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Abstract

In the thesis, we consider the Directed Weighted Degree Constrained Network Design

(DWDCN) problem and its applications to Maximum Network Lifetime (MNL) problems

in wireless ad-hoc networks.

The goal of the DWDCN problem is to find a minimum-cost subgraph satisfying the

specified connectivity requirements and the specified degree bounds. This problem has many

variants, depending on the type of the connectivity requirements and on the type of the degree

bounds. We consider a general case when the connectivity requirements are defined by an

intersecting or crossing supermodular set function and the degree bounds are defined for the

out-degrees of nodes or for the in-degrees or both. Since most of the DWDCN problems

are known to be NP-hard, we consider approximation algorithms. While requiring that all

connectivity constraints are (strictly) satisfied, we allow approximation of both the total cost

and the degree bounds. More specifically, an (α,β ) bi-criteria approximation algorithm for an

DWDCN problem computes in polynomial time a subgraph which satisfies the connectivity

requirements but may violate the optimality of the cost by a factor α and degree bounds by a

factor β . We improve a number of previous (α,β )-approximation bounds, for example, we

show a (2,5)-approximation bound for the DWDCN problem with out-degree constraints and

connectivity requirements defined by an intersecting supermodular function. The previous best

bounds were (2,7) and (3,6)-approximations.

One application of the DWDCN algorithm is to solve the MNL problem. In an MNL

problem, we are given a wireless ad-hoc network with an edge-weight function representing



vi

the energy costs of individual transmissions, and a node function representing the initial energy

of nodes. The communication tasks we consider are unicast, broadcast, convergecast and

mixedcast. The goal is to compute a schedule of individual transmissions to perform a specified

communication task as many times as possible before the energy of the nodes is depleted. Using

our approximation bounds for DWDCN problems, we improve the previous approximation

algorithms for MNL problems. For example, we show a polynomial time algorithm which

computes a schedule allowing ⌊kopt/5⌋ rounds of broadcasting, where kopt is the optimal

number of rounds. This improves the previous best approximation bound of ⌊kopt/36⌋.

We also conduct experimental evaluation of the considered MNL approximation algorithms,

comparing the quality of the computed solutions with upper bounds and with solutions obtained

by heuristics.
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Chapter 1

Introduction

1.1 Network design problems with weighted degree constraints

Network design problems form one of the main topics in combinatorial optimisation, approxi-

mation algorithms, and operations research. In a typical instance of a network deign problem,

we are given a graph G = (V,E), non-negative edge-costs c(e) for all e ∈ E, and connectivity

requirements. The objective is to find a minimum cost subgraph H of G, which satisfies the

specified connectivity requirements. Examples of such problems include a wide variety of

classical problems such as the minimum spanning tree problem, the shortest path problem, and

the travelling salesman problem.

In a more general class of degree-bounded network design problems in addition to connec-

tivity requirements, we are also given degree constraints at nodes. Constraints of this type arise

naturally in various practical applications in domains such as communication networks, vehicle

routing, and VLSI chip design [1, 59, 3, 56]. Degree constraints are used to model limits on

node’s resources or admissible workload. The objective of this type of network design problems

is to find a minimum cost subgraph which satisfies the specified connectivity requirements as

well as the degree constraints (bounds) on the nodes. A well known example is the minimum
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bounded degree spanning tree problem [59, 23, 62]. A number of other degree-bounded net-

work design problems have been considered, for example in [1, 38, 35, 14, 37, 46]. Adding

degree constraints may increase considerably the computational complexity of a network design

problem. For example, the minimum spanning tree can be solved easily in polynomial time,

however, if we have degree constraints the problem becomes NP-hard [21].

In this thesis, we consider degree-bounded network design problems for directed weighted

graphs with weighted degree bounds at nodes. Such problems are referred to as Directed

Weighted Degree Constrained Network Design (DWDCN) problems [52]. The goal of a

DWDCN problem is to find a minimum cost subgraph, which satisfies the specified connectivity

requirements and the weighted degree constraints. DWDCN problems have many variants,

depending on the type of the connectivity requirements and on the type of the degree bounds.

In this thesis, we consider a general case when the connectivity requirements are defined by an

intersecting or crossing supermodular set function and the degree bounds are defined for the

weighted out-degrees of nodes or the weighted in-degrees or both.

1.2 Maximum network lifetime problems for wireless ad-hoc

networks

Unicast, broadcast and convergecast are the fundamental communication tasks in wireless

ad-hoc networks. Unicast is one-to-one communication, where information held in one node,

called the source, is transmitted to another node, called the destination, possibly via intermediate

nodes. Broadcast is one-to-all communication, where information held in one source node

is transmitted to all other nodes. Convergecast can be viewed as the opposite to broadcast:

information held in every node is transmitted to one specified node, called the sink or the

destination. Many network operations and services such as information dissemination and data

collection rely on these three communication tasks.
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The nodes of a wireless ad-hoc network are often battery-powered, but are intended to

operate over a long period of time. Typical applications for such networks include environmental

monitoring and military surveillance, where replacing or recharging the batteries may not be

easy, or even not possible at all. Therefore, an important design objective for communication

algorithms is to optimise the energy efficiency, so that the network lifetime is maximised. When

the battery of a node is depleted, then the communication protocol has to be adjusted and in the

worst case scenario the network may no longer operate (may become disconnected).

A wide range of optimization problems modelling the energy efficiency in ad-hoc wireless

networks have been proposed. One general approach is to focus on a single session, aiming

to minimize the energy used to complete one specified communication task [43, 69, 71]. The

example of this approach is the Minimum Energy Broadcast problem [8, 68, 69, 71] with the

objective of finding a broadcast tree which minimises the total energy cost. The other general

approach is to consider multiple sessions with the aim of maximising the lifetime of the network,

which could mean, for example, maximising the number of times that specified communication

tasks can be repeated until the first node depletes all its energy [13, 51, 54, 57, 58, 61]. This

approach is typically employed in continuous monitoring applications, where periodic data

gathering (convergecast) or reporting (unicast) have to be performed. For such applications,

the first, “greedy” approach of optimizing only the current session may give sub-optimal

solutions. This is because the network lifetime does not solely depend on the energy spent

while performing a specified communication task, but also on the remaining battery capacity of

the individual nodes.

In this thesis we follow the second, “global” approach to energy efficient communication,

and consider a class of Maximum Network Lifetime (MNL) problems [13, 54, 55, 57]. A

problem of this class is given by a specification of a network (node-to-node connections,

communication costs, initial capacities of node batteries, etc.) and a specification of a com-

munication task (e.g., a broadcast from a given node). This communication task is to be

executed periodically, as many times as possible. We refer to one execution of this task as one

communication round. The output is a collection of routing topologies such that each routing
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topology defines one execution of the specified communication task (one round). The objective

is to maximise the number of communication rounds, that is, to maximise the network lifetime.

The constraints are that every node must have sufficient battery capacity to participate in all

rounds.

The communication tasks which we consider for the MNL problems are broadcast, con-

vergecast, and unicast. In addition to these basic communication tasks, we also consider

so-called mixedcast, which is a combination of these three tasks. The MNL mixedcast problem

was introduced in [54] as a problem of designing the maximum number of communication

rounds such that each round consists of τ broadcasts and γ convergecasts, where τ and γ are

given non-negative integers. We will follow this definition, but our method can be also applied

to a generalized mixedcast, when all three types of communication tasks can be combined, and

more than one task of each type can be specified. For example, we might require that each

round consists of two broadcasts from each of the given source nodes r1,r2, . . . ,rq and one

convergecast to the destination node r0.

1.3 Summary of the contribution of the thesis

To state the contribution of this thesis, we have to introduce some necessary definitions. (These

definitions will be repeated and expanded with further background in Chapter 2). For given two

sets X ,Y ⊆V , X and Y intersect if X ∩Y ̸= /0 and cross if all sets X ∩Y, X\Y, Y\X , V\(X ∪Y )

are non-empty. A set function f on V is intersecting supermodular (resp. crossing supermodu-

lar) if any sets X ,Y ⊆V that intersect (resp. cross) satisfy the condition of supermodularity:

f (X)+ f (Y )≤ f (X ∩Y )+ f (X ∪Y ).

Each intersecting supermodular set function f is also crossing supermodular set function. Given

a directed graph G = (V,E) and a non-negative integral intersecting (or crossing) supermodular

set function f on V , a subgraph H = (V,F) of G is f -connected or satisfies the connectivity
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requirement f , if there are at least f (S) incoming edges to every subset S⊆V . For example, the

connectivity requirements that for each v ∈V , there is a path in H from (given) r to v, can be

specified by the intersecting supermodular function f such that f (S) = 1 for all /0 ̸= S⊆V\{r},

and f (S) = 0 otherwise. The connectivity requirements that for every pair of nodes u,v ∈V ,

there are at least k directed edge-disjoint paths in H from u to v, can be specified by the crossing

supermodular function f such that f (S) = k for all /0 ̸= S⊊V and f ( /0) = f (V ) = 0.

Table 1.1 Approximation bounds of polynomial-time algorithms for the DWDCN problems
with weighted out-degree or weighted in-degree or both weighted out- and in-degree constraints
and intersecting or crossing supermodular connectivity requirements. The shown previous
results are due to Nutov [52].

Previous results

Weighted
degree

intersecting
supermodular f

crossing
supermodular f

constraints

out-degree
(2,7) (3,(7+min{4, fmax}))
(3,6) (4,(6+min{4, fmax}))

in-degree (1,min{4, fmax})
(3,(7+min{4, fmax}))
(4,(6+min{4, fmax}))

both out- (2,7,min{6, fmax}) (4,(7+min{6, fmax}),(7+min{6, fmax}))
and in-degree (3,6,min{8, fmax}) (6,(6+min{8, fmax}),(6+min{8, fmax}))

Our results

intersecting
supermodular f

crossing
supermodular f

out-degree (2,5)
(3,(5+min{4, fmax}))

(7/2,(5+min{7/2, fmax}))
(4,(5+min{3, fmax}))

in-degree
(3/2,min{7/2, fmax})

(3,(5+min{4, fmax}))

(2,min{3, fmax})
(7/2,(5+min{7/2, fmax}))
(4,(5+min{3, fmax}))

both out- (2,6,min{6, fmax}) (4,(6+min{6, fmax}),(6+min{6, fmax}))
and in-degree (3,5,min{8, fmax}) (6,(5+min{8, fmax}),(5+min{8, fmax}))

Table 1.1 shows the previous approximation bounds of polynomial-time algorithms and

our new bounds for the DWDCN problems with weighted out-degree constraints or weighted
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in-degree constraints, or both weighted out- and in-degree constraints under intersecting or

crossing supermodular connectivity requirements. For the DWDCN problems with either

weighted out-degree or weighted in-degree constraints, an (α,β ) approximation bound of

a polynomial-time algorithm means that the computed subgraph satisfies the specified con-

nectivity requirements, has the cost at most α times the optimal cost and the degree bounds

are violated by up to a factor of β . For example, we show a (2,5)-approximation bound for

the DWDCN problem with weighted out-degree constraints under intersecting supermodular

connectivity requirements. This means that the computed f -connected subgraph H of the input

graph G has cost at most twice the optimal cost and violates the weighted out-degree constraints

by at most a factor of 5. This improves the previous best approximation bounds of (2,7) and

(3,6) shown by Nutov [50, 52].

For the DWDCN problems with both weighted out- and in-degree constraints, we consider

(α,β out ,β in)-approximation algorithms. Such an algorithm computes an f -connected subgraph

H of the input graph G, which has cost at most α times the optimal cost, violates the weighted

out-degree constraints by at most a factor of β out , and violates the weighted in-degree con-

straints by at most a factor of β in. For example, we show a (2,6,min{6, fmax})-approximation

algorithm for the DWDCN problem with both weighted out- and in-degree constraints under

intersecting supermodular connectivity requirements f , where fmax = max{ f (S) : S⊆V}. This

improves the previous best approximation bound of (2,7,min{6, fmax}). We also obtain some

improvements of the previous bounds in the special case of uniform weights in the degree

constraints. These results are not given in Table 1.1, but are summarised in Chapter 3.

The MNL problems have two variants depending on the type of the required output. In

the single topology variant, the same routing topology is used for each communication round

(that is, for each execution of the given communication task) whereas in the multiple topology

variant, the routing topologies can be different in different rounds.

Our preliminary results for the MNL problems were published in [40, 41] and were based

on the results of the DWDCN problems given in [52]. We further improve the approximation
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guarantees for the MNL problems to the values as shown in Table 1.2 using our new approx-

imation bounds for the DWDCN problems. The values in the table denote the number of

communication rounds, which can be computed in polynomial time. The kopt denotes the

maximum number of rounds that can be performed. We note that our results and the previous

results in the table guarantee the number of rounds ⌊kopt/β⌋ only for the inputs such that

w(u,v)≤ B(u)/β , for each edge (u,v).

Table 1.2 Previous results and our results for the MNL problems.

Previous results

Type of solution unicast convergecast broacast mixedcast

Single Topology kopt [61] kopt [61] ⌊kopt/25⌋ [54] ⌊kopt/36⌋ [54]

Multiple Topology
⌊kopt/16⌋[51] ⌊kopt/16⌋ [54] ⌊kopt/36⌋[54] ⌊kopt/100⌋[54]
1/31 ·kopt[51] 1/31 ·kopt[54]

Our results

Type of solution unicast convergecast broacast mixedcast

Single Topology - - ⌊kopt/5⌋ ⌊kopt/5⌋

Multiple Topology
⌊kopt/3⌋ ⌊kopt/3⌋ ⌊kopt/5⌋ ⌊kopt/5⌋
1/5 · kopt 1/5 · kopt

1.4 The contents of the thesis

This thesis consists of ten chapters, tackling two classes of problems: Directed Weighted Degree

Constrained Network Design (DWDCN) problems and the Maximum Network Lifetime (MNL)

problems in wireless ad-hoc networks. The DWDCN problems are considered in Chapters 3 to

5, and the MNL problems are considered in Chapters 6 to 9.

In Chapter 2, we provide the basic notation and definitions used throughout this thesis. We

also provide some facts from linear programming, which we need for DWDCN approximation

algorithms.
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In Chapter 3, we give formal definitions of the DWDCN problems which we consider

in this thesis, discuss previous related results, and summarise our contribution to DWDCN

approximation algorithms. Furthermore, we review Nutov’s approximation algorithms for

the DWDCN problems [50, 52] and give some notions and definitions, which are used in

later chapters in the analysis of these algorithms. In Chapter 4, we consider the DWDCN

problems under intersecting supermodular connectivity requirements and derive new improved

approximation bounds. The DWDCN problems with crossing supermodular connectivity

requirements are discussed in Chapter 5.

In Chapter 6, we formally define the MNL problems, discuss previous related results and

summarise our contribution to MNL approximation algorithms. Furthermore, we discuss the

computational complexity of the MNL problems and extend previous NP-hardness proofs of

the MNL problems to some variants of these problems considered in this thesis. In Chapter 7,

we consider the MNL unicast, broadcast, and convergecast problems and present approximation

algorithms. Moreover, we show our improved approximation bounds for these problems. We

also describe some implementation details of the MNL broadcast and convergecast approxima-

tion algorithms, which are needed to achieve polynomial running times. The MNL mixedcast

problem is considered separately in Chapter 8.

In Chapter 9, we present our experimental evaluation of the MNL broadcast approximation

algorithm, comparing the quality of the computed solutions with upper bounds, obtained by

linear programming relaxations, and with solutions obtained by a natural heuristic. Moreover,

we propose a method for improving the practical performance of the MNL approximation

algorithm.

In Chapter 10, we give concluding remarks and discuss possible future research directions

in the area of degree-bounded network design problems, highlighting some open problems.



Chapter 2

Preliminaries

In this chapter, we provide a formal definition of a graph which we consider and introduce

notations and basic facts used in this thesis (Section 2.1). In addition, we also introduce

basic terminology and facts about linear programming (LP) that are needed for the subsequent

chapters.

2.1 Basic definitions for graph

Graphs considered in this thesis are always directed graphs (V,E), where V is a set of n nodes

and E ⊆ V ×V is a set of m directed edges. For a subgraph H = (V,F) of a directed graph

G = (V,E), where F ⊆ E, and a subset S of nodes V , let δ out
H (S) (resp. δ in

H (S)) denote the set

of edges in H leaving (resp. entering) S. That is, for example, δ out
H (S) = {(u,v) ∈ H : u ∈

S,v ∈V\S}. For simplicity of notation, for a node v we will write δ out
H (v) instead of δ out

H ({v}).

For a function x : E → R+, where R+ denotes the set of non-negative real numbers, and a

subgraph H = (V,F), we define x(H) = x(F) = ∑e∈F x(e). We will normally have a cost

function c : E→ R+ defined on the edges of G and degree bounds b : B→ R+ defined on the

nodes of a given subset B ⊆ V . In the case of weighted degree bounds, we also have edges
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weights w : E → R+. The cost of a subgraph H of G is defined as c(H) and we say that a

subgraph H satisfies the weighted out-degree bounds if w(δ out
H (v))≤ b(v) for all nodes v ∈ B.

For a set-function f on V , that is, f : 2V → R+, we say that a subgraph H of G is f -

connected, if |δ in
H (S)| ≥ f (S) for every /0 ̸= S⊊V . For two sets X ,Y ⊆V , we say that X and Y

intersect if X ∩Y ̸= /0, and cross if all sets X ∩Y, X\Y, Y\X , V\(X ∪Y ) are non-empty. A set

function f is called intersecting supermodular (resp. crossing supermodular) if each pair of

sets X ,Y ⊆V that intersect (resp. cross) satisfies the condition of supermodularity:

f (X)+ f (Y )≤ f (X ∩Y )+ f (X ∪Y ).

A family F of sets is called laminar, if for every two sets X ,Y ∈F , either X ∩Y = /0, or

X ⊆ Y , or Y ⊆ X .

We say that a set of paths from a node r to a node v is edge-disjoint, if no two paths have

a common edge. A directed graph G is said to be k-edge-outconnected with root r, if there

are k edge-disjoint paths from node r to every node v ̸= r in G. Similarly, a directed graph G

is said to be k-edge-inconnected with root r, if for each node v ̸= r, there are k edge-disjoint

paths from v to r in G. For example, the graph in Figure 2.1 is 2-edge-outconnected with root r

because for each node v (except root r) there are 2 edge-disjoint paths from r to v. A graph is

strongly k-connected if for every pair of nodes v, u, there are k node-disjoint paths from v to u

and k node-disjoint paths from u to v.

An out-arborescence (a broadcast tree) Tout is a directed spanning tree that has a unique

path from a root r to every node. An in-arborescence (a convergecast tree) Tin is a directed

spanning tree that has a path from every node to the root r. An arborescence refers to either

out-arborescence or in-arborescence, depending on the context.

There are k edge-disjoint paths from r to v, if and only if, there is an r-v flow of value k with

unit edge capacities. By the maximum flow minimum cut theorem, this also means that there

are k edge-disjoint paths from r to v, if and only if, the capacity of each cut is at least k. Hence,
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Figure 2.1 Example of a graph, which is 2-edge-outconnected with root r: two edge-disjoint
paths from r to each of the nodes a, b, c.

there are k edge-disjoint path from r to v, if and only if, δ in
G (S)≥ k for each subset of nodes S

such that v ∈ S⊆V\{r}. Thus, there are k edge-disjoint paths from a node r to all other nodes

v ∈V\{r}, if and only if, δ in
G (S)≥ k, for every subset of nodes S such that /0 ̸= S⊆V\{r}.

We should mention that there are important network design problems with connectivity

defined by a function which is not supermodular. One example is the directed Steiner Tree

problem of finding a minimum cost directed out-tree rooted at r that contains a given subset of

nodes D⊆V . Such connectivity requirements can be specified by the set function f , where

f (S) = 1, if r /∈ S and S∩D ̸= /0 and f (S) = 0 otherwise. This function f however is not crossing

or intersecting supermodular, but has the weakly supermodular property. A set function f is

weakly supermodular if for every two subsets X and Y ,

f (X)+ f (Y ) ≤ f (X ∩Y )+ f (X ∪Y ), or

f (X)+ f (Y ) ≤ f (X−Y )+ f (Y −X).

2.2 Linear programs and integer programs

A linear programming problem is to optimise a linear objective function, subject to linear

equality and/or linear inequality constraints. A minimisation linear program (LP) can be
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expressed in the standard (matrix) form as

Minimise: cT x
}

objective function

Subject to: Ax ≤ b
}

linear constraints

x ≥ 0
}

non-negative constraints

where vector c = (c1, . . . ,cn) ∈Rn and matrix A = (ai, j : i = 1, . . . ,m, j = 1, . . . ,n) ∈Rm×n and

b = (b1, . . . ,bm) are given and x = (x1, . . . ,xn) ∈ Rn is a vector of n real variables.

If x ∈Rn satisfies all linear constraints specified in an LP, then x is called a feasible solution

to this LP. We say that an LP is feasible if it has at least one feasible solution x, and infeasible

otherwise. The feasible region of an LP is the set of all possible x ∈Rn that satisfy the specified

linear constraints, that is, the set of all possible feasible solutions. An optimal solution x∗ to

an LP is a feasible solution, which has the minimum objective function value in the case of

a minimisation problem or that has the largest objective value in the case of a maximisation

problem. That is, for a minimisation problem, cT x∗ = min{cT x : Ax ≤ b and x ≥ 0}. An LP

may have more than one optimal solution, but there is only one optimal solution value. Given a

constraint, ax≤ b in an LP, we say that the constraint is active (tight) for x′ ∈ Rn, if ax′ = b. A

basic feasible solution to an LP is a feasible solution x that has n linearly independent active

(tight) constraints. An optimal basic feasible solution is a basic feasible solution that has an

optimal objective value.

The set of all feasible solutions (feasible region) to an LP forms a polyhedron P = {x ∈Rn :

Ax≤ b and x≥ 0}. A bounded polyhedron is called a polytope. Thus we refer to the feasible

region of an LP as an LP-polyhedron or an LP-polytope, and we refer to feasible solutions

as feasible points. An extreme point is a vertex point of a polyhedron: a point which is not a

strict linear combination of any two points in the polyhedron. The basic feasible solutions of

an LP correspond to the extreme points of the LP-polyhedron. If an LP is feasible, then it has

an optimal solution at an extreme point of the feasible region. In other words, if there is an

optimal solution to an LP, then there is an optimal basic feasible solution.
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The main methods for solving linear programs includes the simplex method [9] (and its

many variants), the interior point method [25, 31] and the ellipsoid method [32]. The ellipsoid

method and the interior point method solve linear programs in polynomial time. In general,

the interior-point method and the simplex method are more efficient than the ellipsoid method

in practice. However, the ellipsoid method has an advantage that it can be applied to a more

general setting.

When we apply the ellipsoid method, we do not need to know the constraints explicitly.

We only need to have access to a separation oracle. A separation oracle is a polynomial time

algorithm that determines whether a given candidate point x is feasible or not, and finds a

violated constraint if x is not feasible. Hence, the ellipsoid method can be employed for solving

linear programs in polynomial-time (in terms of the number of variables), even if there are

exponentially many constraints, provided that we have a separation oracle. In this thesis, the

linear programs which appear in algorithms for networks design problems and MNL problems

have exponentially many constraints. Therefore, polynomial time separation oracles are needed

in order to claim that such LPs can be solved in polynomial time. We will give details of these

LPs and corresponding separation oracles later in this thesis.



Chapter 3

Directed Weighted Degree Constrained

Network Design (DWDCN)

In Chapters 3 – 5, we discuss Directed Weighted Degree Constrained Network Design

(DWDCN) problems and show how we derive new improved approximation bounds for

some class of DWDCN problems. As mentioned in Section 1.1, the DWDCN problems have

many variants depending on the type of the connectivity requirements and on the type of the

degree bounds. In this thesis, we consider DWDCN problems with the following types of the

degree bounds:

• DWDCN with weighted out-degree constraints,

• DWDCN with weighted in-degree constraints,

• DWDCN with weighted out- and in-degree constraints.

We consider these types of DWDCN problems under intersecting or crossing supermodular

connectivity requirements, i.e, a connectivity requirement is specified by an intersecting or

crossing supermodular function.
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We follow the approach proposed by Nutov [52], who developed polynomial bi-criteria

approximation algorithms for these problems. By conducting a detailed analysis of Nutov’s

approximation algorithms, we improve a number of previous approximation bounds. In

Chapter 4, we consider DWDCN problems under intersecting supermodular connectivity

requirements and derive new improved approximation bounds for these problems. The problems

with crossing supermodular connectivity requirements are discussed separately in Chapter 5.

This chapter consists of the following parts. In Section 3.1, we formally define the DWDCN

problems which we consider in this thesis. In Sections 3.2 and 3.3, we summarise our contribu-

tion to the DWDCN problems and discuss previous related work. In Section 3.4, we review

Nutov’s approximation algorithms for the DWDCN problems [52]. In Section 3.5, we give

some notions and definitions, which will be used in Chapters 4 and 5 in the analysis of these

approximation algorithms.

3.1 Definitions of problems and approximation bounds

Let G = (V,E,c,w) denote a directed graph (V,E) with an edge-cost function c : E→ R+ and

an edge-weight function w : E → R+. The problem with out-degree constraints is formally

defined as follows.

Problem: DWDCN problem with weighted out-degree constraints

Instance: G = (V,E,c,w), a subset B⊆V , out-degree bounds b : B→ R+, and an intersecting

(or, crossing) supermodular set function f on V .

Objective: Find a minimum cost f -connected subgraph H = (V,F) of G which satisfies the

weighted out-degree constraints

w(δ out
H (v))≤ b(v), for all v ∈ B. (3.1)
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The DWDCN problem with weighted in-degree constraints is defined analogously, with the

weighted out-degree constraints (3.1) replaced with the weighted in-degree constraints

w(δ in
H (v))≤ bin(v), for all v ∈ Bin, (3.2)

where bin : Bin→ R+ are in-degree bounds for the nodes in a given subset Bin ⊆V .

In the case when we have both out- and in-degree constraints, the input includes both

degree bound functions b : B→ R+ and bin : Bin→ R+. The objective is to find a minimum

cost f -connected subgraph H = (V,F) of G which satisfies both weighted out- and in-degree

constraints (3.1) and (3.2).

Various connectivity requirements can be defined by intersecting or crossing supermodular

functions. For example, consider a problem of finding k-edge-outconnected subgraph H of G

with root r, which satisfies the weighted out-degree constraints (3.1). This problem is known as

the Weighted degree constrained k-edge-outconnected subgraph problem and it is a special case

of the DWDCN problems with weighted out-degree constraints. The connectivity requirement

of this problem can be defined by the intersecting supermodular function f such that f (S) = k

for all /0 ̸= S ⊆ V\{r} and f (S) = 0 otherwise. An example of a problem associated with

a crossing supermodular function is the Weighted degree constrained strongly k-connected

subgraph problem. The connectivity requirement of this problem can be defined by the crossing

supermodular function f such that f (S) = k for all /0 ̸= S⊊V and f ( /0) = f (V ) = 0.

For the DWDCN problems with either (weighted) out-degree constraints or (weighted) in-

degree constraints, we consider (α,g)-approximation algorithms. Such an algorithm computes

an f -connected subgraph H of the input graph G, which has the cost at most α times the

optimal cost and for each node v ∈ B, the degree of v in H is at most g(b(v)), if the input

has a feasible solution (i.e, has an f -connected subgraph which satisfies the weighted degree

constraints). If there is no feasible solution, then the algorithm either realises that this is the

case or returns an f -connected subgraph that satisfies the degree bounds g(b(v)). Thus the first

parameter α of (α,g)-approximation indicates the approximation ratio for the cost whereas
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the second parameter g indicates the approximation of the degree bounds. The function g

would typically be of a form βx+ γ , for some β ≥ 1 and γ ≥ 0. In this case, instead of writing

"(α,βx+ γ)-approximation", we will write "(α,βb(v)+ γ)-approximation" (to follow the

notation from the previous papers).

For the DWDCN problems with both (weighted) out- and in-degree constraints, we extend

the definition of an (α,g)-approximation algorithm to cover both in- and out-degree bounds.

An algorithm for the DWDCN problem with both (weighted) out- and in-degree constraints is

said to be (α,g′,g′′)-approximation if, for a feasible input, the algorithm returns f -connected

subgraph H of G with cost at most α times the optimal cost, for each node v∈ B, the (weighted)

out-degree of v is at most g′(b(v)) and for each node v ∈ Bin, the (weighted) in-degree of v is at

most g′′(bin(v)).

3.2 Our contribution

We consider the approximation algorithms for the DWDCN problems under intersecting

supermodular connectivity requirements, proposed by Nutov [50, 52]. By developing more

detailed analysis of these algorithms, we derive better approximation bounds. Our bounds

are stated in Theorems 3.1–3.5 below and compared with Nutov’s bounds in Tables 3.1 and

3.2. The results for crossing supermodular requirements are obtained by a reduction to the

intersecting supermodular requirements.

Under intersecting supermodular connectivity requirements, Nutov [50, 52] gave

polynomial-time (2,7b(v))- and (3,6b(v))-approximation algorithms for the DWDCN problem

with weighted out-degree constraints. For the case of unit weights, he gave a polynomial-time

(2,2b(v)+4)-approximation algorithm. Later in [53] he improved and generalised this bound

to (1/ε,⌈b(v)/(1−ε)⌉+3)-approximation, where ε ∈ [0,1/2). Our bounds for these problems

are given in the following theorem.



3.2 Our contribution 18

Theorem 3.1. Under intersecting supermodular connectivity requirements, the DWDCN prob-

lem with weighted out-degree constraints admits a polynomial-time (2,5b(v))-approximation

algorithm. For the case of unit weights, the problem admits a polynomial-time (2, 2b(v)+2)-

approximation algorithm.

For DWDCN with intersecting supermodular connectivity requirements and in-degree

constraints, Nutov [50, 52] gave a polynomial-time (1, min{4, fmax} ·bin(v))-approximation

algorithm, where fmax = maxS⊆V f (S). For unit weights, Nutov [52] also showed that the

problem admits an exact polynomial-time (1, min{ fmax,bin(v)})-algorithm. Our bounds are

given in the following theorem.

Theorem 3.2. Under intersecting supermodular connectivity requirements, the DWDCN

problem with weighted in-degree constraints admits polynomial-time (2, min{3, fmax} ·bin(v))

and (3/2, min{7/2, fmax} ·bin(v))-approximation algorithms.

Our results for the DWDCN problem with weighted in-degree constraints under intersecting

supermodular connectivity requirements stated in Theorem 3.2 improve the approximation

of the weighted degree bounds, paying for this with an increased approximation ratio for the

cost. The algorithm for this problem can be applied to solve Maximum Network Lifetime

Convergecast problem [40, 41, 54], where the weighted degree bounds are specified, but there

are no edge cost. Our Theorem 3.2 gives a better approximation bound for this problem than in

Nutov [54, 55].

Under crossing supermodular connectivity requirements, Nutov’s method [52] gives

the same approximation bounds for both out-degree constraints and in-degree constraints

(that is, for both cases when either all degree constraints refer to out-degrees or all degree

constraints refer to in-degrees). For the weighted case, Nutov [52] gave polynomial-time

(3, (7+min{4, fmax}) ·b(v)) and (4, (6+min{4, fmax}) ·b(v))-approximation algorithms. For

unit weights, he also gave a polynomial-time (3, 2b(v)+4+min{ fmax,b(v)})-approximation

algorithm. The following theorem summaries our results for these problems.
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Theorem 3.3. Under crossing supermodular connectivity requirements, the DWDCN problem

with weighted out-degree constraints admits polynomial-time (3, (5+min{4, fmax}) ·b(v)),

(4, (5+min{3, fmax}) ·b(v)), and (7/2, (5+min{7/2, fmax}) ·b(v))-approximation algo-

rithms. For the case of unit weights, the problem admits a polynomial-time (3, 2b(v) +

2+min{ fmax,b(v)})-approximation algorithm. The same bounds apply for the cases with

in-degree constraints.

All four approximation bounds given in Theorem 3.3 are better than the corresponding

bounds in Nutov [52].

For the DWDCN problem with both weighted out- and in-degree constraints (that is, one

input instance can include both out- and in-degree constraints) and the intersecting supermodular

connectivity requirements, Nutov [52] gave polynomial-time
(
2, 7b(v) , min{6, fmax} ·bin (v)

)
and

(
3, 6b(v) , min{7, fmax} ·bin (v)

)
-approximation algorithms. For unit weights, he also

showed that the problem admits a polynomial-time (2, 2b(v) + 4, min{2bin(v) + 2, fmax}-

approximation algorithm. Our bounds for these problem are given in the following theorem.

Theorem 3.4. Under intersecting supermodular connectivity requirements, the DWDCN

problem with weighted out- and in-degree constraints admits polynomial-time (2, 6b(v),

min{6, fmax} · bin(v)) and (3, 5b(v), min{8, fmax} · bin(v))-approximation algorithms. For

the case of unit weights, the problem admits a polynomial-time (2, 2b(v)+3, min{2bin(v)+

2, fmax}-approximation algorithm.

