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Disulfide-activated protein kinase G Ia regulates
cardiac diastolic relaxation and fine-tunes the
Frank–Starling response
Jenna Scotcher1,*, Oleksandra Prysyazhna1,*, Andrii Boguslavskyi1, Kornel Kistamas2, Natasha Hadgraft3,

Eva D. Martin1, Jenny Worthington4, Olena Rudyk1, Pedro Rodriguez Cutillas5, Friederike Cuello6,

Michael J. Shattock1, Michael S. Marber1, Maria R. Conte7, Adam Greenstein2, David J. Greensmith3,

Luigi Venetucci2, John F. Timms4 & Philip Eaton1

The Frank–Starling mechanism allows the amount of blood entering the heart from the veins

to be precisely matched with the amount pumped out to the arterial circulation. As the heart

fills with blood during diastole, the myocardium is stretched and oxidants are produced.

Here we show that protein kinase G Ia (PKGIa) is oxidant-activated during stretch and this

form of the kinase selectively phosphorylates cardiac phospholamban Ser16—a site important

for diastolic relaxation. We find that hearts of Cys42Ser PKGIa knock-in (KI) mice, which

are resistant to PKGIa oxidation, have diastolic dysfunction and a diminished ability to

couple ventricular filling with cardiac output on a beat-to-beat basis. Intracellular calcium

dynamics of ventricular myocytes isolated from KI hearts are altered in a manner consistent

with impaired relaxation and contractile function. We conclude that oxidation of PKGIa during

myocardial stretch is crucial for diastolic relaxation and fine-tunes the Frank–Starling

response.
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P
rotein kinase G Ia (PKGIa) can be activated via the classical
NO/cyclic guanosine monophosphate (cGMP) pathway or
via a cGMP-independent pathway involving oxidants1,2.

Reactive oxygen species (ROS) promote formation of a reversible
intermolecular disulfide bond between the two subunits of the
PKGIa homodimer at Cys42 (refs 3,4). This redox mechanism
operates in blood vessels to control vasotone and blood pressure
in vivo5,6. However, PKGIa is also expressed in heart muscle
where the significance of Cys42 oxidation is less clear.

The amount of blood that enters the heart is continuously
changing, for example with postural alterations and breathing.
As the heart fills with blood during diastolic relaxation,
myocardial cells become stretched. The magnitude of stretch is
proportional to the volume of blood that enters the ventricle,
and the force of the subsequent contraction is proportional to
the degree of stretch. This mechanism, which ensures that the
amount of blood pumped out (stroke volume) is synchronized
with the amount that enters (venous return), is known as the
Frank–Starling or Maestrini law of the heart7–10. This mechanism
also enables beat-to-beat matching of left ventricular to right
ventricular output.

Widely accepted molecular mechanisms that contribute to
the Frank–Starling response include stretch-induced alterations
in myofilament overlap, myofilament Ca2þ sensitivity, and
actin-myosin cross-bridge formation11,12. Recently, it was
discovered that there is an increased production of ROS
during diastolic stretch, termed X-ROS signalling, which is
involved in regulation of cardiac Ca2þ cycling13.

Removal of cytosolic Ca2þ to trigger diastolic relaxation
occurs predominately via the sarcoplasmic reticulum (SR) Ca2þ

ATPase 2a (SERCA2a), which transfers Ca2þ into the lumen of
the SR to be stored before the next contraction14. SERCA2a
activity is regulated via interactions with its reversible inhibitor
phospholamban (PLN); when PLN is phosphorylated at Ser16,
its inhibitory action on SERCA2a is relieved and Ca2þ

sequestration into the SR is increased. Myocardial relaxation is
potentiated which enhances filling of the heart15,16.

Here we identify PLN Ser16 as a direct target of disulfide
PKGIa in the heart by an unbiased chemical genetic
phosphoproteomic experiment utilizing analogue-sensitive
PKGIa mutants17. We investigate the functional significance
of disulfide PKGIa-dependent phosphorylation of PLN
using a Cys42Ser PKGIa knock-in (KI) transgenic mouse and
find that PKGIa oxidation occurs during stretch to contribute
to the Frank–Starling response and is a key determinant of
cardiac output.

Results
Disulfide-activated PKGIa phosphorylates PLN at Ser16.
A chemical genetic phosphoproteomic method utilizing
analogue-sensitive kinase mutants was performed to identify
direct cardiac substrates of PKGIa (ref. 18). Phosphopeptide
abundance—directly relating to the amount of substrate
phosphorylation—was determined by a label-free quantitative
analysis19,20 (Supplementary Dataset 1). Substrate phosphorylation
was assessed when PKGIa was activated by the Cys42 disulfide
bond or via the classical pathway with cGMP, and compared with
phosphorylation when PKGIa was in its basal ‘unactivated’ state
(control; Fig. 1a). Eighty five direct substrates of PKGIa were
identified and the 29 substrates that had a statistically significant
change in phosphorylation upon activation of the kinase are listed
in Table 1. Phosphorylation of 28 of these proteins was
significantly increased when PKGIa was activated by cGMP.
Intriguingly, the abundance of a phosphopeptide from the cardiac
protein phospholamban (PLN pSer16; RApSTIEMPQQAR) was

significantly increased relative to control when PKGIa was
activated by Cys42 oxidation rather than by cyclic nucleotide
binding, indicating that PLN Ser16 is a selective target of disulfide
dimer PKGIa.

We compared basal phosphorylation of PLN Ser16 in isolated,
buffer-perfused hearts from C42S PKGIa KI mutant mice (which
cannot form the activating intermolecular disulfide bond) to
Ser16 phosphorylation in wild-type (WT) hearts (Fig. 1b).
PLN Ser16 phosphorylation was significantly lower in the KI
hearts, consistent with the proteomic evidence that PLN is a
substrate of disulfide-activated PKGIa. We observed no
change in phosphorylation of PLN Thr17 in the KI tissue
suggesting that disulfide PKGIa is highly selective for Ser16. As
well as Ser16 phosphorylation, the oligomeric state of PLN was
altered in the myocardium of the KI, as indicated by a three-fold
increase in the pentamer/monomer ratio of total PLN in samples
that were not boiled before western blotting.

Given that PLN plays a central role in cardiac excitation-
contraction (EC) coupling and Ca2þ homoeostasis, we analysed
several other key proteins involved in these processes to
determine whether their expression or phosphorylation status
was altered in the KI myocardium (Fig. 1c). However, we
observed no changes for any of the indices measured, including
cardiac troponin I (cTnI) Ser22/23, cardiac myosin binding
protein C (cMyBP-C) Ser282, ryanodine receptor 2 (RyR2)
Ser2808, phospholemman (FXYD1) Ser63, Ser68 and Ser69,
myosin light chain 2 (MLC2) Ser19, heavy chain cardiac myosin,
slow myosin heavy chain and Ca2þ /calmodulin-dependent
protein kinase II (CaMK2-b/g/d) Thr282.

