 

MacCannell et al. 

58 

-47.8 IKv, IK1, 

INaK, IbNa 

1-3 1-4 Human Ventricle 

Maleckar et al. 93 -47.8 

-31.4 

See 

above 

0.5-8 

 

1-3 Human Atria 

Jacquemet et al.92 - - 0.2-

138 

2-8 Canine Ventricle 

Jacquemet et al.95 - - 138 

 

30 Canine Ventricle 

Sachse et al.94 -58 Ikir*, IKv*, 

Ib 

- 1-10 Rat Ventricle 

Zlochiver et al.96 -15.9 - - 1 Neonat

al rat 

Ventricle 

Kohl et al.80 -20mV - 0.01-

0.03 

1 Rat SAN 
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electrophysiology data in order to develop a more complex and representative 

electrophysiological model of the atrial fibroblast.  

The aim of this work is to build a specific atrial fibroblast model based on the most 

comprehensive electrophysiological data. The remainder of this chapter described 

the creation of this model and the results obtained using it. 

3.2. Methods 

The framework for modelling the atrial fibroblast electrophysiology is based on a 

ventricular fibroblast model by MacCannell et al.58 which is also used as a 

benchmark in this chapter. However, several novel ionic channel currents were 

added to this framework, which were based on the CRN formulation of the currents 

for human atrial myocytes and experimental data from atrial fibroblasts.  

Data for the atrial fibroblast model was obtained from a study on fibroblast ionic 

currents in freshly isolated human atrial fibroblasts by Wu et al.85. By analysing the 

figures using the data extraction software Scanit(R), the relevant current-voltage (I-

V) relationship data was extracted and then superimposed onto the respective 

simulated curves in Matlab(R). An optimal fit between the modelled ionic currents 

and experimental data was achieved by varying the current conductances. The 

results of this can be observed in Figure 15.  

3.2.1. Modelling ionic currents 

The model is based on the CRN formulation of the ionic channel currents in a 

human atrial myocyte and incorporates experimental data for the ionic currents 

recorded by Wu et al. from atrial fibroblast.85  Three currents are measured by Wu 

et al. and are described as end-pulse current, 4-aminopyridine (4-AP) sensitive 
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current and S9941 sensitive current. In the same study the RMP of the isolated 

atrial fibroblasts was also measured and used to validate the model.    

The 4-AP sensitive current was modelled as Ito,f, for which 4-AP is a selective 

blocker. Fitting this current to experimental data by Wu et al. involved a 90% 

reduction in the current conductance compared to the CRN model (Figure 15A), but 

no changes to the current kinetics was introduced. 

The S9941 sensitive current was modelled as IKur,f, as S9941 is a blocker of ionic 

channels containing the subunit Kv1.5, which forms the channel conducting this 

current. Fitting this current to experimental data by Wu et al. involved a 40% 

reduction in the current conductance compared to the CRN model (Figure 15B). 

The end pulse current was measured by Wu et al. as the total voltage sensitive 

current. We considered the remainder of this current after subtracting both Ito,f and 

IKur,f as a sum of a further two currents: a linear non-specific ionic channel current, 

Ins,f, and the inward-rectifier potassium channel current, IK1,f (shown in Figure 15C). 

Both IKur,f and Ins,f are major contributors to the fibroblast RMP. The separation of 

these two currents ensured that IK1,f reverses at the equilibrium Nernst potential for 

potassium, which is observed in electrophysiological recordings of this current in 

multiple cell types. The voltage and time dependences for these four currents are 

described by the following equations, based on the CRN formulation (note that 

index f denotes their relevance to fibroblasts):  

𝐼𝐾1,𝑓 =
0.03(𝑉𝑓+86.75)

(1+𝑒𝑥𝑝 (0.05(𝑉𝑓+20)))
                                                        (15) 

𝐼𝑛𝑠,𝑓 = 0.018 𝑉𝑓                                                                  (16) 
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𝐼𝑡𝑜,𝑓 = 𝑔𝑡𝑜,𝑓 ∗ 𝑜𝑎,𝑓
3  ∗ 𝑜𝑖,𝑓 ∗ (𝑉𝑓 − 𝐸𝐾,𝑓);                                          (17) 

𝐼𝐾𝑢𝑟,𝑓 = 𝑔𝐾𝑢𝑟,𝑓 ∗ 𝑢𝑎,𝑓
3  ∗ 𝑢𝑖,𝑓 ∗ (𝑉𝑓 − 𝐸𝐾,𝑓);                                       (18) 

Here, Vf is the membrane voltage of fibroblasts, where oa,f, ua,f and oi,f, ui,f  are 

activation and inactivation gates respectively and gKur and gto are conductances of 

the respective channels. 

Other currents in the developed model are based on the MacCannell et al. 

formulation, specifically those not measured by Wu et al.85 but assumed present in 

the fibroblast were based on experimental studies with other cardiac cells types. 

These are the sodium potassium exchanger (INaK) and the background sodium 

current (IbNa). The entire fibroblast model is included in the appendix.  

In the MacCannell et al. model and its derivatives, IK1 and the time and voltage 

dependant current IKv is simulated. This current was shown to be sensitive to 4-AP 

and S9941 in their experimental work86 but modelled as a single current. It is based 

on the human atrial current IKur and is given by the expression bellow: 

𝐼𝐾𝑣 = 𝑔𝐾𝑣 ∗ 𝑟𝐾𝑣  ∗ 𝑠𝐾𝑣 ∗ (𝑉𝑓 − 𝐸𝐾,𝑓);                                           (19) 

where rKv and sKv are the activation and inactivation parameters respectively.  

3.2.2. M-F coupling model  

In order to simulate the coupling of fibroblasts to a myocyte we used a similar 

model to that developed by MacCannell et al. The myocyte model (detailed in 

Chapter 2) was the CRN atrial myocyte model. The fibroblast with a total membrane 

current Itot,f was coupled via the M-F gap junctional conductance (Ggap) to the 
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myocyte with the total membrane current Itot. The equations for the M-F coupling 

model are as follows:  

𝐼𝑡𝑜𝑡,𝑓 = ∑ 𝐼𝑖𝑜𝑛,𝑓 =  𝐼𝑡𝑜,𝑓 + 𝐼𝐾1,𝑓 + 𝐼𝐾𝑢𝑟,𝑓 + 𝐼𝑛𝑠,𝑓 + 𝐼𝑏𝑁𝑎,𝑓 + 𝐼𝑁𝑎𝐾,𝑓            (20)                         
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Here subscripts m and f relate to a single myocyte and fibroblast and n to the 

number of fibroblasts coupled to one myocyte. Ggap was set as 0.5nS92 and n was 

varied between 0-6. Unless specified otherwise, a myocyte was coupled to 2 

fibroblasts. 

We also investigated how the M-F coupling model interacted with other 

physiological conditions associated with AF. These were ionic remodelling and 

regional heterogeneity (see Chapter 2)38,42. These parameters (specifically, ionic 

channel conductances changes due to the heterogeneity and remodelling) were 

additionally integrated into the CRN myocyte model.   

3.2.3. Restitution measurement  

All simulations and analyses of the dynamic effects of the single cell models were 

performed in Matlab(R) due to the advantage of easy visualisation. APD90, ERP and 

excitation threshold, as well as their restitutions, were measured to characterise 

the electrophysiological properties of the models. These were all measured after a 

period of 40 beats in order to stabilise all variables in the model and reduce 
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alternans (periodic fluctuations in APD), which can be present in the CRN model at 

high frequencies.  APD90
 was calculated by finding the period of time between the 

maximum upstroke and the AP repolarisation to 90% of the difference between the 

peak amplitude (APA) and the minimum membrane. The advantage of APD90 (as 

opposed to APD60) is that it encompasses phase 4 of the AP, in which M-F coupling 

has a greater effect.  Excitation threshold was measured by incrementally varying 

the stimulus current in single cell until an AP was formed. This procedure was pre-

paced at a range of frequencies allowing for a restitution curve to be plotted. 

The tissue ERP was calculated in a quasi-1D tissue by applying a stimulating current 

at one end to initiate AP propagation to the other end. This was modelled as a long 

3D slab of 50 x 7 x 7 cells with a space step of 0.3mm and a diffusion coefficient of 

0.3mm2ms-1. The stimulus of -2500 mA was applied in the first 10 layers of cells. 

This resulted in a 1D plane wave propagating along the slab. Zero-flux boundary 

conditions were implemented at all sides of the slab. Stimuli were applied at a given 

BCL, followed by a last stimulus applied at a variable S2 interval. The latter was 

increased until an AP was observed at the non-stimulated end of the cable. The 

minimum S2 interval for which AP was still able to propagate through the cable was 

taken as ERP. This simulation also allowed the calculation of the conduction velocity 

by calculate transmission times across the tissue. Both ERP and CV were measured 

at different BCL to produce the full restitution curves (see Results).    
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Figure 15. Ionic channel currents of the atrial fibroblast model.  A-C: The simulated current 

voltage (I-V) curves for the major ionic currents (solid lines) are shown along with the 

respective experimental data (dots). A. The ultra-rapid current, IKur. B. The transient outward 

current, Ito. C. The experimentally measured end-pulse current (black dots), with the 

simulated inward-rectifier and non-specific currents, IK1 and Ins, (grey lines) and the 

combined current IK1 + Ins (black line). D: IKv simulated by the ventricular fibroblast model by 

MacCannell et al.; it represent the sum of IKur and Ito. Note that the index 'f' used in 

equations (1)-(4) above is omitted here for simplicity.  

3.3. Results 

In this section 3 main conditions are modelled and investigated. The CRN myocyte 

without M-F coupling (i) the atrial myocyte coupled to the novel atrial fibroblast 

model (ii) and the CRN atrial myocyte coupled to a ventricular fibroblast model (iii) 

as developed by MacCannell et al. 
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3.3.1 Single atrial fibroblast model 

The fitting of ionic channel currents in the atrial fibroblast models to the respective 

patch clamp data can be seen in Figure 15A-C. I-V curves for both IKur and Ito in the 

model are in good agreement with the experimental data.  

Figure 15C illustrates fitting of the combination of Ins and IK1 in the model to the 

experimentally measured remainder end-pulse current, again with good agreement 

across the physiological voltage range. Figure 16 compares the current densities in 

the developed atrial fibroblast model, the CRN atrial myocyte model used to derive 

these currents, and the MacCannell et al. model for ventricular fibroblast. 

After fitting the ionic currents to experimental data, the RMP in the resulting model 

for a single atrial fibroblast was -42.5mV, which was in close agreement with the 

respective experimental value of -42.8mV ±1.3 mV recorded from atrial 

fibroblasts85. This value is more positive than the RMP of -48 mV in MacCannell et 

al. ventricular fibroblast model. Note that both -42.5mV in the developed atrial 

fibroblast model and -48mV in the ventricular fibroblast model are within the 

experimental data range (Table 2), but -42.5mV closer corresponds to RMP in 

human atrial fibroblasts.  
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Figure 16 Ionic current density in the single cell models. Different currents are compared 

between the uncoupled myocyte (blue), the atrial M-F model (green) and the MacCannell et 

al. (red) M-F model. All current densities are measured in pA/pF. 

3.3.2 Myocyte-fibroblast coupling model 

Coupling to fibroblasts significantly affected electrophysiological properties of the 

myocyte. Figure 17A and B, illustrates APs in the control CRN model (i) ,coupled to 

the developed atrial fibroblast model (ii), and the CRN model for a myocyte coupled 

to the MacCannell et al. ventricular fibroblast model(iii). In these simulations, a 

myocyte was coupled to 2 fibroblasts. The M-F model (ii) produced prolonged 

repolarisation compared to the uncoupled control model (i), whereas the M-F 

ventricular model (iii) produces a more rapid repolarisation than in control. Hence, 

coupling to atrial (ii) and ventricular (iii) fibroblasts produces opposite effects on AP 

in the CRN atrial myocyte model (i). Figure 17C and D shows the respective 

membrane potential in atrial and ventricular fibroblasts for the M-F coupling 

models (ii) and (iii).  
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Figure 17. Effects of M-F coupling on AP in the atrial myocyte described by the CNR model. 

A and B shows the AP in atrial myocyte in various conditions; uncoupled CRN model (Blue) , 

CRN coupled with 2 human atrial fibroblasts (green) and CRN coupled with 2 ventricular 

fibroblasts (red).C and D show the fibroblast membrane potential for the coupled models 

and E and F show the M-F gap junction current (IGap). The left hand column (A, C and E) 

shows these conditions at a BCL of 250ms and the right (B, D and F) for a BCL of 500ms.  

 

Figure 18 compares AP characteristics, such as the peak voltage and RMP, in cases 

(i)-(iii). The M-F coupling models (ii) and (iii) had lower peak voltage than the 

control CRN model (i) at a BCL of 300ms (Figure 18A). However at a BCL of 500 and 

1000ms the difference from control were less than 2mV. 
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The RMP (Figure 18B) was increased (became more positive) compared to control 

in both M-F coupling models (ii) and (iii). At a BCL of 500 ms, in the model (ii) with 

atrial fibroblast the RMP was -76.5mV (Figure 18B) and in the model (iii) with 

ventricular fibroblast the RMP was -77.5mV, compared to -79.8mV in the CRN 

model (i). RMP is particularly important during a period of fast pacing (Figure 18B) 

as it can influence the initiation of the next AP. The lowest RMP with atrial 

fibroblasts) is seen across all BCLs. 

Figure 18. AP Amplitude, APA, and RMP of the M-F coupling models.  All plots use the colour 

code: blue= uncoupled CRN myocyte model, green= M-F coupling model with atrial 

fibroblasts and red= M-F coupling model with ventricular fibroblasts. A: APA at BCLs of 300, 

500 and 1000ms, B: RMP at 300, 500 and 1000ms.   

The membrane potential in fibroblasts (Figure 17C and D) for the M-F coupling 

model was purely electrotonic due to the coupling with the myocyte and had 

substantially lower amplitude than that of the myocyte. The atrial fibroblast had a 

slower repolarisation and slightly lower amplitude than that of the coupled 

ventricular fibroblast. More importantly, it also had a higher resting potential 

(Figure 18B).  
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The dynamic effects of coupling a CRN myocyte with the developed atrial fibroblast 

model significantly changed the refractoriness of the myocyte. There was little 

difference in APD between the M-F coupling model with atrial fibroblasts (ii) and 

the control (i) except for at a high pacing rate, e.g. at a BCL of 200ms (Figure 19). In 

comparison, the M-F coupling model with ventricular fibroblasts (iii) reduced the 

APD throughout the range of BCLs, with a maximum reduction of 21ms. Effects of 

M-F coupling on APD became more pronounced in both models (ii) and (iii) as the 

number of fibroblasts coupled to each myocyte was increased from 2 to 4 and 6 

(Figure 20). 

Figure 19. The APD and ERP differences between the M-F coupling models.  A: APD 

differences between M-F coupling models with the uncoupled CRN myocyte model (blue). 

The M-F coupling with atrial fibroblasts is shown in green and the M-F coupling with 

ventricular fibroblasts in red. B: ERP differences between the M-F coupling models and the 

uncoupled model are more pronounced. 

Effects of M-F coupling on ERP were more pronounced than those on APD in both 

M-F coupling models (ii) and (iii). ERP in the M-F coupling model with atrial 

fibroblasts (ii) was larger than that in control (i) by about 5-10ms at BCLs above 

300ms, but dropped off rapidly at BCL was decreased below 275ms (Figure 19B). 
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ERP in the M-F coupling model with ventricular fibroblasts (ii) was substantially 

larger than that in control (i) by about 50-100ms across the range of BCLs.  

Figure 20. Effects on APD of the increased levels of M-F coupling. As the number of couple 

fibroblasts in increased up to 6, the M-F coupling model with atrial fibroblasts (A) shows an 

increase in APD, whereas the M-F coupling model with ventricular fibroblasts (b) shows a 

substantial decrease in APD. The colour code is as follows: blue= uncoupled CRN model, 

green= 2 fibroblasts, red=4 fibroblasts and cyan=6 fibroblasts.   

The excitation threshold for the stimulus current was also investigated (Figure 21) 

for the models. In the M-F coupling model (ii) with atrial fibroblasts, the threshold 

was -15.30 pA/pF at the BCL of 400 ms. It was significantly lower when compared to 

both the uncoupled myocyte model (i) (-18.30 mA/mS) and the M-F coupling model 

(iii) with ventricular fibroblasts (-16.70 mA/mS). Changes of the excitation threshold 

in models (ii) and (iii) compared to control CRN (i) correlated with the respective 

changes in the RMP: higher (more positive, but lower absolute value) RMP 

corresponded to the lower excitation threshold (compare Figure 17B and Figure 

20). As the M-F coupling strength was increased (by increasing the number of 

fibroblasts coupled to a myocyte) the excitation threshold was reduced, as seen in 

Figure 21. This can also be explained by the higher RMP in the atrial fibroblast, 
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resulting in a stronger current flowing from the fibroblast into the myocyte during 

phase 4 of the AP.  

Figure 21. The excitation threshold for the M-F coupling models.  A: the excitation threshold 

for the two M-F coupling models and the uncoupled CRN myocyte model (same colour code 

as Figure 19). B: the M-F coupling model with an increasing number of atrial fibroblasts 

(blue=uncoupled CRN model, green=2 fibroblasts, red=4 fibroblasts). 

3.3.3 Additional electrophysiological effects 

The effects of the ionic remodelling, M-F coupling and M-F coupling combined with 

ionic remodelling, were investigated for comparison between the conditions (Figure 

22A). APD in the CRN model is reduced by 40%, due solely to the ionic remodelling, 

with an additional 1.4% increase when combined with the proposed fibroblast 

model and a 1.4% decrease when combined with the MacCannell et al. ventricular 

fibroblast model. Thus, effects on M-F coupling on APD in the remodelled myocytes 

were incremental. ERP was similarly overwhelmed by ionic remodelling with M-F 

coupling only providing incremental changes.  
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Figure 22. Comparison of the effects of fibroblast coupling and ionic remodelling and 

heterogeneity. A: APD90 differences for the developed M-F model (green), ionic remodelling 

(IR, red) and both combined (IR atr, cyan). B:  APD90 differences between different region, 

with and without M-F coupling. Blue shows right atrial tissue and RAA tissue, solid lines are 

the uncoupled CRN model and dashed show the atrial M-F coupled model. 

Utilising the regional heterogeneity developed by Colman et al.39 the effects that 

the new fibroblast coupling model had on the regional ionic heterogeneity were 

analysed (Figure 22). The model had a negligible effect on heterogeneity in the right 

atrium.  

Conduction velocity was investigated in 1D (Figure 23A), due to its contribution to 

arrhythmogenesis.  Both M-F coupling models reduced the conduction velocity 

compared to the control but the ventricular M-F model had the greater effect. This 

can be explained by the longer ERP in the latter case (Figure 18B). The peak INa was 

investigated, in order to find a mechanism for the differences in conduction velocity 

(Figure 23B).  
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Figure 23. Conduction velocity and maximum INa for different M-F coupling models. A: 

shows the conduction velocity restitution, and B shows the restitution of the peak sodium 

current for the various coupling conditions. Coupling with the ventricular fibroblast model 

(red) resulted in a greater reduction in conduction velocity than that with the atrial 

fibroblast model (green), as compared to the uncoupled CRN myocyte model (blue).  

The M-F coupling models had reduced current magnitudes compared to the 

uncoupled CRN model, with the smallest INa seen due to coupling with atrial 

fibroblasts at high pacing rates. This can be explained by the more positive RMP in 

atrial fibroblasts (Figure 17B), resulting in a stronger electrotonic M-F current, IGap 

(Figure 17E and F) and partial inactivation of INa. Shorter ERP and higher CV in this 

case (compared to the M-F coupling with ventricular fibroblast) may be explained 

by a better balance between the reduction of INa and increase of IGap (see below).  

3.4. Discussion 

A novel model was developed for the atrial fibroblast, which is more relevant to 

atrial electrophysiology than the existing ventricular fibroblast models and gives 

insight into the arrhythmogenic effects of M-F coupling in the atria. The model 

simulations illustrate the effects of M-F coupling on atrial electrical properties are 
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more subtle than the ventricular fibroblast model. M-F coupling increases the RMP 

of the myocyte, which effectively reduces the excitation threshold. This behaviour 

can be responsible for regional conduction block and may contribute to atrial 

arrhythmogenesis, for example by facilitating re-entrant wave propagation. 

Therefore, the model of atrial fibroblast and M-F coupling provides a valuable tool 

for studying arrhythmogenic mechanisms for AF, and the models will be integrated 

into a 3D human atrial model in the further chapters of this study.   

3.4.1. Effects of the M-F coupling  

Previous studies have shown that changes in RMP of the fibroblast have significant 

effects on the electrophysiological properties of the myocyte coupled to it56,92,95. 

Models that  present a more negative fibroblast RMP, such as MacCannell et al., 

require high levels of M-F coupling and gap junction conductance (up to 30 

fibroblasts and 138nS)95, which is far higher than has been recorded in vitro.   

