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ABSTRACT 
 

The mammalian target of rapamycin (mTOR) is a protein kinase whose  

dysfunction has been identified in many diseases ranging from cancer 

to Down’s syndrome. Previous studies have examined salivary gland 

atrophy and observed the submandibular gland’s ability to regenerate 

from atrophy, however the mechanism underlying this process is still 

unknown. The current study aims to investigate the effects of blocking 

mTOR signaling in atrophic salivary glands and blocking mTOR 

signalling in submandibular glands regenerating from atrophy.  

 

The first part of the study revealed that inhibition of mTOR delays 

ligation-induced atrophy of salivary glands and that furthermore, 

mTOR could only be inhibited for shorter periods of 3 days, whereas 5 

or 7 days of ligation and rapamycin treatment cause glands to 

re-express active mTOR and show considerable signs of atrophy.  

 

The second part of the study aimed to find out the reasoning behind the 

reactivation of mTOR following 5 or 7 days, despite the presence of 

mTOR inhibitors. It concluded that 2nd generation mTOR inhibitors also 

failed to block mTOR activation following 7 days of atrophy. Proteomic 
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and microarray analysis were performed and gave rise to possible 

future enquiries. 

 

This study then exposed the role of mTOR in salivary gland 

regeneration following atrophy, revealing that mTORC1, specifically its 

substrates, are needed for a full regeneration. Inhibiting mTOR during 

periods of atrophy and allowing phosphorylation of mTORC1 substrates 

during periods of regeneration, is a treatment method which could be of 

importance. 

 

The final part of the study observed samples of atrophic human salivary 

glands in order to find evidence of aberrant mTOR activity.  It caused 

three realisations, firstly that mTOR is one of the driving forces of 

atrophic processes as once atrophy is severe, most acinar cells are lost 

and mTOR is no longer as active. Secondly, that autophagy coincides 

with salivary gland atrophy in humans. And thirdly, that some salivary 

gland functions might possibly be intrinsically linked to ageing. 

 

This leads to the suggestion that the future of treating salivary gland 

atrophy in humans could lie in using mTOR inhibitors, whether they be 

localised treatment in the form of intraductal injection of rapamycin 



4 

 

loaded nanoparticles to get localised targeting whilst reducing whole 

body toxicity or in the form of combination therapies that combine 

mTOR inhbitiors with the addition of another drug that inhibits 

autophagy and counteracts any toxic effects of mTOR inhibition.  
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1.1   Human Salivary Glands 

Salivary glands are exocrine glands that secrete saliva into the oral 

cavity. They are classified into two categories: major and minor. About 

90% of total salivary secretion is from the major salivary glands 

(Brosky, 2007), with most mammals having three paired sets of major 

salivary glands: the parotid, sublingual and submandibular salivary 

glands, situated at a distance from the oral mucosa (Figure 1.1). 

 

 

Figure 1.1 The major salivary glands in humans 
(Dorland, 2007). 
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1.1.1  Parotid Glands 

The parotid glands are the largest salivary glands in humans, weighing 

around 20 - 30 g and dominating the parotid fascial space. Parotid 

glands have three major surfaces: the lateral, the anteromedial and the 

posterior medial, and four borders: the superior, the anterior, the 

posterior and the medial. In humans, they overlay the mandibular 

ramus and anterior and inferior to the external ears on each side of the 

head. Saliva is excreted from the parotid glands via the Stensen’s duct 

into the oral cavity. The Stensen’s duct arises from the anterior border 

and is 4 - 6 cm in length and 5 mm in diameter and opens opposite the 

second upper molar crown (Myers and Ferris, 2007). 

 

1.1.2  Sublingual Glands 

The sublingual glands are the smallest of the three major glands, 

weighing 2 - 4 g and are situated just deep of the oral muscosa on the 

floor of the mouth, beneath the tongue, between the mandible and 

genioglossus muscle. 

 

Unlike the other major glands, sublingual glands have no true fascial 

capsule and lack a single dominant duct comparable to the other glands. 
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Instead saliva is excreted via 8 - 20 small excretory ducts, known as the 

ducts of Rivinus, that depart the superior aspect of the gland and open 

under the tongue along the sublingual fold. The rest of the small 

sublingual ducts open into the mouth on the plica fimbriata, a mucous 

membrane formed on either side of the frenulum of the tongue (Darby, 

2013).  

 

1.1.3  Submandibular Glands 

Submandibular glands are located on the medial surface of the 

mandible, intermediate to the lower jaws and digastric muscles. The 

glands weigh half as much as parotid glands, are lobular and compact in 

shape, with two lobes: the superficial lobe and deep lobe. 

Submandibular gland saliva is excreted via its main excretory ducts, 

known as Wharton’s ducts, that are approximately 

4 – 5 cm long and run from the submandibular papillae across the floor 

of the mouth to excrete into the oral cavity at the sublingual caruncles.  

 

1.1.4  Minor Salivary Glands 

Aside from them, approximately a thousand minor salivary glands, 

ranging in size from 1 to 5mm, are situated throughout the oral cavity 
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as well as in the lips, pharynx, nasal cavity and paranasal sinuses 

(McKenna, 1984). They are classified according to their site into labial, 

zygomatic, palatine and lingual glands.  Minor salivary glands only 

contribute to a small portion of total salivary secretion (Dawes, 2008). 

However they are clinically important as they can also be a source for 

glandular tumours (Hollinshead, 1982). 

 

1.2  Mouse Salivary Glands 

In mice, the 3 pairs of major salivary glands are located in the 

subcutaneous tissue of the ventral neck area and are closely associated 

(Figure 1.2). In fact, rodent sublingual glands share a common 

connective tissue with submandibular glands, however this connection 

is not shared in humans. Mouse parotid glands are not the largest 

salivary gland, unlike in humans, as they extend from the base of the 

ears, across the exorbital lacrimal glands and posterior to the clavicle. 

The sublingual salivary glands are smaller and narrowly associated 

with the anterolateral surface of the submandibular glands. Mouse 

submandibular glands are the largest lobulated glands and extend 

posteriorly to the sternum and clavicle, anteriorly to the hyoid bone and 

overlap marginally on the median line. These glands are larger and 

more opaque in male mice than those of females (Raynaud, 1964). 
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Figure 1.2 A ventral dissection of the neck of rodents 
1- Submandibular glands; 2- Sublingual glands; 3- Parotid glands (Pfestroff et 

al., 2010). 
 

 

1.3  Human Salivary Gland Micro-Structure 

All the major glands encompass parenchymas that consist of the 

secretory unit along with ducts. Their nerve and blood supply are 

supported by a connective tissue stroma that divide glands into lobules. 

The secretory products of the salivary glands (e.g. Secretory IgAs) are 

mostly synthesised intracellularly and subsequently released from 

secretory granules through a ductal system (Myers and Ferris, 2007). 

The ductal system is categorised as: intercalated ducts, excretory ducts 

and striated ducts (Figure 1.3). 
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Figure 1.3 Diagrammatic illustration of the ductal system of salivary glands 
(Nanci and Ten Cate, 2012). 

 

 

The intercalated ducts have low cuboidal epithelium with a narrow 

lumen and are where the salivary fluid first passes through to enter the 

striated ducts.  Columnar cells with numerous mitochondria line the 

striated ducts. Then the salivary fluid passes through the excretory 

ducts, which are lined with cuboidal cells until the terminal part, which 

is lined with stratified squamous epithelium (Myers and Ferris, 2007). 
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This secretory structure’s terminal unit is the salivary acinus that 

produces saliva and each gland has distinct histological structures and 

functions in relation to their acini. Parotid glands are purely serous in 

nature, sublingual glands are primarily mucous and submandibular 

glands are mainly serous (Munger, 1964).  

 

In serous glands, the acini are arranged in a roughly spherical form and 

secrete a watery fluid rich in amylase, other salivary enzymes and 

electrolytes, via exocytosis  (Humphrey and Williamson, 2001). 

 

Mucous cells, which also form the most of the minor salivary glands 

(Witt, 2005), secrete viscous glycoproteins, mucins, that when released 

forms mucus, which serous cells lack (Pinkstaff, 1993).  
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1.4  Mouse Salivary Gland Micro-Structure 

Similar to human glands, the mouse parotids are serous, the sublingual 

are predominantly mocous and the submandibular glands are mixed 

but primarily serous (Figure 1.4). However unlike humans, the duct 

system of all rodents, including mice, has a separation between the 

striated and intercalated ducts via a granular convoluted tubule (Gresik, 

1994).   

 

 

Figure 1.4 Histological (H&E) appearance of mice submandibular tissues 
showing excretory duct (star), striated duct (diamond) and granular 
convoluted tubule (arrowhead). Scale bar represents 100 μm. 
 

 

   * 
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Furthermore, histologically there are sex differences in mouse 

submandibular glands – in male mice, the granular ducts are 

approximately 50% larger in diameter and vastly superior in quantity, 

whereas in female mice the acinar cells predominate the histological 

appearance (Fekete, 1941, Gresik and MacRae, 1975, Chai et al., 1993).  

 

Nerve growth factor and epidermal growth factor, which are 

synthesized by granular duct cells, are produced in greater quantities in 

males than in females (Levi-Montalcini and Angeletti, 1964, Byyny et 

al., 1972). In studies of 3H-thymidine incorporation during 

testosterone-induced granular duct development, hypertrophy has 

been found to be the main factor responsible for the increased presence 

of granular ducts, in male mice (Chretien, 1977).  

 

A further histological difference in the mouse submandibular glands is 

the presence of granular intercalated duct cells in females and their 

absence in males (Caramia, 1966, Gresik and MacRae, 1975). These cells 

are located at the junction of intercalated ducts and acini, and they have 

been suggested as an intermediatory in the conversion of terminal 

intercalated duct cells to acini cells (Qwarnström and Hand, 1983) and 



29 

 

the localized low levels of mucin in the granular intercalated duct cells 

supports this supposition (Denny et al., 1988). 

 

1.5  Saliva 

The main physiological function of the salivary glands is saliva 

production. Saliva, which consists of over 99% water (Engelen et al., 

2007), is crucial in the digestion process and mouth lubrication, among 

other functions (Figure 1.5). The secretions of each of the salivary 

glands may vary at any given time and thus it can be difficult to account 

for the precise composition of saliva. Generally in unstimulated saliva, 

about 25% of saliva is secreted from the parotid glands, 5% from 

sublingual glands and 60% comes from submandibular glands (Edgar et 

al., 2004), however this can vary according to how stimulated each 

gland is. In recognition of this variability, the term whole mouth saliva 

(WMS) is used to describe the oral cavity fluid. 

1.5.1  Salivary Proteins 

WMS gets its physical properties from salivary proteins (Gibbins and 

Carpenter, 2013), including proline-rich proteins (PRPs), statherin, 

histatin, carbonic anhydrase VI (CA VI) and amylase, among others. 
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1.5.2  Salivary Mucins 

The salivary mucins, produced by sublingual and submandibular 

glands, are essential for the lubricating properties of saliva (Inoue et al., 

2008, Boze et al., 2010). The most important glycoproteins found in 

saliva are the secreted salivary mucins, MUC5B and MUC7 (Gibbins et 

al., 2014). MUC5B has a high molecular weight (>1000kDa) and is 

composed of highly glycosylated covalently linked subunits. MUC7, 

with a lower molecular weight (200-300kDa), is a single glycosylated 

peptide chain.  

 

 

 

 

 

 

 

 

 

 

 

(Carpenter, 2013). 
Figure 1.5 Summary of salivary functions according to the surface 
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1.6  Salivary Gland Innervation 

Salivary secretions are regulated, either directly or indirectly, by the 

parasympathetic and sympathetic nervous systems. Parasympathetic 

innervation to the salivary glands is provided by the cholinergic 

parasympathetic nerves which release acetylcholine that binds to 

muscarinic 3 (M3) receptors and, to a lesser extent, muscarinic 1 (M1) 

receptors (Proctor and Carpenter, 2007), promoting the fluid secretion 

of saliva. Sympathetic innervation regulates salivary gland secretions 

through several ways including vasoconstriction, whereby increased 

sympathetic activity reduces glandular bloodflow causing a decrease to 

the volume of fluid in salivary secretions (Guyton and Hall, 2006). It is 

believed that the primary sympathetic salivary centres, which are 

located somewhere in the upper thoracic segments of the spinal cord 

although it remains unclear precisely where in this region (Garrett et al., 

1999, Bradley et al., 2005), are responsible for the dry mouth associated 

with anxiety (Proctor and Carpenter, 2007). 

 

1.7  Salivary Gland Function 

Although salivary glands are innervated and may increase their 

secretory rate in response to nerve activity, they are also influenced by 
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other exogenous regulators including androgens, growth hormones and 

the thyroid gland  (Hosoi et al., 1978, Boyer et al., 1991, Hiramatsu et al., 

1994).   

 

Within saliva, potassium (K+) concentration is always high while 

sodium (Na+) concentration is low, compared to that found in plasma. 

Saliva synthesis begins with an efflux of chloride (Cl-) and K+ that 

generates transepithelial potential difference, causing a drive of Na+ 

between epithelial cells and the production of isotonic saliva in the 

acinus’ lumen. The primary isotonic saliva formed in the acini then 

becomes more hypotonic during its transport through the ducts, as 

sodium and chloride are reabsorbed, while K+ and bicarbonate (HCO3−) 

are secreted into the fluid. Whilst the permeability of the duct system 

may increase under certain conditions, such as physical exercise, 

generally the final saliva that enters the mouth is hypotonic with a 

lower salivary sodium concentration than the primary saliva, allowing 

for taste buds to be able to detect salt in the mouth. 

 

Apart from their saliva secretory functions, salivary glands are also 

thought to be involved in the growth regulation of other tissues by 

means of EGF (Lambotte et al., 1997), as well as neuronal and 
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immunological pathways by means of NGF (Boyer et al., 1991, Mathison 

et al., 1994). 

 

1.8  Salivary Gland Dysfunction 

Although tissue morphology may be associated with age, the secretory 

function of salivary glands in healthy individuals is not thought to be 

affected by age (Pedersen et al., 1999, Nagler, 2004), with age generally 

considered to only cause insignificant increases in the prevalence of dry 

mouth, also known as xerostomia (Edgar et al., 2004). In fact, the most 

relatively quotidian reason for salivary gland dysfunction in humans is 

dry mouth induced by prescription medication (Sreebny and Schwartz, 

1997), with a wide range of drugs having been identified as xerogenic 

(associative of xerostomia). However, dry mouth has been proven not to 

be a reliable, objective indicator of glandular hypofunction  (Fox, 1998), 

this is because most human studies concerning oral dryness are based 

on the perceived sensation of dryness, with relatively few studies 

actually taking an objective assessment of the rate of saliva production 

(Carpenter, 2014). 
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Salivary calculi (or salivary stones) can cause obstruction of the ducts 

and swelling, leading to dysfunction. Whilst the cause of salivary calculi 

in many instances is idiopathic, it is known that continued ductal 

obstructions can cause glandular atrophy (Sumi et al., 1999). Salivary 

gland atrophy is characterised by morphological and functional 

changes of the glands (Takahashi et al., 2004), including reduced 

glandular weight (Harrison and Garrett, 1976), shrunken acinar cells 

(Osailan et al., 2006b) and partial loss of acinar cells (Takahashi et al., 

2000); with the remaining acini thought to be in a quiescent, non-

functional state (Cotroneo et al., 2008).  

 

Salivary gland atrophy can take place as a result of many diseases and 

medical treatments, including but not limited to, Sjögren's syndrome 

(an autoimmune disease in which lymphocytic infiltration occurs in the 

salivary and lacrimal glands) (McCartney-Francis et al., 1996), 

autonomic denervation in salivary glands (Raz et al., 2013), salivary 

gland tumours (Hollinshead, 1982), chronic-sialadenitis (Burgess and 

Dardick, 1998) and GVHD (Nagler et al., 1996). Although chemotherapy 

only results in temporary salivary gland impairment (Epstein and 

Huhmann, 2011), radiotherapy to the head and neck region continues 

to present multiple significant clinical problems (Fox, 1998). With over 
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550,000 people worldwide diagnosed with head and neck cancer every 

year (Jemal et al., 2011), the effects of head and neck radiation therapy 

on the salivary glands and the oral cavity have only become more 

pronounced, such as the irreversible hypofunction resulting following 

X-ray irradiation (Fox, 1998). Consequently the loss of normal salivary 

gland functionality can seriously affect the quality of life in patients 

and remains difficult to manage (Atkinson and Fox, 1992, Jansma et al., 

1992, Atkinson and Wu, 1994, Vissink et al., 2003).   

 

Previous rodent studies have suggested that glandular hypofunction, in 

response to irradiation, is induced over four phases (Coppes et al., 2001). 

The first phase is characterised by a declined flow rate, the second by a 

reduction in acinar cell count, the third by stabilisation of the flow rate 

and acinar cell count and the fourth phase by an increase in acini, albeit 

with poor tissue morphology (Coppes et al., 2001). 

 

Such findings are divergent from rodent studies based on atrophy of 

denervation, which caused secretions to vary according to different 

routes of protein secretion (Proctor and Carpenter, 2007), for example 

amylase secretion increased following 1 week of symphathectomy 

(Asking and Emmelin, 1989) 
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Furthermore certain studies of salivary gland atrophy in mice, 

specifically those based on diabetes (Nashida et al., 2013) or gland 

ligation (Takai et al., 1986), have produced histologically similar results 

to human patients with salivary gland dysfunction, and thus serve as a 

useful model for salivary gland atrophy.  

 

1.9  Duct Ligation Induced Atrophy 

Duct ligation surgery on patients has been carried out previously and 

found to carry many risks such as sialadenitis of the parotid glands 

(Witt, 2005) or even irreversible atrophy (Baron and Ober, 1962). 

However the animal ligation model, whether intra-oral duct ligation or 

extra-oral duct ligation, is reversible, due the gland’s ability to recover 

its functionality following de-ligation (Osailan et al., 2006a, Carpenter 

et al., 2009). 

 

Duct ligation-induced atrophy in animals is caused by a ligation of 

excretory ducts at the hilum. The resultant atrophy causes 

morphological and functional changes of the glands (Takahashi et al., 

2004), as exampled in Figure 1.6, including changes such as reduced 
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glandular weight (Harrison and Garrett, 1976), shrunken acinar cells 

(Osailan et al., 2006b) and partial loss of acinar cells (Takahashi et al., 

2000); with the remaining acini thought to be in a quiescent, non-

functional state (Cotroneo et al., 2008). 

 

 

Figure 1.6 Hematoxylin and eosin staining of ligation induced atrophy 
exhibiting a reduction in acini and the appearance of duct-like structures as 
well as fibrosis of stromal connective tissue (Miguel et al., 2002).                                                                                                                                                                                     
 

Additionally, Alcian Blue and Periodic acid–Schiff (AB/PAS) staining of 

ligated tissue sections has shown localised loss of secretory granules 

(Correia et al., 2008) and striated duct lumena appear dilated due to the 

degranulation (Norberg et al., 1988). Hematoxylin and eosin (H&E) 

staining showed large amounts of infiltrating inflammatory cells 
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(mainly neutrophils and macrophages) (Carpenter et al., 2007) and an 

increased extracellular space (Correia et al., 2008). Ligation-induced 

atrophy also results in necrosis (Harrison et al., 2000), whilst a previous 

study in our group has found activation of autophagy during ligation-

induced atrophy via immunoblotting of Microtubule-associated protein 

1A/1B-light chain 3 (LC3) protein (Silver et al., 2010). In terms of gland 

functionality, ligated glands secrete a vastly reduced quantity of saliva 

(Shiba et al., 1972), with the remaining saliva rich in Na+ (Martinez et 

al., 1982). This impairment has been linked to the loss of acinar cells 

due to apoptosis (Takahashi et al., 2000, Takahashi et al., 2007). As well 

as apoptosis, there is evidence that prolonged atrophy can also cause 

necrosis and autophagy in submandibular, sublingual and parotid 

salivary glands (Harrison et al., 2000, Harrison et al., 2001).  

 

In contrast to the loss of acini during prolonged atrophy, myoepithelial 

cells persist in the gland, however they developed a bizarre shape which 

protrudes into the interstitial space (Emmelin et al., 1974). Takahashi et 

al., found in immunohistochemical studies of rat duct ligation-induced 

atrophy that myoepithelial cells are able to proliferate in 

submandibular and sublingual glands, with apoptosis of myoepithelial 

cells occurring in the early stages of atrophy in submandibular glands 
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(Takahashi et al., 2001) and the transition of myoepithelial cells from 

the small to large ducts in sublingual glands (Takahashi et al., 2003). A 

study on mice found similar histopathological changes on 

myoepithelial cells in mice, whilst they were more pronounced in rats 

than in mice (Takai et al., 1986). Proliferation of myoepithelial cells has 

also been shown in parotid glands during atrophy (Burgess et al., 1996). 

 

1.10  Salivary Gland Regeneration 

Currently there are several treatment strategies that aim to dissipate or 

regenerate the damage caused to salivary glands from radiotherapy or 

the xerostomia induced by prescription medication.  

 

Intensity-modulated radiation therapy (IMRT) is a high-precision 

radiation technique that introduces the ability to conform the 

treatment volume to concave tumor shapes (Pazdur et al., 2010), 

allowing for a more accurate delivery of radiation whilst sparing the 

surrounding tissues, for example major salivary glands (Jensen et al., 

2010, Nutting et al., 2011). Recent trials have supported this theory by 

showing that parotid sparing IMRT significantly reduces the risk of 

severe hyposalivation, in comparison with traditional 3-dimensional 
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conformal radiation therapy (3D-CRT) (Nutting et al., 2011). However 

this procedure has raised concerns regarding an increased potential for 

secondary cancer induction (Hall and Wuu, 2003, Curtis et al., 2006). 

Current treatments for improving quality of oral health following dry 

mouth, which is most commonly induced by prescription medication, 

involve the substitution of saliva for artificial saliva, usually in the form 

of a gel or spray (Matsuo et al., 1997, Davies, 2000). An alternative 

approach involves medicating to increase overall secretory output from 

residual salivary gland cells, such as the use of cevimeline (Suzuki et al., 

2005), however these treatments are often accompanied by 

unendurable side effects (Fox, 2003). 

 

Preclinical studies have also shown that salivary gland progenitor and 

stem cell biology (Figure 1.7) provides a rationale for therapeutic 

salivary gland regeneration (Lombaert et al., 2011). These findings have 

shown that stem cell transplants can differentiate into salivary 

epithelial cells and restore salivary gland function in hyposalivatory 

glands (Sumita et al., 2011), and furthermore they restore tissue 

homeostasis within irradiated glands, which is critical for long term 

maintenance of the tissue (Imanguli et al., 2007). In vitro studies have 

been capable of exhibiting self-renewal and differentiation capabilities 
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from stem cell–containing salispheres cultured from human parotid 

and submandibular salivary glands (Lombaert et al., 2008), bringing 

human clinical applications closer within reach. 

 

 

Figure 1.7 Schematic representation of salivary glands with stem cell and 
progenitor cells 

(Pringle et al., 2013) 
 

 

Alternatively, adipose-derived stromal cell transplantation (Kojima et 

al., 2011), bone marrow-derived clonal mesenchymal stem cells 

transplantation (Lim et al., 2013) and human amniotic epithelial cell 

transplantation (Zhang et al., 2013) have all been successfully applied in 
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rodents, proving their potential use as a source of cell-based therapy for 

restoration of salivary gland function. 

 

 

1.11  Duct De-ligation Induced 

Regeneration 

The process of glandular regeneration follow de-ligation of the ducts of 

salivary glands in mice has previously been investigated by our group 

(Osailan et al., 2006a, Carpenter et al., 2007). In terms of glandular 

functionality, it has been shown that de-ligated glands possess the 

ability to recover their function by secreting normal amounts of saliva 

with conventional quantities of ions and proteins (Osailan et al., 2006a, 

Carpenter et al., 2007). 

 

On a cellular level, both mitosis and apoptosis occur during 

regeneration, however they occur at different stages of regeneration in 

each major salivary gland (Takahashi et al., 1998, Takahashi et al., 2004, 

Takahashi et al., 2005).  
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In terms of tissue morphology, it was found that de-ligation of 

excretory ducts starts a process of glandular regeneration with a 

proportional increase of acini volume in comparison with normal 

glands, although there is a higher duct-to-acinar ratio (Scott et al., 

1999). In submandibular glands, myoepithelial cells actively proliferate 

during regeneration around the newly formed acini, suggesting a 

possible role for myoepithelial cells in glandular regeneration (Cutler 

and Chaudhry, 1973, Takahashi et al., 2004). Similarly, they may have 

an active role following de-ligation in parotid glands as indicated by 

their change of location from the newly formed acini to the intercalated 

duct (Takahashi et al., 1999). However the method for their relocation 

to the ducts remains unclear; whether they move onto the ducts 

(Takahashi et al., 1999) or whether they differentiate from the basal 

cells located in the duct-like structures (Takahashi et al., 1997). 

 

Furthermore, in glands regenerated following ligation, it is thought that 

differentiation of the newly formed acini from the ductal compartment 

accounts for most of the observed glandular recovery (Tamarin, 1971a, 

Takahashi et al., 2004). This is because acinar cells, more specifically the 

self-duplication of acinar cells, are responsible for salivary gland 

homeostasis (Aure et al., 2015). However, the acini that are newly 
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formed from ducts differentiate from unique branched structures 

present in the tissue, by expressing positive immunoreactivity for the 

perinatal proteins known as submandibular gland protein A (SMG-A) 

(23.5 kDa), SMG-B1 (26 kDa), and B2 (27.5 kDa) (Cotroneo et al., 2008, 

Cotroneo et al., 2010). Whereas typically in adult glands the SMG 

proteins are no longer present in the acini (Cotroneo et al., 2010), 

suggesting that regenerating glands enter embryonic-like state of 

development in order to regenerate their acini secretory function.  

 

1.12  Salivary Gland Development 

Salivary gland development in mammals arises in the embryo and 

progresses through successive stages before reaching their distinct and 

independent identities by adulthood. The submandibular gland is the 

first major salivary gland to develop in the embryo, followed by the 

proximate sublingual gland and the parotid (Tucker, 2007), and salivary 

glands continue to develop postnatally until they reach full maturity at 

puberty (Patel et al., 2006).  

 

Mammalian salivary glands are generated during embryonic 

development by the process of branching morphogenesis, a process that 
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turns a single epithelial bud into an array of epithelial branches. 

Branching morphogenesis is a fundamental mechanism employed to 

generate the functionally efficient, multifaceted and systematic tissue 

architecture of mammalian development of salivary glands as well as 

lungs, mammary glands, pancreas, kidney (Hogan, 1999). 

 

The three major salivary glands share a common mechanism in their 

embryonic branching morphogenesis (Denny et al., 1997); a set of 

repetitive bifurcations leading to the formation of new epithelial 

outgrowths, which generates the branching structures (Tucker, 2007). 

The stages of salivary glands development have been described using 

the mouse submandibular glands for over 50 years, as it shows classic 

branching morphogenesis (Borghese, 1950). 

 

The mouse submandibular gland development undergoes a series of 

reciprocal interactions among the oral epithelium covering the first 

branchial arch, and a population of mesenchymal cells derived from the 

cranial neural crest (Jaskoll et al., 2002). The five embryonic stages of 

salivary gland development (Figure 1.8) begins with the Prebud stage at 

gestation day 11 (E11.5) with the thickening of the epithelium in the 

floor of the mouth, at the back of the first mandibular molar and 
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adjacent to the developing tongue. This thickening develops at the 

bottom of the alveolo-lingual sulcus, in the floor of the mouth as a 

consequence of the upward growth of the tongue rudiment. 

 

The thickening protrudes into the underlying mesenchyme at the 

Initial bud stage from E12.5 and the epithelium invaginates to form a 

bud linked to the oral surface by a duct. As the epithelial cells proliferate 

continuously in a downward direction, they lead to the formation of a 

dense solid epithelial stalk ending in a bulge constituting the initial bud 

stage of salivary gland development. 

 

 

Figure 1.8 Schematic diagram of embryonic development of the SMG 
in the mouse (Tucker, 2007). 
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The capsular character of the submandibular gland is due to the 

mesenchymal cells condensing around the submandibular primordium. 

The initial bud, surrounded by the mass of connective tissue, will form 

the parenchyma of the SMG, while the excretory duct formed by closure, 

in a rostal direction of the alveolo-lingual sulcus (Hamilton et al., 1945). 

 

The pseudoglandular stage is reached as the epithelium and 

mesenchymal cells expand in volume, which later produces a cluster of 

branches and buds as it undergoes branching, known as the 

pseudoglandular stages at E13.5. As the epithelium undergoes 

branching morphogenesis with 4-5 buds it continues branching and so 

produces a multi-lobed gland by E14.5. 

 

The majority of the ducts develop lumen around E15.5 known as the 

canalicular stages, as the ducts need to undergo cavitation for allowing 

access between acinar cells (saliva producing) and the oral cavity 

(glands are initially formed from a solid core of epithelium).  The 

epithelium around the forming lumen actively proliferates and the 

epithelium at the centre of the presumptive lumen undergoes 

apoptosis. The branches and terminal buds are hollowed out forming 

the presumptive ducts and acini (Jaskoll et al., 2002). At E17.5, the 
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terminal bud stage, well-developed lumena are visible in the terminal 

end buds and in the presumptive ducts (Tucker, 2007).  Development 

and differentiation of the SMG continues postnatally with further 

morphological changes in the granular convoluted tubule (GCT) cells of 

the submandibular gland taking place at puberty (Gresik, 1994). 