Under the crossing supermodular connectivity requirements, Nutov [52] gave polynomial-

time (4, (7+min{6, fmax}) · b(v), (7+min{6, fmax}) · bin(v)) and (6, (6+min{7, fmax}) ·

b(v), (6 + min{7, fmax}) · bin(v))-approximation algorithms. For the case of unit weight,

he also showed that the problem admits a polynomial-time (4, 2b(v) + 4 + min{2b(v) +

2, fmax}, 2bin(v)+4+min{2bin(v)+2, fmax})-approximation algorithm. The following theo-

rem gives our bounds for these problems.
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Theorem 3.5. Under crossing supermodular connectivity requirements, the DWDCN problem

with weighted out- and in-degree constraints admits polynomial-time (4, (6+min{6, fmax}) ·

b(v), (6+min{6, fmax}) ·bin(v)) and (6, (5+min{8, fmax}) ·b(v), (5+min{8, fmax}) ·bin(v))-

approximation algorithms. For the case of unit weights, the problem admits a polynomial-time

(4, 2b(v) + 3+min{2b(v) + 2, fmax}, 2bin(v) + 3+min{2bin(v) + 2, fmax})-approximation

algorithm.

We note that Nutov [52] states the
(
3, 6b(v) , min{7, fmax} ·bin (v)

)
-approximation bounds

for the intersecting supermodular connectivity requirements, but as far as we can see, the

proof given there supports only a weaker bound of
(
3, 6b(v) , min{8, fmax} ·bin (v)

)
, and

consequently a weaker bound of (6, (6+min{8, fmax}) ·b(v), (6+min{8, fmax}) ·bin(v)) for

the crossing supermodular connectivity requirements.

Table 3.1 (α,g)-approximations for DWDCN problem with (weighted) out-degree or in-
degree constraints (but not both) under intersecting and crossing supermodular connectivity
requirements. The parameter ε ∈ [0,1/2).

Previous results

intersecting supermodular crossing supermodular

w out-degree in-degree out-degree or in-degree

any (2, 7b(v)) [52]
(
1, min{4, fmax}bin(v)

)
(3, (7+min{4, fmax})b(v)) [52]

(3, 6b(v)) [52] [52] (4, (6+min{4, fmax})b(v)) [52]

unit (2, 2b(v)+4) [52]
(
1, min{ fmax,bin (v)}

) (
3, 2b(v)+3+min{ fmax,bin (v)}

)
(1

ε
,⌈ b(v)

1−ε
⌉+3) [53] [52] [52]

Our contribution

intersecting supermodular crossing supermodular

w out-degree in-degree out-degree or in-degree

any (2, 5b(v))
(3

2 , min{7
2 , fmax}bin(v)

)
(3, (5+min{4, fmax})b(v))(

2, min{3, fmax}bin(v)
) (

7/2,
(
5+min{3

2 , fmax}
)

b(v)
)

(4,(5+min{3, fmax})b(v))

unit (2,2b(v)+2)
(
3, 2b(v)+2+min{ fmax,bin (v)}

)
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3.3 Previous related work

Jain [27] introduced the iterative rounding method for network design problems on undirected

graphs and gave a 2-approximation algorithm for the minimum cost Steiner network problem.

Lau et al. [38] extended the method to solve the degree bounded survivable network design

problem for undirected graphs. This extended method was called the iterative relaxation

and has been applied to various network design problems with degree bounded constraints,

including spanning tree [1, 62], Steiner network [62, 46, 36], edge-connectivity [50, 52, 1] and

node-connectivity [53, 14, 34]. Mostly, these problems are considered in undirected graphs.

Frank [16] showed that the network design problem (without degree constraints) of finding

minimum cost f -connected subgraph can be solved optimally in polynomial-time if function

f is intersecting supermodular. However, there are network design problems with a crossing

supermodular function f (without degree constraints) known to be NP-hard. Melkonian

and Tardos [49] gave a 2-approximation algorithm for problems with crossing supermodular

functions based on Frank’s result of [16].

Lau et al. [38] were the first to consider degree-bounded network design problems with

(edge) general connectivity requirements and unit weights. For undirected graphs, they gave

a polynomial-time (2, 2b(v) + 3)-approximation algorithm under the weakly supermodu-

lar connectivity requirements. For directed graph, they also provided a polynomial-time

(4,4b(v)+6,4bin(v)+6)-approximation algorithm under intersecting supermodular connectiv-

ity requirements, and a (8,8b(v)+12,8bin(v)+12)-approximation algorithm under crossing

supermodular connectivity requirements. For crossing supermodular connectivity require-

ments, they showed in [39] an improved bound of (3,3b(v)+5,3bin(v)+5). For 0,1-valued

intersecting supermodular connectivity requirements, they also give a (2,2b(v)+ 2,bin(v))-

approximation algorithm. Later, Lau et al. [35] gave (2,b(v)+3) approximation algorithm for

degree-bounded Steiner forest and (2,6rmax +3) for degree-bounded survival network design

problem, where rmax is the maximum connectivity requirement over all pairs of nodes.
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Bansal et al. [1] showed a polynomial-time (1/ε,⌈b(v)/(1−ε)⌉+4,⌈bin(v)/(1−ε)⌉+4)-

approximation algorithm for directed graphs, unit weights, and intersecting supermodular

connectivity requirements. For crossing supermodular connectivity requirements, they gave a

polynomial-time (2/ε,⌈b(v)/(1− ε)⌉+4+ fmax,⌈bin(v)/(1− ε)⌉+4+ fmax)-approximation

algorithm. In both cases, 0≤ ε ≤ 1/2.

For the case of the weighted degree constraints, Fukunaga and Nagamochi [17] considered

the problems in undirected graphs and showed a (2, 7b(v))-approximation algorithm for weakly

supermodular connectivity requirements. Nutov [50, 52] considered network design problems

with weighted degree constraints in directed graphs and his results are given in Section 3.2.

All results mentioned in this section, as well as our new results, are based on the general idea

of iterative rounding, which originated in Jain [27] and was later adapted to degree-bounded

network design in Lau et al. [38] and Singh et al. [62].

3.4 The Iterative Relaxation approximation algorithmic

framework for DWDCN problems

In this section, we review the Nutov’s approximation algorithms [52] for the DWDCN problems.

These algorithms give the previous best approximation bounds for DWDCN with weighted

degree constraints considered in this thesis. We obtain our improved approximation bounds by

developing more detailed analysis of this algorithmic framework. Our description refers to the

DWDCN problem with weighted out-degree constraints. There are analogous algorithms for

the cases of in-degree constraints and both out- and in-degree constraints.

The algorithm is based on the iterative relaxation, which works as follows. First the

DWDCN problem is formulated as an integer program and its linear programming (LP)

relaxation is solved. The LP-relaxation is to minimise ∑e∈E c(e) ·x(e) over the polytope P( f ,b)
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defined by the following constraints:

x
(
δ

in
E (S)

)
≥ f (S), for all /0 ̸= S⊊V,

∑
e∈δ out

E (v)
x(e)w(e)≤ b(v), for all v ∈ B,

0≤ x(e)≤ 1, for all e ∈ E.

(3.3)

(3.4)

(3.5)

The algorithm checks whether the LP-polytope P( f ,b) is empty or not. If the polytope is

empty (not feasible), then algorithm returns "Infeasible" and terminates. Clearly, the corre-

sponding integer program has no feasible solution as well. Otherwise, the algorithm performs

the following iterative process.

First compute an optimal basic feasible solution x = (x(e))e∈E . Based on the values x(e),

certain edges are removed from E and some of them are added to the (partial) solution J ⊆ E;

initially J = /0. More specifically, edges e with x(e) = 0 are removed from E, while edges

with x(e)≥ 1/α are removed from E and added to the partial solution J, where α is a fixed

parameter. Thus, only edges e with 0 < x(e)< 1/α are left in set E. The algorithm maintains

the set B′ of the nodes with weighted out-degree bounds; initially, B′ = B. A node v is removed

from B′, if the degree of v is less than or equal to△, where△ is another fixed parameter. That

is, we remove from B′ all nodes with |δ out
E (v)| ≤ △. Note that the nodes removed from B′

remain in the graph.

With given α and the updated sets E, B′ and J, the residual LP problem of minimising

∑e∈E c(e) · x(e) over the polytope P( f ,b;α,J,B′) is then solved in the next iteration. The

residual polytope P( f ,b;α,J,B′) is defined by the following constraints:

x
(
δ

in
E (S)

)
≥ fJ(S) ≡ f (S)−|δ in

J (S)|, for all /0 ̸= S⊊V,

∑
e∈δ out

E (v)
x(e)w(e)≤ bα,J(v)≡ b(v)−w(δ out

J (v))/α, for all v ∈ B′,

0≤ x(e)≤ 1, for all e ∈ E.

(3.6)

(3.7)

(3.8)
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1 Initialization: J← /0, B′← B, E ← E \ {(u,v) ∈ E : w(u,v)> b(v)} ;
2 if P( f ,b) = /0 then return "INFEASIBLE" and STOP;
3 while E ̸= /0 do
4 Find an optimal basic feasible solution

x = min{∑e∈E c(e) · x(e) : x ∈ P( f ,b;α,J,B′)}.
5 Remove from E all edges with x(e) = 0.
6 Remove from E all these edges all edges with x(e)≥ 1/α and add them to J.
7 Remove from B′ all nodes v ∈ B with |δ out

E (v)| ≤ △.
8 end
9 return F ← J

Figure 3.1 Algorithm for DWDCN problem with weighted out-degree constraints under
intersecting supermodular connectivity requirements

Observe that P( f ,b;α, /0,B) is the polytope P( f ,b) used in the first iteration. More generally,

the residual LP problem are of the same type as the initial LP problem. If PG( f ,b) denotes

the initial LP-polytope for the input graph G and PG′( f ,b;α,J,B′) denotes the residual LP

polytope for the current graph G′, then PG′( f ,b;α,J,B′) = PG′( f ′,b′), where J is the partial

solution (selected edges) obtained from G , f ′(S) = f (S)−|δ in
J (S)|, b′ = b(v)−w(δ out

J (v))/α ,

and B′ ⊆ B is the set of nodes with |δ out
G′ (v)| ≥ △.

This iterative process continues until E becomes empty. The algorithm is summarised in

Figure 3.1. If the initial polytope P( f ,b) is feasible, then the residual polytopes P( f ,b;α,J,B′)

in all subsequent iterations are also feasible. The values of the parameters α and △ are

selected in such a way that it can be proven that at least one edge is removed from E in each

iteration. Hence, the algorithm is guaranteed to terminate in O(m) iterations. At the end of

the computation, the algorithm outputs the final set J. Denoting this set by F , the subgraph

H = (V,F) is an f -connected subgraph of G because it can be shown that the algorithm

maintains the invariant that for each /0 ̸= S⊊V ,

|δ in
E (S)| ≥ f (S)−|δ in

J (S)|.

At the end of the computation, E = /0, so this invariant implies that for each /0 ̸= S ⊊ V ,

|δ in
J (S)| ≥ f (S), as required by the f -connectedness.
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Observe that the initial LP problem min{c · x : x ∈ P( f ,b)} and the residual LP problems

min{c · x : x ∈ P( f ,b;α,J,B′)} have at most m variables but have an exponential number

of constraints, so to solve the LP problem in each iteration in polynomial-time, we need a

polynomial-time separation oracle. Jain [27] showed that a separation oracle for the residual LP

problems can be easily obtained from the separation oracle for the initial LP problem. Hence,

we will only show the separation oracle for the initial LP problem.

The separation oracle for the initial LP problem (minimising the cost over polytope P( f ,b))

works as follows. Let x be a given candidate point. For the weighted degree constraints

(3.4), we can check one by one whether the given constraint is violated. Since |B| ≤ |V |, we

have at most n such constraints, so this can be done in O(n2) time. Now consider the cut

constraints (3.3). We need to confirm that x satisfies all these constraints or find a subset S

such that the constraint corresponding to S is not satisfied. For a such subset S, we would have

x(δ in
E (S))< f (S). Let h(S) = x(δ in

E (S))− f (S). It is clear that a violated set exists, if and only

if, min{h(S) : /0 ̸= S ⊊V} is negative. Note that the function h is the sum of the submodular

function x(δ in
E (.)) and intersecting submodular function − f (.), so function h is intersecting

submodular. This means that any pair of sets X ,Y ⊆V that intersect (X ∩Y ̸= /0) satisfies the

following submodularity condition:

h(X)+h(Y )≥ h(X ∩Y )+h(X ∪Y ).

Schrijver [60] developed a polynomial-time algorithm to minimise submodular functions. This

algorithm requires submodularity condition for each pair X ,Y ⊆V . Since function h is only

intersecting submodular, we cannot directly apply Schrijver’s algorithm to minimise h. Instead,

we reduce finding min{h(S) : /0 ̸= S⊊V} to O(n2) submodular function minimisation. We fix

v,u ∈V , v ̸= u, define Vv,u =V\{v,u}, and set hv,u(S) = h(S∪{v}) for each S⊆Vv,u. Function

hv,u is a set function on Vv,u. For any two sets X ⊆Vv,u and Y ⊆Vv,u, sets X ∪{v} and Y ∪{v}

intersect, so hv,u(X) + hv,u(Y )≥ hv,u(X ∩Y )+hv,u(X ∪Y ). Therefore, the function hv,u is “fully”

submodular on Vv,u. Hence, we can apply Schrijver’s algorithm to find min{hv,u(S) : S⊆Vv,u}.
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Since

min
v,u∈V
{min{hv,u(S) : S⊆Vv,u}} = min

v,u∈V
{min{h(S) : v ∈ S⊆V\{v}}}

= min{h(S) : /0 ̸= S⊊V},

we can find min{h(S) : /0 ̸= S⊊V} by applying Schrijver’s algorithm n(n−1) times, once for

each pair v,u of distinct nodes in V . Thus polynomial-time separation oracle implies that the

initial LP problem can be solved in polynomial-time using the ellipsoid method [32].

3.5 The notion of (α,△)-sparseness of DWDCN polytopes

To explain the approximation property of the algorithm, as given in [52], we use the definition

of sparseness of a polytopes P( f ,b;α,J,B′) given below. This is the crucial definition in the

analysis of the approximation algorithm in [52] and also in our analysis in this thesis. Similar

notions have been used in [38, 62, 1, 35, 46].

Definition 1. For α ≥ 1 and△≥ 1, a polytope P( f ,b;α,J,B′) is (α,△)-sparse, if and only

if there exists a node v ∈ B′ with |δ out
E (v)| ≤ △, or for any basic solution x ∈ P( f ,b;α,J,B′),

there exists e ∈ E such that x(e) = 0 or x(e)≥ 1/α .

It is well known that if an LP polytope P is feasible, then the problem min{c ·x : x ∈ P} has

an optimal basic solution x. Nutov [52] proved the following lemma.

Lemma 3.6. [52] If for any J ⊆ E,B′ ⊆ B the polytope P( f ,b;α,J,B′) is (α,△)-sparse (if

non-empty), then the DWDCN problem for weighted out-degree constraints and in-degree

constraints admits a polynomial-time (α,(α +△) ·b(v))-approximation algorithm. For the

case of unit weights, the DWDCN problem admits a polynomial-time (α,α ·b(v)+△−1)-

approximation algorithm.



Chapter 4

Approximation bounds for intersecting

supermodular connectivity requirements

In this chapter, we analyse the approximation algorithms for the DWDCN problems with

intersecting supermodular connectivity requirements, given in the previous chapter (Section 3.4)

and derive new improved approximation bounds for these problems. In Section 4.1, we consider

the DWDCN problem with weighted out-degree constraints. In Section 4.2, we consider the

DWDCN problem with weighted in-degree constraints. In Section 4.3, we consider the

DWDCN problem with both out- and in-degree constraints.

4.1 DWDCN with weighted out-degree constraints

In this section, we prove Theorem 3.1. Nutov [50, 52] showed that for intersecting supermodular

f polytopes P( f ,b;α,J,B′) are (2,5)-sparse and (3,3)-sparse, and using Lemma 3.6 he proved

that the algorithm described in Section 3.4 can give (2,7b(v))- and (3,6b(v))-approximation.

We will show that polytopes P( f ,b;α,J,B′) are actually (2,4)-sparse (Lemma 4.2) and (3,2)-

sparse (Lemma 4.1), which improve the results of [50, 52]. We further improve this to

(2,3)-sparseness (Lemma 4.3).
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Lemma 4.1. For any J ⊆ E and B′ ⊆ B, polytope P( f ,b;α,J,B′) is (2,4)-sparse for intersect-

ing supermodular f .

Lemma 4.2. For any J ⊆ E and B′ ⊆ B, polytope P( f ,b;α,J,B′) is (3,2)-sparse for intersect-

ing supermodular f .

Lemma 4.3. For any J ⊆ E and B′ ⊆ B, polytope P( f ,b;α,J,B′) is (2,3)-sparse for intersect-

ing supermodular f .

Theorem 3.1 follows from Lemma 3.6 and Lemma 4.3. Hence, to complete the proof of

Theorem 3.1, it only remains to prove Lemma 4.3, which will be given in Section 4.1.4. The

reason for giving Lemmas 4.1 and 4.2 is that they are used in the proof of Theorem 3.4, which

deals with the DWDCN problem with (both) weighted in- and out-degree constraints. The

proofs of Lemmas 4.1 and 4.2 are given in Sections 4.1.2 and 4.1.3.

4.1.1 The structure of basic solutions and the outline of the sparseness

proof

If x ∈ P( f ,b;α,J,B′) is a basic solution such that 0 < x(e)< 1 for all e ∈ E, then each tight

constraint (for x) is either

• a tight cut constraint x(δ in
E (S)) = fJ(S) defined by some set /0 ̸= S⊊V with fJ(S)≥ 1, or

• a tight weighted degree constraint ∑e∈δ out
E (v) x(e)w(e) = bα,J(v) defined by some node

v ∈ B′.

The following lemma was proven in [50].
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Lemma 4.4. [50] For any basic solution P( f ,b;α,J,B′) with 0 < x(e)< 1 for all e ∈ E, there

exists a laminar family L on V and T ⊆ B′ such that fJ(S) ≥ 1 for all S ∈ L , and such

that x ∈ P is the unique solution to the system of linear equations:

x(δ in
E (S)) = fJ(S), for all S ∈L , (4.1)

∑
e∈δ out

E (v)
x(e)w(e) = bα,J(v), for all v ∈ T, (4.2)

and |L |+ |T |= |E|. In particular, the characteristic vectors of {δ in
E (S) : S ∈L } are linearly

independent.

For a basic solution P( f ,b;α,J,B′), and L and T as in the lemma above, we define a

child-parent relation on the members of L ∪T as follows. For S ∈L or v ∈ T , its parent is

the inclusion minimal member of L properly containing it, if any. Note that when v ∈ T and

{v} ∈L , then {v} is the parent of v, and that no member of T has a child. This relation defines

a forest F with the "vertex" set L ∪T . Given S ∈L , we define CS as the union of the sets

of edges δ in
E (R) for all children R of S in L , that is,

⋃
{δ in

E (R) : R is a child in L of S}. The

following lemma is proven in [50, 52].

Lemma 4.5. [50, 52] At least one of the sets δ in
E (S)\CS and CS\δ in

E (S) must be non-empty. If

one of the sets δ in
E (S)\CS,CS\δ in

E (S) is empty, then the other has more than α edges (hence, at

least α +1, if α is integral).

The previous sparseness proofs and our proofs of Lemmas 4.1 – 4.3 are based on assigning

tokens to the edges of the graph G and then redistributing these tokens throughout the forest F .

The total number of tokens in the graph is 2|E|. We first perform an initial assignment of these

2|E| tokens, which satisfies the following property. Each node v ∈ T gets 2 tokens (referred

to as node-tokens), which are fixed at v and never used during the reassignment process. The

remaining 2|E|−2|T | tokens are distributed, in some way, among the edges and designated as

head- or tail-tokens. Both head- and tail-tokens may be fractional.
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Definition 2. The head-token of an edge (u,v) ∈ E is an S-token, if v ∈ S. The tail-token of an

edge (u,v) is an S-token, if and only if, both u,v ∈ S. A node-token of v ∈V is an S-token, if

and only if, v ∈ S.

This definition implies that for a set S ∈L , if R ∈L is a child of S in the forest, then

all R-tokens are also S-tokens. It also implies that the tail-token of edge (u,v) leaving S (i.e,

u ∈ S,v ∈V\S) is not an S-token.

Based on the initial assignment and using Definition 2, we will redistribute the 2|E| tokens

throughout the forest F in a way that each proper descendant of S in forest F gets 2 S-tokens

and S gets 2+ z S-tokens with z > 0. We say that a (2,2+ z)-token reassignment is feasible, if

we can redistribute the 2|E| tokens in such a manner. A formal definition of the (2,2+ z)-token

reassignment is given below.

Definition 3. A (2,2+ z)-token reassignment scheme is an initial assignment of 2|E| tokens as

defined in the paragraph before Definition 2 and a sequence of assignments of the tokens to

(some of) the vertices of the forest F, with one assignment for each S ∈L . The assignment

for S ∈L assigns S-tokens to vertices of the subtree of F rooted at S in such a way that each

descendant of S gets 2 S-tokens, and S gets 2+ z S-tokens, where z > 0.

We remark that similar notions of the token reassignment scheme are used in [50, 52, 38, 35,

62]. However, in these approaches, the parameter z is set to integral. By generalising this token

reassignment scheme so that the parameter z may take on possibly fractional (positive) values

and by finding more efficient initial assignment of the tokens, we obtain stronger sparseness

properties.

The proofs of Lemmas 4.1 – 4.3 are by contradiction, so for convenience we state the

Negation Assumption for the condition of (α,△)-sparseness. A polytope P( f ,b;α,J,B′) is not

(α,△)-sparse, if and only if:

1. |δ out
E (v)| ≥ △+1, for every v ∈ B′, and



4.1 DWDCN with weighted out-degree constraints 32

2. there exists a basic solution x ∈ P( f ,b;α,J,B′) such that 0 < x(e) < 1/α , for every

e ∈ E.

Note that the second condition implies that |δ in
E (S)| ≥ α +1 for each S ∈L , since x(δ in

E (S)) =

∑e∈δ in
E (S) x(e) = fJ(S) is a positive integer.

The Negation Assumption for (α,△) sparseness, the definition of the forest F and the

feasibility of (2,2+ z)-token reassignment scheme give us a contradiction to Lemma 4.4 that

|E|= |L |+ |T |. This implies that the polytope is (α,△)-sparse. Further details will be given

in each sparseness proof.

4.1.2 (2,4)-sparseness of P( f ,b;α,J,B′) - Proof of Lemma 4.1

We assume the Negation Assumption for (2,4)-sparseness and take a basic solution x which

satisfies Condition 2 of this assumption. For this basic solution x ∈ P( f ,b;α,J,B′), let L be a

laminar family and T be a set of nodes as defined in Lemma 4.4. Recall that the constraints

corresponding to the sets in L and to the nodes in T are tight for x and |L |+ |T |= |E|. The

Negation Assumption implies that we have |δ in
E (S)| ≥ 3 for all S ∈L (from Condition 2 of

the Negation Assumption) and |δ out
E (v)| ≥ 5 for all v ∈ T (from Condition 1 of the Negation

Assumption).

We first perform an initial assignment of 2|E| tokens as follows.

Initial assignment

The total number of tokens in graph G is 2|E|. For each edge e = (v,u) ∈ E such that v /∈ T , we

designate 1 token as the head-token of e and 1 token as the tail-token of e. For each v ∈ T , there

are |δ out
E (v)| ≥ 5 outgoing edges from v. We designate 2 tokens as the node-tokens of v and 1

token as the head-token of each edge e ∈ δ out
E (v). We also designate tail-tokens for the edges in

δ out
E (v) according to the following two cases. If v has exactly one L -sibling R in F and there is

an edge (v,x) such that x ∈ R, then we designate 1 token as the tail-token of this edge and 1/2



4.1 DWDCN with weighted out-degree constraints 33

token as the tail-tokens of the remaining edges in δ out
E (v). Otherwise, we designate 1/2 token

as the tail-token of each edge e ∈ δ out
E (v). In both cases, since |δ out

E (v)| ≤ 5, the total number

of the tail-tokens assigned to edges in δ out
E (v) is at most |δ out

E (v)|−2. Thus, the total number

of tokens used in the initial assignment is at most

∑
v/∈T

∑
(v,u)∈E

(1+1)+ ∑
v∈T

(2+ |δ out
E (v)|+ |δ out

E (v)|−2)

= ∑
v/∈T

2
∣∣δ out

E (v)
∣∣+ ∑

v∈T
2
∣∣δ out

E (v)
∣∣ = 2|E|.

Note that the 2 node-tokens are fixed at v ∈ T and never used during the reassignment

process. This implies that node v ∈ T , which does not have a parent in F also gets 2 tokens.

We also note that the initial assignment in Nutov [52] puts 1/2 tail-token for each edge (v,x)

with v ∈ T . We obtain a stronger sparseness property by considering the special edges which

can be given 1 tail-token.

Using the initial assignment above, we will show in Claim 1 that a (2,3)-token reassignment

is feasible (see Definition 3). We obtain a contradiction as follows. Let the root tokens refer

to the S-tokens for all S ∈ L , which are roots of trees in the forest F . Let T̂ ⊆ T be the

set of nodes in T , which correspond to single-vertex trees in F and let T̃ = T\T̂ be the set

of nodes in T , which have a parent in F . The number of the root tokens in F is at most

2|E|− (2+5/2)|T̂ | since the two node-token and 1/2 tail-tokens of each v ∈ T̂ are not S-tokens

for any S ∈L . The feasibility of a (2,3)-token reassignment scheme implies that there are

at least 2(|L |+ |T̃ |)+ 1 root-tokens. Hence 2|E|− (2+ 5/2)|T̂ | ≥ 2(|L |+ |T̃ |)+ 1, so we

have 2|E| ≥ 2(|L |+ |T̃ |+ |T̂ |)+1+5/2|T̂ |> 2(|L |+ |T |). This contradicts |E|= |L |+ |T |,

implying that polytope P( f ,b;α,J,B′) is (2,4)-sparse.

The remaining part of the proof of Lemma 4.1 is the proof of the following claim.

Claim 1. A (2,3)-token reassignment scheme is feasible if polytope P(f ,b;α,J,B′) is not

(2,4)-sparse.
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Proof. Based on the initial assignment above, we show that a (2,3)-token reassignment scheme

is feasible. The proof is given by induction on the number of L -descendants of S in F . Recall

that each node v ∈ T has two node-tokens, which are fixed at node v and never used during the

reassignment process. By Definition 2, all these node-tokens are S-tokens for each S ∈L such

that v ∈ S. Therefore, v ∈ T always gets the required number of S-tokens if v is a descendant of

S in F .

Base case: S has no L -descendants in F . We assign to S the head-tokens from any three

edges e ∈ δ in
E (S). This is feasible since for each S ∈L , |δ in

E (S)| ≥ 3. By Definition 2, all these

head-tokens (3 tokens) are S-tokens. Hence S gets an assignment as required.

Inductive steps. Take S in the forest F which has at least one child R in L . By the inductive

hypothesis, we assume an assignment of R-tokens to the subtree rooted in R for each child R

of S. Each child R ∈L of S has 3 R-tokens and each descendant of R has 2 R-tokens. We

consider three cases.

S has at least 3 children in L : By moving 1 R-token from each child R to S, S gets at least

3 R-tokens. Each child R now has 2 remaining R-tokens. Hence, we get an assignment as

required since by the definition, all R-tokens here are S-tokens as well.

S has exactly 2 children, say R1 and R2, in L : By moving 1 R-tokens from each child to S,

S gets 2 R-tokens, which are also S-tokens (see Definition 2), so S needs 1 more S-token.

If there is (u,x) ∈ δ in
E (S)\Cs, then we assign to S the head-token of this edge. By Definition 2,

this head-token (1 token) is an S-token. Hence, S gets an assignment as required.

If there is no such edge, i.e, δ in
E (S)\CS = /0, then CS\δ in

E (S) has at least α +1 = 3 edges (see

Lemma 4.5). Among these edges, if there is (v,u) ∈ CS\δ in
E (S) such that v /∈ T , then we

assign to S the tail-token (1 token) of this edge. By Definition 2, this tail-token is an S-token.

Hence, S gets an assignment as required.

Otherwise, for all (v,u) ∈ CS\δ in
E (S),v ∈ T . Recall that during the initial assignment, we

designated 1/2 token as the tail-token of each edge (v,u) ∈ δ out
E (v), if v ∈ T . We assign

to S all tail-tokens from (v,u) ∈ CS\δ in
E (S). This way S gets at least 3 tail-tokens since



4.1 DWDCN with weighted out-degree constraints 35

|CS\δ in
E (S)| ≥ 3. Note that these tail-tokens (3/2 tokens), which we assigned to S, are from

either (i) (v,u) ∈ δ out
E (v) such that v ∈ R and u ∈ R′, where R is a child of S and R′ is a sibling

of R, or (ii) (v,u) ∈ δ out
E (v) such that v is a child of S and has at least two siblings in L . By

Definition 2, the tail-tokens from (i) are S-tokens and they are not R-tokens for a descendant

R of S. This is because u is not in R. Therefore these tail-tokens have not been assigned

before. The tail-tokens from (ii) are clearly S-tokens and not R-tokens. Thus, S gets the

required number of S-tokens.

S has exactly 1 child R in L : S gets 1 R-token from R (which is also S-token), so it needs 2

more S-tokens. Lemma 4.5 implies that we have only the following sub-cases: (i) both sets

CS\δ in
E (S) and δ in

E (S)\CS have at least 1 edge, (ii) CS\δ in
E (S) is empty and δ in

E (S)\CS has at

least 3 edges, (iii) δ in
E (S)\CS is empty and CS\δ in

E (S) has at least 3 edges.

(i) Both sets CS\δ in
E (S) and δ in

E (S)\CS have at least 1 edge.

We assign to S the head-token from edge e ∈ δ in
E (S)\CS. This head-token (1-token) is an

S-token by Definition 2. Hence, S gets 1 S-token, so S needs 1 more S-token. We assign

to S the tail-token from (v,z) ∈CS\δ in
E (S). Recall that during the initial assignment if

there exists an edge (v,z) ∈ δ out
E (v) such that v ∈ T and z ∈ R, then we designate 1 token

as the tail-token of this edge. Therefore, in any case, either v ∈ T or v /∈ T , S gets one

tail-token (1 token) from (v,z)∈CS\δ in
E (S). By Definition 2, this tail-token is an S-token.

Therefore, S gets the required number of S-tokens.

(ii) CS\δ in
E (S) is empty and δ in

E (S)\CS has at least 3 edges.

We assign to S the head-tokens from any two edges e ∈ δ in
E (S)\CS. Since these head-

tokens (2 tokens) are S-tokens by Definition 2, S gets the required number of S-tokens.

(iii) δ in
E (S)\CS is empty and CS\δ in

E (S) has at least 3 edges.

We assign to S the tail-tokens from all edges (v,u) ∈ CS\δ in
E (S). Again, the tails of

these edges may or may not be in T . If none of them is in T , then S gets at least three

tail-tokens (3 tokens) since |CS\δ in
E (S)| ≥ 3. Hence, S gets an assignment as required.

Now consider the tight case that none of edges (v,z) ∈CS\δ in
E (S) are such that v /∈ T , i.e,

all edges (v,z) ∈CS\δ in
E (S) are such that v ∈ T . Recall that during the initial assignment,

if there exists (v,z) ∈ δ out
E (v) such that z ∈ R and v ∈ T , then we designated 1 token as
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the tail-token of this edge, and we designated 1/2 token as the tail-token of the remaining

edges in δ out
E (v). Therefore, S gets at least 3 tail-tokens (2 tokens). By Definition 2, all

these tail-tokens (2 tokens) are S-tokens, S gets an assignment as required.

4.1.3 (3,2)-sparseness of P( f ,b;α,J,B′) - Proof of Lemma 4.2

We prove that P( f ,b;α,J,B′) is (3,2)-sparse by contradiction, assuming the Negation Assump-

tion for (3,2)-sparseness and taking a basic solution x satisfying Condition 2 of this assumption.

For this basic solution x ∈ P( f ,b;α,J,B′), let L be a laminar family and T ⊆ B′ be a set of

nodes as defined in Lemma 4.4. Recall that the constraints corresponding to the sets in L and

to the nodes in T are tight for x and |L |+ |T |= |E|. Thus, we have |δ in
E (S)| ≥ 4 for all S ∈L

(from Condition 2 of the Negation Assumption) and |δ out
E (v)| ≥ 3 for all v ∈ T (from Condition

1 of the Negation Assumption).

We first perform an initial assignment of 2|E| tokens given below. We note that in addition

to 2 fixed node-tokens at the nodes in T we now also initially have spare node-tokens. We use

the same definition of S-tokens as in Definition 2.

Initial assignment

The total number of tokens in graph G is 2|E|. For each edge (v,u) ∈ E such that v /∈ T , we

designate 1 token as the head-token and 1 token as the tail-token. For each v ∈ T , there are

|δ out
E (v)| ≥ 3 outgoing edges from node v. We designate δ out

E (v) tokens as the node-tokens

of v and 1 token as the head-token of each e ∈ δ out
E (v). Hence each node v ∈ T has at least 3

node-tokens. Among these node-tokens, we fix 2 tokens for v. Therefore each node v∈ T has at

least 1 spare node-token available. The spare node-tokens will be used during the reassignment.
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The fixed two tokens are never assigned during reassignment process. The total number of

tokens used in this initial assignment is at most

∑
v/∈T

∑
(v,u)∈E

(1+1)+ ∑
v∈T

(
∑

(v,u)∈E
(1)

)
+
∣∣δ out

E (v)
∣∣

= ∑
v/∈T

2
∣∣δ out

E (v)
∣∣+ ∑

v∈T
2
∣∣δ out

E (v)
∣∣= 2|E|.