Impaired Frank–Starling mechanism in C42S PKGIa hearts.
To investigate the functional significance of oxidized
PKGIa-dependent phosphorylation of PLN, we began by
assessing the Frank–Starling relationship of perfused ex vivo
hearts from WT or C42S PKGIa KI mice. The systolic pressure
(SP), rate of contraction (þ dp/dt), and rate of relaxation
(� dp/dt), were monitored as the end-diastolic pressure (EDP),
that is, cardiac preload, was sequentially increased. The KI hearts
displayed a markedly different Frank–Starling profile from that
of the WT hearts (Fig. 2a). A statistically significant elevation of
EDP was required for the KI hearts to achieve the same SP as the
WTs. For example, at an EDP of 4 mm Hg the WT heart gener-
ated a SP of B60 mm Hg, whereas the KI only generated a SP of
B30 mm Hg. Furthermore, the KI hearts had significantly slower
rates of contraction and relaxation than the WTs at a given EDP.

Effect of stretch on PLN Ser16 phosphorylation. We assessed
the effect that EDP had on PKGIa oxidation state and PLN Ser16
phosphorylation in WT and KI ex vivo hearts by Western blot.
Increasing EDP from 0 mm Hg to 5 mm Hg, thus increasing
diastolic stretch, significantly increased oxidation of PKGIa to the
disulfide dimer in WT hearts (Fig. 2b). As expected, this
oxidation event was absent in hearts that harboured the PKGIa
C42S mutation. An increase in EDP was also associated with a
significant elevation in PLN Ser16 phosphorylation in WT
myocardium, whereas Ser16 phosphorylation in the C42S mutant
tissue was unchanged (Fig. 2c).

Subcellular fractionation of myocardial tissue from the WT and
KI mice was also performed to see if increased stretch
was associated with translocation of PKGIa. Indeed, we observed
a statistically significant increase in the amount of WT PKGIa in
the particulate fraction—where the SR is enriched and PLN
and SERCA2a are located (Fig. 2d). However, the amount
of C42S PKGIa in the SR-enriched fraction from KI heart
tissue did not change. This observation is consistent with the
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phosphoproteomic data which revealed that disulfide PKGIa
directly interacts with PLN.

Oxidized PKGIa binds to the cytoplasmic domain of PLN. To
explore the PLN-PKGIa interaction further we carried out
isothermal titration calorimetry (ITC), titrating the cytoplasmic
domain of PLN (residues 1–23; PLN1–23) against the oxidized
(WT) and reduced (C42S mutant) forms of PKGIa. A sigmoidal
binding isotherm was fitted to the integrated titration data for
oxidized PKGIa which is consistent with one PKGIa disulfide
dimer binding to one PLN peptide with a Kd of B7 mM (Fig. 2e).
In contrast, integrated heats for the mutant kinase, recorded
under the same experimental conditions, could not be fitted to a
sigmoid-shaped binding curve, therefore a dissociation constant
for the C42S PKGIa-PLN1–23 complex could not be derived from
our experiments. Although the ITC data here does not exclude
the possibility of an interaction between mutant PKGIa and PLN,
it does suggest that the interaction between reduced, unactivated
PKGIa and PLN is markedly weaker than the interaction between

oxidant-activated PKGIa and PLN. Using the MicroCal
isotherm simulation tool, we estimated that the Kd for the mutant
kinase is at least five-fold higher than the Kd for WT PKGIa
disulfide dimer.

Ca2þ handling in myocytes from C42S PKGIa KI hearts.
Experiments were performed in ventricular myocytes isolated
from adult WT or C42S PKGIa KI hearts, comparing intracellular
calcium ([Ca2þ ]i) dynamics between genotypes. Specimen tran-
sients (Fig. 3a) are clearly consistent with significantly altered
Ca2þ handling in the cells from KI animals. Quantitative analysis
of the transients showed the KI was significantly deficient in their
systolic [Ca2þ ]i transient and SR Ca2þ content evoked by
application of caffeine, whereas the diastolic [Ca2þ ]i concentra-
tion was the same between genotypes (Fig. 3b–d). Normalization
of the [Ca2þ ]i transients allowed direct comparison of their
decay phase (indicative of SERCA2a activity) between genotypes
(Fig. 3e). The dashed lines show single exponential fits which
were used to determine the rate constants for the decay of
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Figure 1 | Identification of PLN Ser16 as a selective target of disulfide-activated PKGIa. (a) Cardiac substrates of PKGIa were identified by a chemical

genetic phosphoproteomic method and the amount of substrate phosphorylation was quantitated when PKGIa was in its basal state (control), activated by

disulfide bond, or activated by cGMP. The scatter plot shows the PKGIa activation-dependent log2 fold changes in phosphopeptide abundance relative to

control. Pink circles represent phosphopeptides whose abundances were significantly increased compared with control (Po0.05; n¼4) when PKGIa
activity was stimulated by cGMP and the blue circle represents a phosphopeptide whose abundance was significantly increased relative to control

(Po0.05; n¼4) when PKGIa was activated by disulfide; this phosphopeptide, RAS(p)TIEMPQQAR, is from the cardiac SR protein phospholamban (PLN)

and is phosphorylated at residue Ser16. Decreases in phosphorylation were not statistically significant for any substrate. P values were determined by post

hoc Dunnett’s test following one-way ANOVA. (b) Oxidized PKGIa-mediated phosphorylation of PLN was confirmed by a study of the basal level of Ser16

phosphorylation in isolated hearts from C42S PKGIa KI mice which cannot form the activating disulfide bond. PLN Ser16 phosphorylation was significantly

decreased in the KI compared with WT (*Po0.05; n¼6) while phosphorylation of Thr17 was unchanged. We also observed a significant three-fold

increase in the pentamer/monomer ratio of total PLN in the KI hearts, indicating that the oligomeric state of PLN is also affected by the oxidation state of

PKGIa. (c) Immunoblots from WT or KI myocardium for several other key proteins and their phosphosites involved in cardiac EC coupling and Ca2þ

handling. No significant changes in phosphorylation or total protein levels were detected between genotypes. Histograms show the mean±s.e.m.

and P values were determined by t-test.
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[Ca2þ ]i, which was significantly slower by B50% in cells from
KI mice (Fig. 3f).

Diastolic relaxation in C42S PKGIa mutant mice in vivo. We
performed a comprehensive echocardiography study to assess the
myocardial contractile function of WT and KI mice in vivo.
The complete list of measurements is given in Supplementary
Table 1. Importantly, the KI, which is resistant to PKGIa
oxidative activation, had a significant decrease in the transmitral
early (E) to late (A) peak flow velocity wave ratio compared
with WT, indicating impaired diastolic relaxation (Fig. 4a)21.
The mitral annulus early diastole tissue motion (E0) to mitral
annulus late diastole tissue motion (A0) wave ratio was also
decreased in the KI, providing further evidence for abnormal
myocardial relaxation when the Cys42 PKGIa disulfide bond
cannot form.