 

1.12.1 Branching Morphogenesis Regulating 

Factors 

Signalling involving fibroblast growth factors (FGFs) and fibroblast 

growth factor receptors (FGFRs) has been shown in numerous studies to 

be highly important in the regulation of submandibular gland 

development (Patel et al., 2006). FGFs bind to heparin-sulphate (HS) on 

the cell surface and extracellular matrix (ECM) proteoglycans and 

glycolipids (Davies, 2002, Patel et al., 2006), increasing their affinity for 

FGFRs (Mohammadi et al., 1996). FGF10 knockout and FGFR2b 

knockout mice do not develop salivary glands due to transient bud 

degeneration prior to branching morphogenesis by E13.5 (De Moerlooze 

et al., 2000, Jaskoll et al., 2005). Similarly in humans, mutations of 

FGF10 cause aplasia of the lacrimal and salivary glands (ALSG) 

syndrome (Entesarian et al., 2005). 
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Histological analysis of heterozygous FGF10 and FGFR2b mouse 

embryos has indicated hypoplastic submandibular glands, portrayed by 

less terminal buds (Jaskoll et al., 2005) and an addition of soluble 

recombinant FGFR2b or decreasing FGFR1 expression, all resulted in 

reduced branching morphogenesis in E12 mouse submandibular glands 

(Hoffman et al., 2002, Steinberg et al., 2005).  

  

Furthermore, Sonic hedgehog (Shh), TGFβ, bone morphogenic proteins 

(BMPs), hepatocyte growth factor (HGF), activins, the tumor suppressor 

p63, transcription factor Six1 and Pitx1, TNF pathway and IL-6 are 

amongst other molecules that play a role in the branching 

morphogenesis of SMGs either from phenotypes described in genetically 

modified mice or organ culture experiments (Patel et al., 2006). 

 

1.13  mTOR 

The mammalian target of rapamycin (mTOR), also known as the 

mechanistic target of rapamycin, is a serine/threonine protein kinase 

belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase 

protein family. mTOR plays a critical role in regulating cell growth, cell 
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proliferation, cell motility, cell survival, protein synthesis and 

transcription (Hay and Sonenberg, 2004), by forming two distinct 

complexes named mTOR complex 1 (mTORC1) and mTOR complex 2 

(mTORC2) that differ in their subunit composition (Laplante and 

Sabatini, 2012). 

 

 

Figure 1.9 Diseases (and their corresponding organs) that are linked to 
dysregulation of mTOR 

 (Dazert and Hall, 2011). 
 

Dysregulation of mTOR has been found to occur in many diseases 

(Figure 1.9), including cancer (Guertin and Sabatini, 2007), diabetes 

(Zoncu et al., 2011), ageing (Johnson et al., 2013), or even Down's 
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syndrome (Antonio Troca-Marin et al., 2014). Therefore there are 

significant ongoing efforts in pharmacologically targeting the mTOR 

pathway (Laplante and Sabatini, 2012). This section of the chapter will 

review our current understanding of the mTOR pathway, mTOR 

mediated cellular processes, the protein’s role in health and disease, as 

well as pharmacological approaches of inhibiting mTOR activity.  

The mTOR pathway, and mTORC1 more explicitly, is the target of a 

molecule named rapamycin or sirolimus – a macrolide known for its 

potent immunosuppressive and antiproliferative properties. Upstream 

regulators such as nutrients, growth factors, energy and stress can 

activate mTOR and magnify its activity, as shown for mTORC1 

(Figure1.10).  

 

Figure 1.10 Cloud diagram of the mTORC1 signalling network. 
mTORC1 responds to amino acids, oxygen, energy levels, stress as well as 
growth factors, whilst being acutely sensitive to rapamycin. It promotes cell 
growth, cell cycle progression, induces anabolic processes and also inhibits 
catabolic processes such as autophagy (Laplante and Sabatini, 2012) 
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The mTOR signalling network in mammalian cells (Figure 1.11) is 

activated by growth factors and hormones, such as Insulin, and 

mediated through the PI3-Kinase pathway that leads to the 

phosphorylation and activation of Akt (Wang and Proud, 2006).  

In turn, Akt phosphorylates a protein called tuberous sclerosis 2 (TSC2) 

(Inoki et al., 2002). 
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Figure 1.11 A schematic diagram of the mTORC1 signalling network 
The upstream signals that affect mTORC1, including growth factors and 
cellular energy levels, are transmitted through phosphatidylinositol 3-kinase 
(PI3K) and Ras pathways that phosphorylate AKT. This inactivates TSC1/2, 
allowing RHEB to accumulate in its inactive GTP-bound form and switch on 
mTORC1. The mTORC1 subunits of 4E-BP1 and S6 kinases can then be 
phosphorylated by Raptor. Rapamycin inhibits mTORC1 activity and PTEN 
can also impair mTOR  signalling  by  inhibiting  PIP2  →  PIP3  conversion.  
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The TSC1 & TSC2 heterodimer is a key upstream regulator and 

functions as a GTPase-activating protein (GAP) for Ras homolog 

enriched in brain (RHEB) (Laplante and Sabatini, 2012). RHEB, Ras-

related GTPase, is thought to be necessary for mTORC1 activation 

regardless of upstream signals (Avruch et al., 2009). Phosphorylation of 

TSC2 is thought to inhibit its GAP activity  

(Wang and Proud, 2006), thus TSC1/2 negatively regulates mTORC1 by 

converting RHEB into its inactive GDP-bound state  

(Inoki et al., 2003, Tee et al., 2003). Phosphatase and tensin homolog  

(PTEN) also negatively regulates the mTOR pathway (Diegel et al., 

2010). Low cellular ATP levels can also cause phosphorylation and 

activation of TSC2 via the AMP-activated protein kinase (AMPK) (Wang 

and Proud, 2006). Canonical Wnt signalling can also activate the mTOR 

pathway, either by directly activating β-catenin-dependent 

transcription (Laplante and Sabatini, 2012) or via inhibiting GSK3 

without involving β-catenin-dependent transcription (Inoki et al., 

2006) and comparably, inhibition of mTOR by rapamycin blocks 

activated Wnt signalling (Inoki et al., 2006). 
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1.13.1 mTOR Structure 

The crystal structure of mTOR has not yet been determined, however 

the protein is believed to consist of mainly helical structures (Perry and 

Kleckner, 2003) and the protein is primarily localised in the cytosol of 

two multi-protein complexes, mTORC1 & mTORC2. However, it has also 

been associated with the membranes of several organelles, such as 

Golgi, endoplasmic reticulum, mitochondria and nucleus (Withers et al., 

1997, Sabatini et al., 1999, Desai et al., 2002, Tirado et al., 2003, Drenan 

et al., 2004, Liu and Zheng, 2007). 

mTORC1 is composed of the mTOR subunit, mammalian lethal with 

sec-13 protein 8 (mLST8/GβL), regulatory-associated protein of mTOR 

(Raptor), DEP domain containing mTOR-interacting protein (DEPTOR), 

proline-rich Akt substrate 40 kDa (PRAS40) (Laplante and Sabatini, 

2012) and the recently identified Tti1/Tel2 complex (Kaizuka et al., 

2010). mTORC2 is composed of the mTOR subunit, mLST8/GβL, 

DEPTOR, rapamycin-insensitive companion of mTOR (Rictor), 

mammalian stress-activated protein kinase interacting protein 1 

(mSIN1) and protein observed with Rictor 1 and 2 (Protor 1 & 2) 

(Laplante and Sabatini, 2012).  
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Both mTOR complexes has different sensitivities to rapamycin and 

different downstream signalling. mTORC1 activates transcription and 

translation through its interactions with p70-S6 Kinase 1 (S6K1) and 

the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) (Hay and 

Sonenberg, 2004) and is thought to be critical during development as 

mTOR knockout mice die in utero shortly after implantation (Gangloff 

et al., 2004, Murakami et al., 2004),  with evidence of multiple 

developmental abnormalities as embryonic development halts at E5.5 

(Wang and Proud, 2006) 

 

The S6K1 serine/threonine kinase is also directly phosphorylated by 

mTORC1 and in turn, S6K1 activates the 40S ribosomal S6 protein to 

selectively increase the translation of a class of around 90 transcripts 

known as TOP mRNAs that encode ribosomal proteins and other 

translation regulators (Hannan et al., 2003). However recent evidence 

suggests that S6Ks may not be key mediators in how mTOR regulates 

TOP mRNA translation (Brian et al., 2012), such as the Patursky-

Polischuk et al study which found that rapamycin was not thoroughly 

effective in inhibiting top mRNA translation through mTOR (Patursky-

Polischuk et al., 2009).  
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4E-BP1 is a protein that in its unphosphorylated state binds to the 

eukaryotic translation initiation factor 4E (eIF4E), repressing eIF4E 

activity in the initiation of protein synthesis (Gingras et al., 1999b). 

mTORC1 positively mediates eIF4E activity by directly phosphorylating 

4E-BP1, leading to its release from eIF4E (Hands et al., 2009) to allow 

eIF4E to bind the 5'-cap structure of cytoplasmic mRNA (Wang and 

Proud, 2006). 

eIF4E also interacts with other proteins such as the multidomain 

scaffold protein eIF4G to circularize the mRNA (Pause et al., 1994),  

markedly enhancing its translation. eIF4E:eIF4G interaction is therefore 

considered to be influential in the initiation of mRNA translation 

(Hands et al., 2009).  

 

mTORC2 is a rapamycin-insensitive entity (Sarbassov et al., 2005) 

which encourages cellular survival by activating Akt to phosphorylate 

FOXO1 & FOXO3 (downstream of Akt) (Guertin et al., 2006, Guertin et 

al., 2009)  . Alpha serine/threonine-protein kinase (Akt or PKB), plays a 

critical role in multiple cellular processes including glucose metabolism, 

apoptosis, cell proliferation, transcription and cell migration (Sarbassov 

et al., 2005, Guertin and Sabatini, 2005, Lee et al., 2005, Yang et al., 

2006, Guertin and Sabatini, 2007). 
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Recently, mTORC2 activity has been implicated in the regulation of 

autophagy too (Datan et al., 2014). Complex 2 also functions as an 

important regulator of the cytoskeleton, via its organisation and 

stimulation of F-actin stress fibres, by the addition of GTP to RhoA, Rac1 

and Cdc42 (Sarbassov et al., 2004). 

 

1.13.2 mTOR Functions 

The mTOR pathway coordinates cell growth, cell cycle progression, 

cellular survival and translation (Fingar and Blenis, 2004) and has been 

shown to interact, directly or indirectly, with targets that are 

responsible for many functions including cell-mediated immunity 

(Thomson et al., 2009), programmed cell death (PCD) (Gharagozloo et 

al., 2013), protein synthesis (Davoodi et al., 2012), lipid synthesis 

(Laplante and Sabatini, 2009) and autophagy (Silver et al., 2010). 

Furthermore mTOR is thought to be critical during embryonic 

development as mTOR knockout mice die in utero shortly after 

implantation (Gangloff et al., 2004, Murakami et al., 2004), with 

evidence of multiple developmental abnormalities as embryonic 

development halts at E5.5 (Wang and Proud, 2006). 
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mTOR signalling controls cell growth and survival primarily through 

4E-BP1 and S6K. Unphosphorylated 4E-BP1 binds to the eukaryotic 

translation initiation factor 4E (eIF4E), preventing it from performing 

translation initiation. mTORC1 has been shown to phosphorylate two 

sites in the translation inhibitor 4E-BP1 in vitro  (Brunn et al., 1997, 

Burnett et al., 1998) and also phosphorylates at least 4 known residues 

of 4E-BP1 (Gingras et al., 1999a, Mothe-Satney et al., 2000, Huang and 

Houghton, 2001). This phosphorylation allows 4E-BP1 to unbind from 

eIF4E (Martelli et al., 2011) to join the eukaryotic translation initiation 

factor 4G (eIF4G) and the eukaryotic translation initiation factor 4A 

(eIF4A) to initiate translation (Wang et al., 2012).  

 

S6K regulates cell growth (Shima et al., 1998) and mTORC1 

phosphorylates S6K to make it active. mTORC1 can do this on at least 

two residues, with the most studied phosphorylation occurring on the 

hydrophobic-motif residue Thr389 (Saitoh et al., 2002), which 

subsequently stimulates the phosphorylation of S6K1 by 

Phosphoinositide-dependent kinase-1 (PDK1) (Pullen et al., 1998). 

Activated S6K can initiate its functions via the stimulation of S6 

Ribosomal protein and the eukaryotic translation initiation factor 4B 

(eIF4B) (Peterson and Schreiber, 1998). Furthermore S6K is a part of a 
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negative feedback loop that involves the inhibition of Akt by mTORC1. 

Active S6K inhibits insulin receptor substrate 1 (IRS-1) by 

phosphorylating it at multiple sites, which in turn induces its 

degradation, dampening Akt activation (Takano et al., 2001, Hartley 

and Cooper, 2002, Harrington et al., 2004). This loop is relevant in 

clinical applications as it is known to play a role in Type 2 diabetes (Um 

et al., 2004). A functionally similar loop is the S6K1-mediated inhibition 

of platelet-derived growth factor receptor (PDGFR), that also signals 

through Akt (Zhang et al., 2007).  

 

1.14  Rapamycin 

The mTOR pathway, or to be more specific the protein complex 

mTORC1, is the target of a molecule named rapamycin. Rapamycin is a 

macrolide known for its potent immunosuppressive and anti-

proliferative properties, which works through a gain-of-function 

mechanism where it binds with the intracellular peptidyl-prolyl cis-

trans isomerase FKBP12. The newly created Rapamycin - FKBP12 

complex then binds and interacts with mTOR’s FKBP-rapamycin-

binding (FRB) domain to inhibit the kinase activity of mTORC1, 

however Rapamycin - FKBP12 does not bind to mTORC2 (Sarbassov et 
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al., 2006, Leone et al., 2006). Although mTORC1 is able to bind with the 

Rapamycin - FKBP12 complex, it is unable to bind to FKBP12 

individually and rapamycin can only bind to the FRB domain 

individually with a much lower affinity (Banaszynski et al., 2005). In 

addition to rapamycin, other rapamycin analogs (rapalogs) such as 

temsirolimus, everolimus and deforolimus are also used, because 

rapalogs have the same mechanism of action as rapamycin – binding to 

FKBP12 and interfering with the FRB domain (Ballou and Lin, 2008). 

 

The inhibition of mTORC1 activity via the Rapamycin - FKBP12 

complex suppresses mTOR mediated translation and synthesis, 

eventually resulting in anticancer effects (Dancey, 2005) and therefore 

rapamycin has been studied for use as an anti-cancer agent in a large 

variety of cancer cell lines in culture and syngeneic and xenogeneic 

tumours in mice (Neshat et al., 2001, Wu et al., 2005, Mosley et al., 

2007). However as with all immunosuppressive medications, in theory, 

rapamycin could decrease a patient’s naturally anticancer activity and 

allow some cancers that would have been naturally destroyed to 

proliferate (Gallagher et al., 2010).  
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1.15  Autophagy 

Autophagy is a catabolic process involving the controlled self-

degradation of cellular components, varying from individual proteins 

(microautophagy) to entire organelles (macroautophagy). Autophagy 

arbitrates recycling of damaged or redundant cellular materials to 

provide an important source of substrates for energy production during 

periods of nutrient stress (He and Klionsky, 2009). It is essential for cell 

degradation in mammalian cells as cells degrade incompletely when 

autophagy is inhibited (Berry and Baehrecke, 2008), however a recent 

study suggests that autophagy might also cause cell death (Denton et 

al., 2012). The autophagic pathway can be activated in mammalian cells 

by growth factor deprivation, nutrient starvation, hypoxia, DNA 

damage, protein aggregation or damaged organelles (Kroemer et al., 

2010) and it can also be activated as part of the process of Type I 

programmed cell death (apoptosis) (Shintani and Klionsky, 2004). In the 

salivary glands, autophagy is necessary for efficient salivary gland 

protein secretion (Anding and Baehrecke, 2015). 

 

The primary morphological difference between the three types of 

autophagy is the site of sequestration. The macroautophagy process 

works by sequestering and delivering cargo, such as unused long-lived 
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proteins, in a double membrane vesicle called an autophagosome to the 

lysosomes (the primary organelle for degradation in eukaryotic cells) 

(Hands et al., 2009). Autophagosome formation is initiated by the PI3K 

signalling pathway and the autophagy-related gene (Atg) (Baehrecke, 

2005). The outer membrane of the autophagosome fuses in the 

cytoplasm with a lysosome to form an autophagolysosome, where the 

organelle contents are degraded via the lysosome’s acidic hydrolases 

(Ohsaki et al., 2010). 

 

The microautophagy process, on the other hand, does not involve an 

intermediate transport vesicle; rather divisions of cytosol or entire 

organelles are sequestered directly at the surface of the degradative 

organelle, with the lysosome directly engulfing cytoplasm either by 

invagination of the limiting membrane, protrusion of arm-like 

structures or by septation (Klionsky, 2003). 

 

A third form of autophagy, chaperone-mediated autophagy (CMA), 

functions via lysosomes that target a soluble pool of cytosolic proteins 

for selective degradation (Majeski and Dice, 2004). Cytosolic proteins 

with a CMA-targeting motif bind to a receptor protein, the lysosome-

associated membrane protein type-2A (LAMP-2A). Following protein 
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unfolding and translocation across the lysosome membrane, the 

proteins are degraded within the hydrolase-rich lumen. In CMA, the 

substrate/chaperone complex is translocated across the lysosome 

membrane singularly, as opposed to the sequestration/engulfment of 

substrates in bulk during macroautophagy and microautophagy (Hands 

et al., 2009). 

1.16  mTOR and Autophagy 

Autophagosomes are continuously formed and destroyed within the 

body, this is known as autophagic flux (Shen et al., 2011). mTOR can 

mediate this process because inhibition of mTORC1 strongly induces 

autophagosome formation (Noda and Ohsumi, 1998), as derived from 

the observation that rapamycin treatment induces autophagy in cells 

with mTOR already activated (Kamada et al., 2004). This is because 

mTORC1 is a known inhibitor of macroautophagy, from hereon referred 

to as autophagy, (Jung et al., 2010). Two recent studies, showed that 

mTORC1 negatively regulates autophagy by acting on Atg13 and Atg1 

homologues (Jung et al., 2009, Hosokawa et al., 2009), which are 

responsible for the induction of autophagy initiation (Chen and 

Klionsky, 2011). In the salivary glands, autophagy is necessary for 
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efficient salivary gland protein secretion (Anding and Baehrecke, 2015) 

exhibited in Figure 1.12. 

 

The inhibition of mTOR to induce autophagy has been used in 

irradiated glands to restore salivary gland function and reestablish 

glandular homeostasis (Morgan-Bathke et al., 2014). In such autophagic 

processes, vesicle elongation and completion is mediated by the 

conjugation of LC3 (mammalian Atg8) to phosphatidylethanolamine 

(PE) (Denton et al., 2012). 

 

 

Figure 1.12 Electron Microscope image of autophagy in parotid glands.  
The nucleus (N) is present, whilst numerous secretory granules have filled the 
cytoplasm (SG) and large autophagic vacuoles have appeared (AV). X5900 
(photograph from (Oliver et al., 1979)) 
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LC3 is cleaved at its C terminus by Atg4 to form LC3-I, which is 

conjugated by Atg3 to PE to form LC3-II. LC3-II is correlated with the 

number of autophagosomes at any given time (Tanida et al., 2008) as 

the half of life LC3-II is short because LC3-II itself is degraded by 

autophagy. Therefore tracking the conversion of LC3-I to LC3-II by Atg3 

is useful to monitor autophagic activity in salivary glands (Silver et al., 

2010).  

1.17  mTOR in Salivary Glands 

As stated earlier, rapalogs have been used to induce autophagy in 

irradiated mice to restore salivary gland function and reestablish 

glandular homeostasis, (Morgan-Bathke et al., 2014). But there has also 

been extensive research into the functions of mTOR in the salivary 

glands by our group, such as the finding that activation of mTOR 

coincides with autophagy during salivary gland atrophy (Silver et al., 

2010). Irradiated salivary gland tissues also exhibit activation of mTOR 

(Iglesias-Bartolome et al., 2012, Finkel, 2012), however inhibition of 

mTOR in salivary glands has been found to reduce angiogenesis - a 

complex biological process involved in tumorigenesis and tumour 

progression (Yu et al., 2014).  

 



67 

 

Diegel et al found that, in the mouse model, the inactivation of tumour 

suppressing genes adenomatous polyposis coli (negative regulator of 

Wnt signalling) and Pten (negative regulator of the mTOR pathway) 

caused the development of carcinomas in the salivary glands, with 

100% penetrance and an extraordinary morphological similarity to 

human acinar cell tumours (Diegel et al., 2010). Furthermore, analysis 

of all tumour types revealed increases in PI3K, Akt and mTOR 

expression in comparison with normal salivary gland control tissue 

(Ettl et al., 2012), concluding that mTOR signalling is active in salivary 

gland cancers (Ettl et al., 2012) and that the mTOR pathway is not 

normally active in healthy salivary glands. However, inhibiting mTOR 

in human salivary duct carcinomas has not yet produced prolific results 

as a treatment method, suggesting that additional studies of mTOR 

inhibition-based treatments in salivary glands are warranted (Piha-Paul 

et al., 2011). 

 

  



68 

 

1.18  Aims 

Despite some initial studies finding a bridge between mTOR expression 

and salivary gland cancers (Ettl et al., 2012, Iglesias-Bartolome et al., 

2012, Finkel, 2012), the role of mTOR in atrophic salivary glands, or 

during their regeneration, remains unclear. Therefore the overall aim of 

this project is to observe and possibly identify the role of mTOR in 

salivary gland atrophy and regeneration.  

 

Our group has previously established a baseline for this study by 

observing such mechanisms, whereby the activation of mTOR 

correlated with the loss of protein translation and autophagic 

consumption (Silver et al., 2010). Therefore the first objective of this 

study will be to further build upon these previous findings and 

characterise the functions of mTOR in duct ligation induced salivary 

gland atrophy by examining the effects of blocking mTOR activation 

during ligation-induced atrophy in mice, to determine whether mTOR 

activation helps prevent atrophy or exacerbates atrophic processes.  

 

Once these characteristics are established, the purported regenerative 

effects of blocking mTOR will be observed in salivary glands. Therefore 

the second objective will be to examine the effects of mTOR inhibition, 
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via several schedules of rapamycin administration, during ductal de-

ligation induced regeneration of the salivary glands in mice.  

 

Determining the effects of mTOR, and its inhibition, are important in 

mice as they allow us to discover the role of mTOR in enabling gland 

regeneration. The findings can then be used as a baseline to compare to 

humans to assess if mTOR activation occurs in human salivary tissues 

and whether it is an important pathway in human salivary gland 

atrophy and regeneration. Therefore the third, and final, objective of 

this project will be to determine the relevance of mTOR activity in 

human salivary gland disease / atrophy.  
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CHAPTER 2 

2MATERIALS AND METHODS 
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2.1   Animals 

All experimental procedures were conducted on adult female ICR mice 

that were obtained from Charles Rivers Laboratories (Margate, UK), 

weighing an average of 20-25g.  

 

On arrival mice were housed in groups of eight, with food and water 

provided ad libitum. A 12 hour light- dark cycle was maintained and a 

constant temperature of 20-22°C. Environmental enrichments 

(tunnels, chewing sticks & nesting material) were provided in each cage. 

Animals were allowed to acclimatize to their new environment for 1 

week prior to experimental procedures.  

 

All animal studies and procedures were conducted in accordance with 

UK Home Office Animal (Scientific Procedures) Act 1986. 

 

2.2   Experimental Design 

The mice were designated in to three labels: The control groups, the 

ligation groups and the de-ligation groups (Figure 2.1). The control 

groups were either unoperated controls, receiving drug vehicle for 3 

days or receiving only drug injections for 3 days. 
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The ligation groups underwent unilateral submandibular excretory 

duct ligation surgery under recovery anaesthesia for either 3, 5 or 7 

days, or underwent surgery whilst also receiving mTOR inhibiting 

drugs for 3, 5 or 7 days post surgery. 

The de-ligation groups underwent ductal de-ligation under recovery 

anaesthesia for 7 days following unilateral submandibular excretory 

duct ligation surgery for 7 days, or underwent de-ligation whilst also 

receiving mTOR inhibiting drugs during either ligation, de-ligation or 

throughout. 
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13Figure 2.1 The experimental design branched into control, ligation and de-ligation groups. 
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2.3 Submandibular Duct Ligation 

& De-ligation Surgery  

The mice were weighed and anaesthetized with xylazine (5mg/Kg) 

/ketamine (25mg/Kg) i.p injections, and placed on a controlled heating 

pad to maintain the body temperature. The depth of anaesthesia was 

assessed by pedal reflex.  

 

Held in the supine position with the neck extended, a skin incision 

~0.5 cm long was made in the midline of the neck (on the medial side of 

the angle of the mandible), the fat surrounding the salivary glands was 

cleared via blunt dissection and subsequently the left submandibular 

gland duct was isolated  (Figure 2.2). The left submandibular excretory 

duct was ligated using a 6-0 Ethicon suture (Johnson and Johnson Intl, 

Brussels, Belgium). For de-ligation surgery, the submandibular glands 

were de-ligated (under recovery anaesthesia). 

 

After surgery on the main secretory duct, the neck was sutured. The 

mice were allowed to recover from anaesthesia in a cage maintained in a 

warm room and were administered analgesics (buprenorphine, 

10 μg/kg) post surgery.  
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Aseptic conditions were used throughout the surgical procedure of duct 

ligation and de-ligation to reduce the risk of infection. Animal body 

weights were recorded daily. Mice were sacrificed by an overdose of 

pentobarbitone and cervical dislocation. 

 

 

14Figure 2.2 Animated diagram depicting salivary glands in mice 
showing positions of major salivary glands after dissection of surrounding 

connective tissue (Adapted from Van Valckenborgh, 2005). 
 

 

2.4  Rapamycin treatment 

Rapamycin was resuspended in a stock solution at 20 mg/ml in DMSO 

and stored at -20 °C until used. For vehicle controls, animals were 
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injected (s.c.) with 200 μl of rapamycin injection vehicle (10 % 

polyethylene glycol 400 and 17 % tween-80).  

The experimental groups received subcutaneous (s.c.) injections, each 

injection  consisted of 5 mg/kg/day of Rapamycin diluted in 200 μl of 

injection vehicle (10 % polyethylene glycol 400 and 17 % tween-80), all 

as previously demonstrated by (Liu et al., 2007). This particular dose 

was chosen because of the efficacy and comparative effectiveness of the 

inhibition of mTOR signaling by rapamycin shown in previous studies 

(Hu et al., 2011, Shillingford et al., 2010), furthermore, in preparatory 

undertakings for this study, this was found to be the maximum dose 

without seeing significant body weight loss.  

 

No toxicity or adverse effects of the compound were identified in this 

experiment, in accordance with previous rapamycin studies (Banerjee et 

al., 2011, Shillingford et al., 2010). 

 

2.5   Tissue Collection 

At the end of experiments, the submandibular glands were removed, 

weighed and cut into two sections.  One section was snap frozen in 
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liquid nitrogen and stored in -80°C freezer for biochemical 

measurements and the other section of gland was fixed in 4% formalin. 

 

Contralateral submandibular glands from the experimental mice were 

not collected as standard of control, as they experience compensative 

hyperplasia when the other gland is extirpated or ligated (Walker and 

Gobe, 1987, Schwartz-Arad et al., 1991). 

 

2.6   Histochemical Staining of Tissue 

Sections 

Submandibular gland tissues were fixed in 4% formalin for 24 hours, 

then processed in ascending alcohols and then embedded in paraffin 

wax. Sections at 5 μm thick were cut and mounted on super-frost plus-

coated slides. 

 

Following overnight incubation at 37°C, slides underwent the following 

de-waxing procedures: 5 minutes incubation in xylene followed by a 

second xylene incubation for 10 minutes, 3 incubations (3 minutes 

each) in 100% industrial methylated spirit, and a final 5 minutes 

rinsing in running water. 
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2.6.1  Haematoxylin and Eosin Staining 

General morphology of the tissue sections was assessed by 

haematoxylin and eosin (H&E) staining. For this method, tissue sections 

were stained with Mayer’s Haematoxylin (Thermo Fisher Scientific, 

Leicestershire, UK) for 3-5 minutes, washed in running water (2 

minutes), differentiated (de-stain) with 1% acid alcohol and then 

stained with 1% Eosin solution (VWR International, Leicestershire, UK) 

for 1-3 minutes (H& E staining). Then the slides were dehydrated, air-

dried, cleared and mounted.  

 

2.6.2  Alcian Blue Periodic Acid Schiff’s 

Staining 

The secretory granules inside the acinar cells were demonstrated by 

Alcian Blue/periodic acid Schiff’s reagent (AB/PAS) staining. 

 

Following de-waxing slides were washed in distilled water and placed 

into a 0.05% Alcian Blue solution for 10 minutes then washed in 

running tap water for 2 minutes. Slides were then briefly rinsed in 
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distilled water, oxidised with 1% Periodic Acid (Sigma-Aldrich, 

Gillingham, UK) for 10 minutes, and then incubated with Schiff’s 

reagent (VWR International, Leicestershire, UK) for 30 minutes. AB/PAS 

stained the acidic mucins blue and the neutral mucins magenta.  The 

nuclei were stained with haematoxylin for 2 minutes then washed with 

running water for 2 minutes and differentiated with 1% acid alcohol. 

Rinsed in warm water, then cold water. Then the slides were 

dehydrated, air dried for 15 minutes, cleared and mounted. 

 

2.6.3  DMAB Staining 

Granular ductal kallikreins were stained using 

dimethylaminobenzaldehyde (DMAB) nitrite reaction for tryptophane 

(DMAB) staining, as previously demonstrated by (Silver et al., 2010). 