Using this initial assignment, we will show later in Claim 2 that a (2,4)-token reassignment

is feasible (see Definition 3).

We obtain a contradiction as follows. Let the root tokens refer to the S-tokens for all S ∈L ,

which are roots of trees in the forest F . Let T̂ ⊆ T be the set of nodes in T , which correspond to

single-vertex trees in F , and let T̃ = T\T̂ be the set of nodes in T , which have a parent in F . The

number of the root tokens in F is at most 2|E|−3|T̂ | since the three node-tokens of each v ∈ T̂

are not S-tokens for any S ∈L . The feasibility of a (2,4)-token reassignment scheme implies

that there are at least 2(|L |+ |T̃ |)+2 root tokens. Hence, 2|E|−3|T̂ | ≥ 2(|L |+ |T̃ |)+2, so

we have 2|E| ≥ 2(|L |+ |T̃ |+ |T̂ |)+2+ |T̂ |> 2(|L |+ |T |). This contradicts |E|= |L |+ |T |

implying that P( f ,b;α,J,B′) is (3,2)-sparse.

The remaining part of the proof of Lemma 4.2 is the proof of the following Claim 2.

Claim 2. A (2,4)-token reassignment scheme is feasible if polytope P(f ,b;α,J,B′) is not

(3,2)-sparse..

Proof. Based on the initial assignment above, we show that a (2,4)-token reassignment scheme

is feasible. The proof is given by induction on the number of L -descendants of S in F . Recall

that for each node v ∈ T , we have at least three nodes-tokens. Among these node-tokens, two

node-tokens are fixed for itself and hence each v ∈ T has at least 1 spare node-token available

(this token will be used for other assignment). By Definition 2, the fixed node-tokens at v are

S-tokens if v is in S. Therefore, v ∈ T always gets the required number of S-tokens if v is a

descendant of S in F .
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Base case: S has no L -descendants in F . We assign to S the head-tokens from any four edges

(u,v) ∈ δ in
E (S). This is feasible since for each S ∈L , |δ in

E (S)| ≥ 4. By definition, all these

head-tokens (4 tokens) are S-tokens. Hence S gets an assignment as required.

Inductive steps. Take S in the forest F which has at least one child R in L . By the inductive

hypothesis, we assume an assignment of R-tokens to the subtree rooted in R for each child R

of S. Each child R ∈L of S has 4 R-tokens and each descendant of R has 2 R-tokens. We

consider two cases.

S has at least 2 children in L : By moving 2 R-tokens from each child R to S, S gets at least

4 R-tokens. Each child R now has 2 remaining R-tokens. Hence, we get an assignment as

required since by the definition, all R-tokens are S-tokens as well.

S has exactly 1 child in L : By moving 2 R-tokens from R, S gets 2 R-tokens (also S-tokens),

but needs 2 more S-tokens. Lemma 4.5 implies that we have only the following sub-cases:

(i) both sets CS\δ in
E (S) and δ in

E (S)\CS have at least 1 edge, (ii) CS\δ in
E (S) is empty and

δ in
E (S)\CS has at least 4 edges, (iii) δ in

E (S)\CS is empty and CS\δ in
E (S) has at least 4 edges.

(i) Both sets CS\δ in
E (S) and δ in

E (S)\CS have at least 1 edge.

We assign to S the head-token from edge e ∈ δ in
E (S)\CS. Hence, S gets 1 head-token

(S-token), so S needs 1 more S-token. Now consider edge in (v,u) ∈CS\δ in
E (S). If v /∈ T ,

then we assign to S the tail-token from (v,u) ∈CS\δ in
E (S). This tail-token is an S-token

by Definition 2. If v ∈ T , then we assign to S one node-token (S-token) from v (Recall

that each v ∈ T has at least 1 spare node-token available). Therefore, in any case, either

v ∈ T or v /∈ T , S gets 1 S-tokens. Hence, S gets in total 2 S-tokens, thus S gets the

required number of S-tokens.

(ii) CS\δ in
E (S) is empty and δ in

E (S)\CS has at least 4 edges.

We assign to S the head-tokens from any two edges (u,v) ∈ δ in
E (S)\CS. All these head-

tokens (2 tokens) are S-tokens by Definition 2. Hence, S gets the required number of

S-tokens.

(iii) δ in
E (S)\CS is empty and CS\δ in

E (S) has at least 4 edges.
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If S does not have a child v ∈ T , then we assign to S all the tail-tokens from (v,z) ∈

CS\δ in
E (S). This way S gets at least 4 tail-tokens. All these tail-tokens (4 tokens) are by

Definition 2 S-tokens. Thus, S gets the required number of S-tokens.

Now assume that S has a child v in T . We consider separately the cases when

|CS\δ in
E (S)∩ δ out

E (v)| ≥ 4 and when |CS\δ in
E (S)∩ δ out

E (v)| ≤ 3. First consider the case

when |CS\δ in
E (S)∩ δ out

E (v)| ≥ 4. This implies that |δ out
E (v)| ≥ 4. By the initial assign-

ment, we know that v has 2 fixed node-tokens and at least 2 spare node-tokens. By

moving these 2 spare node-tokens (S-tokens) to S, S gets the required number of S-tokens.

Now consider the other case that |CS\δ in
E (S)∩δ out

E (v)| ≤ 3. Since |CS\δ in
E (S)| ≥ 4, there

exists a node y in S such that (y,u) ∈ CS\δ in
E (S). If y /∈ T , then we assign to S the

tail-token of this edge and the spare 1 token from v. Hence, S gets 2 tokens, which by

Definition 2, are S-tokens. If y ∈ T , we know that y also has at least 1 spare node-token

available. Therefore, by moving the spare node-token from v and y, S gets 2 additional

S-tokens. Thus S gets the required number of S-tokens.

4.1.4 (2,3)-sparseness of P( f ,b;α,J,B′) - Proof of Lemma 4.3

We assume the Negation Assumption for (2,3)-sparseness (see page 31) and take a basic

solution x satisfying Condition 2 of this assumption. For this basic solution x ∈ P( f ,b;α,J,B′),

let L be a laminar family and T be a set of nodes as defined in Lemma 4.4. Hence, we have

|δ in
E (S)| ≥ 3 for all S ∈L and |δ out

E (v)| ≥ 4 for all v ∈ T .

Similarly as in the proofs of Lemmas 4.1 and 4.2, we initially have the total number of

tokens is 2|E|. In the proof of Lemma 4.2, these tokens are redistributed to the edges (heads

and tails) and nodes of graph. At the time of the initial assignment, head and tail-tokens are

discrete unit tokens and remain such during the reassignment process. Based on this initial

assignment, we inductively show that a (2,4)-token reassignment scheme is feasible, if polytope
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is not (3,2)-sparse. This implies that the polytope must be (3,2)-sparse since any (2,4)-token

reassignment scheme needs more than 2|E| tokens. In the proof of Lemma 4.1, head-tokens

remain discrete unit tokens but tail-tokens are split into some fractions and are reassigned to

the edges and nodes during the initial assignment. Again, based on the initial assignment,

we inductively show that a (2,3)-token reassignment scheme is feasible, if polytope is not

(2,4)-sparse. Now, in the proof of Lemma 4.3, we allow both head and tail-tokens to be

fractional. Thereby we find a more efficient initial assignment which leads to a (2,2+ z)-token

reassignment scheme for some 0 < z < 1, if the polytope is not (2,3)-sparse.

We first prove the following claim and then we will complete the proof of Lemma 4.3.

Claim 3. If polytope P( f ,b;α,J,B′) is not (2,3)-sparse, then there exists 0 < z < 1 such that

a (2,2+ z)-token reassignment scheme is feasible with z > 0.

Proof. In addition to the parameter z, we use in the proof also non-negative real parameters

h, t1, t2. The values of all these parameters will be set at the end of the proof. Before we

redistribute the tokens inductively using the forest structure F of the laminar family L , we

have to specify the initial assignment of tokens.

Initial assignment

Recall that the total number of tokens in the graph is 2|E|. For each e = (v,u) ∈ E such that

v /∈ T , we designate h tokens as head-tokens of e and 2− h tokens as tail-tokens of e, for

some real 0≤ h≤ 2. For each v ∈ T , there are |δ out
E (v)| ≥ 4 outgoing edges from node v. We

designate 2 tokens as node-tokens of v and h tokens as head-tokens of each edge e ∈ δ out
E (v).

We also designate tail-tokens for the edges in δ out
E (v) according to the following two cases. If

v has exactly one L -sibling R in forest F and there is at least one edge (v,x) such that x ∈ R,

then we choose one of these edges, designate t1 tokens as tail-tokens of this edge and designate

t2 tokens as tail-tokens for each of the other edges in δ out
E (v). Otherwise, we designate t2 tokens

as tail-tokens for each edge (v,u). The reason for these two cases will be clear when we show

the inductive reassignment later in the proof. To ensure that we do not exceed the total of 2|E|
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tokens, we require that h, t1, and t2 satisfy the following constraints.

2+ |δ out
E (v)| ·h+ t1 +(|δ out

E (v)|−1) · t2 ≤ 2|δ out
E (v)|, (4.3)

2+ |δ out
E (v)| ·h+ |δ out

E (v)| · t2 ≤ 2|δ out
E (v)|. (4.4)

Thus the number of tokens used in the initial assignment is at most ∑v/∈T ∑(v,u)∈E((h+(2−

h))+∑v∈T 2|δ out
E (v)|= 2|E|.

Constraint (4.4) implies that h+ t2 < 2 and this constraint is clearly monotone with respect

to the value of |δ out
E (v)| (that is, if (4.4) is true for |δ out

E (v)| = 4, then it is also true for any

|δ out
E (v)| ≥ 4). Constraint (4.3) can be rearrange as 2+ t1− t2+ |δ out

E (v)| · (h+ t2)≤ 2|δ out
E (v)|,

hence it is also monotone with respect to |δ out
E (v)| (observe that 2+ t1− t2 ≥ 0, because t2 < 2).

Therefore, to ensure that (4.3) and (4.4) hold whenever |δ out
E (v)| ≥ 4, we require

2+4h+ t1 +3t2 ≤ 8, and (4.5)

2+4h+4t2 ≤ 8. (4.6)

We remark that the node-tokens are fixed in the sense that they will never be reassigned

anywhere else during the inductive steps. Therefore node v ∈ T always gets the required

number of S-tokens, if v is a descendant of S in F .

Now using this initial assignment we show that a (2,2+ z)-token reassignment scheme is

feasible. The proof is by induction on the number of L -descendants of S in F .

Base case: S has no L -descendants in F .

We assign to S the head-tokens from all edges (u,v) ∈ δ in
E (S). All these tokens are S-tokens by

definition. This way S gets at least 3h tokens since
∣∣δ in

E (S)
∣∣≥ 3. To make sure that S gets this

way at least 2+ z tokens we require

3h≥ 2+ z. (4.7)
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Inductive steps. Take now S in the forest F which has at least one child R in L . Recall the

notation that CS is the union of the sets of edges δ in
E (R) for all children R of S in L . By

inductive hypothesis, we assume that for each child R ∈L of S, R has at least 2+ z R-tokens

and each descendant of R has at least 2 R-tokens.

We consider separately the case when S has exactly one child R in L and the case when S has at

least two children in L . Lemma 4.5 implies that we have only the following sub-cases: (i) both

sets CS\δ in
E (S) and δ in

E (S)\CS have at least 1 edge, (ii) CS\δ in
E (S) is empty and δ in

E (S)\CS has

at least 3 edges, (iii) δ in
E (S)\CS is empty and CS\δ in

E (S) has at least 3 edges.

S has exactly 1 child R in L : We move z tokens from R to S. Now R has at least 2 R-tokens

and S has z R-tokens. Each descendant of R also has at least 2 R-tokens. By Definition 2,

all these R-tokens are S-tokens. Thus R and its descendants have the required number of

S-tokens, but S needs 2 additional S-tokens.

(i) Both sets CS\δ in
E (S) and δ in

E (S)\CS have at least 1 edge.

We assign to S the h head-tokens from one edge e ∈ δ in
E (S)\CS and the tail-tokens from

one edge (v,u) ∈CS\δ in
E (S), which are by definition S-tokens (observe that v ∈ S). Note

that node v may or may not be in T . If v /∈ T , then edge (v,u) has 2−h tail-tokens and

if v ∈ T , then edge (v,u) has t1 tail-tokens, Hence, to guarantee that S gets at least 2

additional tokens, we require

h+ t1 ≥ 2. (4.8)

(ii) CS\δ in
E (S) is empty and δ in

E (S)\CS has at least 3 edges.

We assign to S the head-tokens from all edges e ∈ δ in
E (S)\CS. This way S gets at least

3h tokens, which are by definition S-tokens. The constraints (4.7) implies that S gets at

least 2 additional S-tokens.

(iii) δ in
E (S)\CS is empty and CS\δ in

E (S) has at least 3 edges.

We assign to S the tail-tokens from all edges (v,u) ∈CS\δ in
E (S). Again, the tails of these

edges may or may not be in T . If none of them is in T , then S gets 3(2−h) tail-tokens.

If (v,u) ∈ CS\δ in
E (S) and v ∈ T , then S gets t1 tail-tokens from this edge and at least
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min{2−h, t1, t2} tail-tokens from each of the remaining edges in CS\δ in
E (S). Therefore,

we require

3(2−h) ≥ 2, (4.9)

t1 +2 ·min{2−h, t1, t2} ≥ 2. (4.10)

S has at least 2 children in L : For each child R ∈L of S, we move z tokens from R to S.

Each child R now has at least 2 R-tokens and S has at least 2z R-tokens. Each descendant of

R also has at least 2 R-tokens. By definition, all these R-tokens are S-tokens. Thus R and its

descendants have the required number of S-tokens, but S needs 2− z additional S-tokens.

(i) Both sets CS\δ in
E (S) and δ in

E (S)\CS have at least 1 edge.

We assign to S the h head-tokens from one edge e ∈ δ in
E (S)\CS and the tail-tokens from

one edge (v,u) ∈CS\δ in
E (S), which are by definition S-tokens. Again, node v may or

may not be in T . If v /∈ T , then edge (v,u) has 2−h tail-tokens and if v ∈ T , then edge

(v,u) has t2 tail-tokens. Therefore, to give S at least 2− z additional S-tokens we require

that

h+ t2 ≥ 2− z. (4.11)

(ii) CS\δ in
E (S) is empty and δ in

E (S)\CS has at least 3 edges.

We assign to S the head-tokens from all edges e ∈ δ in
E (S)\CS. Hence, S gets at least

3h≥ 2 head-tokens, which are S-tokens (see constraints (4.7)).

(iii) δ in
E (S)\CS is empty and CS\δ in

E (S) has at least 3 edges.

We assign to S the tail-tokens from all edges (v,u) ∈ CS\δ in
E (S). The tail-tokens can

be either from (a) (v,u) ∈CS\δ in
E (S) such that v is not in any child of S, or (b) (v,u) ∈

CS\δ in
E (S) such that v is in child R of S and u is in another child R′ of S. Clearly, the

tail-tokens in the case (a) have not been assigned before since they are not R-tokens for

any child R of S. The node v in the case (b) has been considered previously as v is inside

R. However, in this case, the tail-tokens assigned to edge (v,u) have not been used as
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by definition, they are not R-tokens for the child R of S (the tail-tokens from (x,y) are

R-tokens only if both x,y are in R). By definition, all these tail-tokens are S-tokens and

each edge in CS\δ in
E (S) has either 2−h (if v /∈ T ) or t2 (if v ∈ T ) tail-tokens. Hence, we

require that

3 ·min{2−h, t2} ≥ 2− z. (4.12)

The existence of a feasible solution to the constraints (4.5)–(4.12) with 0≤ h≤ 2, t1 ≥ 0, t2 ≥ 0

and 0 < z implies that a (2,2+ z)-token reassignment scheme is feasible. It is easy to check

that the following solution satisfies all constraints: h = 8/9, t1 = 10/9, t2 = 4/9, and z = 2/3.

We remark that it turns out that this is the unique solution for our constraints.

Now we complete the proof of Lemma 4.3 using Claim 3. We reach the contradiction

as before. We perform the initial assignment of tokens as described in Claim 3 and consider

(2,2+ z)-token reassignment scheme for all S which are roots in F .

Let the root tokens refer to the S-tokens for all S ∈L which are roots of trees in the forest

F . Let T̂ ⊆ T be the set of nodes in T which correspond to single-vertex trees in F , and let

T̃ = T\T̂ be the set of nodes in T , which have a parent in F . Note that the two node-tokens

and 4/9 tail-tokens of each v ∈ T̂ are not S-tokens for any S ∈L . Therefore, the Negation

Assumption for (2,3)-sparseness implies that the number of the root tokens in F is at most

2|E|− (2+4 ·4/9)|T̂ |. The feasibility of a (2,3)-token reassignment scheme implies that there

are at least 2(|L |+ |T̃ |)+2/3 root tokens. Hence, 2|E|−(2+16/9)|T̂ | ≥ 2(|L |+ |T̃ |)+2/3,

so we have 2|E| ≥ 2(|L |+ |T̃ |+ |T̂ |) + 2/3 + 16/9|T̂ | > 2(|L |+ |T |). This contradicts

|E|= |L |+ |T |, implying that polytope P( f ,b;α,J,B′) is (2,3)-sparse.
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4.2 DWDCN with weighted in-degree constraints

In this section, we prove Theorem 3.2. Let P( f ,bin) be the polytope defined by the following

constraints.
x
(
δ

in
E (S)

)
≥ f (S), for all /0 ̸= S⊊V,

∑
e∈δ in

E (v)

x(e)w(e)≤ bin(v), for all v ∈ Bin,

0≤ x(e)≤ 1, for all e ∈ E.

Given α ≥ 1, an edge set J ⊆ E, a subset B′′⊆ Bin, let polytope P( f ,bin;α,J,B′′) be defined

as:

x
(
δ

in
E (S)

)
≥ fJ(S)≡ f (S)−|δ in

J (S)|, for all /0 ̸= S⊊V,

∑
e∈δ in

E (v)

x(e)w(e)≤ bin
α,J(v)≡ bin(v)−w(δ in

J (v))/α, for all v ∈ B′′ ⊆ Bin,

0≤ x(e)≤ 1, for all e ∈ E.

Observe that P( f ,bin;α, /0,Bin) is polytope P( f ,bin).

The algorithm given in Figure 3.1 can be easily modified to solve the DWDCN problem

with weighted in-degree constraints, by considering polytope P( f ,bin) in the beginning of the

algorithm, and by finding an optimal basic feasible solution x to the LP problem of minimising

∑e∈E c(e) · x(e) over the polytope P( f ,bin;α, /0,Bin) at each iteration of the while loop.

For the DWDCN problem with weighted in-degree constraints, we now use the following

definition of sparseness of polytope.

Definition 4. Polytope P( f ,bin;α,J,B′′) is (α,△)-sparse, if and only if, there exists a

node v ∈ B′′ with |δ in
E (v)| ≤ △, or for any basic solution x ∈ P( f ,bin;α,J,B′′), there exists

e ∈ E such that x(e) = 0 or x(e)≥ 1/α .

Note that if P( f ,bin;α,J,B′′) is empty, then it is trivially (α,△)-sparse.
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Lemma 4.6. For each integer △ ≥ 1, if α = 1+ 1/△, then polytope P( f ,bin;α,J,B′′) is

(α,△)-sparse.

The proof of Lemma 4.6 gives the following corollary.

Corollary 4.7. Polytope P( f ,bin;α,J,B′′) is (3/2,2)-sparse and (2,1)-sparse.

Corollary 4.7 and Lemma 3.6 imply that there is a polynomial-time (2,3b(v))- and

(3/2,7/2b(v))-approximation algorithm for the DWDCN problem with in-degree constraints

under the intersecting supermodular connectivity.

Let H ′ = (V,F ′) be the output of the above algorithms. From the graph H ′, we find an

inclusion minimal edge set F ⊂ F ′ on V such that H = (V,F) is f -connected. Now Theorem 3.2

easily follows from Claim 4 below.

Claim 4. [52] Let f be an intersecting supermodular function on V , and let F ⊆ E be an

inclusion-wise minimal edge set on V such that H = (V,F) is f -connected. Then, |δ in
F (v)| ≤

fmax, where fmax = max{ f (S) : S⊆V}.

Hence, to complete the proof of Theorem 3.2, it only remains to prove Lemma 4.6. This

will be given in the following section.

4.2.1 (α,△)-sparseness of P( f ,bin;α,J,B′′)- Proof of Lemma 4.6

Nutov [52] showed that a polytope P( f ,bin;α,J,B′′) is (1,3)-sparse. He proved this using the

token reassignment approach described in Section 4.1. Our sparseness proof (the proof of

Lemma 4.6) is similar to this approach in a sense that we exploit the structure of the forest

F = L ∪T . However, instead of counting the number of tokens, which were assigned to the

edges in the graph, we simply count a number of edges and we will obtain a contradiction.
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Similarly to Lemma 4.4, for any basic solution x ∈ P( f ,bin;α,J,B′′) with 0 < x(e) < 1

for all e ∈ E, we have a laminar family L on V and T in ⊆ B′′ such that the constraints

corresponding to L and T in are tight for x and uniquely define x. Equations (4.2) are now the

following weighted in-degree constraints.

∑
e∈δ in

E (v)

x(e)w(e) = bin
α,J(v), for all v ∈ T in.

Thus, we have

|L |+
∣∣T in∣∣= |E|. (4.13)

We use the notation T in to make it clear that we consider here the weighted in-degrees.

Again, we prove that P( f ,bin;α,J,B′′) is (α,△)-sparse by contradiction assuming the

following Negation Assumption for (α,△)-sparseness of the polytope P( f ,bin;α,J,B′′):

1. |δ in
E (v)| ≥ △+1, for every v ∈ B′′, and

2. there exists a basic solution x ∈ P( f ,bin;α,J,B′′) such that 0 < x(e) < 1/α , for every

e ∈ E.

We take a basic solution x satisfying the second condition of the above negation assumption.

For this basic solution x ∈ P( f ,bin;α,J,B′′), let L be a laminar family and T in be a set of

nodes as defined above. For L and T in, we consider the same forest F as defined for the proofs

of Lemmas 4.2, 4.1 and 4.3. Further, for any S′ ∈L , we define D(S′) as the number of vertices

of the subtree of F rooted at S′. Let T̂ in ⊆ T in be the set of nodes in T in, which correspond to

single-vertex trees in F and let T̃ in = T in\T̂ in be the set of nodes in T in, which have a parent in

F . By the Negation Assumption, we have |δ in
E (v)| ≥ △+1, for each node v ∈ T in. Therefore

we also have |δ in
E (v)| ≥ △+ 1, for each node v ∈ T̂ in. Claim 5 below implies that for each

root S of a tree in the forest F , there are at least D(S)+ fJ(S) edges in the graph with heads in
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S. Since for each S′ ∈L , fJ(S′)≥ 1, we have

|E| ≥ ∑
S∈ roots(F)

(D(S)+ fJ (S))+(△+1) · |T̂ in|

≥ ∑
S∈ roots(F)

(D(S)+1)+(△+1) · |T̂ in|

≥ 1+ ∑
S∈ roots(F)

D(S)+△· |T̂ in|+ |T̂ in|

= 1+ |L |+
∣∣∣T̃ in

∣∣∣+△· |T̂ in|+ |T̂ in|

≥ 1+ |L |+
∣∣T in∣∣.

This contradicts the Equation (4.13), implying that P( f ,bin;α,J,B′′) is (α,△)-sparse.

It remains to prove the following claim which gives a lower bound on the number of edges

with heads in a given S ∈L . For convenience, we drop the subscript J, for example, f (S)

below stands for fJ(S). Let E(X ,Y ) be the number of edges with the tail in set X and the head

in set Y .

Claim 5. If △ is a positive integer and α = 1+ 1/△, then E(V,S) ≥ D(S)+ f (S), for any

S ∈L .

Proof. We proof the claim by induction on the number of L -descendants of S in F .

Base case: S has no L -descendants in F .

Since for each edge e ∈ E, 0 < x(e)< 1/α , we have

f (S) <
1
α
·
∣∣δ in

E (S)
∣∣ = △

(△+1)
·
∣∣δ in

E (S)
∣∣ (4.14)

For each v ∈ T in, |δ in
E (v)| ≥ △+ 1 (the first condition of the negation assumption). We

split the nodes in S∩T in into two groups. Let T ′ be the set of nodes v ∈ S∩T in such that

|δ in
E (v)∩δ in

E (S)| ≥△+1 and let T ′′ = T in\T ′ be the set of nodes v∈ S∩T in such that |δ in
E (v)∩

δ in
E (S)| ≤ △. Hence, T ′∪T ′′ = S∩T in. Note also that D(S) = 1+

∣∣S∩T in
∣∣.
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Since for each v ∈ T in, |δ in
E (v)| ≥ △+1, node v ∈ T ′′ must have at least one incoming edge

which is fully in S. Hence,

E(V,S)≥
∣∣δ in

E (S)
∣∣+ ∣∣T ′′∣∣ .

For each node v ∈ T ′, |δ in
E (v)∩δ in

E (S)| ≥△+1, so
∣∣δ in

E (S)
∣∣≥ (△+1) |T ′|. Therefore, 1/(△+

1) ·
∣∣δ in

E (S)
∣∣≥ |T ′|. Thus, using (4.14),

E(V,S)≥
(

1− 1
△+1

)
·
∣∣δ in

E (S)
∣∣+ ∣∣T ′∣∣+ |T ′′|

=
△

(△+1)
·
∣∣δ in

E (S)
∣∣+ ∣∣T ′∣∣+ |T ′′|

> f (S)+
∣∣S∩T in∣∣ .

The above strict inequality implies that

E(V,S)≥ f (S)+
∣∣S∩T in∣∣+1 = f (S)+D(S).

Thus, the claim is true for the base case.

Inductive steps. Take now S in the forest F which has at least one child R in L .

Let R be the set of all L -children of S and let R′=
⋃
{R∈R} be the union of all children of S in

L . Recall the notation that CS is the union of the set of edges δ in
E (R) for all R∈R. By inductive

hypothesis, we assume that for each child R ∈L of S, we have E(V,R)≥ D(R)+ f (R).

Similarly to the base case, let T ′ be the set of nodes v ∈
(
(S\R′)∩T in) such that∣∣δ in

E (v)∩δ in
E (S)

∣∣ ≥ △+ 1 and let T ′′ be the set of nodes v ∈
(
(S\R′)∩T in) such that

|δ in
E (v)∩δ in

E (S)| ≤ △. Hence, T ′∪T ′′ = (S\R′)∩T in, T ′∩T ′′ = /0, and

D(S) = 1+
∣∣(S\R′)∩T in∣∣+ ∑

R∈R
D(R). (4.15)
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For each node v ∈ T in,
∣∣δ in

E (v)
∣∣ ≥△+ 1. Therefore, each node v ∈ T ′′ must have at least 1

edge in δ in
E (v) from the inside of the set S. Therefore,

E(V,S)≥ ∑
R∈R

E(V,R)+
∣∣δ in

E (S)\CS
∣∣+ ∣∣T ′′∣∣

≥ ∑
R∈R

(D(R)+ f (R))+
∣∣δ in

E (S)\CS
∣∣+ ∣∣T ′′∣∣

= ∑
R∈R

D(R)+ ∑
R∈R

f (R)+
∣∣δ in

E (S)\CS
∣∣+ ∣∣T ′′∣∣. (4.16)

By the definition, for each node v ∈ T ′,
∣∣δ in

E (v)∩δ in
E (S)

∣∣≥△+1. Therefore,
∣∣δ in

E (S)\CS
∣∣≥

(△+1) · |T ′|, so 1/(△+1) ·
∣∣δ in

E (S)\CS
∣∣≥ |T ′|. Continuing (4.16) and using (4.15) , we have

E(V,S) ≥ ∑
R∈R

D(R)+ ∑
R∈R

f (R)+
(

1− 1
△+1

)
·
∣∣δ in

E (S)\CS
∣∣+ ∣∣T ′∣∣+ ∣∣T ′′∣∣

= ∑
R∈R

D(R)+ ∑
R∈R

f (R)+
△
△+1

·
∣∣δ in

E (S)\CS
∣∣+ ∣∣(S\R′)∩T in∣∣

= D(S)+ ∑
R∈R

f (R)+
△
△+1

·
∣∣δ in

E (S)\CS
∣∣−1. (4.17)

Since the constraints corresponding to the sets in L are tight for x, we have

f (S) = x(δ in
E (S)) = x

(
δ

in
E (S)∩CS

)
+ x
(
δ

in
E (S)\CS

)
,

and

∑
R∈R

f (R) = ∑
R∈R

x
(
δ

in
E (R)

)
= x(CS) = x

(
δ

in
E (S)∩CS

)
+ x
(
CS\δ in

E (S)
)
.
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Hence,

f (S) = x
(
δ

in
E (S)∩CS

)
+ x
(
δ

in
E (S)\CS

)
≤ x

(
δ

in
E (S)∩CS

)
+ x
(
δ

in
E (S)\CS

)
+ x
(
CS\δ in

E (S)
)

= ∑
R∈R

f (R)+ x
(
δ

in
E (S)\CS

)
< ∑

R∈R
f (R)+

1
α
·
∣∣δ in

E (S)\CS
∣∣

= ∑
R∈R

f (R)+
△
△+1

·
∣∣δ in

E (S)\CS
∣∣. (4.18)

where the last inequality holds since x(e)< 1/α for every e ∈ E.

Thus, (4.17) and (4.18) imply that

E(V,S)> D(S)+ f (S)−1.

Since E(V,S) is a positive integer, the above strict inequality implies the claimed inequality:

E(V,S)≥ D(S)+ f (S).

4.3 DWDCN with both weighted out- and in-degree con-

straints

In this section, we prove Theorem 3.4, which gives approximation bounds for the DWDCN

problem with both out- and in-degree constraints. Let polytope P( f ,b,bin) =P( f ,b)∩P( f ,bin),
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that is, polytope P( f ,b,bin) is defined by the following constraints:

x
(
δ

in
E (S)

)
≥ f (S), for all /0 ̸= S⊊V,

∑
e∈δ out

E (v)
x(e)w(e)≤ b(v), for all v ∈ B,

∑
e∈δ in

E (v)

x(e)w(e)≤ bin(v), for all v ∈ Bin,

0≤ x(e)≤ 1, for all e ∈ E.

Given α ≥ 1, an edge set J ⊆ E, and node sets B′ ⊆ B and B′′ ⊆ Bin let the (residual)

polytope P( f ,b,bin;α,J,B′,B′′) be defined as:

x
(
δ

in
E (S)

)
≥ fJ(S)≡ f (S)−|δ in

J (S)|, for all /0 ̸= S⊊V,

∑
e∈δ out

E (v)
x(e)w(e)≤ bα,J(v) ≡ b(v)−w(δ out

J (v))/α, for all v ∈ B′ ⊆ B,

∑
e∈δ in

E (v)

x(e)w(e)≤ bin
α,J(v) ≡ bin(v)−w(δ in

J (v))/α, for all v ∈ B′′ ⊆ Bin,

0≤ x(e)≤ 1, for all e ∈ E.

Note that P( f ,b,bin;α, /0,B,Bin) is the polytope P( f ,b,bin).

The algorithm given in Figure 3.1 can be also easily modified to solve the DWDCN

problem with both out- and in-degree constraints by considering polytope P( f ,b,bin) in the

beginning of the algorithm, and by finding an optimal basic feasible solution to the LP problem

of minimising ∑e∈E c(e) · x(e) over the polytope P( f ,b,bin;α,J,B′,B′′) at each iteration of the

while loop.

We now use the following extended definition of the sparseness property of a polytope.

Definition 5. Polytope P≡ P( f ,b,bin;α,J,B′,B′′) is (α,△,△in)-sparse, if and only if, there

exists a node v ∈ B′ with |δ out
E (v)| ≤ △, or there exists a node v ∈ B′′ with |δ in

E (v)| ≤ △in, or

for any basic solution x ∈ P, there exists e ∈ E such that x(e) = 0 or x(e)≥ 1/α .
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We will prove the following sparseness properties of polytopes P( f ,b,bin;α,J,B′,B′′).

Lemma 4.8. For any J ⊆ E,B′ ⊆ B, and B′′ ⊆ Bin, polytope P( f ,b,bin;α,J,B′,B′′) is (2,4,4)-

sparse.

Lemma 4.9. For any J ⊆ E,B′ ⊆ B, and B′′ ⊆ Bin, polytope P( f ,b,bin;α,J,B′,B′′) is (3,2,5)-

sparse.

Lemma 4.10. If all edges have unit weight, then for any J ⊆ E,B′ ⊆ B, and B′′ ⊆ Bin, polytope

P( f ,b,bin;α,J,B′,B′′) is (2,4,3)-sparse.

The following lemma is an extension of Lemma 3.6 to the more general case when the

DWDCN problem has both (weighted) out- and in-degree constraints.

Lemma 4.11. [52] (extension of Lemma 3.6) If for any J ⊆ E,B′ ⊆ B, and B′′ ⊆ Bin, the poly-

tope P( f ,b,bin;α,J,B′,B′′) is (α,△,△in)-sparse (if non-empty), then DWDCN problem with

weighted out- and in-degree constraints admits a polynomial-time (α,(α +△) ·b(v),min{(α +

△in), fmax} · bin(v))-approximation algorithm, where fmax = maxS⊆V f (S) is the maximum

f -value. For the case of unit weights, the DWDCN problem admits a polynomial-time

(α,αb(v)+△−1,min{αbin(v)+△in−1, fmax})-approximation algorithm.