During the early phases of AP, the fibroblast in the M-F model acts as a current sink 

effectively reducing the upstroke of the myocyte, with the APA being reduced by 

5mV in the atrial fibroblast model (Figure 19A). This behaviour has been shown in 

other studies 56,92,93 but with larger coupling  conductances. The reduction in APA 

could slow down the propagation in the tissue due to the reduced current 

transferred to neighbouring cells. During the later phases of the AP, the fibroblast in 

the M-F model acts as a current source, prolonging the repolarisation phase and 

increasing the ERP (Figure 18B). This is a similar finding to that by Maleckar et al. 

and Jacquemet et al 92,93, both studies used a modified MacCannell et al. model 
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with a higher fibroblast RMP (-31.4mV) based on data at the upper limit of the 

experimentally reported physiological range81,88.  

The excitation threshold decrease in the model of a myocyte coupled to fibroblasts 

is due to the increase in the myocyte RMP (caused by inflowing IGap) because of the 

relatively higher RMP of the fibroblasts. This can be observed in Figure 21B: which 

demonstrates that when the number of coupled fibroblasts is increased the 

excitation threshold is reduced. 

During the RMP phase, fibroblasts act as a current source for the myocyte, which 

may also contribute to the reduction in APA and CV due to a partial inactivation of 

INa (Figure 23B) Differences between CV, ERP and excitation threshold between the 

M-F coupling models with ventricular and atrial fibroblasts may be explained by a 

rate-dependent balance between the increase of IGap due to the M-F differences in 

RMP and the resultant decrease of INa. 

Fibrosis has varying distributions within tissue for different disease phenotypes. 

One of these phenotypes is regional fibrosis known as patchy fibrosis. In this 

condition there is an observable increase in fibrosis density confined to specific 

locations throughout the organ. In these regions, changes in ERP and CV 

heterogeneity due to increased M-F coupling could lead to wave break and 

initiation of AF. Note that structural discontinuity of the tissue caused by fibrosis 

can also cause a stable rotor to break down into multiple wavelets. This is a 

behaviour more akin to AF; which will be discussed in further chapters.  
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3.4.2. Comparison between atrial and ventricular fibroblast models 

The MacCannell et al. model of ventricular fibroblast and its variants is the most 

detailed existing fibroblast model, which is why it has been  used it as a benchmark 

for the atrial model. M-F coupling parameters in the atrial model were set at lower 

level (0.5pS) than in the MacCannell et al. study93, which corresponds better to 

experimental observations of a small number and extent of M-F couplings. 

The RMP of an uncoupled atrial fibroblast in the model was -42mV, which was more 

positive than that in the MacCannell et al. ventricular fibroblast model (-47mV) and 

other  ventricular models93–95. This is more representative of atrial physiology 

(Table 2)93. The atrial M-F coupling model also produced lower excitation 

thresholds and lower ERP, and as a result higher CV, than the MacCannell et al. 

model. Substantially shorter ERP and higher CV in the atrial M-F model may be 

explained by a better balance between the reduction of INa and increase of IGap 

(Figure 23).  Using the atrial fibroblast model instead of the existing ventricular 

fibroblast model in 3D human atrial modelling could lead to vastly different 

behaviour, which is discussed in chapter.4.  

3.4.3. Effects of ionic remodelling and heterogeneity 

Ionic remodelling is strongly linked with AF progression and has been observed in 

both animal and human studies of AF. This type of remodelling leads to a large 

reduction of APD and ERP, which has previously been modelled in great detail and 

has been found to be arrhythmogenic.42 When M-F coupling was combined with 

ionic remodelling, the additional effects on the APD and ERP in a single myocyte 

were incremental. The results show that compared to ionic remodelling, M-F 
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coupling has an insignificant effect suggesting that diffuse fibrosis may not be a 

mechanism for AF maintenance. Fibrosis can be induced rapidly as a pathology of 

other disorders (such as heart failure) or incrementally with age. In combination 

with the structural effects of fibrosis, may provide substrate for AF initiation. This 

will be further investigated in Chapter 5.  

Electrophysiological heterogeneity of the atria has been linked to the AF genesis, as 

it can lead to wave breakdown and complex wave dynamics38. M-F coupling in the 

atrial model did not lead to significantly increased heterogeneity in the right atria. 

However, effects on atrial heterogeneity associated with patchy fibrosis can be 

more substantial (Chapter 5). 

3.4.4. Limitations 

The major limitation of this work is a lack of experimental validation for the 

electrophysiological effects of fibrosis at the cell level, such as changes in APD and 

ERP. However, the same lack of data highlights the importance of modelling and 

simulation in order to better understand the problem. Further experimental 

measurements in-vivo are required for the validation of the M-F coupling effects 

observed in the models. 

3.4.5. Conclusion 

In conclusion, the M-F coupling model with atrial fibroblasts had more modest 

electrophysiological effects on APD and ERP than ventricular fibroblast models.  

However, it presented different arrhythmogenic properties, primarily through the 

relatively high RMP in atrial fibroblasts, and as a result, reduced myocyte 

excitability and conduction velocity in atrial tissue. The utilization of more 
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comprehensive experimental data for the novel atrial fibroblast model, compared  

to the existing models for ventricular fibroblasts, make it more representative of 

atrial electrophysiology and better suited for the studies of M-F coupling in the 

atria.  
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4. 3D human atrial model  

4.1. Introduction  

AF is a complex condition that requires better understanding, from cellular to 

whole organ level. This is evident from the difficulty of treating the disorder 

clinically after decades of extensive research. Both drug therapy and catheter 

ablation have low long-term effectiveness, which may be due to the lack of 

mechanistic understanding of the treatment beyond the cellular electrophysiology 

level and the nature of ablated tissue substrate.   

4.1.1. Atrial structural effects 

Various structural factors that may affect AF arise from the complexity of atrial 

geometry; such as shape, wall thickness and curvature, complex fibre arrangement, 

AF-induced remodelling and the development of heterogeneous fibrosis. They have 

all been shown38,97–99 to influence the propagation of excitation waves through the 

atria. The individual effects of these factors on arrhythmogenesis are hard to 

explicitly quantify and they may act cumulatively.   

Atrial shape is an indicator for recurrence of post ablation AF100 and may have 

functional effects that promote AF. This may be a result of the curvature of the 

atrial walls, which can be highly convoluted, especially around the PVs and within 

the atrial appendages. It has been shown in biophysical simulations that wavefront 

curvature can effect conduction velocity and promote vortex shedding and initiate 

re-entrant waves.101 Moreover, the surface curvature can result in the drift of re-

entrant rotors, and hence play a role in their ultimate location in the atria97. The 
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knowledge of such locations is important during ablation that targets the rotors 

sustaining AF. Changes in the atrial wall thickness have also been shown to 

generate re-entry and subsequent rotor drifts.102 The potential mechanism of these 

phenomena is source-sink mismatch due to irregular geometrical features, such as 

wall thickness gradients.40,103 

The myocardium, like all muscle is comprised of fibres that allow for efficient 

transmission of electrical signals and to aid tissue contraction. The consequence of 

the tissues electrophysiological properties is anisotropic conduction. Propagation 

along the fibre is accelerated by the predominantly longitudinal coupling of the 

cells. The majority of gap junctions are localised at the distal ends of elongated 

atrial myocytes. Fast conduction is particularly important in larger bundles such as 

the CT and BB, which carry the electrical excitation waves from the SAN to the 

ventricles and the LA, respectively. The overall structure of fibres throughout the 

organ determine the conduction pattern for the waves99 and therefore can 

drastically influences arrhythmogenesis.51,104  

Further to complex and variable fibre arrangements throughout the atria, atrial 

tissue is transmurally inhomogeneous and can possess distinct, layers of tissue. This 

is most notable in the RA,105 where the large fibrous pectinate muscles have a 

distinct difference in fibre orientation and structure to that of the adjacent smother 

myocardium. A major difficulty in studying atrial fibre structure is the thinness of 

the atrial wall which makes conventional imaging methods difficult (Chapter 6). A 

recent successful reconstruction of the fibre orientation in ex-vivo canine atria was 

based on the application of a novel micro-CT technique106. However there are 
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significant physiological differences between species making this dataset not 

directly applicable for human atrial modelling. Recent human models have used 

rule-based fibre orientation based on ex-vivo knowledge (discussed in this chapter). 

On the functional level, the local atrial geometry, fibre orientation and source-to-

sink mismatches all translate into the conduction velocity (CV) of electrical waves. 

Changes in CV and CV heterogeneities have been linked to arrhythmogenesis.107–

109,110  

4.1.2. Structural effects of fibrosis 

As discussed in Chapter.2, fibrosis has substantial structural (through interstitial 

depositions of collagen) and electrophysiological (through M-F coupling) effects on 

atrial tissue. However, structural remodelling due to depositions of collagen itself 

also affects the tissues electrophysiological properties, such as the conduction 

velocity and anisotropy. It has been shown that increased fibrosis levels are 

associated with slower conduction in atrial tissue111,112. A possible contribution to 

this is the increasing separation of fibres and the down-regulation of Cx43 

associated with fibrosis113.  Fibrosis also has a profound effect on the anisotropy of 

the tissue, due to the predominantly lateral collagen depositions in interstitial 

fibrosis. Thus, anisotropy is increased with fibrosis which has been measured in 

tissue (see Table 4, page 83)81,114. Additionally, tissue anisotropy may be increased 

by compensatory gap junction remodelling, which results in the lateralisation of 

Cx40 and Cx43 expression in response to the reduced lateral conduction caused by 

adjacent fibrosis deposition98.   
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Table 4. Anisotropy ratios measured in experiments and used in existing models.  

4.1.3. Investigating cardiac electrophysiology  

Clinical electrophysiology studies, such as body surface mapping and catheter based 

endocardial activation mapping cannot account for the unique structural factors 

associated with the atria for an individual patient, without accurate registration 

 
Anisotropy Ratios 

 

Modelling Studies Velocity  

CVL/ CVT 

Diffusion  

DL/DT 

Condition Source 

Aslanidi et al. 38 ~1.9  10 Sinus Rhythm Human 

Tobon et al.  115 - 1- 9 Sinus Rhythm Human (LA  - CT) 

Seeman et al. 116 - 1-9  Sinus Rhythm Human (LA - CT) 

Krueger et al.  117 - 1-23.25 Sinus Rhythm Human (LA - PM) 

Harrild et al. 118 - 7.5 Sinus Rhythm Human 

     

 
Anisotropy Ratios 

 

Experimental studies Velocity  

CVL/ CVT 

Diffusion  

DL/DT 

Condition Source 

Yamamoto et al.119 1.4 - Sinus Rhythm Rabbit (SAN) 

Liu et al.  120 1.95 - Atrial Flutter Human 

Hansson et al.121 1.14 - 1.8  - Sinus Rhythm Human (CT) 

Kleber et al.  122 2.1 , 10 - Sinus Rhythm Human (RA,CT) 

Koura et al.  123 1 - 1.42   - Aging  Dog (young - old) 

Verheule et al.  124 1.8 - 4.5  - AF and Fibrosis Goat 

Krul et al. 114 1.05–13.4  - AF  Human (LAA) 

Angel et al. 125 1.47 - 1.72  - AF Goat  
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with a pre-scanned detailed 3D image. Although this is possible in AF patients, 

registration of these images is difficult to implement. Both clinical mapping and 

current imaging methods have too low resolution to provide detailed information 

and elucidate any mechanistic links between the structure and function in AF. 

Computation modelling has been applied to dissect 3D electrophysiological 

dynamics in situations when clinical and experimental methods fail to provide 

detailed insights.  

Early 3D models relied on simplified geometries126 or small-scale geometries (like 

the pectinate muscles104) but as computational power has increased; models have 

become more detailed and focused toward patient specificity. The older models 

showed the importance of increased biophysiological detail, as more complex 

behaviours could be investigated. Recent atrial models focused on enhancing 

biophysical details such as: patient specific geometries, fibre orientation115,117,127, 

fibrosis98 and regional electrophysiological heterogeneity69. There is a need for 

integration of all of these factors into a comprehensive modelling framework to 

investigate the amalgamated effects.  

The aim of this work is to incorporate the atrial model for M-F coupling with a 3D 

human atrial model that accounts for details of atrial structure, regional 

heterogeneity and anisotropy, to investigate the arising arrhythmogenic effects. 

The next section describes how the biophysically detailed 3D atrial model was 

created.  The rest of this chapter will focus on simulations of effects of uniform 

diffuse fibrosis in the 3D atria. The next chapter will apply similar models to explore 

the respective effects of image-based patchy fibrosis. 
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4.2. Methods 

4.2.1. Atrial geometry and fibre orientation 

To provide the anatomical structure of the atria for simulations, a 3D volumetric 

geometry is required. The "Visible Human Project" is a collection of anatomical 

datasets created by the US National Library of Medicine. Ex-vivo images were 

created by cryo-sectioning an entire cadaver; photographs of each section were 

taken and digitised.  

Figure 24. Atrial geometry model based on the Visible Female dataset. A and B show the 

segmented regions of the atria, and C and D show fibre orientations; A and C are posterior 

views whereas B and D are transverse views. The segmented and labelled anatomically 

distinctive regions are, 1=LA, 2=PV, 3=LAA, 4=BB, 5=AV valve, 6=RA, 7=CT, 8=PM, 9=RAA, 

10=AS (not shown) and 11=SAN. The colours in panels C and D illustrate the magnitude of 

the X axis component of the fibre orientation vector. The dataset has a 0.33mm resolution  

A                                  B 

C                                  D 
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Regions of interest, such as the 3D atria, were later segmented and reconstructed 

(Figure 24A and B). The specific 3D atrial geometry used in the present study was 

from the “Visible Human Female” dataset. The segmented atrial geometry was 

developed by a collaborating group at the Karlsruhe Institute of Technology5 and 

was used as the geometric basis for the biophysical model.  

Although this dataset cannot be said to be patient specific, it was the most detailed 

human atrial dataset available when building the model. The fibres were developed 

using an algorithmic approach to create a vector field of aligned fibres based upon 

landmarks observed in ex-vivo anatomical studies of human atria117. 

Some post processing was required to efficiently integrate the fibre dataset into the 

model. Since the rule-based fibre orientation was introduced region-by-region, the 

original dataset had discontinuities at borders between such regions. These 

discontinuities resulted in numerical instabilities during simulations. In these areas 

a smoothing filter was applied. The filter was a 5 voxel neighbourhood mean filter 

masked by the 3D geometry.  

4.2.2. 3D whole atria model 

The single cell models used in this work, discussed in chapters 2 and 3, were 

incorporated into a framework that included atrial geometric shape, fibre 

orientation and segmentation of electrophysiologically distinctive regions. Regional 

electrophysiology models described in Chapter 2 were allocated to the relevant 

segmented region (Figure 24A and B).   
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The mathematical model (equation 10) used to simulate 3D atria is described in 

section.2.4.2. The model was solved numerically using the explicit forward method, 

with the dataset resolution of 0.33mm voxels used as the spatial step of numerical 

integration and a time step of 0.005ms. Although the spatial step was determined 

by the geometry dataset, both the space and time steps were varied to check to a 

basic convergence of the results. During simulations described in this section, 

components of the diffusion tensor (D) were varied. Thus, by reducing the 

longitudinal and transverse diffusion coefficients (see below), AF-induced tissue 

remodelling and some aspects of fibrotic conditions could be simulated.  

AF was initiated by fast pacing in the 3D atria model.42 To reduce computational 

time, initial conditions for all variables were obtained by simulating steadily paced 

single cell models prior to the 3D atria simulation. The single cell model for each 

region was paced 30 times at a given BCL, and the values for all variables were 

saved to a .txt file, to be used as an input by the 3D atrial model. Finally, the 3D 

model was paced between 3-10 times (dependent on the conditions) at the same 

BCL to initiate AF.  

Re-entry was initiated in the model through fast pacing in the RAA, allowing for the 

wave to propagate perpendicularly to the cristae terminalis to maximise the chance 

of wave block. This may not be physiologically accurate as ectopic beats most 

commonly originate from the PVs128. However RA ectopic foci have been observed 

in a significant number of patients, as well as in-vivo experiments129. This method of 

AF initiation has been applied before in computational atrial models.38,39  
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The model uses the 3D fibre vector array (Figure 24C and D) to calculate the 

diffusion tensor to each voxel dependant on the orientation of the fibre.130  This 

calculation also requires the longitudinal and transverse diffusion coefficients, DL 

and DT, where DL was constant at 0.3 mm2/ms and DT was varied as described 

below.  

The complex geometric shape of the atria makes applying boundary conditions non-

trivial. A boundary layer surrounding the outer surfaces (both epicardial and 

endocardial) is created based on calculating the surface normals for each voxel and 

applying the Neumann zero-flux boundary conditions along the normals35. This 

ensures that zero flux is maintained between the atrial surface and the respective 

boundary layer.   

4.2.3. Simulated Conditions 

The model settings were varied to simulate different conditions linked to fibrosis 

and AF (Table 5). Three levels of structural remodelling were developed to simulate 

different types of fibrosis. (1) Control, simulated with no structural remodelling-

associated changes, where diffusion coefficients and anisotropy parameters 

simulate ‘healthy’ atrial tissue. (2) Diffuse fibrosis, with uniformly decreased 

diffusion coefficients simulating decreased levels of intercellular coupling 

associated with AF. (3) Interstitial fibrosis, simulated with increased anisotropy 

associated with high level of collagenous infiltration in long-term AF. In addition to 

these three conditions, variations of electrophysiological parameters associated 

with AF were also investigated; M-F coupling (both with atrial and ventricular 

fibroblasts) and ionic remodelling.  
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Normal structural conditions were validated by comparing activation times 

simulated in the 3D atria model during sinus rhythm (SR), with the respective 

clinical measurements (Table 5 and Figure 25). Activation times were measured at 

various anatomically distinctive locations in both atria and were found to be within 

clinically reported data ranges. This provided a validation for the choice of DL = 0.3 

mm2/ms, as well as the variation of anisotropy ratio, DL/DT, from 10:1 to 16:1. 

 

Table 5. Arrival times in the 3D atrial model, compared to clinical findings by Lemery et al. 

131  

 Diffusion coefficient (DL) 

( mm2 ms-1) 

0.3  0.3   0.12   0.12   Clinical data by 

Lemery et al. 131 

Anisotropy ratio (DL/DT) 10:1 16:1 10:1 16:1  

Arrival times (ms)           

1st SVC <10 <10 <10 <10 26 ± 22 

1st RUPV 40 50 80 80 75 ± 24 

1st IVC 60 70 110 120 88 ± 33 

Latest IVC 80 90 150 160 - 

Latest RA 90 100 180 190 93 ± 17 

1st LIPV 80 90 150 160 101 ± 23 

Latest LA 100 110 190 200 116 ± 18 
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For simulations of the diffuse fibrosis condition, a 60% reduction in the diffusion 

coefficient DL was applied, while the anisotropy ratio was maintained at 10:1. For 

simulations of the more severe interstitial fibrosis condition, an additional increase 

of the anisotropy ratio from 10:1 to 16:1 was applied. 

 

Figure 25 Sinus rhythm activation maps simulated with the 3D atrial models for four 

different conditions. Left panels (A and C) show the low anisotropy (DL/DT =10:1) model and 

the right (B and D) show high anisotropy (DL/DT =16:1). A and B show control conditions 

with standard diffusion coefficient (DL=0.3 mm2/ms) and C and D show fibrotic conditions 

with the reduced diffusion coefficient (DL=0.12 mm2/ms). Region-specific activation times 

for the four conditions are compared to the respective experimental data in Table 5. 

A                         B 

C                         D 
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In all structural remodelling conditions additional effects of M-F coupling, using 

either atrial or ventricular fibroblasts, were investigated. As with the single cell 

modelling presented in Chapter.3, both regional heterogeneity and ionic 

remodelling were also considered. 

4.2.4. Visualisation of results 

The 3D propagation results are displayed either as snapshots of voltage iso-

contours at successive moments of time or as full activation maps over a period of 

time (which is 250 ms, unless otherwise stated). The former is displayed using a 

non-linear rainbow colour scheme for the voltage iso-values ranging from -60 to 

+30mV. The snapshots were selected at different intervals of time to clearly show 

different behaviours. This was necessary because propagation phenomena, such as 

wave block or re-entry, rarely occurred at the same moments of time between 

simulated conditions. For the activation maps, the activation time is measured as 

the earliest time at which the voltage exceeds the threshold value of -40mV, the 

resulting activation maps were displayed using a linear rainbow colour scheme.  

4.3. Results 

4.3.1 Sinus Rhythm Activations 

The atrial activation sequences simulated with the 3D model during SR stimulations 

at BCL of 300ms are shown in Figure 25. In simulations with a 'healthy' anisotropy 

ratio of 10:1 (Figure 25A and C), the wavefront was marginally more regular and the 

longitudinal activation along the CT was 10ms faster than in simulations with higher 

anisotropy of 16:1 (Figure 25B and D). Conduction velocity field in all possible 3D 

directions was difficult to accurately measure due to wall curvature in the 3D atria.  
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Table 6. Re-entry type and duration of 3D simulations. Re-entrant behaviour was 

considered sustained (similar to sustained AF) if it lasted for the entire duration of the 

simulation, which was 12 seconds. 