Freshly cut samples were incubated on a hot plate for 30 minutes and 

underwent the de-waxing procedure as described above.  Samples were 

treated in DMAB- HCl solution for 1 minute, drained for 1 minute, then 

transferred to the sodium nitrite- HCl for 1 minute with continuous 

agitation, washed in water for 30 seconds, de-stained in 1% acid alcohol 

for 15 seconds and counter stained in neutral red solution for 5 
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minutes. Using blotting paper, sections were blotted. Dehydrated, air 

dried for 15 minutes, cleared and mounted. 

 

2.7   Immunohistochemistry 

Prior to the immunohistochemical staining, tissue sections were de-

waxed, dehydrated in absolute xylene and then through Industrial 

Methylated Spirits (IMS) solutions. Sections were rehydrated with 

distilled water and treated with 3% hydrogen peroxide, to quench the 

endogenous peroxidase, for 10 minutes. Preheated citric acid buffer 

solution (pH 6.0) was used as an antigen retriever to unmask formalin 

meshwork covering antigens of interest. Sections were allowed to cool 

down in cold tap water and incubated with 2% bovine serum  

albumin (BSA) to avoid nonspecific binding and incubated with the 

primary antibody of interest, to investigate the localisation of mTOR 

substrates, at room temperature overnight.  

 

5 minute washes with 1% tween tris buffer saline (TBS-T) were applied 

before incubating sections with secondary biotinylated antibodies for 

30 minutes (Dako UK). Sections were incubated with streptavidin biotin 

complex horseradish peroxidase (StreptABC-HRP; Vector Laboratories. 
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UK) for a further 30 minutes. The peroxidase activity was visualized 

with diaminobenzidine tetrahydrochloride (DAB; Sigma-Aldrich, 

Gillingham, UK) (0.5 mg / ml) after 10 minutes of DAB incubation, 

counter stained with Mayer’s haemotoxylin and eosin (nuclear 

counterstain) for 30 seconds. 

 

2.8   Morphometric Analysis 

From the submandibular gland samples prepared for histochemical 

staining, 20 acini per sample were selected and the mean area (μm2) 

measured using Leica TCS SP2 confocal microscope software version 2.1 

(Leica Microsystems Heidelberg). 

 

2.9   Gland Homogenates 

Approximately 0.01mg of previously frozen (-80°C) gland tissues were 

homogenized in the homogenizing buffer solution  (1 % Triton X-100, 1

mM EDTA, and a 1 % v/v dilution of protease inhibitor cocktail set 1 

(Merck Chemicals Ltd, Nottingham, UK) using an Ultra-Thurrax 

homogenizer (IKA Labortechnik, Staufen, Germany). 
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Samples were centrifuged and the supernatants were collected. Tissue 

lysates were prepared under reducing condition (Dithiothreitol (DTT) 

0.5 M, 1:10) and NUPAGE® LDS (Invitrogen, Paisley, UK) at a 1:4 ratio of 

final volume.   

 

Tissue lysates were then boiled at 100°C for 5 minutes and 

electrophoresed in order to allow cellular proteins to be separated based 

on their molecular weight on a 4-12% SDS-PAGE gel (NUPAGE Novex 

Bis-Tris 4-12 % gel; Life technologies, Paisley, UK) according to 

manufacturer’s protocol.  

 

Proteins resolved by electrophoresis were then electroblotted onto 0.45

μm nitrocellulose membranes (Anderman and Co., Kingston-Upon-

Thames, UK).  

 

2.10   Protein concentration assay 

Submandibular gland tissue homogenates protein concentrations were 

determined using BCA Assay (Thermo Scientific, IL, USA) in 96 

multiwell plate according to manufacturer’s instructions. Homogenates 

were assessed at a dilution of 1 : 100. Results were derived from a 
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standard curve generated using Bovine Serum Albumin (BSA) serial 

dilution incubated at the same time and protein concentrations were 

determined.  

 

2.11   Periodic Acid Schiff Staining 

Periodic acid Schiff (PAS) technique was used to detect and assess 

glycoproteins (Nerve Growth Factors and Epidermal Growth Factors). 

After electrophoreses the gel was fixed in 25 % methanol and 10 % 

glacial acetic acid for 60 minutes, washed in water for 20 minutes, 

incubated in 2% periodic acid for 15 minutes, rinsed with double 

distilled water. Schiff reagent (VWR, Leicestershire, UK) was incubated 

in the dark with gentle agitation for up to 60 minutes or until pink 

stained bands appeared.  

 

2.12   Immunoblotting 

The proteins were transferred from the gel on to nitrocellulose 

membrane in NUPAGE® transfer buffer (Invitrogen, Paisley, UK) plus 

10% methanol according to manufacturer’s protocol, they were stained 

with Fluorescein Isothiocyanate (Sigma-Aldrich, Missouri, USA) 

(0.1mg/ml), to check whether the protein transfer was achieved.  
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The membranes to be probed for specific proteins were either blocked 

overnight in PBS with 10% milk power (pH 7.2; Marvel, Spalding, UK) at 

4°C or blocked for 60 minutes in tween tris buffered saline (TBS-T) 

(20mM TRIS, 150mM NaCI, .1% Tween-20, pH 7.6), in order to minimise 

the non-specific binding of the antibodies to the membrane. The 

membranes were washed three times (5 minutes each) in TBS-T or 

0.05% tween 20 in PBS (PBS-T). Primary antibodies, which are specified 

in Table 2.1, were diluted according to manufacturer’s guidelines in 

TBS-T or 1% skimmed milk in PBS. The membranes were then allowed 

to incubate in the primary antibody for 60 minutes at room 

temperature or overnight at 4°C. The following morning, the 

membranes were washed 3 times (5 minutes each) in TBS-T or 

Phosphate Buffered Saline with 0.05% Tween 20 (PBS-T). The 

membranes were then incubated for 60 minutes at room temperature 

with the relevant HRP-linked secondary antibody. Secondary antibodies 

included polyclonal goat anti-mouse immunoglobulin-HRP (P0447) and 

polyclonal goat anti-rabbit immunoglobulin-HRP (P0448) from Dako 

Ltd (Ely, UK). The membranes were washed more three times (5 

minutes each) in TBS-T or PBS-T prior to development by enhanced 

chemiluminescence. 
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The substrate for developing colour reaction were added to membranes, 

which were then placed in the ChemiDoc ™ Imaging System (BIORAD 

Laboratories Ltd, Hertfordshire, UK) to obtain images of the protein 

bands, utilising optimised exposure times and the ChemiDoc ™ Imaging 

System’s built-in high-sensitivity blot detection which highlights over-

saturated pixels, in order to obtain ideal exposure in images of the 

protein bands. Band intensity from immunoblots were quantified using 

the image analysis software ImageJ version 1.46 (NIH, Maryland, USA), 

with each bar representing the mean normalized from the ratio of β-

actin ±SEM.  

 

 

 

 

 

 

 

 

 

 

Table 2.1 Primary antibodies used in immunoblotting protocol. 
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2.13   Densitometry  

Immunoblot images were imported into the image analysis software 

Image J version 1.46 (NIH, MD, USA) for quantification of the band 

intensity, as per the Image J software guide (Ferreira and Rasband, 

2012). Bands were from 3 to 5 animals per treatment group and the 

time points were normalised to their loading control, as a precursor to 

being displayed as a ratio to the loading control (β-actin) ±SEM.  

2.14  Statistical Analysis 

Results were expressed as mean ± standard error of the mean (SEM), and 

n represents the number of mice per experiment. Statistical 

comparisons were student’s t-test; whereby p<0.05 was considered 

statistically significant. Data analysis was performed with Microsoft 

Excel 2011 (Microsoft, Redmond, WA).  
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3.2   Abstract 

Salivary gland atrophy is a frequent consequence of head and neck 

cancer irradiation therapy but can potentially be regulated through the 

mammalian target of rapamycin (mTOR). Excretory duct ligation of the 

mouse submandibular gland provokes severe glandular atrophy 

causing activation of mTOR. This study aims to discover the effects of 

blocking mTOR signaling in ligation-induced atrophic salivary glands. 

Following 1 week of unilateral submandibular excretory duct ligation: 

gland weights were significantly reduced, 4E-BP1 and S6rp were 

activated, and tissue morphology revealed typical signs of atrophy. 

However, 3 days following ligation with rapamycin treatment, a 

selective mTOR inhibitor, gland weights were maintained, 4E-BP1 and 

S6rp phosphorylation was inhibited, and there were morphological 

signs of recovery from atrophy. However, following 5 and 7 days of 

ligation and rapamycin treatment, glands expressed active mTOR and 

showed signs of considerable atrophy. This evidence suggests that 

inhibition of mTOR by rapamycin delays ligation-induced atrophy of 

salivary glands.  

Published in Cell Death and Disease (2014), Volume 5 on 27 March 2014. 
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3.3   Introduction 

Approximately 500 000 people worldwide are diagnosed with head and 

neck cancer every year (Jemal et al, 2009). Radiation therapy to the head 

and neck is a common treatment for such malignancies and salivary 

glands in the radiation field are severely damaged. Atrophy of the 

salivary glands is inevitable post radiation therapy and can also occur in 

autoimmune sialadenitis (Sjögren's syndrome) and obstructive 

sialadenitis. Patients experience reduced salivary flow, xerostomia, 

dental caries, mucosal infection, dysphagia, considerable discomfort 

and pain (Nagler et al, 2003, Vissink et al, 2003). 

 

Salivary gland atrophy can be recreated experimentally in rodents via 

ligation of the main excretory duct of the submandibular gland, which 

creates a histological appearance comparable with that which occurs in 

humans (Cummins et al, 1994), which involves deletion of acinar cells 

through apoptosis (Takahashi et al, 2000) and autophagy (Harrison et 

al, 2000), as well as mitotic proliferation of ductal cells (Takahashi et al, 

2000).  

 

One potentially important mechanism of regulating atrophy in salivary 

gland and other tissues is through the mammalian target of rapamycin 
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(Mieulet et al, 2007); a highly conserved serine/threonine protein kinase 

which integrates cues from nutrients and growth factors, acting as a 

nexus point for cellular signals to control growth, metabolism and 

longevity. Activated mTOR regulates protein synthesis by 

phosphorylating ribosomal S6 kinase 1 (S6K1) and eukaryotic 

translation initiation factor 4E–binding protein 1 (4E-BP1) (Ma et al, 

2009) at multiple sites (Herbert et al, 2002). Although in normal 

circumstances, mTOR is switched on in some tissues such as muscle 

and liver, it is normally switched off in salivary glands. mTOR is 

potentially instrumental in controlling acinar and ductal atrophy as it 

gets switched on after duct ligation-induced atrophy in the animal 

model (Silver et al, 2010), however the role of mTOR in ligation-induced 

atrophy of salivary glands is still not fully clear. 

 

Rapamycin is a specific inhibitor of mTOR signaling that binds directly 

to the mTOR complex 1 (mTORC1) and suppresses mTOR-mediated 

phosphorylation of S6K1 and 4E-BP1 (Ma et al, 2009). 

 

In the present study, rapamycin was used to study the effects of mTOR 

inhibition on duct ligation-induced salivary gland atrophy. 

  



92 

 

3.4   Methods and Materials 

3.4.1  Submandibular duct ligation surgery 

A total of 37 adult female ICR mice were obtained from Charles Rivers 

Laboratories (Margate, UK); weighing an average of 20–25 g upon 

arrival. On arrival mice were housed in groups of four, with food and 

water provided ad libitum. A 12 h light-dark cycle was maintained at a 

constant temperature of 20–22 °C. Environmental enrichments 

(tunnels and nesting material) were provided in each cage. Animals 

were allowed to acclimatize to their new environment for 1 week before 

experimental procedures. All animal studies and procedures were 

conducted in accordance with UK Home Office Animal (Scientific 

Procedures) Act 1986. The mice were weighed and anaesthetized with 

xylazine (5 mg/Kg) /ketamine (25 mg/Kg) i.p. injections, and placed on 

a controlled heating pad to maintain the body temperature. The depth 

of anesthesia was assessed by pedal reflex. Held in the supine position 

with the neck extended, a skin incision ~0.5 cm long was made in the 

midline of the neck (on the medial side of the angle of the mandible), the 

fat surrounding the salivary glands was cleared via blunt dissection and 

subsequently the left submandibular gland duct was isolated. The left 
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submandibular excretory duct was ligated using a 6-0 Ethicon suture 

(Johnson and Johnson Intl, Brussels, Belgium). 

After ligation of the main secretory duct, the neck was sutured. The 

mice were allowed to recover from anaesthesia in a cage maintained in a 

warm room and were administered analgeics (buprenorphine, 

10 μg/kg) post surgery. Aseptic conditions were used throughout the 

surgical procedure of duct ligation to reduce the risk of infection. 

 

Submandibular gland samples were collected for analysis. The samples 

were designated in to groups: the control and experimental groups. The 

control groups were either unoperated controls (n=4), receiving drug 

vehicle for 3 days (n=4) or receiving rapamycin injections for 3 days 

(n=4). The experimental groups underwent unilateral submandibular 

excretory duct ligation surgery under recovery anaesthesia for either 3 

(n=3), 5 (n=3) or 7 days (n=4), or they underwent surgery whilst also 

receiving 5 mg/kg per day of rapamycin (subcutaneous (s.c.)) for 3 

(n=4), 5 (n=4) or 7 days (n=7) post surgery. 

 

At the end of experiments, submandibular glands were removed, 

weighed and tissues were either fixed in 4% formalin overnight or snap 

frozen in liquid nitrogen for biochemical analysis. 
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Contralateral submandibular glands from the experimental mice were 

not collected as controls, as they experience compensative hyperplasia 

when the other gland is extirpated or ligated (Walker et al, 1987, 

Schwartz-Arad et al, 1991). 

 

Animal body weights were recorded daily. Mice were sacrificed by an 

overdose of pentobarbitone. 

 

3.4.2  Rapamycin treatment 

Rapamycin was resuspended in a stock solution at 20 mg/ml in DMSO 

and stored at −20 °C until used. For vehicle controls, animals were 

injected (s.c.) with 200 μl of rapamycin injection vehicle (10% 

polyethylene glycol 400 and 17% tween-80). The experimental groups 

received s.c. injections, each injection consisted of 5 mg/kg per day of 

Rapamycin diluted in 200 μl of injection vehicle (10% polyethylene 

glycol 400 and 17% tween-80), all as previously demonstrated (Liu et al, 

2007). This particular dose was chosen because of the efficacy and 

comparative effectiveness of the inhibition of mTOR signaling by 

rapamycin as shown in previous studies (Hu et al, 2011, Shillingford et 
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al, 2010), furthermore, in preparatory undertakings for this study, this 

was found to be the maximum dose without seeing significant body 

weight loss. No toxicity or adverse effects of the compound were 

identified in this experiment, in accordance with the previous 

rapamycin studies (Shillingford et al, 2010, Banerjee et al, 2011). 

 

3.4.3  Histochemical staining of tissue 

samples 

Submandibular glands were embedded in wax and 5 μm thick sections 

were cut and mounted on super-frost plus-coated slides. 

 

General morphology of the tissue sections was assessed by H&E 

staining. The secretory granules inside acinar cells were identified by 

AB/PAS staining. Granular ductal kallikreins were stained using DMAB, 

as previously demonstrated (Silver et al, 2010). 

 

3.4.4  Morphometric analysis 

From the submandibular gland samples prepared for histochemical 

staining, 20 acini per sample were randomly selected and the mean area 
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(μm2) was measured using Leica TCS SP2 confocal microscope software 

version 2.1 (Leica Microsystems, Heidelberg, Germany). 

 

3.4.5  Tissue preparation and 

immunoblotting 

Tissue specimens stored at −80 °C were homogenized in 19 volumes 

(wt/vol) of ice-cold homogenization buffer (1% Triton X-100, 1 mM 

EDTA, and a 1% v/v dilution of protease inhibitor cocktail set 1 (Merck 

Chemicals Ltd, Nottingham, UK) using an Ultra-Thurrax homogenizer 

(IKA Labortechnik, Staufen, Germany). 

 

SDS-PAGE of samples was carried out (NUPAGE Novex Bis-Tris 4–12% 

gel; Life technologies, Paisley, UK). Proteins resolved by electrophoresis 

were then electroblotted onto 0.45 μm nitrocellulose membranes 

(Anderman and Co., Kingston-Upon-Thames, UK). 

 

The procedure followed for immunoblotting is that which has been 

previously established (Carpenter et al, 2004). Membranes were imaged 

in a ChemiDoc Imaging System (BIORAD Laboratories Ltd, 

Hertfordshire, UK), with optimized exposure times and the built-in 
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high-sensitivity blot detection which highlights over-saturated pixels, 

to obtain ideal exposure in images of the protein bands. 

 

Band intensity from immunoblots were quantified using the image 

analysis software ImageJ version 1.46 (NIH, Maryland, MD, USA), with 

each bar representing the mean normalized from the ratio of β-actin 

±S.E.M. 

 

3.4.6  Antibodies  

Anti-phospho-4E-BP1 (1 : 1000 for western blotting), anti-phospho-S6 

ribosomal protein (1 : 1000 for western blotting), anti-mTOR (1 : 1000 

for western blotting) were obtained from Cell Signaling Technology 

(Hertfordshire, UK) and anti-β-actin was from Sigma–Aldrich (St. Louis, 

MO, USA). Secondary antibodies included polyclonal goat anti-mouse 

immunoglobulin-HRP (P0447) and polyclonal goat anti-rabbit 

immunoglobulin-HRP (P0448) from Dako Ltd (Ely, UK). 

 

3.4.7  Periodic acid-Schiff’s staining 

PAS of glandular homogenates was used to assess glycoproteins. After 

electrophoreses the gel was fixed in methanol and acetic acid, incubated 
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in 1% periodic acid for 15 min, rinsed with double distilled water and 

stained with Schiff’s reagent for up to 60 min. 

 

3.4.8  Statistical analysis 

Results were expressed as means±S.E.M., and were statistically 

compared by ANOVA followed by student’s t-test; P<0.05 was 

considered statistically significant. 
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3.5   Results 

3.5.1  Gland Weights 

Mean submandibular gland weight was significantly reduced in the 3 

day ligation group (0.040±0.001 g, n=3), compared with nonligated 

control mice (0.055±0.003 g, n=4). Following rapamycin treatment 

(0.056±0.002 g, n=4), mean gland weight was significantly (P=0.0008) 

greater compared with the ligation only group and was not different to 

unoperated controls. However, 5 day (0.040±0.005 g, n=3) and 7 day 

ligation (0.035±0.003 g, n=4) groups experienced a significant 

reduction compared with unoperated controls, which was not affected 

by rapamycin treatment (Figure 3.1). 

 

All control groups showed similar gland weight measurements, with 

unoperated controls, rapamycin only and rapamycin vehicle-treated 

groups all showing no statistically significant difference. 

 

By the end of the experiment, there was no statistically significant 

difference in body weight between experimental mice and the controls. 

For example, neither the 7 day ligation only (28.52±0.80 g, n=4) nor 7 

day ligation with rapamycin treatment (31.47±1.18 g, n=7) differed 
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significantly (P=0.22) from unoperated control (31.20±1.49 g, n=4) 

mice body weights. 

 

 

 

15 Figure 3.1 Mean Submandibular gland weights. 
Mean submandibular gland weights were significantly (*P<0.05) reduced at 3, 
5 and 7 day ligation only groups in comparison with unoperated controls. Post 
ligation surgery and 3 days of rapamycin treatment, the gland weights 
increased 40% greater than the ligation only group. Five days and seven days 
of rapamycin treatment post ligation did not significantly alter gland weights 
in comparison with their respective ligation only groups. Data is expressed as 
mean±S.E.M. 
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mTOR status 

3.5.2  Complete inhibition of mTOR after 3 

days of rapamycin treatment 

Immunoblotting of phospho-S6 ribosomal protein, a downstream 

component of the mTOR substrate S6K1 in glandular homogenates 

revealed activation of S6K1 (and therefore activation of mTOR) in only 

the ligated state in the 3 day group. However, rapamycin treatment 

abolished this activation (Figure 3.2a and quantified in Figure 3.2c). 
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16 Figure 3.2 Immunoblotting of phospho-S6 ribosomal protein (pS6rp) (a)  
and phospho-4E-BP1 protein (b) expression in submandibular glands of 3 day 
groups. pS6rp showed no expression in controls (c) and rapamycin only (R). 
Presence of pS6rp indicates activation of mTOR in the ligated state (L) but 
rapamycin treatment post ligation (L+R) abolished this activation. Phospho-4E-
BP1 protein expression in controls (c) showed an inactive isoform of 4E-BP1, 
whereas ligation (L) increased 4E-BP1 phosphorylation and therefore activation, 
indicating mTOR phosphorylation. Rapamycin treatment following ductal ligation 
(L+R) abolished this activation, as represented by a visible reduction back to the 
inactive isoform. Muscle homogenates (M) were used as a positive control. Beta 
actin (β-actin) was used as a loading control, however muscle homogenates 
showed absence of beta actin (β-actin) as muscle expresses α-smooth muscle actin 
(α-SMA). Densitometric analysis from the 3 day experiments (c) show pS6rp and 
p4E-BP1 phosphorylation as a ratio of β-actin, *P<0.05 in comparison with 
controls. The bars represent the mean±S.E.M., ANOVA (*P<0.05) data represents 
results from at least three different experiments. 
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Low expression of 4E-BP1 occurred, as the inactive isoform, in 

unoperated controls. Ligation revealed an increase in 4E-BP1 

phosphorylation (and therefore activation of mTOR) in 3 day groups, as 

shown by the presence of a higher molecular weight band. Rapamycin 

treatment following ductal ligation abolished this activation, as 

represented by a visible reduction of isoforms (Figure 3.2b and 

quantified in Figure 3.2c). Rapamycin only treated glands showed no 

expression of mTOR activity, identical to unoperated controls. 

 

3.5.3  Incomplete inhibition of mTOR during 

long term rapamycin treatment 

Immunoprobing of phospho-S6 ribosomal protein expression on 3, 5 

and 7 day samples indicated mTOR activation in the ligated state. 

However, whilst rapamycin treatment abolished this activation after 3 

days; a small protein band remained visible following rapamycin 

treatment after longer periods of ductal ligation (Figure 3.3a and 

quantified in Figures 3.3c and 3.3d). 

 

Duct ligation at 5 and 7 days increased 4E-BP1 protein expression and 

increased phosphorylation status compared with control, suggesting 
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mTOR activation. Following ligation and rapamycin treatment for 5 

days glandular homogenates revealed incomplete reduction of 

hyperphosphorylated status in all four mice examined. Seven day 

glandular homogenates also showed a visible increase in 4E-BP1 in 

ligation and a reduction of all isoforms post rapamycin treatment, 

however the upper isoform was only slightly reduced following 

rapamycin treatment (Figure 3.3b and quantified in Figures 3.3c and 

3.3d). Rapamycin only treated glands showed no expression of mTOR 

substrate activity, identical to unoperated controls. 

 

Western blotting of total mTOR in submandibular glands (Figure 3.3e 

and quantified in Figure 3.3f) showed a marked increase in mTOR 

presence in ligated glands at all time points in comparison with 

controls. Rapamycin treatment greatly reduced total mTOR protein 

expression, but did not completely inhibit the presence of mTOR. 
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17 Figure 3.3 Immunoblotting of phospho-S6 ribosomal protein (pS6rp) (a) 
and phospho-4E-BP1 protein (b) expression in submandibular glands during 
the longer 5 and 7 day periods of ligation and ligation with rapamycin 
treatment. pS6rp expression was abolished after 3 day rapamycin treatment 
post ductal ligation (L+R) hence inhibiting mTOR expression. Five and seven 
day ligated (L) glandular homogenates revealed increased pS6r-protein 
expression. Rapamycin treatment during ductal ligation showed a visible 
reduction but not complete abolishment of expression at 5 and 7 days, 
indicating incomplete inhibition of mTOR. Phospho-4E-BP1 protein 
expression experienced a marked increase (the activated isoform bands), after 
ligation (L) for 5 and 7 days, indicating phosphorylation of mTOR. Rapamycin 
treatment following ductal ligation (L+R) on 5 day showed a visible reduction 
of isoforms but not complete return to inactive isoform bands, indicating 
incomplete inhibition of mTOR, whereas 7 day ligation with rapamycin 
treatment revealed no visible reduction of 4E-BP1 protein expression. 
Densitometric analysis from the 5 (c) and 7 day experiments (d) show pS6rp 
and p4E-BP1 phosphorylation as a ratio of β-actin (*P<0.05). Protein 
expression of total mTOR in submandibular glands (e) in unoperated control, 
ligated and ligated with rapamycin-treated mice at increasing time points. 
Rapamycin treatment reduces total mTOR protein expression but does not 
completely inhibit mTOR, correlating with the pS6rp and 4E-BP1 protein 
expressions. Densitometric analysis showing mTOR expression as a ratio of β-
actin (f) (*P<0.05). The bars represent the mean±S.E.M. Beta actin (β-actin) was 
used as a loading control. Data represents results from at least three 
independent experiments. 
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3.5.4  Short term rapamycin treatment 

rescues acinar atrophy 

Periodic acid-Schiff’s (PAS) staining of glandular homogenates indicated 

significant loss of acinar mucin with ligation at all time points (Figure 

3.4). The 3 day ligation with rapamycin group showed only partial loss 

of mucin. Whereas 7 day rapamycin and ligation groups experienced 

complete loss of mucin, even post rapamycin treatment (Figure 3.4a). 

Five day groups experienced variable results with partial loss of mucin 

in some animals (Figure 3.4b) and a complete loss in other animals. 

 

 

 

  

  Figure 3.4 continues on the following page 
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18 Figure 3.4 Periodic acid-Schiff’s staining of glandular homogenates of 3 and 
7 day (a) and 3 and 5 day (b). PAS staining of all ligation only (L) groups 
marked a significant loss of acinar mucin. The 3 day ligation with rapamycin 
group (L+R) showed only partial loss of mucin (indicated by arrow), 
suggesting rapamycin reduced acinar loss of mucin. Five days of rapamycin 
treatment following ductal ligation revealed transitional results between a 
partial loss or a complete loss of mucin. No staining was seen after 7 days of 
rapamycin treatment following ligation. Densiometric analysis of 
submandibular acinar mucin (c) as a ratio of control (*P<0.05), shows that 
increased acinar mucin in 3 days of ligation with rapamycin treatment was 
significantly higher in comparison with ligation only. The bars represent the 
mean±S.E.M. Data represent results from at least three independent 
experiments. 
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3.5.5  Histological assessments  

The haematoxylin and eosin staining (H&E) of both the ligation (Figure 

3.5b) and the ligation with rapamycin treatment (Figure 3.5c) groups 

showed the presence of inflammatory cell infiltration, which were 

composed mainly of neutrophils and macrophages (as previously 

mentioned) (Silver et al, 2010, Correia et al, 2008) in the connective 

tissue between the lobules and among the parenchymal elements after 

3 days in comparison with controls (Figure 3.5a). Three day ligation 

groups also revealed shrunken acinar cells with loss of secretory 

granules and duct luminal dilation as they underwent degranulation, 

similar to previous findings (Cotroneo et al, 2008). Rapamycin-treated 

ligated glands didn’t appear to affect inflammatory cell infiltrates, but 

showed intact acinar cells and some larger than normal acinar cells. 

 

Morphometric analysis of H&E-stained samples revealed the mean 

area±Standard Error of the Mean (S.E.M.) of the acini from the 3 day 

ligation samples (227.40±30.72μm2, n=60) significantly decreased 

(P<0.0001) in comparison with the control glands (469.90±17.35μm2, 

n=80). Rapamycin treatment following ligation rescued the acini size 

(541.90±47.56μm2, n=80) significantly (P<0.0001) from the ligated 

state (Figure 3.5d).  
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19 Figure 3.5 Haematoxylin and Eosin (H&E) staining of submandibular glands in 
control (a), following 3 day periods of ligation (b) and ligation with rapamycin treatment 
(c). The unoperated submandibular gland indicates a conventional appearance of acini 
and ductal cells. Ligation revealed infiltration of a large number of inflammatory cells 
(mostly neutrophils and macrophages; arrowhead) and duct luminal dilation (star), 
exemplary of the atrophic state. Ligation with rapamycin treatment, revealed lack of 
atrophy in intact acinar cells (arrow). Morphometric analysis of the H&E-stained 
samples indicated the mean area of acini (d) from the control, 3 day ligation and 3 day 
ligation with rapamycin treatment. Ligation significantly decreased the size of the acini 
(*P<0.0001) in comparison with control. Rapamycin treatment post ligation showed a 
significant increase in acini area (*P<0.0001). Data is expressed as mean±S.E.M. 
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Histological assessments of alcian blue/periodic acid-Schiff's (AB/PAS)-

stained adult female submandibular gland sections after 3 day 

rapamycin treatment following ductal ligation (Figure 3.6b) revealed 

enlarged acinar cells as shown in H&E staining that are strongly stained 

by alcian blue, when compared with ligation only (Figure 3.6a).  

 

The H&E staining of the 7 days ligation and the 7 days ligation with 

rapamycin treatment, the 5 days ligation and the 5 days ligation with 

rapamycin treatment groups all revealed very similar results as ligation 

only glands with very little, to no differences. 

 

Histomorphometric analysis indicated that the area of acini from 

ligated glands was significantly reduced at longer time periods, in both 

ligated and rapamycin-treated ligated samples, compared with 

unoperated control samples. 