Theorem 3.4 follows immediately from Lemmas 4.8 – 4.10 and Lemma 4.11. Lemma 4.8

and Lemma 4.11 imply that the DWDCN problem with both weighted out- and in-degree con-

straints admits a polynomial-time (2, 6b(v), min{6, fmax} ·bin(v))-approximation algorithm,

where fmax = maxS⊆V f (S). Lemma 4.9 and Lemma 4.11 imply that the problem also admits a

(3, 5b(v), min{8, fmax} ·bin(v))-approximation algorithm. Combining these results together,

we prove the first statement of Theorem 3.4. Lemma 4.10 and Lemma 4.11 imply the second

statement of Theorem 3.4.

Now it remains to prove Lemmas 4.8, 4.9 and 4.10 to complete the proof of Theorem 3.4.

These proofs are given in Section 4.3.1 – 4.3.3. Again we prove these lemmas by contradiction

so for convenience we state here the Negation Assumption for the condition of (α,△,△in)-

sparseness. A polytope P≡ P( f ,b,bin;α,J,B′,B′′) is not (α,△,△in)-sparse, if and only if, the

following three conditions are satisfied.
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1. |δ out
E (v)| ≥ △+1, for every v ∈ B′.

2. |δ in
E (v)| ≥ △in +1, for every v ∈ B′′.

3. There exists a basic solution x ∈ P such that 0 < x(e)< 1/α , for every e ∈ E.

Note that the third condition implies that |δ in
E (S)| ≥α+1 for each S∈L , since 1/α · |δ in

E (S)|>

∑e∈δ in
E (S) x(e) = x(δ in

E (S)) = fJ(S)≥ 1 (the cut constraints for S is tight and fJ(S) is a positive

integer).

Based on standard uncrossing arguments (see [38, 27]), we know that a basic solution of

P( f ,b,bin;α,J,B′,B′′) is characterised by a laminar family of tight constraints. The following

lemma is given in [52], which is an extension of Lemma 4.4.

Lemma 4.12. [52] For any basic solution x ∈ P( f ,b,bin;α,J,B′,B′′) with 0 < x(e)< 1 for all

e ∈ E, there exists a laminar family L on V , T ⊆ B′ and T in ⊆ B′′, such that fJ(S)≥ 1 for all

S ∈L , and such that x is the unique solution to the system of linear equations:

x(δ in
E (S)) = fJ(S), for all S ∈L ,

∑
e∈δ out

E (v)
x(e)w(e) = bα,J(v), for all v ∈ T,

∑
e∈δ in

E (v)

x(e)w(e) = bin
α,J(v), for all v ∈ T in,

and |L |+ |T |+ |T in|= |E|. In particular, the characteristic vectors of {δ in
E (S) : S ∈L } are

linearly independent.

As in Section 4.1, we define a child-parent relation on the members of L ∪T ∪T in. For

S ∈ L or v ∈ T or v′ ∈ T in, its parent S′ is the inclusion minimal member of L properly

containing it, i.e, the set S′ is the smallest set in L containing S or v or v′. Note that when

v ∈ T ∪T in and {v} ∈L , then v is a child of {v}. This relation defines a forest F with the

"vertex" set L ∪T ∪T in.

In the following subsections we will prove Lemmas 4.8 – 4.10.
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4.3.1 (2,4,4)-sparseness of P( f ,b,bin;α,J,B′,B′′) - proof of Lemma 4.8

We prove that P ≡ P( f ,b,bin;α,J,B′,B′′) is (2,4,4)-sparse by contradiction, assuming the

Negation Assumption for (2,4,4)-sparseness and taking a basic solution x ∈ P satisfying

Condition 3 of this assumption. For this basic solution, let L , T and T in be as in Lemma 4.12.

Hence, we have |δ in
E (S)| ≥ 3 for all S ∈L (from Condition 3 of the Negation Assumption),

|δ out
E (v)| ≥ 5 for all v ∈ T (from Condition 1 of the Negation Assumption) and |δ in

E (v)| ≥ 5 for

all v ∈ T in (from Condition 2 of the Negation Assumption).

Based on the initial assignment given in Section 4.1.2, we will show in Claim 6 below that a

(2,3)-token reassignment scheme is feasible (see Definition 3), i.e, we can make an assignment

such that each root S of a tree in the forest F gets at least 3 S-tokens and each descendant of S

gets at least 2 S-tokens.

We obtain a contradiction as follows. Let the root tokens refer to the S-tokens for all

S ∈L , which are roots of trees in the forest F . Let T̂ ⊆ T and T̂ in ⊆ T in be the set of nodes

in T and T in, respectively, which correspond to single-vertex trees in F and let T̃ = T\T̂ and

T̃ in = T in\T̂ in be the set of nodes in T and T in, receptively, which have a parent in F . Note

that the two node-tokens of v ∈ T̂ and 1/2 tail-tokens of each edge (v,u) such that v ∈ T̂ are

not S-tokens, for any S ∈L . Moreover, a head-token of each edge (u,v) such that v ∈ T̂ in are

not S-tokens, for any S ∈L . Therefore, the Negation Assumption implies that the number of

the root tokens in F is at most 2|E|− (2+ 5/2)|T̂ |− 5|T̂ in|. The existence of a (2,3)-token

reassignment scheme implies that there are at least 2(|L |+ |T̃ |+ |T̃ in|)+1 root-tokens. Hence,

2|E|−9/2|T̂ |−5|T̂ in| ≥ 2(|L |+ |T̃ |+ |T̃ in|)+1.

Therefore,

2|E| ≥ 2(|L |+ |T̃ |+ |T̃ in|+ |T̂ |+ |T̂ in|)+1+
5
2
|T̂ |+3|T̂ in|

= 2(|L |+ |T |+ |T in|)+1+
5
2
|T̂ |+3|T̂ in|

> 2(|L |+ |T |+ |T in|).
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This contradicts |E|= |L |+ |T |+ |T in|, which implies that polytope P( f ,b,bin;α,J,B′,B′′) is

(2,4,4)-sparse.

The remaining part of the proof of Lemma 4.8 is the proof of the following Claim 6.

Claim 6. A (2,3)-token reassignment scheme is feasible if polytope P( f ,b,bin;α,J,B′,B′′) is

not (2,4,4)-sparse.

Proof. We first perform the initial assignment as given in Section 4.1.2. We show in

Claim 1 (see Section 4.1.2) that a (2,3)-token reassignment scheme is feasible, if polytope

P( f ,b;α,J,B′) is not (2,4)-sparse. Therefore, the proof of Claim 1 and the Negation Assump-

tion for (2,4,4)-sparseness imply that a (2,3)-token reassignment scheme is also feasible, if

T in = /0. Hence to prove this claim (Claim 6), it is enough to show that for each S ∈L , we

have a sufficient number of S-tokens to assign v ∈ T in, if v is a child of S. Therefore, in the rest

of this proof, we will focus only on nodes v ∈ T in and show how these nodes get 2 S-tokens.

First consider the base case of Claim 1 and assume that there is at least one node v ∈ T in

in S, i.e, |S∩T in| ≥ 1. Recall that in the base case, we assigned to S, the head-tokens from

any three edges in δ in
E (S). Let p be the set of these edges. Hence, |p| = 3. The Negation

Assumption for (2,4,4)-sparseness implies that for each node v ∈ T in, we have |δ in
E (v)| ≥ 5.

Therefore, |δ in
E (v)\p| ≥ 2. Observe that the head-tokens of edges in δ in

E (v)\p have not been

used. We assign to v the head-tokens from any two edges in δ in
E (v)\p. All these head-tokens

(2 tokens) are S-tokens by Definition 2, so each node v ∈ S∩T in gets the required number of

S-tokens.

Now consider the inductive step of Claim 1 and assume that |(S\R′)∩T in| ≥ 1, where R′

is the union of all children of S in L . Observe that during the inductive steps in Claim 1,

we did not use any head-token of edge (u,v) such that u,v ∈ S. Only the head-tokens from

edges in δ in
E (S)\CS were used in order to make an assignment for set S. Also note that among

these edges in δ in
E (S)\CS, only (at most) two edges were chosen and their head-tokens were

assigned to S. Let p be the set of these edges. So |p| ≤ 2. This implies that for each node
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v ∈ (S\R′)∩T in, we have |δ in
E (v)\p| ≥ 3. Again, the head-tokens of edges in δ in

E (v)\p have

never been used. Hence, we have a sufficient number of the S-tokens. We assign to v the

head-tokens from any two edges e ∈ δ in
E (S)\p. All these head-tokens (2 tokens) are S-tokens

by Definition 2, so each node v ∈ S∩T in gets the required number of S-tokens.

Thus, a (2,3)-token reassignment scheme is feasible, if polytope P( f ,b,bin;α,J,B′,B′′) is

not (2,4,4)-sparse.

4.3.2 (3,2,5)-sparseness of P( f ,b,bin;α,J,B′,B′′) - proof of Lemma 4.9

We now prove that polytope P≡ P( f ,b,bin;α,J,B′,B′′) is (3,2,5)-sparse, assuming Negation

Assumption for (3,2,5)-sparseness and taking a basic solution x satisfying Condition 3 of

this assumption. For this basic solution x ∈ P, let L be a laminar family, and sets T and T in

be defined as in Lemma 4.12. Hence, we have |δ in
E (S)| ≥ 4 for all S ∈L (from Condition 3

of the Negation Assumption), |δ out
E (v)| ≥ 3 for all v ∈ T (from Condition 1 of the Negation

Assumption) and |δ in
E (v)| ≥ 6 for all v ∈ T in (from Condition 2 of the Negation Assumption).

Based on the initial assignment given in Section 4.1.3, we will show in Claim 7 below that

a (2,4)-token reassignment scheme is feasible, i.e, we can make an assignment such that each

root S of a tree in the forest F gets at least 4 S-tokens and each descendant of S gets at least 2

S-tokens.

We obtain a contradiction as before. Let the root tokens refer to the S-tokens for all S ∈L ,

which are roots of trees in the forest F . Let T̂ ⊆ T and T̂ in ⊆ T in be the set of nodes in

T and T in, respectively, which correspond to single-vertex trees in F and let T̃ = T\T̂ and

T̃ in = T in\T̂ in be the set of nodes in T and T in, receptively, which have a parent in F . The

number of the root tokens in F is at most 2|E|−3|T̂ |−6|T̂ in| since the three node-tokens of

v ∈ T̂ are not S-tokens for any S ∈L and a head-token of each edge (u,v) such that v ∈ T̂ in
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are not S-tokens for any S ∈L . The feasibility of a (2,4)-token reassignment scheme implies

that there are at least 2(|L |+ |T̃ |+ |T̃ in|)+2 root-tokens. Hence,

2|E|−3|T̂ |−6|T̂ in| ≥ 2(|L |+ |T̃ |+ |T̃ in|)+2.

Therefore,

2|E| ≥ 2(|L |+ |T̃ |+ |T̃ in|+ |T̂ |+ |T̂ in|)+2+ |T̂ |+4|T̂ in|

= 2(|L |+ |T |+ |T in|)+2+ |T̂ |+4|T̂ in|

> 2(|L |+ |T |+ |T in|).

This contradicts |E|= |L |+ |T |+ |T in|, which implies that polytope P( f ,b,bin;α,J,B′,B′′) is

(3,2,5)-sparse.

It remains to prove Claim 7 to complete the proof of Lemma 4.9.

Claim 7. A (2,4)-token reassignment scheme is feasible if polytope P( f ,b,bin;α,J,B′,B′′) is

not (3,2,5)-sparse.

Proof. We first perform the initial assignment as given in Section 4.1.3. Analogously to

the proof of Claim 6, we can show that a (2,4)-token reassignment scheme is feasible. For

completeness, we will give the proof here.

First consider the base case of Claim 2 and assume that there is at least one node v ∈ T in

in S, i.e, |S∩T in| ≥ 1. Recall that we assigned to S, the head-tokens from any four edges in

δ in
E (S). Let p be the set of these edges. Hence, |p|= 4. The Negation Assumption for (3,2,5)-

sparseness implies that for each node v ∈ T in, we have |δ in
E (v)| ≥ 6. Therefore, |δ in

E (v)\p| ≥ 2.

We assign to v the head-tokens from any two edges in δ in
E (v)\p. All these head-tokens (2

tokens) are S-tokens by Definition 2, so each node v ∈ S∩T in gets the required number of

S-tokens.
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Now consider the inductive step of Claim 2 and assume that |(S\R′)∩T in| ≥ 1, where R′

is the union of all children of S in L . Observe that during the inductive steps in Claim 2,

we did not use any head-token of edge (u,v) such that u,v ∈ S. Only the head-tokens from

e ∈ δ in
E (S)\CS were used during the inductive steps in order to make an assignment for S. Also

note that among these edges e ∈ δ in
E (S)\CS, only (at most) two edges were chosen and their

head-tokens were assigned to S. Let p be the set of these edges. So |p| ≤ 2. This implies that

for each node v ∈ (S\R′)∩T in, we have |δ in
E (v)\p| ≥ 4. Hence, we have a sufficient number

of S-tokens. We assign to v the head-tokens from any two edges e ∈ δ in
E (v)\p. All these

head-tokens (2 tokens) are S-tokens by Definition 2, so each node v ∈ S∩T in gets the required

number of the S-tokens.

Thus, a (2,4)-token reassignment scheme is feasible, if polytope P( f ,b,bin;α,J,B′,B′′) is

not (3,2,4)-sparse.

4.3.3 (2,4,3)-sparseness of P( f ,b,bin;α,J,B′,B′′) - proof of Lemma 4.10

We prove that polytope P≡ P( f ,b,bin;α,J,B′,B′′) is (2,4,3)-sparse assuming Negation As-

sumption for (2,4,3)-sparseness and taking a basic solution x satisfying Condition 3 of this

assumption. For this basic solution x ∈ P, let L be a laminar family, and sets T and T in be

defined as in Lemma 4.12. Hence, we have |δ in
E (S)| ≥ 3 for all S ∈L , |δ out

E (v)| ≥ 5 for all

v ∈ T and |δ in
E (v)| ≥ 4 for all v ∈ T in.

Here we perform the following initial assignment of 2|E| tokens and use the same definition

of S-tokens as given in Definition 2.

Initial assignment

For each e = (v,u) ∈ E such that v /∈ T , we designate 1 tokens as the head-tokens of edge e and

1 tokens as the tail-tokens of edge e. For each v ∈ T , there are |δ out
E (v)| ≥ 5 outgoing edges

from node v. We designate 2 tokens as the node-tokens of v and 1 tokens as the head-tokens of

each edge e ∈ δ out
E (v). We also designate the tail-tokens for the edges in δ out

E (v) according to

the following three cases.
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1. If v has exactly one L -sibling R in forest F and there is at least one edge (v,x) such

that x ∈ R: we choose one of these edges and designate 1 tokens as the tail-tokens of

this edge. We then designate 1/2 tokens as the tail-tokens for each of the other edges in

δ out
E (v).

2. If v has no L -sibling in forest F and there is at least one edge (v,x) such that x∈ T in:

we choose one of these edges and designate 1 tokens as the tail-tokens of this edge. We

then designate 1/2 tokens as the tail-tokens for each of the other edges in δ out
E (v).

3. Otherwise: For each (v,u), we designate 1/2 tokens as the tail-tokens.

It can be verified that at most 2|E| tokens are used in this initial assignment. Note that

node-tokens at v ∈ T are fixed at v and never used during the reassignment process.

Using this initial assignment, we will show in Claim 8 that a (2,3)-token reassignment is

feasible (see Definition 3). We obtain a contradiction as follows. Let the root tokens refer to

the S-tokens for all S ∈L , which are roots of trees in the forest F . Let T̂ ⊆ T and T̂ in ⊆ T in

be the set of nodes in T and T in, respectively, which correspond to single-vertex trees in F and

let T̃ = T\T̂ and T̃ in = T in\T̂ in be the set of nodes in T and T in, respectively, which have a

parent in F . Note that the two node-tokens of v ∈ T̂ and 1/2 tail-tokens of each edge (v,u) such

that v ∈ T̂ are not S-tokens for any S ∈L . Moreover, a head-token of each edge (u,v) such

that v ∈ T̂ in are not S-tokens for any S ∈L . Therefore, the Negation Assumption implies that

the number of the root tokens in F is at most 2|E|− (2+5 · (1/2))|T̂ |−4|T̂ in|. The feasibility

of a (2,3)-token reassignment scheme implies that there are at least 2(|L |+ |T̃ |+ |T̃ in|)+1

root-tokens. Hence,

2|E|− 9
2
|T̂ |−4|T̂ in| ≥ 2(|L |+ |T̃ |+ |T̃ in|)+1.



4.3 DWDCN with both weighted out- and in-degree constraints 61

Therefore,

2|E| ≥ 2(|L |+ |T̃ |+ |T̃ in|+ |T̂ |+ |T̂ in|)+1+
5
2
|T̂ |+2|T̂ in|

= 2(|L |+ |T |+ |T in|)+1+
5
2
|T̂ |+2|T̂ in|

> 2(|L |+ |T |+ |T in|).

This contradicts |E|= |L |+ |T |+ |T in|, which implies that polytope P( f ,b,bin;α,J,B′,B′′) is

(2,4,3)-sparse.

The remaining part of the proof of Lemma 4.10 is the proof of the following claim.

Claim 8. A (2,3)-token reassignment scheme is feasible, if polytope P( f ,b,bin;α,J,B′,B′′) is

not (2,4,3)-sparse and the polytope is constructed for unit-weight graph G = (V,E,w,b), i.e,

w(e) = 1, for all edges e ∈ E.

Proof. Based on the initial assignment above, we show that a (2,3)-token reassignment scheme

is feasible. The proof is given by induction on the number of L -descendants of in F . Recall

that each node v ∈ T has two node-tokens, which are fixed at node v and never used during the

reassignment process. By Definition 2, all these node-tokens are S-tokens for each S ∈L such

that v ∈ S. Therefore v ∈ T always gets the required number of S-tokens if v is a descendant of

S in F .

Base case: S has no L -descendants in F .

We consider separately the cases when S∩T in = /0, |S∩T in| ≥ 2, and |S∩T in|= 1. Consider

first case that S∩T in = /0. We assign to S the head-tokens from any three edges (u,v) ∈ δ in
E (S).

This way S gets 3 head-tokens (3 tokens). All these head-tokens are S-tokens by Definition 2.

Hence, S gets the required number of S-tokens.

Now consider the case when |S∩T in| ≥ 2. By the Negation Assumption, we have |δ in
E (v)| ≥ 4,

for each node v ∈ T in. This implies that we have at least 4 · |S∩T in| head-tokens in S. By
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Definition 2, all these head-tokens (4 · |S∩T in| tokens) are S-tokens. The number of S-tokens

we need for the assignment is at least 2 · |S∩T in|+3, that is, 2 S-tokens for each v ∈ S∩T in

and 3 S-tokens for set S. Since 4 · |S∩T in|> 2|S∩T in|+3, if |S∩T in| ≥ 2, we have a sufficient

number of S-tokens in S for the assignment.

Now consider the case when |S∩T in| = 1. Let v ∈ S∩T in. Now we consider the following

sub-cases, when |δ in
E (S)∩ δ in

E (v)| ≤ 2 and |δ in
E (S)∩ δ in

E (v)| ≥ 3. First consider the sub-case

that |δ in
E (S)∩ δ in

E (v)| ≤ 2. The Negation Assumption implies that |δ in
E (S)| ≥ 3 and also that

|δ in
E (v)\δ in

E (S)| ≥ 2 because |δ in
E (S)∩ δ in

E (v)| ≤ 2 and |δ in
E (v)| ≥ 4 for each node v ∈ T in.

Therefore, we have at least 5 head-tokens in set S. By Definition 2, all these head-tokens (5

tokens) are S-tokens. Hence, using these S-tokens, we can assign set S, 3 S-tokens and assign v,

2 S-tokens. Thus, we get an assignment as required.

Now consider the other case that |δ in
E (S)∩δ in

E (v)| ≥ 3. Note that δ in
E (S) ̸= δ in

E (v) as equations

of S and v are linearly independent. This implies that if |δ in
E (S)|= |δ in

E (v)|, there should be at

least one edge in δ in
E (S)\δ in

E (v), i.e, |δ in
E (S)\δ in

E (v)| ≥ 1 or there should be at least one edge

in δ in
E (v)\δ in

E (S), i.e, |δ in
E (v)\δ in

E (S)| ≥ 1 . Consider first that |δ in
E (S)\δ in

E (v)| ≥ 1. Note that

for each node v ∈ T in, |δ in
E (v)| ≥ 4. Therefore, we have at least 4 head-tokens from e ∈ δ in

E (v)

and at least 1 head-token from e ∈ δ in
E (S)\δ in

E (v). Hence, in total, we have at least 5 head-

tokens in S. By Definition 2, all these head-tokens (5 tokens) are S-tokens. Hence, using

these S-tokens, we can assign set S, 3 S-tokens and assign v, 2 S-tokens. Thus, we get an

assignment as required. Now consider the other case that |δ in
E (v)\δ in

E (S)| ≥ 1. Observe that if

(u,v) ∈ δ in
E (v)\δ in

E (S), then, u ∈ S and v ∈ S. Since |δ in
E (S)| ≥ 3, we have at least 3 head-tokens

and since |δ in
E (v)\δ in

E (S)| ≥ 1, we have at least 1 head-token and 1 tail-token. Recall that during

the initial assignment if there exists (u,v) ∈ δ out
E (u) such that u ∈ T , v ∈ T in and u has no

L -sibling in forest F , then we assigned 1 token as the tail-token of this edge. Therefore, in

either case u ∈ T or u /∈ T , edge (u,v) has a tail-token (1 token). Hence, in set S, we have at

least 4 head-tokens and at least 1 tail-token. By Definition 2 all four head-tokens (4 tokens)

and the tail-token (1 tokens) are S-tokens. Thus, we have enough number of S-tokens; we can

assign S, 3 head-tokens and assign v 1 head-token and 1 tail-token.
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Inductive steps. Take now S in the forest F which has at least one child R in L . Recall the

notation that CS is the union of the sets of edges δ in
E (R) for all children R of S in L . By

inductive hypothesis, we assume that for each child R ∈L of S, R has at least 3 R-tokens and

each descendant of R has at least 2 R-tokens. We consider separately the case when S has

exactly one child R in L and the case when S has at least two children in L .

S has exactly 1 child R in L : We move 1 tokens from R to S. Now R has 2 R-tokens and S

has 1 R-tokens. Each descendant of R also has 2 R-tokens. By Definition 2, all these R-tokens

are S-tokens. Thus R and its descendants have the required number of S-tokens, but S needs

2 additional S-tokens. We consider separately the case when |(S\R)∩T in| ≥ 1 and when

|(S\R)∩T in|= 0, i.e, (S\R)∩T in = /0.

First consider the case when |(S\R)∩T in| ≥ 1. The number of S-tokens we need for the

assignment is at least 2 · |(S\R)∩T in|+2, that is, 2 S-tokens for each v ∈ (S\R)∩T in and 2

S-tokens for set S. Recall that for each node v ∈ T in, we have |δ in
E (v)| ≥ 4 by the Negation

Assumption. This implies that we have at least 4 · |(S\R)∩ T in| head-tokens in S. By

Definition 2, all these head-tokens are S-tokens. Since 4 · |(S\R)∩T in| ≥ 2+2|(S\R)∩T in|,

if |(S\R)∩T in| ≥ 1, we have enough S-tokens for the assignment.

Consider now the other case when |(S\R)∩ T in| = 0. Lemma 4.5 implies that we have

only the following sub-cases: (i) both sets CS\δ in
E (S) and δ in

E (S)\CS have at least 1 edge,

(ii) CS\δ in
E (S) is empty and δ in

E (S)\CS has at least 3 edges, (iii) δ in
E (S)\CS is empty and

CS\δ in
E (S) has at least 3 edges. Recall that S gets 1 R-token from R. This token is also an

S-token, so, S needs 2 more S-tokens.

(i) Both sets CS\δ in
E (S) and δ in

E (S)\CS have at least 1 edge.

We assign to S a head-token from any edge e ∈ δ in
E (S)\CS and a tail-token from any

edge (u,x) ∈CS\δ in
E (S). Recall that during the initial assignment if there exists an edge

(v,z) ∈ δ out
E (v) such that v ∈ T and z ∈ R, then we assigned 1 token as the tail-token of

this edge. Therefore, in any case, either v ∈ T or v /∈ T , S gets a tail-token (1 token) from

(v,z) ∈CS\δ in
E (S). By Definition 2, the head-token (1 token) and the tail-token (1 token)

are S-tokens. Therefore, S gets 2 S-tokens.
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(ii) CS\δ in
E (S) is empty and δ in

E (S)\CS has at least 3 edges.

We assign to S the head-tokens from any three edges e ∈ δ in
E (S)\CS. This way S gets

3 head-tokens (3 tokens), which are by definition S-tokens. Thus, S get the required

number of S-tokens.

(iii) δ in
E (S)\CS is empty and CS\δ in

E (S) has at least 3 edges.

We assign to S the tail-tokens from all edges (v,u) ∈ CS\δ in
E (S). The tails of these

edges may or may not be in T . If none of them is in T , then S gets 3 tail-tokens (3

tokens). All these tail-tokens are S-tokens. Hence, S gets an assignment as required.

Now consider the case that none of edges (v,z) ∈CS\δ in
E (S) are such that v /∈ T , i.e, all

edges (v,z) ∈CS\δ in
E (S) are such that v ∈ T . Recall that during the initial assignment if

there exists (v,z) ∈ δ out
E (v) such that z ∈ R and v ∈ T , then we assigned 1 tail-token to

this edge, and 1/2 tail-token to the remaining edges in δ out
E (v). Therefore, S gets at least

three tail-tokens (1+1/2+1/2 = 2 tokens). These tail-tokens (2 tokens) are S-tokens

by the definition. Hence, S gets an assignment as required.

S has at least 2 children in L : Let R′ be the union of all children R of S ∈L . For each child

R∈L of S, we move 1 token from R to S. Each child R now has 2 R-tokens and S has at least

2 R-tokens. Each descendant of R also has 2 R-tokens. By definition, all these R-tokens are

S-tokens. Thus R and its descendants have the required number of S-tokens, but S needs at

least 1 additional S-token and at least 2 S-tokens for each node v ∈ T in in S\R′. We consider

the following two cases when |(S\R′)∩T in| ≥ 1 and when |(S\R′)∩T in|= 0.

First consider that |(S\R′)∩T in| ≥ 1. The number of S-tokens we need for the assignment

is at least 2 · |(S\R)∩T in|+ 1, that is, 2 S-tokens for each v ∈ (S\R)∩T in and 1 S-tokens

for set S. Note that for each node v ∈ T in, |δ in
E (v)| ≥ 4. This implies that we have at least

4 · |(S\R′)∩T in| head-tokens in S, if |(S\R′)∩T in| ≥ 1. By Definition 2, all these head-tokens

(4 · |(S\R′)∩T in| tokens) are S-tokens. Since (4 · |(S\R′)∩T in| > 2 · |(S\R′)∩T in|+ 1, if

|(S\R′)∩T in| ≥ 1, we have enough S-tokens to for the assignment.

Now consider the other case when |(S\R′)∩ T in| = 0. Lemma 4.5 implies that we have

only the following sub-cases: (i) both sets CS\δ in
E (S) and δ in

E (S)\CS have at least 1 edge,

(ii) CS\δ in
E (S) is empty and δ in

E (S)\CS has at least 3 edges, (iii) δ in
E (S)\CS is empty and
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CS\δ in
E (S) has at least 3 edges. Recall that S gets at least 2 S-tokens from its L -children, So,

S needs at least 1 S-token.

(i) Both sets CS\δ in
E (S) and δ in

E (S)\CS have at least 1 edge.

We assign to S the head-token from one edge e ∈ δ in
E (S)\CS. This head-tokens (1 token)

is an S-token. Hence S gets the required number of S-tokens.

(ii) CS\δ in
E (S) is empty and δ in

E (S)\CS has at least 3 edges.

We assign to S the head-token from one edge e ∈ δ in
E (S)\CS. This head-tokens (1 token)

is an S-token. Hence S gets the required number of S-tokens.

(iii) δ in
E (S)\CS is empty and CS\δ in

E (S) has at least 3 edges.

We assign to S the tail-tokens from all edges (v,u) ∈ CS\δ in
E (S). The tail-tokens can

be either from (a) (v,u) ∈CS\δ in
E (S) such that v is not in any child of S, or (b) (v,u) ∈

CS\δ in
E (S) such that v is in child R of S and u is in another child R′ of S. Clearly, the

tail-tokens in the case (a) have not been assigned before since they are not R-tokens

for any child R of S. The node v in the case (b) has been considered previously as v is

inside R. However, in this case, the tail-tokens assigned to edge (v,u) have not been used

as by definition, they are not R-tokens for the child R of S (the tail-tokens from (x,y)

are R-tokens only if both x,y are in R). By definition, all these tail-tokens are S-tokens.

Each tail-token in (v,u) ∈CS\δ in
E (S) has either 1 token (if v /∈ T ) or 1/2 token (if v ∈ T ).

Therefore, S gets at least 3 · (1/2) > 1 S-tokens. Thus S gets the required number of

S-tokens.



Chapter 5

Approximation bounds for crossing

supermodular connectivity requirements

In this chapter, we consider the DWDCN problems under the crossing supermodular connec-

tivity requirements, and derive new improved approximation bounds for these problems. In

Section 5.1, we consider the DWDCN problem with weighted out-degree constraints and the

DWDCN problem with weighted in-degree constraints. In Section 5.2, we consider DWDCN

problems with both weighted out- and in-degree constraints.

The following lemma, which reduces the case of crossing supermodular function to inter-

secting supermodular is a known fact; see for example [48, 52]. For completeness, we include

a proof of this lemma.

Lemma 5.1. Let f be a crossing supermodular set function on V and let r ∈V be an arbitrary

fixed node. Let f out(S) = f (S), if S ∈ {A ⊂ V : r /∈ A}, and f out(S) = 0 otherwise, and let

f in(S) = f (V\S), if S ∈ {A ⊂ V : r /∈ A}, and f in(S) = 0 otherwise. Then f out and f in are

intersecting supermodular set functions on V\{r}. Furthermore, graph H is f -connected, if

and only if, H is f out-connected and the reverse graph HR of H is f in-connected.
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Proof. We first show that f out and f in are intersecting supermodular set functions on V\{r}.

Let σ = {A⊂V : r /∈ A}. Suppose that X ,Y ∈ σ such that X ∩Y ̸= /0. Since r /∈ X and r /∈ Y ,

X ∪Y ̸=V . If X ⊆Y or Y ⊆ X , then trivially f (X)+ f (Y )≤ f (X ∩Y )+ f (X ∪Y ). If X\Y ̸= /0

and Y\X ̸= /0, then by the definition of f out and crossing supermodularity condition of f , we

get

f out(X)+ f out(Y ) = f (X)+ f (Y )≤ f (X ∩Y )+ f (X ∪Y ) = f out(X ∩Y )+ f out(X ∪Y ).

Hence, f out is intersecting supermodular on V\{r}. Similarly, we can get

f in(X)+ f in(Y ) = f (V\X)+ f (V\Y ) = f (X)+ f (Y )≤ f (X ∪Y )+ f (X ∩Y )

= f (V\(X ∩Y ))+ f (V\(X ∪Y )) = f in(X ∩Y )+ f in(X ∪Y ),

where the inequality follows from supermodularity condition of f and the fact that X and Y are

a crossing pair. Thus, f in is intersecting supermodular on V\{r}.

We now show that H is f out-connected and HR is f in-connected, if H is f -connected.

Assume that H is f -connected. Let S be any non-empty proper subset of V . We show that H

is f out-connected, i.e, |δ in
H (S)| ≥ f out(S). If r ∈ S, then f out(S) = 0, so |δ in

H (S)| ≥ f out(S). If

r /∈ S, then since H is f -connected,

|δ in
H (S)| ≥ f (S) = f out(S).

We now show that HR is f in-connected, i.e, |δ in
HR
(S)| ≥ f in(S). If r ∈ S, then f in(S) = 0 ≤

|δ in
HR
(S)|. If r /∈ S, then

|δ in
HR
(S)|= |δ in

H (V\S)| ≥ f (V\S) = f in(S).

Thus, H is f out-connected and HR is f in-connected, if H is f -connected.
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Now we show the reverse implication. Again let S be any non-empty proper subset of V .

We show that |δ in
H (S)| ≥ f (S) assuming that H is f out-connected and HR is f in-connected. We

consider two cases, when r /∈ S and when r ∈ S.

When r /∈ S:

|δ in
H (S)| ≥ f out(S) = f (S).

The inequality above holds because the assumption that H is f out-connected and the equality

comes from the definition of f out .

When r ∈ S:

|δ in
H (S)|= |δ in

HR
(V\S)| ≥ f in(V\S) = f (S). (5.1)

The inequality above holds because the assumption that HR is f in-connected and the equality

comes from the definition of f in.

Thus, we can conclude that graph H is f -connected, if and only if, H is f out-connected and

HR is f in-connected.

5.1 DWDCN with weighted out- or in-degree constraints

We begin with the following lemma. Since the proof of this lemma is not explicitly given in

[52], we provide it here for completeness. Note that the proof is similar to Theorem 4.1 in [2].