The higher anisotropy ratio of 16:1 enabled a better agreement of the simulation 

results with the clinical data by Lemery et al. (Table 5). This can be explained by the 

fact that the data was obtained from AF patients (although in sinus rhythm), and 

hence their atria can be better characterised by an 'unhealthy' set of parameters. 

Note that even in simulations with faster pacing rates (BCL of 260ms, which is closer 

to rates observed in AF), little difference was observed in wave pattern or 

Simulated condition Type of re-entrant 
behaviour 

Duration of re-
entry (ms) 

No structural remodelling 

  

Control Unstable re-entry 1800 

M-F coupling  
(atrial fibroblast) 

Unstable re-entry 3480 

Diffuse fibrosis    

 Control Unstable re-entry 3400 

M-F coupling 
(atrial fibroblast) 

Unstable re-entry 2690 

M-F coupling 
(ventricular fibroblast) 

Unstable re-entry 11720 

Ionic remodelling Stable rotor Sustained 

Interstitial fibrosis   

Control Re-entry followed 
by wave breakdown 

Sustained  

M-F coupling 
(atrial fibroblast) 

Re-entry followed 
by wave breakdown 

Sustained  
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morphology between high and low anisotropy (not shown), with only small 

reductions (10-30ms) in activation times.  

Figure 26. Simulations of the 3D atria without structural remodelling, showing wave block 

and re-entry. A and C show two successive voltage snapshots in control (no M-F coupling), 

whereas B and D show the snapshots for the condition of M-F coupling (atrial fibroblast 

model) discussed in Chapter.3. Wave-block lines are indicated by the white line in A and B; 

wave direction is indicated by the black arrows. The time differences between A-C and B-D 

are not equal; the figures were chosen to best illustrate the re-entrant behaviour. The re-

entry in these simulations was unstable and self-terminating.  

Reducing the diffusion coefficient DL (Figure 25C and D) for the diffuse fibrosis 

condition has a significant effect on the wavefront propagation. The total atrial 

A                                  B 
 
 
 
 
 

 
C                                  D 

Control     M-F atr 

Time Time 
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activation time was reduced by 50-70ms (referring to the latest activations in the 

RA and LA in Table 6). This substantial activation time reduction was in addition to 

the smaller reduction (10ms) due to high anisotropy (Figure 25D). Hence, the 

interstitial fibrosis condition, which combined decreased DL and increased 

anisotropy, was characterised by longest activation times (190-200ms) (Table 5). 

4.3.2 Re-entrant Activations 

Fast pacing in the anterior RA at a BCL of 235-260ms (dependant on conditions) 

resulted in a conduction block leading to wave breaks and re-entry in all simulated 

conditions (Figure 26, Figure 29 and Table 6). The conditions included both the 

structural changes, considered above (increased anisotropy and decreased diffusive 

coupling, associated with interstitial and diffuse fibrosis during AF) and the 

electrophysiological conditions described in Chapter 3 (control, M-F coupling using 

either atrial or ventricular fibroblast models or ionic remodelling). 

 Figure 26 shows ‘healthy’ tissue with no structural remodelling and M-F coupling 

effects. Figure 27 illustrates the effects of diffuse fibrosis with and without ionic 

remodelling and Figure 28 demonstrates the effects of diffuse fibrosis and M-F 

coupling of atrial and ventricular fibroblasts. Figure 29 shows the effects of 

interstitial fibrosis and M-F coupling. Table 6 summarises the behaviours of these 

simulations.  

The precise location and timing of the wave-block varied depending on the 

condition considered and pacing rate used, but was always clearly observed 

between the CT and the pacing site. This is clearly seen in Figure 26 and Figure 29. 
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Figure 27. Simulations of the 3D atria model with fibrosis related structural remodelling and 

ionic remodelling (IR). This includes normal anisotropy and diffusion coefficient reduction. 

Panels A and C indicate control simulations with no electrophysiological alterations and the 

right (B and D) show those with ionic remodelling. The top row (A and B) show incidence of 

wave block (white lines) in the simulations and C and D show re-entry formation. Wave 

direction is indicated by the black arrows. The unstable wave seen in Figure 27A and C (A 

and C here) was not seen with ionic remodelling, rather a stable rotor was present (D).  

The extent of the wave block also greatly varied between conditions, for example as 

shown in Figure 27A and B for diffuse fibrosis with and without additional ionic 

remodelling.  Not all wave-blocks developed into re-entry, however those that did- 

Control IRA B

C D

Time Time 
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Figure 28. Simulations of the 3D atria model with fibrosis related structural remodelling and 

M-F coupling. This includes normal anisotropy and diffusion coefficient reduction. Panels A 

and C indicate simulations with the developed atrial M-F coupling model and the right (B 

and D) show those with the MacCannell et al. ventricular fibroblast model. The top row (A 

and B) show incidence of wave block (white lines) in the simulations and C and D show re-

entry formation. Wave direction is indicated by the black arrows. These simulations also 

showed unstable self-terminating re-entry. The nature of this behaviour was similar 

(although not visually identical) to that seen in Figure 27. 

initially formed two re-entrant waves (for example Figure 27A and B) persistent for 

a short duration of less than 3 periods.  After this, one terminated and the other 

continued to propagate (for example Figure 27C and D). Self-termination of one 

from a pair of rotors can be explained by the asymmetry of conduction.   

A                 B 
 
 
 
 
 

C                 D 

M-F ven M-F atr 

Time Time 
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The re-entrant dynamics in both cases of no structural remodelling and diffuse 

fibrosis was characterised by a single self-terminating wave. This travelled through 

the atria with no apparent pattern or rotor focal point. The instability of this 

behaviour due to the long wavelength (when compared to ionic remodelling) meant 

that the wave would eventually travel to an area where re-entry was not possible, 

such as tissue near valve isthmuses or large vessels, and would self-terminate.  

The duration of re-entry (Table 6) was also varied between different conditions. In 

all conditions with no structural remodelling (shown in Figure 26) and diffuse 

fibrosis (Figure 27C and Figure 28C and D) re-entry was self-terminating. The 

duration of re-entry before its self-termination was generally longer with diffuse 

fibrosis and M-F coupling (particularly with the ventricular fibroblast model) (Table 

6). Only in conditions of ionic remodelling in addition to diffuse fibrosis (Figure 27B 

and D) was a stable rotor generated and sustained for the entire duration of 

simulation. In conditions of high anisotropy associated with interstitial fibrosis 

(Figure 29), stable rotors and secondary multiple wavelets persisted after 20s of 

simulation similar to sustained AF.  
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Figure 29. Simulations of the 3D atria model with structural remodelling linked with AF-

induced interstitial fibrosis. The latter includes both increased anisotropy and reduced 

diffusion coefficient. Left panels (A, C and E) show successive voltage snapshots in control 

(no M-F coupling) and the right panels (B,D and F) show the snapshots for the condition of 

M-F coupling (atrial fibroblast model). A and B show the initial wave blocks (white lines), 

and C and D show the re-entrant behaviour (long black arrows). E and F show multiple, 

independent wavelets indicated by the short black arrows.  

Control    M-F 
atrA     B 
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E     F 
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Re-entrant behaviour was induced by rapid pacing in all conditions but with 

different pacing frequencies, which reflect different ERPs in those conditions 

(Chapter 3). Different re-entrant dynamics observed were also linked with the 

variations of ERP, as well as CV, between those conditions (see details in 

Discussion). In most simulations with low anisotropy, only a single short-duration 

re-entrant wave was present (Figure 30B), with the only exception of ionic 

remodelling. Longer duration of re-entry between these conditions (Table 6) 

correlated with either shorter ERP (due to M-F coupling) or lower CV (due to diffuse 

fibrosis), both leading to a shorter wavelength. Ionic remodelling resulted in the 

shortest wavelength, and hence produced a stable rotor (Figure 30A). The 

mechanism for self-termination appeared to be the increased wavelength and 

larger extent of rotor meandering of the CRN compared to the ionic remodelled 

version. In these cases, the rotor easily reaches an edge or structural boundary and 

terminates due to the majority of atrial tissue being insufficiently repolarised.  

Another pattern was observed in high anisotropy conditions linked with interstitial 

fibrosis. A dominant rotor was initiated due to the overall reduction of wavelength 

which broke down into a series of secondary wavelets (Figure 30C), with a general 

pattern of multiple wavelets propagating chaotically and independently, which is 

typical of clinical AF. Each wavelet lasted 50-200ms before being intersected by 

another wave. The complexity was not uniform as the number of waves varied 

throughout the simulation. In these simulations there was no evidence of a stable 

rotor. Diffuse fibrosis resulted in activation patterns with an intermediate level of 

complexity characterised by transient re-entry (Figure 30B) 
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Figure 30.  Activation maps in the 3D atria model for typical patterns of observed re-entrant 

behaviours. A, shows a stable rotor, seen in the conditions with ionic remodelling. B, 

illustrates an unstable re-entrant wave in the conditions with diffuse fibrosis and C shows 

wave-breakdown in the conditions with interstitial fibrosis. Wave propagation directions 

are shown by the black arrows and wave-blocks are shown by the white lines. In B and C, 

the left atrium is fully activated at the initial moment of time t=0 and the PVs are 

repolarised and not activated (and hence, seen in the transparent blue colour corresponding 

to the tissue geometry) within the time range of these activation times.  

4.4. Discussion  

The complexity of atrial structure and function, and their remodelling during AF, 

results in complex electrophysiological dynamics which cannot be adequately 

described by ex-vivo cell-to-tissue level studies or voltage mapping in patients, 

largely due to the unknown structure-function relationships. The 3D atria modelling 

enables the linking of atrial structure and function and allows the exploration of 

cell-to-organ AF mechanisms in-silico. Simulations of a novel 3D human atria model 

presented in this chapter show a range of re-entrant behaviours caused by various 

pathophysiological conditions associated with AF-induced fibrotic remodelling.   

A         B       C 
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4.4.1. Validation of diffusion coefficients 

Initially, the model was validated against clinical atrial activation data obtained in 

sinus rhythm. The simulated SR activation maps showed the archetypal elongation 

of the wavefront extending along the CT, which has been observed in-vivo.132 The 

arrival times were comparable to clinical measurement by Lemery et al.131 (see 

Table 5, page 89), with the exception of the first SVC activation. This was due to the 

segmentation of the SAN being too high on the CT (Figure 24)69 in this particular 

geometry. The close match between activation times simulated and those found 

clinically validates the choice of parameters (diffusion coefficients) in the models. 

We also considered activations emanating from the entire SAN simultaneously, 

whereas in reality this process is not instantaneous and propagation inside the SAN 

is relatively slow. Besides, due to variation in atrial size and shape there is an 

inherent variation in activation times. Nevertheless, the simulation results are 

within the range of variability of the clinical data, with the best agreement found 

for the case of 16:1 anisotropy (Table 5).  

4.4.2. 3D atrial simulations 

Simulations of the 3D atrial model with no structural remodelling, i.e. without 

increased anisotropy and normal diffusion coefficients, produced unstable re-entry 

for a short duration. This was due to the fact that both ERP and CV in these 

conditions were relatively high (Chapter 3), resulting in a long wavelength 

comparable to the size of the atria. This behaviour was repeated in diffuse fibrosis 

simulations where the diffusion coefficients were decreased, but with re-entry 

duration increased as a result of decreased CV.   
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Curiously, the combination of atrial M-F coupling with diffuse fibrosis (diffusion 

coefficient reduction) resulted in slightly decreased AF duration in the 3D atria 

model, in contrast to other conditions associated with fibrosis. This may be due to 

the biphasic relationship between the ERP restitution curves with/without the M-F 

coupling (Chapter 3, Figure 19). The respective combination of diffuse fibrosis with 

M-F coupling using the ventricular fibroblast model resulted in a much longer 

duration of re-entry. This could be due to the reduction in wavelength associated 

with this model shown in Chapter 3. This is evidenced by a larger excitable gap 

(between a re-entering wave and the preceding one) seen in the case of coupling 

with ventricular fibroblasts (Figure 24E) as compared to that with atrial fibroblasts 

(Figure 24C). These results also point the sensitivity of 3D atrial behaviour to the 

choice of a fibroblast model. The atrial fibroblast model developed in this study, 

based on more comprehensive data is more representative of atrial 

electrophysiology.  

In future studies with larger numbers of subjects, the expected outcome would be a 

typical rotor stabilisation in the border zone. This is primarily due to the reduction 

of conduction velocity in these regions and the stabilising effect on rotor dynamics. 

4.4.3. Ionic remodelling  

Another outstanding observation was related to ionic remodelling, which 

predictably produced stable re-entry due to the much shorter wavelength (see 

Figure 30). Although the duration of this simulation was longer (Table 6) it failed to 

break down and only produced stable rotors. This may indicate that ionic 

remodelling and fibrosis distribution have different roles in AF progression. Fibrosis 
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due to AF requires sustained AF episodes for several months before noticeable 

collagen deposition is observed. This suggests that fibrosis may have more impact 

in the later stages of AF progression.  

4.4.4. Interstitial fibrosis 

Increased anisotropy was investigated as a property of interstitial fibrosis. During SR 

simulations little difference was observed between different levels of anisotropy, 

aside from slight conduction slowing during fast pacing. This suggests that under 

normal conditions higher anisotropy may not have a substantial effect on the 3D 

atrial dynamics. This is in contrast to behaviours during fast pacing and resultant AF, 

where conduction block and wave breakdown is more prevalent in higher 

anisotropy conditions. This was the only condition where the 3D atria model 

produced a sustained re-entry and AF-like patterns. The latter were present as a 

single re-entrant wave followed by breakdown into multiple re-entrant wavelets. 

Overall, the 3D wave dynamics changes due to increased anisotropy were more 

significant than the effects of M-F coupling or wavelength reduction due to ionic 

remodelling. This may suggest that the structural effects of fibrosis, which develop 

later in AF progression, may play an important role in AF stabilisation rather than 

initiation.  

4.4.5. Conclusions 

In conclusion, the model showed that anisotropy linked with AF-induced interstitial 

fibrosis was the primary cause for wave breakdown, which best represents AF 

behaviour. Diffuse fibrosis resulting in reduced electrotonic coupling between atrial 

myocytes, as well as M-F coupling with atrial fibroblast, played a significant but less 
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prominent role than increase anisotropy. However, stabilisation of sustained 

activity in specific atrial locations, which is a theoretical mechanism of AF133,134, was 

not observed in any of the multiple conditions considered in this chapter. Such a 

stabilisation has been increasingly linked with the presence of heterogeneous 

fibrosis distributions in the atria. In the next chapter, patient-specific areas of 

patchy fibrosis are mapped onto the atria model to investigate a possibility of rotor 

stabilisation in such areas.  
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5. Patient-specific fibrosis modelling 

5.1. Introduction 

Patchy, or compact fibrosis has long been suggested as a mechanism for 

arrhythmogenesis. Structural and functional tissue heterogeneities associated with 

fibrosis have generally been linked to arrhythmogenesis135. Furthermore, 

histological studies have shown fibrosis distributions to be non-uniform in the 

atria136 and ventricles137. These distributions can be presented as large collagen 

deposits within the functional myocardium. In addition to impairing the 

myocardium contractility, fibrotic tissue is electrically unexcitable. Hence, 

interstitial depositions of fibrosis can slow down or block the propagation of 

electrical excitation waves, creating conditions for the generation and sustenance 

of re-entrant propagation. In ventricular tissue, heterogeneous non-functional 

myocardium caused by infarction has been shown to be directly pro-

arrhythmogenic50. However, the effects of patchy fibrosis in the context of AF have 

not yet been studied in detail, which may be due to the difficulty of linking 

structural (e.g., via histology) fibrosis data and measured heterogeneous electrical 

activity.  

Recently, atrial fibrosis has emerged as one of the most promising clinical markers 

for AF, which strongly correlates with improved treatment effectiness138. It has also 

been shown that atrial fibrosis is higher in AF patients compared to healthy subjects 

and correlates positively with AF recurrence139 after ablation.  Furthermore, direct 

ablation of fibrotic areas identified from late-gadolinium enhanced MRI8,140 or 

electro-anatomical mapping9 can significantly improve the therapy success rates.  
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This suggests that patient-specific distributions of atrial fibrosis may directly or 

indirectly determine the dynamics of electrical drivers sustaining AF. Better 

knowledge of the location of fibrotic areas has a potential to increase the 

knowledge of AF genesis and provide important assistance for catheter ablation 

therapy.  

This chapter explores missing links between patchy fibrosis and AF using patient-

specific models of the 3D human atria. It also aims to highlight potential sensitivity 

to methodology used during the quantification of atrial fibrosis. For the duration of 

this work, ‘patchy’ fibrosis will refer to regions of inhomogeneous fibrosis, which 

range from low-level diffuse fibrosis to dense fibrosis (also known as compact, scar 

or patchy). 

5.1.1. Patchy fibrosis 

Atrial fibrosis increases with age and disease, due to structural remodelling of the 

atrial tissue. The mechanism can be either myocardial cell death, increased 

deposition of collagen or reduction in collagen degradation. As the condition 

persists, collagen deposits become larger and more concentrated and can develop 

into dense patchy fibrosis.   

The areas of patchy fibrosis have been associated with AF arrythmogenisis52  and 

have been linked specifically to complex fractionated atrial electrograms 

(CFAE)141,49. CFAEs recorded in AF patients are characteristic of high frequency 

activation and slow conduction associated with AF.  CFAEs may reflect the 

complexity of the tissue substrate for persistent AF142. Thus, patchy fibrosis has 

been linked with slower and more continuous CFAEs141; clinically such CFAEs are 
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commonly used to predict favourable ablation sites in AF patients143,144. However, 

mechanistic links between highly variable electrogram morphologies and outcomes 

of CFAE-guided ablation procedures are unclear142,143. 

5.1.2. Border zones  

The effects of heterogeneous border zones (BZ) linked with compact fibrosis in the 

ventricles are well documented137.  Structural and electric remodelling in the 

ventricular infarct BZ after myocardial infarction has been shown to give rise to 

slow conduction, unidirectional block and re-entry. Remodelling factors include 

isolated strands of functional myocardium surrounded by dense fibrosis that 

provide conduction pathways within the infarct BZ50 and decreased lateral 

connections between myocytes due to altered gap junction distributions145. Both 

these factors reduce conduction velocity during infarct healing.  Image-based 

computer modelling has provided a powerful tool for investigating the mechanistic 

links between such structural anisotropy and electric activity in ventricular infarct 

BZ146. 

Recent studies141 have observed that areas adjacent to dense fibrosis in the atria 

have also shown high levels of arrhythmogenic activity. These myocardial areas, 

whilst still fibrotic, are not damaged sufficiently to fully inhibit wave propagation 

and have a high correlation to CFAEs141.  Such regions commonly surround dense 

fibrotic areas which have been shown to have low levels of electrical activity. A 

cause for this may be that they allow for re-entrant behaviour within the borders 

zone creating a circus movement around the dense fibrosis. These regions, 

characterised by both structural remodelling and abnormal electrical activity, are 
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similar to ventricular infarct BZ. Therefore, such regions of patchy fibrosis that have 

dense-to-diffuse fibrosis gradients are increasingly being referred to as "border 

zones" and linked with arrhythmogenic effects in the atria.  

5.1.3. Imaging of fibrosis 

Fibrosis is difficult to image using conventional clinical methods due to the limited 

resolution of imaging techniques approved for patients. Animal studies147–150 use 

ex-vivo histological dissection followed by collagen staining to quantify fibrosis. 

Some human studies have utilised post-mortem hearts151 or biopsy data136 from 

patients to histologically compare atrial regions with varied electrical activity. These 

methods are largely unsuitable for patients due to the invasiveness of the 

procedure. Furthermore, they are limited in coverage of the atria and only allow for 

small windows of observation on the atrial wall.   

While fibrosis can be clearly detected using histological staining, in-vivo imaging has 

inferior resolution, but is non-invasive and can cover the whole atria. An MRI-based 

method, LGE MRI, was originally developed to image myocardial infarction and 

focal scar but has emerged in the past 5 years as a means to quantify atrial fibrosis 

in-vivo. LGE relies on the injection of a Gd-based intravenous contrast agent, which 

alters the MR properties of the tissue where it is absorbed, reducing the tissue’s 

longitudinal relaxation time constant, T1. As Gd cannot enter healthy cells and the 

extracellular volume (ECV) is increased in fibrotic areas, Gd compounds tend to 

accumulate in regions where there is fibrosis. This allows the identification of 

fibrotic areas as atrial regions are brighter than healthy myocardial tissue in T1-

weighted MR images. The use of LGE MRI to detect atrial fibrosis in AF has been 



109 
 

pioneered by a the CARMA group in the University of Utah152, and applied to assist 

in ablation procedures8,139.  