 

The histochemical staining of granular ducts by DMAB-nitrite showed 

loss of kallikrein, which is a marker for ductal function (Gresik et al, 

1980), secretory granules of granular tubule cells 3 days post duct 

ligation (Figure 3.6d) in comparison with unoperated controls (Figure 

3.6c), rapamycin treatment following ligation did not rescue the 
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reduction of stored tissue secretory granules containing kallikreins 

(Figure 3.6e). All 5 and 7 day experimental groups (ligation only and the 

ligation with rapamycin groups) indicated a complete loss of DMAB in 

comparison with unoperated controls. 
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20 Figure 3.6 Alcian blue/PAS staining of submandibular glands after 3 days of 
ligation (a) and ligation with rapamycin treatment (b). The ligated state revealed 
signs of atrophy such as shrunken acinar cells with no secretory granules, duct 
luminal dilation and presence of inflammatory cells (mostly neutrophils and 
macrophages; arrowhead). Rapamycin treatment following ductal ligation, showed 
intact acinar cells (arrow) and although the ducts displayed larger lumena (star), 
not all acinar cells appeared enlarged. Histochemical staining of granular ducts by 
DMAB-nitrite on unoperated controls (c), 3 day ligation (d) and 3 day ligation and 
rapamycin (e). Lack of blue DMAB on ligation and ligation with rapamycin 
treatment, shows a loss of blue DMAB staining indicating loss of kallikrein-
containing secretory granules in ductal cells. 
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3.6   Discussion 

Our previous study suggested that mTOR was associated with the 

atrophic process during submandibular duct ligation. This study 

provides further evidence that mTOR is required for an autophagy-like 

process. However this study underlines the complexity of the in vivo 

regulation of mTOR and hints at its interaction with other pathways. 

 

The ligation of the main excretory duct of the submandibular gland to 

study atrophy of the salivary glands has been well characterized in rats 

(Takahashi et al, 2004, Carpenter et al, 2007). 

 

As the first study of it's kind to use mice, this study found that the 

ligation of the excretory duct of the submandibular gland led to 

glandular atrophy as the gland underwent morphological, cellular and 

microscopic changes. 

 

One such change is that mean submandibular gland weight was 

significantly reduced in all ligation groups in comparison with controls. 

Decreased volume and size of acinar cells with acinar and ductal 

degranulation may explain the significant decrease of glandular 
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weights, although the increase of inflammatory cells infiltrating may 

have added to the gland weight initially. 

 

Tissue morphology indicated that the glands of the 3 day ductal ligation 

group had shrunken acinar cells with loss of secretory granules, duct 

luminal dilation as they underwent degranulation and a general loss of 

cytoplasm in the duct cells. Similarly at 5 and 7 days of ligation most 

acinar cells had disappeared, ductal lumena were dilated with little 

cytoplasm left and there was an increased amount of connective tissue 

filled with inflammatory cell infiltrates. 

 

The DMAB staining specific for stored tissue kallikrein of the granular 

convoluted ducts (Shori et al, 1997) of submandibular gland tissues at 

all time points post ligation indicated loss of kallikrein-containing 

secretory granules, corresponding with PAS staining of glandular 

homogenates, which showed a complete loss of mucin with ligation as 

previously demonstrated in duct-ligated submandibular gland of rats 

(Cotroneo et al, 2010). The absence of secretory glycoproteins indicates 

a lack of acinar cell synthetic activity. 

 

Immunoprobing of the phospho-S6 ribosomal protein, which is 
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phosphorylated at several sites by S6K1 (Burnett et al, 1998, Isotani et 

al, 1999) and 4E-BP1 (another mTORC1 substrate) confirmed that 

mTOR is activated during ligation-induced atrophy of the salivary 

glands, which corresponds with the start of autophagic processes 

during ligation-induced atrophy (Silver et al, 2010). 

 

Three days of rapamycin treatment following duct ligation showed a 

complete inhibition of mTOR, as shown by the immunoprobing of 

mTOR substrates S6rp and 4E-BP1. Tissue morphology revealed intact 

acinar cells, although the ducts displayed larger lumena compared with 

control mice with the presence of inflammatory cells suggesting ductal 

atrophy. The preservation of mucin-content post treatment suggests 

that rapamycin maintains synthesis or prevents degradation of 

secretory glycoproteins by fully inhibiting the activity of mTOR. 

Therefore, inhibition of mTOR can delay ligation-induced atrophy of 

salivary glands, however only affecting acinar, but not ductal, atrophic 

processes. 

 

However, longer periods of rapamycin treatment post ligation surgery 

showed a loss of efficacy as gland weights were reduced, with 

morphological changes similar to ligation only and phosphorylation of 
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S6rp and 4E-BP1 showing an incomplete inhibition of mTOR. Based on 

the results obtained in this experiment, rapamycin treatment is not 

believed to be effective in longer periods of administration and that 

rapamycin treatment only delays salivary gland atrophy following 

ductal ligation, as rapamycin is not a full inhibitor of mTOR, owing to 

the PI3K-negative feedback mechanism (which re-activates mTORC1 

via the TSC1/2 complex) (Guertin et al, 2009). It is possible rapamycin is 

ineffective against the negative feedback mechanism because 

rapamycin only inhibits mTORC1 (Zaytseva et al, 2012), although there 

has been some evidence to suggest that the prolonged rapamycin 

treatment inhibits mTORC2 assembly (Sarbassov et al, 2006), which 

may be relevant to the changes observed from day 3 to day 5 in our 

study. Using a second generation mTOR inhibitor, Torin1, which is 

thought to inhibit all kinase-dependent functions of mTOR (Thoreen et 

al, 2009), we obtained essentially identical results to rapamycin. It is 

possible that rapamycin had been effective in mTOR inhibition, yet 

S6K1 and 4E-BP1 were activated via mTOR-independent 

phosphorylation of S6K1 and 4E-BP1, a mechanism suggested by other 

studies (Liu et al, 2013). 
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Evidence from this study leads to the conclusion that inhibition of 

mTOR can delay ligation-induced atrophy of salivary glands, however 

only affecting acinar, but not ductal, atrophic processes. 
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CHAPTER 4 

TORIN1 & NVP-BEZ235 EFFICACY 
AS ALTERNATIVES TO 

RAPAMYCIN IN SALIVARY GLAND 
ATROPHY 
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4.1 Introduction 

The mammalian target of rapamycin (mTOR) pathway, also known as 

the mechanistic target of rapamycin, is a prime regulator of cell growth 

and its serine/threonine kinase, as the key component of the pathway, 

is formed of two functionally distinct protein complexes, mTORC1 and 

mTORC2, that differ in their subunit composition (Thoreen et al., 2009, 

Silver et al., 2010, Laplante and Sabatini, 2012). Many of the insights 

that have been gained into mTOR signalling have came through 

investigating the mechanism of action of rapamycin, a macrolide 

immunosuppressant drug that has an inhibitory effect on mTORC1 

(Santos et al., 2011).  

 

Conversely, mTORC2 is considered to be unaffected by rapamycin, 

although its assembly can be inhibited by prolonged rapamycin 

treatment in certain cell types (Sarbassov et al., 2006). Because of its 

perceived potency (Feldman et al., 2009), rapamycin is commonly used 

in research experiments as a test of the involvement of mTOR in a 

particular process, such as in the previous chapter of this thesis where 

the role of mTOR in morphological changes and biochemical changes 

during salivary gland atrophy were investigated.  
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However rapamycin has been shown to be ineffective for long-term 

administration, as it does not completely inhibit mTOR in-vivo 

(Feldman et al., 2009, Bozorgi et al., 2014, Takayama et al., 2014). 

 

2Table 4.1 Comprehensive listing of mTOR inhibitors. It should be noted that 
for comparative purposes, the Rapamycin category includes the rapalogs of 
temsirolimus, everolimus and deforolimusalan.   
 

 

 

 

 

 

 

 

This is believed to be due to the PI3K-negative feedback mechanism that 

re-activates mTORC1 via the TSC1/2 complex (Guertin and Sabatini, 

2009). As discussed in the previous chapter, it is possible rapamycin is 

ineffective against the negative feedback mechanism because 

rapamycin only inhibits mTORC1 (Zaytseva et al., 2012). Therefore this 

chapter will utilise second generation mTOR inhibitors, specifically 

Torin1 and NVP-BEZ235 (BEZ), which are believed to inhibit all kinase-

dependent functions of mTOR (Table 4.1), in an experiment to fully 
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inhibit mTOR to allow for the observation of the underlying 

mechanisms of the mTOR pathway during atrophy in the salivary 

glands and to analyse whether or not the full inhibition of mTOR, rather 

than a delay, can have restorative effect similar to the results seen when 

mTOR was inhibited in the previous chapter. 

 

4.2   Materials & Methods 

4.2.1  Experimental Procedure 

The mice were designated into two labels: control and ligation groups, 

as previously explained in Chapter 2.2.   

 

Control groups consisted of unoperated controls ( n=4 ) or non-ligated 

mice treated with NVP-BEZ235 ( n=1 ). With the ligation groups, either 

untreated for 3 days ( n=3 ) or 7 days ( n=4 ) for comparative purposes, 

or  receiving the mTOR inhibiting drugs NVP-BEZ235 for 3 days ( n=6 ) 

or Torin1 post ligation for 3 days ( n=7 ) or 7 days ( n=5 ). 

 

Surgical and sacrificial procedures were performed as previously 

described in Chapter 2.3. Submandibular gland tissue sections were 
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collected from the glands subsequent to gland weighing and either fixed 

in 4% formalin overnight for histochemical staining or snap frozen in 

liquid nitrogen for immunoblotting.  

 

4.2.2  Torin1 Treatment 

Torin1 (Tocris Bioscience, Bristol, UK) was suspended with a stock 

solution of 25 mg / ml in 100% N-methyl-2-pyrrolidone (NMP) made 

fresh daily and diluted in 1:4 concentration of 50% polyethylene glycol 

400 (PEG400). Leading to a final concentration of 5 mg / ml. The mice, 

following ligation, received i.p. injections that consisted of 20 mg / kg / 

day. This particular dose was chosen because of the efficacy and 

comparative effectiveness of the inhibition of mTOR signaling by 

Torin1 shown in previous studies (Liu et al., 2010). 

 

4.2.3  NVP-BEZ235 (BEZ) Treatment 

NVP-BEZ235 (BEZ) was formulated at 4 mg / ml in N-methyl-2-

pyrrolidone (NMP) / polyethylene glycol (PEG) (10% / 90%, v/v). These 

solutions were prepared fresh each day of dosing. The BEZ powder was 

dissolved in NMP upon sonification, with the remaining volume of PEG 
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added thereafter.  This method of preparation was used in accordance 

with previous BEZ treatment studies (Maira et al., 2008b). The final 

application volume of 10 ml / kg was administered p.o. once every 24 

hours. This particular dose was chosen because of the efficacy and 

comparative effectiveness of NVP-BEZ235 as shown previously (Serra et 

al., 2008, Yasumizu et al., 2014). Furthermore, in preparatory 

undertakings for this study, this was found to be the maximum dose 

without seeing significant body swelling, particularly across the 

abdomen, similar to the significant abdominal swelling found in a 

previous PI3K inhibition study (Hu et al., 2002). NVP-BEZ235 treatment 

could not be attempted for 7 days of ligation-induced atrophy as during 

preparatory undertakings for this study, toxicity was observed from the 

use of the compound, similar to the common toxicities of mTOR 

inhibitors (Soefje et al., 2011). 

4.2.4  Histochemical Staining 

The formalin-fixed tissues were processed through a series of ascending 

IMS and then stained. For the assessment of general morphology, 

haematoxylin and eosin (H&E) staining was performed. The secretory 

granules inside acini cells were identified by alcian blue/periodic acid 



126 

 

Schiff’s (AB/PAS) staining, all according to procedures previously 

described in chapter 2.6. 

 

4.2.5  Immunohistochemistry 

Formalin-fixed paraffin-embedded sections were de-waxed, dehydrated 

in absolute xylene and then rehydrated with distilled water and treated 

with 3% hydrogen peroxide. Inhibition of endogenous peroxidase along 

with treatment for prevention of non-specific binding of the primary 

antibody was carried out as previously described in chapter 2.7. The 

primary antibody used was Rabbit Anti-Mouse PS6 (Cell Signalling 

Technology, Hertfordshire, UK), at 1:100 and secondary HRP polyclonal 

antibodies at 1:250 dilution (DAKO, Ely, Uk). The sections were 

subjected to DAB detection kit (Sigma-Aldrich, Gillingham, UK), 

according to the manufacturer’s instructions, and counterstained with 

Mayer’s haemotoxylin.  

4.2.6  Morphometric Analysis 

H&E stained samples were also used for measuring the mean acini area 

(μm2) using a Leica TCS SP2 confocal microscope, version 2.1 (Leica 

systems, Heidelberg GmBH). 
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4.2.7  Statistical analysis 

Results were expressed as means±S.E.M., and were statistically 

compared by ANOVA followed by Bonferroni Correction; P<0.05 was 

considered statistically significant. 

 

4.2.8  Protein Detection 

The tissue samples were homogenised, loaded protein samples were 

normalised using BCA Assay (Thermo Scientific, IL, USA), as detailed in 

chapter 2.10. SDS-PAGE was performed on tissue homogenates, in 

preparation for protein detection, as described in chapter 2.12. 

Immunoprobing of membranes were performed to visually analyse the 

specific proteins of mTOR and autophagy status using the antibodies 

shown in Table 4.2. PAS of glandular homogenates was used to assess 

glycoproteins, as previously described in chapter 2.11. 
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3 Table 4.2 Antibody concentrations in Immunoblotting protocol 

 

 

4.2.9  Glandular Densitometry 

The intensity of the western blots were quantified and displayed as a 

ratio of β-actin using Image J version 1.46 (NIH, MD, USA), as previously 

explained in 2.13. 

4.2.10  Proteomic Analysis 

Two female adult mice were used for the proteomics experiment. One 

mouse was ligated for 7 days (Sample A), whilst the other was ligated 

for 7 days with rapamycin treatment (Sample B). The liquid 

chromatography – mass spectrometry (LC-MS/MS) protein 

identification was performed by The Centre of Excellence for Mass 
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Spectrometry at King’s College London, following the well established 

protocols (Xi et al., 2011, Rauniyar et al., 2013, Das et al., 2014). In brief, 

100µg of each sample had its proteins separated using SDS-PAGE and 

then samples were in-gel digested with trypsin, as almost all large-scale 

projects in mass spectrometry-based proteomics use trypsin to convert 

protein mixtures into more readily analysable peptide populations 

(Olsen et al., 2004). Following digestion, samples were isobarically 

labelled and then desalted using C18 columns. The samples were then 

divided for total peptide analysis and a phosphopeptide-enriched 

sample for LC-MS/MS analysis. 

Samples that were to be subjected to total peptide analysis had their raw 

protein and raw peptide fold changes calculated using Proteome 

Discoverer (Thermo Fisher Scientific, MA, USA). The acquired raw data 

was then identified using the mouse proteins database (Uniprot, 

Cambridge, United Kingdom) and fold change measurements were 

analysed using Excel (Microsoft, WA,USA).  

 

The second sample underwent phosphopeptide enrichment and clean 

up before analysis, using a titanium dioxide kit (Thermo Fisher 

Scientific, MA, USA), according to manufacturers protocol. This is 

because naturally low abundances of phosphopeptides and low degrees 
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of phosphorylation, make the isolation and concentration of 

phosphopeptides essential prior to analysis (Dunn et al., 2010). The 

phosphopeptide-enriched sample was then subjected to data analysis 

using the PhosphoRS node in Proteome Discoverer (Thermo Fisher 

Scientific, MA, USA). The obtained data was further analysed to 

determine molecular function, cellular compartment and protein 

information using the Pfam database (Finn et al., 2014). Fold change 

measurements were analysed using Excel (Microsoft, WA, USA). 

 

4.2.11  DNA Microarray Analysis 

Two female adult mice were used for the DNA microarray experiment. 

One mouse was ligated for 7 days (Sample A), whilst the other was 

ligated for 7 days with rapamycin treatment (Sample B). The generation 

of gene expression microarray data using Affymetrix genechip probe 

arrays follows a simple procedure consisting of six major steps 

(Downey, 2004). This procedure for the genomic analysis of the 

genechip for the DNA Microarray was performed by FWB Genomics 

Centre at King’s College London, following the well established 

protocols (Carpenter and Cotroneo, 2010, Silver et al., 2010) 
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In brief, 30mg of frozen tissue from each sample was homogenised and 

then cleaned using affinity column, this is because the single most 

important step in ensuring a successful genechip experiment is the 

preparation of a clean, intact RNA sample (Zhang and Rokosh, 2007). 

RNA was extracted using a RNeasy Mini Kit (Qiagen, Venlo, 

Netherlands), according to manufacturer’s instruction. The sample 

labelling protocol was then followed for Affymetrix DNA microarray 

analysis (Affymetrix, High Wycombe, UK), according to manufacturer’s 

instructions. The labelled RNA was purified and then underwent 

fragmentation using heat and Mg2+, in order to create shorter 

sequences. This is because longer RNA fragments are very susceptible to 

degradation (Fasold and Binder, 2012), whereas shorter sequences of 

about 100 to 200 base fragments are more suitable to be hybridised 

with the probes on a genechip (Li and Wong, 2001). 

 

Mouse genome genechip 430 2.0 arrays (Affymetrix, High Wycombe, 

UK) were used in this study, covering over 39,000 transcripts and 

variants on each single array. The sequences that this genechip array 

probes for are derived from selected sequence clusters that were created 

from the UniGene database (NCBI, MD, USA). The previously extracted 

RNA fragments were hybridised on the genechip and left overnight in 
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an oven at 45°C. Following hybridisation, the genechip was washed and 

stained using a genechip fluidics station (Affymetrix, High Wycombe, 

UK), according to the manufacturer's instructions. Raw microarray data 

were scanned from the genechip arrays using a genechip scanner and 

the resulting data was analysed using the GeneChip Operating Software 

(GCOS) (version 3.2) (Affymetrix, High Wycombe, UK) in order to 

summarise probe sets, with the genes absent from both experimental 

samples dismissed. The remaining gene results were further analysed to 

determine gene family/sub-family and protein class using The Panther 

Classification System Version 9.0 (Thomas lab, CA, USA), and ascertain 

gene pathway and pathway components using Kyoto Encyclopedia of 

Genes and Genomes (KEGG) (Kyoto, Japan).  
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4.3   Results 

4.3.1  Gland weights 

Mean submandibular gland weight was significantly (p=0.0008) 

reduced in the 3 day ligation group (0.040±0.001 g, n=3) and also 

significantly reduced (p=0.002) in the 7 day ligation group 

(0.035±0.003 g, n=4), all in comparison to non-ligated control mice 

(0.055±0.003 g, n=4). Following Torin1 treatment (0.048±0.003 g, n=7), 

mean submandibular gland weight was greater than 3 day ligation only 

group, however this change was not to a significant extent (p=0.146). 

NVP-BEZ treatment (0.064±0.003 g, n=6) did however cause a 

significant (p=0.001) increase in comparison to 3 day ligation only. 7 

days of Torin1 treatment post ligation (0.034±0.003 g, n=5) displayed 

similar results to 7 day ligation only. 

 

By the end of the experiment, there were no statistically significant 

differences in body weight between 3 day Torin1 experimental mice 

(29.25±1.71 g, n=7) and the controls (31.20±1.49 g, n=4), however BEZ 

treated mice (34.0±3.10 g, n=6) had a 9% increase in comparison to 
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controls due to swelling across the body.

 

21Figure 4.1 Mean submandibular gland weights for Unoperated Control, 
Ligation only, Ligation & Torin1 and Ligation & BEZ for either 3 or 7 days. 
Mean submandibular gland weights were reduced after 3 days (p=0.0008) and 
7 days (p=0.0002) ligation in comparison to unoperated controls. Post ligation 
surgery and 3 days of Torin1 treatment, the gland weights were 20% greater 
than the ligation only group, whereas 3 days of BEZ treatment increased mean 
gland weights significantly by 60% (p=0.001). 7 days of Torin1 treatment post 
ligation did not significantly alter gland weights in comparison to the 
respective ligation only group. Data from ANOVA, Bonferonni's post-test, is 
expressed as mean + SEM.  
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4.3.2  Torin1 Treatment     

4.3.2.1  mTOR status 

Western blots of the mTOR substrates, pS6rp and p4E-BP1 in 

unoperated controls, 3 day ligation, 3 day ligation & Torin1, 7 day 

ligation only and 7 day ligation & Torin1 treatment, showed that 

unoperated controls displayed a small inactivate state of the p4E-BP1 

protein. Whereas 3 days of ligation caused the phospho-4E-BP1 protein 

to activate it’s second isoform.  

 

Torin1 treatment following ligation inactivated the higher isoform, 

however the total 4E-BP1 protein expression (as a ratio of b-actin) 

remained greater than control (Figure 4.2 A).  

 

Ligation displayed a presence of pS6rp, however 3 days of Torin1 

treatment caused a complete inhibition of the pS6r protein to bring in 

line with unoperated controls (Figure 4.2 B). This suggests that Torin1 

treatment caused a complete inhibition of mTOR activity after 3 days of 

treatment. 

 

With regards to 7 days treatment of Torin1, ligation alone displayed a 

relatively small activation of the p4E-BP1 protein (2nd isoform). 
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However the treatment of Torin1 for 7 days following ligation, had no 

inhibitory effects on mTOR as indicated by the phosphorylated (active) 

upper isoforms of p4E-BP1 that are present (Figure 4.3 A). 

 

Similar results were present when observing pS6rp after 7 days 

treatment of Torin1 following ligation (Figure 4.4 A), as the visible 

pS6rp bands indicate lack of mTOR inhibition.  

 

The densitometry of the western blots quantified the 3 & 7 day p4E-BP1 

results (Figure 4.3 B), revealing a statistically significant difference 

between the control & ligation only glands (p = 0.0007) when analysing 

p4E-BP1 as a ratio of actin. A similar significance can be found when 

comparing control & ligation with 7 days Torin1 treatment (p < 

0.0001), indicating no inhibition of mTOR after 7 days of Torin1 

treatment.  

 

Densitometric analysis of the western blot findings for 3 & 7 day pS6rp 

treatment (Figure 4.4 B) indicated that ligation caused a significant 

increase of pS6rp phosphorylation in comparison to controls, however 

this increase was statistically significantly reduced (p = 0.0002) 
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following 3 days of Torin1 treatment. 7 days of Torin1 treatment 

however, caused a recovery of pS6rp phosphorylation once again.  

 

Total mTOR protein expression in submandibular glands was visible in 

ligated glands (Figure 4.5), however 3 days of Torin1 treatment reduced 

total mTOR protein expression to very faint, almost imperceptible 

bands. Nevertheless the resistance of the total mTOR protein was quite 

prominent as expression of total mTOR returned following 7 days of 

ligation & Torin1 treatment, indicating that 7days of Torin1 treatment 

had little or no inhibition on total mTOR. This can be further evidenced 

by quantifying these results using densitometric analysis to reveal the 

statistically significant difference between ligation exclusively and 3 

days of Torin1 treatment following ligation (p < 0.0001), as well as the 

statistically significant difference between ligation exclusively and 7 

days of Torin1 treatment following ligation (p = 0.0001).  
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22Figure 4.2 Immunoblotting of phospho-4E-BP1 protein expression (A) and 
phospho-S6 ribosomal protein expression (B) in adult mouse submandibular 
glands after 3 days of ligation (L) or 3 days of Torin1 treatment following 
ligation (LT). The submandibular gland homogenates appear to exhibit a high 
responsiveness to Torin1 treatment, as can be seen via the inhibition of p4E-
BP1 indicated by the (active) band following Torin1 administration and the 
inhibition of pS6rp following Torin1 treatment. Beta actin (β-actin) was used 
as a loading control for both blots. Mouse muscle tissue (M) was used as 
positive control for p4E-BP1, however muscle homogenates show absence of 
β-actin, as muscle expresses α-smooth muscle actin (α-SMA). Data is indicative 
of results from at least three independent experiments. 
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23Figure 4.3 Immunoblotting of phospho-4E-BP1 protein expression (A) in 
adult mouse submandibular glands after ligation exclusively, 3 days of Torin1 
treatment following ligation and 7 days of Torin1 treatment following 
ligation. 3 day ligation & Torin1 exhibited a visible reduction in p4E-BP1 
phosphorylation indicated by the lack of a (active) band following Torin1 
administration. However, 7 days of Torin1 treatment following ligation 
reactivated p4E-BP1, with protein expression returning to levels similar to 
ligation only. Densitometric analysis showing p4E-BP1 expression as a ratio of 
its actin (B) show a statistically significant increase following ligation in 
comparison to control (p = 0.0007) and following 7 days of Torin1 treatment 
in comparison to control (p < 0.0001). The bars represent mean + SEM. Beta 
actin (β-actin) was used as a loading control. Data is indicative of results from 
at least three independent experiments. 
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24Figure 4.4 Immunoblotting of phospho-S6 ribosomal protein expression (A) in 
adult mouse submandibular glands after ligation exclusively, 3 days of Torin1 
treatment following ligation and 7 days of Torin1 treatment following ligation. 
Ligation displayed a noticeable presence of pS6rp. But this presence was visibly 
reduced following 3 day ligation & Torin1 administration. However, 7 days of Torin1 
treatment following ligation demonstrated an activation of pS6rp, with protein 
expression increasing to levels beyond that of even just ligation only. Densitometric 
analysis of pS6rp expression as a ratio of its actin (B) showed a statistically significant 
difference of pS6rp to actin ratio between ligation and 3 days of Torin1 treatment (p = 
0.0002). The bars represent mean + SEM. Beta actin (β-actin) was used as a loading 
control. Data is indicative of results from at least three independent experiments. 
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25 Figure 4.5 Immunoblotting of total mTOR protein kinase expression (A) in 
adult mouse submandibular glands after 3 & 7 days of Torin1 treatment 
following ligation. Total mTOR protein kinase expression was increased 
following ligation but visibly reduced following 3 days of Torin1 administration. 
However, 7 days of Torin1 treatment following ligation appeared to reactivate 
the mTOR pathway as total mTOR protein expression increased. Densitometric 
analysis of  total mTOR expression as a ratio of its actin (B) showed a statistically 
significant difference in mTOR to actin ratio between ligation and 3 days of 
Torin1 treatment (p < 0.0001) as well as between 7 days of Torin1 treatment and 
ligation (p = 0.0001). The bars represent mean + SEM. Beta actin (β-actin) was 
used as a loading control for both blots. Mouse muscle tissue was used as positive 
control for mTOR, however muscle homogenates show absence of β-actin, as 
muscle expresses α-smooth muscle actin (α-SMA). Data is indicative of results 
from at least three independent experiments. 
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4.3.2.2  Biochemical Analysis of Glycoprotein Content 

Levels of acinar secretory glycoproteins in 3 day ligated and ligated with 

Torin1 treatment (Figure 4.6 A) and 7 day ligated and ligated with 

Torin1 treatment (Figure 4.6 B) glands’ homogenates were assessed by 

means of PAS gel staining.  

 

Periodic acid-Schiff’s staining in all ligated only glands revealed that the 

low molecular weight acinar mucins (98 – 188 kDa), that were typical of 

unoperated controls, had been completely lost due to ligation-induced 

atrophy. The recovery of acinar secretory gylcoproteins, as exhibited by 

PAS gel staining, following 3 days of Torin1 treatment subsequent to 

ligation was significant ( p < 0.05 ) in comparison to ligated only glands. 

However such results could not be replicated in gland homogenates 

with 7 days of Torin1 administration post submandibular gland 

ligation, whereby these gland homogenates displayed a significantly ( 

p=0.01 ) lower expression of glycoprotein content in comparison to 3 

days of Torin1 treatment subsequent to ligation. Moreover, 7 days of 

Torin1 administration post ligation had no recovery effects of the 

submandibular gland glycoprotein content to the extent that 7 day 

Torin1 treated glands were not statistically significantly divergent to 

ligated only glands.   
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26 Figure 4.6 Periodic acid-Schiff’s staining of glandular homogenates of 3 day 
ligated and ligated with Torin1 treatment (A) and 7 day ligated and ligated with 
Torin1 treatment (B) glands’ homogenates. Ligation resulted in significant loss 
of mucins, 3 days treatment showed a visible recovery, yet this recovery was 
not carried through 7 days of Torin1 treatment.  Densiometric analysis of 
submandibular acinar mucin as a ratio of control (C), showed that both 3 and 7 
day ligation only, as well as 7 days ligation and torin1 treatment, were all 
significantly lower than control (indicated by star). The bars represent the 
mean + SEM. Data represents results from at least three independent 
experiments. 
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4.3.2.3  Biochemical analysis of autophagy 

In order to determine presence of autophagy, immunoblotting analysis 

was performed on ligated mouse submandibular glands and ligated 

glands with Torin1 treatment for 3 or 7 days, probing for the autophagy 

markers Atg5, Atg3 and LC3. 

 

The Atg5 immunoblots (Figure 4.7) indicated that autophagic activity 

was present in ligated glands. However 3 days of Torin1 treatment, 

appeared to give the visual appearance of a reduction in autophagic 

activity, whilst 7 days of Torin1 treatment limited the visual 

appearance of autophagic activity even further. 

 

The immunoblots showing upregulation of Atg3 protein (Figure 4.7) 

indicated that the autophagy marker was present in all experimental 

groups to varying degrees. Unlike Atg5 immunoblots, Torin1 treatment 

did not appear to reduce the expression of Atg3.  

 

Levels of the autophagy markers LC3-I (18 kDa) and LC3-II (16 kDa) 

showed that autophagy was greatest in ligated only tissue samples and 

3 days of Torin1 treatment following ligation, represented by a 50% 

increase of LC3-I to LC3-II ratio in 3day ligated glands and 63% increase 
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of LC3-I to LC3-II following Torin1 treatment. However 7 days of 

Torin1 treatment reduced the presence of autophagy markers, to the 

extent that some blots only revealed a very faint isoform of LC3-II 

(Figure 4.7). 