Lemma 5.2. If there are polynomial time (α ′,g′) and (α ′′,g′′)-approximation algorithms

for the DWDCN problem with (weighted) out-degree constraints and (weighted) in-degree

constraints under the intersecting connectivity requirements, respectively, then there exists a

polynomial time (α,g)-approximation algorithm for the DWDCN problem with (weighted)

out-degree constraints under the crossing supermodular connectivity requirements, where

α = α ′+α ′′ and g = g′+g′′. The same ratio applies to the DWDCN problem with (weighted)

in-degree constraints.
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Proof. Let f be a crossing supermodular set function on V and let r ∈V be an arbitrary fixed

node. Let f out and f in be the intersecting supermodular functions defined in Lemma 5.1, so,

f out(S) = f (S), if S ∈ {A ⊂ V : r /∈ A}, and f out(S) = 0 otherwise, and f in(S) = f (V\S), if

S ∈ {A⊂V : r /∈ A}, and f in(S) = 0 otherwise.

Let graph G = (V,E,c,w), a subset B⊆V , out-degree bounds b, and the crossing supermod-

ular function f be together the instance of the DWDCN problem with (weighted) out-degree

constraints.

Consider the DWDCN problem with (weighted) out-degree constraints on graph G =

(V,E,c,w) with a subset B⊆V , out-degree bounds b and the intersecting supermodular function

f out . Let Hout
opt be an optimal solution to this problem, i.e, it is an optimal-cost f out-connected

subgraph of G, which satisfies the (weighted) out-degree constraints for all nodes v ∈ B. We

apply the (α ′,g′)-approximation algorithm to the problem. Then, the algorithm will return

(α ′, g′)-approximation solution Hout = (V,F ′), i.e, cost of Hout is at most α ′ times c(Hout
opt )

and for each node v ∈V , w(δ out
F ′ (v))≤ g′(b(v)).

Next consider the DWDCN problem with (weighted) in-degree constraints on the reverse

graph GR of G = (V,E,c,w) with a subset Bin = B, in-degree bound bin = b and the intersecting

supermodular function f in. The reverse graph GR is defined as (V,ER,c,w), where ER =

{(u,v) : (v,u) ∈ E}, c(u,v) = c(v,u), and w(u,v) = w(v,u). Let H in
opt be an optimal solution

to this problem, i.e, it is an optimal-cost f in-connected subgraph of GR, which satisfies the

(weighted) in-degree constraints for all nodes v. We apply the (α ′′,g′′)-approximation algorithm

to the problem. Then, the algorithm will return (α ′′, g′′)-approximation solution H in = (V,F ′′),

i.e, cost of H in is at most α ′′ times c(H in
opt) and for each node v ∈V , w(δ in

F ′′(v))≤ g′′(b(v)).

As the approximate solution to the DWDCN problem with (weighted) out-degree con-

straints under the crossing supermodular connectivity requirements we take the subgraph H =

Hout⋃H in
R = (V,F), where H in

R = (V,F ′′R ) is the reverse graph of H in and F = F ′∪F ′′R . Since H

is f out-connected graph (as a super-graph of Hout) and the reverse graph of H is f in-connected

(as a super-graph of H in), Lemma 5.1 implies that the graph H is f -connected.
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Let Hopt be the optimal solution to the DWDCN problem with (weighted) out-degree

constraints under the crossing supermodular connectivity requirements. We get the claimed

approximation ratio for the cost since

c(H) = c(F) = c(F ′∪F ′′)≤ c(F ′)+ c(F ′′)≤ α
′c(H in

opt)+α
′′c(Hout

opt )

≤ α
′c(Hopt)+α

′′c(Hopt) = (α ′+α
′′) · c(Hopt).

For the last inequality, observe that c(Hout
opt )≤ c(Hopt) because f out(S)≤ f (S) for each S⊆V ,

so each f -connected subgraph satisfying the out-degree constraints is also f out-connected

subgraph satisfying the out-degree constraints. Similarly, c(H in
opt) ≤ c(Hopt), because for

each f -connected subgraph H of G satisfying out-degree constraints of HR is a f in-connected

subgraph GR satisfying the in-degree constraints.

The graph H also satisfies the claimed weighted degree bounds since

w(δ out
H (v)) = w(δ out

F (v)) = w(δ out
F ′∪F ′′R

(v))≤ w(δ out
F ′ (v))+w(δ out

F ′′R
(v))

= w(δ out
F ′ (v))+w(δ in

F ′′(v))≤ g′(b(v))+g′′(b(v)) = g(b(v)).

Let graph G = (V,E,c,w), a subset Bin ⊆V , in-degree bounds bin, and the crossing supermod-

ular function f be the instance of the DWDCN problem with (weighted) in-degree constraints

under the crossing supermodular connectivity requirements. We can analogously show that the

DWDCN problem with (weighted) in-degree constraints also admits the same approximation

bounds. In this case, we apply (α ′′,β ′′)-approximation algorithm for the DWDCN problem

with (weighted) in-degree constraints to the instance
〈
G = (V,E,c,w),Bin,bin, f out〉 and ap-

ply (α ′,β ′)-approximation algorithm for the DWDCN problem with (weighted) out-degree

constraints to the instance
〈
GR = (V,ER,c,w),B = Bin,b = bin, f in〉.
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Nutov [52] has shown that under intersecting connectivity requirements there is

(1,min{4, fmax} ·bin(v)})-approximation algorithm for the DWDCN problem with weighted

in-degree constraints, where fmax = maxS⊆V f (S). For the case of unit weight, he also showed

that the problem admits a polynomial time (1, min{ fmax,bin(v)}-approximation algorithm.

We are now ready to prove Theorem 3.3. Theorem 3.3 is implied by Lemma 5.2,

Theorem 3.1, 3.2 and above result of Nutov. For example, (4, (5+min{3, fmax}) ·b(v))-

approximation bounds for the DWDCN problem with weighted out-degree (in-degree) con-

straints under crossing supermodular function f is obtained by the (2, 5b(v))-approximation

algorithm given in Theorem 3.1 and the (2, min{3, fmax} · bin(v))-approximation algorithm

given in Theorem 3.2.

5.2 DWDCN with both weighted out- and in-degree con-

straints

Here we consider the case of both out-degree and in-degree constraints. Lemma 5.2 can be

extended to deal with the case when there are both out-degree and in-degree constraints. Again

the proof of the following extension of Lemma 5.2 is not explicitly given in [52], we provide it

here for completeness.

Lemma 5.3. There is a polynomial time (2α, g, g)-approximation algorithm for the DWDCN

problem with (weighted) out- and in-degree constraints under the crossing supermodular

connectivity requirements if there is a polynomial time (α, g′, g′′)-approximation algorithm

for the same problem under the intersecting supermodular connectivity requirements and

g′+g′′ = g.

Proof. Let f be a crossing supermodular set function on V and let r ∈V be an arbitrary fixed

node. Let f out and f in be the intersecting supermodular functions defined in Lemma 5.1, so,
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f out(S) = f (S), if S ∈ {A ⊂ V : r /∈ A}, and f out(S) = 0 otherwise, and f in(S) = f (V\S), if

S ∈ {A⊂V : r /∈ A}, and f in(S) = 0 otherwise.

Consider the DWDCN problem with (weighted) out- and in-degree constraints on graph

G = (V,E,c,w) with a subset B ⊆ V , out-degree upper bounds b = {b(v) : v ∈ B ⊆ V}, a

subset Bin ⊆V and in-degree upper bounds bin = {bin(v) : v ∈ Bin ⊆V} and the intersecting

supermodular function f out . Let Hout
opt be the optimal solution to the this problem, i.e, it is

an optimal cost f out-connected subgraph of G, which satisfies both (weighted) out- and in-

degree constraints for all nodes v. We apply the (α,g′,g′′)-approximation algorithm to the

problem. Then, it will return (α, g′, g′′)-approximation solution Hout = (V,F ′), i.e, cost of

Hout is α times c(Hout
opt ), for each node v ∈ B, w(δ out

F ′ (v))≤ g′(b(v)) and for each node v ∈ Bin,

w(δ in
F ′(v))≤ g′′(bin(v)).

Next consider the DWDCN problem with (weighted) out- and in-degree constraints on

the reverse graph GR of G = (V,E,c,w) with a subset B = Bin, out-degree upper bound b(v) =

bin(v), a subset Bin =B, in-degree upper bounds bin(v)= b(v) and the intersecting supermodular

function f in. Again the reverse graph of GR is defined as (V,ER,c,w), where ER = {(u,v) :

(v,u) ∈ E}, c(u,v) = c(v,u), and w(u,v) = w(v,u). Let H in
opt be the optimal solution to this

problem, i.e, optimal cost f in-connected subgraph of GR, which satisfies both (weighted) out-

and in-degree constraints for all nodes v. We apply the (α,g′,g′′)-approximation algorithm to

the problem. Then, it will return (α, g′, g′′)-approximation solution H in = (V,F ′′) of GR, i.e,

cost of H in is α times c(H in
opt) and for each node v ∈ B, w(δ out

F ′′ (v))≤ g′(bin(v)) and for each

node v ∈ Bin, w(δ in
F ′′(v))≤ g′′(b(v)).

The solution to the DWDCN problem with (weighted) out- and in-degree constraints

under the crossing supermodular connectivity requirements is graph H = Hout⋃H in
R = (V,F),

where F = F ′∪F ′′R . Since H is f out-connected graph and reverse graph of H is f in-connected,

Lemma 5.1 implies that the graph H is f -connected.

Let Hopt be the optimal solution to the DWDCN problem with (weighted) out-degree

constraints under the crossing supermodular connectivity requirements. We get the claimed
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approximation ratio for the cost since

c(H) = c(F) = c(F ′∪F ′′)≤ c(F ′)+ c(F ′′)≤ α · c(H in
opt)+α · c(Hout

opt )

≤ α · c(Hopt)+α · c(Hopt) = 2α · c(Hopt).

The graph H also satisfies the claimed (weighted) out-degree bounds since

w(δ out
H (v)) = w(δ out

F (v)) = w(δ out
F ′∪F ′′R

(v))≤ w(δ out
F ′ (v))+w(δ out

F ′′R
(v))

= w(δ out
F ′ (v))+w(δ in

F ′′(v))≤ g′(b(v))+g′′(b(v)) = g(b(v)).

Moreover, the graph H also satisfies the claimed (weighted) in-degree bounds since

w(δ in
H (v)) = w(δ in

F (v)) = w(δ out
F ′∪F ′′R

(v))≤ w(δ in
F ′(v))+w(δ in

F ′′R
(v))

= w(δ in
F ′(v))+w(δ out

F ′′ (v))≤ g′′(bin(v))+g′(bin(v)) = g(bin(v)).

Theorem 3.4 and Lemma 5.3 implies Theorem 3.5.



Chapter 6

Maximum Network Lifetime (MNL)

problems

In Chapters 3–5, we discussed the Directed Weighted Degree Constrained Network Design

(DWDCN) problems and developed solutions, which improve a number of previous approxi-

mation bounds for these problems. The algorithms for DWDCN can be applied to solve the

Maximum Network Lifetime (MNL) problems. We discuss in Chapters 6 – 8 how this can be

done and show how new improved approximation bounds for MNL problems can be obtained.

In an MNL problem, we are given a communication task and wireless ad-hoc network

N = (V,E,w,B), where w is an edge-weight function representing the energy costs of individual

transmissions and B is a node-battery function representing the initial battery capacity of

nodes. The goal is to compute a maximum-size collection of routing topologies (schedules

of individual transmissions) for the specified communication task, which satisfy the energy

constraints. That is, every node must have sufficient battery capacity to support the specified

communication task over all communication rounds, where each communication round is

defined by one routing topology from the computed collection.

The MNL problems can be categorised into single topology and multiple topology problems

[57], which are distinguished by different output requirements. In the single topology variant,
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the same routing topology is used in all communication rounds. For example, the same

broadcast tree is used in each round to broadcast from a given root node r. In the multiple

topology variant, the routing topologies can be different in different rounds. That is, the

outcome for a single topology MNL problem is one routing topology, while the outcome of a

multiple topology MNL problem is a collection of routing topologies.

We consider both single and multiple topology MNL problems. Thus in this thesis we refer

to the following eight problems (the acronyms are in the brackets):

• Single Topology and Multiple Topology Unicast (STUand MTU),

• Single Topology and Multiple Topology Broadcast (STBand MTB),

• Single Topology and Multiple Topology Convergecast (STCand MTC),

• Single Topology and Multiple Topology Mixedcast (STMand MTM).

In Section 6.1, we discuss the models of wireless ad-hoc networks that are commonly used

in the literature. In Section 6.2, we describe network model, used in this thesis and provide

basic definitions related to the communication tasks and routing topologies. In Section 6.3, we

formally define the MNL problems, which we consider. In Sections 6.4 and 6.5, we discuss

previous related results and summarise our contributions to the MNL problems. In Section 6.6,

we discuss the computational complexity of the MNL problems, and extend previous NP-

hardness proofs of the MNL problems to some variants of these problems considered in this

thesis. In Chapter 7, we describe the approximation algorithms for the MNL unicast, broadcast

and convergecast problems and derive new improved approximation bounds for these problems

are obtained. In Chapter 8, we consider the MNL mixedcast problems.
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6.1 Various models of wireless ad-hoc networks

Numerous algorithms and heuristics have been proposed to maximise the network lifetime in

wireless ad-hoc networks. However, it is difficult to compare these algorithms to one another

as the models employed to describe the wireless ad-hoc networks vary depending on some

factors such as the types of antenna used for communication and the assumptions made for the

environment settings.

Typical considerations in modelling the behaviour of wireless ad-hoc networks are:

• undirected (that is, symmetric) communication versus directed (that is, asymmetric)

communication,

• omnidirectional antenna versus directional antenna,

• adjustable transmission power level versus fixed transmission power level,

• data aggregation versus no data aggregation,

• channel access methods and interference.

In the undirected model, also known as the symmetric model, there is an undirected commu-

nication link between two nodes, which means that if a node u can reach a node v, the node v

can also reach node u and the communication costs in both directions are the same. On the other

hand, the directed model, also known as asymmetric model, specifies one way communication

links between two nodes. Generally, the "conventional" network (the wired network) algorithms

(or protocols) are developed under the undirected model. However, in wireless ad-hoc networks

as communications can be easily be affected by background noise and interference that are

likely to be non-uniform, the directed model is often adopted to develop algorithms (or proto-

cols). The directed model seems to reflect the more realistic model of wireless ad-hoc networks.

The directional model has been considered in [13, 28, 29, 44, 54, 57, 61, 63], whereas, the

undirected model has been considered in [5, 45, 67, 70].
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Another important factor for modeling the wireless ad-hoc networks is the type of antennas

used by nodes for communication. In omnidirectional antenna model, considered, for example,

in [5, 13, 28, 29, 44, 45, 57, 61, 63, 67, 69, 70, 15], all nodes have a 360 degree coverage. This

means that, for instance, if a node u transmits a message with enough power to reach another

node at distance d, then all nodes, which are located within the distance d in any direction, are

also able to receive the message. On the other hand, in directional antenna model, each node

has a limited angular coverage (the angle is defined by the angle of the beam width), hence,

only the set of nodes, which are located within distance d in that direction, are able to receive

the message. In the extreme case of the directional antenna model, each transmission has a

single-recepient. This model is often referred to as the unidirectional antenna model, and was

considered in [13, 54, 57, 61].

Another consideration in terms of the network model of wireless ad-hoc network is the

transmission power level whether it is adjustable by nodes or not. The transmission power level

of a node determines the transmission range of the node and it affects the performance of the

network in various aspects. For instance, if transmission power level of a node is chosen to

be high, then the transmission range of this node increases, and consequently the number of

intermediate nodes needed to reach the intended destination decreases. This can reduce the

traffic in the network, but may undesirably increase the magnitude of interference.

There are different ways of using adjustable transmission power level in the context of

maximising network lifetime in wireless ad-hoc networks. For example, in [44, 63, 45]

transmission power level of a node v is initially set to the maximum, so that each neighbour

within that range can receive the message from v. Once the intended target node is set, each

node can dynamically reduce the transmission power to the level which is just enough to reach

the target. This may help to improve the energy usage in the network. In [20, 70], the authors

assume that all nodes transmit at the same fixed power level. Gomez et al. in [24] show that

adjustable transmission range can improve the overall network performance.

Data aggregation is a process of aggregating the obtained data into smaller size message to

enhance the energy efficiency. This is important in data gathering (convergecast) communi-
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cation tasks. Some models allow a perfect (full) aggregation [44, 45, 54, 70, 29, 61], which

means that multiple incoming messages of size x are compressed into a single message of size

x. Such data gathering scenarios include simple database queries such as MAX, MIN, COUNT,

SUM, and AVERAGE. The perfect aggregation is ideal in terms of energy efficiency, since it is

natural to assume that the energy required to transmit a message is proportional to the size of

this message. However, data aggregation is not always applicable. In certain data gathering

scenarios, such as gathering video of the local area, the received messages from different part

of the area may not be aggregated into the same size in any meaningful way. Thus, there have

been works on different types of models with data aggregation, full (see references as above),

or partial [7], and without data aggregation [29]. Li et al. in [42] analyse the trade-off between

communication delay and energy consumption of all three types of data aggregation.

An additional consideration for wireless ad-hoc network model is a channel access method.

Wireless communication uses radio frequencies (RF) to transmit a message, and a collision of

transmissions may occur if two or more nodes transmit a message using the same frequency

at the same time at the same place. As a consequence, the intended receivers may not receive

the original messages. In order to support multiple sessions simultaneously without having a

collision, a channel access method is used. The media access control (MAC) layer protocols

address such issues. There are several well-known methods, such as frequency division multiple

access (FDMA), code division multiple access (CDMA), time division multiple access (TDMA),

and many variants of them. The majority of papers, which address the maximum network

lifetime problem, do not consider scheduling of transmissions. Instead, they assume that

MAC layer uses "perfect" TDMA-based or CDMA-based scheduling, so that collision and

interference do not occur.

6.2 Our model and preliminaries

In this section, we describe our network model (Section 6.2.1) and give formal definitions of

communication tasks and routing topologies (Section 6.2.2).
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6.2.1 Our Model

We consider a wireless ad-hoc network N consisting of n stationary nodes. Each node v

is equipped with a unidirectional antenna, which only permits a single node to receive a

transmitted message at a time. Each node v has a finite amount of initial battery capacity and

each node-to-node transmission uses a fixed (given) amount of energy at the transmitting node.

We proceed with a formal definition. Recall that R+ is the set of non-negative real numbers.

Definition 6. A static wireless ad-hoc network N = (V,E,w,B) is modelled as a weighted,

directed graph (V,E), where V is a set of nodes with |V |= n, E ⊆V ×V is a set of directed

edges, w : E→ R+ is an edge-weight function representing energy cost of transmissions, and

B : V → R+ is a battery capacity function.

In the network N, a directed edge (u,v) indicates that node u is able to directly transmit a

message to node v. An edge-weight w(u,v) of the directed edge (u,v) denotes the amount of

energy consumed to transmit one message from node u to node v. For example, if the network

is embedded into a physical space, then we could consider w(u,v) = d(u,v)α , where d(u,v) is

distance from node u to v and α is a path attenuation factor, usually taken to be between 2 and

4. However, in our model, we do not assume any particular relation between the edge-weight

and the distance between the nodes in the physical space. The edge weights are simply part of

the input. The battery capacity B(v) denotes the initial battery capacity of node v. To support

the heterogeneity of nodes in the network, we allow the initial battery capacities to be different.

In our model, we take into account only the energy consumption of transmissions, assuming

that in wireless networks the radio frequency transmission dominates the energy usage. In

particular, we do not consider energy consumption for receiving and processing data. We note

that some previous works also consider the energy consumption for receiving [26, 72, 70, 45,

10]. We assume that every node shares the same frequency band and the MAC layer is based

on “collision-free” TDMA, so that transmissions do not interfere with each other. For the

convergecast problem, we assume that the messages from different nodes can always be fully
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aggregated into one message. This means that if we want to minimise the energy used by a

node, then this node should wait for all messages it is to receive in the current round, and then

aggregate all of them into one message and send it on towards the root.

Communication in a wireless network is fractional or discrete. In the fractional variant

[29, 57], a message is allowed to be divided into smaller messages, which can be transmitted

separately and possibly along different routes. Whereas, in the discrete variant [13, 54, 58, 6],

each message has to be sent in one transmission. The discrete variant seems to reflect better the

existing network protocols, because in the variant messages are regarded as the smallest data

unit (e.g, packet), which cannot be further split. We consider the discrete variant in this thesis.

6.2.2 Communication tasks and routing topologies

In wireless ad-hoc networks, unicasting, broadcasting, and convergecasting are the fundamental

tasks in network communication. Many applications as mentioned earlier are based on these

communication tasks. Unicasting (or unicast) is one-to-one communication, where information

held in one node (called the source) in the network is transmitted to another node (called the

destination). Broadcasting (or broadcast) is one-to-all communication, where information held

in one node (the source) is transmitted to all other nodes. Convergecasting (or convergecast

or data gathering) can be viewed as the opposite to broadcast, when data from all nodes are

transmitted to one specified node (the sink or destination).

(a) (b) (c)

Figure 6.1 (a) Broadcast - data flows from a single node s to all nodes a,b, and c. (b)
Convergecast without aggregation - data flows from nodes a,b, and c to a single node s. (c)
Convergecast with aggregation.
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Figure 6.1 shows a simple example that illustrates the characteristics of broadcast and

convergecast. Each arrow corresponds to a single node-to-node transmission. In a broadcast,

as shown in Figure 6.1(a), node s is the source and all other nodes a,b, and c are its expected

recipients. Node a received the message directly from node s and relayed the message to nodes

b and c. In convergecast, illustrated in Figure 6.1(b), each node a,b, and c has a message

intended for the sink (destination) s, and a serves as a relay node for nodes b and c. The three

arrows indicates that there is no aggregation at node a, and three independent transmission

have to be made. A single arrow from a to s in Figure 6.1(c) indicates that a performs full data

aggregation.

A routing topology defines an execution of a given communication task. We refer to one

execution of a communication task as one communication round. The structure of a routing

topology R changes depending on the type of the communication task. For broadcast and

convergecast, the properties of our model imply that optimal solutions use tree-based routing

topologies. Thus, a routing topology R is in the form of a broadcast tree Tout or convergecast

tree Tin, respectively, with the root node, the source of the broadcast or the destination of the

convergecast. A routing topology for unicast is a simple path P from the source node r to the

destination node s. Figure 6.2 shows examples of a structure of routing topology for unicast,

broadcast, and convergecast. In each round a specified communication task is executed based

upon the information of the pre-computed routing topology.

Accordingly, a routing topology for a given communication task refers to the corresponding

structure, a path P for unicast, a tree Tin for convergecast, and a tree Tout for broadcast.

As mentioned in the beginning of this chapter, we consider both single topology and multiple

topology cases. In the single topology case, a routing topology is used for all communication

rounds. On the other hand, in the multiple topology case, the routing topologies used in

different rounds do not have to be identical. The single topology case is easier to deploy, but

multiple topology case can be more energy efficient.
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(a) Unicast: A path from source r to desti-
nation c (b) Broadcast: a tree Tout rooted at source r

(c) Convergecast: a tree Tin

Figure 6.2 A structure of routing topology for unicast, broadcast, and convergecast

6.3 Definitions of the problems

The Maximum Network Lifetime (MNL) problem for unicast, broadcast and convergecast is

defined as follows. The input to the problems is a network N = (V,E,w,B), and a node r ∈V

(for broadcast and convergecast) or two nodes r,s ∈V (for unicast). The output is a collection

of routing topologies R = {R1, ...,Rk} for the given communication task, which satisfy the
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following energy constraints:

k

∑
i=1

w(δ out
Ri

(v)) =
k

∑
i=1

∑{w(e) : e ∈ δ
out
Ri

(v)} ≤ B(v), for all v ∈V. (6.1)

The left-hand side of (6.1) is the total energy used by node v over k communication rounds,

when the ith round is done according to the routing topology Ri. The optimisation objective of

the problem is to maximise k. Since k represents the number of communication rounds, which

can be executed within the specified battery capacities, larger k means longer network lifetime.

In the single topology variant, the same routing topology R is employed for all k rounds, i.e.

Ri = R for all i≤ k. In this case, the constraints (6.1) simplify to the following constraints:

k ·∑{w(e) : e ∈ δ
out
R (v)} ≤ B(v), for all v ∈V. (6.2)

The MNL mixedcast problem is defined in the following way. We are given two positive

integer parameters τ and γ , and the objective is to find the maximum integer k such that τk

broadcasts and γk convergecasts can be performed whilst the energy constraints are satisfied.

More formally, the input to this problem is a network N = (V,E,w,B), two nodes rb,rc ∈V ,

and two integers τ,γ ≥ 1. The output is a maximum integer k, a collection of τk broadcast

trees Tout = {T ′1, ...,T ′τk} rooted at node rb and a collection of γk convergecast trees Tin =

{T ′′1 , ...,T ′′γk} rooted at node rc, that satisfy the following energy constraints:

τk

∑
i=1

∑{w(e) : e ∈ δ
out
T ′i

(v)} +
γk

∑
i=1

∑{w(e) : e ∈ δ
out
T ′′i

(v)} ≤ B(v), for all v ∈V. (6.3)

In the single topology variant, we need to find one broadcast tree Tout and one convergecast tree

Tin that are feasible for τk broadcast rounds and γk convergecast rounds. Hence, the energy

constraints (6.3) simplify to:

τk ·∑{w(e) : e ∈ δ
out
Tout

(v)} + γk ·∑{w(e) : e ∈ δ
out
Tin

(v)} ≤ B(v), for all v ∈V. (6.4)
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Thus, in this thesis we consider the following eight MNL problems.

Single Topology Unicast (STU) problem:

Input: a network N = (V,E,w,B), and two nodes r,s ∈V .

Output: a maximum integer k and an r-s path P that satisfy the energy constraints (6.2).

Multiple Topology Unicast (MTU) problem:

Input: a network N = (V,E,w,B), and two nodes r,s ∈V .

Output: a maximum-size collection of r-s paths P = {P1, ...,Pk} that satisfies the energy

constraints (6.1).

Single Topology Broadcast (STB) problem:

Input: a network N = (V,E,w,B), and node r ∈V .

Output: a maximum integer k and a broadcast tree Tout rooted at r that satisfy the energy

constraints (6.2).

Multiple Topology Broadcast (MTB) problem:

Input: a network N = (V,E,w,B), and node r ∈V .

Output: a maximum-size collection of broadcast trees Tout = {T1, ...,Tk} rooted at r that

satisfies the energy constraints (6.1).

Single Topology Convergecast (STC) problem:

Input: a network N = (V,E,w,B), and node r ∈V .

Output: a maximum integer k and a convergecast tree Tin rooted at r that satisfy the energy

constraints (6.2).

Multiple Topology Convergecast (MTC) problem:

Input: a network N = (V,E,w,B), and node r ∈V .

Output: a maximum-size collection of convergecast trees Tin = {T1, ...,Tk} rooted at r that

satisfies the energy constraints (6.1).
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Single Topology Mixedcast (STM) problem:

Input: a network N = (V,E,w,B), two nodes rc,rb ∈ V , and two integers τ,γ ≥ 0.

Output: a maximum integer k, a broadcast tree Tout rooted at node rb, and a convergecast Tin

rooted at node rc, which together satisfy the following energy constraints (6.4).

Multiple Topology Mixedcast (MTM) problem:

Input: a network N = (V,E,w,B), two nodes rc,rb ∈ V , and two integers τ,γ ≥ 0.

Output: a maximum integer k, a collection of broadcast trees Tout = {T1, ...,Tτk} rooted at

node rb and a collection of convergecast trees Tin = {T1, ...,Tγk} rooted at node rc, which

satisfy the energy constraints (6.3).

6.4 Previous Results

The previous studies of the topic of maximising the lifetime of ad-hoc wireless networks have

been considering mainly the omnidirectional communication model [30, 44, 45, 57, 58, 70].

Kang and Poovendran [30] investigate the fractional variants of the Maximum Network Lifetime

(MNL) problem for broadcast communication, proposing a polynomial time algorithm for

the STB problem and some heuristics for the MTB problem. Orda and Yassour [57] improve

the time complexity of the STB and STU problem, prove that the MTB problem is NP-hard,

and propose additional MTB heuristics. Segal [61] further improves the running time of the

STB problem showing that an optimal solution can be computed in O(|V |+ |E|). In the same

paper, Segal shows that the STC problem can also be solved in linear time, showing the same

approach as for the STB problem. Additional results related to the maximum network lifetime

problem under broadcast communication can be found in [11, 47, 58].

Kalpakis et al. [29] consider the fractional variants of the MTC problem with full aggrega-

tion, giving a polynomial time algorithm, but their polynomial bound is of high-degree. For

the same problem, Stanford and Tongngam [64] give (1− ε)-approximation algorithm with a
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considerably faster running time. Dasgupta et al. [10] also propose and experimentally evaluate

a heuristic for this problem.

There have been many studies related to the convergecast problem with an objective of

maximizing the lifetime of the network under the various assumptions on the network structures

and energy model. Wu et al. [70] consider the problem assuming uniform transmission costs.

The model with arbitrary transmission costs is considered in [45]. In [44, 45, 50], only the

energy consumption of transmissions is taken into account. In [29, 65, 70] the authors consider

more general model, in which the energy consumption of receiving messages is also taken into

account. The alternative approach of optimising only a single session has been considered in

[43, 69, 71] for broadcast and in [22, 33, 66] for convergecast.

Orda and Yassour [57] were the first to consider the complexity of the MNL problem in

unidirectional communication model. Under this model, they show that the fractional variant

of the STB problem is NP-hard, and propose a polynomial time algorithm for the fractional

variant of the MTB problem. It is not difficult to show that in this model the STU and STC

problems can be solved in polynomial time. Segal [61] shows that we can actually get a linear

time algorithm for this problem. Bodlaender et al. [6] show that the decision variant of the

multiple topology unicast (MTU) problem is strongly NP-complete and APX-hard. A simple

reduction from MTU to MTC implies that MTC is also strongly NP-complete and APX-hard.

Elkin et al. [13] show that the broadcast problems STB and MTB are NP-hard. Actually, the

special case of the MNL broadcast problems which asks whether a given network allows one

broadcast is already NP-complete (a simple reduction from the Hamiltonian path problem).

Elkin et al. [13] give also an Ω(1/ logn)-approximation algorithm for the STB problem, un-

der the assumption that kopt (the maximal number of rounds) is appropriately large. Nutov [51]

shows a constant-ratio approximation algorithm for the MTU problem, and Nutov and Segal

[54] show constant-ratio approximation algorithms for the STB, MTB and MTC problems, if

kopt is appropriately large. They also show that the MTC problem admits a 1/31-approximation

polynomial time algorithm. The previous best results for the MNL problems are given in
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Table 6.1. Note that the results in the table guarantee the number of rounds ⌊kopt/β⌋ only for

the inputs such that w(u,v)≤ B(u)/β , for each edge (u,v).

Table 6.1 Previous results and our results for the MNL problems. The previous results are due
to Nutov [51] and Nutov and Segal [54].

Previous results

Type of solution unicast convergecast broadcast mixedcast

Single Topology kopt kopt ⌊kopt/25⌋ [54] ⌊kopt/36⌋ [54]

Multiple Topology
⌊kopt/16⌋ [51] ⌊kopt/16⌋ [54] ⌊kopt/36⌋ [54] ⌊kopt/100⌋ [54]
1/31 ·kopt [51] 1/31 ·kopt [54]

Our results

Type of solution unicast convergecast broadcast mixedcast

Single Topology - - ⌊kopt/5⌋ ⌊kopt/5⌋

Multiple Topology
⌊kopt/3⌋ ⌊kopt/3⌋ ⌊kopt/5⌋ ⌊kopt/5⌋
1/5 · kopt 1/5 · kopt

6.5 Our Results

We present the algorithmic results for the discrete variant of the Maximum Network Lifetime

(MNL) problems for unicast, broadcast, convergecast, and mixedcast, under the unidirectional

antenna model. We consider both the single and multiple topology variants of these problems.

Our results are based on the Maximum Network Lifetime (MNL) approximation algorithms

proposed by Nutov and Segal’s [54], which find a good value of k using binary search and

Nutov’s bicriteria algorithm for Directed Weighted Degree Constrained Network Design

DWDCN problems [50]. We give a different analysis of the overall binary search and using our

new improved approximation bounds for the DWDCN problems, which is given in Chapters 3–

4, we obtain better approximation factors for unicast, convergecast, and broadcast problems

than the ones obtained in [51, 54]. These improved approximation factors, together with a new

approach to mixedcast problem, give our new approximation factors for the mixedcast.
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The following theorem gives the approximation factors for the MTU, STB, MTB, and MTC

problems.

Theorem 6.1. For each of the problems, MTU, STB, MTB, and MTC, there exists a polyno-

mial time algorithm, which finds a solution with k ≥ ⌊kopt/β⌋ where:

• β = 3, for the MTU and MTC problems;

• β = 5, for the STB and MTB problems;

for all input instances of STB and for all input instances of MTU, MTB and MTC such that

w(u,v)≤ B(u)/β for each edge (u,v).

We note that our results guarantee the number of rounds ⌊kopt/β⌋ for the MTU and MTB

and MTC problems only for the inputs such that w(u,v)≤ B(v)/β .