LGE MRI gives the best clinical option for atrial wall composition analysis due to the 

low invasiveness and it is routinely performed on patients prior to the ablation 

procedure, to provide navigation images. The technique has been criticised, and it is 

notoriously difficult to get reproducible results on fibrosis segmentation from LGE 

MR images.153 The method is also limited to use on pre-ablation patients,140 as the 

intensity of the ablation lesions in the image can overwhelm any atrial fibrosis due 

to disease.  However this method offers us the only opportunity to study spatial 

distributions of fibrosis in the atria as well as easy access to patient data due to 

procedural non-invasiveness. 

5.2. Methods 

The following section outlines the changes made to the 3D atrial model (Chapter 4) 

to incorporate patient-specific distributions of patchy fibrosis and simulate its 

effects. It also includes the image processing pipeline that converts patient MRI 

data to useable datasets for the model.  

5.2.1. Late gadolinium enhanced MRI 

The images used in this study were obtained from 3 permanent AF patients 

recommended for routine, first time pre-ablation imaging. The data was 

randomised to ensure patient privacy. The scanner used was a Philips 3T MRI 

scanner and the images were obtained at 1.4x1.4x4mm3 resolution and saved in 

DICOM format.  Two MRI modalities were used; early Gd angiographic imaging 

(Figure 31D) and LGE MRI (Figure 31A-C). The angiography images were used for an 
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improved segmentation of LGE MRI data (see below). These were taken in the same 

cardiac phase.  

Figure 31. Patient-specific LGE MRI datasets. A-C show late Gd enhanced MRI slices through 

the atria (two atria are labelled in white) with areas of high intensity linked to fibrosis 

indicated by the black arrows. D shows a Gd angiographic image with high-intensity blood 

volume, which is used in the segmentation of the endocardial surface. C and D are from the 

same patient scan in the same coronal slice. The images were 3D MR scans acquired on a 

1.5T MR scanner. The white scale bar is 10mm. 

5.2.2. Image Processing Pipeline 

Initially, 3D distributions of atrial fibrosis were reconstructed using manual region 

based segmentation, to be later registered with the Visible Human atrial dataset. 

The accuracy of this method was limited and time consuming, as both location and 

size of the fibrotic regions are subject to operator error.  

A                                  B       
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For the fibrosis segmentation method to be more repeatable, an image processing 

pipeline was developed to reconstruct and register the LGE data with the 3D atria 

(Figure 32).  The Pipeline utilises fibrosis segmentation tools developed by the 

CARMA group at the University of Utah as plugins to 3D SlicerTM. This enables two 

different forms of fibrosis segmentation, either a binary dense patchy fibrosis or as 

continuous fibrosis as a function of image intensity. These methods are compared 

during this chapter.  

The extraction of fibrosis data from MR images requires thresholding of the 

intensity of the atrial wall. Obtaining the atrial wall in MRI data is non-trivial70 and 

detailed segmentation can only be done manually due to low resolution and SNR. 

This process is extremely time consuming and may still provide discrepancies 

between segmenters. This will be further discussed in the following chapter. 

Fortunately, the LGE MR images are acquired in the same session and at the same 

cardiac phase to an angiography image that is used as a navigation image for 

planning ablation procedures. The angiographic MRI images (Figure 31D) the blood 

pool which has a high intensity due to the contrast agent (Gd) and allows for 

accurate semi-automatic segmentation of the endocardial surface. This is achieved 

using a region growing algorithm within ITK-snap, which utilises seed points that 

iteratively dilate. The growth is limited by image intensity gradients. The segmented 

endocardial surface can then be dilated to provide an epicardial surface. In some 

cases it required manual rectification in highly convoluted areas. The dilation is 

usually between 3-5mm, which corresponds to the variable atrial wall thickness. 
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The endocardial volume is then subtracted from the dilated epicardial volume 

creating a 3D wall mask.70 

 

Figure 32. Diagram of the image processing pipeline used to obtain 3D distributions of atrial 

fibrosis and integrated them into 3D atrial models. It is broken down into blocks (in blue) 

showing the programs used.  

Utilising tools developed by the CARMA group, available as a 3D Slicer plugin 

(http://www.slicer.org/slicerWiki/index.php/Documentation/4.5/Modules/ScarVisu

alization), provides 2 different methods for fibrosis segmentation. The first, named 

“automatic scar segmentation”, uses a K-means clustering algorithm. This produces 

a binary fibrosis model in the masked region, identifying the densest fibrosis areas. 

The second method collects the MR intensity data from the masked image applying 

no threshold or segmentation. Both methods project the data onto a surface mesh 

of the endocardium.  

This 3D atrial mesh is then registered to a respective 3D mesh of the Visible Human 

Female atria using the IRTK-toolkit (https://biomedia.doc.ic.ac.uk/software/irtk/) 

using a non-linear deformation. The registered 3D atrial mesh is projected onto the 

Visible Human atrial dataset using a “nearest neighbour” algorithm. Fibrosis 

datasets obtained using the ‘threshold’ tool are segmented by LGE MRI threshold, 

http://www.slicer.org/slicerWiki/index.php/Documentation/4.5/Modules/ScarVisualization
http://www.slicer.org/slicerWiki/index.php/Documentation/4.5/Modules/ScarVisualization
https://biomedia.doc.ic.ac.uk/software/irtk/
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with the threshold values being defined on the range of the image intensity in the 

masked image.  

Figure 33. LGE MRI histograms.  A shows a comparison between healthy volunteers (black 

shading) and fibrotic (grey shading) tissue, from Benito et al.,154 note that this includes the 

blood pool. The fibrosis histogram clearly shows the skew associated with fibrosis. B shows 

a masked histogram, i.e. only the intensity of the voxels within the masked atrial wall 

region. The red lines show a range for fibrosis level segmentation. (1) is the lower limit of 

the diffuse fibrosis (levels 1-3) and 2 shows the lower limit for the dense fibrosis regions 

(levels 4 and 5). The dashed red line (3) shows the lower limit of the densest (level 5) fibrosis 

region. The red line denoted MI shows the maximum intensity from which the fibrosis 

regions were calculated.  

 It has been theorised that the myocardium and fibrosis in the atria could produce 

distinct MR intensity peaks. In reality there is significant overlap and they are 

indistinguishable in atrial MRI. Also there is a large variation in the intensity 

histograms between scans and therefore tissue cannot be explicitly quantified by 

intensity value. It is due to this that the range of intensity threshold values was 

determined uniquely for each patient. To estimate the fibrosis peak, an 

encompassing range of intensity values must be found. This was calculated 

individually for each patient using the maximum intensity (MI) as the upper limit 

(Figure 33B). The latter was the last significant intensity value, which was the last 

A                           B                                

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9
x 10

4

Healthy 
Tissue

Diffuse 
Fibrosis

Dense 
fibrosis

(1) (2) (3) MI



114 
 

histogram bin with a population greater than 1% of the maximum population (in a 

histogram with 50 bins over a range of 255).  

This enabled the removal of outliers, as some of the intensity histograms had a 

large range of high intensity values with very low voxel populations (<1%). The 

range was divided into 7, with the lowest 2/7th being allocated to healthy tissue 

and each fibrosis levels 1-5 as the following 1/7th of the range (moving towards the 

higher values). Due to the reduced populations in the densest fibrosis level (5), the 

last 1/7th of the range was expanded by 20% (moving towards the lower values). 

This provided the significant regions of dense fibrosis that can be observed in the 

MRI images. 

Figure 34. Reconstructed left atrium fibrosis distributions mapped onto the 3D human atrial 

model. Three methods are applied to the same patient dataset. A shows a fibrosis 

distribution created from 2D projection of the reconstructed 3D mesh to the Visible Female 

3D atrial volume. B shows a synthetic fibrosis gradient generated from the fibrosis 

distribution shown in A. C shows a full patient-specific fibrosis distribution with the gradient 

generated from thresholding the LGE MRI intensity.   

 

 

A                      B               C                           
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To investigate the role of threshold variation, two alternative segmentations were 

created for each LGE MRI dataset, one with a high and another with a low 

threshold. This was created by shifting (10 units of LGE MRI intensity) the threshold 

(Figure 37). 

The segmented fibrosis regions were considered to be transmurally uniform in the 

3D atrial model.  The developed image processing pipeline has the potential to 

accommodate non-uniform fibrosis throughout the wall, but this was not 

implemented due to the small thickness and the coarse image resolution. However, 

should the resolution limitations be improved in future imaging modalities, then 

the model could be applied with more accuracy.  

5.2.3. Fibrosis border zones 

Simulations of the border zones that reflect dense-to-diffuse fibrosis gradients were 

carried out in 2D atrial tissue (Figure 38) and in 3D atria (Figure 33C). In 2D tissue, 5 

concentric contours of increasingly mild fibrosis were created around a central 

dense fibrotic region. The contour number was then used as an index for applying 

fibrotic properties (see below). 

In the 3D atria 2 methods of BZ creation were applied. A synthetic BZ composed of 

5 concentric areas each 1-2 voxels thick was created, surrounding the binary 

fibrosis segmentation. These were created with a moving 3x3x3 ball filter for each 

level (Figure 33B). For each voxel of fibrosis, the surrounding voxels in the filter 

(that were not already occupied with fibrosis) were denoted as the next fibrosis 

level. To change the thickness of the levels a larger filter is applied.    
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Figure 35. Reconstruction of fibrosis by intensity threshold method from 3 patients. 

Variation in distribution can clearly be seen between patients A-C. A and C show cases with 

lower thresholds (see Figure 37) and B shows a case with a high level threshold. 

The second method is reliant on MRI image intensity to create the 5 fibrosis levels 

(Figure 34C). In most cases these had good concentricity around the densest central 

regions, but were overall, considerably less uniformly than the synthetic BZ.   

5.2.4. Computational 3D atria model 

The 3D atria model used was discussed in Chapter.4. It integrates human atrial 

geometry, fibre orientation, region-specific electrophysiology, ionic remodelling 

and a novel electrophysiologically detailed model for an atrial fibroblast and M-F 

coupling. In this section, the model included 5 distinctive fibrosis levels, indexed 1-5 

depending on the distance from the central dense fibrotic region (Figure 34B) or 

LGE MRI intensity (Figure 34C). Index 0 represents no fibrosis, and regions with 

indices 1-5 are modelled as increasingly severe diffuse-to-dense fibrosis: 

specifically, as indices 0-5 corresponded to progressively increasing M-F coupling (0-

5 fibroblasts per myocyte) and decreasing diffusive coupling between myocytes 

(100%-20% of the diffusion coefficients). 

A                     B         C                           
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Figure 36. Fibrosis distributions in different datasets. A shows differences in the fibrosis 

distribution between 3 patients and between varying intensity thresholds, and B shows the 

variation between segmentation techniques in one patient. The suffixes high and low refer 

to the relative threshold and syn to the synthetic BZ. 

The conditions used for the whole 3D atria in all simulations were high anisotropy 

and ionic remodelling (Chapter 4).  AF was initiated by fast LAA pacing in each of 3 

"persistent AF" atrial models with patient-specific distributions of fibrosis.  

5.3. Results 

5.3.1 Left atrial fibrosis distributions 

The segmentations of LGE MR Images yielded different fibrosis distributions in 3 AF 

patients. The fibrosis distributions observed varied in the extent and severity, as 

can be seen in Figure 36 and Figure 37. All datasets showed areas of more severe, 

dense fibrosis (based on increased LGE MRI intensity) in the posterior LA (Figure 

35), which is a common ablation target. 
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Figure 37. Atrial fibrosis distributions of 2 patients based on LGE MRI datasets with 

variation of the intensity threshold. The levels 1-5 describe fibrosis severity based on LGE 

MRI intensity. A and C show the fibrosis distributions for high threshold segmentation. B 

and D show the low threshold segmentation datasets. 

The relative quantised distributions of fibrosis in the thresholded datasets showed a 

higher distribution in the lower fibrosis levels (Figure 36). Significantly lower 

amounts of fibrosis were observed in the higher levels (4-5) despite a shifted bias 

for level 5 fibrosis. In these datasets good connectivity of fibrotic regions was 

observed, (i.e. no isolated small islets fibrosis) and the fibrosis levels are presented 

concentrically (Figure 35).   In contrast, the synthetic boundary showed a more 

A                                   B       
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even distribution of fibrosis between the fibrosis levels and overall a much lower 

intensity. 

Figure 38. 2D simulation of atrial tissue with patchy fibrosis border zone. Activation times 

during one period of a re-entrant wave rotation around a fibrotic region are colour-coded 

using a rainbow palette. The dashed black lines show the inner and outer limits of the 

border-zone. The area labelled DF is dense fibrosis and signifies the area where fibrotic 

conditions are maximised with an 80% reduction in diffusion coefficient and 5 coupled 

fibroblasts. The white area shows inactivated tissue within the patchy fibrosis region. The 

white line indicate a wavefront at 100ms the black arrow indicates wave propagation 

direction. 

5.3.2 Simulations of fibrotic atria tissue 

In 2D tissue simulations, wave pinning to the patchy fibrosis border-zone was 

observed.  In less than 500ms after its initiation by cross field protocol, the re-

entrant spiral wave became pinned to the region of fibrosis within atrial tissue. The 

dense-to-patchy fibrosis gradient enabled slow conduction around the border 

(where the diffusive coupling was reduced), resulting in persistent re-entry around 

the region.  During the spiral wave re-entry, the dense fibrotic core of the fibrotic 

DF 
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region was incompletely activated (Figure 38). This is due to slowing down of the 

wave conduction in deeper regions of the fibrotic region, with CV effectively 

dropping to zero in regions indexed 4-5. Without re-entry, the whole tissue 

including the dense fibrosis region was activated by a propagating plane wave. 

Figure 39. Stabilization of rotors in patchy fibrosis regions. A and B show two different 

patient-specific fibrosis distributions, and C and D show the respective single rotor period 

activation maps. The activation maps illustrate the variation of rotor pinning specific to the 

distributions of fibrosis. Wave propagation direction is denoted by the black arrow, the core 

of the rotor is indicated by the solid white shape and central dense fibrosis regions are 

indicated by the dotted white lines. C shows a rotor pinned directly to a dense fibrotic 

region. D shows a rotor with the core adjacent to a dense fibrotic region, but rotating within 

a border zone. 

A                                     B      

C                                     D
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In 3D atrial model simulations, short duration pinning to the fibrotic region was 

seen in most cases, both for different patients and for different methods of 

generation patient-specific fibrosis (Figures 39-41). Permanent rotor stabilisation in 

the border zone was seen in 2 cases, where rotor was pinned until the end of 

simulation. One of these simulations produced rotor movement directly around an 

area of dense fibrosis and another within an adjacent border zone of less severe 

patchy fibrosis (Figure 39).  In both case, the rotor core was within regions of 

broadly defined patchy fibrosis, characterised by severity indices between 3 and 5. 

Spatio-temporal dynamics of these rotors is illustrated in Figure 40.  

In patient-specific 3D atrial model simulations with variation of LGE MRI intensity 

threshold, different behaviours were observed (Figure 41). In simulations with the 

higher thresholds (lower fibrosis level) no stable rotor pinning was observed, with 

only short lived (less than 1 second) meandering re-entry in the LA fibrotic regions 

in two patients (Figure 41A and B).  
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Figure 40. Spatio-temporal dynamics of rotors pinned to fibrotic regions. A.1-A.3 show the 

rotor progression with the fibrosis distribution shown in Figure 39.A and B.1-B.3 show the 

rotor progression with the fibrosis distribution, shown in Figure 39.B.  Snapshots showing 

the voltage distribution in the posterior LA are 30ms apart, and the rotor direction is 

indicated with the white arrows.  

Simulations of the same two patient-specific atrial models with the lower threshold 

(higher fibrosis level) showed severe wave breakdown, with multiple re-entrant 

wavelets in the left and to a lesser extent the right atria. The wavelets in the fibrotic 

region created complex interactions that prevented a single mother rotor to form 

(Figure 41B and D). The complex electrical activity in both 3D patient-specific atria 

was characteristic of AF and was sustained to the end of simulation (10 seconds). 
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Figure 41. Snapshots of re-entry in 3D atria with fibrosis distributions based on high and low 

thresholded LGE MRI intensity datasets. A and C show two patient cases with a high 

threshold (lower amount of fibrosis) and B and D show the respective cases with a low 

threshold (higher fibrosis). The rows delineate different patients (A,B and C,D). In the high 

threshold cases (A and C), only a short lived rotor (indicated) was present in the LA. In the 

high threshold cases (B and D), multiple re-entrant waves are present in the LA fibrotic 

regions. Black arrows show directions of wave propagation, white dashed lines indicate 

level 5 fibrosis. 

5.4. Discussion 

The 3D atrial simulations performed for this chapter indicate the importance of 

using patient-specific LGE MRI data to study AF. They also allude to the importance 
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of fibrosis in arrhythmogenesis due to the unique wave interactions for different 

fibrotic distributions. The developed image processing pipeline could also be useful 

for image-guided clinical interventions that are increasingly reliant on patient-

specific knowledge about fibrosis patterns. In future, linking patient fibrosis 

distributions and arrhythmogenesis could lead to bespoke and more accurate 

ablation techniques, with reduced procedure time and lower AF recurrence rates.   

5.4.1. Fibrosis segmentation 

Although the threshold segmentation method requires further validation, this work 

aims to investigate the effect of substantial fibrosis regions, which can be observed 

in MRI images. This method was based around the theory that the LGE MRI 

intensity histogram right skew was a quantification of fibrosis. This has been 

recently quantified with post ablation scar154. 

 The pipeline enabled the creation of unique non-binary fibrosis distributions for 

each patient. The reconstructed patient datasets showed increased fibrosis 

distribution on the LA posterior wall. This region is well known for its association 

with AF ablation, and may be statistically prone to fibrotic infiltration. However, it 

may also be due to partial volume averaging from the spinal connective tissues or 

descending aorta which have a high LGE MRI intensity (see Figure 31A and D). 

The lower extent of fibrosis on the roof and floor of the LA may be due to the lower 

Z axis resolution of the MRI scan.  Regardless of the limitations of the imaging 

method, LGE MRI intensity has been strongly linked to fibrosis, and the 

reconstructed fibrosis distributions agree with existing knowledge of fibrosis 
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distributions. Moreover, results of this work show the patient-specific variation of 

such distributions and their effects on the variable wave dynamics underlying AF. 

Two different methods of fibrosis segmentation were used in this work, (i) binary 

dense fibrosis segmentation with a synthetic BZ and (ii) thresholded LGE MRI 

intensity. Although the former relies on a more complex segmentation technique, 

there is a good spacial correlation between the locations of the dense fibrosis 

segmentations in cases (i) and (ii) (Figure 34). However, the shape and extent of the 

BZs of patchy fibrosis are significantly different. This may be due to the simplicity of 

the thresholding method or due to the UTAH segmentation method being applied 

slice by slice along the Z axis. Which account for the inherent variation of contrast 

in MRI slices. However the concentricity and connectivity of the fibrosis threshold 

levels segmentation, suggest that the fibrosis is less susceptible to contrast 

variation between layers.  

5.4.2. Simulations of patient specific fibrosis 

The 3D atrial model simulations showed a wide range of electrophysiological 

behaviours with different fibrosis datasets and distributions. In the simplest case, 

the fibrosis was originally mapped onto the 3D atria as a binary region of dense 

fibrosis (Figure 34A). Initial simulations where this region was set as either non-

conductive or with severely reduced conductivity did not produce any 

arrhythmogenic effects, with waves simply passing around the region. Only when a 

fibrotic BZ was implemented, rotor initiation (and in some cases, stabilisation) 

occurred.  
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Stabilised rotor formation was observed in 2 simulations; one for a fibrosis 

distribution with synthetic BZ and one with LGE MRI intensity threshold. The former 

produced a larger circus movement around a dense fibrosis region (Figure 39 C) and 

the latter produced a smaller rotor adjacent to a dense region (Figure 39 D). In both 

these cases the simulation had high gradients of fibrosis density, which may be a 

mechanism for rotor stabilisation.  

In this research the simulations also show that patient specific fibrosis distributions 

can induce wave breakdown (Figure 41B and D) which is symptomatic of AF.  This 

was only observed in simulation of high levels of fibrosis (obtained with a low LGE 

MRI intensity threshold) and resulted in permanent AF for the duration of the 

simulation (10s). Smaller re-entrant wavelets were observed in these simulations 

moving chaotically throughout the fibrotic region. Contrarily, in simulations of 

lower levels of fibrosis in the same patient (obtained by using a higher LGE MRI 

intensity threshold) produced very short duration re-entry that was neither stable 

nor resulted in wave breakdown. Note that the cumulative amount of fibrosis was 

not very different between the high and low thresholds (Figure 36), rather, it was 

distributed more in fibrosis levels 3-5 with a lower threshold. The simulations show 

that the wave dynamics underlying AF should be determined by the amount of 

severe dense fibrosis (levels 3-5), rather than total size of fibrotic areas. 