In vivo cardiac performance was further assessed by analysis of
pressure-volume (PV) loops obtained from a catheter inserted in
the left ventricle (LV) of the WT and KI mice; the complete list
of measurements can be found in Supplementary Table 2.
The KI hearts had significantly increased EDPs and were slower
in both their contraction and relaxation rates (Fig. 4b).
Furthermore, the reduced end-systolic pressure-volume
relationship in the KI reveals a deficiency in contractile
performance, and the elevated end-diastolic pressure-volume
relationship indicates that the ventricle of the KI is stiffer.
Compelling evidence for diastolic impairment in the KI is
further provided by an elevated isovolumic relaxation constant,
Tau, which is a preload-independent measure of diastolic
function; a higher value indicates slower relaxation22.

The Frank–Starling mechanism in C42S PKGIa mice in vivo.
Based on the data described so far, we concluded that oxidation of
PKGIa is an important mechanism for obtaining the appropriate
degree of filling during the relaxation phase of the cardiac
cycle. According to the Frank–Starling law—which couples
end-diastolic volume (EDV) to cardiac output on a beat-to-beat
basis—impaired filling in the KI should attenuate the force
of the following contraction. To test this hypothesis, we varied
the preload (EDV) of WT and KI mice by mechanical occlusion
of the vena cava and recorded high-resolution PV data.
Consequently, EDP, EDV, SP, þ dp/dt and � dp/dt could be
determined for individual cardiac cycles as indicated in the
representative trace in Fig. 4c. Thus, intra-beat relationships
could be calculated, for example EDP versus SP, that pertained
directly to the Frank–Starling response in vivo.

A representative scatter plot of SP versus EDP for an individual
WT and KI mouse is shown in Fig. 4d. Two hundred heartbeats
were analysed for each mouse and slopes were averaged in order
to obtain the mean intra-beat relationships for EDP versus SP,
EDP versus the rate of contraction, and EDP versus the rate of
relaxation. On average there was a B14 mm Hg increase in SP for
a 1 mm Hg change in EDP in WT, while there was only a
B10 mm Hg increase in SP per unit change in EDP in the KI.
The intra-beat relationships between EDP and þ dp/dt and
� dp/dt were also significantly decreased in the KI. Additionally,
the spread of data was strikingly greater in the scatter plots of
EDP versus SP for the KI mice. Hence, we calculated the mean
coefficient of determination (R2) for each intra-beat relationship
to assess quantitatively the variability of the data, thus providing a
measure of how tightly linked EDP and cardiac output were in
the KI mice compared with WT. R2 for each relationship was

Table 1 | Direct substrates of PKGIa identified by a quantitative phosphoproteomic screen.

UniProt ID Protein Phospho site Log2 fold change

cGMP versus control Disulfide versus control

P61016 Cardiac phospholamban S16 �0.81 0.41*
P10686 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 S1233 4.50* 1.82
P30835 6-phosphofructokinase, liver type S775 4.13* 1.48
Q99068 Alpha-2-macroglobulin receptor-associated protein S245 2.64* 0.32
P27653 C-1-tetrahydrofolate synthase, cytoplasmic T545 3.68* 1.48
O55156 CAP-Gly domain-containing linker protein 2 S353 2.05* 0.98
Q99JD4 CLIP-associating protein 2 S436 1.79* 0.86
Q9QXU8 Cytoplasmic dynein 1 light intermediate chain 1 T408 3.76* 1.95
Q9QXU8 Cytoplasmic dynein 1 light intermediate chain 1 S412 4.15* 1.66
F1LP64 E3 ubiquitin-protein ligase TRIP12 S1073 1.63* 0.66
Q9R080 G-protein-signaling modulator 1 S567 2.93* 1.04
P97541 Heat shock protein beta-6 S16 2.61* 1.25
P15865 Histone H1.4 S36 1.30* 0.48
D3ZBN0 Histone H1.5 T35 3.90* 1.43
P62804 Histone H4 S48 2.70* �0.11
Q5SGE0 Leucine-rich PPR motif-containing protein, mitochondrial S656 4.57* 0.77
P43244 Matrin-3 T150 3.58* 1.38
P34926 Microtubule-associated protein 1A S460 2.41* 0.59
Q5M7W5 Microtubule-associated protein 4 T899 3.69* 1.73
P19332 Microtubule-associated protein tau S525 3.90* 1.67
Q5U2R4 Mitochondrial ribonuclease P protein 1 T377 1.98* 0.45
E9PT87 Myosin light chain kinase 3 S155 3.16* 1.13
P18437 Non-histone chromosomal protein HMG-17 S29 3.65* 1.37
P85125 Polymerase I and transcript release factor T304 3.05* 1.30
P85125 Polymerase I and transcript release factor S302 3.16* 1.32
Q8VBU2 Protein NDRG2 S332 3.42* 1.91
Q63945 Protein SET S7 3.80* 1.76
Q60587 Trifunctional enzyme subunit beta, mitochondrial S198 3.44* 0.04
P23693 Troponin I, cardiac muscle S167 3.49* 1.65

All proteins that displayed a statistically significant log2 fold change in phosphorylation upon PKGIa activation by cGMP or Cys42 disulfide bond are listed (*Po0.05, Dunnett’s test; n¼4).
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significantly reduced in the KI mice, indicating that coupling
between EDP and contractile function was distinctly impaired in
the hearts of C42S PKGIa KI mice.

The intra-beat relationships for EDV versus SP, � dP/dt and
þ dP/dt were also determined and the findings mirrored those
reported for EDP (Fig. 4e). Namely, the KI hearts did not develop
as much SP as WT hearts per unit change in EDV and the
positive relationships between EDV and the relaxation and
contraction rates were diminished. Additionally, the data were
much more variable as illustrated by significantly decreased
R2 values. EDV provides a surrogate index of myocardial
stretch during diastole; thus the intra-beat relationships of SP
and þ dP/dt versus EDV can be used as an in vivo readout of the
Frank–Starling response. This data therefore provides further
evidence that the C42S PKGIa KI mouse has a robust impairment
in its ability to fully invoke the Frank–Starling mechanism.

Force generated by the heart in C42S PKGIa KI mice. We
hypothesized that disconnection between diastolic filling
and cardiac output in the KI would result in a more variable

developed pressure (that is SP� EDP). Thus, we derived
the variance in the developed pressure amplitude over 1,000
consecutive heartbeats for mice of each genotype from PV data
obtained with a catheter inserted in the LV. Indeed, the developed
pressure—the force generated with each heartbeat—was Bthree-
fold more variable in the KI (Fig. 4f). We performed a similar
analysis on radiotelemetry data collected from conscious, freely
moving WT and KI mice that had a pressure catheter inserted
into the aorta. Similar to the data obtained with the PV catheter,
the aortic pulse pressure of the KI was B2.2-fold more variable
than that of the WT. These results further corroborate the
importance of the PKGIa redox control mechanism in regulation
of cardiac output.