 

Statistical analysis of the band intensity using densitometric analysis 

(Figure 4.8), revealed that levels of the autophagy market Atg5 were 

significantly greater in ligation only, whether in comparison to control, 

3 or 7 days ligation with Torin1 ( all p<0.005 ). The levels of Atg3 were 

high throughout in comparison to control ( all p<0.01 ), but 7 days of 

ligation and Torin1 was significantly ( p=0.005 ) greater than ligation 

only samples, suggesting autophagy had not stopped following 7 days 

of Torin1 treatment.  
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27Figure 4.7 Immunoblotting of autophagy markers Atg3, Atg5 and LC3 in 
ligated, ligated with 3 days Torin1 or ligated with 7days Torin1, as well as 
their β-actin in mouse submandibular gland homogenates. Levels of the 
autophagy markers were greatest in ligated only glands, with a visible 
reduction following Torin1 which progressed further from 3 days to 7 days, 
with the least autophagic activity in control samples. Beta actin (β-actin) was 
used as a loading control. Data represent results from at least three different 
experiments. 
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28Figure 4.8 Densitometric comparisons of autophagy markers, Atg5 (A) and Atg3 (B), 
expression in comparison to β-actin in mouse submandibular gland homogenates. 
Atg5 revealed that its expression was at its greatest in ligated only glands, which were 
significant to all other experimental groups. Atg3 expression was significant in all 
groups in comparison to control (asterisks), and furthermore 7 days of Torin1 
treatment following ligation was significantly more than ligation only. Data represent 
results from at least three different experiments.  Data is expressed as mean+SEM. 
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4.3.3  BEZ Treatment     

4.3.3.1 mTOR status 

Western blots of the mTOR substrates, pS6rp and p4E-BP1 in 

unoperated controls, 3 day ligation and 3 day ligation & BEZ treatment 

showed that 3 days of ligation caused the phospho-4E-BP1 protein to 

activate its second isoform. BEZ treatment following ligation 

completely inactivated the higher isoform (Figure 4.9 A).  

 

Unoperated controls displayed a small inactivate state of the p4E-BP1 

protein. Rapamycin treated ligated glands were also used for 

comparative purposes to reveal a visibly reduced the higher isoform 

showing a much lower protein expression than ligated only glands.  

 

Densitometric analysis of the p4E-BP1 western blot findings (Figure 4.9 

B) indicated that ligation caused a significant ( p<0.005 ) increase of 

p4E-BP1 phosphorylation in comparison to controls, however this 

increase was reduced to a statistically ( p<0.005 ) significantly lower 

quantity following 3 days of BEZ treatment.  

 

Ligation displayed a presence of pS6rp antibody. 3 days of BEZ 

treatment caused inhibition of the pS6r protein, however this inhibition 
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varied greatly from being with unoperated controls to being almost 

identical to ligated only glands (Figure 4.9 C). Suggesting that BEZ 

treatment may not have caused a complete inhibition of mTOR activity 

after 3 days of treatment. For comparison, rapamycin treated ligated 

submandibular glands were also used and these samples revealed much 

lower protein expression than ligated glands with BEZ treatment. 

 

Densitometry of the western blots quantified the 3 day pS6rp results 

(Figure 4.9 C), revealing that there were statistically significant 

differences between the control & ligation only glands when analysing 

pS6rp as a ratio of actin. A similar significance can be observed when 

comparing ligated only glands & ligation with 3 days of BEZ treatment 

(p < 0.005), indicating partial inhibition of mTOR after 3 days of BEZ 

treatment.  
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29Figure 4.9 Immunoblotting of phospho-4E-BP1 protein expression (A) and 
phospho-S6 ribosomal protein expression (C) in adult mice submandibular 
glands after ligation exclusively (L), 3 days of Rapamycin treatment following 
ligation (L&R) or after 3 days of BEZ treatment following ligation (L&B). 
Ligation displayed a noticeable presence of both p4E-BP1 & pS6rp. But their 
presence was visibly reduced following 3 day ligation & BEZ administration. 
Densitometric analysis of p4E-BP1 (C) and pS6rp expression (D) as a ratio of 
their actin showed a statistically significant difference of protein to actin ratio 
between ligation and 3 days of BEZ treatment. The bars represent mean + SEM. 
Beta actin (β-actin) was used as a loading control. Mouse muscle tissue was 
used as positive control for p4E-BP1, however muscle homogenates show 
absence of β-actin, as muscle expresses α-smooth muscle actin (α-SMA). Data is 
indicative of results from at least three independent experiments. 



152 

 

4.3.3.2  Biochemical Analysis of Glycoprotein Content 

Periodic acid-Schiff’s staining demonstrated presence of acinar 

secretory glycoproteins in mice submandibular glands that were ligated 

or ligated and treated with 3 days of BEZ administration (Figure 4.10 A). 

 

Unoperated controls demonstrated a visible presence of mucins, 

however 3 days of ligation eliminated this presence, as assessed by PAS 

gel staining. On the other hand, PAS gel staining of acinar mucins in 

ligated glands with 3 days of BEZ treatment revealed a recovery of 

acinar secretory glycoproteins, as exhibited by the presence of the low 

molecular weight acinar mucins (98 – 188 kDa), similar to those from 

the unoperated controls.  

 

Statistical analysis of the band intensity of the stains as a percentage of 

controls (Figure 4.10 B), revealed that in fact ligated glands with 3 days 

of BEZ treatment were not statistically significantly different from 

unoperated controls. However, submandibular glands which had been 

exclusively ligated were significantly ( p<0.0001 ) lower than 

unoperated controls, suggesting all glycoprotein content had been lost 

due to ligation onset atrophy. Moreover, the recovery of acinar secretory 
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30 Figure 4.10 Periodic acid-Schiff’s staining of glandular homogenates of 3 
day ligated and ligated with BEZ treatment (A) glandular homogenates. 
Ligation resulted in significant loss of mucins, 3 days of BEZ treatment showed 
a visible recovery.  Densiometric analysis of submandibular acinar mucin as a 
ratio of control (B), showed that 3 day ligation only was significantly lower 
than control (indicated by star), however 3 days ligation with BEZ treatment 
was not significantly different from control. The bars represent the mean + 
SEM. Data represents results from at least three independent experiments. 

glycoproteins following 3 days of Torin1 treatment during ligation was 

significant ( p < 0.05 ) in comparison to ligated only glands.  
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4.3.4 Histological Assessment      

4.3.4.1 Torin1 Treatment 

In order to judge the general tissue morphology for ligated glands, H&E 

staining (Figures 4.11 A) and AB/PAS staining (Figure 4.11 B) were used, 

demonstrating that 3 day ligation samples demonstrated a reduction in 

the size of acinar cells with loss of secretory granules, however an 

increase in the size of ducts and their lumen. In contrast, 7 day ligation 

samples experienced an almost complete loss of recognisable acini, but 

the presence of duct-like structures remained. The residual duct-like 

structures displayed considerable ductal luminal dilation in comparison 

to control, presumably as a result of degranulation. These 

morphological results also showed that in intense atrophy, cells 

appeared less densely packed as the volume of interlobular space 

increased. In addition, both groups showed the presence of 

inflammatory cell infiltration, which were composed mainly of 

neutrophils and macrophages in the connective tissue between the 

lobules and among the parenchymal elements. 

 

3 days of Torin1 treatment following ligation induced atrophy H&E 

staining (Figure 4.11 C) showed that the extensive inflammatory cell 
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infiltration, adipose tissue displacement and increased extracellular 

space remained despite Torin1 administration. Ducts appeared very 

similar to ligated only glands, with very large lumena and AB/PAS 

staining (Figure 4.11 D) revealed no granular ducts left. AB/PAS 

findings also indicated that acini glycoproteins were localised to 

mucous cells, despite submandibular glands typically being 

predominantly serous.  

 

After 7 days of Torin1 treatment following ligation, H&E results (Figure 

4.11) showed signs of severe atrophy such as a complete loss of serous 

and mucous cells and glandular morphology which no longer resembled 

a submandibular gland. Fat cells had infiltrated between where the 

serous and mucous acinar cells had previously resided. Only duct-like 

structures had abided and surrounded by fibrous tissue. AB/PAS 

revealed a complete lack of secretory granules, as shown by no pink 

staining amongst the blue in Figure 4.11 F.  

 

Control glands (Figure 4.11 G) were used to show normal glandular 

morphology and for comparison to atrophic tissues.  
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 Figure  31 11  Histology  of  3  day  ligated  (A),  7  day  ligated  (B),  3  day  ligated  with  Torin1  treatment  
(C)(D),  7  day  ligated  with  Torin1  treatment  (E)(F),  and  control  (G)  glands 
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Figure 4.11 Histology of 3 day ligated (A), 7 day 
ligated (B), 3 day ligated with Torin1 treatment 
(C)(D), 7 day ligated with Torin1 treatment 
(E)(F), and control (G) glands. Ligation showed 
signs of atrophy including reduced acini, fat 
displacement, dilated ducts (star) & 
inflammatory infiltrates (arrowhead). 3 days of 
Torin1 alleviated some of these signs, however 
this could not be sustained for 7 days of 
treatment. Images are representative of 
samples from independent experiments. Scale 
bar represents 100 μm. 
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4.3.4.2     BEZ  Treatment  

The tissue morphology of BEZ treated ligated glands, shown via H&E 

staining, revealed that inflammatory cells had infiltrated along with 

adipose tissue displacement (Figure 4.12 A). Ductal structures 

experienced an apparent increase in quantity as well as increased ductal 

lumena, whereas acini remained intact, all in comparison to controls 

(Figure 4.11 G). Very large vacuoles and intraductal vacuolation were 

also present. AB/PAS staining (Figure 4.12 B) revealed that acini were 

intact and retained secretory granules. 

  

4.3.5  Morphometric Analysis 

In order to be able to quantify the results of tissue morphology, the 

mean area of the acini was measured (Figure 4.13). The morphometric 

analysis of samples revealed the mean area ± S.E.M. of the acini from the 

3 day ligation samples (140.40±10.12μm2, n=60) significantly 

decreased ( P<0.005 ) in comparison with the control glands 

(422.90±39.02μm2, n=80). Torin1 treatment following ligation could 

not rescue the acini size, whether it was administered for 3 days 

(179.09±12.18μm2, n=140) or for 7 days (130.30±8.68μm2, n=100). 

However BEZ treatment following ligation for 3 days did significantly ( 

P=0.006 ) increase the mean acini area (305.69±29.65μm2, n=120) from 

the ligated state and also in comparison to 3days Torin1 treatment ( 

p=0.01 ). 
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32 Figure 4.12 H&E staining (A) of submandibular glands following 3 days of 
ligation along with BEZ administration.  The infiltration of a varying quantity 
of inflammatory cells was visible (arrowhead), along with duct luminal 
dilation (star), exemplary of the atrophic state. However, AB/PAS staining (B) 
of submandibular glands following 3 days of ligation along with BEZ 
administration, showed that not only are acini present, but they retain 
secretory granules, which is not typical for atrophic glands. Scale bar 
represents 100 μm. 
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33 Figure 4.13 Morphometric analysis of the mean acini area from the H&E 
Stained samples of unoperated control, ligation only, 3 days of Torin1 
following ligation, 7 days of Torin1 following ligation and 3 days of BEZ 
following ligation. Ligation significantly ( p<0.005 ) the mean size of the acini 
in comparison with control. Torin1 treatment post ligation did not 
significantly increase the acini area from ligation only. However 3 days of BEZ 
treatment following ligation showed a significant increase in acini area ( 
p=0.006 ). Data is expressed as mean+S.E.M. 
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4.3.6  Immunohistochemical Assessment 

The localisation of mTOR during atrophy (and treatment with Torin1) 

was evaluated using anti-pS6rp immunohistochemistry (Figure 4.14). 

The immunohistochemical assessments revealed that pS6rp was 

present in the acini, but with little ductal staining, in atrophic glands 

following 3 days of duct ligation (Figure 4.14 A). Atrophic glands also 

showed that most of the acini, which were positively stained, were 

shrunk.  

 

3 days of Torin1 treatment post ductal ligation revealed that mTOR was 

inhibited as pS6rp presence was minimal. Localisation of pS6rp 

revealed very little presence in the shrunken acini that had 

degranulated, whereas ducts were negative (Figure  4.14 B). 

 

7 days of Torin1 treatment post ductal ligation in mice, however, 

revealed that mTOR had returned. pS6rp positive staining was visible in 

the shrunken acini as well as some ducts, alongside the presence of 

abnormal branched entities characterised by short duct like structures 

ending with smaller acini. (Figure  4.14 B).  
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34 Figure 4.14 Immunostaining of pS6rp, counter-stained with H&E, in 3 day ligated 
mice (A), 3 day ligated with Torin1 treatment (B) and 7 day ligated with Torin1 
treatment (C). mTOR expression was clearly evident in ligated only glands, however 3 
days of Torin1 treatment reduced localisation to a barely visible presence (arrow) with 
residual staining in some shrunken acini. 7 days of Torin1 treatment had a return of 
mTOR to acini as well as some duct-like structures. Scale bar represents 100 μm. 
  
  



162 

 

4.3.7  Detection of rapamycin-induced 

alterations in protein & phospho-protein 

expression 

In order to discover what kinase or pathway is protecting mTOR from 

becoming fully inhibited despite the presence of mTOR inhibitors, 

proteomic analysis of differentially expressed proteins among ligated 

glands (Sample A) and ligated with rapamycin treated glands (Sample B) 

was performed. In order to identify the different factors between the 

two samples, peptide mass fingerprinting and LC-MS/MS were used to 

monitor changes in the abundance of proteins. A total of 303 protein 

quantity alterations were identified in rapamycin treated ligated mice, 

in comparison to ligated only submandibular glands. From these, 45 

had a significant ( p<0.005 ) increase in their normalised values, 

calculated as fold change. Moreover, 5 protein chains were differentially 

expressed >5-fold between the ligated with rapamycin treatment and 

ligated only samples (Table 4.3). 

 

Analysis of phosphopeptide-enriched samples, in order to identify the 

changes in abundance of phosphorylated proteins between ligated 
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5 Table 4.4 Phospho-proteins up-regulated in Sample B compared to Sample A 

glands and ligated with rapamycin treated glands. A total of 132 

phosphorylated proteins changes were identified in rapamycin treated 

ligated mice submandibular glands, in comparison to ligated only 

submandibular glands. From these, 32 had a significant ( p<0.005 ) 

increase in their normalised values, calculated as fold change. 

Furthermore, 5 phosphorylated protein chains experienced a >5-fold 

increase between the ligated with rapamycin treatment and ligated 

only samples (Table 4.4). 

Table 4.3 Total proteins up-regulated in Sample B compared to Sample A 
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4.3.8  Detection of rapamycin-induced 

alterations in gene expression 

Microarray experimentation revealed that rapamycin treatment 

following ligation had induced a total of 22690 gene changes in Sample 

B, compared to Sample A. Following statistical analysis, a list of 2430 

genes that had significantly ( p<0.05 ) increased in Sample B, was 

generated. Within the up-regulated genes, 598 genes showed an 

increase in expression above 5 fold changes (Table 4.5).  

 

6 Table 4.5 Gene changes in Sample B compared to Sample A 
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Among these 2430 significantly upregulated genes, attention was 

mainly focused on genes relating to the mTOR pathway, regenerating 

salivary glands or atrophic salivary glands. A selection of genes of 

interest were identified among the significantly upregulated genes 

(Table 4.6) and therefore the roles of these particular genes and their 

pathways were chosen for further discussion. 
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7 Table 4.6 Genes of interest 
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4.4   Discussion 

Although atrophy of salivary glands due to the ligation of the main 

excretory duct of the submandibular gland has been well characterized 

in rats (Takahashi et al., 2004, Carpenter et al., 2007), our previous 

study was the first study of it's kind to use mice (Bozorgi et al., 2014). 

The results obtained demonstrated that rapamycin could not induce 

substantial regression of atrophy and could only delay atrophy, whilst 

hinting at mTOR’s interactions with other pathways.  

 

There are numerous factors that could account for the limited efficacy 

of rapamycin, including the PI3K-negative feedback mechanism (which 

re-activates mTORC1 via the TSC1/2 complex) (Guertin and Sabatini, 

2009) or the theory that a significant subset of mTORC1’s functionality 

is resistant to inhibition by rapamycin (Thoreen and Sabatini, 2009). 

Therefore inorder to counteract to the complex mechanisms of the 

PI3K–PTEN–AKT pathway (Figure 4.15), this study attempted to use 

mTOR complex inhibitors that inhibit both mTORC1 and mTORC2, as a 

method to induce substantial limiting of salivary gland atrophy, rather 

than a delay of atrophy, following duct ligation.   
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Torin1, an ATP-competitive small molecule inhibitor that inhibits both 

mTOR complexes, mTORC1 and mTORC2, equally (Thoreen and 

Sabatini, 2009) and BEZ, an orally administered imidazaoquanazoline 

derivative that binds to ATP-binding pockets, thus inhibiting mTOR 

kinases as well as PI3K isoforms (Tang and Ling, 2014), were chosen due 

to their pre-clinical studies that demonstrated stronger inhibitory 

activity of mTOR, suggesting they may have more promise as atrophy 

prevention agents.  

 

 

35Figure 4.15 Schematic diagram of the PI3K–PTEN–AKT pathway showing 
inhibitors and activators in red, dual inhibitors of mTORC1 & mTORC2 in 
yellow, and triple inhibitors of mTORC1, mTORC2 & PI3K are highlighted in 
blue (Tennant et al., 2010). 
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Furthermore, it has been reported that one limitation of rapamycin 

administration in mammalians is that it appears to only exert partial 

effects of inhibition, at least with respect to autophagy induction and 

4E-BP1 dephosphorylation (Thoreen et al., 2009), among many other 

reported limitations. This study also attempted to analyse the factors 

behind these partial inhibitory effects, in order to be able to further 

understand the mTOR pathway during atrophy, by performing a DNA 

microarray examination and a proteomic analysis of proteins and 

phosphorylated-proteins of changes that occur following rapamycin 

administration during ligation induced salivary gland atrophy.   

 

One such change that occurred is that mean submandibular gland 

weight was significantly reduced in all ligation only groups in 

comparison with controls. This decrease was maintained even despite 3 

days or 7 days of Torin1 treatment. Decreased volume and size of acinar 

cells with acinar and ductal degranulation may explain the significant 

decrease of glandular weights, although the increase of inflammatory 

cells infiltrating may have added to the gland weight initially (Correia et 

al., 2008). However, BEZ treatment following ligation did significantly 

increase the mean submandibular gland weights by 60% in comparison 

to ligation only, to an extent where their mean weight was slightly 
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above unoperated control’s mean gland weight. This may be possibly 

due to glandular hyperplasia or even the swelling of the glands, as the 

BEZ treated mice did have some bodily swelling, causing their mean 

body weights to be 9% higher than unoperated controls. Whereas, there 

were no noticeable differences in body weight between any Torin1 

experimental mice and unoperated controls. Furthermore, in 

preparatory undertakings for this study, this particular dose of BEZ 

administration was found to be the maximum dose without seeing 

significant levels of body swelling, particularly across the abdomen, 

similar to the significant abdominal swelling found in a previous PI3K 

inhibition study (Hu et al., 2002). 

 

Another change from the previous study is that although previously 

rapamycin was safely administered for 7 days, and shown to delay 

salivary gland atrophy (Bozorgi et al., 2014), here BEZ treatment could 

not be attempted for 7 days of ligation-induced atrophy as during 

preparatory undertakings for this study, toxicity was observed from the 

long term use of the compound, similar to the common toxicities of 

mTOR inhibitors (Soefje et al., 2011). A previous study that observed the 

cytotoxic effects of BEZ, recommends the addition of CQ, a common 
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clinical anti-cancer drug, that inhibits autophagy and counteracts the 

cytotoxic effect of BEZ (Li et al., 2013).  

 

Immunoprobing of the phospho-S6 ribosomal protein, which is 

phosphorylated at several sites by S6K1 (Burnett et al., 1998, Isotani et 

al., 1999) and 4E-BP1 (another mTORC1 substrate) confirmed that 

mTOR is activated during ligation-induced atrophy of the salivary 

glands, which corresponds with the start of autophagic processes 

during ligation-induced atrophy (Silver et al., 2010).   

 

Immunoblots revealed that 3 days of Torin1 administration after 

ligation had completely inhibited mTOR, as western blots of p4E-BP1, 

pS6rp and total mTOR, were all visibly absent. However one point of 

mention is that total 4E-BP1 protein abundance, predominantly in its 

lower isoform, is still more visible in ligated and Torin1 treated samples 

in comparison with unoperated controls.  

 

7 days of Torin1 treatment following ligation, however, appeared to 

have lost all inhibitory effects on mTOR, as western blots of p4E-BP1, 

pS6rp and mTOR, were all significantly increased in comparison to 3 

days of Torin1 treatment. This suggests that Torin1, similar to 
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rapamycin, could not fully inhibit mTOR for longer periods, as mTOR 

activity had returned by 7 days.  It should also be noted that both 

mTORC1 substrates, 4E-BP1 and S6k, were actually more present in 

western blots of 7day Torin1 treated ligated glands rather than in 

ligated only glands, this could be because mTORC1 substrates may be 

increasing their total kinase quantity via PI3K in order to compensate 

for mTOR inhibition (Mendoza et al., 2011, Fruman and Rommel, 2014), 

which can accumulate across the 7days as Torin1 has been suggested to 

only have a limited ability to affect the long term accumulation of early 

or immediate proteins (Moorman and Shenk, 2010). 

 

Western blots of the mTOR substrates, pS6rp and p4E-BP1, for BEZ 

treatment for 3 days after ligation revealed that mTOR had been 

inhibited in submandibular gland tissues. The densitometry of the 

western blots, revealed that after 3 days of BEZ treatment both pS6rp 

and p4E-BP1 were significantly lower than ligated only glands. 

Furthermore, BEZ treatment had reduced latent 4E-BP1 levels to that 

which is comparable to unoperated controls, unlike 3 days of Torin1 

treatment which had left total 4E-BP1 protein abundance, 

predominantly in its lower isoform, more visible than in unoperated 

controls. This may be because the phosphorylation of mTORC1 
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downstream targets is differentially sensitive to mTOR complex 

inhibition (Kudchodkar et al., 2004, Walsh et al., 2005, Moorman and 

Shenk, 2010). While the mTORC1 phosphorylation of S6 kinase is 

inhibited by rapamycin and other mTOR inhibitors, during times of 

biological stress (Johnson et al., 2001, Moorman and Shenk, 2010), the 

phosphorylation of 4E-BP1 is slightly resistant to mTOR complex 

inhibition (Nyfeler et al., 2011, Thoreen et al., 2012).  

 

It has been suggested that this differential effect of inhibition on mTOR 

targets could indicate that a kinase other than mTOR is responsible for 

4E-BP1 phosphorylation during periods of stress, such as atrophy or 

infection (Moorman and Shenk, 2010), such as the PI3K dependent 

phosphorylation of 4E-BP1 (Pham et al., 2000, Gingras et al., 2001). This 

theory is further supported because BEZ, which is a triple inhibitor of 

PI3K as well as both mTOR complexes, fully inhibited 4E-BP1 

phosphorylation and returned it to levels which were similar to 

unoperated controls, in contrast to Rapamycin and Torin1. These 

results demonstrate that the mTOR inhibitory-resistant 

phosphorylation of 4E-BP1 during ligation induced atrophy is 

dependent on BEZ-sensitive mTOR and PI3K activity. This suggests that 

were it not for the BEZ-induced toxicity and bodily swelling that 
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prevented a 7 day experiment of BEZ treatment following ligation, BEZ 

might have been able to fully inhibit mTOR even after 7 days of 

treatment following ligation unlike Torin1 or Rapamycin treatment, 

which had both lost efficacy at 7 days of treatment. 

 

Immunoblotting for pS6rp antibody after 3 days of BEZ treatment 

following ligation did also express significantly lower band intensity 

than ligated only, however results were still higher than unoperated 

controls and with more variance between the highest and lowest 

expression levels. The reasoning for this could be that suboptimal doses 

of BEZ induce a disruption of the S6K to IRS-1 negative feedback loop 

(Harrington et al., 2004, Serra et al., 2008). During short term exposure 

to BEZ, this loop can be completely supressed regardless of the dose level 

used (Serra et al., 2008), on the contrary, longer term exposures of over 

48 hours result in an increase of P-Akt (Serra et al., 2008), which can re-

activate mTORC1 substrates. Whereas higher dose concentrations of 

BEZ are required to completely block Akt phosphorylation (Serra et al., 

2008), however this was unmanageable in this experiment, as in 

preparatory undertakings for this study, such high doses were found to 

result in significant body swelling, particularly across the abdomen, 

similar to the significant abdominal swelling found in a previous PI3K 
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inhibition study (Hu et al., 2002), alongside the BEZ-induced toxicity as 

discussed earlier.  

 

The immunoblotting of autophagy markers Atg3, Atg5 and LC3 were 

used in amalgamation to identify the status of autophagy during duct-

ligation induced atrophy and also whether or not autophagy was taking 

place after Torin1 treatment. Ligated only glands revealed a high 

presence of all markers, with Atg5 significantly ( p<0.005 ) increased in 

ligated glands in comparison to controls and Atg3 also significantly ( 

p<0.01 ) increased in comparison to controls. LC3 western blots showed 

that in 3 day ligated glands the LC3-I to LC3-II ratio increased by 50%; 

normally such an LC3 blot cannot be used on it’s own to interpret 

autophagy (Shvets et al., 2008), as the increased LC3 staining could 

possibly be an indication that autophagy is suppressed, resulting in 

decreased lysosomal degradation of LC3 and consequently increase of 

LC3 in immunoblots (Mizushima et al., 2010). However when viewing 

the LC3 blots in the context of the Atg3 and Atg5 blots, we can reach the 

conclusion that autophagy was active in ligated glands, which coincides 

with the activation of mTOR (Silver et al., 2010).  

 

 



176 

 

Although 3 days of Torin1 treatment did inhibit mTOR activity as 

discussed earlier, it did not reduce the presence of the autophagy 

markers Atg3, Atg5 and LC3 as indicated in immunoblots. Although 

Atg5 bands were reduced in comparison to ligation only, a clear visible 

presence of Atg5 remained following 3 days of Torin1 treatment. Atg3 

was significantly ( p<0.01 ) higher than controls and it was actually 

more present following Torin1 than it had been in ligated only samples. 

Furthermore, there was a 63% increase in the ratio of LC3-I to LC3-II 

following Torin1 treatment. The combination of these results, 

particularly the increases in LC3-II and Atg3, suggests that the 

inhibition of mTOR via 3days of Torin1 treatment increased autophagic 

activity, rather than decreasing it. This is in agreement with theories 

that inhibition of mTOR induces autophagy (Jung et al., 2010, Xie et al., 

2013, Kapuy et al., 2014). 

 

The treatment of Torin1 for 7 days following ligation significantly ( 

p<0.005 ) reduced the presence of Atg5, in comparison to ligated only 

samples. Taken as a singularity, this would suggest that autophagic 

activity was inhibited by 7 days of Torin1 treatment, however when 

analysed in combination with Atg3 and LC3 this would appear to not be 

the case. Atg3’s presence was at its highest levels following 7 days of 
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Torin1 treatment and was significantly ( p=0.005 ) greater than ligation 

only. Immunoblotting analysis of LC3, which is considered a more 

reliable method for monitoring autophagy and autophagy-related 

processes, including autophagic cell death (Tanida et al., 2008), revealed 

that LC3 as a whole had been reduced greatly. Despite initial reactions 

however, reduction of total LC3 is paradoxically a good indicator of 

autophagic flux as LC3 is degraded by autophagy (Jung et al., 2010). 

This is because LC3-I was gradually reduced during autophagy due to it 

becoming covalently conjugated to phosphatidylethanolamine by Atg3 

catalysis to form LC3-II (Silver et al., 2010) and LC3-II was reduced 

because LC3-II itself is degraded by autophagy (Mizushima and 

Yoshimori, 2007). Furthermore, the slight presence of LC3-II that 

remained in blots of 7 day ligated and Torin1 treated samples could be 

because LC3-II is more sensitive to immunoblotting than LC3-I 

(Klionsky, 2009). 

 

Therefore, when evaluating all these immunoblots of the autophagy 

markers Atg3, Atg5 and LC3, it can be concluded that autophagy was 

active in all experimental groups. It became activated in ligated only 

glands, where its activation coincided with the activation of mTOR in 

submandibular gland atrophy, as previously shown by our group in rats 
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(Silver et al., 2010). Autophagic activity then became most prominent 

when mTOR was inhibited following 3 days of Torin1 treatment, where 

the inhibition of mTOR further induces autophagy (Jung et al., 2010, Xie 

et al., 2013, Kapuy et al., 2014). But in 7 days of Torin1 treatment 

following ligation, where mTOR activity had returned, autophagy was 

still present and autophagic flux was underway in full force, as 

indicated by the degradation of LC3.  

 

Histological assessments of ligated only glands did not reveal any novel 

findings with shrunken acinar cells with loss of secretory granules, duct 

luminal dilation as they underwent degranulation and a general loss of 

cytoplasm in the duct cells of 3 day ligated glands, which are typical 

signs of salivary gland atrophy (Scott and Gunn, 1991). This was 

supported by the PAS gel staining of 3 day ligated glands which revealed 

that acinar mucins had been significantly reduced. 7 day ligated gland 

showed a complete loss of acini and increased amount of connective 

tissue filled with inflammatory cell infiltrates in the glandular 

histology, which are usually found in severely atrophic salivary glands 

(Scott et al., 1999), with the respective PAS gel staining experiments 

showing that acinar mucins had been lost to a significant extent which 

further backs up these histological results. All of which are similar to 
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previous findings of duct-ligation induced salivary gland atrophy in 

mice (Bozorgi et al., 2014). 

 

However histological assessments of Torin1 treated ligated mice 

provided some compelling contradictory results between 3 day and 7 

day experiments. 3 days of Torin1 treatment following submandibular 

gland ligation caused the ducts to display larger lumena in comparison 

controls and the presence of inflammatory cells, although acini had 

recovered from ligated only glands with a significant reduction in the 

area of acini. AB/PAS staining revealed that no granular ducts remained 

and that acini gylcoproteins were localised to mucous cells. This was 

further supported by PAS immunoblots that revealed recovery of acinar 

secretory gylcoproteins.  