5.4.3. Challenges of fibrosis imaging in the atria 

The difference between the high and low levels of fibrosis shows that the 

developed image processing and modelling pipeline is sensitive to the choice of 

parameters (such as LGE MRI intensity threshold) and can yield very different 
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results. Whilst there is little quantification available for LGE MRI intensity and 

amount of fibrosis from patients, the LGE MRI intensity should indicate higher areas 

of fibrosis136 in comparison to the rest of the tissue.  The LGE MR images may also 

suffer from partial volume averaging, in which neighbouring tissues influence the 

wall mask because of the coarse resolution of the image. This is particularly 

prevalent in regions where the distance between the atrium and the adjacent 

tissues is small or when adjacent tissues are particularly high intensity. For example 

descending aorta or spine. 

5.4.4. Conclusions 

It is clear from this work that inhomogeneous fibrosis distributions in the atria 

significantly affect the propagation of atrial waves in complex ways that are difficult 

to predict. It has been shown that a wide range of re-entrant behaviour between 

different patient specific distributions, from wavefront disruption and re-entry to 

multiple wavelet formation. The general trend was for waves to propagate closer to 

the inner denser areas of the patchy fibrosis region, reminiscent of electrical 

behaviour seen around the infarct border zones. However, the association of re-

entrant waves with the patchy fibrosis border zones in 3D atrial simulations was not 

absolute, indicating a potential role of other factors that can affect re-entrant 

waves. Of one such factors, the atrial wall thickness, is studied in the next chapter.    
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6. Role of atrial wall thickness 

6.1. Introduction 

As discussed in previous chapters AF dynamics are highly variable between patients. 

This work has explored patient specificity in terms of disease state, i.e. fibrosis level, 

but for a more representative study, variation of other factors of atrial structure 

must be considered.  It is clear from anatomical studies that the atrial wall structure 

is highly heterogeneous and that intra-patient and intra-regional structural 

differences have distinct effects on the electrophysiological and mechanical 

function of the heart. Moreover, volumetric reconstructions of the atrial wall can be 

applied as the mask for fibrosis reconstructions, and hence greatly improve 

accuracy of the latter. Knowledge of the atrial wall variation from region to region 

(e.g., thicker LA to thinner PV) may provide a more personalised approach to 

catheter ablation in different patients and in different atrial regions (see below). 

However, the extent of knowledge of atrial wall thickness is sparse and is subject to 

large variation (Table 7). Thus, gaining insight into the role of atrial wall thickness 

and the extent of its variation in the atria are both important for better 

understanding AF and its treatment.  

6.1.1. Atrial wall thickness effects on ablation 

Ablation therapy is based on creating a functional block in the tissue by creating a 

non-conductive lesion. The lesion must transmurally penetrate the myocardium for 

conduction block to occur. Ablation therapy sufferers from high AF recurrence 

rates. This may be due to insufficient lesion penetration, preventing full isolation of 

arrhythmogenic regions. If the ablation energy is insufficient, inflammation at lesion 
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sites may be also responsible for temporary “false positive” isolation, as the tissue 

may be functional repaired.  Severe complications can occur, if excessive energy is 

applied during ablation, which include puncture155, PV stenosis156, tamponade, 

thrombosis or oesophageal ulceration157. The operator relies on estimates of 

energy required and success is measured by functional isolation, which may be a 

false positive. Further research is required to assess about the atrial wall thickness, 

whether that is patient specific or statistical, i.e. based upon patient categorisation.  

6.1.2. Wall thickness effects on electrophysiology 

Wall thickness also has a significant effect on atrial electrophysiology (as discussed 

in chapter 4). It is worth noting that these specific effects are related to structural 

changes in wall thickness rather than its dynamic changes due to the contraction. 

The latter does not change the electrotonic distance measured in space constants. 

Note also that the wall thickness is referred to in mm, rather than space constants. 

It has been hypothesised as a potential mechanism for arrhythmogenesis, with links 

being found between thickness gradients and stabilisation of rotors40,158. These 

parameters more thoroughly discussed in Chapter 4 and are based upon sink-

source relationships, where current is divided in positive thickness gradients. This 

has been shown recently by in theoretical studies of simple tissue slabs, where 

rotors show a tendency to move along high thickness gradient areas158.  However, 

these studies utilised simplistic tissue geometries and cell electrophysiology 

models, and have not considered realistic atrial shape and thickness variations. In 

studies with realistic, volumetric atrial geometries, patient specific wall thickness 

gradients are often overlooked. Recent models are moving towards a 

computationally efficient, but greatly simplified bilayer approach159 which does not 
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consider the atrial wall to be a continuum. However, patient studies provide 

increasing evidence for relationship of atrial wall thickness with CFAEs and 

therefore drivers for AF160,161. 

6.1.3. Wall thickness for fibrosis imaging 

A further advantage of accurate atrial wall thickness reconstruction is the potential 

for use of atrial wall segmentations as a volumetric mask in fibrosis imaging. The 

segmentation of fibrosis from LGE MRI is susceptible to over segmentation, as 

external structures such as the descending aorta can falsely identify fibrosis. A wall 

thickness mask could be used in these cases to avoid interference with non-atrial 

tissues. A statistical atlas of thickness could guide the dilation of the endocardial 

surface, in cases where the atrial wall cannot be directly imaged. 

6.1.4. Imaging wall thickness  

Research on atrial wall thickness is sparse and shows great variation of values, 

partially due to measurement inconsistency. Ex vivo anatomical studies on wall 

thickness have investigated the variation throughout the atria151,162–171. These 

studies only consider discrete sample-point thickness measurements, where wall 

thickness is measured using callipers in ex-vivo hearts. Additionally, these studies 

may not be representative of active tissue, as the wall thickness varies due to 

contraction and blood pressure, and ex-vivo tissue may not represent vivo 

myocardium. 

The same issue has hindered in-vivo imaging studies of the atrial wall thickness, as 

they also commonly utilise discrete sample points and do not measure wall 

thickness for the whole atria. Until now, these studies have all utilised computed 
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tomography157,160,161,172–177 which has a higher resolution than MRI but a low soft 

tissue contrast. Later in this chapter, we will demonstrate how novel MRI protocols 

can be applied to reconstruct the wall thickness non-invasively and with acceptable 

resolution in the entire atria.  

Imaging of atrial wall thickness is non-trivial. Unlike the ventricular wall which can 

be imaged with great success using conventional medical imaging modalities, the 

atrial wall is much thinner (1-5mm compared to 11mm), therefore any motion has a 

greater effect during image acquisition compared to the thicker ventricular wall. 

This causes problems for imaging methods with non-instantaneous acquisition such 

as MRI, as movement throughout the cardiac cycle ensures that the wall tissue does 

not continuously occupy the same voxels. Conventional atrial MRI considers the 

atria as a 2D surface which can be extracted from a contrast enhanced blood pool 

inside it. This is due to the low contrast between wall and lung preventing the 

extraction of the epicardial surface. There is also a partial volume effect with the 

low resolutions associated with MRI which further reduces the edge contrast and 

accuracy of the measurement. However the method offers significant advantages 

over other available methods; it is minimally invasive, it has good soft tissue 

contrast and is routinely applied to AF patients.  

6.1.5. Wall thickness measurement 

Atrial wall thickness has been previously studied as discreet points or regions rather 

than measuring a contiguous map. Reconstructing an entire 3D map offers a better 

insight into atrial electrophysiology but causes new image processing challenges.  
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Firstly segmentation is non-trivial due to the relatively low and variable contrast 

between the atrial wall, lung and blood. Most conventional methods of automatic 

and semi-automatic segmentation are not applicable. They cannot identify the 

inter-tissue borders continuously, and hence either over or under estimate the 

structure. Currently manual image segmentation, combined with automatic post-

processing, although labour intensive and time consuming, still offers the best 

accuracy for this application. 

The second issue is measurement of the wall thickness. The outcomes of such 

measurements can be very dependent of the algorithm used. If surface meshes of 

the endo- and epicardium are utilised rather than the 3D volumetric wall, 

measurements can be more easily performed. Studies measuring human cortical 

thicknesses using MRI have developed and used different automatic approaches for 

this. The highly convoluted nature of the cerebral cortex draws significant parallels 

to atrial wall, as simplistic measurement methods such as nearest-neighbour or 

surface normal are unsuitable, as structures can be missed.178  A study comparing 

several methods found that the most accurate measurements were provided by 

averaged nearest neighbour (from both inner and outer surfaces)178. This method 

also has the advantage of been relatively computationally inexpensive and easy to 

implement, and hence was used in the current study.  

The aims of this chapter were to investigate the inherent variation of the atrial wall 

thickness in both AF sufferers and healthy volunteers, and ascertain how these 

changes affect arrhythmogenesis. This was achieved by developing an image 
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processing pipeline converting atrial MRI data into 3D volumetric datasets for wall 

thickness measurements and related electrophysiology simulations. 

6.2. Methods 

This section describes the methodology for the development and analysis of the 

atrial wall thickness in patients and volunteers and how it can be used in 

computational modelling. The subjects for this work were 10 healthy volunteers 

(21-30years old, 3 female) and 3 pre-ablation patients (24-78 years old, 1 female) 

with persistent AF. 

6.2.1. Imaging protocols 

During the progression of this work a novel MRI protocol was developed in our 

group.70 Images were acquired in a para-axial plane using a black blood phase-

sensitive inverse recovery (PSIR) sequence with 1.4-mm isotropic resolution, but 

different cardiac triggering was applied for volunteers and patients.   

Movements of the heart during a cardiac cycle can impede imaging in high 

resolution. Therefore, the optimum timing is to acquire the image when wall 

movement in the atria is minimised. This occurs several times, at different cardiac 

phases. The longest period of constant atrial volume, which indicates minimal atrial 

motion, is between the passive and the active atrial emptying phase (booster 

pump) in late diastole. This was used for volunteers using the R-wave as a trigger. In 

AF patient scans, the images were acquired at maximum atrial volume, after 

completion of atrial filling and prior to the passive emptying phase. This enabled 

the images to be in kept phase with standard pre-ablation angiographic gadolinium 

images. The gadolinium angiographic images can be used to improve the wall 
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segmentation. Due to the earlier acquisition point in AF patients (compared to 

healthy volunteers) the R-wave was insufficient and a pulse oximeter was used as a 

trigger (Figure 42). 

 

Figure 42. Atrial MRI acquisition timing. The figure shows the LA volume the mitral valve 

velocity and the ECG during one full phase of the cardiac cycle. The blue line shows the 

image acquisition start for patients and the red for volunteers. The atrial phases of the 

atrium are indicated; the reservoir (filling) the conduit (passive emptying) and the booster 

pump (active emptying).  

In both subject groups respiratory gating, fat suppression and blood nulling were 

implemented to reduce cardiac motion and increase tissue contrast. To reduce scan 

time in patients the field of view was reduced and only the LA was investigated, 

whereas in volunteers both atria were imaged. An image quality rating was created 
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to qualitatively rate the likelihood of a successful segmentation. Images were rated 

on coverage and image quality, which accounted for Signal to Noise Ratio (SNR), 

blood-wall contrast and absence of artefacts. This value was essentially a 

segmentability measure showing the confidence in wall accuracy.  

6.2.2. Image segmentation methods 

For the images to be quantified, the atria must be segmented. Identification of the 

atrial wall is non-trivial. Even in successful images, only manual segmentation 

provided adequate results because of the low contrast and the variability of MRI 

intensity. The ratio of intensity between wall, lung and blood changes throughout 

the 3D image, making automatic segmentation difficult. Initial trials in automatic 

and semi-automatic segmentation were unsuccessfully implemented. This will be 

considered more thoroughly in future work.  

 

Figure 43. Flowchart of image processing pipeline. Blue areas indicate the program used for 

each stage of the pipeline. Square boxes indicate processes and rounded boxes indicate 

products.  

Manual segmentation was performed in ITK-SnapTM using a ‘paintbrush’ tool. Each 

atrium was segmented slice by slice coronally and corrected in second and third 

passes in sagittal and axial planes. The segmented atrial wall volume is used to 
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create a volumetric blood image of the atrium (corresponding to the volume 

enclosed by the endocardial surface). This is achieved using a region growing 

algorithm, built into ITK Snap. Points are seeded within the blood volume of the 

segmented atrial wall image. These iteratively dilate until the volume reaches the 

boundary of the atrial wall.  No smoothing is implemented to the blood volume at 

this stage and vessel openings are manually cropped to tidy up over-spill of the 

region growing algorithm.  

Some atrial structures were difficult to segment. In most images PVs were not 

included due to the difficulty in segmentation of their thin walls. PVs and atrial 

septa typically have thicknesses below 1.4mm and thus could not be accurately 

segmented. The atrial appendages were also difficult to segment due to the high 

density of pectinate muscles inside them.  

Variation between segmenters was investigated: 2 different datasets (both right 

and left atrium) were segmented twice and the differences were compared using a 

Dice score.  

6.2.3. Image post processing 

For thickness measurement, epi- and endocardial surface meshes need to be 

extracted from the volumetric data, which allows for extra-planar comparison 

between the two surfaces. Unless stated all post-processing was executed in 

MatlabTM. A flowchart of the image processing pipeline can be seen in Figure 43. 

The two segmented volumes (3D atrial wall and blood/endocardial volume) are first 

combined to make an epicardial surface; any holes (less than 1 voxel) in this volume 
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are filled using the Matlab function ‘imfill’. Meshes of the endo- and epicardial 

surfaces were then created with a marching cubes algorithm. The mesh quality was 

improved using mesh refinement and smoothing algorithms. For the volunteer 

datasets, the meshes were smoothed in MeshLab whereas patient cases were 

smoothed at the volume stage with a neighbourhood based smoothing algorithm 

and subsequent thresholding. This simplified the pipeline by reducing file format 

conversions between programs. 

6.2.4. Thickness measurement 

Various thickness measuring techniques were considered, with two being 

investigated in a simulated phantom (see appendix). This consisted of two 

concentric, yet offset, spheres which provide a controlled variation in thickness 

which could be calculated mathematically.  These were the snake method 179(a 

gradient vector flow variant) and the average nearest neighbour and were both 

simulated in Matlab. The former uses an energy minimising spline that iteratively 

deforms an endocardial mesh. The mesh is contained by an MRI contour of the 

epicardial surface. The deformed surface can be compared on a vertex by vertex 

basis to the original undeformed endocardial surface mesh (Figure 44A).  



138 
 

Figure 44. Atrial wall thickness measurement techniques. A. Shows the snake method, 

where the endocardial surface (S1, black line) is deformed in the image (blue volume) to 

create the epicardial surface (S2 black line). The amount of deformation (black arrows) for 

each vertex (red circles) is the thickness. B shows the averaged nearest neighbour method. 

Two surfaces are compared to find the nearest neighbour for each node. In cases where 

both epi- and endocardial nodes are the nearest neighbours of each other (A and C) the 

distance is the magnitude of the vector AC. For nodes that do not have mutual transmural 

nearest neighbours (i.e., B) an average of the nearest neighbour vectors is calculated for 

each node. For example the thickness at point B is calculated as (BD+EB)/2. 

As the mesh is deformed, a mathematical balance between curvature expansion 

and image intensity is maintained. This ensures that each vertex is evenly spaced 

rather than allowing points to preferentially congregate in thinner areas. The even 

spacing of the deformed mesh ensures irregular wall geometries are measured 

accurately.   

The average nearest neighbour method used an epi- and endocardial surface and 

for each voxel in both meshes finds a nearest neighbour on the opposite surface 

(see Figure 44B). In cases where nearest neighbours are mutual the distance 

between the vertices is the thickness. In vertices that are not mutual, nearest 

neighbours the average of the nearest neighbour vectors is calculated.  
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6.2.5. Atrial atlas building 

The atlas of the volunteer datasets was built using the same tools as used in 

Chapter 5. The atrial wall thickness meshes were non-linearly registered to a single 

atrial geometry using the IRTK-toolkit. The LA and RA were processed separately 

into 2 separate geometries.  

6.2.6. Image-based atrial simulations  

The 3D computational models used in Chapters 3-5 were implemented using the 

volunteer atrial geometry datasets. In order to purely investigate the effects of 

thickness and shape, the model was devoid of fibre orientation, regional 

heterogeneity and fibrosis. All parameters of the monodomain equation and its 

numeral solver were the same as the model described in Chapter 3, but utilising 

only the higher (longitudinal) diffusion coefficient value. In these simulations AF 

based ionic remodelling was implemented so that a stable rotor could be initiated. 

Which was achieved with cross-field protocol (Figure 8B). This was highly 

controlled, by holding the opposite side of the atria inactive until the rotor had 

stabilised, thus preventing additional rotor initiation and rotor meandering to the 

other side in the initial stages of the simulation.  

Due to the smaller space step required for the numerical integration of the 3D atrial 

model, the volunteer datasets were interpolated from 1.4mm to 0.3mm in Matlab. 

This had an additional beneficial effect of smoothing the “staircase” effect seen in 

the segmented volumes. The atria were simulated separately; this reduced the 

complexity of the wave dynamics and permitted rotor tracking.  
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For simplicity, rotor tracking was performing in pseudo 3D in Matlab, by projecting 

activation patterns onto a 2D plane. Subsequent voltage iso-lines of -30mV were 

compared and their intersection provided the rotor tip. The approach was semi-

automatic and required user guidance in order to verify the correct intersection.  

Figure 45. Segmentation of patient and volunteer MR images. A and C show a volunteer 

image without (A) and with (C) manual atrial segmentation. Green indicates the left atrium, 

red the right atrium and blue the atrial septum. B and D show a patient scan without (B) 

and with (D) manual atrial segmentation. In this instance the left atrium is indicated in red. 

White lines in the bottom right corner indicate a 1cm scale. Structures in A and B are 

annotated: DA and AA indicate the descending and ascending aorta, RV indicates right 

ventricle and SVC the superior vena cava. Scale bars are 10mm. 
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Preliminary simulations were performed in our group180 using a simplified cardiac 

electrophysiological model, the Fenton-Karma66 (FK). This showed rotor 

stabilisation in regions of highly heterogeneous wall thickness, particularly the rotor 

meandering occurred along the CT. In these simulations, rotors were sensitive to 

the proximity to structural heterogeneity, i.e. rotors that were ‘out-of-range’ did 

not react to the presence of wall thickness heterogeneities. This gives a good 

opportunity to compare the two models (FK used previously in our group and CRN 

used in this study) within the same geometry, and whether the structural 

properties have the same effects. 

6.3. Results 

6.3.1. Atrial MRI data acquisition  

The MR images seen in Figure 45 show a good contrast between the myocardium 

and the blood in both volunteers and patients.  However, there was still significant 

variation in contrast and SNR between subjects exemplified by the difference 

between Figure 45A and B. The success rate was highly dependent on patient heart 

and breathing rate. 

Segmentations for both patients and volunteers were performed on all datasets 

with a moderate or higher quality rating. Segmentation accuracy was reduced in 

highly convoluted atria due to the difficulty identifying adjacent regions 

(particularly with convoluted PV morphologies), and in some instances the AS was 

not observable. 



142 
 

The Dice coefficient estimated in each of the atria of two randomly chosen 

volunteers was 0.82 ± 0.06, ranging from 0.73 to 0.86. This shows a good 

agreement between atrial segmentations performed by different segmenters.  

Figure 46. Atrial wall thickness maps of two volunteers. A and C show the right atrium maps 

of the two volunteers and B and D show the corresponding left atria. Atrial structures are 

annotated, including the CT which can be observed as a significantly thicker region in the 

right atria. Red areas indicate vessel openings hence zero thickness.   
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6.3.2. Wall thickness in volunteers 

Each of the 10 volunteer MRI datasets was processed to produce a unique atrial 

wall thickness map (Figure 46). All maps showed regional variation of the atrial wall 

thickness, but the measured values were within bounds reported in the literature 

(Table 7).  

The mean thickness for volunteers was 2.4 ± 0.7 mm in the LA and 2.7 ± 0.7 mm in 

the RA. Between subjects the variation was less than 1mm. This is in good 

agreement with both literature measurements using computed tomography and 

ex-vivo anatomical dissection. Only in two instances are the results towards the 

upper limit, for the LIPV and the anterior LA.  

  

Figure 47. Atrial thickness map in the Visible Human Female dataset. A shows the RA and B 

focuses on the LA. The thicker CT and PM in the RA and the thinner PVs in the LA are seen 

clearly, similar to the reconstructions in Figures 4-5. 

Thickness variation in the reconstructed maps enabled the observation of different 

atrial structures, such as the CT which had larger thickness of 3.5-4.2mm 
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(contributing to higher mean thickness in the RA), and the PVs which had a lower 

thickness of 1.5-2mm. 

A thickness map of the Visible Human Female dataset (which was used in the 

previous chapters) was also investigated. This compared well to the thicknesses 

obtained from volunteer MRI data, and had an average thickness of 2.7± 1.4mm. 

The volunteer datasets were non-linearly registered to produce a unique atlas of 

regionally averaged wall thicknesses in the entire atria (Figure 49). 