Discussion
PKGIa activity can be stimulated by reversible oxidation of
Cys42 or by cGMP binding1,2. cGMP inhibits formation of the
Cys42 intermolecular disulfide bond3,4 and, similarly, oxidation
has been shown to attenuate cGMP-dependent PKGIa substrate
phosphorylation23, consistent with discrete PKGIa signalling
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Figure 2 | Isolated hearts from C42S PKGIa KI mice have impaired Frank–Starling responses. (a) Curves showing the variation in SP, rate of contraction

(þ dp/dt), and rate of relaxation (� dp/dt) as a function of EDP for Langendorff-perfused WT and KI hearts. Cardiac performance increased with EDP, that

is, stretch, according to the Frank–Starling law. However, the responses were significantly reduced in the KI hearts compared with WT (Po0.05; n¼8).

(b) Immunoblotting showed that oxidation of PKGIa to the disulfide dimer increased with increasing stretch (from 0 mm Hg to 5 mm Hg EDP) in the WT

hearts but not in the KI (*Po0.05; n¼ 5). (c) Phosphorylation of PLN Ser16 was also significantly increased in the WT but not KI hearts with increased

diastolic stretch (*Po0.05; n¼ 5). (d) Subcellular fractionation of WT and KI hearts perfused at different EDPs followed by immunoblotting revealed a

significant increase in the amount of PKGIa in the particulate fraction from stretched WT myocardium compared with the particulate fraction from

unstretched WT myocardium (*Po0.05; n¼ 5). No stretch-dependent changes in PKGIa abundance were observed in fractions from the KI tissue. Error

bars show s.e.m. and P values were determined by t-test. (e) ITC analysis of the interaction between the cytoplasmic domain of PLN (residues 1–23) with

disulfide-activated PKGIa and the C42S mutant. A sigmoidal binding isotherm can be fitted to the titration data for oxidized PKGIa which is consistent with

one PKGIa disulfide dimer binding to one PLN peptide with a Kd of B7mM. Although the ITC data for C42S PKGIa also suggests a direct interaction with

the cytoplasmic domain of PLN, this is markedly weaker than for oxidized PKGIa as the integrated data cannot be fitted to a sigmoid-shaped binding curve

under the same experimental conditions.
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pathways that diverge depending on the stimulus. To investigate
PKGIa signalling in the heart, we monitored activation-
dependent phosphorylation of PKGIa substrates using a
chemical genetics phosphoproteomics approach17,18. The
majority of proteins we identified, including the known PKGIa
target heat shock protein beta 6 Ser16 (HspB6) (ref. 24), were
reproducibly phosphorylated by cGMP-activated kinase.
However, the crucial cardiac protein PLN was selectively and
reproducibly phosphorylated at Ser16 by disulfide-activated
PKGIa—not by cyclic nucleotide-activated kinase. This
observation is in agreement with studies showing PKG can
phosphorylate PLN (ref. 25), but this is not induced by stimuli
that increase intracellular cGMP in cardiac muscle26.

PKG isoforms are known to target binding partners via their
N-terminal leucine zipper domains where the differing patterns of
surface charge are important for regulating the interactions27–29.
The Cys42 intermolecular disulfide of PKGIa is located
within the leucine zipper domain and is likely to alter the
physicochemical properties of this region. Depending on the
substrate, formation of the Cys42 disulfide bond will promote or

inhibit kinase-substrate interactions, resulting in an increase or
decrease in phosphorylation regardless of cGMP binding.
Indeed, we found by ITC that disulfide-activation of PKGIa, in
the absence of cyclic nucleotide, increased its affinity for the
cytoplasmic domain of PLN at least five-fold.

Analysis of myocardium from WT or C42S PKGIa KI mice—
which cannot form the activating disulfide bond—revealed a
significant deficit in PLN Ser16 phosphorylation in the mutant
tissue, consistent with our biochemical data. The reduced
phosphorylation of PLN Ser16 produces substantial alterations
in Ca2þ handling. PLN binds to SERCA2a, the pump that
mediates Ca2þ reuptake into the SR, and reduces its activity.
Therefore, SERCA2a activity influences the rate of decay of the
Ca2þ transient and the amount of Ca2þ stored in the SR (SR
Ca2þ content). The latter controls the amplitude of the Ca2þ

transient, therefore SERCA2a activity also controls the amplitude
of the Ca2þ transient. PLN Ser16 phosphorylation relieves
inhibition of SERCA2a resulting in increased activity, hastening
the rate of decay of the Ca2þ transient, increasing both the SR
Ca2þ content and the Ca2þ transient amplitude. On the basis of
these considerations, it is not surprising to find that the lower
levels of PLN Ser16 phosphorylation observed in the C42S PKGIa
KI are associated with a substantial reduction in the rate of decay
of the Ca2þ transient, the SR Ca2þ content, as well as the Ca2þ

transient amplitude. PLN can be phosphorylated at Ser16 by
cAMP-dependent protein kinase (PKA) following adrenergic
stimulation. In addition, phosphorylation of Thr17 by CaMKII
also increases SERCA2a activity15. The main physiological
function of CaMKII-mediated phosphorylation is to adapt
SERCA2a function to increases in heart rate. Identification of
PLN Ser16 as a selective target of oxidized PKGIa raised a
question about the functional significance and role of this
phosphorylation event. We reasoned that oxidants produced
during diastolic stretch (X-ROS signals)13 may trigger disulfide-
activation of PKGIa and subsequent phosphorylation of PLN
Ser16. This stretch-dependent myocardial oxidant signalling
should be deficient in the hearts of the KI mice, because of the
inability of C42S PKGIa to transduce X�ROS signals into Ser16
PLN phosphorylation via the disulfide activation pathway.
Indeed, we observed that cardiac stretch promoted oxidation of
PKGIa in WT hearts, and was associated with translocation of the
kinase to the SR fraction, and an increase in PLN Ser16
phosphorylation. These events were absent in the KI hearts, as
hypothesized. On the basis of these observations, we speculated
that the relationship between stretch and systolic contraction, that
is, the Frank–Starling mechanism, might be impaired in the KI
hearts. Indeed, contractile responses were markedly impaired in
isolated KI hearts compared with WT as EDP (stretch) was
progressively increased up to 10 mm Hg. The reduction in
contractile responses is due both to impaired systolic function
secondary to smaller Ca2þ transients because of the lower SR
Ca2þ content, as well as diastolic dysfunction secondary to the
slower Ca2þ transient decay, which will impair cardiac filling.
These observations clearly delineate a novel role for the oxidized
PKGIa-PLN-SERCA2a axis in the modulation of the Frank–
Starling mechanism, which traditionally has been attributed to
modulation of myofilament properties.

At this point it is important to highlight an apparent
discrepancy in our data. The observation that the systolic Ca2þ

transient was substantially lower in the KI cardiomyocytes
compared with WT would be anticipated to manifest itself as
attenuated cardiac systolic force development in vivo or in
isolated heart preparations. However, this is not the case, as left
ventricular systolic output measured by a PV catheter is identical
between genotypes. This potential discrepancy can be fully
reconciled by the fact that the KI is able to achieve the same
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Figure 3 | Comparison of intracellular calcium dynamics in WT versus

C42S PKGIa KI mice. (a) Specimen [Ca2þ ]i transients from isolated

ventricular cardiomyocytes. (b,c) Cells from KI mice showed significantly

deficient mean systolic [Ca2þ ]i transient amplitudes compared with WT

(*Po0.05; n¼ 12–13 from 4 to 6 hearts), whereas the mean diastolic

[Ca2þ ]i was not different between genotypes (n¼ 16 from 4 to 6 hearts).