 

7 days of Torin1 treatment following ligation, however, showed signs of 

increasing atrophy in H&E results including morphological changes 

similar to ligation only samples, such as complete loss of serous and 

mucous cells. AB/PAS supported this by showing a complete lack of 

secretory granules and PAS immunoblots showed no acinar secretory 

glycoprotein, comparable to ligated only glands.  
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The tissue morphology of BEZ treated ligated glands revealed a 

significant increase of the mean acini area from the ligated state, unlike 

Torin1 treatment. Ductal structures experienced an apparent increase 

in quantity as well as increased ductal lumena, in comparison to 

controls, however granular convoluted tubules and striated duct cells 

had elongated to such an extent that they were degenerated. 

Furthermore, AB/PAS staining revealed that acini were intact and 

retained secretory granules and PAS gels further supported this by 

showing the presence of low molecular weight acinar mucins, similar to 

those from unoperated controls. These findings corroborate our 

previous suggestion that were it not for the BEZ-induced toxicity and 

bodily swelling that prevented a 7 day experiment of BEZ treatment 

following ligation, BEZ might have been able to fully recover glandular 

morphology to levels which would be comparable to controls by being 

able to fully inhibit mTOR even after 7 days of treatment following 

ligation unlike Torin1. However in such a scenario, although overall 

morphology may recover, GCT and striated ducts may remain 

degenerated as those have been identified as characteristics of apoptosis 

in rodent submandibular glands (Choi et al., 2009) and BEZ treatment 

has been shown to induce cell death and is associated with apoptosis (Li 

et al., 2013). 
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These results show that Torin1 is unable to fully inhibit the mTOR 

substrates 4E-BP1 and S6K, and BEZ is unable to fully inhibit S6K, 

during submandibular gland atrophy, similar to rapamycin (Bozorgi et 

al., 2014). This raises the question of why this occurs, as previously we 

concluded that it might be as a result of the negative feedback loop re-

activating mTOR, however Torin1 and BEZ should effectively block this 

loop. With other studies, not in submandibular glandular atrophy, 

suggesting that Torin1 and BEZ do fully inhibit mTOR and/or the 

negative feedback loop (Thoreen et al., 2009, Dufour et al., 2011, Lee et 

al., 2011, Moon du et al., 2014), the question is raised of what is 

reactivating mTOR independently of mTOR inhibitors? In order to 

discover what kinase or pathway is rescuing the effects of mTOR 

substrates despite the presence of mTOR inhibitors, DNA microarray 

and LC-MS/MS protein identification was performed on rapamycin 

treated ligated samples and ligated only samples, in order to identify the 

gene changes, protein changes and phosphorylate protein changes that 

occur in submandibular gland atrophy in the presence of mTOR 

inhibitors.  

 

A number of previous investigations, using a combination of 2-DE, MS 

and LC-MS/MS, have been carried out for the study of proteins in 
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normal, injured and recovering salivary glands (Ghafouri et al., 2003, 

Walz et al., 2006, Sawaki et al., 2011, Misuno et al., 2014). Even though 

an impressive number of over 300 total protein changes have been 

identified in this present study, it was possible to compare these results 

to those of previous studies to comprehensively determine their 

relevance to atrophic and/or regenerating submandibular glands. The 

results show that most components can be explained by mixed 

contributions of various bodily functions or glandular functions of the 

major salivary glands with only few components remaining that may be 

derived from the treatment of rapamycin to the atrophic salivary 

glands. Submandibular gland protein C was identified at 74.3 kDa and 

found to have a 16 fold increase in quantity. It is of note because protein 

C is a major product of the neonatal type I cells and is either absent or 

present at greatly diminished levels in normal adult glands (Ball et al., 

1988, Mirels and Girard, 1993, Zinzen et al., 2004). Nidogen-1 was 

identified at 136.5 kDa and found to have a 2.7 fold increase. Nidogen-1 

is an extracellular matrix component that is normally absent in adult 

submandibular glands but present in embryonic salivary glands 

(Miosge et al., 2000, Tucker and Miletich, 2010). The presence of these 

embryonic specific proteins in the rapamycin treated glands may 

suggest that these glands are regenerating in the presence of 
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rapamycin, as salivary gland regeneration following ligation retraces an 

embryonic-like state (Carpenter and Cotroneo, 2010, Cotroneo et al., 

2010). 

 

Furthermore some phosphorylated spots were upregulated in 

rapamycin treated glandular samples that are associated with the 

mTOR pathway. The BCKD mouse kinase and programmed cell death 

protein 4 (Pdcd4) were both upregulated in rapamycin treated ligated 

mice submandibular glands in comparison to ligated only glands. The 

BCKD mouse kinase that was activated, more specifically 3-methyl-2-

oxobutanoate dehydrogenase kinase, is a key enzyme involved in 

regulating the activity state of the BCKD complex (Garcia-Cazorla et al., 

2014). The phosphorylation of the BCKD complex has been proven to 

have links to mTOR activation via leucine (Lynch et al., 2003, Schaffer 

and Suleiman, 2007). BCKD has been delineated as reacting with α-

ketoisocaproate acid (Dakshinamurti and Zempleni, 2005), this complex 

interaction (Figure 4.16) may be required for leucine activation of 

mTOR (McDaniel et al., 2002). 
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36 Figure 4.16 Schematic representation of the Leucine-BCKD-mTOR 
interaction. Figure altered from (Dakshinamurti and Zempleni, 2005) 

 

Programmed cell death protein 4 is an inhibitor of translation initiation 

and cap-dependent translation (Yang et al., 2003, Parsyan, 2014). Pdcd4 

does this by binding with the eIF4F complex (eIF4A, eIF4E, and eIF4G) 

and limiting the activity of free eIF4A (Waters et al., 2011). Previous 

studies have found links between the sequential engagement of the 

mTOR pathway and downstream suppression of Pdcd4 expression 

(Carayol et al., 2008), discovered that Akt phosphorylates Pdcd4 

(Palamarchuk et al., 2005) and identified S6K as the mediator in 

phosphorylating Pdcd4 (Dennis et al., 2012).  
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The findings that both BCKD mouse kinase and Pdcd4 had been 

significantly upregulated following rapamycin treatment in atrophic 

submandibular glands are distinctive. The upregulation of Pdcd4 

suggests that Akt / mTOR were active despite the presence of 

rapamycin and the upregulation of BCKD suggests that it may be the 

interactions of leucine that are causing the activation of Akt, which in 

turn activates mTOR. This is because it has been previously 

demonstrated that leucine levels are involved in regulating the activity 

of S6K1 and 4E-BP1 (Lynch et al., 2000, Xu et al., 2001) and that they 

also affect mTOR’s interactions with the protein rictor (rapamycin-

insensitive companion of mTOR) (Sarbassov et al., 2004). 

 

DNA microarray analysis attempted to identify the genes of the 

pathways involved in reactivating mTOR irrespective of rapamycin’s 

presence. One point of note is that out of over twenty thousand changed 

genes, only 3 genes were protein encoding genes for proteins that were 

also identified from our proteomic analysis of phospho-proteins. They 

were StarD10, which is closely related to breast cancer (Hoffmann et al., 

2005), PPP1R16B, which is a subunit of the regulator of protein 

phosphatase 1 (PP1) (Kim et al., 2005), and IQGAP2, which is a Ras 

GTPase activator (Brill et al., 1996). The genes of interest (Table 4.6) 
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were particularly interesting as they presented many differing 

possibilities that might explain the re-activation in 7 day ligated glands 

despite the presence of rapamycin. Deptor, who’s gene was upregulated 

more than 2 fold, has been shown to activate mTORC2 and Akt during 

its overexpression (Lamming and Sabatini, 2010), which may be 

reactivating mTORC1 again through the negative feedback loop (Efeyan 

and Sabatini, 2010). Lamtor2, a gene that had been upregulated more 

than 2 fold, directly activates mTORC1 via the receptor tyrosine kinase 

Flt3 (Scheffler et al., 2014).  

 

Several genes of the Mitogen-activated protein kinases (MAPK) family 

were also significantly upregulated, including Map2k6, Mapk7, PDE6G 

and SGK1. These are of particular significance as the combination of 

these genes show that Map2k6 might be activating MAPK in response to 

the environmental stress (Koffel et al., 2014), in this case the stress 

being ligation. MAPK activity itself is kickstarted by PDE6G (Wan et al., 

2001) and Mapk7 is activating SGK1 (Hayashi et al., 2001). SGK1 itself 

was upregulated more than 2 fold and this gene encodes a kinase that 

interacts with MAPK and is also phosphorylated by mTORC2 (Roux and 

Topisirovic, 2012). The interactions of this particular kinase family 

with mTOR is still highly debated, as  a previous study states that mTOR 
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inhibition activates MAPK (Carracedo et al., 2008), whilst a differing 

study states that the MAPK and mTOR pathways are differentially 

activated (Rios-Moreno et al., 2011) and a contradictory study says that 

MAPK activates mTOR via Raptor (Carriere et al., 2011).  

 

Based on the results obtained in this experiment, Torin1 treatment is 

not believed to be effective in longer periods of administration. 

Previously it was suggested that rapamycin may not be effective in 

longer periods of administration, such as for 7 days, because rapamycin 

is not a full inhibitor of mTOR, owing to the PI3K-negative feedback 

mechanism (which re-activates mTORC1 via the TSC1/2 complex) 

(Guertin and Sabatini, 2009, Bozorgi et al., 2014). However using a 

second generation mTOR inhibitor, Torin1, which is thought to inhibit 

all kinase-dependent functions of mTOR (Thoreen et al., 2009), we 

obtained essentially identical results to rapamycin. Therefore it may be 

possible that both rapamycin and Torin1 had been effective in mTOR 

inhibition, yet S6K1 and 4E-BP1 were activated via mTOR-independent 

phosphorylation of S6K1 and 4E-BP1, a mechanism suggested by other 

studies (Liu et al., 2013), perhaps via PI3K.  
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However using BEZ, a dual inhibitor of both mTOR and PI3K, provided 

promising results after 3 days, although S6K immunoblots had high 

variance between the highest and lowest expression levels. However 7 

day experiments involving BEZ were unmanageable in this experiment, 

due to toxicity and swelling as discussed earlier. The reasoning for this 

could be that BEZ has different maximum drug concentrations in 

different models (Cao et al., 2009), which can therefore cause an 

accumulation of BEZ over time until it reaches a maximum 

concentration, causing toxicity issues. 

 

Proteomic and Microarray analysis could not fully answer the question 

of just why BEZ could not completely inhibit S6K or why Torin1 could 

not fully inhibit mTOR. But they did give rise to a further path of 

enquiry into whether or not the MAP kinase or interactions with leucine 

are re-activating mTOR or its substrates.  
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CHAPTER 5 

INFLUENCE OF mTOR DURING 
SALIVARY GLAND 
REGENERATION 
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5.1  Introduction 

The development of our understanding of the morphological changes 

following ligation of the main excretory ducts (Carpenter et al., 2007a, 

Correia et al., 2008, Carpenter et al., 2009), has been followed up with a 

natural progression to examining the morphological and cellular effects 

during the regeneration of glands (Cotroneo et al., 2008a). This has led 

to uncovering that both intra-oral duct ligation and extra-oral duct 

ligation are completely reversible, due to the gland’s ability to recover 

its functionality (Osailan et al., 2006, Carpenter et al., 2009). 

 

Studies have attempted to draft a template for salivary gland 

regeneration by observing salivary gland development (Patel and 

Hoffman, 2014), however some controversy remains within literature 

about the developmental origin of the epithelium of major salivary 

glands. While the submandibular, parotid and sublingual glands are 

known to be derived from the oral epithelium (Myers and Ferris, 2007), 

it remains unclear which part of the epithelium they arise from (Patel 

and Hoffman, 2014).   

 

Others have taken a more clinical approach to salivary gland 

regeneration, such as the potential use of bone marrow derived stem 
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cells in order to regenerate salivary glands (Lombaert et al., 2006, Yoo et 

al., 2014) or the substitution of salivary glands with bioengineered 

artificial salivary glands that closely resemble the native organ in both 

structure and function (Kagami et al., 2008, Nelson et al., 2013). 

 

Gene therapy and gene transfer techniques have also shown promising 

futures in regards to salivary gland functional recovery (Delporte et al., 

1997, Shan et al., 2005). 

 

Other alternative approaches have appeared with slightly more 

exploratory results, such as the induction of proliferation, migration 

and differentiation of residual cells in damaged salivary glands to 

promote tissue regeneration (Kagami et al., 2008) or the possibility of 

using bioengineered organ germs, rather than entirely artificial salivary 

glands, for transplants as an alternative to regeneration (Ogawa et al., 

2013). 

 

However, some of the biochemical exchanges which occur as a result of 

regeneration are hitherto underexposed, particularly regarding the role 

of mTOR in salivary gland regeneration following de-ligation and the 
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characterisation of the early stages of glandular regeneration, which 

can be crucial in order to fully understand the mechanisms of recovery. 

 

Therefore the aim of this study is to identify the key time points of the 

early stages of regeneration and the function of mTOR during glandular 

recovery by examining the regeneration of salivary glands after de-

ligation following a period of ductal ligation in the presence of an mTOR 

inhibitor at different stages: during ligation only, de-ligation only or 

both during ligation and de-ligation. 
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5.2   Materials and Methods  

5.2.1  Experimental design 

26 adult ICR mice, weighing an average of 20-25g, were designated into 

control, ligation and de-ligation groups, as previously described in 

chapter 2.2 The control group (n=4) were unoperated controls and the 

ligation group (n=4) underwent submandibular main excretory duct 

ligation for 7 days. The de-ligation group consisted of 4 branches (Table 

5.1).  

 

The first branch consisted of 6 mice that underwent 7 days duct ligation 

followed by 7 days de-ligation. The second branch consisted of the 

aforementioned branch, 4 mice that underwent 7 days duct ligation 

followed by 7 days de-ligation, whilst receiving rapamycin treatment 

throughout the entire experiment, however one of said mice only 

survived until Day 8 of procedures due to death. The third branch had 4 

mice that underwent 7 days duct ligation followed by 7 days de-

ligation, whilst receiving no drug treatment for the first 7 days of the 

experiment but rapamycin treatment for the last 7 days. The final 

branch consisted of 4 mice that underwent 7 days duct ligation 
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followed by 7 days de-ligation, whilst receiving rapamycin treatment 

only for the first 7 days of the experiment. 

For each individual mouse, glands were harvested and gland weights 

recorded. Half of the gland was fixed in 4% formalin for histological 

sections. The other half was snap frozen in liquid nitrogen and then 

used for gland homogenates for the purposes of PAS staining and 

western blotting. 
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Table 8 The  experimental  design  of  the  de-

ligation  group  and  its  4  branches.  
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5.2.2  Protein Detection 

SDS-PAGE was performed on tissue homogenates, in preparation for 

protein detection, as described in chapter 2.9. PAS of glandular 

homogenates was used to assess glycoproteins, as previously described 

in chapter 2.11. Western blotting was performed to visually analyse the 

specific proteins of total mTOR, pS6rp and p4-EBP1, as described in 

chapter 2.12. 

 

5.2.3  Histology 

General morphology of the tissue sections was assessed by 

haematoxylin and eosin staining. For this method, tissue sections were 

stained with Mayer’s Haematoxylin for 3-5 minutes, washed in running 

water (2 minutes), differentiated (de-stain) with 1% acid alcohol and 

then stained with 1% Eosin for 1 to 3 minutes (H& E staining). The 

secretory granules inside acinar cells were identified by AB/PAS 

staining, as previously described in chapter 2.6.2.  
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5.2.4  Statistical 

Data is expressed as mean + S.E.M with p<0.05 being considered 

statistically significant. Statistical analyses were conducted using 

student’s t-test; unless where stated via a one-way analysis of variance 

(ANOVA) using Prism version 5.00 (GraphPad Software, California USA) 

and Microsoft Excel 2011 (Microsoft, Redmond, WA). 
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5.3   Results  

5.3.1  Gland weights 
Mean submandibular gland weights were significantly ( p<0.005 ) 

decreased in all groups in comparison to control. De-ligated mice 

experienced no significant change in gland weights in comparison to 

ligated only mice (Branch 1). Rapamycin treatment, no matter how it 

was administered in Branch 2, 3 or 4, also caused no significant change 

in gland weights in comparison to ligated only or de-ligated mice. 

 

37 Figure 5.1 Mean submandibular gland weights for unoperated control, 7 
days ligation only, ligated and de-ligated (Branch 1), de-ligated with 
rapamycin treatment throughout (Branch 2), de-ligated with rapamycin 
treatment for last 7 days (Branch 3) and de-ligated mice with rapamycin 
treatment for the first 7 days (Branch 4). In comparison to unoperated control, 
all other groups’ mean gland weights were significantly ( p<0.005 ) reduced. 
Rapamycin treatment did not significantly alter gland weights in comparison 
to ligation only group. Data is expressed as mean + SEM. 
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5.3.2  Immunoprobing of mTOR Status 

Western blots of the mTOR substrates, p4E-BP1 (Figure 5.2) and pS6rp 

(Figure 5.3), as well as total mTOR (Figure 5.4), in unoperated controls, 

7 days ligation, ligated and de-ligated (Branch 1), de-ligated with 

rapamycin treatment throughout (Branch 2), de-ligated with 

rapamycin treatment for last 7 days (Branch 3) and de-ligated mice with 

rapamycin treatment for the first 7 days (Branch 4). 

  

Unoperated controls displayed an inactivate state of the p4E-BP1 

protein and similarly a small presence of total mTOR but with no pS6rp 

activity.  7 days of ligation caused the phosphorylation of 4E-BP1 

protein, expressed as the activation of its higher molecular weight band, 

which was also visible in the p4E-BP1 positive control – muscle tissue.  

Ligation was the only experimental group to show presence of pS6rp. 

 

Minimal expression of mTOR activity occurred throughout all Branch 1 

tests, showing complete inactivity of mTOR despite no use of mTOR 

inhibitors. Whereas rapamycin treatment, on Branches 2, 3 and 4, 

expressed greater quantities, of both p4E-BP1 and total mTOR, than 

Branch 1 which had received no mTOR inhibitors.  
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Densitometric analysis showed pS6rp, p4E-BP1 and total mTOR, in all 

experiment groups, as a ratio of β-actin. The control’s p4E-BP1 

expression was significantly different from ligation only( p=0.0185 ) 

and Branch 1  ( p=0.0245 ). p4E-BP1 expression of ligation only was 

statistically significant in comparison to branches 1, 3 and 4 ( p<0.01 ). 

pS6rp expression in regards to actin, only showed a statistically 

significant change in ligation only ( p=0.0129 ), whilst total mTOR 

showed no statistically significant change throughout.  
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Figure 38 
 
 
 
Figure 5.2 Immunoblotting of phospho-4EBP1 protein (A) and it’s expression 
in comparison to β-actin in mouse submandibular glandular homogenates (B), 
showing unoperated control, 7 days ligation only, ligated and de-ligated 
(Branch 1), de-ligated with rapamycin treatment throughout (Branch 2), de-
ligated with rapamycin treatment for last 7 days (Branch 3) and de-ligated 
mice with rapamycin treatment for the first 7 days (Branch 4). Low expression 
of 4E-BP1  (lower band) was visible in unoperated controls as well as branches 
1 to 4. 7 day ligation only increased p4EBP1 phosphorylation (active isoform). 
Muscle homogenates (M) used as a positive control. Beta actin (β-actin) was 
used as a loading control, however muscle homogenates showed absence of 
beta actin (β-actin) as muscle expresses α-smooth muscle actin (α-SMA). Data 
represent results from at least three different experiments.    
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39 Figure 5.3 Immunoblotting of phospho-s6 ribosomal protein (A) and it’s 
expression in comparison to β-actin in mouse submandibular glandular 
homogenates (B), showing unoperated control, 7 days ligation only, ligated 
and de-ligated (Branch 1), de-ligated with rapamycin treatment throughout 
(Branch 2), de-ligated with rapamycin treatment for last 7 days (Branch 3) and 
de-ligated mice with rapamycin treatment for the first 7 days (Branch 4). No 
expression of pS6rp was visible in unoperated controls, whereas ligation 
revealed activation of S6rp after 7 days of ligation only. Branch 1 showed 
absence of pS6rp protein band indicating no activation of mTOR during 
deligation. Rapamycin treatment, in branches 2 through 4, completely 
abolished pS6rp activation. Beta actin (β-actin) was used as a loading control. 
Data represent results from at least three different experiments. 
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40 Figure 5.4 Immunoblotting of total mTOR expression (A) and a comparison 
of it’s expression in relation to β-actin in mouse submandibular glandular 
homogenates (B), showing unoperated control, 7 days ligation only, ligated 
and de-ligated (Branch 1), de-ligated with rapamycin treatment throughout 
(Branch 2), de-ligated with rapamycin treatment for last 7 days (Branch 3) and 
de-ligated mice with rapamycin treatment for the first 7 days (Branch 4). No 
expression of mTOR was visible in unoperated controls, whereas ligation 
revealed increased mTOR presence and deligated glands. Rapamycin 
treatment at different time points (branches 2-4) also compounded total 
mTOR, showing an increase in comparison to control and branch 1. None of 
the groups were not of statistically significant difference to one another. Beta 
actin (β-actin) was used as a loading control. Data represent results from at 
least three different experiments.   
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5.3.3  Biochemical analysis of glycoprotein 

content 

Periodic acid-Schiff’s staining was used to identify the presence of 

acinar mucins in the gland homogenates of unoperated controls, 

ligated, branch 1, branch 2, branch 3 and branch 4 mice. Ligation 

resulted in significant loss ( p<0.0001 ) of secretory glycoprotein 

content as shown by PAS staining and de-ligation without drug 

treatment did not cause a statistically significant recovery in the 

expression of this mucin, as branch 1 was still significantly lower 

( p<0.0001 ) than unoperated controls (Figure 5.5 A). 

 

However a visibly progressive recovery in the expression of mucins was 

identified following rapamycin treatment, as shown by branches 2, 3 & 

4. However their recovery rate was variable, where branch 3 (Figure 5.5 

B) showed a recovery that was still significantly less ( p<0.01 ) than 

unoperated controls and branch 4 (Figure 5.5 C) revealed a full recovery.  

 
One-way ANOVA analysis between the 4 branches revealed that the 

different treatments of rapamycin at different stages of ligation and de-

ligation causes a significant variation ( p = 0.0087 ) of acinar mucin 

content between the samples, further corroborating our individual 
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analysis results. With the mean acinar mucin content (as a percentage 

of control) for branch 1 being 38.22%, branch 2 being 77.57%, branch 3 

being 51.00% and branch 4 being 101.6%. 
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41 Figure 5.5 Periodic acid-Schiff’s staining of glandular homogenates of 
unoperated control, 7 days ligation only, ligated and de-ligated (Branch 1), de-
ligated with rapamycin treatment throughout (Branch 2), de-ligated with 
rapamycin treatment for last 7 days (Branch 3) and de-ligated mice with 
rapamycin treatment for the first 7 days (Branch 4). Ligation resulted in 
significant loss of mucins, branch 1 showed a visible recovery, yet this 
recovery was not statistically significant. Branches 2, 3, 4 all had visibly 
significant recoveries, however densiometric analysis of submandibular 
acinar mucin as a ratio of control (D), showed that branch 3’s recovery was still 
significantly lower than controls. The bars represent the mean + SEM. Data 
represents results from at least three independent experiments. 
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5.3.4  Morphological changes 

H&E staining of submandibular gland samples from unoperated 

controls (Figure 5.6 A), ligated (Figure 5.6 B), branch 1 (Figure 5.7), 

branch 2 (Figure 5.8), branch 3 (Figure 5.9) and branch 4 (Figure 5.10) 

all, to a certain extent, revealed presence of inflammatory cell 

infiltration composed mainly of neutrophils and macrophages, in the 

connective tissue between the lobules and among the parenchymal 

elements, in comparison to control adult submandibular glands.   

 

Ligated gland acini displayed a loss of secretory granules and were 

generally reduced in both quantity and area, as evidenced by 

morphometric analysis (Figure 5.11) that revealed on average acini area 

were significantly ( p=0.0002 ) decreased in comparison to unoperated 

controls. Yet remaining ducts displayed considerable duct luminal 

dilation in comparison to control, as they underwent degranulation. 

Cells also appeared less densely packed as the volume of interlobular 

space increased.  

 

Deligation following ligation caused recovery of acini and ductal cell 

size, and AB/PAS revealed that the acini had also recovered some of 

their glycoprotein content to a minimal extent.  
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Rapamycin treatment in branch 2 caused ductal and acini cell 

structures to be comparable to normal glands, despite a demonstrable 

quantity of infiltrates and minimal fat cells and predominantly serous 

acini with scattered mucous cells. 

 

Branch 3, demonstrated acini similar to branch 2, but ductal cells had 

visibly small lumena, suggesting a recovery of duct cell cytoplasm. 

Furthermore, the presence of inflammatory cells was minimal. 

 

Branch 4 revealed a full recovery of acini & ductal cells and AB/PAS 

showed a restoration of glycoprotein content. Yet atrophic remnants 

remained such as minimal inflammatory cell infiltration and only the 

occasional abnormal acini with duct characteristics.  

 

Morphometric analysis of the H&E stainings (Figure 5.11) indicated that 

ligation caused a significant decrease ( p=0.0002 ) of the size of the acini 

in comparison with controls. All de-ligation groups caused a significant 

recovery ( p<0.005 ).  
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Figure 5.6  

 

  

42 Figure 5.6 Comparison of morphological changes among unoperated 
controls (A) and 7 days ligation only (B). Controls showed typical appearance of 
acinar and ductal cells. Ligated glands displayed ductal lumen dilation, 
shrunken acini and extensive inflammatory cell infiltration. Results are 
representative of each experiment group. Scale bar represents 100 µm. 
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43 Figure 5.7 Morphological changes of mice that were only ligated and de-
ligated (branch 1) H&E and AB/PAS (A and B respectively). Branch 1 exhibited 
recovery of acini and ductal cell size, acini-duct branched structures are often 
visible and several normal-like acinar are now present. AB/PAS revealed that 
de-ligation had minimal recovery of glycoprotein content. Results are 
representative of each experiment group. Scale bar represents 100 µm. 
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44 Figure 5.8 Morphological changes of de-ligated submandibular glands with 
rapamycin treatment throughout (Branch 2) H&E and AB/PAS (A and B 
respectively). Generally cell structures were comparable to normal glands, 
despite fibrosis and the associated presence of inflammatory cells. The 
interlobule space is filled by emerging acini. Results are representative of each 
experiment group. Scale bar represents 100µm. 
 



212 

 

A 

B 

 

 

 

45 Figure 5.9 Morphological changes of de-ligated submandibular glands with 
rapamycin treatment for the last 7 days (branch 3) H&E and AB/PAS (A and B 
respectively). AB/PAS revealed recovery of glycoprotein content which also 
appeared in some acini to a certain extent. Furthermore some acini appeared 
similar to duct-like structure. Results are representative of each experiment 
group. Scale bar represents 100 µm. 
 



213 

 

A 

B 

 

 

 

 46 Figure 5.10 Morphological changes of de-ligated submandibular glands 
with rapamycin treatment for the first 7 days (Branch 4) H&E and AB/PAS (A 
and B respectively). Tissue morphology revealed a full recovery of acini & 
glycoprotein content, and ducts recovered from atrophy as evidenced by no 
luminal dilation. Remnants of previous atrophy remained in inflammatory 
cells. Results are representative of each experiment group. Scale bar represents 
100 µm. 
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47 Figure 5.11 Morphometric analysis of the H&E-stained samples. 
The mean area of acini from the control, 7 days ligation only, ligated and de-
ligated (Branch 1), de-ligated with rapamycin treatment throughout (Branch 
2), de-ligated with rapamycin treatment for last 7 days (Branch 3) and de-
ligated mice with rapamycin treatment for the first 7 days (Branch 4) were 
compared. Ligation significantly decreased the size of the acini (P=0.0002) in 
comparison with control. De-ligation caused a significant increase in acini 
area (P<0.005). Data is based on 20 observations from at least 3 samples for 
each experimental group and is expressed as mean±S.E.M 
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5.4   Discussion 

Previous progress has been made in the development of tissue 

regeneration strategies for a vast variety of tissues, including skin (Ma 

et al., 2003), corneal (Mimura et al., 2013), cartilage (Oldershaw, 2012), 

lacrimal (Hirayama et al., 2013) and cardiac tissue (Sapir et al., 2011). 

Determining the capacity of mTOR and the underlying mechanisms of 

de-ligation, in this study, should provide a novel insight to improving 

regenerative approaches for salivary glandular tissue.  

 

Previously ductal ligation has been used as a prelude to investigate 

salivary gland regeneration (Carpenter et al., 2007b, Cotroneo et al., 

2008b, Carpenter et al., 2009). This study observed the glandular 

regeneration ensuing de-ligation following 7 days of ligation of the 

submandibular gland main excretory duct in the presence of, the mTOR 

inhibitor, rapamycin to provide a clear insight into the role of mTOR 

during salivary gland regeneration.  

 

As a contrast to ligation/de-ligation model of previous studies, which 

primarily observed de-ligation without the use of drug treatments, here 

an mTOR inhibitor – rapamycin was administered at differing time 

points in order to identify the most efficacious format of mTOR 
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inhibition, as well as identify the time points of the key interactions of 

the mTOR pathway in regeneration. This is because although it has been 

shown that mTOR inhibition during glandular development, 

specifically branching morphogenesis, can halt submandibular gland 

development (Larsen et al., 2003), it has also been shown that mTOR 

inhibition during ligation can help alleviate the effects of atrophy, as 

previously shown in Chapter 3. Raising the question of whether or not 

mTOR inhibition will help glandular regeneration or decelerate it. 