The Single Topology Convergecast (STC) problem can be solved in polynomial time [61].

Therefore, for the Multiple Topology Convergecast (MTC) problem, we can determine in

polynomial time whether kopt ≥ 1. This yields the following corollary.

Corollary 6.2. The Multiple Topology Convergecast (MTC) problem admits a 1/5-

approximation polynomial time algorithm, for inputs such that w(u,v) ≤ B(v)/3 for each

edge (u,v).

Proof. Let kSTC
opt and kMTC

opt denote the optimal number of rounds for the STC and MTC

problems, respectively. We run a polynomial time algorithm for STC problem to obtain

kSTC
opt . If kSTC

opt = 0, then kMTC
opt = 0. If kSTC

opt ≥ 1, then we run the polynomial time algorithm of

Theorem 6.1 to get k ≥ ⌊kMTC
opt /3⌋ convergecast trees. Our solution for the MTC problem is

now ksol = max{kSTC
opt ,k} ≥ 1. Because ksol ≥ 1, we have,

ksol ≥

⌊
kMTC

opt

3

⌋
≥

kMTC
opt

3
− 2

3
≥

kMTC
opt

3
− 2 · ksol

3
.
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This implies that ksol ≥ kMTC
opt /5.

An analogous bound applies to the Multiple Topology Unicast (MTU) problem, since the

Single Topology Unicast (STU) problem has a polynomial time algorithm.

Corollary 6.3. The Multiple Topology Maximum Lifetime Unicast (MTU) problem admits a

1/5- approximation polynomial time algorithm, for inputs such that w(u,v)≤ B(v)/3.

Our results for the mixedcast problems are summarised in the following theorem.

Theorem 6.4. For the Single and Multiple Topology Mixedcast (STM and MTM) problems,

there exists a polynomial time algorithm, which finds a solution with at least ⌊kopt/β⌋ rounds

where:

• β = 5, for the STM problem;

• β = 5, for the MTM problem.

for all input instances such that w(u,v)≥ B(v)/β .

Our results for the MNL problems are summarised in Table 6.1.

6.6 Computational complexities of the MNL problems

In this section, we discuss the computational complexity of the MNL problems.

The single topology convergecast (STC) problem of finding a maximum integer k and

a convergecast tree rooted at r that satisfy the energy constraints (6.2) can be solved in

polynomial time. This can be done as follows. For each edge e = (u,v) in G, we calculate the

values k(u,v) =
⌊

B(u)
w(u,v)

⌋
, and order the edges of G into a sequence e1,e2, . . . ,em according to
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increasing values of k(ei). For each i = 1,2, . . . ,m, let Gi = (V,{ei,ei+1, . . . ,em}), in particular,

G1 = G. Let imax be the maximum index such that Gimax contains an in-arborescence rooted at

node r. Then, kopt = k(eimax). We can find imax by binary search. Clearly, this can be done in

O(m logn) time, and it was shown in [61] that it can be implemented in O(m) time.

The single topology unicast (STU) problem can also be solved in polynomial time in similar

way, but instead of checking for existence of an in-arborescence rooted at node r in graph Gi,

we need to check whether there is a simple path from source r to destination s.

It is shown in [6] that the decision variant of the multiple topology unicast (MTU) problem

is strongly NP-complete and APX-hard, by reduction from 3-partition problem. A simple

reduction from MTU to MTC shows that MTC is also strongly NP-complete and APX-hard.

Since we could not find a reference to this reduction in the previous literature, we give it below

for completeness.

Theorem 6.5. The multiple topology convergecast (MTC) problem is NP-complete and APX-

hard.

Proof. Consider the following polynomial time reduction from MTU to MTC. For an input

I = ⟨(V,E,w,B),r,s⟩ of the MTU problem, we create an instance I′ = ⟨(V,E ′,w′,B),r′⟩ of the

MTC problem as follows. For each node v ∈V\{r,s}, we add a new directed edge from node

v to node r with zero weight, and we set r′ = s. It is easy to see that our instance I′ of the MTC

problem has k rounds, if and only if, the instance I of the MTU problem has k rounds. This is

because for this instance I′ it is sufficient to consider only the convergecast trees, which consist

of a simple path from r to r′ and the edges (v,r) from all nodes v not on this path.

For the broadcast problems (STB and MTB), even checking whether k = 1 is feasible is

NP-complete (simple reduction from the Hamiltonian path problem) [13]. This implies that the

single and multiple topology broadcast (STB and MTB) problems are NP-hard.

Another simple reduction shows that the broadcast problems (STB and MTB) can be viewed

as a special case of the mixedcast problems (STM and MTM). For an input I = ⟨(V,E,w,B),r⟩
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of the broadcast problems, create an instance I′ = ⟨(V,E ′,w′,B),rc,rb,γ,τ⟩ of the mixedcast

problems as follows. We set rb = rc = r. For each node v ∈V\{r}, add a new directed edge

from node v to node r with zero weight. We set τ = γ = 1. Then, our instance I of the broadcast

problem has k broadcast trees, if and only if, the instance I′ of the mixedcast problem has a

solution with k broadcast trees and k convergecast trees. Thus, the mixedcast problems are

NP-hard.

The complexities of the MNL problems are depicted in Table 6.2.

Type of solution unicast convergecast broadcast mixedcast

Single Topology P [61] P [61] NP-complete [13]NP-complete

Multiple Topology NP-complete [6] NP-complete NP-complete [13]NP-complete

Table 6.2 The complexities of the Maximum Network Lifetime (MNL) problems

6.6.1 Complexities of the restricted MNL problems

Our approximation factors hold only for the inputs such that w(u,v)≤ B(u)/β , for each edge

(u,v). In this section, we show that the NP-hard MNL multiple topology problems remain

NP-hard for such a restricted class of inputs. The proofs are given in Theorems 6.6, 6.7 and 6.9.

Theorem 6.6. The MTB problem remains NP-hard even if the input instances are restricted by

the condition that for each edge (u,v), w(u,v)≤ B(u)/β , where β > 1 is fixed (but arbitrary)

integer constant.

Proof. Consider the following polynomial time reduction from the decision version of the

MTB problem to the decision version of the restricted MTB problem. Let I = ⟨N = (V,E,w,B),

r ∈V,k ≥ 1⟩ be an instance of the decision version of the MTB problem: the answer for this
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instance is YES, if and only if, there exists a k-round MTB solution for ⟨N,r⟩. We can assume

that w(u,v)≤ B(v) because an edge with w(u,v)> B(u) is never relevant for the answer. For

the instance I, we create an instance I′ = ⟨N′ = (V ′,E ′,w′,B′) ,r,k ≥ 1⟩ of the decision version

of the restricted MTB problem as follows.

For each v ∈V , we create β additional nodes v1, . . . ,vβ . Let Vv = {v1, . . . ,vβ} be a set of β

nodes created for node v. We set V ′ =V
⋃

v∈V Vv. For each newly created node x associated

with node v, we add a directed edge from v to x. Thus, E ′ = E
⋃
{(v,x) : v∈V,x∈Vv}. For each

newly added edge (v,x), we set w′(v,x) = B(v) · (β −1)/(k ·β ), while for the edges (u,v) ∈ E,

w′(u,v) = w(u,v). For each v ∈V , we set an initial battery capacity B′(v) = βB(v). For each

additional node x ∈ V ′\V,B′(x) = 0. Note that for each edge (u,v) ∈ N′,w′(u,v) ≤ B′(u)β .

Therefore, the constructed instance N′ = (V ′,E ′,w′,B′) satisfies the desired condition.

We now show that the input instance I = ⟨N = (V,E,w,B), r ∈ V,k ≥ 1⟩ of the decision

version of the MTB problem is positive, if and only if, the constructed instance I′ = ⟨N′ =

(V ′,E ′,w′,B′) ,r,k ≥ 1⟩ of the decision version of the restricted MTB problem is positive.

Suppose that the instance I of the decision version of the MTB problem is positive, i.e,

it has a k-round MTB solution T = {T1, . . . ,Tk}. Let Ti = (V,Ei). Consider broadcast trees

T ′ = {T ′1, . . . ,T ′k} in N′ such that T ′i = (V ′,E ′i) and E ′i = Ei
⋃
{(v,x) : v ∈V,x ∈Vv}. It is easy

to verify that these k broadcast trees satisfy the energy constraints in N′, so I′ is a positive

instance of the decision version of the restricted MTB problem.

Conversely, assume that the instance I′ of the decision version of the restricted MTB

problem is positive, i.e, it has a k-round MTB solution T ′ = {T ′1, . . . ,T ′k}. Consider broadcast

trees T = {T1, . . . ,Tk} in N, where Ti is T ′i restricted to V . It is easy to verify that these k

broadcast trees satisfy the energy constraints in N, so I is a positive instance of the decision

version of the MTB problem.

Thus, it follows that the optimisation version of this problem is NP-hard.
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We now show in the following Theorem 6.7 that the restricted MTU problem is also

NP-hard.

Theorem 6.7. The MTU problem remains NP-hard even if the input instances are restricted by

the condition that for each edge (u,v), w(u,v)≤ B(u)/β , where β > 1 is a fixed (but arbitrary)

integer constant.

Proof. Let MTUβ denote the decision version of the restricted MTU problem defined in the

statement of the theorem. We define also the following different restriction of the MTU

problem.

MTU-3Part problem

Instance: network N = (V,E,w,B), and nodes r,s ∈ V . The network N has the following

special structure, where c is a positive constant and the integer m indicates the size of network:

• V = {r,s,S1, . . . ,Sm,v1, . . . ,v3m},

• E = E1
⋃

E2
⋃

E3,

– E1 = {(r,Si) : i = 1, . . . ,m},

– E2 = {(Si,v j) : i = 1, . . . ,m, j = 1, . . . ,3m},

– E3 = {(v j,s) : j = 1, . . . ,3m},

• For all edges (r,Si) ∈ E1, w(r,Si) = 0, and for all edges (Si,v j) ∈ E2, w(Si,v j) = x j,

where c/4 < x j < c/2, and ∑
3m
j=1 x j = cm. For all edges (v j,s) ∈ E3, w(v j,s) = c,

• B(r) = ∞,B(Si) = c, i = 1, . . . ,m,B(v j) = c, j = 1, . . . ,3m.

Question: can the network N support 3m unicast rounds from the source r to destination s?

Bodlaender et al. [6] showed that this problem is strongly NP-Complete by a reduction

from the 3-Partition problem. The sequence of numbers (edge-weights) x1, . . . ,x3m and the
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Figure 6.3 An instance of the MTU-3part problem, which is constructed from the instance of
the 3-partition problem in pseudo-polynomial time.

number c are the input instance of the 3-Partition problem with the question whether x1, . . . ,x3m

can be partitioned into m subsets such that the sum of each subset is equal to c. Fig 6.3 shows

the corresponding instance of the MTU-3Part problem. In the figure, the nodes S1, . . . ,Sm play

the role of the subsets in the 3-partition problem.

We now reduce the MTU-3Part problem to MTUβ . The construction of an instance

I′ = ⟨N′ = (V ′,E ′,w′,B′),r,s,k′⟩ of MTUβ from an instance I = ⟨N = (V,E,w,B),r,s⟩ of

MTU-3Part is specified in Algorithm 1 and illustrated in Fig 6.4. Observe that for each edge

(u,v) ∈ E ′,w′(u,v)≤ B′(v)/β . Therefore, I′ is indeed an instance of MTUβ . Lemma 6.8 below

implies that the constructed input instance I′ of the decision version of the restricted MTU

problem is also NP-complete. Therefore, it follows that the optimisation version of this problem

is NP-hard.

To complete the proof of Theorem 6.7, we prove the following lemma.

Lemma 6.8. The instance I of MTU-3Part is positive, if and only if, the constructed instance

I′ of MTUβ is positive.
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Input: an arbitrary instance I = ⟨N = (V,E,w,B),r,s ∈ V ⟩ of MTU-3Part.
Output: instance I′ = ⟨N′ = (V ′,E ′,w′,B′),r,s ∈ V ′,k′⟩, of MTUβ (So,

w′(u,v)≤ B(u)/β , for each (u,v) ∈ E ′.
Construction of I’:

1. The set of nodes V ′ is the union of the following sets:

(a) V = {r,s}
⋃
{S1, . . . ,Sm}

⋃
{v1, . . . ,v3m} (the set of nodes in N).

(b) V1 = {p1, . . . , p3m}.
(c) V2 = {t1, . . . , tm}.
(d) r is source and s is destination in N′

2. The set of edges E ′ is the union of the following sets.

(a) E is the set of edges in N

(b) E1 = {(r, pi) : i = 1, . . . ,3m}. Source r has an outgoing edge to each
node pi ∈V1.

(c) E2 = {(Si, ti) : i = 1, . . . ,m}. For each node Si ∈V , there is an outgoing
edge to ti.

(d) E3 = {(pi,vi) : i = 1, . . . ,3m}. For each node pi ∈V1, there is an outgoing
edge to vi.

(e) E4 = {(ti,s), i = 1, . . . ,m}. For each node ti ∈V2, there is an outgoing edge
to destination s.

3. We set edge-weights as follows.

(a) For all edges e ∈ E, w′(e) = w(e), that is as in N.

(b) For all edges e ∈ E1, w′(e) = 0

(c) For all other edges e, w′(e) = c

4. We set battery capacity as follows.

(a) For the source r, B(r) = ∞.

(b) For all nodes v ∈V\{r,s}, we set B(v) = 2βc

(c) For all nodes v ∈V1∪V2, B(v) = (2β −1)c.

5. k′ = 8mβ −m

Algorithm 1: Reduction from MTU-3Part to MTUβ
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Figure 6.4 The instance of the restricted MTU problem
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Proof. Assume that the instance I = ⟨N = (V,E,w,B),r,s⟩ of the MTU-3Part problem is

positive, i.e, the network N supports 3m unicast rounds from source r to destination s. We

show that the constructed instance I′ = ⟨N′ = (V ′,E ′,w′,B′),r,s,k′⟩ of the MTUβ problem is

positive, i.e, N′ supports k′ = 8mβ −m rounds. Since network N supports 3m unicast rounds

and N is a part of N′, it is clear that N′ can also support 3m rounds using the same paths as in N.

After supporting these rounds, the remaining battery capacities of nodes S1, . . .Sm,v1, . . . ,v3m

are 2βc− c = (2β − 1)c: each node v j transmits exactly one message and the cost of each

transmission is equal to c, so the battery capacity at v j decreases by c. Thus each node v j

receives exactly one message from one of the nodes Si, and the cost of transmitting this message

is equal to x j. This means that the total cost of transmitting 3m messages from the nodes Si to

the nodes v j is equal to ∑
3m
j=1 x j = mc. Hence the battery capacity at each node Si must also

decrease by c.

By using the paths
⋃3m

j=1{r→ p j→ v j→ s} and
⋃m

i=1{r→ Si→ ti→ s}, network N′ can

support further (2β −1) ·3m + (2β −1) ·m = 8mβ −4m rounds. Hence, in total network N′

can support 3m+8mβ −4m = 8mβ −m rounds. Thus, I′ is a positive instance of MTUβ .

Conversely, suppose that the constructed instance I′ of the MTUβ problem is positive, i.e,

N′ supports k′ = 8mβ −m unicast rounds from source r to destination s. We consider the

solution for I′ (the 8mβ unicast rounds), which maximises the total energy usage at nodes

p1, . . . p3m. We claim that this solution must use all energy at each node in {p1, . . . p3m}.

Assume to the contrary that there is a node p j, which does not use all energy. There must

be a round which uses a path r → Si → v j → s, because node v j must use all its energy.

Replacing this path with r→ p j → v j → s, we are getting a solution with the same number

of rounds but with more energy used at nodes {p1, . . . , p3m}. This contradiction implies the

claim. The claim implies that (2β − 1) transmissions have to be made through each path

{r→ p j→ v j→ s}, j = 1, . . . ,3m, which gives (2β −1) ·3m unicast rounds.

We now show that the instance I of the MTU-3Part problem is positive, i.e, the network

N supports 3m unicast rounds from the source r to destination s. It is clear that 8mβ −m

transmissions must be made from the nodes {v1, . . . ,v3m}
⋃
{t1, . . . , tm} to destination s. Each
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such transmission costs c and the total energy at the nodes in {v1, . . . ,v3m}
⋃
{t1, . . . , tm} is

equal to (8mβ −m)c, so all nodes in {v1, . . . ,v3m}
⋃
{t1, . . . , tm}must use all their energy. Since

the initial energy at ti is equal to (2β −1)c and there is a unique r-s path passing through ti

{r→ Si→ ti→ s}, there must be exactly (2β −1) unicast rounds which use this path.

Transmissions through the paths
⋃m

i=1{r→ Si → ti → s} and
⋃3m

j=1{r→ p j → v j → s}

give (2β −1) ·m+(2β −1) ·3m = 8mβ −4m unicast rounds. Note that after supporting these

rounds, the remaining battery capacities of nodes S1, . . . ,Sm,v1, . . . ,v3m are exactly c, but all

other nodes in the network have empty batteries. Hence, what is left from network N′ is exactly

network N. Since we consider a solution in N′ which support 8mβ −m rounds, we conclude

that 3m rounds must be performed through the network N. Thus, I is a positive instance of

MTU-3Part.

The complexity of the restricted MTC problem is given in the following theorem. Since this

can be shown by reduction from the decision version of the restricted MTU problem (MTUβ )

with the same reduction steps as in the proof of Theorem 6.5, the proof is omitted.

Theorem 6.9. The MTC problem remains NP-hard even if the input instances are restricted by

the condition that for each edge (u,v), w(u,v)≤ B(u)/β , where β > 1 is a fixed (but arbitrary)

integer constant.



Chapter 7

The MNL broadcast, convergecast and

unicast problems

In this chapter, we describe the approximation algorithms for the single topology broadcast

(STB) and the multiple topology broadcast, convergecast, and unicast (MTB, MTC, and MTU)

MNL problems. As discussed in Section 6.6, these four MNL problems are NP-hard, while

the single topology convergecast and unicast (STC and STU) MNL problems are polynomial.

The mixedcast MNL problems are discussed separately in Chapter 8. In Sections 7.1 – 7.3,

we first consider the single and multiple topology broadcast (STB and MTB) and multiple

topology convergecast (MTC) problems. In Section 7.4, we separately discuss the algorithm

for the MTU problem.

Recall that the input to the MNL broadcast, convergecast, and unicast problems is a network

N = (V,E,w,B), and a node r ∈ V for broadcast and convergecast or two nodes r,s ∈ V for

unicast. In the single topology version of the problems, the output is a routing topology R which

supports k rounds of the specified communication task and satisfies the energy constraints (6.2).

In the multiple topology version of the problems, the output is a collection of routing topologies

R = {R1, ...,Rk}, which supports k rounds of the specified communication task and satisfies

the energy constraints (6.1). The optimisation objective is to maximise the number of rounds k.
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We solve the MNL broadcast and convergecast problems (STB, MTB, and MTC) by first

finding a good value of k using binary search and LP-relaxation of the problems. Computed

k is then used in the formulation of the corresponding DWDCN problem. For the single

topology braodcast (STB), the approximate solution to the DWDCN problem, obtained using

the algorithmic framework discussed in Section 3.4, gives an approximate solution (a tree) for

this MNL problem. In the case of the multiple topology broadcast and convergecast problems

(MTB and MTC) the solution to the DWDCN problem gives a subgraph, which satisfies the

energy constraints (6.1). We obtain the desired collection of broadcast or convergecast trees by

applying Edmonds’ theorem for packing arborescences [12].

Let the k-MNL problem refer to the decision version of the MNL problem: does a k-round

solution for the given MNL problem exist? We solve the MNL broadcast and convergecast

problems by formulating the decision k-MNL problem as a DWDCN problem defined for a

multigraph Nk (the multigraph Nk is constructed from original input network N by replacing

each edge with its k copies). The value k is obtained by the initial binary search. Since

this approach uses multigraphs, the running times of the multiple topology broadcast and

convergecast algorithms turn out to be only pseudo-polynomial, because the value of k, and

consequently the size of graph Nk can be exponential in the size of the input network N. Nutov

et al. [54] mentioned that the multiple topology broadcast and convergecast algorithms can

be run in "true polynomial” time by considering the "capacitated" version of the DWDCN

algorithms, but, they did not provide details of this approach. For completeness, we present in

Section 7.5 details of this capacitated approach.

7.1 DWDCN problems corresponding to MNL broadcast

and convergecast problems

The DWDCN problems are in fact more general than needed in the context of the MNL

broadcast and convergecast problems, so in this section, we introduce three special variants of
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the DWDCN problems and review the DWDCN algorithms. The objective of the DWDCN

problems is to find a minimum cost spanning subgraph H that satisfies specified connectivity

requirements and weighted degree constraints (7.1). The input to these problems is a directed

graph G = (V,E,c,w), where V is a set of nodes, E is a set of edges, c is an edge-cost function,

and w is an edge-weight function, and a subset B ⊆ V , degree bounds b : B→ R+ and a set

function f on V that defines the desired connectivity requirements of the output subgraph.

Recall that an (α,β )-approximation algorithm for DWDCN computes in polynomial-time a

subgraph which satisfies the specified connectivity requirements but may violate the optimality

of the cost by up to a factor of α and the degree bounds by up to a factor of β . The special

cases of DWDCN problems considered in this chapter do not have edge costs and the objective

is only to satisfy the weighted degree constraints as tightly as possible. Therefore we will have

now only one approximation parameter β .

The three special variants of the DWDCN problems corresponding to the MNL problems

are defined below.

Weighted Degree Constrained k-Outconnected (k-Inconnected) Subgraph, WDCKOS (WD-

CKIS)

Input: A directed weighted graph G = (V,E,w), out-degree bounds b : V → R+, a root r ∈V ,

and a positive integer k.

Output: A k-edge-outconnected (k-edge-inconnected) spanning subgraph H of G with root r

that satisfies the weighted out-degree constraints:

w(δ out
H (v)) = ∑{w(e) : e ∈ δ

out
H (v)} ≤ b(v), for each v ∈V. (7.1)

Weighted Degree Constrained Out-Arborescence, WDCOA

Input: A directed weighted graph G = (V,E,w), out-degree bounds b : V → R+, and a root

r ∈V .

Output: An out-arborescence T of G rooted at r that satisfies the weighted out-degree con-

straints (7.1).
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The WDCKOS and WDCKIS problems are used to solve the multiple topology broadcast

(MTB) and convergecast (MTC) problems, respectively. The WDCOA problem is used to

solve the single topology broadcast (STB) problem. We note that the WDCOA problem is

actually the special case of the WDCKOS problem when k = 1.

The connectivity requirements of the WDCKOS problem is to find a k-edge-outconnected

spanning subgraph H of G with root r. A graph H is k-edge-outconnected from r if there

are k edge-disjoint paths from r to each node in H. It is well known that a graph H contains

k edge-disjoint paths from node r to all other nodes in H, if and only if, δ in
E (S) ≥ k for

every subset /0 ̸= S⊆V\{r}. Hence, the WDCKOS problem of finding k-edge-outconnected

spanning subgraph H with root r that satisfies the weighted out-degree constraints (7.1) can

be formulated as the feasibility problem of the following integer program POS
IP (k,b : G) with

variables x(e),e ∈ E ′ = {(u,v) ∈ E : w(u,v)≤ b(u)}:

x
(
δ

in
E ′(S)

)
≥ k for all /0 ̸= S⊆V\{r}, (C)

∑
e∈δ out

E′ (v)
x(e)w(e)≤ b(v) for all v ∈V, (W )

x(e) ∈ {0,1}, for all e ∈ E ′. (B)

To make it clear that the integer program is constructed for graph G, we use the notation

POS
IP (k,b : G).

The DWDCN problem with intersecting supermodular function f includes as a special

case the WDCKOS problem by setting f (S) = k for every subset /0 ̸= S⊆V\{r} and f (S) = 0,

otherwise. We have shown in Section 3.2 (see Theorem 3.1) that there is a polynomial-

time (2,5)-approximation algorithm for the DWDCN problem with intersecting supermodular

function f and weighed out-degree constraints. Hence, it follows that there is a polynomial-time

5-approximation algorithm for the WDCKOS problem.

The connectivity requirements of the WDCKIS problem is to find, for a given G and a root

r ∈V , a k-edge-inconnected spanning subgraph H with root r. Analogously to the notion of the
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k-edge-outconnected subgraph, a graph H is k-edge-inconnected with root r, if for each node

v ̸= r, there are k edge-disjoint paths from v to r. A graph H contains k edge-disjoint paths

from v to r, if and only if, δ out
H (S)≥ k for every subset /0 ̸= S⊆V\{r}. Hence, the WDCKIS

problem of finding k-edge-inconnected spanning subgraph H with root r that satisfies the

weighted out-degree constraints (7.1) can be formulated as the following integer program

PIS
IP(k,b : G) with variables x(e),e ∈ E ′ = {(u,v) ∈ E : w(u,v)≤ b(u)}:

x(δ out
E ′ (S))≥ k, for all /0 ̸= S⊆V\{r},

∑
e∈δ out

E′ (v)
x(e)w(e)≤ b(v), for all v ∈V,

x(e) ∈ {0,1}, for all e ∈ E ′.

Let G′ = (V,Er,w) be the reverse graph of G = (V,E,w), where Er = {(u,v) : (v,u) ∈ E},

and w(u,v) = w(v,u) and c(u,v) = c(v,u) for each edge e ∈ Er. Since |δ out
E (S)| = |δ in

Er
(S)|

and w(δ out
E (v)) = w(δ in

Er
(v)), the WDCKIS problem on G is a special case of the DWDCN

problem on G′ with intersecting supermodular constraints such that |δ in
E (S)| ≥ k for all /0 ̸= S⊆

V\{r}, and the weighted in-degree constraints. Theorem 3.2 for the DWDCN problem with

intersecting supermodular function and weighted in-degree constraints implies that there is a

polynomial-time 3-approximation algorithm for the WDCKIS problem.

The connectivity requirements of the WDCOA problem is to find an out-arborescence T

of G. A graph G contains an out-arborescence rooted at r, if it contains a path from node r to

every node in G. Hence, the WDCOA problem of finding an out-arborescence T of G rooted at

r that satisfies the weighted degree constraints (7.1) can be formulated as the integer program

POA
IP (b : G)≡ POS

IP (1,b : G). Thus the WDCOA problem is a special case of DWDCN problem

with 0,1-valued intersecting supermodular function f and weighted out-degree constraints.

Nutov has shown in [52] that such DWDCN problem admits (2,5)-approximation algorithm,

hence there is a polynomial-time 5-approximation algorithm for the WDCOA problem.

The algorithms for the WDCKOS, WDCKIS, and WDCOA problems are based on the

framework described in Section 3.4. We first check if the LP-relaxation of the corresponding
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integer programs, obtained by replacing binary constraints (B) with bounds 0 ≤ x(e) ≤ 1,

is feasible. Let POS
LP (k,b : G), PIS

LP(k,b : G) and POA
LP (b : G) denote the LP-relaxation of the

corresponding IP problems. If there is no feasible solution for the LP-polytope considered,

the computation terminates with output “INFEASIBLE”, meaning that there is no subgraph

that satisfies the desired connectivity requirements and the weighted degree constraints (7.1).

Otherwise, we construct a subgraph H in the following incremental process. We maintain

a set of edges J of subgraph H, which is initially empty. In each iteration, we consider a

"residual" LP problem (formally defined in Section 7.5), compute a basic feasible solution

for this problem, and on the basis of this solution, we remove some edges from the graph, or

add some edges to set J, or remove some weighted degree constraints. The final set of edges

J is the output of the computation: a subgraph of G which satisfies the desired connectivity

requirements and violates the weighted degree constraints (7.1) by at most a factor of β . The

value of β depends on the type of problem which we consider.

The following lemma follows from our results for the DWDCN problems given in Chapter 3

and Nutov’s results given in [50, 52].

Lemma 7.1. For each problem, WDCKOS, WDCKIS, and WDCOA, there exists a

polynomial- time algorithm, which computes one of the following two outcomes.

1. Correctly determines that the LP-polytope corresponding to the input instance is empty.

2. If the LP-polytope is not empty, then the algorithm finds a k-edge-outconnected spanning

subgraph H (WDCKOS problem) with root r, or k-edge-inconnected spanning subgraph

H (WDCKIS problem) with root r, or an out-arborescence H (WDCOA problem),

which violates the weighted degree constraints (7.1) by at most a factor of β , that is, for

all v ∈V ,

∑{w(e) : e ∈ δ
out
H (v)} ≤ β ·b(v). (7.2)

where:

• β = 5, for the WDCKOS and WDCOA problem,
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• β = 3, for the WDCKIS problem.

The parts of this lemma which refer to problems WDCKOS, WDCKIS and WDCOA

follow, respectively, from Theorems 3.1 and 3.2 and Nutov [50, 52]. Note that even if the input

is infeasible (that is, the corresponding integer program is empty), algorithms of Lemma 7.1

may still output a subgraph, which satisfies the conditions given in part 2 of this lemma. In

what follows, we refer to these polynomial-time algorithms for the WDCOA, WDCKOS, and

WDCKIS problems as WDCOA, WDCKOS, and WDCKIS algorithms, respectively.

7.2 Decision versions of MNL broadcast and convergecast

as DWDCN problems

In this section, we formulate the decision versions k-STB, k-MTB, and k-MTC of the STB,

MTB, and MTC problems as the WDCOA, WDCKOS, and WDCKIS problems, respectively.

The k-STB asks whether there is a k-round solution for the given STB problem. By setting

the weighted out-degree constraints b as the energy constraints B, the k-STB problem can be

formulated as integer program POA
IP (B/k : N). The k-STB problem returns "YES", if and only

if, integer program POA
IP (B/k : N) has a feasible solution.

The following theorem is due to Edmonds [12]. Using this theorem, we obtain the solu-

tions for the multiple topology broadcast and convergecast problems from the outputs of the

WDCKOS and WDCKIS problems.

Theorem 7.2. [12] Let G = (V,E) be a directed graph with a specified root r ∈V . The graph

G contains k edge-disjoint spanning out-arborescences (in-arborescences) rooted at r, if and

only if, G is k-edge-outconnected with r (k-edge-inconnected with r). Moreover, there is a

polynomial-time algorithm that computes such k disjoint arborescences, if they exist.
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The fastest known algorithm for computing k edge-disjoint spanning out-arborescences

from a k-edge-outconnected graph runs in O(|E|k log |V |+ |V |k4 log2 |V |) time [4]. The same

bound applies also to k-edge-inconnected graphs and in-arborescences.

Edmonds’ theorem says that a directed graph G contains k edge-disjoint out-arborescences

rooted at r, if and only if, G is k-edge-outconnected with root r. Therefore, if we find a

k-edge-outconnected (resp. k-edge-inconnected to r) spanning subgraph H of G with root r

that satisfies the weighted out-degree constraints (7.1), then Edmonds’ theorem implies that

we can retrieve in polynomial-time k edge-disjoint out-arborescences (resp. in-arborescence)

from H (hence, also from G).

In the view of the above, we can approach the k-MTB problem in the following way. For-

mulate the integer program POS
IP (k,B : Nk), where Nk = (V,Ek,w,B) is the multigraph obtained

from original input network N = (V,E,w,B) by replacing each edge with its k copies. The

k-MTB problem is feasible, if and only if, integer program POS
IP (k,B : Nk) is feasible. By

Edmonds’ theorem, we know that the solution for the integer program, which represents a

k-edge-outconnected spanning subgraph of Nk rooted at r, contains k edge-disjoint (in Nk)

out-arborescences which, together, satisfy the energy constraints (6.1). This implies that there

are k out-arborescences in the input graph N (not necessarily edge-disjoint), which satisfy

the energy constraints (6.1). An analogous approach applies to the k-MTC problem and the

corresponding integer program PIS
IP(k,B : Nk).

7.3 Algorithms and their analysis for the MNL convergecast

and broadcast problem

In this section, we provide the details of the approximation algorithms for the single topology

broadcast (STB) and the multiple topology broadcast and convergecast (MTB and MTC)

problems in details. We analyse these algorithms and prove the parts of Theorem 6.1, which

refer to the STB, MTB, and MTC problems, that is, we prove the lower bound of ⌊kopt/β⌋ on

the number of rounds returned by these algorithms.
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7.3.1 Algorithm for the MNL convergecast and broadcast problem

The single topology broadcast (STB) algorithm consists of two computational phases: 1)

finding the value of k using binary search, 2) applying the WDCOA algorithm of Lemma 7.1

to find a broadcast tree feasible for k rounds. In the MTB and MTC algorithms the second

phase applies the WDCKOS and WDCKIS algorithms of Lemma 7.1, respectively. For these

two algorithms we also have an additional phase of finding k broadcast or convergecast trees

rooted at r from the output subgraphs of the WDCKOS and WDCKIS algorithms (Edmonds’

theorem). We describe now each computational phase. In what follows, the constant β always

refers to the corresponding approximation value stated in Theorem 6.1.

Finding the value of k

First consider the STB problem. It should be clear that kST B
opt (the optimal k for STB problem)

is the largest k such that integer program POA
IP (B/k : N) is feasible (kST B

opt = 0, if POA
IP (B : N)

not feasible). Let k+ be the largest integer k ≥ 1 such that LP-polytope POA
LP (B/(k ·β ) : N)

is not empty or k+ = 0, if POA
LP (B/β : N) is empty. We find k+ by binary search, checking

in each iteration whether an LP-polytope POA
LP (B/(k ·β ) : N) is empty, using an appropriate

polynomial-time LP algorithm.