(d) Mean caffeine-evoked [Ca2þ ]i transient amplitude (indicative of SR

Ca2þ content) was significantly reduced in cells from KI compared with

WT (*Po0.05; n¼ 5–13 from 3 hearts). (e,f) Normalised [Ca2þ ]i

transients permitting direct comparison of transient decay phase (indicative

of SERCA2a activity) between genotypes. The dashed lines show single

exponential fits, which were used to determine rate constant for the decay

of [Ca2þ ]i for each genotype, which is significantly slower in KI compared

with WT (*Po0.05; n¼ 12 cells from 4 to 6 hearts). Scale bars in a and e
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systolic output as the WT in vivo at the cost of a sustained
elevation in EDP. Similarly, isolated KI hearts can generate the
same systolic pressure as the WT, but again this is only achieved
by increasing their EDP above that required in WT. Thus at an
EDP of 4 mm Hg KI hearts only generate B50% of the systolic
output of WT, matching very well the proportional deficit in
the systolic Ca2þ amplitude measured in isolated unloaded
cardiomyocytes. Essentially, the alterations to Ca2þ cycling
observed in the KI reflect the inability to engage the
Frank–Starling mechanism as effectively as WT myocardium.

At very high EDP the preload will overcome the diastolic
dysfunction and it is conceivable that additional mechanisms, not
defined here, involving cardiac myofilaments or SR Ca2þ load
adaptation, participate to normalize systolic function.

We observed an increase in the pentamer/monomer ratio of
PLN in the KI myocardium compared with the WT, which may
represent an adaptive change in the KI. However, it is difficult to
make firm conclusions about the significance of this observation,
as there is evidence for refs 16,30, as well as against ref. 31,
oligomerization mediating activation of SERCA2a. We should
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Figure 4 | Impaired diastolic relaxation and Frank–Starling mechanism in C42S PKGIa KI mice in vivo. (a) E/A and E0/A0 ratios for WT and KI mice

measured by tissue Doppler echocardiography. Both ratios are significantly decreased in the mutant indicating diastolic dysfunction (*Po0.05; n¼ 5).

(b) Various cardiac parameters for the WT and KI mice derived from left ventricular PV loops. EDP, end-diastolic pressure-volume relationship and Tau

were significantly increased in the KI, while the rates of relaxation and contraction and end-systolic pressure-volume relationship were significantly

decreased (*Po0.05; n¼9–10 for baseline measurements except inferior vena cava where n¼ 7–8). These observations are indicative of reduced

contractility and impaired myocardial relaxation in the KI. (c) Representative trace of pressure and volume measured in the left ventricle of a WT or KI

mouse over the time period of one cardiac cycle. EDP, SP, EDV, þ dp/dt and � dp/dt were determined as indicated so that intra-beat relationships could be

calculated that related directly to the Frank–Starling mechanism in vivo. (d) Representative scatter plot of SP versus EDP for a WT and KI mouse; data was

obtained from 200 heartbeats as described above. Histograms show the averaged gradients for SP, þ dp/dt and � dp/dt versus EDP and the

corresponding mean coefficients of determination, R2. Intra-beat relationships, as well as R2 values were significantly decreased for each variable in the KI

hearts (*Po0.05; n¼ 9). (e) A representative scatter plot of SP versus EDV (an index of myocardial stretch) for a WT and KI mouse. Intra-beat

relationships and associated R2 values were determined as described above for EDP and, similarly, were significantly decreased for the KI in each case

(*Po0.05; n¼9). These results provide compelling evidence that the PKGIa Cys42 disulfide bond contributes to the Frank–Starling mechanism.

(f) Variance in the LV developed pressure (SP� EDP; n¼9) and aortic pulse pressure (n¼ 7–10) in 1000 consecutive heartbeats for WT or KI mice. Both

pressures were significantly more variable in the KI mice (*Po0.05) further demonstrating dysregulation of cardiac output when PKGIa cannot be oxidant-

activated. (g) Scheme showing how oxidation of PKGIa by stretch-induced oxidants contributes to the Frank–Starling response. Error bars show s.e.m.

P values were determined by t-test.
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also consider that there are other regulatory mechanisms that
participate in the control of SERC2a activity, such as
dephosphorylation of PLN by protein phosphatase 1, and by
differential interactions with SR membrane proteins including
sarcolipin and DWORF (refs 32–34).

An in vivo comparison of cardiac function in the WT and KI
mice by echocardiography and ventricular PV loop analysis
revealed diastolic dysfunction in the KI, consistent with the
ex vivo heart preparations and intracellular Ca2þ measurements.
Taken together, our data supports a role for the PKGIa Cys42
disulfide bond in stretch-induced enhancement of myocardial
relaxation to obtain the appropriate amount of ventricular filling
during diastole (Fig. 4g). Analysis of high-resolution PV data
from the WT and KI mice showed that as preload increased, the
SP and rate of contraction for the next beat increased, as
anticipated due to the Frank–Starling law of the heart. However,
not only was the intra-beat relationship between preload and
contractility diminished in the KI mice, systolic pressures and
contraction rates were also more random for a given EDV. As a
result, the pulse pressure was more variable in the KI. We
concluded that oxidation of PKGIa is involved in coupling
ventricular filling with cardiac output on a beat-to-beat basis, that
is, it contributes to the Frank–Starling mechanism.

Deficiencies in the cardiac response to preload in the C42S
PKGIa KI mice are due, at least in part, to insufficient
phosphorylation of PLN Ser16 during ventricular filling. Removal
of cytosolic Ca2þ is therefore slower, which means that the
myocardium cannot relax properly and a reduced SR Ca2þ load
also leads to diminished contractility35. Passive tension is also
likely to play a role in the diminished Frank–Starling responses of
the KI hearts due to increased interactions of the giant elastic
protein titin with Ca2þ . Ca2þ binding to titin is known to
increase passive tension of the myocardium, making the ventricle
stiffer and thus harder to fill12. Furthermore, because impaired
relaxation results in inadequate extension of the sarcomeres, the
myofilament Ca2þ sensitivity—which is dependent on sarcomere
length11,12,29—will be reduced in the KI cardiomyocytes and also
contribute to the decreased contractility observed in the KI
hearts11,12,36.