Figure 48. Left atrial wall thickness maps of two patients. A and C show posterior views of 

two different patient datasets and B and D show the corresponding top views for the same 

patients. In these segmentations PVs are cropped flat with the atrium due to incomplete 

segmentation. 
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6.3.3. Wall thickness in patients 

All of the 3 patient MRI datasets were also processed to produce left atrial wall 

thickness maps illustrated in Figure 48. The thin PV trunks were too difficult to 

accurately segment and were not included.  

One of the three subjects datasets does not include a LAA, which may be due to an 

abnormally small appendage or that it may have been out of view. The mean of the 

patient datasets wall thickness was higher than the average of volunteer datasets. 

However 3 datasets is not a significant enough sample to extrapolate a concrete 

relationship between patients and volunteers. This may be due to the presence of 

disease or because the data acquisition was in a different phase of cardiac cycle. 

The average LA value was 3.2mm +/-0.9mm, with the regional variations displayed 

in Table 7. 

 

Figure 49. The atrial wall thickness atlas for 10 volunteer datasets. A shows the RA and B 

focuses on the left. Note the thicker CT in the RA and the thinner PVs in the LA. 
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6.3.4. Image-based 3D atrial simulations 

Simulations of the 3D atrial model based on the reconstructed volunteer RA 

geometry and CRN electrophysiology model with AF remodelling showed a stable 

rotor with significant meandering (Figure 50). The rotor tip tracking effectively 

monitored the rotor dynamics to explore how the multiple thickness transitions of 

the atria affect its meandering. Previous simulations with the FK kinetics produced 

neat ‘petals’ of a typical flower-pattern meander (Figure 50A), whereas new 

simulations with the remodelled CRN kinetics producing a much more extensive 

hyper-meander (Figure 50B). The rotor movement directions were also different, 

with the FK model producing rotor movement along the CT and the CRN to the 

thinnest part of the atria. 

Figure 50. Atrial activation map and rotor tracking maps. A shows an activation map of a 

rotor in the RA with the remodelled CRN model in a volunteer RA. The white arrow indicates 

the movement of the rotor core. B shows the corresponding rotor tracking pattern. C shows 

simulations in the same geometry but with the FK model performed previously by our 

group180. Notice the difference in rotor meander patterns (black lines) and direction 

(arrows) in relation to the wall thickness (palette below).   
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Areas of high thickness heterogeneity did not have the same effect in simulations 

with different ionic models. Note that previous studies have also reported 

conflicting hypothesis regarding the rotors movement near the thickness gradients, 

with the rotors pinned to the thick CT158, moving along the thickness gradient38 or 

moving down the gradient into the thinnest region.40 These results provide further 

evidence that rotor movement may be determined by a combination of geometry 

and ionic kinetics, such as the interplay between the relative extent of thickness 

gradients and rotor meander. 

6.4. Discussion 

This chapter presents the first reconstructions of atrial wall thickness maps 

obtained from black-blood PSIR MRI of 10 healthy volunteers and 3 patients with 

persistent AF.  Good agreement of wall thickness estimates with previous reports 

(Table 7) and with the 0.33mm resolution Visible Female atrial model suggests the 

MRI spatial resolution of 1.4mm did not introduce detectable systematic errors in 

the wall thickness measurement. These reconstructions were also used as proof-of-

concept for image-based 3D atrial simulations. 

6.4.1. Atrial wall imaging 

In terms of the image acquisition, there were significant differences between the 

patients and the volunteers. Primarily, the higher thickness values in patients may 

be explained by the fact that the images were acquired in different phases of 

cardiac cycle. In 2 patients, the images were acquired in atrial diastole and the atrial 

myocardium was minimally contracted. The higher thickness in patients may also be 

due to the pathology of their disorder or age related wall changes.  
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It should also be noted that in the patient scans, the LA volume was also 

maximised, which may stretch the wall longitudinally, thus changing the thickness 

compared to late atrial diastole (volunteers). 

6.4.2. Wall thickness measurement 

In terms of the wall thickness measurements, both methods considered performed 

well in the geometric phantom, but the average nearest neighbour methods was 

more efficient in atrial geometries. This was because the snake method was 

computationally expensive and proved too difficult to implement in complex atrial 

geometries. In regions of highly convoluted tissue structure, such as the 

appendages, the deformed mesh of the snake method became twisted and would 

not conform to the epicardial surface. 

The average nearest neighbour method has been shown to have good results in 

previous studies, specifically when used to measure cortical thicknesses in the 

brain.178 This research’s implementation was computationally inexpensive and 

provided the meshes were sufficiently dense, produced accurate wall thickness 

measurements.  

Atrial wall thicknesses and thickness variations for both volunteers and patients 

match those measured in literature for both imaging studies and ex-vivo anatomical 

studies. The regional variation shown in this study, matches the literature, with the 

PV (when segmented) having lower thickness and the CT having higher thickness. 

The wall thickness of these structures is critically important to understanding the 

role of geometric factors in mechanisms of AF.  
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Table 7. Atrial wall thickness measured in volunteers, patients and literature. "Study" 

corresponds to the number of a respective reference in this chapter, "Vol" and "Pat" are 

volunteers and patients. T = Computed tomography, A = Ex-vivo anatomical studies, pAF= 

persistent AF. Measurements in mm. 
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The imaging pipeline developed in this study can be used in AF patients and can be 

appended to existing MRI protocols to produce patient-specific atrial wall thickness 

maps. These are likely to be of particular interest for electro-anatomical mapping 

and ablation therapy in AF patients. The maps may offer a particularly useful tool 

for ablation, as knowing the atrial thickness variation can help make the choice of 

the appropriate RF power for creating fully transmural lesions, thus making the 

procedure safer and more effective.  

6.4.3. Simulations of wall thickness effects 

Knowledge of the atrial wall thickness may also lead to better understanding of 

atrial electrophysiological properties by establishing quantitative links between the 

atrial structure and function. The simulations performed in this chapter showed 

that rotor movement in the RA was sensitive to the wall thickness. Although highly 

heterogeneous, wall thickness did not have a stabilising effect on rotors, it did have 

conduction velocity slowing effects that can be seen in the rotor moving either 

along the thick CT (Figure 50A) or down the gradient into the thinner tissue (Figure 

50B).The difference may come from the increased extent and complexity of rotor 

meandering in the CRN model (applied in Figure 50B) compared to the simpler FK 

model (applied in Figure 50B). The FK model produces a smaller radius and more 

regular rotor meandering, which may make it more susceptible to sharp wall 

thickness gradients near the CT. The CRN model produces extensive hyper-

meandering and in these simulations, the rotor meanders from the thicker areas in 

the posterior wall of the RA to the lower RAA In this region conduction velocity is 

reduced due to significantly thinner atrial wall of the latter areas. These results 

show that the atrial wall thickness can have an effect on the rotor movement 
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additional to that due to patchy fibrosis. Future availability of PSIR and LGE MRI 

data from the same patient in future should enable detailed studies of the interplay 

between these two structural factors. 

6.4.4. Conclusion 

The current proof-of-concept computational work provides further evidence that 

atrial wall thickness can contribute significantly to arrhythmogenesis. Due to high 

inter-patient and inter-atrial heterogeneity, the effects of patient specific atrial 

structure must be considered when studying AF computationally. The current 3D 

atrial simulations were considerably less biophysically detailed than that described 

in previous chapters. This helps isolate the wall thickness effects from the effects of 

tissue anisotropy and ionic heterogeneity. Future studies will combine the detailed 

3D models of atrial heterogeneity and fibre orientation with patient-specific wall 

thickness and fibrosis distribution. Notably, the reconstructed atrial wall volumes 

can be directly applied as 3D masks for the identification and segmentation of 

fibrosis from patient LGE MRI scans. This opens new pathways to integrating 

various imaging modalities and computational approaches for the improved 

understanding of AF mechanisms, and ultimately for better stratification of AF 

patients.  
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7. Conclusions  

This work set out to understand how fibrosis affects arrhythmogenesis in the atria. 

Due to the clinically observed correlation between AF progression and fibrosis 

deposition in the atria, an empirical link has been previously proposed. The aim of 

this work was to understand and substantiate this link with the aid of state-of-the-

art computational modelling and non-invasive imaging techniques. The 

computational investigation was multi-scale, building up from single atrial myocyte 

and fibroblast models to the 3D whole human atrial model. Medical imaging 

provided patient-specific atrial structural data and fibrosis distributions for the 3D 

atrial models, which enabled the investigation of inter-patient variation. The in-

silico nature of this work has the ability to study aspects of the disorder inaccessible 

to in-vivo analysis, such as mechanistic links between atrial fibrosis and arrhythmia.  

7.1. Main Findings 

The main findings of this work correspond with the structure of its chapters. As the 

models were developed and explored from single cell to 3D atria levels, different 

aspects of the problem were interpreted.  

1. Electrophysiological properties of atrial fibroblasts are significantly 

different from those of ventricular fibroblasts. A novel model of 

electrophysiology of a single atrial fibroblast (based on detailed 

experimental data by Wu et al.85) and its coupling to the atrial myocyte were 

developed. Atrial fibroblasts in the model had higher (more positive) resting 

potential compared to the previous models of ventricular fibroblasts 

(MacCannell et al.58), and therefore a stronger effect on the excitability of 
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atrial myocytes. Effects of M-F coupling with atrial fibroblasts on the APD 

were smaller than those of ventricular fibroblasts. The use of relevant 

electrophysiological data for the atrial fibroblast model make it more 

representative of atrial electrophysiology and better suited for the studies 

of atrial M-F coupling.  

2. The main effect of atrial M-F coupling is on the conduction velocity rather 

than the wavelength. M-F coupling with the developed atrial fibroblast 

model had a substantially smaller effect on the wavelength than either M-F 

coupling with the MacCannell et al. ventricular fibroblast model or ionic 

remodelling. However, stronger effect of coupling with atrial fibroblasts on 

the excitability of myocytes resulted in slower conduction in atrial tissue. 

This functional effect should contribute to the overall conduction slowing 

due to structural remodelling of fibrotic atrial tissue.  

3. The structural effects of fibrosis on atrial conduction are greater than the 

M-F coupling effects. In the developed 3D human atrial model, decreased 

M-M coupling and increased anisotropy of atrial tissue (both associated with 

interstitial collagen depositions due to fibrosis) had a far greater effect on 

atrial conduction than the electrophysiological effects associated with the 

M-F coupling. Hence, both functional effects of M-F coupling and structural 

effects of fibrosis contributed to arrhythmogenesis through the slowed 

conduction and generation of re-entry, but the structural effects played 

substantially more prominent role. 

4. Heterogeneous patchy fibrosis had a strong stabilising effect on atrial 

arrhythmogenesis. While progressive conduction slowing and increased 
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anisotropy resulted in the generation of increasing number of re-entrant 

circuits in the 3D atrial model. The addition of large areas of patchy fibrosis 

appeared to stabilise re-entrant rotors.  This was a common feature of a 

wide range of behaviours seen for different patient-specific distributions of 

fibrosis reconstructed from LGE MRI data. This provides a mechanistic 

explanation for AF stabilisation seen in chronic patients, and for recent 

successes in ablations around fibrotic areas.  

5. Atrial wall thickness is variable within the atria and between subjects and 

plays an important role in arrhythmogenesis. Novel MRI techniques 

enabled unique reconstructions of subject-specific atrial wall thickness 

maps. The data clearly highlights large thickness variations throughout the 

atria, providing means for the generation of a unique statistical atlas. This 

data was integrated into simple atrial models to demonstrate the role of 

wall thickness gradients in the atrial rotor dynamics.   

6. Patient-specific atrial structure and fibrosis distribution are critically 

important factors for arrhythmogenesis. Integration of patient-specific 

fibrosis distribution and atrial geometry into the 3D atrial model, enables 

simulations of vastly different forms of re-entry. The model provides means 

for systemising these scenarios and understanding the mechanistic links 

between patient variations of electrophysiological dysfunction and 

underlying atrial tissue substrate.  Novel pipelines for MRI processing and 

combination with 3D atrial models were developed in this study. They 

provided important tools for future patient-specific studies of AF and may 

provide useful tools for the guidance of clinical ablation procedures.  
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7.2. Future work 

The logical next step for the computational model development is to include more 

biophysical detail, for further model personalisation. In particular, the addition of 

personalised fibre orientation for patient geometry datasets, which could lead to a 

substantial improvement of the predictive power of the models. However, the 

existing imaging modalities cannot provide such information for a patient. Along 

with the current anatomical knowledge, future rule-based fibre orientation models 

should account for patient-specific atrial activation sequences.   Such methods are 

currently being developed at the Karlsruhe Institute of Technology.  

Another major limitation of the computational modelling in this work is the lack of 

comprehensive clinical validation. Myocyte electrophysiology has been extensively 

studied, with detailed experimental data available from ionic channel to myofibre 

levels for model validation. However only limited information is available when it 

comes to complex whole-atria electrophysiology.  Filling the gap in knowledge 

between in-vivo measurement of single cell dynamics and 3D atrial wave 

propagation will provide a challenge for future experimental studies. In the current 

study, such a gap is filled using image-based modelling. However to complete the 

validation, improvement of clinical electro-anatomical mapping, including better 

resolution on mapping catheters and whole atria-coverage, is required. It would 

provide a vastly better understanding of rotor dynamics, mechanisms of wave 

breakdown and when combined with atrial imaging, a better understanding of the 

arrhythmogenic properties of atrial tissue structure. 
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Appendix 

 

Figure 51. Normal conduction in the patient specific fibrosis model. White dashed lines 

indicate the areas of dense fibrosis (level 4-5). This simulations shows wave front 

deformation in dense fibrosis region but the pacing frequency is not sufficient for re-entry.  

 

 

Figure 52. Atrial wall measurement methods. A shows the averaged nearest neighbour 

method, B shows the snake method and C shows the ground truth calculated 

mathematically and registered to a spherical mesh.  

A B C
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M-F atrial fibroblast model 

The following is the Matlab script for generating the ionic current IGap from the 

atrial fibroblast.  

naiF =1.117e+01; 
nacF= 140.; 
kcF = 5.4;  
kiF =1.390e+02; 
gbnaF = 0.0006744375; 
GKURF=0.6;    
gtoF = 0.1652*0.1; 
GT1F=0.95; 

 

for time=0:1:tmax 
 

 
EnaF = 26.71*log(nacF/naiF)  ; 
EkF = 26.71*log(kcF/kiF)  ; 

  
insF = 0.018*vF;   % nonspecific current 
ik1F = 0.03*(vF+86.75)/(1+exp(0.05*(vF+20)));      

%modified ik1  

%to super impose with ins  
gkurF = GKURF*0.005+0.05/(1+exp(-(vF -15)/13.0));   
itoF = gtoF*oaF *oaF *oaF *oiF *(vF -EkF);  
ikurF = gkurF*uaF *uaF *uaF *uiF *(vF -EkF);  
%/*** Na background current ***/ 
ibnaF =9*gbnaF*(vF - EnaF); % increased back na %5x to get to 

resting potential of 47.68  
     inak_fibro = inak_fibro_max * (kc / (kc + 

kmk_binding_fibro))...  
        * (     sqrt(Nai_fibro*Nai_fibro*Nai_fibro)...  
        / ( sqrt(Nai_fibro*Nai_fibro*Nai_fibro)... 
        +   

sqrt(kmna_binding_fibro*kmna_binding_fibro*kmna_binding_fibro) 

))... 
        * ((vF - v_revF) / (vF - B_fibro)); 

  
    % update oa ito gate (dt in ms) */ 
vshift = -10; 
a = 0.65./(exp((vF -vshift+0.0)./-8.5)+exp((vF -vshift-

40.0)./-59.0)); 
b = 0.65./(2.5+exp((vF -vshift+72.0)./17.0)); 
tau = 15*1./(a+b);                              % 15*with 

added scalling factors to time constants x15 
inf = 1./(1+exp((vF -vshift+10.47)./-17.54));  

  
oaF = inf + (oaF -inf)*exp(-Tfac*dt/tau); 
% update oi ito gate */ 
vshift = -10; 
a = 1./(18.53+exp((vF -vshift+103.7)./10.95)); 
b = 1./(35.56+exp((vF -vshift-8.74)./-7.44)); 
tau = 15*1./(a+b);                               %15 with 

added scalling factors to time constants x15 
inf = 1./(1+exp((vF -vshift+33.1)./5.3)); 
oiF = inf + (oiF -inf)*exp(-Tfac*dt/tau); 
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% update ua ikur gate */ 
vshift = -10;%0; 
a = 0.65./(exp((vF-vshift+0.0)./-8.5)+exp((vF-vshift-40.0)./-

59.0 
b = 0.65./(2.5+exp((vF-vshift+72.00)./17.0)); 
tau = 1./(a+b);                                 % not scaled 

by 5 
inf = 1./(1+exp((vF-vshift+20.3)./-9.6)); 
uaF  = inf + (uaF -inf)*exp(-Tfac*dt/tau);  
% update ui ikur gate */ 
vshift = -10; 
a = 1./(21+exp((vF-vshift-195)./-28)); 
b = 1./(exp((vF-vshift-168)./-16)); 
tau = 5*1./(a+b);                                       

%5*with added scalling factors to time constants x5 
inf = 1./(1+exp((vF-vshift-109.45)./27.48));    
uiF  = inf + (uiF -inf)*exp(-Tfac*dt/tau);   

  
        %//total current across fibroblast 
itot_fibro = itoF +ik1F +insF +ibnaF +inak_fibro + ikurF;%+ 

inakF;%;% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
I_gap = GgapF * (vF - V) / CmF;%=0; 
if COUPLING==0 
    I_gap=0; 
end 
vF = vF - dt * (itot_fibro + I_gap); 

  
I_gap2 = COUPLING * GgapF * (V - vF) / Cm;  

 

 
end 

 

  



159 
 

List of figures 

Figure 1. Illustration of cardiac anatomy. ............................................................................................ 22 

Figure 2. Atrial structures and features. .............................................................................................. 25 

Figure 3. Illustration of the structure of atrial tissue using histology. ................................................. 26 

Figure 4. Atrial action potentials and traces of underlying ionic channel currents. ............................. 27 

Figure 5. Recurrence rates of AF after treatments. .............................................................................. 31 

Figure 6. Flow diagram of the factors contributing to the genesis of AF.. ........................................... 33 

Figure 7. Current theories for re-entrant AF drivers. ............................................................................ 34 

Figure 8. Mechanisms for AF initiation and sustenance. ..................................................................... 35 

Figure 9. Cellular effects of AF-induced ionic remodelling. .................................................................. 39 

Figure 10. Types of fibrosis ................................................................................................................... 42 

Figure 11. Conduction slowing as a result of zig-zag propagation ...................................................... 43 

Figure 12. Schematic of Courtemanche- Rameirez-Nattel model. ....................................................... 50 

Figure 13. Regional heterogeneity of the Colman et al. atrial myocyte model. ................................... 52 

Figure 14. Cardiac MRI examples. A shows a LGE MRI of a patient with permanent AF. .................... 53 

Figure 15. Ionic channel currents of the atrial fibroblast model.  . ...................................................... 65 

Figure 16 Ionic current density in the single cell models. . ................................................................... 67 

Figure 17. Effects of M-F coupling on AP in the atrial myocyte described by the CNR model. A and B 

shows the AP in atrial myocyte in various conditions .......................................................................... 68 

Figure 18. AP Amplitude, APA, and RMP of the M-F coupling models.  . ............................................. 69 

Figure 19. The APD and ERP differences between the M-F coupling models.  . ................................... 70 

Figure 20. Effects on APD of the increased levels of M-F coupling.. .................................................... 71 

Figure 21. The excitation threshold for the M-F coupling models.  . .................................................... 72 

Figure 22. Comparison of the effects of fibroblast coupling, ionic remodelling and heterogeneity.. .. 73 

Figure 23. Conduction velocity and maximum INa for different M-F coupling models.. ....................... 74 

Figure 24. Atrial geometry model based on the Visible Female dataset. ............................................. 85 

Figure 25 Sinus rhythm activation maps simulated with the 3D atrial models for four different 

conditions.. ........................................................................................................................................... 90 



160 
 

Figure 26. Simulations of the 3D atria without structural remodelling. .............................................. 93 

Figure 27. Simulations of the 3D atria model with fibrosis related structural remodelling and ionic 

remodelling (IR).. .................................................................................................................................. 95 

Figure 28. Simulations of the 3D atria model with fibrosis related structural remodelling and M-F 

coupling. ............................................................................................................................................... 96 

Figure 29. Simulations of the 3D atria model with structural remodelling linked with AF-induced 

interstitial fibrosis. ................................................................................................................................ 98 

Figure 30.  Activation maps in the 3D atria model for typical patterns of observed re-entrant 

behaviours. ......................................................................................................................................... 100 

Figure 31. Patient-specific LGE MRI datasets. .................................................................................... 110 

Figure 32. The image processing pipeline used to obtain 3D distributions of atrial fibrosis .............. 112 

Figure 33. LGE MRI histograms.  . ...................................................................................................... 113 

Figure 34. Reconstructed left atrium fibrosis distributions ................................................................ 114 

Figure 35. Reconstruction of fibrosis by intensity threshold method from 3 patients. ...................... 116 

Figure 36. Fibrosis distributions in different datasets. ....................................................................... 117 

Figure 37. Atrial fibrosis distributions of 2 patients ........................................................................... 118 

Figure 38. 2D simulation of atrial tissue with patchy fibrosis border zone. ....................................... 119 

Figure 39. Stabilization of rotors in patchy fibrosis regions.. ............................................................. 120 

Figure 40. Spatio-temporal dynamics of rotors pinned to fibrotic regions. ....................................... 122 

Figure 41. Snapshots of re-entry in 3D atria with fibrosis distributions ............................................. 123 

Figure 42. Atrial MRI acquisition timing. ........................................................................................... 134 

Figure 43. Flowchart of image processing pipeline. ........................................................................... 135 

Figure 44. Atrial wall thickness measurement techniques. ................................................................ 138 

Figure 45. Segmentation of patient and volunteer MR images.. ....................................................... 140 

Figure 46. Atrial wall thickness maps of two volunteers. ................................................................... 142 

Figure 47. Atrial thickness map in the Visible Human Female dataset. ............................................. 143 

Figure 48. Left atrial wall thickness maps of two patients.. ............................................................... 144 

Figure 49. The atrial wall thickness atlas for 10 volunteer datasets.. ................................................ 145 

Figure 50. Atrial activation map and rotor tracking maps. ................................................................ 146 



161 
 

Figure 51. Normal conduction in the patient specific fibrosis model. ................................................ 156 

Figure 52. Atrial wall measurement methods. ................................................................................... 156 

 

  



162 
 

List of tables 

Table 1. Description of main ion channel currents responsible for the consecutive phases of 

AP.. ......................................................................................................................................... 29 

Table 2. Electrophysiological properties of cardiac fibroblasts.. ........................................... 56 

Table 3. Summary of previous computational studies of cardiac fibroblasts ........................ 59 

Table 4. Anisotropy ratios measured in experiments and used in existing models ............... 83 

Table 5. Arrival times in the 3D atrial model, compared to clinical findings ......................... 89 

Table 6. Re-entry type and duration of 3D simulations. ........................................................ 92 

Table 7. Atrial wall thickness measured in volunteers, patients and literature................... 149 

 

  



163 
 

References 

1. Schoonderwoerd, B. a., Van Gelder, I. C., Van Veldhuisen, D. J., Van Den Berg, 

M. P. & Crijns, H. J. G. M. Electrical and structural remodeling: Role in the 

genesis and maintenance of atrial fibrillation. Prog. Cardiovasc. Dis. 48, 153–

168 (2005). 