Consider now the MTB (resp. MTC) problem and let kMT B
opt (resp. kMTC

opt ) be the largest

integer k such that the integer program POS
IP (k,B : Nk) (resp. PIS

IP(k,B : Nk)) is feasible. Let

K be the largest integer k ≥ 1 such that LP-polytope POS
LP (k,B : Nk) is not empty, or K = 0 if

POS
LP (1,B : N) is empty. Similarly to the STB problem, we find K by binary search, checking in

each iteration whether an LP-polytope POS
LP (K,B : NK) is empty. If K ≥ 1, let k∗ be the largest

integer k such that the LP-polytope POS
LP (k,B/β : NK) is not empty (constants β = 5 for MTB

and β = 3 for MTC, from Theorem 6.1). We again find the value of k∗ by binary search,

checking in each iteration whether an LP-polytope POS
LP (k,B/β : NK) is empty. It should be

clear that k∗ ≤ K for any β > 1.



7.3 Algorithms and their analysis for the MNL convergecast and broadcast problem 108

It was shown in [54] that for all MNL problems kopt ≤ kmax, where,

kmax = ∑
v∈V

B(v)
min{w(e) : e ∈ δ out

E (v),w(e)> 0}
. (7.3)

The binary search for finding the values of k+, k∗, and K can be done over the range [0,kmax],

that is in O(logkmax) iterations, which is O(log(nL)), where L is the largest integer in the

representation of rational numbers B(v) and w(e) (observe that kmax ≤ nL2). For this binary

search, we are assuming that w(e)> 0 for at least one edge. Otherwise, trivially any number of

rounds is feasible.

Applying the DWDCN algorithms of Lemma 7.1

First consider the STB problem. If k+ = 0, then kST B
opt < β and the algorithm returns

“0 rounds”. Otherwise, if k+ ≥ 1, we apply the WDCOA algorithm of Lemma 7.1 with

b = B/(β · k+). Since the LP-polytope POA
LP (B/(β · k+) : N) is not empty, Lemma 7.1 implies

that the WDCOA algorithm returns a single out-arborescence. This out-arborescence and

the integer k+ (the number of rounds) are the output for the STB problem. Observe that this

out-arborescence is feasible for the STB problem, because for b = B/(β · k+) the conditions

(7.2) are equivalent to the energy constraints (6.2):

k+ ·∑{w(e) : e ∈ δ
out
H (v)} ≤ B(v), for all v ∈V.

Now consider the MTB (resp. MTC) problem. If K = 0, then we set k∗ = 0 and return

an empty collection of trees. Otherwise, if k∗ ≥ 1, we apply the WDCKOS (resp. WD-

CKIS) algorithm of Lemma 7.1 to multigraph NK with b = B/β . Since the LP-polytope

POS
LP (k

∗,B/β : NK) (resp. PIS
LP(k

∗,B/β : NK)) is not empty by the definition of k∗, Lemma 7.1

implies that WDCKOS (resp. WDCKIS) algorithm returns a k∗-edge-outconnected (resp.

k∗-edge-outconnected) spanning subgraph H of graph NK . This k∗-edge-outconnected spanning

subgraph with root r satisfies the energy constraints (6.1), because for b = B/β , the constraints
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(7.2) are equivalent to:

∑{w(e) : e ∈ δ
out
H (v)} ≤ B(v), for all v ∈V.

Finding disjoint trees for MTB and MTC problems

If k∗ ≥ 1, then the output of the WDCKOS (reps. WDCKIS) problem is a k∗-edge-

outconnected (resp. k∗-edge-inconnected) spanning subgraph H of graph NK with root r,

which satisfies the energy constraints (6.1). From Edmonds’ Theorem 7.2, we know that

the output graph H of the WDCKOS (resp. WDCKIS) problem contains k∗ edge-disjoint

out-arborescences (resp. in-arborescences) rooted at r. We can retrieve such arborescences in

time polynomial in the size of H. This gives us k∗ out-arborescences (resp. in-arborescences) in

graph N (not necessarily edge-disjoint), which satisfy the energy constraints (6.1). The solution

to the MTB (resp. MTC) problem is the integer k∗ and collection of k∗ out-arborescences (resp.

in-arborescences) rooted at r.

Running times of the STB, MTB and MTC algorithms

At the beginning of the STB algorithm, we find the value of k+ using binary search, by

checking in each iteration whether LP-polytope POA
LP (B/(k ·β ) : N) is empty or not. Since all

these LP-polytopes have an exponential number of cut constraints (C), so to solve them in

polynomial-time using the ellipsoid method, we need a polynomial-time separation oracle.

The existence of such oracles in the general case of the DWDCN problems with intersecting

supermodular connectivity requirements was discussed in Section 3.4. For the POA
LP (B/β : N)

polytopes, we can use the following specific separation oracle to determine a violated constraint.

Let x be the candidate point. For the n weighted out-degree constraints, we can check,

one by one, each constraint if it is violated. This can be done in O(n2) time. Now consider

the cut constraints. We set x(e) as the capacity of edge e. If we have x(δ in
E (S)) < 1, for

some S ⊆ V\{r}, then (V\S,S) is an r-s cut of value less than 1 for any s ∈ S. Hence, the

minimum r-s cut must have value less than 1. For every s ∈V\{r}, we consider the minimum
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r-s cut problem. We can solve this problem by applying a polynomial-time maximum flow

algorithm n− 1 times, once for each node s ∈ V\{r}. If for some s ∈ V\{r}, the minimum

r-s cut (V\S,S) has capacity less than 1, then we have found a violated cut inequality: the

constraint corresponding to this set S is violated. This separation oracle can be implemented

in O(n2)+O(n)M(m,n) = O(n)M(m,n) time, where M(m,n) is time taken by the maximum

flow algorithm. Thus, feasibility of the LP-polytopes POA
LP (k,B : N) can be determined in

polynomial-time using the ellipsoid method. This implies that the initial binary search for

finding k+ can be done in polynomial-time.

At each iteration of the WDCOA algorithm, we need to compute a basic feasible solution

for the "residual" LP-polytope. We can do this by the ellipsoid method using the separation

oracle as above. If we find a feasible solution, then we can convert it into a basic feasible

solution in polynomial-time, following the algorithm given in [27]. Hence the WDCOA

algorithm runs in polynomial-time and the running time of the overall STB algorithm is

polynomial.

Now, consider the multiple topology broadcast and convergecast problems (MTB and

MTC). For these problems, the corresponding LP-polytopes are constructed for multigraphs Nk,

where k is the parameter of the binary search. In this setting, the LP-polytopes can be solved in

pseudo-polynomial time because the values of k and consequently the size of graphs Nk can

be exponential in the size of the input network N. Therefore, the running times of the overall

MTB and MTC algorithms run in pseudo-polynomial time. In Section 7.5, we will show how

this approach can be implemented to give polynomial running times.

7.3.2 Analysis of the algorithms for MNL broadcast and convergecast

problems

It follows from the description of the algorithms in Section 7.3.1 that they return feasible

solutions for the STB, MTB, and MTC problems. Now we prove Theorem 6.1 for the STB,
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MTB, and MTC problems, that is, we prove the lower bound of ⌊kopt/β⌋ on the number of

broadcast or convergecast trees returned by the algorithm (the MTU problem is separately

considered in Section 7.4). As stated in Theorem 6.1 for the MTB and MTC problems, this

lower bound holds only if the input instance N of the problem is such that w(u,v)≤ B(u)/β

for all edges e ∈ N. This condition is used in the lemma below because the LP-polytope

PLP(k,B/β : G) is defined only for the edges in E ′ = {(u,v) ∈ E : w(u,v)≤ b(u)/β}.

Lemma 7.3. Let G = (V,E) be a directed graph and k≥ 1. If the LP-polytope POS
LP (k,B : G) is

not empty and w(v,x)≤ B(v) for each edge (v,x) ∈ E, then the LP-polytope POS
LP (⌊k/β⌋,B/β :

G) is also not empty, for any β ≥ 1.

Proof. Let ⟨x(e)⟩e∈E be a feasible solution for the LP-polytope POS
LP (k,B : G). It is easy to show

that ⟨x(e)⟩e∈E = ⟨x(e)/β ⟩e∈E is a feasible solution for the LP-polytope POS
LP (⌊k/β⌋,B/β : G),

which is defined by the following constraints:

x(δ in
E (S)) ≥ ⌊k/β⌋, for all /0 ̸= S⊆V\{r}, (C2);

∑
e∈δ out

E (v)
x(e)w(e) ≤ B(v)/β , for all v ∈V, (W2);

0≤ x(e) ≤ 1, for all e ∈ E.

Indeed, since the vector ⟨x(e)⟩e∈E satisfies the cut constraints (C1), that is,

x(δ in
E (S))≥ k, for all /0 ̸= S⊆V\{r},

we have,

x(δ in
E (S)) = x(δ in

E (S))/β ≥ ⌊k/β⌋, for all /0 ̸= S⊆V\{r},

so, ⟨x(e)⟩e∈E satisfies the cut constraints (C2). Similarly it is easy to see that ⟨x(e)⟩e∈E satisfies

the weighted degree constraints (W2). Finally, because β ≥ 1, we have,

0≤ x(e) = x(e)/β ≤ 1/β ≤ 1, for all e ∈ E.
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Analogous lemmas can be proven for the LP-polytopes PIS
LP (k,B : G) and

PIS
LP (⌊k/β⌋,B/β : G). From now on, for simplicity of notation we drop the super-

script of integer programs and their corresponding LP-polytopes, as these will be clear from

the context. The following lemma applies to each of the two LP-polytopes POS
LP and PIS

LP.

Lemma 7.4. If the input instance N is such that edge-weight w(u,v)≤ B(v)/β for all edges

e ∈ N and K ≥ 1 in the MTB algorithm, then the LP-polytope PLP (⌊kopt/β⌋,B/β : NK) is not

empty.

Proof. Recall that kopt is the largest integer k such that the integer program PIP(k,B : Nk) is

feasible (kopt = 0, if PIP(k,B : N) not feasible). By definition, K is the largest integer k such

that PLP(k,B : Nk) is not empty. Hence, it is clear that kopt ≤ K. This implies that, if K ≥ 1, the

integer program PIP(kopt ,B : NK) is also feasible. Thus, its LP-relaxation PLP(kopt ,B : NK) is

also feasible. Lemma 7.3 implies that the LP-polytope PLP(⌊kopt/β⌋,B/β : NK) is feasible.

The lower bounds on the approximation factors for the multiple topology problems MTB,

and MTC are given in the following two lemmas.

Lemma 7.5. Let β = 5. The algorithm for the multiple topology broadcast problem MTB

returns a solution with k∗ broadcast trees such that k∗ ≥ ⌊kopt/β⌋, if the input instance N is

such that edge-weight w(u,v)≤ B(u)/β for all edges e ∈ N.

Proof. We refer to the description of MTB algorithm. We show that the solution k∗ is at least

⌊kopt/β⌋. The algorithm for the MTB problem always returns a feasible solution (either k∗ = 0

or a collection of broadcast trees, which is feasible for k∗ rounds). If K = 0, consequently k∗= 0,

then PIP(1,B : N) is empty, so kopt = 0. Now we consider K ≥ 1. By definition, k∗ is the largest

integer k ≥ 0 such that the LP-polytope PLP (k,B/β : NK) is not empty. From Lemma 7.4, we

know that the LP-polytope PLP (⌊kopt/β⌋,B/β : NK) is not empty. Thus, ⌊kopt/β⌋ ≤ k∗.
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Similarly to Lemma 7.5, one can prove the following lemma which gives the approximation

factor for the MTC problem.

Lemma 7.6. Let β = 3. The algorithm for the multiple topology convergecast (MTC) problem

returns a solution with k∗ convergecast trees such that k∗ ≥ ⌊kopt/β⌋, if the input instance N

is such that edge-weight w(u,v)≤ B(v)/β for all edges e ∈ N.

The lower bound on the approximation factor for the single topology broadcast problem

STB is given in the following lemma. Note that the proof of this lemma is not based on

Lemmas 7.3 and 7.4, so we do not require the condition that the weights of the edges (v,x) are

at most B(v)/β .

Lemma 7.7. The algorithm for the single topology broadcast (STB) problem returns k+ or

k+ ≥ 1 and a broadcast tree which supports k+ rounds. In both cases, k+ ≥ ⌊kopt/β⌋.

Proof. We show that the solution k+ is at least ⌊kopt/β⌋. The algorithm for the STB problem

always returns a feasible solution (either k+ = 0 or a broadcast tree, which is feasible for k+

rounds), so k+ ≤ kopt . If k+ = 0, then POA
LP (B/β : N) is empty, but if kopt ≥ 1, then POA

IP (B/kopt :

N) is not empty. Therefore, if k+ = 0, then kopt < β , so in this case 0 = k+ ≥ ⌊kopt/β⌋ = 0.

Assume now that k+ ≥ 1. The integer program PIP(B/kopt : N) is feasible. This implies that the

LP-polytope PLP(B/kopt : N) is not empty as it is the LP-relaxation of PIP(B/kopt : N). Recall

the definition of k+, which is the largest integer k such that the LP-polytope PLP(B/(β ·k) : N) is

not empty. Therefore, we know that the LP-polytope PLP(B/(β ·(k++1))) is empty. Therefore,

kopt < β · (k++1), so ⌊kopt/β⌋ ≤ k+.

Lemmas 7.5 – 7.7 prove Theorem 6.1 for the STB, MTB, and MTC problems.

7.4 Algorithm for the MNL unicast problem

In this section, we provide an approximation algorithm for the multiple topology unicast (MTU)

problem and prove Theorem 6.1 for the MTU problem, that is, we prove the lower bound of
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⌊kopt/β⌋ on the number of r-s paths returned by the algorithm. This will complete the proof of

Theorem 6.1 (proofs for STB, MTB, and MTC are given in previous section).

Nutov [51] gives a polynomial-time algorithm for the MTU problem, which computes

a solution with at least ⌊kMTU
opt /β⌋ ≤ k∗ rounds, where β = 16. This approach is based on

the formulation of the MTU problem as the DWDCN problem with a special intersecting

set function called a ring function. A set function h is a ring function if h is intersecting

supermodular and there exists s ∈ V such that for each S ⊆ V\{s},h(S) = 0. Following this

approach, we can also show that the computed solution supports k∗ ≥ ⌊kMTU
opt /3⌋ rounds, which

is the same approximation bound as for the MTC problem. For the simplicity of exposition, we

prove the approximation bound for the MTU problem through the polynomial-time reduction

from the MTU problem to the MTC problem.

As shown in Section 6.6, the multiple topology unicast problem (MTU) can be reduced to

the multiple topology convergecast problem (MTC). Thus, an approximation algorithm for the

MTC problem can also be applied to solve the MTU problem. Let a network N = (V,E,w,B)

and two nodes r,s ∈V be the input to the MTU problem. Given this input instance I = ⟨N,r,s⟩,

we construct an instance I′ = ⟨N′ = (V,E ′,w,B),r′⟩ of the MTC problem as described in

Section 6.6. Now, we apply the MTC approximation algorithm presented in the previous

section. This will return a collection of convergecast trees Tin = {T1, . . . ,Tk∗}, rooted at r′ that

satisfies the energy constraints (6.1). We then find an r-s path from each convergecast tree Ti.

Since there are k∗ convergecast trees we can get k∗ paths. This collection of k∗ r-s paths is the

solution to the MTU problem.

We have shown in previous section that ⌊kMTC
opt /β⌋ ≤ k∗, where β = 3. The instance I′ of

the MTC problem has k rounds, if and only if, the instance I of the MTU problem has k rounds.

Thus, kMTU
opt = kMTC

opt , implying that ⌊kMTU
opt /β⌋ ≤ k∗, where β = 3.
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7.5 Polynomial time implementation for the multiple topol-

ogy MNL broadcast and convergecast problems

In Sections 7.1 – 7.3, we provided pseudo-polynomial algorithms for the multiple topology

broadcast and convergecast (MTB and MTC) problems. In this section, we provide details of

the capacitated approach, which gives polynomial running times for these problems.

7.5.1 Capacitated version of WDCKOS and WDCKIS problems

We first define the meaning of k-edge-connectivity in the context of the capacitated versions

of the WDCKOS and WDCKIS problems. Given a graph G = (V,E,r), where V is a set of

nodes, E is a set of edges, r ∈V is a distinguished node, and a positive integer k, we say that

edge capacities Y : E→R+ support k-out-flows from r, if and only if, for each node v ∈V\{r},

there is an integral flow of value k from node r to node v. Similarly, we say that edge-capacities

Y support k-in-flows to r, if and only if, for each node v ∈V\{r}, there is an integral flow of

value k from node v to node r. For example, for an integer k ≥ 1 and a graph G = (V,E,r),

we considered the property that a subgraph (V,F) of G is k-edge-outconnected with r. Now,

for an integer k ≥ 1 and a graph G = (V,E,r), we consider the property that edge capacities

Y : E→ R+ support k-out-flows from r.

We note that the k-edge-out-connectivity becomes a special case of the notion of k-out-

flows. A subgraph H = (V,F) is k-edge-outconnected with r, if and only if, the edge capacities

YH : E→R+ such that YH(e) = 1 if e ∈H and YH(e) = 0, otherwise, support k-out-flows from

r.

The capacitated version of the WDCKOS problem asks for finding integral edge capacities

Y = (y(e1), . . .y(em)), which support k-out-flows from r and satisfy the following weighted

"out-degree" constraints.

∑{y(e) ·w(e) : e ∈ δ
out
E (v)} ≤ b(v), for all v ∈V. (7.4)
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Analogously, we define the capacitated version of the WDCKIS problem. We refer to these

two problems as Capacitated Weighted Degree Constrained k-Out-Flow (CWDCKOF) and

Capacitated Weighted Degree Constrained k-in-Flow (CWDCKIF) problems, respectively.

Below we give formal definitions of the CWDCKOF and CWDCKIF problems.

Capacitated Weighted Degree Constrained k-Out-Flow Problem (CWDCKOF)

Input: A directed weighted graph G = (V,E,w), out-degree bounds b : V → R+, a root r ∈V ,

and a positive integer k.

Output: Integral edge-capacities Y = (y(e1), . . .y(em)), which support k-out-flows from r and

satisfy the weighted out-degree constraints (7.4).

Capacitated Weighted Degree Constrained k-In-Flow Problem (CWDCKIF)

Input: A directed weighted graph G = (V,E,w), out-degree bounds b : V → R+, a root r ∈V ,

and a positive integer k.

Output: Integral edge-capacities Y = (y(e1), . . .y(em)), which support k-in-flows to r and

satisfy the weighted out-degree constraints (7.4).

The maximum-flow minimum-cut theorem implies that edge capacities Y : E→R+ support

k-out-flows from r, if and only if, the capacity of each cut (V\S,S) such that S⊆V\{r} is at

least k. Therefore, the CWDCKOF problem of finding integral edge-capacities which support

k-out-flows from r and satisfy the weighted degree constraints (7.4) can be formulated as the

following integer program with variables y(e) for e ∈ E ′ = {(u,v) ∈ E : w(u,v)≤ B(u)} .

y
(
δ

in
E ′(S)

)
≥ k, for all /0 ̸= S⊆V\{r}, (Fout)

∑
e∈δ out

E′ (v)
y(e)w(e)≤ b(v), for all v ∈V, (W )

y(e) ∈ {0,1, . . . ,k}, for all e ∈ E ′, (EC).

Following our previous notations scheme, we denote the above integer program by PCOF
IP (k,b :

G).
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The CWDCKIF problem can be similarly formulated as an integer program. For this

problem the cut constraints are replaced with

y
(
δ

out
E ′ (S)

)
≥ k, for all /0 ̸= S⊆V\{r}, (Fin);

We refer to the resulting integer program as PCIF
IP (k,b : G).

7.5.2 Decision versions of MTB and MTC problems as CWDCKOF and

CWDCKIF problems

In this section, we formulate the decision versions k-MTB and k-MTC of the MTB and MTC

problems as the CWDCKOF and CWDCKIF problems, respectively.

The following theorem is the capacitated version of Edmonds’ theorem (see Theorem 7.2)

for packing arborescences.

Theorem 7.8. [19] Let G = (V,E) be a directed network with a specified root r ∈V and let Y

be a non-negative integral edge capacity function. Graph G contains k out-arborescences (resp.

in-arborescences) rooted at r, if and only if, Y supports k-out-flows from r (resp. k-in-flows to

r). Moreover, there is a polynomial-time algorithm that computes such k arborescences in the

form of at most m−n−2 distinct arborescences with their multiplicity.

The k-MTB input instance ⟨N = (V,E,w,B) and r ∈ V ⟩ is feasible, if and only if, the

integer program PCOF
IP (k,B : N) is feasible. If PCOF

IP (k,B : N) is feasible, then each solution

is integral edge-capacities Y = (y(e1), . . .y(em)) which support k-out-flows from r and satisfy

the weighted degree constraints (7.4). If we have such edge-capacities, then we can apply

Theorem 7.8 to obtain solutions for the MTB and MTC problems. An analogous equivalence

applies to the k-MTC problem and the integer program PCIF
IP (k,B : N).
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7.5.3 Algorithms for the capacitated versions of WDCKOS and WD-

CKIS

In this section, we present the algorithms for the CWDCKOF and CWDCKIF problems.

Our description refers only to the CWDCKOF problem, but the CWDCKIF problem has an

analogous algorithm. We describe the algorithm in the context of the MTB problem, so compare

the POS
IP (k,B : Nk) formulation of this problem given in Section 7.2 with the PCOF

IP (k,B : N)

formulation given here.

The CWDCKOF problem has the same input as the WDCKOS problem, but since the

problem has different objective, the output of the problem is somewhat different. A solution

to the WDCKOS problem is defined by a function x : Ek→{0,1}, where Ek is a set of edges

in graph Nk, which specifies which subset of edges in Ek forms the output subgraph. On the

other hand, a solution to the CWDCKOF problem is defined by an edge-capacity function

Y : E→ Z+, where Z+ denotes the set of non-negative integers, which specifies the maximum

amount of integral flow that can pass through an edge.

The WDCKOS approximation algorithm of Lemma 7.1 can be modified to an approxi-

mation algorithm for the CWDCKOF problem. We have not provided a detailed description

of how the WDCKOS algorithm works, so we first describe this algorithm in detail and then

explain how it can be modified for the CWDCKOF problem. The WDCKOS algorithm is

essentially the DWDCN algorithm described in Section 3.4. We need to recall this algorithm

now in the context of the WDCKOS problem to be able to explain how it can be used for the

CWDCKOF problem.

The WDCKOS algorithm works as follows. It initially checks whether the LP-polytope

POS
LP (k,B : Nk) is empty. If it is empty, then the algorithm returns "INFEASIBLE" and terminates,

meaning that there is no k-edge-outconnected subgraph H of Nk with root r which satisfies the

weighted out-degree constraints (7.1). Otherwise, the algorithm performs the following iterative

process whilst maintaining an edge-set J (initially J = /0) and node-set W (initially W =V ) of
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out-degree bounds. In each iteration, compute first a basic feasible solution x(e)e∈Ek for the

LP-polytope POS
LP (k,B : Nk). Then remove from Ek all the edges with x(e) = 0. Remove from

Ek also all edges with x(e)≥ 1/α , but add all these edges to set J (α = 2 for the WDCKOS

problem and it is a fixed parameter). Now, we have only edges e with 0 < x(e)< 1/α in the

"residual" graph (V,Ek). The algorithm then removes node v from node-set W , if the degree

of v is less than or equal to △ (△ = 3 for the WDCKOS problem and it is another fixed

parameter). That is, the WDCKOS algorithm removes from W all nodes with |δ out
Ek

(v)| ≤ △.

Note that the nodes removed from W still remain in the graph.

The residual LP-polytope POS
LP (k,B;J,W ) is formulated for the updated sets Ek, W , and J

and then solved in the next iteration. The residual LP-polytope POS
LP (k,B;J,W ) is defined by

the following constraints:

x
(
δ

in
Ek
(S)
)
≥ k−|δ in

J (S)|, for all /0 ̸= S⊆V\{r},

∑
e∈δ out

Ek
(v)

x(e)w(e)≤ B(v)−w(δ out
J (v))/α, for all v ∈W,

0≤ x(e)≤ 1, for all e ∈ Ek.

Observe that POS
LP (k,B; /0,W ) is the LP-polytope POS

LP (k,B : Nk) used in the first iteration.

This iterative process continues until there is no edge left in Ek. At the end of the compu-

tation, the algorithm outputs the final set J. Denoting this set by F , the subgraph H = (V,F)

is a k-edge-outconnected spanning subgraph of Nk with root r, which violates the weighted

degree constraints (7.1) by at most a factor of β , where β = α +△= 5. The pseudo-code of

the WDCKOS approximation algorithm for the multigraph Nk is outlined in Figure 7.1.

Let PCOF
LP (k,B : N) be the LP-relaxation of the PCOF

IP (k,B : N), obtained by replacing

edge-capacity constraints (EC) with 0 ≤ y(e) ≤ k. Given a vector Y and node-set W , let
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Input: A network Nk = (V,Ek,w,B), and a node r ∈V
Output: A k-edge-outconnected spanning subgraph (V,F) of Nk with root r, which

satisfies the weighted degree constraints (7.1)
1 Initialization: J← /0, W ←V , Ek← Ek\{(v,u) ∈ Ek : w(v,u)> B(v)},
2 if P(k,B : Nk) = /0 then
3 Return "INFEASIBLE" and terminates.
4 while Ek ̸= /0 do
5 Find a basic feasible solution x = (x(e))e∈Ek ∈ P(k,B;J,W ).
6 Remove from Ek all edge with x(e) = 0.
7 Add to J and remove from Ek all edges with x(e)≥ 1/2.
8 Remove from W every v ∈W with |δ out

E (v)| ≤ 3
9 end

10 F ← J;

Figure 7.1 The WDCKOS algorithm of Lemma 7.1 for the multigraph Nk

PCOF
LP (k,B;Y,W ) be defined by the following constraints.

y
(
δ

in
E (S)

)
≥ k− ∑

e∈δ in(S)

Y (e), for all /0 ̸= S⊊V\{r}, (Fout)

∑
e∈δ out

E (v)
y(e)w(e) ≤ B(v)− ∑

e∈δ out(v)
Y (e) ·w(e)/α, for all v ∈V, (W )

0 ≤ y(e) ≤ 1, for all e ∈ E, (EC).

We modify the WDCKOS algorithm as follows. Let us refer to the modified algorithm

as the CWDCKOF algorithm. The CWDCKOF algorithm has similar procedures as the

WDCKOS algorithm of Figure 7.1, but instead of solving the LP-polytope POS
LP (k,B : Nk) in the

first iteration, the CWDCKOF algorithm solves PCOF
LP (k,B;N). In each subsequent iteration,

the CWDCKOF algorithm now solves the residual LP-polytope PCOF
LP (k,B;Y,W ) instead of

POS
LP (k,B;J,W ). The pseudo-code of the CWDCKOF algorithm is given in Figure 7.2. We

present the pseudo-code by separating it into two parts: (i) 1st iteration (lines 7 – 17) and (ii)

the 2nd and subsequent iterations (lines 19 – 24).

Although we presented the CWDCKOF algorithm in Figure 7.2, in order to show that the

CWDCKOF algorithm has the same approximation property as the WDCKOS algorithm,
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Input: A network N = (V,E,w,B), and a node r ∈V
Output: Integral capacities Y = Y (e1), . . . ,Y (em)

1 Initialization: Y (e)← 0 for each e ∈ E, W ←V , E← E\{(vu) ∈ E : w(vu)> b(v)},
2 α = 2 and△= 3.
3 if PCOF

LP (k,B : N) = /0 then
4 Return "INFEASIBLE" and STOP.
5 else
6 /* 1st iteration */
7 Find basic feasible solution y ∈ PCOF

LP (k,B : N).
8 forall the e ∈ E do
9 Y (e)← ⌊y(e)⌋;

10 end
11 Remove from E all edges with y(e) integral;
12 foreach e ∈ E do
13 if y(e)−Y (e)≥ 1/α then
14 Y (e) = Y (e)+1;
15 Remove e from E;
16 end
17 Remove from W every v ∈W with δ out

E (v)≤△.
18 /* 2nd and subsequent iterations */
19 while E ̸= /0 do
20 Find basic feasible solution y ∈ PCOF

LP (k,B;Y,W ).
21 Remove from E all edge with y(e) = 0.
22 Set Y (e)← Y (e)+1 and remove e from E for each edge e with y(e)≥ 1/α .
23 Remove from W every v ∈W with |δ out

E (v)| ≤ △
24 end

Figure 7.2 The CWDCKOF algorithm obtained from the WDCKOS algorithm

we obtain the solutions of the CWDCKOF algorithm using the WDCKOS algorithm in the

following way.

First, we execute the first iteration of the CWDCKOF algorithm given in Figure 7.2

(execute lines 3 – 17 of the CWDCKOF algorithm). Let y = (y(e))e∈E be the computed

basic feasible solution of the LP-polytope PCOF
LP (k,B : N) obtained during the first iteration.

From y we construct a basic feasible solution x = (x(e1
1), . . .x(e

k
1), . . . ,x(e

1
m), . . .x(e

k
m)) for the

LP-polytope POS
LP (k,B : Nk) as follows.
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For each edge e ∈ E in N, let e1, . . . ,ek be the k copies of e in multigraph Nk. For each

edge e, we set x(e1), . . . ,x(ek) in the following way. Let p be the integer part of y(e) and

q be the fractional part of y(e), so p+ q = y(e). We set x(ei) = 1, for each i up to p and

x(ep+1) = q. We then set x(e) = 0 for all the remaining edges ep+2, . . . ,ek. Note that now

x = (x(e1
1), . . .x(e

k
1), . . . ,x(e

1
m), . . .x(e

k
m)) satisfies the cut constraints (C), weighted degree

constraints (W ), and binary constraints (B) of the LP-polytope POS
LP (k,B : Nk). Therefore, x is a

feasible solution. Note that x is also a basic feasible solution since x(e1), . . . ,x(ek) has at most

one ei, 0 < x(e)< 1 and all other values x(e j), j ̸= i, are either 0 or 1. If x does not satisfy this

property then x is a linear combination of two distinct feasible solutions, so x is not a basic

feasible solution.

From the constructed basic feasible solution x, we execute lines (4 – 9) of the WDCKOS

algorithm, that is, in subsequent iterations of the CWDCKOF algorithm, we solve the residual

LP-polytope POS
LP (k,B;J,W ), but instead of executing line 7, we execute line 22 of Figure 7.2,

that is, we set Y (e)← Y (e)+1 if its corresponding edge ei has x(ei)≥ 1/2 and remove from

e ∈ E if its corresponding edge ei has x(ei)≥ 1/2. We repeat this process until E is empty.

We claim that using this approach we can derive the solutions of the CWDCKOF algorithm.

Note that at the end of the first iteration in both algorithms (CWDCKOF and WDCKOS), the

constraints of the residual LP-polytopes PCOF
LP (k,B : Y,W ) are equivalent to the constraints of

the POS
LP (k,B : J,W ), that is,

k− ∑
e∈δ in(S)

Y (e) = k−|δ in
J (S)|, for all /0 ̸= S⊂V\{r},

B(v)− ∑
e∈δ out(v)

Y (e) ·w(e)/α = B(v)−w(δ out
J (v))/α, for all v ∈V.

At most one copy ei of edge e is left in the residual graph of Nk in the WDCKOS algorithm

(the copy for which 0 < x(ei) < 1/α). If there is one copy ei of edge e left in the residual

graph of Nk in the WDCKOS algorithm, then edge e is also left in the residual graph of N

in the CWDCKOF algorithm. Hence the same set of edges are in both residual graphs. For

example, if y = (2.1,0,1.25,1.7,0.2) for edges e1, . . . ,e5, then at the end of the first iteration
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of the CWDCKOF algorithm, Y = (2,0,1,2,0), the remaining edges in the residual graph of

N are e1,e3,e5. Then, the constructed basic feasible solution x from y is

i ei
1 ei

2 ei
3 ei

4 ei
5

1 1 0 1 1 0.2
2 1 0 0.25 0.7 0
3 0.1 0 0 0 0

Therefore, at the end of the first iteration of the WDCKOS algorithm, J = {e1
1,e

2
1, e1

3,

e1
4, e2

4} and the remaining edges in the residual graph of Nk are e3
1,e

2
3,e

1
5. Observe that J

contains exactly Y (e) copies of edge e for each e ∈ E and the same set of edges are left in the

residual graphs. Thus, we can consider POS
LP (k,B : J,W ) in subsequent iterations, instead of

PCOF
LP (k,B : Y,W ). This implies that the CWDCKOF algorithm has the same approximation

property as the WDCKOS algorithm.

Similarly to the STB problem, we can design a polynomial-time separation oracle for the

CWDCKOF algorithm of Figure 7.2 and WDCKOS algorithm of Figure 7.1. If we find a

feasible solution using the ellipsoid method with the separation oracle, we can convert it into a

basic feasible solution by using the algorithm given in [27]. Hence, the running times of these

algorithms are polynomial in the size of the graph. Thus, we have the following lemma.

Lemma 7.9. For the CWDCKOF (resp. CWDCKIF) problem, there exists a polynomial-time

algorithm, which computes one of the following two outcomes.