Other molecular mechanisms that facilitate Frank–Starling
responses may also be altered in the absence of the PKGIa
oxidation pathway. For example, phosphorylation of the
sarcomeric proteins cTnI and cMyBP-C is involved in
length-dependent activation of myofilaments37. However, we
did not observe changes in phosphorylation of key residues in
these proteins in the KI hearts. Basal phosphorylation of several
other phosphosites involved in cardiac EC coupling and Ca2þ

handling including phospholemman Ser68 and CaMK2 Thr282
was also unchanged in the KI hearts, suggesting that these
residues are not central to the X-ROS/PKGIa oxidation/enhanced
myocardial relaxation pathway. S-nitrosylation of PLN is another
modification that has been shown to modulate the Frank–Starling
mechanism and it is possible that this modification has a role in
X-ROS signalling38. However, we cannot envisage how the
PKGIa Cys42Ser mutation could affect PLN S-nitrosylation and it
is unlikely that this redox modification contributes to the
diminished Frank–Starling mechanism observed in the KI mice.

In conclusion, fundamental to the Frank–Starling law of the
heart is an initiating diastolic stretch which induces events that
result in a systolic contraction of appropriate force. Here, as
summarized in Fig. 4g, we show that this crucial relaxation step is
significantly mediated by oxidative activation of PKGIa which
phosphorylates phospholamban to enhance diastolic relaxation.
Furthermore, in the absence of this redox control mechanism, as
is the case in the KI, the pressure amplitude the heart generates
from beat-to-beat is erratic.

Methods
Animal studies. All procedures were performed in accordance with the United
Kingdom Home Office Guidance on the Operation of the Animals (Scientific
Procedures) Act 1986. The KI mice constitutively expressing PKGIa C42S were
generated on a pure C57BL/6 background by TaconicArtemis (Germany) as
described previously5. All mice used in this study were male and age and body
weight–matched.

Method for identification of direct substrates of PKGIa. We employed a
chemical genetic method18 to identify direct substrates of cGMP-activated
PKGIa and disulfide bond-activated PKGIa in heart tissue. This method involves
mutation of the ATP binding-site of the kinase of interest so that it can accept a
‘bulky’ N6-alkylated ATP analogue for example, N6�phenylethyl ATP. An oxygen
atom on the g phosphate is also replaced with a sulfur atom—giving an N6-
alkylated ATPgS analogue—so that the mutant kinase catalyses the transfer of a
thiophosphate group (–PO3S3� ) to its substrates instead of a phosphate. The
thiophosphate group is nucleophilic, providing a basis for substrates of the
analogue-sensitive kinase to be purified by a ‘covalent capture’ protocol.
LC–MS/MS allows identification of the substrate and localization of the
phosphorylation site. Thiophosphorylated proteins can also be detected with a
thiophosphate ester-specific antibody39. Analogue-sensitive mutants of PKGIa and
PKGIa C42S (which cannot form the activating intermolecular disulfide bond)
were generated by mutating Met438 in the ATP-binding domain to Gly.
This mutation was chosen based on a previous study where an analogue-sensitive
mutant of the catalytic subunit of PKA—which shares sequence homology with
PKGIa—was engineered40. Detailed protocols are given below.

Recombinant WT and analogue-sensitive PKGIa mutants. A pCDNA3
expression vector encoding human FLAG-tagged PKGIa (ref. 41) underwent
site-directed mutagenesis to generate constructs for untagged WT, C42S,
M438G and C42S/M438G PKGIa. Mutations were introduced using the
QuikChange II Site-Directed Mutagenesis Kit (Agilent) according to the
manufacturer’s instructions. Expression and purification of the PKGIa mutants
was performed according to a published method42 as follows: suspension FreeStyle
293-F cells (ThermoFisher Scientific) were transfected with the appropriate
PKGIa construct using the stable cationic polymer polyethyleneimine (PEI) as a
transfection reagent43. After B72 h cells were harvested by centrifugation
(400g; room temperature; 15 min), re-suspended in ice cold lysis buffer (25 mM
sodium phosphate buffer pH 6.8; 10 mM ethylenediaminetetraacetic acid (EDTA);
100 mM NaCl; 10 mM benzamidine hydrochloride; and 10 mM dithiothreitol
(DTT)) and frozen in liquid N2. Cells were lysed by three freeze (liquid N2)-thaw
(37 �C) cycles and the lysate was clarified by centrifugation at 140,000g and 4 �C
for 30 min. The soluble protein fraction was loaded onto a pre-equilibrated
8-(2-aminoethylamino)adenosine-30 , 50-cyclic monophosphate column
(8-AEA-cAMP agarose; BioLog, Germany) followed by washing with 20 column
volumes of lysis buffer. The column was further washed with lysis buffer þ 3 M
NaCl (5 column volumes) and PKGIa was then eluted with lysis buffer þ 150 mM
NaCl and 500 mM cAMP. Removal of cAMP and buffer exchange was achieved by
extensive dialysis against 25 mM sodium phosphate buffer pH 6.8, 2 mM EDTA
and 100 mM NaCl. For ITC analysis, WT PKGIa was incubated with 10 mM lipoic
acid for 2 h on ice to obtain B100% disulfide dimer (confirmed by SDS-PAGE).
Oxidized WT or C42S PKGIa was further purified by size exclusion
chromatography using a HiLoad 16/600 Superdex 200 pg column (GE Healthcare)
with 50 mM sodium phosphate buffer pH 7.4 and 100 mM NaCl. Proteins were
concentrated using Amicon Ultra centrifugal filter devices (Merck Millipore). DTT
was absent in storage buffers so that the activating disulfide bond would not be
reduced and so that the PKGIa M438G mutant would be oxidized to disulfide
dimer in the presence of air (confirmed by SDS-PAGE). Protein concentration was
determined by Pierce BCA assay (ThermoFisher) and enzyme activity was
confirmed using the Omnia kinase assay kit (ThermoFisher).

Thiophosphorylation of PKGIa Substrates in Heart Homogenate. Male Wistar
rats (9–10 weeks; body weight 300–330 g) were euthanized by intraperitoneal
injection of sodium pentobarbitone (200 mg kg� 1) with heparin (500 USP units).
Hearts were flushed in the chest with ice cold Krebs buffer and the left ventricle was
excised and immediately transferred to ice cold homogenization buffer (2 ml 1� 1 g;
50 mM sodium phosphate buffer pH 7.4, 150 mM NaCl, 0.1% Tween 20 and
EDTA-free protease inhibitor cocktail tablet (Roche)). Tissue was homogenized
with a Ystral homogenizer and the homogenate was clarified by centrifugation
at 50,000g and 4 �C for 30 min. The protein concentration of the soluble
fraction was determined by BCA assay and then adjusted to 20 mg ml. Four
thiophosphorylation reactions were set up: (1) with cGMP-activated PKGIa
C42S/M438G, (2) with disulfide-activated PKGIa M438G, (3) with unactivated,
basal, PKGIa C42S/M438G and (4) a ‘no kinase’ control. The total reaction
volume was 200ml and the mixtures consisted of 25 mM Tris pH 7.5; 10 mM
MgCl2;±100 mM cGMP (added to the cGMP-activated PKGIa reaction only);
0.4 mM ATP; 6 mM GTP; 1 mM N6-furfuryladenosine-50-O-(3-thiotriphosphate)
(6-Fu-ATP-g-S; BioLog, Germany); 100 ml of heart homogenate (soluble fraction)
and 20 mg of the appropriate analogue-sensitive PKGIa (not added to the
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control reaction). The kinase reactions proceeded for 1 h at 30 �C, after that
time they were quenched by addition of 220 mM EDTA. 10 ml of each mixture
was taken for alkylation with 10 mM p-nitrobenzyl mesylate (PNBM; Abcam) to
check the reaction by Western blot using the anti-thiophosphate ester
antibody (51-8) (ab92570; Abcam; working concentration of 1:5,000 and secondary
antibody used at 1:10,000). The protocol was repeated four times; each time with a
fresh rat heart (that is, four biological replicates; 16 kinase reactions in total).
Samples were frozen in liquid N2 and stored at � 80 �C until the ‘covalent capture’
procedure.