2. Jahangir, A. et al. Long-term progression and outcomes with aging in patients 

with lone atrial fibrillation: A 30-year follow-up study. Circulation 115, 3050–

3056 (2007). 

3. Kannel, W. B., Wolf, P. A., Benjamin, E. J. & Levy, D. Prevalence, incidence, 

prognosis, and predisposing conditions for atrial fibrillation: population-

based estimates. Am. J. Cardiol. 82, 2N–9N (1998). 

4. Wang, T. J. et al. Temporal relations of atrial fibrillation and congestive heart 

failure and their  joint influence on mortality: the Framingham Heart Study. 

Circulation 107, 2920–2925 (2003). 

5. Lubitz, S. A., Benjamin, E. J. & Ellinor, P. T. Atrial fibrillation in congestive 

heart failure. Heart Fail. Clin. 6, 187–200 (2010). 

6. Lloyd-Jones, D. M. et al. Lifetime risk for development of atrial fibrillation: 

the Framingham Heart Study. Circulation 110, 1042–1046 (2004). 

7. Chugh, S. S. et al. Worldwide Epidemiology of Atrial Fibrillation: A Global 

Burden of Disease 2010 Study. Circulation 129, 837–847 (2014). 

8. Han, F. T. & Marrouche, N. An atrial fibrosis-based approach for atrial 



164 
 

fibrillation ablation. Future Cardiol. 11, 673–681 (2015). 

9. Kottkamp, H., Berg, J., Bender, R., Rieger, A. & Schreiber, D. Box Isolation of 

Fibrotic Areas (BIFA): A Patient-Tailored Substrate Modification Approach for 

Ablation of Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 27, n/a–n/a 

(2015). 

10. Al-Saady, N. M., Obel, O. a & Camm,  a J. Left atrial appendage: structure, 

function, and role in thromboembolism. Heart 82, 547–554 (1999). 

11. Platonov, P. G., Mitrofanova, L., Ivanov, V. & Ho, S. Y. Substrates for intra-

atrial and interatrial conduction in the atrial septum: anatomical study on 84 

human hearts. Heart Rhythm 5, 1189–95 (2008). 

12. Platonov, P. G. et al. Preferential conduction patterns along the coronary 

sinus during atrial fibrillation in humans and their modification by pulmonary 

vein isolation. J Electrocardiol 44, 157–163 (2011). 

13. Ho, S. Y., Cabrera, J. A. & Sanchez-Quintana, D. Left atrial anatomy revisited. 

Circ. Arrhythm. Electrophysiol. 5, 220–8 (2012). 

14. Klatt, Edward, C. Normal myocardial histology. WebPath 

http://library.med.utah.edu/WebPath/HISTHTML/NORMA (2016). 

15. Nattel, S. & Carlsson, L. Innovative approaches to anti-arrhythmic drug 

therapy. Nat. Rev. Drug Discov. 5, 1034–1049 (2006). 

16. Graux, P. et al. Wavelength and atrial vulnerability: an endocavitary approach 

in humans. Pacing Clin. Electrophysiol. 21, 202–208 (1998). 



165 
 

17. Maceira, A. M., Cosín-Sales, J., Roughton, M., Prasad, S. K. & Pennell, D. J. 

Reference left atrial dimensions and volumes by steady state free precession 

cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 12, 1–10 

(2010). 

18. Roy, D. et al. Amiodarone to prevent recurrence of atrial fibrillation. 

Canadian Trial of Atrial Fibrillation Investigators. N. Engl. J. Med. 342, 913–

920 (2000). 

19. Weerasooriya, R. et al. Catheter ablation for atrial fibrillation: are results 

maintained at 5 years of follow-up? J. Am. Coll. Cardiol. 57, 160–6 (2011). 

20. Calkins, H. et al. 2012 HRS/EHRA/ECAS expert consensus statement on 

catheter and surgical ablation of atrial fibrillation: recommendations for 

patient selection, procedural techniques, patient management and follow-

up, definitions, endpoints, and research trial design: a re. Heart Rhythm 9, 

632–696.e21 (2012). 

21. Trayanova, N. A. et al. Computational cardiology: how computer simulations 

could be used to develop new therapies and advance existing ones. Europace 

14, v82–9 (2012). 

22. Zahid, S. et al. Patient-derived models link re-entrant driver localization in 

atrial fibrillation to fibrosis spatial pattern. Cardiovasc. Res. 110, 443–454 

(2016). 

23. Jacquemet, V. Lessons from computer simulations of ablation of atrial 

fibrillation. J. Physiol. 594, 2417–2430 (2016). 



166 
 

24. Wijffels, M. C., Kirchhof, C. J., Dorland, R. & Allessie, M. A. Atrial fibrillation 

begets atrial fibrillation. A study in awake chronically instrumented goats. 

Circulation 92, 1954–1968 (1995). 

25. Zipes, D. P. & Jalife, J. Cardiac Electrophysiology: From Cell to Bedside. 

(Saunders/Elsevier, 2009). 

26. Schotten, U., Verheule, S., Kirchhof, P. & Goette, A. Pathophysiological 

mechanisms of atrial fibrillation: a translational appraisal. Physiol. Rev. 91, 

265–325 (2011). 

27. Nattel, S. & Dobrev, D. The multidimensional role of calcium in atrial 

fibrillation pathophysiology: mechanistic insights and therapeutic 

opportunities. Eur. Heart J. 33, 1870–1877 (2012). 

28. Jalife, J., Berenfeld, O. & Mansour, M. Mother rotors and fibrillatory 

conduction: A mechanism of atrial fibrillation. Cardiovasc. Res. 54, 204–216 

(2002). 

29. Comtois, P., Kneller, J. & Nattel, S. Of circles and spirals: bridging the gap 

between the leading circle and spiral wave concepts of cardiac reentry. 

Europace 7, 10–20 (2005). 

30. Narayan, S. M. et al. Ablation of Rotor and Focal Sources Reduces Late 

Recurrence of Atrial Fibrillation Compared With Trigger Ablation Alone. J. 

Am. Coll. Cardiol. 63, 1761–1768 (2014). 

31. Narayan, S. M., Krummen, D. E., Clopton, P., Shivkumar, K. & Miller, J. M. 



167 
 

Direct or coincidental elimination of stable rotors or focal sources may 

explain successful atrial fibrillation ablation: on-treatment analysis of the 

CONFIRM trial (Conventional ablation for AF with or without focal impulse 

and rotor modulation). J. Am. Coll. Cardiol. 62, 138–47 (2013). 

32. Gray, R. A. et al. Mechanisms of cardiac fibrillation. Science (New York, N.Y.) 

270, 1222–1225 (1995). 

33. Moe, G., Rheinboldt, W. & Abildskov, J. A computer model of atrial 

fibrillation. Am. Heart J. 67, 200–220 (1964). 

34. Chen, S. -a. et al. Initiation of Atrial Fibrillation by Ectopic Beats Originating 

From the Pulmonary Veins : Electrophysiological Characteristics, 

Pharmacological Responses, and Effects of Radiofrequency Ablation. 

Circulation 100, 1879–1886 (1999). 

35. Cabo, C. et al. Wave-Front Curvature as a Cause of Slow Conduction and 

Block in Isolated Cardiac Muscle. Circ Res. 75, 1014–1029 (1994). 

36. Wang, Y. G. et al. Electrical interactions between a real ventricular cell and an 

anisotropic two-dimensional sheet of model cells. Am. J. Physiol. Heart Circ. 

Physiol. 278, H452–60 (2000). 

37. Feng, J., Yue, L., Wang, Z. & Nattel, S. Ionic mechanisms of regional action 

potential heterogeneity in the canine right atrium. Circ. Res. 83, 541–551 

(1998). 

38. Aslanidi, O. V et al. 3D virtual human atria: A computational platform for 



168 
 

studying clinical atrial fibrillation. Prog. Biophys. Mol. Biol. 107, 156–168 

(2011). 

39. Aslanidi, O. V et al. Heterogeneous and anisotropic integrative model of 

pulmonary veins: computational study of arrhythmogenic substrate for atrial 

fibrillation. Interface Focus 3, 20120069 (2013). 

40. Yamazaki, M. et al. Heterogeneous atrial wall thickness and stretch promote 

scroll waves anchoring during atrial fibrillation. Cardiovasc. Res. 94, 48–57 

(2012). 

41. Ong, J. J. et al. The relation between atrial fibrillation wavefront 

characteristics and accessory pathway conduction. J. Clin. Invest. 96, 2284–96 

(1995). 

42. Colman, M. a et al. Pro-arrhythmogenic Effects of Atrial Fibrillation Induced 

Electrical Remodelling- Insights from 3D Virtual Human Atria. J. Physiol. 591, 

1–24 (2013). 

43. Nattel, S., Burstein, B. & Dobrev, D. Atrial remodeling and atrial fibrillation: 

mechanisms and implications. Circ. Arrhythm. Electrophysiol. 1, 62–73 

(2008). 

44. Kneller, J. Cholinergic Atrial Fibrillation in a Computer Model of a Two-

Dimensional Sheet of Canine Atrial Cells With Realistic Ionic Properties. Circ. 

Res. 90, 73e–87 (2002). 

45. Nattel, S., Maguy, A., Le Bouter, S. & Yeh, Y.-H. Arrhythmogenic ion-channel 



169 
 

remodeling in the heart: heart failure, myocardial infarction, and atrial 

fibrillation. Physiol. Rev. 87, 425–56 (2007). 

46. Gramley, F. et al. Atrial fibrosis and atrial fibrillation: the role of the TGF-β1 

signaling pathway. Int. J. Cardiol. 143, 405–13 (2010). 

47. Souders, C. A., Bowers, S. L. K. & Baudino, T. A. Cardiac fibroblast: the 

renaissance cell. Circ. Res. 105, 1164–1176 (2009). 

48. Clayton, R. H. et al. Models of cardiac tissue electrophysiology: progress, 

challenges and open questions. Prog. Biophys. Mol. Biol. 104, 22–48 (2011). 

49. de Bakker, J. M. et al. Reentry as a cause of ventricular tachycardia in 

patients with chronic ischemic heart disease: electrophysiologic and 

anatomic correlation. Circulation 77, 589–606 (1988). 

50. de Bakker, J. M. et al. Slow conduction in the infarcted human heart. ‘Zigzag’ 

course of activation. Circulation 88, 915–926 (1993). 

51. Spach, M. S. et al. The functional role of structural complexities in the 

propagation of depolarization in the atrium of the dog. Cardiac conduction 

disturbances due to discontinuities of effective axial resistivity. Circ. Res. 50, 

175–191 (1982). 

52. de Jong, S., van Veen, T. a B., van Rijen, H. V. M. & de Bakker, J. M. T. Fibrosis 

and cardiac arrhythmias. J. Cardiovasc. Pharmacol. 57, 630–8 (2011). 

53. Kawara, T. et al. Activation delay after premature stimulation in chronically 

diseased human myocardium relates to the architecture of interstitial 



170 
 

fibrosis. Circulation 104, 3069–75 (2001). 

54. Baum, J. R., Long, B., Cabo, C. & Duffy, H. S. Myofibroblasts cause 

heterogeneous Cx43 reduction and are unlikely to be coupled to myocytes in 

the healing canine infarct. AJP Hear. Circ. Physiol. 302, H790–H800 (2011). 

55. Torre-Amione, G. et al. Proinflammatory cytokine levels in patients with 

depressed left ventricular ejection fraction: a report from the Studies of Left 

Ventricular Dysfunction (SOLVD). J. Am. Coll. Cardiol. 27, 1201–1206 (1996). 

56. Kohl, P., Camelliti, P., Burton, F. L. & Smith, G. L. Electrical coupling of 

fibroblasts and myocytes: relevance for cardiac propagation. J. Electrocardiol. 

38, 45–50 (2005). 

57. Li, G.-R. et al. Characterization of multiple ion channels in cultured human 

cardiac fibroblasts. PLoS One 4, e7307 (2009). 

58. MacCannell, K. A. et al. A mathematical model of electrotonic interactions 

between ventricular myocytes and fibroblasts. Biophys. J. 92, 4121–32 

(2007). 

59. Chilton, L. et al. K+ currents regulate the resting membrane potential, 

proliferation, and contractile responses in ventricular fibroblasts and 

myofibroblasts. Am. J. Physiol. Heart Circ. Physiol. 288, H2931–9 (2005). 

60. Taccardi, B. et al. Useful lessons from body surface mapping. J. Cardiovasc. 

Electrophysiol. 9, 773–786 (1998). 

61. O’Hara, T. & Rudy, Y. Quantitative comparison of cardiac ventricular myocyte 



171 
 

electrophysiology and response to drugs in human and nonhuman species. 

Am. J. Physiol. - Hear. Circ. Physiol. 302, H1023–H1030 (2012). 

62. Potse, M., Dubé, B., Richer, J., Vinet, A. & Gulrajani, R. M. A Comparison of 

Monodomain and Bidomain Reaction-Diffusion Models for Action Potential 

Propagation in the Human Heart. Conf Proc IEEE Eng Med Biol Soc 1:3895–8 

(2006). 

63. Trayanova, N., Plank, G. & Rodríguez, B. What have we learned from 

mathematical models of defibrillation and postshock arrhythmogenesis? 

Application of bidomain simulations. Heart Rhythm 3, 1232–5 (2006). 

64. Courtemanche, M., Ramirez, R. J. & Nattel, S. Ionic mechanisms underlying 

human atrial action potential properties: insights from a mathematical 

model. Am. J. Physiol. 275, H301–21 (1998). 

65. ten Tusscher, K. H. W. J., Noble, D., Noble, P. J. & Panfilov, A. V. A model for 

human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286, H1573–89 

(2004). 

66. Fenton, F. & Karma, A. Vortex dynamics in three-dimensional continuous 

myocardium with fiber rotation: Filament instability and fibrillation. Chaos 8, 

20–47 (1998). 

67. Grandi, E., Pasqualini, F. S. & Bers, D. M. A Novel Computational Model of the 

Human Ventricular Action Potential and Ca Transient. Journal of molecular 

and cellular cardiology 48, 112 (2010). 



172 
 

68. Westebbe, B., Thiele, J. & Kraft, M. A Mobile Gait Analysis System For 

Optimization Of Prosthetic Alignments. Biomed. Eng. (NY). 58, 24–25 (2013). 

69. Colman, M. A. Development of a Biophysically Detailed Model of the Human 

Atria for the Investigation of the Mechanisms of Atrial Arrhythmias Table of 

Contents. (The University of Manchester, 2012). 

70. Varela, M. et al. 3D high-resolution atrial wall thickness maps using black-

blood PSIR. J. Cardiovasc. Magn. Reson. 17, P239 (2015). 

71. Doltra, A., Amundsen, B. H., Gebker, R., Fleck, E. & Kelle, S. Emerging 

concepts for myocardial late gadolinium enhancement MRI. Curr. Cardiol. 

Rev. 9, 185–90 (2013). 

72. Nag, A. C. Study of non-muscle cells of the adult mammalian heart: a fine 

structural analysis and distribution. Cytobios 28, 41–61 (1980). 

73. Porter, K. E. & Turner, N. A. Cardiac fibroblasts: at the heart of myocardial 

remodeling. Pharmacol. Ther. 123, 255–278 (2009). 

74. Dawson, K., Wu, C.-T., Qi, X. Y. & Nattel, S. Congestive heart failure effects on 

atrial fibroblast phenotype: differences between freshly-isolated and 

cultured cells. PLoS One 7, e52032 (2012). 

75. Chang, H. Y. et al. Diversity, topographic differentiation, and positional 

memory in human fibroblasts. Proc. Natl. Acad. Sci. U. S. A. 99, 12877–12882 

(2002). 

76. Baum, J. & Duffy, H. S. Fibroblasts and Myofibroblasts : What are we talking 



173 
 

about ? J. Cardiovasc. Pharmacol. 57, 376–379 (2012). 

77. Hanna, N., Cardin, S., Leung, T.-K. & Nattel, S. Differences in atrial versus 

ventricular remodeling in dogs with ventricular tachypacing-induced 

congestive heart failure. Cardiovasc. Res. 63, 236–244 (2004). 

78. Burstein, B., Libby, E., Calderone, A. & Nattel, S. Differential behaviors of 

atrial versus ventricular fibroblasts: A potential role for platelet-derived 

growth factor in atrial-ventricular remodeling differences. Circulation 117, 

1630–1641 (2008). 

79. Kardami, E. & Fandrich, R. R. Basic fibroblast growth factor in atria and 

ventricles of the vertebrate heart. J. Cell Biol. 109, 1865–1875 (1989). 

80. Kohl, P., Kamkin, A. G., Kiseleva, I. S. & Noble, D. Mechanosensitive 

fibroblasts in the sino-atrial node region of rat heart : interaction with 

cardiomyocytes and possible role. Exp. Physiol. 79, 943–956 (1994). 

81. Rook, M. B. et al. Differences in gap junction channels between cardiac 

myocytes , fibroblasts , and heterologous pairs. Am. J. Physiol. 263, C959–77 

(1992). 

82. Gaudesius, G., Miragoli, M., Thomas, S. P. & Rohr, S. Coupling of cardiac 

electrical activity over extended distances by fibroblasts of cardiac origin. 

Circ. Res. 93, 421–8 (2003). 

83. Camelliti, P., Green, C. R., LeGrice, I. & Kohl, P. Fibroblast network in rabbit 

sinoatrial node: structural and functional identification of homogeneous and 



174 
 

heterogeneous cell coupling. Circ. Res. 94, 828–835 (2004). 

84. He, K. et al. Long-distance intercellular connectivity between cardiomyocytes 

and cardiofibroblasts mediated by membrane nanotubes. Cardiovasc. Res. 

92, 39–47 (2011). 

85. Wu, C.-T. et al. Disease and region-related cardiac fibroblast potassium 

current variations and potential functional significance. Cardiovasc. Res. 102, 

487–96 (2014). 

86. Shibukawa, Y., Chilton, E. L., Maccannell, K. A., Clark, R. B. & Giles, W. R. K+ 

currents activated by depolarization in cardiac fibroblasts. Biophys. J. 88, 

3924–35 (2005). 

87. Kiseleva, I. et al. Electrophysiological properties of mechanosensitive atrial 

fibroblasts from chronic infarcted rat heart. J. Mol. Cell. Cardiol. 30, 1083–

1093 (1998). 