 

Other studies observing the effects of mTOR in regeneration have taken 

differing stances regarding the role that mTOR has. Several studies have 

observed central nervous system injuries and found that the activation 

of mTOR is sufficient to promote axon regeneration (Park et al., 2008, 

Yang et al., 2014) and this theory was further developed by establishing 

that mTORC1 is necessary for axon regeneration (Hu, 2015). This 

theory would suggest that mTOR inhibition can possibily harm 

regeneration in submandibular glands as well, whereas another study 

suggests that the mTORC1 substrate S6 kinase inhibits instrinsic axon 

regeneration capacity and therefore inhibition can help regeneration 

(Hubert et al., 2014). A recent Nature study, which observed tissue 

regeneration, tied these theories all together by suggesting that 
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mTORC1-mediated translation limits tissue growth however s6k 

deletion decreases regeneration (Faller et al., 2015). These findings 

combined with this very study’s methods could suggest that perhaps a 

combination of inhibiting mTORC1 during periods that need growth 

and translation (such as atrophy), and the stopping of mTORC1 

inhibition during periods that need regeneration, is a treatment method 

which could be of importance. 

 

The histological findings of this study showed that in regards to 

morphology, the most efficacious format of treatment is rapamycin 

treatment during 7 days of ligation while excluding during de-ligation 

(Branch 4). All samples, to a certain extent, experienced the presence of 

inflammatory cell infiltration, composed mainly of neutrophils and 

macrophages, in the connective tissue between the lobules and among 

the parenchymal elements, in comparison to control adult 

submandibular glands.  However, branch 4’s H&E revealed a full 

recovery of acini, ducts recovered from atrophy as evidenced by no 

luminal dilation and AB/PAS showed a restoration of glycoprotein 

content, whereas the recovery of other branches were still limited to 

some extents.  
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Branch 1 exhibited recovery of acini and ductal cell size, intriguing 

acini-duct branched structures were often visible and AB/PAS revealed 

that de-ligation had some recovery of glycoprotein content.  This is 

keeping in line with previous research which has found that although 

ligation causes a reduction in the size and quantity of acinar cells to 

occur after ligation of main excretory duct as well as in the acini’s 

mucin content (Matsumoto et al., 2007), de-ligation causes acini and 

ductal cells to recover some of their size (Cotroneo et al., 2010).  

 

Rapamycin treatment in branches 2 & 3 caused acini cell structures to 

be comparable to normal glands, despite a demonstrable quantity of 

infiltrates and minimal fat cells and predominantly serous acini with 

scattered mucous cells, however glycoprotein content was not fully 

restored and ducts were still reminiscent of their atrophic counterparts. 

These findings are reaffirmed by the previous findings that inhibition 

of mTOR can affect the ligation-induced atrophy of salivary glands, 

however only affecting acinar, but not ductal atrophic processes 

(Bozorgi et al., 2014). 

 

Morphological findings help to establish a theory that mTOR inhibition 

can help to speed up the recovery of tissue morphology if rapamycin is 
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administered during the ligation period, as evidenced by a comparison 

of the results of branches 4 & 1. 

 

Morphometric analysis of the mean area of acini also supported the 

theory that the most efficacious format of administration is rapamycin 

treatment during 7 days of ligation, but not during de-ligation, by 

demonstrating that the order of efficacy from best to worst, in regards 

to acini recovery, is branch 4, branch 3, branch 2 and branch 1, 

respectively. The fact that de-ligation alone produced a statistically 

significant increase in acini area from ligation only, but the 

morphological improvements from rapamycin treatment, at any time 

point, were not statistically significant from de-ligation perhaps 

showcases one of the limitations of the animal ligation/de-ligation 

model. When using radiation on mice to cause functional salivary gland 

atrophy, rather than the ligation model, mTOR inhibition has been 

proven to be successful in improving both glandular functions and 

morphology (Morgan-Bathke et al., 2014). ANOVA did not produce any 

statistically significant results in mean area of the acini between 

Branches 1 to 4. Therefore data obtained were not computed as the 

overall ANOVA effect was deemed insignificant, indicating no variance 

between the branches.  
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The reduction in submandibular gland weight following atrophy has 

been well established (Walker and Gobe, 1987) and more recently a 

detailed understanding has been gained regarding the recovery process 

of submandibular gland weight following de-ligation only (Cotroneo et 

al., 2008b) or rapamycin treatment without de-ligation (Bozorgi et al., 

2014). This study takes those foundations and concludes that 

rapamycin cannot help speed up the recovery of critical weights, as 

evidenced by the fact that no gland weights, no matter how rapamycin 

was administered, recovered any more beyond that of just ligation only. 

 

In addition to the study of critical gland weights and glandular tissue 

morphology, the role of mTOR itself must be evaluated and the simplest 

way to do this was by analysis of mTOR itself, as well as it’s substrates 

S6rp and 4E-BP1 in glandular homogenates. Previously we had 

established that mTOR and its substrates are activated during ligation 

(Silver et al., 2010)  and that rapamycin treatment can reduce total 

mTOR protein expression, correlating with S6rp and 4E-BP1 proteins 

expression, but that rapamycin does not completely inhibit mTOR 

following ligation (Bozorgi et al., 2014).  
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One of the main findings of the current study was that mTOR activity is 

fully de-activated following de-ligation. Minimal expression of mTOR 

activity was observed in all branch 1 tests, including western blots of 

pS6rp and p4-EBP1, showing complete inactivity of mTOR despite no 

use of mTOR inhibitors. Densitometric analysis showed that pS6rp, 

p4E-BP1 and total mTOR phosphorylation for de-ligated glands were 

comparable to that of unoperated control mice. Suggesting that despite 

ligation causing phosphorylation of mTOR (Silver et al., 2010), this 

activation is fully reversible by de-ligation. This is of particular interest 

as the branches which received rapamycin treatment for different time 

periods (branches 2, 3 & 4) still exhibited remains of mTOR (and the 4E-

BP1 substrate), to levels that were even higher than non rapamycin 

treated de-ligated mice (branch 1).  

 

This is in contrast to the PAS staining which revealed that de-ligation 

without drug treatment did not cause a statistically significant recovery 

in the expression of the secretory glycoprotein content, as branch 1 was 

still significantly lower than unoperated controls and comparable to 

ligated glands, which had experienced a significant loss of the presence 

of acinar mucins. Nevertheless rapamycin treatment caused a visibly 

progressive recovery in the expression of mucins, as shown by the PAS 
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of branches 2, 3 & 4. Although densiometric analysis revealed that the 

recovery of branch 3, despite being visible, was still significantly lower 

than controls. This supports the theory that the best recovery is seen 

when rapamycin is administered during the ligation period. 

Furthermore, one-way ANOVA between the 4 branches revealed that 

different treatments of rapamycin at different stages of ligation and 

de-ligation caused a significant variation ( p = 0.0087 ) of acinar mucin 

content between the samples, further corroborating our individual 

analysis results. ANOVA was performed to calculate variance here, as 

multiple student’s t-test lead to high error rates when n<15 in sample 

groups (Ramsey, 1980). 

 

This study has exposed some of the biochemical exchanges which occur 

as a possible result of regeneration, particularly regarding the role of 

mTOR in salivary gland regeneration following de-ligation and the 

characterisation of the early stages of glandular regeneration, which 

can be crucial in order to fully understand the mechanisms of recovery. 

It has identified the key time points for the early stages of regeneration 

as during the atrophic period itself, as demonstrated by the improved 

results for tissue morphology, glycoprotein content and gland weights 

when rapamycin was administered during only the 7 days ligation 
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period, but not during the de-ligation regeneration period. This is 

keeping in line with previous studies performed for observing the 

recovery aspects of rapamycin on other bodily organs. A renal 

transplant experiment found rapamycin to be an ideal 

immunosuppressive agent in the setting of delayed graft function (DGF) 

after renal transplantation, but found that continuing rapamycin 

treatment during the recovery phase after transplantation caused 

recipients to be twice as likely to remain on dialysis as those recipients 

without rapamycin (McTaggart et al., 2003). A study on regeneration 

after pancreatic ischemia-reperfusion injury found that rapamycin 

improves early microcirculation, but impairs longer term regeneration 

(Serr et al., 2007). Such findings are effectively agreeing with our 

conclusions that the best form of treatment for recovery is rapamycin 

treatment during atrophy but then left untreated during regeneration 

to help speed up recovery. This is likely as a result of rapamycin’s 

immunosuppressive functions, which can inhibit a wide spectrum of T- 

and B-cell activities (Chen et al., 1994). 

 

Understanding that the most effective format of treatment is mTOR 

inhibition during atrophy demonstrates a need to examine this process 

itself, in order to identify potential uses for regenerative strategies for 
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salivary glands damaged in human autoimmune disease or as 

unintended side effects of radiation treatments for head and neck 

cancers. 
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CHAPTER 6 

EVIDENCE OF mTOR ACTIVITY 
DURING HUMAN SALIVARY 

GLAND ATROPHY  
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6.1   Introduction 

In previous chapters of this thesis, the role of mTOR in morphological 

and biochemical changes during salivary gland atrophy and 

regeneration in mice was examined. Whilst it is important to study and 

identify the factors involved in this process in mice, it is also 

noteworthy that the ligation / de-ligation model of rodent salivary 

gland atrophy and regeneration is not identical to effects seen in 

humans. For example, rodent salivary glands enter an embryonic-like 

state following de-ligation with branched structures forming (Cotroneo 

et al., 2010) that have been hypothesized to play a critical role in 

regeneration (Cotroneo et al., 2008, Cotroneo et al., 2010) and as an 

alternative, some have utilised animal models that investigate radiation 

induced salivary gland atrophy (Hill et al., 2014). Therefore, due to 

these differences between the de-ligation animal models and the 

radiation induced damaged in humans, it can be crucial to understand 

how the processes of the mTOR pathway during salivary gland atrophy 

are driven in humans by studying the role of mTOR in atrophic human 

salivary glands.  
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Previous studies on atrophic human submandibular glands have 

focused on the repair (Coppes and Stokman, 2011) and long term 

regeneration (Braam et al., 2005) of glands following atrophy. These 

have shown how salivary gland functions can return following 

regeneration (Zhang et al., 2013) but were typically linked to stem cell 

transplantation (Feng et al., 2009) or the region-dependent 

radiosensitivity of irradiation (Konings et al., 2005). The role of mTOR 

in human salivary gland atrophy still remains unclear. 

 

Salivary gland atrophy can be recreated experimentally in rodents via 

ligation of the main excretory duct of the submandibular gland. This 

creates a histological appearance involving deletion of acinar cells 

through apoptosis (Takahashi et al., 2000) and autophagy (Harrison et 

al., 2000), revealing characteristic autophagic vacuoles in ligation-

induced atrophy (Tamarin, 1971b). The molecular processes involved in 

autophagy are only beginning to be unravelled (Silver et al., 2010), but it 

is believed that autophagy related (ATG) protein 5 may play a dual role 

in autophagy and autophagic cell death (Pyo et al., 2005).  
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Other markers of autophagy include the Microtubule-associated protein 

1A/1B-light chain 3 (LC3) which conjugates to 

phosphatidylethanolamine (PE) to form LC3-II (Tanida et al., 2008). 

Thus, conversion of LC3-I to LC3-II via Atg3 is a useful marker for 

autophagy (Silver et al., 2010).   

 

In chapter 3, rapamycin treatment following ligation was used to 

determine that mTOR mediates ligation-induced atrophy of salivary 

glands, however only affecting acinar, but not ductal, atrophic 

processes, in mice. However it was also observed that it is possible that 

the mTOR pathway can re-activate itself, even when inhibited, due to 

the PI3K negative feedback mechanism (which re-activates mTORC1 via 

the TSC1/2 complex) (Guertin and Sabatini, 2009).  

 

In chapter 4, using second generation mTOR inhibitors, Torin1 and BEZ, 

despite their complexation to inhibit both mTOR and PI3K pathways, 

revealed similar results to rapamycin. This inability to fully inhibit 

mTOR during long-term ligation further establishes that the activation 

of mTOR as being an important mechanism during salivary gland 

atrophy and autophagic processes (Silver et al., 2010). 
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6.1.1  Salivary Markers of secretory function 

The salivary film which covers all oral surfaces, get its physical 

properties from salivary proteins (Gibbins and Carpenter, 2013), 

including proline-rich proteins (PRPs), statherin, histatin, carbonic 

anhydrase VI (CA VI), mucins and amylase. The most important 

glycoproteins found in saliva are the secreted salivary mucins, MUC5B 

and MUC7 (Gibbins et al., 2014). Therefore in order to better grasp an 

understanding of human salivary gland atrophy with or without the 

presence of mTOR, it is important to analyse what is contained in the 

saliva of atrophic glands, or more specifically, their salivary secretory 

proteins. These salivary proteins can act as markers and be used to 

identify the functionality of atrophic salivary glands in this study. 

  
9 Table 6.1 Major salivary markers and their respective functions 
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6.1.2  Aims 

The aim of this study was to better understand the role of mTOR in 

human salivary gland atrophy by determining if mTOR activation 

occurs during atrophy and whether its role is still a contributing factor 

in the process of ageing-related atrophy. In order to perform this study, 

salivary protein markers were analysed, alongside morphological 

analysis of submandibular gland tissue sections, whilst accommodating 

for the atrophic processes reported for age-related volumetric tissue 

changes in human submandibular salivary glands (Scott, 1977). 

  



231 

 

6.2   Materials & Methods 

6.2.1  Human Submandibular Gland Biopsy 

10 human submandibular gland samples were obtained with consent 

from King’s College London’s Dental Institute Biobank, from patients 

aged between 44 to 80 years suffering from a varying range of diseases 

from Tongue Squamous Cell Carcinoma (SCC) to Laryngeal SCC, as 

described in further detail in the supplementary appendix 8.1. With 

submandibular glands incurring atrophy ranging from minimal/none 

to severe atrophy. Samples excluded diseased areas and were chosen 

with varying levels of fibrosis and fat replacement of parenchymal 

tissue. The specimens were pre-prepared into 5mm2 tissues frozen in 

optimal cutting temperature medium (OCT) and slides with paraffin-

embedded sections at 5-μm thickness.  

 

6.2.2  Protein Detection 

The human tissues were homogenised, as previously described in 

chapter 2.9, with the addition of phosphatase inhibitor (New England 

Biolabs, MA, USA) Protein loading on gels was normalised using BCA 

Assay (Thermo Scientific, IL, USA), as detailed in chapter 2.10. 
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Membranes were blocked in TBS-T for 60 minutes or PBS-T with 10% 

milk power (Marvel) overnight at 4°C. Membranes were immunoprobed 

for salivary protein markers, mTOR and autophagy status using the 

antibodies shown in Table 6.2.  

 

In order to be used as positive control for immunoprobing of salivary 

protein markers, unstimulated whole mouth saliva was collected from 

normal, healthy controls by passive drooling into universal tubes. The 

samples were kept on ice in order to prevent degradation and then 

centrifuged at 13,000 × g for 2 minutes at 4°C to remove debris. Also 

used as positive controls were mouse gastrocnemius muscle tissue 

homogenates and 7 days ligated mice submandibular glands for mTOR 

substrates and autophagy markers Atg 3 and Atg5. A 100 uL solution of 

1x105 cells of human LC3B/293T suspended in Laemmli's sample buffer 

was used as positive control for LC3. 
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10 Table 6.2 Antibodies and their respective concentrations in immunoblotting protocol 
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6.2.4  Histology 

The pre-cut tissue samples were treated with 3% hydrogen peroxide, in 

order to aide the inhibition of endogenous peroxidase. Then treated for 

prevention of non-specific binding of the primary antibody was carried 

out as previously described in chapter 2.7. The primary antibody, Rabbit 

Anti-Human PS6 (Cell Signalling, Hertfordshire, UK) at 1:250, was used 

and incubated overnight at 4˚C. Slides were then incubated for 1 hour 

at room temperature with appropriate secondary HRP polyclonal 

antibodies at 1:200 dillution (DAKO, Ely, Uk).  

 

Tonsil tissue sections were used as positive control for mTOR, due to 

their positive mTOR expression in immunohistochemical studies 

(Brown et al., 2006), and negative controls were performed by 

incubating supplementary slides with bovine serum albumin (BSA) as a 

substitute for Rabbit Anti-Human PS6.  

 

In order to analyse general tissue morphology, slides were also stained 

with H&E (see chapter 2.6.1). H&E slides were analysed by a clinical 

pathologist by the King’s Health Partner Cancer Biobank at Guy’s and St 

Thomas’ trust, as well as the author.  
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6.2.5  Morphometric Analysis 

The mean acini area (µm2) was measured using Leica TCS SP2 confocal 

microscope software version 2.1 (Leica Microsystems, Germany) from 

the human submandibular gland H&E stained slides, by selecting 20 

acini per sample. 

 

6.2.6  Densitometric Analysis 

The immunoblotting band intensities were quantified and displayed as 

a ratio of β-actin using Image J version 1.46 (NIH, MD, USA), as 

previously explained in 2.13. 

 

6.2.7  Statistical Analysis 

Experiments were repeated three times and data is represented by the 

average of three experiments.  The significance of these morphometric 

and densitometric analyses was compared by student’s t-test and 

expressed as mean + S.E.M with p<0.05 being considered statistically 

significant.  
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The relationship between age and mean acini area was analysed using 

exponential regression models of plateau following one phase decay 

using Prism version 5.00 (GraphPad Software, California USA). 

Comparisons between age and salivary protein expression were 

explored using a linear regression analysis using Prism version 5.00 

(GraphPad Software, California USA). 
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6.3   Results 

6.3.1  Histological Assessment (General 

Morphology) 

H&E staining of most of the human submandibular glands (Figure 6.1 A 

- F) revealed the presence of inflammatory cell infiltration, composed 

mainly of neutrophils and macrophages, in the connective tissue 

between the lobules and among the parenchymal elements. Whereas 

the control adult submandibular glands, with the exception of the none 

/ minimally atrophic glands, displayed relatively normal lobular 

histology with only occasional infiltrates, minimal fat cells and 

predominantly serous acini with scattered mucous cells.  

 

The acini, which displayed fewer secretory granules, were generally 

reduced in both quantity and area, as morphometric analysis revealed 

that on average acini area had significantly ( p = 0.01 ) decreased by 

mild atrophy in comparison to control by 51.6 % + SEM. Mean acini area 

was also significantly ( p < 0.001 ) reduced by 75 % between control and 

severe atrophy (Figure 6.2). Regression analysis of mean acini area in 

comparison to the age of each sample at the time of biopsy revealed that 
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as the age increased, the mean acini area decreased sharply causing a 

significant ( p<0.001 ) drop after the age of 50 years and eventually 

reaching a plateau. 

Atrophic acini had more visible duct-like structures in more progressive 

cases of atrophy. This resulted in a 54 % + SEM increase in the 

proportion of ducts between control and severe atrophy (Figure 6.1 – F 

& G). The residual duct-like structures displayed considerable ductal 

luminal dilation in comparison to control, presumably as a result of 

degranulation. This trend of morphological results also showed that as 

atrophy intensified, cells appeared less densely packed as the volume of 

interlobular space increased. 

 

More advanced cases of atrophy demonstrated fat infiltration between 

serous and mucous acinar cells as well as replacement of parenchymal 

cells with fat. In most severe cases, serous and mucous cells were absent 

and had been substituted by fibrous and adipose tissue, as only duct-

like structures had abided. 
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Figure  6.1  H&E  staining  of  none  or  minimal  
atrophic   (A),   mildly   atrophic   (B)   (C),  
moderately   atrophic   (D)   (E),   severely  
atrophic   (F)   and   control   (G)   human  
submandibular   glands.   Samples   showed  
signs   of   atrophy   including   reduced   acinar  
area,   fat   displacement,  dilated  ducts   (star),  
inflammatory   infiltrates   (arrowhead),   even  
in  minimally  atrophic  samples.  Photos  (A  –  
F)    are  representative  of  all  samples  (n=10).  
Scale  bar  represents  100  μm.  

Figure 48 Figure  6.1  H&E  staining  of  
human  submandibular  glands 
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49 Figure 6.2 Morphometric analysis of the H&E stained samples from Figure 
6.1. indicated the mean area of the acini in submandibular glands of control, 
none/ minimal, mild, moderate and severe atrophy. Mean acini area, in 
comparison to control, was significantly decreased (p = 0.01) as a result of 
mild atrophy. Moderate and severe atrophy reduced mean acini area 
significantly (p < 0.0001) in comparison with control. Data is based on 20 
randomly selected observations per sample. Data is expressed as mean + S.E.M. 
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50 Figure 6.3 Regression analysis of the correlation between the mean acini 
area in atrophic submandibular glands and the age of each respective sample 
at the time of biopsy, revealing that as the age increased, the mean acini area 
decreased. This is indicated by a plateau following a one phase decay. The time 
of graph decay begins at 38.97 years at which point the mean acini is 1620 
(hypothetical), the acini span is 1508 and the plateau mean area of the acini 
reached is 112, data expressed at 95% confidence levels (sequence p = 0.05). 
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6.3.2  Immunohistochemistry 

The localisation of mTOR substrate expression was evaluated in human 

submandibular glands with varying degrees of atrophy, using pS6rp 

antibody (Figure 6.4).  

 

Phospho-S6rp was expressed in all cases to various degrees. Minimal 

atrophy (A & B) exhibited signs of early stages of atrophy, including 

shrunken acini, fat displacement and basolateral acinar membrane 

positive staining for pS6rp but no positive ductal staining.  

 

Mild and moderate cases of atrophy (C & D) showed that mTOR 

substrate expression was evident in acini, alongside signs of more 

advanced atrophy such as increased inflammatory cell infiltration. 

 

Cases with more advanced atrophy (E & F) exhibited the most 

deterioration, with no ‘normal’ acini remaining as all had shrunk. 

mTOR positive staining was visible in the shrunken acini as well as 

ducts, alongside the presence of abnormal branched entities 

characterised by short duct-like structures ending with small acini.  
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The secondary antibody controls (Figure 6.5 A) were used as a negative 

control and showed no mTOR substrate staining. Tonsil tissue showed 

interfollicular space and lymphocytes indicating positive mTOR 

staining (B) was used as positive control.  

 
51 Figure 6.4 Immunostaining of pS6rp (counter-stained with H&E) in 
minimally to mildly atrophic (A , B), moderately atrophic (C , D) and severely 
atrophic (E , F) submandibular gland tissue. mTOR substrate expression was 
evident in all samples in the acini, with the exception of more severe cases of 
atrophy (E , F) which showed positive staining in duct-like structures as well 
as acini.  Scale bars: A, C & E represent 50 μm; B, D, & F represent 100 μm. 
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                                A 

 

 
                               B 

 

 

52 Figure 6.5 Immunostaining of negative and positive controls for mTOR 
substrates, with secondary antibody control (A) and tonsil tissue (B). 
Secondary antibody control showed no mTOR staining (A) whereas tonsil 
tissue showed positive mTOR staining in interfollicular space and 
lymphocytes. Scale bars represent 100 μm.   
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6.3.3  mTOR status 

Western blots of total mTOR and the mTOR substrates, pS6rp and p4E-

BP1, in human submandibular glands of 10 patients, were analysed in 

two sets (Figure 6.6 A & B).  

 

Total mTOR was present in all cases of atrophy, however there was a 

notable reduction with severe atrophy. Human whole mouth saliva was 

used as negative control for total mTOR measurements and the first 

blot of p4E-BP1, and thus showed no presence of total mTOR (Figure 6.6 

A). Whereas mouse muscle tissue and 7 day ligated mouse 

submandibular gland homogenates were used as positive control for all 

other blots, since the antibodies were reactive to both mouse & human 

proteins.  

 

Anti-phospho-4E-BP1 antibody was used to show the phosphorylated 

isoform in various cases of atrophy, which signified mTOR substrate 

activity in all cases of atrophy to varying degrees. Whereas, phospho-S6 

ribosomal protein exhibited a limited presence only in cases of no 

atrophy or minimal atrophy, with the exception of one set of analysis 

which revealed pS6rp expression in all but mild atrophy.  
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53 Figure 6.6 Immunoblotting of total mTOR and the mTOR substrates - 
phospho-S6 ribosomal protein (pS6rp) and phospho-4E-BP1 protein  
(p4E-BP1) in human submandibular gland homogenates of patients with 
varying degrees of atrophy, ranging from minimal to severe (A) or no atrophy 
to severe (B). Total mTOR was apparent in all samples with a visible reduction 
in the case of severe atrophy. Substrates of the mTOR kinase (phosphorylated 
4E-BP1 and S6rp) were greatest in samples that showed mild atrophy and least 
in the most atrophic samples.  Beta actin (β-actin) was used as a loading 
control. Human whole mouth saliva was used as negative control for total 
mTOR and the first row of p4E-BP1. Mouse muscle tissue and 7 day ligated 
mouse submandibular gland homogenates were used as positive control, 
however muscle homogenates show absence of β-actin, as muscle expresses α-
smooth muscle actin (α-SMA). 
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6.3.4   Biochemical analysis of autophagy 

In order to determine presence of autophagy, immunoblotting analysis 

was performed on submandibular glands of 10 patients, probing for the 

autophagy markers that are Atg3, Atg5 and LC3 (Figure 6.7). 

 

The Atg3 and Atg5 immunoblots indicated that autophagic activity was 

virtually consistent at all stages of atrophy (A & B). Levels of the 

autophagy markers LC3-I (18 kDa) and LC3-II (16 kDa) showed that 

autophagy was greatest in none atrophic or minimally atrophic samples 

and progressively reduced in each succeeding stage of atrophy until 

only a singular isoform of LC3-II was visible in severely atrophic 

samples. 
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54 Figure 6.7 Immunoblotting of autophagy markers Atg3, Atg 5 and LC3 in 
human submandibular gland homogenates of patients with varying degrees of 
atrophy ranging from minimal to severe (A). Alongside, Immunoblotting of 
the autophagy markers Atg3 and Atg5 in human submandibular gland 
homogenates of patients with varying degrees of atrophy ranging from no 
atrophy to severe (B). Levels of the autophagy markers were greatest in none 
or minimally atrophic samples and least in severely atrophic samples. Anti-
beta actin (β-actin) was used as a loading control. Human LC3B/293T cells 
served as positive control for LC3 and 7 day ligated mouse submandibular 
gland homogenates were used as positive control for Atg5. 
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6.3.5  Biochemical analysis of salivary 

proteins 

Immunoblotting demonstrated presence of specific salivary proteins in 

human submandibular glands of patients with varying degrees of 

atrophy, ranging from minimal to severe. This revealed that the 

presence of the two salivary mucins, MUC5B and MUC7, were minimal 

throughout, with MUC7 visible bands present only in minimal cases of 

atrophy (Figure 6.8). 

 

On the other hand, western blots of the levels of salivary proteins such 

as cystatin, statherin and CA 6 revealed their existence only in mild or 

minimal atrophy, but exhibited no staining in the more severe cases of 

human submandibular gland atrophy. Furthermore, PIP was only 

present in minimal cases of atrophy and the salivary glycoprotein 

transcobalamin 1 was not present in any atrophic glands, it only 

revealed itself in control whole mouth saliva. 

 

Statistical analysis of the band intensity of the western blots of the 

salivary proteins Cystatin S, Statherin and CA VI to β-actin ratio using 

linear regression analysis in comparison to the age of the samples, 

revealed that as the age increases, protein expression decreases in a 
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uniform manner, to the extent that their regression lines appeared to be 

almost identical (Figure 6.9). 

 
 

 
55 Figure 6.8 Immunoblotting demonstrated presence of specific salivary 
proteins in human submandibular glands of patients with varying degrees of 
atrophy, ranging from minimal to severe. Presence of mucins,  
such as MUC5B and MUC7, as well as Transcobalamin I (TC-1), were minimal 
throughout. Whereas, levels of proteins such as cystatin, statherin, prolactin-
inducible protein (PIP) and carbonic anhydrase 6 (CA VI) were present in 
glands with minimal salivary gland atrophy but not detected in the severely 
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atrophic samples. Human whole mouth saliva was used as positive control. 
Anti-beta actin (β-actin) was used as a loading control. 
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56 Figure 6.9 Correlation between the salivary proteins Cystatin S, Statherin 
and CA VI to actin ratio and the age of the human patient of each respective 
sample at the time of biopsy shown via linear regression analysis. Western 
blot band intensity levels of the proteins decreased as age increased.  Cystatin S 
constant is 219.3 and formula is Y=-2.737X+219.3 where r2 is 0.8652. 
Statherin constant is 221.1 and formula is  
Y=-2.725X+221.1 where r2 is 0.7850. CA VI constant is 236.5 and formula is 
Y=-3.051X+236.5 where r2 is 0.7515. 
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6.4   Discussion 

Our previous study found that inhibition of mTOR can delay ligation-

induced atrophy of salivary glands, however only affecting acinar, but 

not ductal, atrophic processes (Bozorgi et al., 2014) and the previous 

chapters have suggested how the mTOR pathway can be associated with 

the process of autophagy. However this study underlines the 

complexity of in vivo analysis of mTOR on human salivary glands and 

hints at its interaction with other glandular processes by studying 

mTOR activity as well as gland function, morphology and biochemistry.  

 

The salivary gland atrophy that is induced by old age, cancer treatment 

or other diseases, can lead to morphological, cellular and microscopic 

changes (Bozorgi et al., 2014). Typically the changes, which occur as a 

result of atrophy, include decreased acinar cells volume and size 

(Harrison and Garrett, 1976), acinar & ductal degranulation (Osailan et 

al., 2006, Norberg et al., 1988) and interlobular duct dilation (Scott, 

1977). These same findings were observed via H&E staining (Figure 6.1) 

in atrophic glands in comparison with controls.  