Covalent capture of thiophosphorylated peptides. Thiophosphorylated
peptides were isolated and converted to phosphopeptides for analysis by
LC–MS/MS according to a published method18 as follows: proteins were denatured
by the addition of 120 mg solid urea (60% w/v) and 10 mM tris(2-carboxyethyl)
phosphine (TCEP), with incubation at 55 �C for 1 h. Samples were diluted 2� with
50 mM ammonium bicarbonate and additional TCEP was added to a final
concentration of 10 mM. The pH was adjusted to 8, and trypsin (sequencing grade;
Promega) was added at a substrate to protease ratio of 20:1. Proteins were digested
for B16 h at 37 �C, after that time the trypsin was quenched by acidification of the
samples to BpH 3 with trifluoroacetic acid (TFA). Resulting thiophosphopeptides
were desalted with Sep-Pak C18 columns (Waters); peptides were eluted with 70%
acetonitrile and 0.1% TFA (1 ml) and concentrated to B40 ml in a SpeedVac
concentrator. For the covalent capture step, the peptides were diluted to B200 ml
with 200 mM HEPES pH 7 and acetonitrile to a final concentration of B50 mM
and 50%, respectively. The pH was adjusted to 7, and samples were subsequently
loaded onto 100 ml of SulfoLink coupling resin (agarose activated with iodoacetyl
groups; Thermo Scientific) pre-equilibrated with 200 mM HEPES pH 7 and 25 mg
of BSA (to reduce nonspecific binding). The coupling reaction was left in the dark
for B16 h at room temperature with end/end rotation. The beads were then
collected in 1 ml fritted-tubes (Sigma-Aldrich) and washed with 1 ml each of water,
5 M NaCl, 50% acetonitrile, 5% formic acid and 10 mM DTT. Phosphopeptides
were eluted from the resin with 200 ml of 1 mg ml� 1 oxone solution (BpH 4;
Sigma-Aldrich), which was allowed to rest on the beads for 30 min, followed by a
further 50 ml of oxone solution. Samples were desalted using C18 ZipTip pipette tips
(Merck Millipore); phosphopeptides were eluted with 20 ml X3 of 50% acetonitrile
and 0.1% TFA and concentrated to B10ml in a SpeedVac concentrator, ready for
injection on to the LC column.

LC–MS/MS and data analysis. The abundance of phosphopeptides in each of the
kinase reaction mixtures described above was determined by a label-free
quantitative phosphoproteomic analysis19,20. LC–MS/MS analysis was performed
on an Ultimate 3000 nLC system (ThermoFisher) connected to an LTQ Orbitrap
XL instrument to. Samples were injected onto an Acclaim PepMap100 C18

pre-column (5mm, 100 Å, 300 mm i.d.� 5 mm) and washed for 3 min with 90%
buffer A (H2O and 0.1% (v/v) formic acid) at a flow rate of 25 ml min� 1.
Reversed-phase chromatographic separation was performed on an Acclaim
PepMap100 C18 Nano LC column (3mm, 100 Å, 75 mm i.d.� 25 cm) with a linear
gradient of 10–50% buffer B (ACN and 0.1% (v/v) formic acid) for 90 min at a flow
rate of 300 nl per min. Survey full scan MS spectra (from m/z 390-1700) were
acquired in the Orbitrap with a resolution of 60,000 at m/z 400. The mass
spectrometer was operated in the data-dependent mode selecting the six most
intense ions for CID. For phosphopeptide analysis, multi-stage activation for
neutral loss of masses 97.97, 48.985 and 32.65667 was enabled. Target ions selected
for MS/MS were dynamically excluded for 15 s. For accurate mass measurement,
the lock mass option was enabled using the polydimethylcyclosiloxane ion
(m/z 455.12003) as an internal calibrant. MS/MS spectra were de-isotoped and
peak lists generated with Mascot Distiller (v2) and searched against the SwissProt
database (2014_06; rat; 7,917 entries) using Mascot server (v2.4.1). Quantification
was performed from the extracted ion chromatograms using Pescal software44,45.
Allowed time and mass windows for the extracted ion chromatogramss were
1.5 min and 7 p.p.m. respectively. Substrates that were thiophosphorylated by
endogenous kinases present in the heart homogenate—rather than the analogue-
sensitive PKGIa mutants—were manually identified by comparison of the ‘no
kinase’ normalized peak areas (that is, abundances) with phosphopeptide
abundances in the corresponding cGMP, disulfide or unactivated-PKGIa samples,
and omitted from further data analysis. Phosphopeptide abundances were then
compared between basal, cGMP-activated and disulfide-activated PKGIa groups.
One-way ANOVA was performed for each phosphopeptide followed by a post-hoc
Dunnett’s test to indicate statistically significant differences between the basal and
activated mutant kinase groups.

Langendorff perfusion of isolated mouse hearts. Mice were euthanized by
intraperitoneal injection of 6.6% sodium pentobarbitone (250 mg kg� 1) pre-mixed
with heparin (500 USP units). Hearts were rapidly excised, immediately mounted
onto Langendorff apparatus, and retrograde perfusion was established at a constant
pressure of 80 mm Hg with Krebs-Henseleit buffer (in mM: 118.5 NaCl, 25.0
NaHCO3, 4.75 KCl, 1.18 KH2PO4, 1.27 MgSO4, 11.0 D-glucose and 1.4 CaCl2)
equilibrated with 95% O2 and 5% CO2 at 37 �C. Hearts were paced at 550 b.p.m.
A fluid-filled balloon inserted into the left ventricle was used to monitor contractile

function. Hearts were stabilized for 20 min before stepwise inflation of the balloon
to give increments in EDP which was measured via a pressure transducer. In some
experiments hearts were stabilized with a deflated balloon, which was then left
deflated or was inflated to 5 mm Hg for another 10 min to measure the effect of
stretching. At the end of the protocol hearts were rapidly dismounted and frozen in
liquid nitrogen until further analysis.