1. Correctly determines that the LP-polytope corresponding to the input instance is empty.

2. If the LP-polytope is not empty, then the algorithm finds integral edge-capacities Y

which support k-out-flows (resp. k-in-flows) from r and violate the weighted degree

constraints (7.4) by at most a factor of β = 5 (resp. β = 3)
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7.5.4 Algorithms for MNL broadcast and convergecast problems

We now show how the CWDCKOF and CWDCKIF algorithms can be used to find the

approximate solutions for the MTB and MTC problems. We consider in detail only the MTB

problem. A similar approach applies also to the MTC problem.

The MTB algorithm based on the capacitated approach has the same procedure as the

"uncapacitated approach" (given in Section 7.3.1). Let k∗ be the largest integer k such that

PCOF
LP (k,B/β : N) is not empty (k∗ = 0 if PCOF

LP (1,B/β : N) is empty). Similarly to the un-

capacitated approach, we find k∗ by binary search, checking in each iteration whether a

polytope PCOF
LP (k,B/β : N) is empty or not. If k∗ = 0, we return an empty collection of trees.

Otherwise, if k∗ ≥ 1, we apply the CWDCKOF algorithm of Lemma 7.9 to input graph N

with b = B/β . Since the LP-polytope PCOF
LP (k∗,B/β : N) is not empty by the definition of

k∗, we get integral capacities Y which support k∗-out-flows from r, which satisfy the energy

constraints (6.1). We apply the capacitated version of Edmonds’ algorithm (Theorem 7.8)

to obtain k∗ out-arborescences. The output of the capacitated version of Edmonds’ algo-

rithm is a sequence of distinct out-arborescences T1, . . . ,Tp rooted at r and their multiplicities

M (T1), . . . ,M (Tp), where p≤ m−n−2 and ∑
p
1 M (Ti) = k∗. This (compact) representation

of distinct out-arborescences is the solution for the MTB problem.

The initial binary search which needs to check the feasibility of polytopes PCOF
LP (k,B/β :

N) can be done in polynomial-time using the ellipsoid method. As stated in Section 7.5.2

(Theorem 7.8), there is a polynomial-time algorithm for packing arborescences [19]. Thus,

combining all these computations, the running time of the overall MTB algorithm is polynomial

in the size of the input graph N.



Chapter 8

The MNL mixedcast problems

In this chapter, we consider the mixedcast MNL problems. Nutov and Segal [54] introduced

this problem and proposed an approximation algorithm based on the approximation algorithms

for the MNL broadcast and convergecast problems, presented in the previous chapter. We first

follow the approach in [54] and give a simple method, which yields an approximation factor

of βB +βC, where βB and βC are the approximation factors of algorithms for broadcast and

convergecast problems, respectively (see Table 6.1). We then introduce a new approach, which

improves the approximation factor to max{βB,βC}.

8.1 A Simple Method

Nutov and Segal [54] proposed solving the mixedcast problem by splitting the battery capacity

at each node into two parts in proportion βB : βC. One part is used for the computation of

broadcast trees and the other for convergecast trees. The approximation factor of the resulting

algorithm is βB +βC. This approach, together with the approximation factors βB and βC gives

the following approximation bound.
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Lemma 8.1. For the MNL mixedcast problems, we can find in polynomial time solutions with

values k ≥ ⌊kopt/βM⌋, where βM = βB +βC, for all input instance N such that edge-weight

w(u,v)≤ B(u)/βM for each edge (u,v). So, βM = 6 for the single topology mixedcast (STB)

problem and βM = 8 for the multiple topology mixedcast (MTM) problem.

Proof. We give a proof only for the multiple topology mixedcast (MTM) problem. The single

topology mixedcast (STM) problem can be proven in a similar way.

Let βB and βC denote the values of β for the multiple topology broadcast and convergecast

problems, that is, βB = 5 and βC = 3. Let BM denote the node battery capacity function of the

MTM problem and let k∗ denote our solution for the mixedcast problem. The algorithm works

as follows. We apply the MTB algorithm of Theorem 6.1 to the root node rb and the battery

capacity function

BB =
βB

βB +βC
BM.

As a result, we compute a collection of broadcast trees TB = {T1,T2, ...,Tk∗B} rooted at node

rb, which use at most BB(v) energy at each node v. Similarly, we apply the MTC algorithm of

Theorem 6.1 to the root node rc and the battery capacity function

BC =
βC

βB +βC
BM.

We get a collection of convergecast trees TC = {T1,T2, ...,Tk∗C} rooted at node rc, which use at

most BC(v) energy at each node v. Hence, the total energy used by the k∗B broadcast trees and

k∗C convergecast trees is bounded by the initial battery capacity BM, i.e, all these trees together

satisfy the energy constraints (6.3). Our solution to the mixedcast problem MTM is

k∗ = min
{⌊

k∗B
τ

⌋
,

⌊
k∗C
γ

⌋}
,

and the first T1,T2, ...,Tτk∗ broadcast trees from TB and the first T1,T2, ...,Tγk∗ convergecast

trees from TC .
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Now we show that k∗ ≥ ⌊kopt/βM⌋, where kopt is the optimal value of k for the multiple

topology mixedcast (MTM) problem. We note that k is feasible for the MTB and MTC

problem, if and only if, the integer programs POS
IP (k,B : Nk) and PIS

IP(k,B : Nk) are not empty,

respectively. For easy understanding of notations, in the rest of this chapter 8 we denote

these integer programs by PMT B
IP (k,B) and PMTC

IP (k,B), respectively, and their corresponding

LP-polytopes by PMT B
LP (k,B) and PMTC

LP (k,B).

The algorithm for the multiple topology mixedcast (MTM) problem always returns a

feasible solution: either k∗ = 0, or k∗ ≥ 1, and a collection of broadcast trees and convergecast

trees that are feasible for k∗ rounds. This implies that if kopt = 0, k∗ = 0. Assume now that

kopt ≥ 1. This implies that τkopt broadcast and γkopt convergecast rounds can be performed

within the battery capacity function BM. This implies that the integer programs PMTC
IP (γkopt ,BM)

and PMT B
IP (τkopt ,BM) are not empty.

Lemma 7.3 implies that the following polytope

PMT B
LP

(⌊
τ · kopt

βB +βC

⌋
,

BM

βB +βC

)

is not empty. Hence,

k∗B ≥
⌊

τ · kopt

βB +βC

⌋
≥ τ

⌊
kopt

βB +βC

⌋
.

Similarly, the following polytope

PMTC
LP

(⌊
γ · kopt

βB +βC

⌋
,

BM

βB +βC

)
,

is not empty. This implies that

k∗C ≥
⌊

γ · kopt

βB +βC

⌋
≥ γ

⌊
kopt

βB +βC

⌋
.

Hence,

k∗ = min
{⌊

k∗C
γ

⌋
,

⌊
k∗B
τ

⌋}
≥
⌊

kopt

βB +βC

⌋
=

⌊
kopt

βM

⌋
.
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8.2 An Improved Method

Now we show a new approach for the mixedcast problems, which gives Theorem 6.4. In the

previous approach, the battery capacities B are split into two fixed parts: βb
βb+βc

fraction for

broadcast and the remaining portion for convergecast. This partition is the same at each node.

Our approach now is to replace this fixed a priori partition with a computed, more efficient

partition, which does not have to be the same at all nodes. We discuss here only the multiple

topology problem MTM; algorithm and its analysis for the STM problem are analogous.

Let βM = max{βB,βC}. Let PMT M
IP (k,B) be the following integer program, with variables

x(e) and y(e),e ∈ E ′ = {(u,v) ∈ Ek : w(u,v)≤ B(v)} and k = γk+ τk:

x(δ out
E (S)) ≥ γk, for all /0 ̸= S⊆V\{r},

y(δ in
E (S)) ≥ τk, for all /0 ̸= S⊆V\{r},

∑
e∈δ out

E (v)
x(e)w(e)+ ∑

e∈δ out
E (v)

y(e)w(e) ≤ B(v), for all v ∈V,

x(e),y(e) ∈ {0, . . . ,k}, for all e ∈ E.

It is clear that there is a k-round feasible solution for MTM, if and only if, above integer

program is feasible. We denote the LP-relaxation of the above IP by PMT M
LP (k,B). Let k′ be the

largest integer k such that the polytope PMT M
LP (k,B/βM) is not empty.

The algorithm for MTM first finds k′ using binary search, solving in each iteration a

linear relaxation of the current integer program. If k′ = 0, we output the empty collections of

convergecast and broadcast trees. If k′ ≥ 1, then the algorithm also finds a feasible solution

⟨x(e)⟩e∈E and ⟨y(e)⟩e∈E for the polytope PMT M
LP (k′,B/βM). Let Bx(v) (resp., By(v)) be the
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fraction of the battery capacity B(v)/βM which is used by the broadcast part ⟨x(e)⟩e∈E of the

solution (resp., by the convergecast part ⟨y(e)⟩e∈E of the solution). That is,

Bx(v) = ∑
e∈δ out

E (v)
x(e)w(e), By(v) = ∑

e∈δ out
E (v)

y(e)w(e).

Now we apply the approximation algorithm for the CWDCKOF problem given in Lemma 7.9

to the (non-empty) set PMT B
IP (τk′,Bx) and we apply the approximation algorithm for the CWD-

CKIF problem to the (non-empty) set PMTC
IP (γk′,By). This way we compute a collection of

broadcast trees TB = {T ′1, ..,T ′τk′} rooted at node rb, which use at most βBBx(v) energy at each

node v, and a collection of convergecast trees TC = {T ′′1 , ..,T ′′γk′} rooted at node rc, which use

at most βCBy(v) energy at each node v. The output of our MTM algorithm is (k′,TB,TC ).

This output is feasible, because the energy usage at each node v is at most

βBBx(v) + βCBy(v)≤ βM(Bx(v) + By(v))

≤ βM(B(v)/βM) = B(v).

We now show that

k′ ≥ ⌊kopt/βM⌋. (8.1)

If kopt = 0, then PMT M
LP (k,B/βM) is empty for each k ≥ 1, so k′ = 0 and (8.1) holds. Assume

now that kopt ≥ 1. The set PMT M
IP (kopt ,B) is not empty, so the LP polytope PMT M

LP (kopt ,B) is

not empty. Lemma 8.2 (below) implies that the LP polytope PMT M
LP (⌊kopt/βM⌋,B/βM) is not

empty, and k′ has been computed as the largest integer k such that PMT M
LP (k,B/βM) is not empty,

so (8.1) holds also in this case.

This concludes the proof of Theorem 6.4 (the MTM part). We used the following lemma,

which is analogous to Lemma 7.3, so we omit its proof.

Lemma 8.2. If the polytope PMT M
LP (k,B) is not empty, then the polytope PMT M

LP (⌊k/β⌋,B/β ) is

also not empty, for any β ≥ 1. The analogous property holds for the PST M
LP polytopes.
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It should be clear that our approach can be extended to more general mixedcast problems

mentioned in Chapter 1.2. If, for example, we require that convergecast, broadcast and unicast

tasks are periodically performed in proportion γ : τ : η , then we extend the integer program

PMT M
IP (k,B) by adding variables z(e), e ∈ E, and the cut constraints appropriate for the unicast

problem. The approximation factor of the obtained algorithm is equal to max{βB,βC,βU},

which currently is equal to 5 (see Table 6.1). The mixedcast can also contain a number of

different communication tasks of the same type. Since in our model we may have at most n

different broadcast tasks, n different convergecast tasks and n2 different unicast tasks, then also

in this general case we have a polynomial time algorithm with the same approximation factor

max{βB,βC,βU}.



Chapter 9

Experimental results for MNL algorithms

In this chapter, we describe our preliminary experimental evaluation of the performance of

the MNL approximation algorithm described in Chapter 7. Among various MNL problems,

we select the multiple topology broadcast (MTB) problems for our experiments, since its

theoretical approximation bounds are the worst, compared to the unicast and convergecast

problems. For practical efficiency of the MTB approximation algorithm, we implement the

MTB approximation algorithm based on an alternative LP formulation of the CWDCKOF

problem, which has a polynomial number of constraints and variables (details will be given

later). To investigate the quality of the MTB approximation algorithm, we compare our

approximate solution, obtained from the MTB approximation algorithm, with an upper bound

on the optimal solution kopt . This upper bound kub is the largest integer k such that the LP-

polytope PCOF
LP (k,B : N) is not empty (the definition is given in Section 7.5.1). For comparison

of the performance, we also implement a simple heuristic for the MTB problem.

The MTB approximation algorithm discussed in Chapter 7, uses a fixed value of parameter

β , which is set to 5 as in Theorem 6.1. With this value of β , we observed that our computed

solution k∗ is at least ⌊kub/β⌋, which implies that
⌊
kopt/β

⌋
. Hence, we obtained the number

of rounds k∗ as expected because of Theorem 6.1. However, we discovered that the simple

heuristic gave better performances in many cases. To achieve better practical performance
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of the MTB approximation algorithm, we enclose it in a binary search framework, which

optimises the value of β .

This chapter consists of the following parts. In Section 9.1, we discuss the implementation

of the MTB approximation algorithm. In Section 9.2 we describe the simple heuristic for the

MTB problem. In Section 9.3, we describe the binary search framework. In Section 9.4, we

present our experimental results.

9.1 Implementation of the algorithm

In Section 7.3, we give a pseudo-polynomial time approximation algorithm for the MTB

problem. In this approach, we solve the MTB problem by first finding a good value of k

using binary search and the LP-relaxation of the MTB problem. With the computed k, we

formulate the MTB problem as the Weighted-degree Constrained k-Outconnected subgraph

(WDCKOS) problem and apply the WDCKOS approximation algorithm to compute a sub-

graph of multigraph Gk which satisfies the energy constraints. We then obtain the desired

collection of broadcast trees by applying the Edmonds’ theorem for packing arborescences.

Recall that when we apply the binary search and the WDCKOS approximation algorithm, we

need to solve LP-polytopes POS
LP (k,B : Nk) and the residual LP-polytopes POS

LP (k,B : J,W ) (see

Section 7.5) which have O(km) variables and exponential number of constraints O(2n). Since

the value of k can be very large, implementing the MTB algorithm using this approach is not

practical.

In Section 7.5, we show that the MTB approximation algorithm can be implemented to

run in polynomial time by formulating the MTB problem as the CWDCKOF problem (that

is, the capacitated version of the WDCKOS problem) and by applying the algorithm for

the CWDCKOF problem given in Figure 7.2. In the CWDCKOF algorithm, we required

to compute a basic feasible solution for the initial LP polytope PCOF
LP (k,B : N) and residual

LP-polytopes PCOF
LP (k,B;Y,W ) (see Section 7.5.3 for their definitions), which have exponential
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number of constraints O(2n) and m variables. Although these LP-polytopes can be solved in

polynomial-time using the ellipsoid method, an additional algorithm needs to be plugged-in at

each iteration of the CWDCKOF algorithm in order to transform a feasible solution, obtained

from the Ellipsoid method, into a basic feasible solution. Jain [27] shows that this can be

done in O(m)P(m)+O(m2n(L+ logm))M(m,n) times, where L is the maximum size of the

numbers involved if they are represented in binary, P(m) is the time to multiply two M×M

matrices, and M(m,n) is time to compute one max-flow algorithm. Therefore, this approach

also does not lead to a practically efficient algorithm.

Thus, we consider an alternative integer programming formulation of the CWDCKOF

problem, which has a polynomial O(nm+n2) number of constraints and nm+m+1 variables.

The alternative integer program PF
IP(B) can be formulated in the following way, with edge-

capacity variables y(u,v), for (u,v) ∈ E ′ = {(u,v) ∈ E : w(u,v) ≤ B(u)} and flow variables

f x(u,v), for all x ∈V and for all (u,v) ∈ E ′.

Maximise k

Subject to:

∑
v∈V

f x(u,v)−∑
v∈V

f x(v,u) =


k if u = r,

−k if u = s, for all x ∈V, for all u ∈V,

0 else,

f x(u,v) ≤ y(u,v), for all x ∈V, for all (u,v) ∈ E ′,

∑
(u,v)∈E ′

(y(u,v) ·w(u,v)) ≤ B(u), for all u ∈V,

f x(u,v),y(u,v) ∈ Z, for all x ∈V, for all (u,v) ∈ E ′.

A fractional variant of the multiple topology broadcast problem (MTB) can be formulated by

the LP-relaxation of this integer program problem [57].

Let PF
LP(B) denote the LP-relaxation of the integer program PF

IP(B), obtained by relaxing the

integer constraints on the variables to 0≤ f x(u,v)≤ k and 0≤ y(u,v)≤ k. Observe that now k
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(the number of rounds) is a variable for the LP problem PF
LP(B). Therefore, in this approach

we do not require to find the value of k using binary search. We simply obtain the value of

k by solving the initial LP PF
LP(B). In each iteration of the CWDCKOF algorithm, we now

find a basic feasible solution to the following residual polytopePF
LP(B;Y,W,k), defined by the

following constraints:

∑
v∈V

f x(u,v)−∑
v∈V

f x(v,u) =


⌊k⌋ if u = r,

−⌊k⌋ if u = s, for all x ∈V, for all u ∈V,

0 else,

f x(u,v) ≤ Y (u,v)+ y(u,v), for all x ∈V, for all (u,v) ∈ E ′,

∑
(u,v)∈E ′

y(u,v) ·w(u,v) ≤ B(v)− ∑
e∈δ out(v)

Y (e)/α, for all u ∈W,

0≤ f x(u,v),y(u,v)≤ k, for all x ∈V, for all (u,v) ∈ E ′.

The pseudo-code of the MTB approximation algorithm is given in Figure 9.1. It can be

shown similarly as in Section 7.5.3 that the algorithm of Figure 9.1 gives the solutions for the

CWDCKOF problem.

The output of the MTB approximation algorithm in Figure 9.1 returns integral capacities

Y which supports k∗-out-flows from r and which satisfies the energy constraints (6.1). In our

experiment we are only interested in the quality of the approximate solution, i.e, the number

of broadcast round that can be computed in polynomial time, and not the actual route of the

individual broadcast communication. Therefore, we have not computed broadcast trees from

the output capacitated graph N = (V,E,Y ). As we discussed in Section 7.5.2, Theorem 7.8 for

packing arborescences implies that we can retrieve k∗ broadcast trees in additional polynomial

time.

We use Simplex method [9] as the LP algorithm as it works well in practice and it also

provides a basic feasible solution without any further computation. Therefore, the running time

of the algorithm of the MTB approximation algorithm is no longer polynomial.
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Input: A network N = (V,E,w,B/β ) and a node r ∈V , where β = 5
Output: integer k∗ and integral capacities Y = Y (e1), . . . ,Y (em)

1 Initialization: E← E\{(u,v) ∈ E : w(u,v)> B(u)}, Y (e)← 0 for each e ∈ E,
2 W ←V , I← /0, β = α +△ where α = 2 and△= 3.

3 /* 1st iteration */
4 Remove from W every v ∈W with |δ out

E (v)| ≤ △.
5 Find a basic feasible solution ( f x

u,v, y, k∗) ∈ PF
LP(B/β ).

6 if k = 0 then
7 Return "UNFEASIBLE" and STOP.
8 else
9 forall the e ∈ E do

10 Y (e)← ⌊y(e)⌋;
11 end
12 foreach e ∈ E do
13 if y(e)−Y (e)≥ 1/α then
14 Y (e) = Y (e)+1;
15 Remove e from E (add them to I)
16 end
17 Remove from E all edges with y(e) integral (add them to I)
18 /* the 2nd and the subsequent iterations */
19 while E ̸= /0 do
20 Find basic solution ( f x

u,v,y) ∈ PF
LP(B/β ;Y,W,k).

21 Remove from E all edge with y(e) = 0.
22 Set Y (e)←Y (e)+1 and remove e from E (add to I) for each edge e with y(e)≥ 1/α .
23 Remove from W every v ∈W with |δ out

E (v)| ≤ △.
24 end
25 Return Y ;

Figure 9.1 The approximation algorithm for the multiple topology broadcast (MTB) problem

9.2 Simple heuristic

For the performance comparison, we have also implemented a greedy heuristic for the MTB

problem, which is based on breadth-first search (BFS). This heuristic works in the following

way. We first find a fractional solution to ( f x
uv,y,k) ∈ PF

LP(B). Now for each edge e ∈ E, we set

the edge-capacity Y (e) = ⌊y(e)⌋. Given these capacities, the heuristic performs a number of

iterations. At each iteration, find a breath-first search spanning tree (broadcast tree) T rooted at

the source and find the minimum capacity c(T ) of all edges in T , i.e, c(T ) = min{Y (e) : e∈ T}.
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This minimum capacity c(T ) is the number of times this broadcast tree T is included in our

solution. At the end of the iteration, we reduce capacity Y (e) by c(T ), for all edges e ∈ T .

This iterative process is continued until there is no tree found (that is, when not all nodes are

reachable from the source). A solution for MTB problem is ∑c(T ) rounds and the calculated

collection of broadcast trees.

9.3 Optimising the parameter β

The approximation algorithm for the MTB problem, discussed in Chapter 7, uses a fixed value

of parameter β , which is set to 5. With this value of β , we observed that our computed solution

satisfies k∗ ≥ ⌊kub/β⌋, which implies that k∗ ≥
⌊
kopt/β

⌋
. To obtain better results we optimise

the value of β as follows.

Let k(β ) be the value of k (number of rounds) obtained from the MTB approximation

algorithm of Theorem 6.1 when initial battery capacity B(v) is set to B(v)/β for each node

v ∈V . Let βopt be the minimum β such that the MTB approximation algorithm of Theorem 6.1

returns a solution which satisfies the energy constraints B. We denote this solution by k(βopt).

Let βmin = 1 and βmax = 5. We find β∗ using a binary search over the range [βmin,βmax]. In

each iteration, we apply the algorithm MTB approximation algorithm of Theorem 6.1 with B

set to B/β∗, where β∗ =
βmin+βmax

2 and check whether the obtained solution satisfies the energy

constraints. If it violates the energy constraints (6.1), then we set βmax = β∗, otherwise, we set

βmin = β∗. We stop the binary search if βmax−βmin is relatively small. At the end of the binary

search, it returns k(β∗) solution which satisfies the energy constraints (6.1).

Following the analysis of the MTB approximation algorithm given in Section 7.3.2, we

show that k(β∗)≥ ⌊kopt/β∗⌋, for β0 ≥ β∗ ≥ βopt , where β0 = 5. By Lemma 7.3 and 7.4, we

know that POS
LP (⌊kopt/β∗⌋,B/β∗ : NK) is not empty for any β∗ ≥ 1. Suppose that the binary

search returns some value of β∗. The binary search always returns k(β∗) solution, which

satisfies the energy constraints (this follows from the algorithm). Hence, Lemma 7.1 implies

that LP-polytope POS
LP (k(β∗),B/β∗ : NK) is not empty. Thus, k(β∗)≥ ⌊kopt/β∗⌋.
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9.4 Experimental results

In this section, we evaluate the quality of the approximate solution for the multiple topology

broadcast (MTB) approximation algorithm presented in Chapter 7. We compare our approx-

imate solution with the simple heuristic presented in this chapter. Recall that the optimal

number of rounds (kopt) for the MTB problem is the largest integer k such that the integer

program PCOF
LP (k,B : N) is feasible. Due to the time complexity of finding kopt , we compare

our approximate solution to an upper bound on the optimal solution. This upper bound kub is

the largest integer k such that LP-relaxation of the IP PCOF
LP (k,B : N) is not empty. We obtain

this upper bound by simply solving the initial LP problem ( f x
(u,v),y,kub) ∈ PF

LP(B).

9.4.1 Development and experiments platform

The experiments were run on a Windows 7 64-bit Operating System, with Intel(R) Core(TM)

i7-2600 CPU @ 3.40 GHz having installed RAM of 8.00 GB. We implemented the MTB

approximation algorithm and the heuristic using Matlab. For the linear programming algorithm,

we used the Simplex method LINPROG, which is included in Matlab’s optimization toolbox.

We have also used MATLAB Bioinformatics toolbox for the graph-related algorithms, such as

depth-first search.

9.4.2 Input instances

For each network topology, the network sizes n are varied to be 20, 30, 40, and 50, respectively.

The nodes are randomly generated and uniformly distributed in a 100× 100 grid. With the

generated nodes, we first create a complete graph. Then, for each node, we choose h closest

nodes to be its 1-hop neighbours, i.e, an edge (u,v) ∈ E exists if node v is one of the h closest

nodes from node u. All other edges are discarded. In this configuration, the degree of node

is set to h and it is the same for all nodes. Therefore, the number of edges in the graph is hn.
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We experiment with h = 5 and 10. The source node is located at the center of the field, i.e, its

coordinate is (50,50). An edge-weight w(u,v), which represents a transmission cost of sending

a message from node u to node v, is set to d(u,v)γ , where d(u,v) is the Euclidean distance from

node u to node v. We set the propagation loss exponents γ = 2.

For each node u the initial battery capacity B is set to ∑w(u,v)
deg(u) ×10. The reason behind this

setting is to force that each node has enough initial battery capacity to support on average of 10

transmissions before it depletes all its energy.

9.4.3 Results

Figures 9.2(a) and 9.2(b) show the comparison of the results obtained from the MTB approxi-

mation algorithm (with optimised β ), the heuristic and the upper bounds on the optimal solution.

In these figures, the x-axis indicates the computed number of rounds while the y-axis indicates

the number of nodes in the graph. For each network size n, we generate 10 random instances

and run for each instance. Each plot is obtained by averaging the 10 runs. The light green bar

represents the computed upper bound of the optimal solution, the light blue bar represents the

results obtained from the MTB approximation algorithm, and the dark blue bar represents the

results obtained from the heuristic.

Figure 9.2(a) shows the results when each node has degree of 5 and Figure 9.2(b) shows

the results when each node has degree of 10. From these figures we can observe that the MTB

approximation algorithm always gives better performance than the heuristic. In Figure 9.2(a),

the MTB approximation algorithm computes on average (approximately) one and two thirds

times more rounds than the heuristic. This difference becomes even greater when degrees of a

node is set to 10 (see Figure 9.2(b)).

Tables 9.1 and 9.2 show the value of β∗ used when we obtain the results for the MTB

approximation algorithm, which are shown in Figure 9.2(a) and 9.2(b), respectively. We showed

in Section 9.3 that ⌊kopt/β∗⌋ ≤ k. From Tables 9.1 and 9.2 we can observe that interestingly
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the value of β∗ is never greater than 2. This may be evident that the approximation bounds for

the MTB approximation algorithm given in Theorem 6.1 may not be tight and could be further

improved.

(a) Each node has degree of 5

(b) Each node has degree of 10

Figure 9.2 Performance comparisons: The MTB approximation algorithm, the heuristic, and
the upper bound
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network size n
Instance 20 30 40 50

1 1.44 1.49 1.20 1.54
2 1.52 1.66 1.51 1.53
3 1.49 1.32 1.45 1.43
4 1.36 1.32 1.54 1.54
5 1.56 1.38 1.38 1.44
6 1.15 1.31 1.34 1.56
7 1.33 1.21 1.49 1.49
8 1.49 1.51 1.58 1.39
9 1.33 1.47 1.41 1.53

10 1.25 1.52 1.22 1.52
Table 9.1 The value of β∗ used when we obtain the results of the MTB approximation algorithm
shown in Figure 9.2(a)

9.4.4 Discussion

In these preliminary experiments, we focused on evaluating the quality of the computed solution.

We did not measure the time taken by the MTB approximation algorithm and the heuristic.

However, we give some indication about the execution time. Throughout the experiments

we observed that the naive MTB approximation algorithm (without optimising β ) and the

heuristic have similar execution times even though MTB approximation algorithm needs to

iteratively solve the LP problems. We observe that this is because after the first iteration

of the MTB approximation algorithm, most of edges are removed from the graph so that

the residual LP problem has relatively small number of variable and constraints. The MTB

approximation algorithm usually terminates within three iterations. The bottleneck of both

MTB approximation algorithm and the heuristic is the solving the initial LP problem. The

execution times of the MTB approximation algorithms with the optimisation β are much slower

than the heuristic. This is because in each iteration of binary search we need to apply the entire

MTB approximation algorithm and check whether the obtained solutions violates the energy

constraints.

Our results are preliminary hence it requires further developments. The simple heuristic

needs to solve the LP-relaxation of the original problem in order to find the value of k. Therefore
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network size n
Instance 20 30 40 50

1 1.24 1.23 1.23 1.19
2 1.66 1.66 1.75 1.47
3 1.58 1.24 1.25 1.32
4 1.30 1.18 1.80 1.38
5 1.15 1.26 1.20 1.22
6 1.20 1.86 1.24 1.23
7 1.23 1.24 1.97 1.97
8 1.26 1.75 1.24 1.36
9 1.10 1.44 1.68 1.23

10 1.75 1.22 1.31 1.25
Table 9.2 The value of β∗ used when we obtain the results of the MTB approximation algorithm
shown in Figure 9.2(b).

as the network size grows, the heuristic becomes impractical. Hence, further developments of

good heuristics without LP problems are required. We would also need to create other input

instances and conduct rigorous experiments.
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Conclusion

In this thesis, we considered the Directed Weighted Degree Constrained Network Design

(DWDCN) problems and their applications to the Maximum Network Lifetime (MNL) prob-

lems in wireless ad-hoc networks.

The DWDCN problems have many variants depending on the type of the connectivity

requirements and on the type of the degree bounds. We considered a general case when the

connectivity requirements were defined by an arbitrary intersecting or crossing supermodular

set function and the degree bounds were defined for the out-degrees of nodes or the in-degrees

or both. We followed the approach proposed by Nutov [17, 18], who developed polynomial

time bi-criteria approximation algorithms for these problems. By developing more detailed

analysis of the approximation algorithms we obtained better approximation bounds for many

DWDCN problems.

Since the DWDCN problems are defined for general connectivity requirements, algorithms

for these problems can be applied in various types of network design problems with weighted

degree constraints, including finding a Weighted Degree Constrained k-Outconnected subgraph

problem and Weighted Degree Constrained Out-Arborescence problem. We applied DWDCN

approximation algorithms to a class of Maximum Network Lifetime (MNL) problems in
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wireless ad-hoc networks. We considered MNL broadcast, convergecast, unicast and mixedcast

problems. Using our new approximation bounds for the DWDCN problems, we improved

previous approximation bounds for the MNL problems.

We also conducted experimental evaluation of the multiple topology broadcast (MTB)

approximation algorithm. We observed that the computed solutions are always better than our

theoretical lower bounds, as expected. To investigate the quality of the MTB approximation

algorithm, we compared our approximate solutions to solutions obtained by heuristic. We

discovered that the simple heuristic gave better performances in many cases. To achieve better

performance of the MTB approximation algorithm, we optimised the approximation algorithm

by parameterizing the value β , where β = 5 is a constant. By doing so, we observed a clear

improvement. The MTB approximation algorithm always gave the better performance than the

heuristic.

We conclude the thesis by providing some potential directions for future research.

Directed Weighted Degree Constrained Network Design (DWDCN) problems

One natural question is whether the approximation bounds for the DWDCN problems

given in this thesis can be further improved using our methods. Bansal et al. gave additive

(plus 4) approximation algorithm for the DWDCN problem with unit-weights and intersecting

supermodular set function f . In order to obtain such additive guarantees on the degree bounds,

the cost of the subgraph becomes unbounded. By exploiting this cost-degree trade-off and

adapting it into the DWDCN problem with weighted degree constraints, we may improve the

approximations on the weighted degree bounds, which will result in improving approximation

bounds for the MNL problems.

We considered the DWDCN problems with intersecting and crossing supermodular set

function f . This set function f can be used to define various connectivity requirements,

including k-edge-outconnected with root r, out- or in-arborescence rooted at r, and strongly

k-edge-connected. However, there exist connectivity requirements that cannot be defined with
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such set functions. For example, the connectivity requirement for the directed Steiner Tree

problem or the directed Steiner network problem. Such connectivity requirements can be

defined by a weakly supermodular function. To the best of our knowledge, we did not find

any literature related to DWDCN problems with weakly supermodular functions. Therefore,

developing an algorithm for the DWDCN with weakly supermodular function may be a

possible research direction.

In this thesis, we focused on the edge-connectivity type of the network design problems.

Recently degree-bounded network design problems with node-connectivity requirements [18,

14] have received much attention. Therefore developing an algorithm for these types of network

design problem will be an interesting research topic.

Maximum Network Lifetime (MNL) problems

Our proofs of the approximation bounds of the multiple topology MNL algorithms given

in Chapter 7 hold only for the input instances which do not contain edges (u,v) with w(u,v)>

B(u)/β , where β is the constant given in Theorem 6.1. This condition is critical in the analysis

of approximation bounds of the DWDCN algorithms, but is not a natural part of the definition

of the problem. Developing approximation algorithms for the MNL problems without having

such condition would be an interesting research topic.

Another possible direction of research is finding more practical algorithms. The MNL

approximation algorithm discussed in this thesis is based on iterative rounding (relaxation)

method. Hence, at each iteration, a basic solution of an LP relaxation, which has exponential

number of constraints, needs to be computed. Although as discussed in Chapter 9, we can

use an alternative formulation, which has polynomial number of constraints and variables,

it still needs high computational costs for larger networks. Hence development of practical

algorithms or good heuristic for the MNL problems is worth investigation. We have considered

"centralised" approach in which a priori knowledge of the full network topology is assumed.

However this may not be always possible in certain scenarios. Hence developing distributed

algorithm for MNL problem is also an interesting research direction.
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