 

One possible theory arising for the significant ( p < 0.001 ) reduction in 

mean acini area, which was reduced by 75 % between control and 
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severe atrophy, is that acini are linked to ageing in submandibular 

glands, evidenced by Figure 6.3, whereby regression analysis of mean 

acini area in correlation to the age of the patients at the time of biopsy 

revealed that as the age increased, the mean acini area decreased 

sharply. The derivation of simple regression estimators show that 

derivatives diverge at the age of 50 years, causing a significant 

( p<0.001 ) drop in mean acini area after this age. 

 

From the morphological assessments, other changes observed include 

accumulation of intracellular fat and adipose tissue and increasing 

fibrosis. As previously established by (Hamperl, 1931, Waterhouse et 

al., 1973) as signs of ageing in human salivary glands (Scott, 1977), 

however the pathogenesis of fibrosis in unhealthy glands is mostly 

unknown (Teymoortash et al., 2003) 

 

As the atrophy progressively increased, these morphological changes 

observed by H&E staining findings intensified to the extent of reduced 

acini but a vast increase in duct-like structure. This appears to be 

evidence of ductal metaplasia (Azevedo et al., 2005), which Scott 

considers to be an interdependent morphological change from acinar 

atrophy (Scott, 1980) resulting in a significantly higher than normal 
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duct-to-acinar ratio (Scott et al., 1999). This may also be linked to ageing 

(Scott, 1977), as Scott shows how the percentage of acini continuously 

depletes throughout adult life to a statistically significant extent whilst 

ductal proportion increases gradually. However, it should be noted that 

although morphology may be associated with age, it has been suggested 

that salivary gland function in healthy individuals does not decrease 

with age (Pedersen et al., 1999). 

 

Immunohistochemistry revealed S6 kinase expression, suggesting 

mTOR pathway activation, in all cases of atrophy. This is similar to 

previous studies which have shown salivary gland tumours exhibit 

strong activation of the mTOR pathway (Diegel et al., 2010).  

 

However as the atrophy worsened, S6 immunohistochemical results 

became more evident, with the placement of S6 having shifted from 

from only on acinar cells to both acini and ducts in advanced atrophic 

glands. This reflects the differences of species, as mice atrophic glands 

without treatment showed an absence of mTOR in ducts, as shown in 

Chapter 4. Furthermore this progression of S6 immunohistochemistry 

with worsening of atrophy is similar to previous findings, whereby 

patients with head and neck SCC had activated and overexpressed 
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phosphorylated ribosomal S6 kinase as their disease metastised (Kang 

et al., 2010).  

 

These findings were further supported by immunoblotting results that 

revealed mTOR was active during all stages of atrophy. This was shown 

in blots of the mTOR substrates, S6k and 4E-BP1, whereby Phospho-4E-

BP1 protein was in its phosphorylated isoform in various cases of 

atrophy, and S6 revealed inconsistent findings including one set of 

analysis which revealed pS6rp expression in all but mild atrophy. Total 

mTOR kinase was also present in all cases of atrophy, however there 

was a visible reduction in severe atrophy, probably related to most 

acinar cells being displaced by fat cells and fibrotic deposits, similar to 

previous western blot experiments which found total mTOR to be 

abundant in muscular atrophy despite fluctuating reductions in 4E-BP1 

and S6K1 (Dreyer et al., 2008).  

 

These findings, which signified mTOR substrate activity in all cases of 

atrophy to varying degrees, coincided with the highest levels of 

autophagy as evidenced by the immunoprobing for the autophagy 

markers, Atg3 and Atg5. Immunoblotting analysis of the markers for 

Atg3 and Atg5 indicated that autophagic activity was virtually present 



258 

 

at all stages of atrophy, similar to the varying degrees of pS6k and p4E-

BP1 that were expressed in western blots of all stages of atrophy. These 

findings further supports the theory that activation of mTOR coincides 

with autophagy in submandibular gland atrophy (Silver et al., 2010). 

Immunohistochemistry for autophagy was not attempted as it would 

be expected that autophagy occurs in both acinar and ductal cells. 

 

Another autophagic marker - LC3, is considered a more reliable method 

for monitoring autophagy and autophagy-related processes, including 

autophagic cell death (Tanida et al., 2008). Thus immunoblotting 

analysis was performed on submandibular glands of 10 patients in 

order to probe for LC3. Unlike Atg3 and Atg5, LC3 was not present in all 

variances of atrophy, as levels of the autophagy markers LC3-I and LC3-

II were greatest in minimally atrophic samples and progressively 

reduced in each succeeding stage of atrophy until only a singular 

isoform of LC3-II was visible in severely atrophic samples. Despite these 

findings, this does not indicate that autophagic processes had 

terminated during severe atrophy, as LC3-I is gradually reduced during 

autophagy because it becomes covalently conjugated to 

phosphatidylethanolamine by Atg3 catalysis to form LC3-II (Silver et 

al., 2010) and LC3-II was reduced because LC3-II itself is degraded by 
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autophagy (Mizushima and Yoshimori, 2007). Furthermore, the slight 

presence of LC3-II that remained in blots of severely atrophic samples 

could be because LC3-II is more sensitive to immunoblotting than LC3-I 

(Klionsky, 2009). The result of these factors is that interpretation of the 

results from LC3 immunoblotting alone can be problematic. Therefore 

it may be more appropriate to observe the conversion of LC3-I to LC3-II 

relative to immunoblotting of its catalyst Atg 3 (Silver et al., 2010), or 

the levels of LC3-II relative to actin for autophagy assays (Klionsky et 

al., 2008) or the summation of LC3‑I and LC3‑II for ratio determinations 

(Mizushima and Yoshimori, 2007). When evaluating the immunoblots 

of autophagy markers Atg3, Atg5 and LC3 with these considerations in 

mind, it can still be concluded here that autophagy has coincided with 

the activation of mTOR in human submandibular gland atrophy, as 

previously shown by our group in rats (Silver et al., 2010). 

 

The minimal presence of the salivary protein markers, or their lack 

thereof, indicated that salivary gland functions have been impaired as a 

result of atrophy. Despite recent literature suggesting that MUC7 is 

more susceptible to degradation and that MUC5B is more resistant to 

degradation (Takehara et al., 2013), our findings were contradictory, 

showing that despite the presence of the two salivary mucins, MUC5B 
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and MUC7, being quantifiably low throughout, MUC7 exhibited a visible 

presence in minimal cases of atrophy suggesting it was more resistant, 

which may be due to a lack of mucous acini which are sparse in 

submandibular glands. Furthermore, seromucous cells only accounts 

for 10% of cells in submandibular glands, so it maybe that the biopsies 

missed these acini.  

 

Whilst the presence of PIP and TC-1 were minimal throughout and only 

exhibited a visible presence in very minimal cases of atrophy. This 

suggests that prolactin-inducible protein are very susceptible, to the 

extent that even the slightest atrophy can affect their secretory 

function. This theory is further supported because PIP is typically 

present at moderate levels in human submandibular and sublingual 

glands (Rathman et al., 1989, Schenkels et al., 1994, Mirels et al., 1998). 

Whereas TC-1, which is typically present in the secretory cells of human 

submandibular and parotid glands (Hurlimann and Zuber, 1969, Nexo 

et al., 1988), was not exhibited because this protein is detected in the 

mucous secretory acini and intercalated ducts (Nexo et al., 1985) 

however the tissue samples utilised in this study had a low quantity of 

mucous acini that were sparse in submandibular glands and the ducts 

had underwent degranulation during atrophy. 
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Immunoblots of the levels of cystatin, statherin and CA VI, revealed 

their presence in mild and minimal atrophy, perhaps because cystatin is 

less susceptible to autophagy during salivary gland atrophy, as shown 

by its increase during Sjögren's syndrome by van der Reijden (van der 

Reijden et al., 1996) or perhaps it could be because cystatin, statherin 

and CA VI, are predominantly found in serous cells (Isemura et al., 1984, 

Leinonen et al., 2001, Isola et al., 2008), of which there remained a 

continued presence during mild and minimal atrophy in our H&E 

staining.  

 

An alternative theory for the diminishment of Cystatin S, Statherin and 

CA VI, could be that their secretion is possibly intrinsically linked to 

ageing, as shown by Figure 6.9, which shows an almost identical linear 

regression slope for each of the 3 proteins in correlation to the age of the 

patients at the time of biopsy.  

 

The mere fact that these proteins diminished in older people does not 

necessarily constitute that ageing is the cause of the diminishment. For 

example, a recent study into mucosal lesions found that although 

mucosal lesions are more prevalent in older people, it was associated 

with environmental changes but not with age or gender (Lynge 
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Pedersen et al., 2015). mTOR itself has been proven to be integral to 

ageing and growth, whether it is the mTOR pathway stimulating 

hypertrophy, cellular growth and protein synthesis at young ages 

(Wullschleger et al., 2006, Blagosklonny, 2010), or whether it is mTOR 

being part responsible for mechanistically driving aging, as a 

continuation of growth (Blagosklonny and Hall, 2009).  Furthermore, 

inhibiting mTOR, via rapamycin, late in life prolongs lifespan in 

mammals (Harrison et al., 2009) and confers protection against a 

growing list of age-related pathologies (Johnson et al., 2013). The mTOR 

pathway is also involved in human cancer (Sato et al., 2010), pulmonary 

atrophy (Razeghi et al., 2003), cardiovascular diseases (Mueller et al., 

2008), osteoporosis (Chen et al., 2014) and diabetes (Zoncu et al., 2011); 

solidifying mTOR as a key modulator of ageing and age-related disease 

(Johnson et al., 2013). 

 

Interestingly, a recent multi-centric study reported that when mTOR 

inhibition started late in the life of mice, i.e. 600 days, which 

corresponds roughly to an age of 60 years in humans, it increased both 

maximal and median life span (Harrison et al., 2009, Miller et al., 2010). 

Although these results cannot be directly extrapolated to humans, they 

do corroborate with our findings, regarding mean acini area and the 
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diminishment of salivary proteins, which all appeared to decrease 

around a similar age range reported from that study.  

 

The possible future of treating salivary gland atrophy in humans lies 

not only in artificial lubricants and drugs stimulating residual function, 

as their effects are at best transient (Pringle et al., 2013), but also in 

transplantation of cultured salivary gland cells into atrophic salivary 

glands (Sugito et al., 2004) and stem cell transplantation into impaired 

salivary glands (Lombaert et al., 2008). This study built upon these 

foundations, by basing rapamycin as another treatment therapy. 

Rapamycin’s use in cancer treatment and as an immunosuppressant 

has already confirmed it to be suitable and safe (Martinez et al., 2010), 

and this study found evidence of mTOR activity during human salivary 

gland atrophy, although it has not conclusively uncovered the 

causation behind mTOR activity during human salivary gland atrophy. 

The causation behind it could be ageing or it could be each sample’s 

disease e.g. SSC. mTOR’s localisation during human salivary gland 

atrophy, found using immunohistochemistry, in acinar cells and then 

to ductal cells as atrophy worsens, suggests it is a druggable target, 

possibly by intraductal injection of rapamycin loaded nanoparticles to 
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get localised targeting whilst reducing whole body toxicity (Bibee et al., 

2014). 
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CHAPTER 7 

7DISCUSSION 
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7.1   Conclusions 

It has been shown here that the conditional inhibition of the 

mammalian target of rapamycin (mTOR) pathway, also known as the 

mechanistic target of rapamycin, in the salivary glands results in 

proliferation and recovery from atrophic processes, however only 

affecting acinar, but not ductal, atrophic processes. Various conditional 

inhibition models were created and studied, using rapamycin, Torin1 

and BEZ. To the best of our knowledge, an in vivo study to determine the 

response of mTOR inhibition during salivary gland atrophy as well as 

it’s recovery from atrophy has not been performed on mice prior to this 

study. However our group has previously looked into the activation of 

mTOR during autophagy and atrophy in rat salivary glands (Silver et al., 

2010), as well as observing the gland’s ability to recover its 

functionality following non-drug treated de-ligation in rats (Osailan et 

al., 2006, Carpenter et al., 2009).  

 

Initially, all drug treated models significantly rescued glandular 

structure and morphology, in comparison to untreated atrophic glands. 

On the other hand, longer periods of mTOR inhibitor administration 

proved that the mTOR inhibition is conditional but the conditions are 

unknown. 7 days of treatment, whether by rapamycin or Torin1, 
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showed a loss of efficacy, with glands returning to a similar state to that 

of untreated atrophic glands. This suggested that inhibition of mTOR 

can delay ligation-induced atrophy of salivary glands, however only 

affecting acinar, but not ductal, atrophic processes.  

 

The reasoning for this being that the main mechanism of salivary gland 

homeostasis is self-duplication of acinar cells and acinar cells that 

survive injury are involved in the regeneration of salivary glands (Aure 

et al., 2015). Furthermore, it is generally accepted that rapamycin’s 

ability to regulate cap-dependant translation varies significantly among 

different cell types (Choo et al., 2008), whether they be acini or ductal 

affects such variations. These conditional mTOR inhibition results 

coincide with multiple studies defining a resistance to rapamycin 

(Brunn et al., 1996, Schmelzle and Hall, 2000, Gingras et al., 2001). The 

general consensus being that the PI3K negative feedback loop 

(Figure 7.1) can reactivate mTOR via the TSC1/2 complex (Guertin and 

Sabatini, 2009). 

 

The hypothesis that rapamycin is ineffective against the negative 

feedback mechanism because rapamycin only inhibits mTORC1 

(Zaytseva et al., 2012) was investigated via the use of second generation 
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mTOR inhibitors, Torin1 and BEZ, which in longer periods of 

administration provided similar results to rapamycin in this study. 

 

Figure 57.1 Diagram depicting mTORC1 and mTORC2 signalling, including the 
Akt feedback loop adapted from (Dowling et al., 2010) 
 

Furthermore, there has been evidence which suggests that prolonged 

use of rapamycin inhibits mTORC2 assembly (Sarbassov et al., 2006), 

which along with the ineffectiveness of Torin1 and BEZ, helps to 

disprove the theory that rapamycin is ineffective against the negative 

feedback mechanism because rapamycin only inhibits mTORC1.  

 

This gives rise to an alternate theory that rapamycin, as well as the 

second generation mTOR inhibitors, have been effective in mTOR 

inhibition and that the inhibition itself is conditional upon mTOR-
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independent factors, such as S6K1 and 4E-BP1 possibly being activated 

via mTOR-independent phosphorylation of S6K1 and 4E-BP1, a 

mechanism suggested by other studies (Liu et al, 2013). An unknown 

mechanism that prevents the simultaneous activation of both mTORC1 

and mTORC2 also adds weight to this theory (Efeyan and Sabatini, 

2010).   Although mTORC2’s kinase activity can be partially positively 

regulated, via an unknown mechanism that is seemingly independent 

of the inhibition of mTORC1 (Huang et al., 2008). Furthermore, these 

loops all prevent the sustained activation of the PI3K pathway 

(Giaccone and Soria, 2014) because activation of S6K1 abrogates the 

activation of PI3K (Chandarlapaty et al., 2011). 

  

As the PI3K pathway is highly interconnected with multiple feedback 

loops across other signalling networks, this presents us with an 

interesting strategy to observe in the future of dealing with salivary 

gland atrophy and whether combination therapy strategies could fully 

inhibit mTOR in vivo, with an example of this approach involving dual 

PI3K/mTOR inhibitors and the combination of everolimus with IGF-1R 

inhibitors to test this proof of concept  (Ghigo et al., 2010, Giaccone and 

Soria, 2014) .  
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Furthermore, there appears to be a vast difference between in vivo and 

in vitro mTOR inhibition results. For example, BEZ treatment on cells 

fully inhibits mTOR and disables autophagy as a mechanism of self-

preservation (Kim et al., 2014), whereas in vivo studies, including this 

study, have found BEZ to be not fully effective in fully blocking mTOR 

and recommend combination therapy of BEZ with the addition of 

chloroquine (CQ), a common clinical anti-cancer drug, that inhibits 

autophagy and counteracts the cytotoxic effect of BEZ (Li et al., 2013). 

This is in line with rapamycin experiments too, such as S6K activation 

in a T cell line being extremely sensitive to inhibition by rapamycin 

(Kuo et al., 1992), whereas in contrast mTORC1 kinase activity in vivo is 

much less sensitive to rapamycin (Abraham, 2004). The reasoning 

behind this apparent difference in mTORC1 sensitivity to inhibition in 

vivo and in vitro is not yet understood (Ballou and Lin, 2008). 

 

 

 

Furthermore, mTORC1 substrates could be overcompensating for 

mTOR inhibition (Mendoza et al., 2011, Fruman and Rommel, 2014) 

which would explain why the presence of 4E-BP1 and S6k were actually 

greater in 7 day Torin1 treated ligated glands than in untreated ligated 
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only glands. This is because these kinases could accumulate across the 

7days and Torin1 has been suggested as having only a limited ability to 

affect the long term accumulation of early or immediate proteins 

(Moorman and Shenk, 2010). Rapamycin also has little effect on the 

accumulation of immediate-early proteins, but can reduce the level of 

late proteins (Moorman and Shenk, 2010). 

 

In comparing BEZ and Torin1 to rapamycin, in terms of inhibiting 

mTORC1 substrates, Torin1 was found to present very similar results to 

rapamycin whereby S6K was inhibited to varying degrees but 4E-BP1 

could completely recover its activity in phosphorylation despite initial 

inhibition, in line with other studies that found some mTOR substrates 

to be rapamycin-resistant but still requiring mTOR, Raptor and 

mTORC1's activity (Choo et al., 2008). These results suggest that cap-

dependent translation via mTORC1 can be maintained in the presence 

of mTOR inhibitors (Choo et al., 2008). Whereas BEZ proved to be more 

effective in comparison to Torin1 or rapamycin, proving that when 

administered with a dual inhibitor of PI3K/mTOR, BEZ was more 

effective than inhibition of mTORC1 along, as exhibited by the 3 day 

inhibition results, keeping in line with previous studies (Cho et al., 

2010). However despite providing a promising path to follow up in 
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future studies, the cytotoxicity of BEZ prevented longer periods of 

administration in this study. 

 

This leads to an interesting avenue of possibilities to explore regarding 

combination therapies, whereby the use of mTOR inhibitors is 

combined with an additional drug that improves efficacy, such as the 

recommended combination therapy of BEZ with the addition of CQ, a 

common clinical anti-cancer drug, that inhibits autophagy and 

counteracts the cytotoxic effect of BEZ (Li et al., 2013). Furthermore, a 

recent review concluded that combination therapies with other 

targeted agents may be needed to block negative feedback loops in vivo 

(Carneiro et al., 2015). This is in line  with another recent study focused 

on cancer therapy which found that the use of chemotherapy or a dual 

mTOR/PI3K inhibitor alone provided limited functionality in 

comparison to combining gemcitabine (chemotherapy) with dual 

PI3K/mTOR inhibitors like NVP-BEZ2235 to obtain improved efficacy 

on growth inhibition in human pancreatic cell lines (Maute et al., 2015). 

Observing the regeneration and recovery of salivary glands from 

atrophy in the presence of mTOR inhibitors revealed some interesting 

findings which built upon our group’s previously established detailed 

understanding regarding the recovery process of submandibular gland 
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weight following de-ligation (Cotroneo et al., 2008). Chapter 5 of this 

study took the previous foundations and built upon them, establishing 

that rapamycin can help to speed up the recovery of salivary glands 

from atrophy, especially if rapamycin is administered during the 

ligation period only but then left untreated to recover naturally during 

the regeneration phase. 

 

This is in line with previous studies performed for examining the 

recovery aspects of rapamycin on other bodily parts, such as a renal 

transplant experiment which found rapamycin to be an ideal 

immunosuppressive agent in the setting of delayed graft function (DGF) 

after renal transplantation but found that continuing rapamycin 

treatment during the recovery phase after transplantation caused 

recipients to be twice as likely to remain on dialysis as recipients 

without rapamycin (McTaggart et al., 2003) effectively agreeing with 

our findings that the best form of treatment for recovery is rapamycin 

treatment during atrophy but then left untreated during regeneration 

to help speed up recovery. This is likely as a result of rapamycin’s 

immunosuppressive functions, which can inhibit a wide spectrum of T- 

and B-cell activities (Chen et al., 1994).  
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Microarray experiments performed in order to identify the gene 

changes that occur in submandibular gland atrophy in the presence of 

mTOR inhibitors, led to uncovering many differing possibilities that 

might explain the re-activation of mTOR in 7 day ligated glands despite 

the presence of rapamycin. The most promising avenue to explore 

appears to be the Mitogen-activated protein kinases (MAPK) family, 

several genes of which were significantly upregulated following 

rapamycin treatment, including Map2k6, Mapk7, PDE6G and SGK1. 

Although the interactions of this particular kinase family with mTOR 

are still highly debated, a previous study has suggested that MAPK 

activates mTOR via Raptor (Carriere et al., 2011). Furthermore 

rapamycin is known to activate the MAP kinase-interacting kinase 2a 

(Mnk2a) (Stead and Proud, 2013), by blocking phosphorylation at 

Ser437 which elicits activation Mnk2a (Scheper et al., 2001, Stead and 

Proud, 2013). These findings interlink with the recent assertion that the 

Mnk pathway maintains mTORC1 activity in rapamycin treated 

tumours (Grzmil et al., 2014) and these findings can be related to our 

study as the MAPK and Mnk protein families could be the forces that are 

reactivating mTORC1 substrates in this study despite the presence of 

mTOR inhibitors. 
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LC-MS/MS protein identification attempted to identify the protein 

pathways involved in reactivating mTOR irrespective of rapamycin’s 

presence. One point of note is that out of over 300 total protein changes 

identified in this study, a few were linked to neonatal or embryonic 

glands. The presence of such embryonic specific proteins in the adult 

rapamycin treated glands may suggest that these glands are 

regenerating in the presence of rapamycin, as salivary gland 

regeneration following ligation retraces an embryonic-like state 

(Carpenter and Cotroneo, 2010, Cotroneo et al., 2010). Furthermore, the 

BCKD mouse kinase phosphorylated protein was upregulated in 

rapamycin treated ligated mice submandibular glands in comparison to 

ligated only glands. The BCKD complex has been linked to mTOR 

activation via leucine (Lynch et al., 2003, Schaffer and Suleiman, 2007). 

BCKD phosphorylation has been delineated as reacting with α-

ketoisocaproate acid (Dakshinamurti and Zempleni, 2005), this complex 

interaction (Figure 4.16) may be required for leucine activation of 

mTOR (McDaniel et al., 2002). As the mechanism of mTOR activation is 

different when leucine is regulatory (Lynch, 2001), this may explain 

why the mTOR substrates appear to be reactivating after 7 days in this 

study despite rapamycin’s inhibition. 
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Human tissue observations revealed that human salivary gland 

atrophy, and the subsequent salivary gland atrophy on-set mTOR 

activity, is age associated. The regression analysis of mean acini area in 

correlation to the age of the patients at the time of biopsy revealed that 

as the age increased, the mean acini area decreased sharply. The 

derivation of simple regression estimators show that derivatives 

diverge at the age of 50 years, causing a significant ( p<0.001 ) drop in 

mean acini area after this age. Furthermore the diminishment of 

Cystatin S, Statherin and CA VI were linked to ageing, as linear 

regression analysis revealed an almost identical linear regression slope 

for each of the 3 proteins in correlation to the age of the patients at the 

time of biopsy. As mTOR has been proven to be integral to ageing and 

growth, inhibiting mTOR via rapamycin late in life prolongs lifespan in 

mammals (Harrison et al., 2009) and confers protection against a 

growing list of age-related pathologies (Johnson et al., 2013). 

 

Interestingly, a recent multi-centric study reported that when mTOR 

inhibition started late in the life of mice, i.e. 600 days, which 

corresponds roughly to an age of 60 years in humans, it expanded both 

maximal and median life span (Harrison et al., 2009, Miller et al., 2010). 

Although these results cannot be directly extrapolated to humans, they 
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do corroborate our findings, regarding mean acini area and the 

diminishment of salivary proteins, which all appeared to decrease 

around a similar age range reported from that study, presenting us with 

a novel approach to prolong salivary gland health in humans by 

attempting mTOR inhibition in patients with age associated atrophy. 

 

Furthermore, the human study found that mTOR substrate activity 

coincided with the highest levels of autophagy. Immunoblotting 

analysis of the markers for Atg3 and Atg5 indicated that autophagic 

activity was virtually present at all stages of atrophy, similar to the 

varying degrees of pS6k and p4E-BP1 that were expressed in western 

blots of all stages of atrophy. Whilst probing for LC3, as discussed in 

Chapter 6.4, led to the conclusion that autophagy coincided with the 

activation of mTOR in human submandibular gland atrophy, as 

previously shown by our group in rats (Silver et al., 2010). This can be 

interpreted in two differing theories: Beugnet et al. find that it is 

autophagy which is regulating mTOR, as their study found that 

inhibition of autophagy impaired the ability of leucine levels, and other 

intracellular amino acid levels, to regulate 4E-BP1 or S6K1 (Beugnet et 

al., 2003); whilst an alternative school of thought is that mTOR is able to 

regulate both apoptosis and autophagy (Silver et al., 2010, Tucci, 2012). 
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The possible future of treating salivary gland atrophy may not only be 

in the form of artificial lubricants and drugs stimulating residual 

function, as their effects are at best transient (Pringle et al., 2013). It is 

possible that the future lies in transplantation of cultured salivary 

gland cells into atrophic salivary glands (Sugito et al., 2004), 

bioengineered salivary gland germ transplantation (Ogawa et al., 2013) 

and combination drug therapies such as a dual mTOR/PI3K inhibitor 

along with a supplementary treatment.  There have also been recent 

positive signs of future avenues to explore in the field of repairing 

radiation damaged-salivary glands with stem cell transplantation (Feng 

et al., 2009), however it should be noted that the reported 4 phases of 

dysfunction caused in rodent salivary glands in response to irradiation 

(Coppes et al., 2001) has not been replicated in similar studies of 

humans (Zeilstra et al., 2000, Coppes et al., 2002, Vissink et al., 2010).    

 

This study has built upon those previously established foundations by 

finding evidence of mTOR activity during human salivary gland 

atrophy and the best method of utilising mTOR inhibition to help with 

recovery from atrophy in mice. Although it has not yet conclusively 

uncovered the causation behind mTOR reactivation in salivary gland 
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atrophy despite the presence of inhibitors, it does suggest it to possibly 

be the Leucine-BCKD-mTOR or the MAPK-Mnk-mTOR interaction 

pathway that reactivate mTOR.  
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7.2   Future Plans 

Although the results of this PhD study have provided some novel 

insights into the role of mTOR in salivary gland atrophy and 

regeneration, they also open up more avenues to explore in potential 

future studies in the field. 

 

•   Functional Study 

Previously our group has reviewed the fluid secretion of salivary 

glands and reported them to be stopped by duct ligation induced 

atrophy but reversible, provided that the automatic innervation 

remains intact (Proctor and Carpenter, 2007). A potential future 

study can look at the effects of mTOR inhibition on atrophic 

glands to observe their effects on function, in order to fully 

complete our understanding of the role of mTOR in salivary gland 

atrophy. The study can also look at the protein changes in saliva, 

as rapamycin has been shown to control certain protein levels 

(Wang et al., 2004). 

 

•   Link between mTOR and autophagy 

Our group has previously looked into the activation of mTOR 

during autophagy and atrophy in rat salivary glands (Silver et al., 

2010) and this study has observed a similar link in mice atrophic 

glands. This potential avenue of exploration could be utilised by 

observing the genes and protein expression of Unc-51 like 

autophagy activating kinase 1 (ULK1), one of the ULK protein 
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kinases that play a play critical physiological roles in controlling 

autophagy (Kim et al., 2013). 

 

 

•   Gene Expression study 

Real-time PCR is a reliable tool which is used to measure mRNA 

transcripts, providing valuable information on gene expression 

profiles and has been previously utilised by our group to observe 

adult rat submandibular glands under atrophy and regeneration 

(Silver et al., 2008). In order to carry out more specific analysis 

and validate our theories, the genes of interest that were observed 

in this study’s microarray analysis can be followed up on by 

performing real time PCR analysis. 

 

•   Link between mTOR and MAPK 

The microarray analysis of this study showed that several genes 

of the Mitogen-activated protein kinases (MAPK) family were 

significantly upregulated, including Map2k6, Mapk7, PDE6G and 

SGK1. This is of particular interest as previous studies have 

debated that mTOR inhibition activates MAPK (Carracedo et al., 

2008) and that MAPK activates mTOR via Raptor (Carriere et al., 

2011). With recent evidence indicating that Mnk inhibition 

presents attractive therapeutic potential (Hou et al., 2012), a 

future study could inhibit MAPK/Mnk pathways during 

rapamycin treatment to observe whether or not mTOR 

reactivates after 7 days as it did in this study. 
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8.0   Appendix 

Table  8.1  Listing  of  human  patients  

Patient   Gender   Age   Reason  for  
Dissection  

Atrophy   Inflammation   Fatty  Rep  

7015   Male   70   Laryngeal  SCC   Moderate   11-25%   No  
3458   Male   49   Maxilla  SCC   Mild   <10%   Yes  
5185   Male   46   Tongue  SCC   Mild   <10%   No  
4497   Male   59   Tongue  SCC   Moderate   11-25%   No  
5434   Female   66   Retromolar  SCC   Moderate   <10%   No  
7493   Female   80   Tongue  SCC   Severe   11-25%   Yes  
478   Female   44   Tongue  CIS   Minimal   Minimal   Yes  
3096   Female   59   Mandible  SCC   None   Minimal   No  
1249   Male   73   Buccal  Mucosa  

SCC  
Severe   11-25%   Yes  

713   Male   48   Mandible  SCC   Mild   <10%   Yes  
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