88. Kamkin, A., Kiseleva, I. & Isenberg, G. Activation and inactivation of a non-

selective cation conductance by local mechanical deformation of acutely 

isolated cardiac fibroblasts. Cardiovasc. Res. 57, 793–803 (2003). 

89. Wang, J., Chen, H., Seth, A. & McCulloch, C. a. Mechanical force regulation of 

myofibroblast differentiation in cardiac fibroblasts. Am. J. Physiol. Heart Circ. 

Physiol. 285, H1871–H1881 (2003). 

90. Miragoli, M., Gaudesius, G. & Rohr, S. Electrotonic modulation of cardiac 

impulse conduction by myofibroblasts. Circ. Res. 98, 801–10 (2006). 



175 
 

91. Vasquez, C., Benamer, N. & Morley, G. E. The cardiac fibroblast: functional 

and electrophysiological considerations in healthy and diseased hearts. J. 

Cardiovasc. Pharmacol. 57, 380–8 (2011). 

92. Jacquemet, V. & Henriquez, C. S. Loading effect of fibroblast-myocyte 

coupling on resting potential, impulse propagation, and repolarization: 

insights from a microstructure model. Am. J. Physiol. Heart Circ. Physiol. 294, 

H2040–52 (2008). 

93. Maleckar, M. M., Greenstein, J. L., Giles, W. R. & Trayanova, N. a. Electrotonic 

coupling between human atrial myocytes and fibroblasts alters myocyte 

excitability and repolarization. Biophys. J. 97, 2179–2190 (2009). 

94. Sachse, F. B., Moreno, A. P. & Abildskov, J. a. Electrophysiological modeling 

of fibroblasts and their interaction with myocytes. Ann. Biomed. Eng. 36, 41–

56 (2008). 

95. Jacquemet, V. & Henriquez, C. S. Modelling cardiac fibroblasts: interactions 

with myocytes and their impact on impulse propagation. Europace 9 Suppl 6, 

vi29–37 (2007). 

96. Zlochiver, S. et al. Electrotonic myofibroblast-to-myocyte coupling increases 

propensity to reentrant arrhythmias in two-dimensional cardiac monolayers. 

Biophys. J. 95, 4469–4480 (2008). 

97. Dierckx, H., Brisard, E., Verschelde, H. & Panfilov, A. V. Drift laws for spiral 

waves on curved anisotropic surfaces. Phys. Rev. E. Stat. Nonlin. Soft Matter 

Phys. 88, 012908 (2013). 



176 
 

98. McDowell, K. S. et al. Methodology for patient-specific modeling of atrial 

fibrosis as a substrate for atrial fibrillation. J. Electrocardiol. 45, 640–5 (2012). 

99. Ho, S. Y., Anderson, R. H. & Sánchez-Quintana, D. Atrial structure and fibres: 

morphologic bases of atrial conduction. Cardiovasc Res 54, 325–36 (2002). 

100. Bieging, E., Morris, A., Cates, J., Marrouche, N. & McGann, C. Left atrial shape 

predicts recurrence after atrial fibrillation ablation. J. Am. Coll. Cardiol. 65, 

A1294 (2015). 

101. Cabo, C. et al. Vortex shedding as a precursor of turbulent electrical activity 

in cardiac muscle. Biophys. J. 70, 1105–1111 (1996). 

102. Klos, M. et al. Atrial Septopulmonary Bundle of the Posterior Left Atrium 

Provides a Substrate for Atrial Fibrillation Initiation in a Model of Vagally 

Mediated Pulmonary Vein Tachycardia of the Structurally Normal Heart. Circ. 

Arrhythmia Electrophysiol. 1, 175–183 (2008). 

103. Pandit, S. V & Jalife, J. Rotors and the dynamics of cardiac fibrillation. Circ. 

Res. 112, 849–62 (2013). 

104. Gray, R. A., Pertsov, A. M. & Jalife, J. Incomplete reentry and epicardial 

breakthrough patterns during atrial fibrillation in the sheep heart. Circulation 

94, 2649–2661 (1996). 

105. Ho, S. Y. & Sánchez-Quintana, D. The importance of atrial structure and 

fibers. Clin. Anat. 22, 52–63 (2009). 

106. Aslanidi, O. V et al. Application of micro-computed tomography with iodine 



177 
 

staining to cardiac imaging, segmentation, and computational model 

development. IEEE Trans. Med. Imaging 32, 8–17 (2013). 

107. Cosio, F. G. et al. Electrophysiologic studies in atrial fibrillation. Slow 

conduction of premature impulses: a possible manifestation of the 

background for reentry. Am. J. Cardiol. 51, 122–130 (1983). 

108. Papageorgiou, P. et al. Site-dependent intra-atrial conduction delay. 

Relationship to initiation of atrial fibrillation. Circulation 94, 384–389 (1996). 

109. Platonov, P. G. et al. Further evidence of localized posterior interatrial 

conduction delay in lone paroxysmal atrial fibrillation. Europace 3, 100–107 

(2001). 

110. Lalani, G. G. et al. Atrial Conduction Slows Immediately Before the Onset of 

Human Atrial Fibrillation. J. Am. Coll. Cardiol. 59, 595–606 (2012). 

111. Li, D., Fareh, S., Leung, T. K. & Nattel, S. Promotion of atrial fibrillation by 

heart failure in dogs: atrial remodeling of a different sort. Circulation 100, 

87–95 (1999). 

112. Kawara, T. et al. Activation delay after premature stimulation in chronically 

diseased human myocardium relates to the architecture of interstitial 

fibrosis. Circulation 104, 3069–75 (2001). 

113. Jansen, J. A. et al. Arrhythmia Vulnerability of Aged Haploinsufficient Cx43 

Mice is Determined by Heterogeneous Downregulation of Cx43 Combined 

with Increased Fibrosis. Circulation 118, (2008). 



178 
 

114. Krul, S. P. J. et al. Atrial Fibrosis and Conduction Slowing in the Left Atrial 

Appendage of Patients Undergoing Thoracoscopic Surgical Pulmonary Vein 

Isolation for Atrial Fibrillation. Circ. Arrhythmia Electrophysiol. 8, 288–295 

(2015). 

115. Tobón, C. et al. A Three-Dimensional Human Atrial Model with Fiber 

Orientation. Electrograms and Arrhythmic Activation Patterns Relationship. 

PLoS One 8, e50883 (2013). 

116. Seemann, G. et al. Heterogeneous three-dimensional anatomical and 

electrophysiological model of human atria. Philos. Trans. A. Math. Phys. Eng. 

Sci. 364, 1465–1481 (2006). 

117. Krueger, M. W. et al. Modeling Atrial Fiber Orientation in Patient-Specific 

Geometries : A Semi-automatic Rule-Based Approach. Funct. Imaging Model. 

Hear. 6666, 223–232 (2011). 

118. Harrild, D. & Henriquez, C. A computer model of normal conduction in the 

human atria. Circ. Res. 87, E25–E36 (2000). 

119. Yamamoto, M., Honjo, H., Niwa, R. & Kodama, I. Low-frequency extracellular 

potentials recorded from the sinoatrial node. Cardiovasc. Res. 39, 360–372 

(1998). 

120. Liu, T. Y. et al. Functional characterization of the crista terminalis in patients 

with atrial flutter: Implications for radiofrequency ablation. J. Am. Coll. 

Cardiol. 43, 1639–1645 (2004). 



179 
 

121. Hansson, A. et al. Right atrial free wall conduction velocity and degree of 

anisotropy in patients with stable sinus rhythm studied during open heart 

surgery. Eur. Heart J. 19, 293–300 (1998). 

122. Kléber, A. G., Janse, M. J. & Fast, V. G. in Comprehensive Physiology (John 

Wiley & Sons, Inc., 2011). doi:10.1002/cphy.cp020112 

123. Koura, T. et al. Anisotropic conduction properties in canine atria analyzed by 

high-resolution optical mapping: Preferential direction of conduction block 

changes from longitudinal to transverse with increasing age. Circulation 105, 

2092–2098 (2002). 

124. Verheule, S. et al. Loss of continuity in the thin epicardial layer because of 

endomysial fibrosis increases the complexity of atrial fibrillatory conduction. 

Circ. Arrhythmia Electrophysiol. 6, 202–211 (2013). 

125. Angel, N. et al. Diverse Fibrosis Architecture and Premature Stimulation 

Facilitate Initiation of Reentrant Activity Following Chronic Atrial Fibrillation. 

J. Cardiovasc. Electrophysiol. 26, 1352–1360 (2015). 

126. Ellis, W. S., SippensGroenewegen, A., Auslander, D. M. & Lesh, M. D. The role 

of the crista terminalis in atrial flutter and fibrillation: a computer  modeling 

study. Ann. Biomed. Eng. 28, 742–754 (2000). 

127. Labarthe, S., Coudiere, Y., Henry, J. & Cochet, H. A Semi-Automatic Method 

To Construct Atrial Fibre Structures : a Tool for Atrial Simulations. CINC - 

Comput. Cardiol. 881–884 (2012). 



180 
 

128. Haïssaguerre, M. et al. Spontaneous initiation of atrial fibrillation by ectopic 

beats originating in the pulmonary veins. N. Engl. J. Med. 339, 659–66 (1998). 

129. Tsai, C. F. et al. Initiation of atrial fibrillation by ectopic beats originating from 

the superior  vena cava: electrophysiological characteristics and results of 

radiofrequency ablation. Circulation 102, 67–74 (2000). 

130. Benson,  a. P., Gilbert, S. H., Li, P., Newton, S. M. & Holden, A. V. 

Reconstruction and Quantification of Diffusion Tensor Imaging-Derived 

Cardiac Fibre and Sheet Structure in Ventricular Regions used in Studies of 

Excitation Propagation. Math. Model. Nat. Phenom. 3, 101–130 (2008). 

131. Lemery, R. et al. Normal atrial activation and voltage during sinus rhythm in 

the human heart: An endocardial and epicardial mapping study in patients 

with a history of atrial fibrillation. J. Cardiovasc. Electrophysiol. 18, 402–408 

(2007). 

132. Chang, H.-Y. et al. Sinus node dysfunction in atrial fibrillation patients: the 

evidence of regional atrial substrate remodelling. Europace 15, 205–211 

(2013). 

133. Gray, R. A., Pertsov, A. M. & Jalife, J. Spatial and temporal organization 

during cardiac fibrillation. Nature 392, 75–78 (1998). 

134. Chen, J. et al. Dynamics of wavelets and their role in atrial fibrillation in the 

isolated sheep  heart. Cardiovasc. Res. 48, 220–232 (2000). 

135. Spach, M. S., Dolber, P. C. & Heidlage, J. F. Interaction of inhomogeneities of 



181 
 

repolarization with anisotropic propagation in dog atria. A mechanism for 

both preventing and initiating reentry. Circ. Res. 65, 1612–1631 (1989). 

136. McGann, C. et al. Atrial fibrillation ablation outcome is predicted by left atrial 

remodeling on MRI. Circ. Arrhythmia Electrophysiol. 7, 23–30 (2014). 

137. Rutherford, S. L., Trew, M. L., Sands, G. B., Legrice, I. J. & Smaill, B. H. High-

resolution 3-dimensional reconstruction of the infarct border zone: Impact of 

structural remodeling on electrical activation. Circ. Res. 111, 301–311 (2012). 

138. Lau, D. H. et al. Novel mechanisms in the pathogenesis of atrial fibrillation: 

practical applications. Eur. Heart J. ehv375– (2015). 

doi:10.1093/eurheartj/ehv375 

139. Marrouche, N. F. et al. Association of atrial tissue fibrosis identified by 

delayed enhancement MRI and atrial fibrillation catheter ablation: the 

DECAAF study. JAMA 311, 498–506 (2014). 

140. Gal, P. & Marrouche, N. F. Magnetic resonance imaging of atrial fibrosis: 

redefining atrial fibrillation to a syndrome. Eur. Heart J. ehv514 (2015). 

doi:10.1093/eurheartj/ehv514 

141. Jadidi, A. S. et al. Inverse relationship between fractionated electrograms and 

atrial fibrosis in persistent atrial fibrillation: combined magnetic resonance 

imaging and high-density mapping. J. Am. Coll. Cardiol. 62, 802–12 (2013). 

142. Roten, L., Derval, N. & Jaïs, P. Catheter ablation for persistent atrial 

fibrillation: Elimination of triggers is not sufficient. Circ. Arrhythmia 



182 
 

Electrophysiol. 5, 1224–1231 (2012). 

143. Hunter, R. J. et al. Characterization of fractionated atrial electrograms critical 

for maintenance of atrial fibrillation a randomized, controlled trial of ablation 

strategies (the CFAE AF trial). Circ. Arrhythmia Electrophysiol. 4, 622–629 

(2011). 

144. Takahashi, Y. et al. Characterization of Electrograms Associated With 

Termination of Chronic Atrial Fibrillation by Catheter Ablation. J. Am. Coll. 

Cardiol. 51, 1003–1010 (2008). 

145. Peters, N. S., Coromilas, J., Severs, N. J. & Wit, A. L. Disturbed connexin43 gap 

junction distribution correlates with the location of reentrant circuits in the 

epicardial border zone of healing canine infarcts that cause ventricular 

tachycardia. Circulation 95, 988–996 (1997). 

146. Vigmond, E. et al. Towards predictive modelling of the electrophysiology of 

the heart. Exp. Physiol. 94, 563–577 (2009). 

147. Dosdall, D. J. et al. Chronic atrial fibrillation causes left ventricular 

dysfunction in dogs but not goats: experience with dogs, goats, and pigs. Am. 

J. Physiol. Heart Circ. Physiol. 305, H725–31 (2013). 

148. Bauer, A., McDonald, A. D. & Donahue, J. K. Pathophysiological findings in a 

model of persistent atrial fibrillation and severe congestive heart failure. 

Cardiovasc. Res. 61, 764–770 (2004). 

149. Lin, C.-S. et al. Increased expression of extracellular matrix proteins in rapid 



183 
 

atrial pacing-induced atrial fibrillation. Heart Rhythm 4, 938–949 (2007). 

150. Lin, J.-L. et al. Electrophysiological mapping and histological examinations of 

the swine atrium with sustained (> or =24 h) atrial fibrillation: a suitable 

animal model for studying human atrial fibrillation. Cardiology 99, 78–84 

(2003). 

151. Ho, S. Y. et al. Architecture of the pulmonary veins: relevance to 

radiofrequency ablation. Heart 86, 265–270 (2001). 

152. McGann, C. J. et al. New magnetic resonance imaging-based method for 

defining the extent of left atrial wall injury after the ablation of atrial 

fibrillation. J. Am. Coll. Cardiol. 52, 1263–1271 (2008). 

153. Karim, R. et al. Automatic Segmentation of Left Atrial Scar from Delayed-

Enhancement Magnetic Resonance Imaging. in Functional Imaging and 

Modeling of the Heart - 6th International Conference 63–70 (2011). 

doi:10.1007/978-3-642-21028-0_8 

154. Benito, E. et al. Left atrial fibrosis quantification by late gadolinium 

enhancement MRI: can we find the optimal normalized thresholds. in 

Europace, 17 (suppl 3) iii89–iii91; (2015). doi:10.1093/europace/euv159 

155. Aras, D. et al. Inadvertent puncture of the aortic noncoronary cusp during 

postoperative left atrial tachycardia ablation. J. arrhythmia 31, 235–237 

(2015). 

156. Han, S. & Hwang, C. How to Achieve Complete and Permanent Pulmonary 



184 
 

Vein Isolation without Complications. Korean Circ. J. 44, 291–300 (2014). 

157. Lemola, K. et al. Computed tomographic analysis of the anatomy of the left 

atrium and the esophagus: implications for left atrial catheter ablation. 

Circulation 110, 3655–3660 (2004). 

158. Biktasheva, I. V, Dierckx, H. & Biktashev, V. N. Drift of scroll waves in thin 

layers caused by thickness features: asymptotic theory and numerical 

simulations. Phys. Rev. Lett. 114, 68302 (2015). 

159. Labarthe, S. et al. A bilayer model of human atria: mathematical background, 

construction, and assessment. Eur.  Eur. pacing, arrhythmias, Card. 

Electrophysiol.  J.  Work. groups Card. pacing, arrhythmias, Card. Cell. 

Electrophysiol. Eur. Soc. Cardiol. 16 Suppl 4, iv21–iv29 (2014). 

160. Wi, J. et al. Complex fractionated atrial electrograms related to left atrial wall 

thickness. J. Cardiovasc. Electrophysiol. 25, 1141–1149 (2014). 

161. Park, J. et al. Left atrial wall thickness rather than epicardial fat thickness is 

related to complex fractionated atrial electrogram. International journal of 

cardiology 172, e411–3 (2014). 

162. Platonov, P. G., Ivanov, V., Ho, S. Y. & Mitrofanova, L. Left atrial posterior wall 

thickness in patients with and without atrial fibrillation: data from 298 

consecutive autopsies. J. Cardiovasc. Electrophysiol. 19, 689–692 (2008). 

163. Sanchez-Quintana, D. et al. The terminal crest: morphological features 

relevant to electrophysiology. Heart 88, 406–411 (2002). 



185 
 

164. Sanchez-Quintana, D. et al. Anatomic relations between the esophagus and 

left atrium and relevance for ablation of atrial fibrillation. Circulation 112, 

1400–1405 (2005). 

165. Hall, B. et al. Variation in left atrial transmural wall thickness at sites 

commonly targeted for ablation of atrial fibrillation. J. Interv. Card. 

Electrophysiol. 17, 127–132 (2006). 

166. Ho, S. Y., Sanchez-Quintana, D., Cabrera, J. A. & Anderson, R. H. Anatomy of 

the left atrium: implications for radiofrequency ablation of atrial fibrillation. 

J. Cardiovasc. Electrophysiol. 10, 1525–1533 (1999). 

167. Deneke, T. et al. Histopathology of intraoperatively induced linear 

radiofrequency ablation lesions in patients with chronic atrial fibrillation. Eur. 

Heart J. 26, 1797–1803 (2005). 

168. Hassink, R. J., Aretz, H. T., Ruskin, J. & Keane, D. Morphology of atrial 

myocardium in human pulmonary veins: a postmortem analysis in patients 

with and without atrial fibrillation. J. Am. Coll. Cardiol. 42, 1108–1114 (2003). 

169. Wolf, C. M. et al. Atrial remodeling after the Fontan operation. Am. J. Cardiol. 

104, 1737–1742 (2009). 

170. Becker, A. E. Left atrial isthmus: anatomic aspects relevant for linear catheter 

ablation procedures in humans. J. Cardiovasc. Electrophysiol. 15, 809–812 

(2004). 

171. Schwartzman, D., Schoedel, K., Stolz, D. B. & Di Martino, E. Morphological 



186 
 

and mechanical examination of the atrial ‘intima’. Europace 15, 1557–61 

(2013). 

172. Beinart, R. et al. Left atrial wall thickness variability measured by CT scans in 

patients undergoing pulmonary vein isolation. J. Cardiovasc. Electrophysiol. 

22, 1232–1236 (2011). 

173. Nakamura, K. et al. Left atrial wall thickness in paroxysmal atrial fibrillation 

by multislice-CT is  initial marker of structural remodeling and predictor of 

transition from paroxysmal to chronic form. Int. J. Cardiol. 148, 139–147 

(2011). 

174. Imada, M. et al. Anatomical remodeling of left atria in subjects with chronic 

and paroxysmal atrial fibrillation evaluated by multislice computed 

tomography. International journal of cardiology 119, 384–388 (2007). 

175. Hoffmeister, P. S. et al. Evaluation of left atrial and posterior mediastinal 

anatomy by multidetector helical computed tomography imaging: relevance 

to ablation. J. Interv. Card. Electrophysiol. 18, 217–223 (2007). 

176. Pan, N.-H., Tsao, H.-M., Chang, N.-C., Chen, Y.-J. & Chen, S.-A. Aging dilates 

atrium and pulmonary veins: implications for the genesis of atrial  fibrillation. 

Chest 133, 190–196 (2008). 

177. Suenari, K. et al. Left atrial thickness under the catheter ablation lines in 

patients with paroxysmal atrial fibrillation: insights from 64-slice 

multidetector computed tomography. Heart Vessels 28, 360–368 (2013). 



187 
 

178. Lerch, J. P. & Evans, A. C. Cortical thickness analysis examined through power 

analysis and a population simulation. Neuroimage 24, 163–173 (2005). 

179. Xu, C. & Prince, J. L. Snakes, shapes, and gradient vector flow. IEEE Trans. 

Image Process. 7, 359–369 (1998). 

180. Marta Varela, Ross Morgan, Adeline Theron, Madalena Peyroteo, Leonor 

Piqueiro, M. & Henningsson, Paul Aljabar, Christoph Kolbitsch, Tobias 

Schaeffter, O. A. Atlas of atrial wall thickness as a tool for catheter ablation 

procedures. in Atrial Signals 2015 meeting (2015). 

181. Bishop, M. et al. Three-dimensional atrial wall thickness maps to inform 

catheter ablation procedures for atrial fibrillation. Europace 18, 376–83 

(2016). 

 

. 