Fractionation and Immunoblotting. Hearts were homogenized in ice cold
Tris–HCl pH 7.4, 100 mM maleimide (included to alkylated thiols and ‘freeze’
protein oxidation state) and EDTA-free protease inhibitor tablet (Roche) with a
Ystral homogenizer. Heart homogenate was separated into soluble and particulate
fractions by 15 min centrifugation at 25,000g. Reducing agent was not included in
the SDS-PAGE sample buffer when the oxidation state of PKG1a was to be
analysed by Western blot. Unless stated otherwise, samples intended for PLN
immunoblots were boiled for at least 5 min immediately before loading the gel. The
working concentration of all antibodies used in this study was 1:1000 unless stated
otherwise. Primary antibodies were for PKG (ADI-KAP-PK005; Enzo), PLN
(A010-14; Badrilla; 1:10,000), PLN pSer16 (A010-12; Badrilla; 1:5000), PLN
pThr17 (A010-13AP; Bardrilla; 1:5000) cTnI (4002; Cell Signaling Technology),
cTnI Ser22/23 (4004; Cell Signaling Technology), cMyBP-C (sc-137180; Santa
Cruz), cMyBP-C Ser282 (ALX-215-057-R050; Enzo), RyR2 Ser2808 (A010-30AP;
Badrilla), phospholemman (custom-made FXYD1, FXYD1 pSer63, FXYD1 pSer68
and FXYD1 pSer69)46, MLC2 (3672; Cell Signaling Technology), MLC2 Ser19
(3675; Cell Signaling Technology), CaMK2-b/g/d (SAB4503244; Sigma),
CaMK2-b/g/d Thr282 (SAB4504607; Sigma), heavy chain cardiac myosin
(ab50967; Abcam) and slow myosin heavy chain (MAB1628; Sigma).
Horseradish peroxidase–linked rabbit or mouse secondary antibodies
(Cell Signaling Technology) and ECL Western Blotting Detection Reagent
(GE Healthcare) were used. Digitized immunoblots were analysed with
Gel-Pro Analyzer 3.1 software. Uncropped blots are displayed in Supplementary
Figs 1 and 2. The percentage of PKGIa disulfide dimer was quantified from total
PKG1a protein expression and phosphorylation was normalized to total protein
levels where possible.

Isothermal titration calorimetry. ITC experiments were carried out on a high
sensitivity MicroCal iTC200 microcalorimeter (Malvern Instruments, UK). A
synthetic N-terminally acetylated peptide corresponding to the N-terminal cyto-
plasmic domain of human phospholamban, PLN (amino acid 1-23) was purchased
from PeptideSynthetics (purity 495%; Peptide Protein Research Ltd, UK). Titra-
tions were performed at 25 �C in 50 mM sodium phosphate buffer pH 7.4 and
100 mM NaCl. Aliquots of 22ml PLN (1–23) (700 mM) were titrated into the
reaction cell containing WT disulfide PKGIa or the C42S mutant (70mM) at 150 or
180 s intervals. Integrated heat data was fitted to a theoretical titration curve using a
nonlinear least-squares minimization algorithm in the MicroCal-Origin
7.0 software package as previously described.

Isolated cardiomyocyte Ca2þ measurements. Ventricular myocytes were iso-
lated from 3 to 4-month-old C42S PKGIa KI mice and their WT littermates using
an established enzymatic digestion technique47 as follows: mice were killed by
cervical dislocation and hearts excised and placed in ice-cold isolation solution
containing (in mM) NaCl, 134; HEPES, 10; Glucose, 11.1; NaH2PO4, 1.2; MgSO4,
1.2 and KCl, 4; at pH 7.34. The aorta was cannulated and the heart was retrogradely
perfused on a Langendorff apparatus with calcium free isolation solution for 5 min
at 37 �C. Collagenase (1 mg ml� 1, type II, Worthington Biochemical Cooperation,
NJ, USA) was added to the perfusate for 7–10 min. Following the digestion,
ventricles were removed and minced in Taurine solution containing (in mM) NaCl,
115; HEPES, 10; Glucose, 11.1; NaH2PO4, 1.2; MgSO4, 1.2; KCl, 4 and Taurine, 50;
at pH 7.34 and then filtered through a 200 mm pore size mesh. Gentle agitation was
also used to release single myocytes. CaCl2 was then gradually added to restore
resting Ca levels. Cells were stored in an experimental solution and kept at room
temperature before use.

All experiments were performed at 37 �C. Cells were electrically stimulated at
1 Hz by field stimulation. The superfusion solution contained (in mM) NaCl 135,
glucose 11, CaCl2 1, HEPES 10, MgCl2 1, KCl 4, probenecid 2; titrated to pH 7.4
with 2 mol l� 1 NaOH. The probenecid was required to reduce loss of fluorescent
indicators from the cell, a particular problem at 37 �C.

To measure cytosolic Ca2þ levels, cells were loaded with the acetoxymethyl
(AM) ester form Fluo-3 (Molecular Probes) and excited continuously at 488 nm.
Emitted fluorescence was measured with a 515 nm long-pass filter. Raw fluorescent
signals were calibrated off-line as per equation (1). At 37 �C, the Kd of Fluo-3 was
taken to be 864 nm. Background fluorescence was subtracted from all raw signals.
Custom-written Excel routines were used to measure Ca2þ transient amplitude,
diastolic Ca2þ levels, rate of decay of the Ca2þ transient and SR Ca2þ content48.
SR Ca2þ content was estimated from the amplitude of the Ca2þ transient evoked
by application of 10 mM caffeine.

½Ca� ¼ F�Kd

Fmax � F
ð1Þ
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Echocardiography. Mice were anesthetized and exmined by echocardiography
using a high-resolution Vevo 770 echocardiography system (VisualSonics) with a
RMV-707B transducer running at 30 MHz. High-resolution images were obtained
for offline measurements with Vevo Software (VisualSonics). For the assessment of
diastolic function, an apical four-chamber view was acquired by positioning the
transducer as parallel to the mitral inflow as possible. Tissue motion velocity was
assessed by spectral pulsed-wave Tissue Doppler imaging, obtained from the mitral
septal annulus in the parasternal short axis view. LV diastolic function was assessed
by the measurement of the LV transmitral early peak flow velocity (E) to LV
transmitral late peak flow velocity (A) wave ratio and mitral annulus early diastole
tissue motion (E0) to mitral annulus late diastole tissue motion (A0) wave ratio.

In vivo pressure-volume analysis and blood pressure analysis. Invasive
pressure-volume analysis real-time pressure volume loops were obtained using the
ADVantage system (Scisense Inc., Canada) which uses a miniaturized 1.2 Fr
admittance catheter. In our experiments measurements of LV function were
performed in the more physiological closed chest mode when a catheter was placed
in LV by retrograde approach. Briefly, mice were anesthetized, right internal
carotid artery was exposed and catheterized. The 1.2 Fr catheter was advanced
towards the heart and inserted into the LV cavity via the aortic valve. In order to
analyse the effect of preload changes, inferior vena cava occlusion was performed.
Blood pressure and heart rate were assessed by telemetry in conscious mice. Mice
were anesthetized with isoflurane and a TA11PA-C10 probe catheter (Data Science
International) was implanted into the aortic arch via the left carotid artery. Blood
pressure variability was analysed from a continuous telemetric blood pressure
record made in undisturbed telemetered animals in a quiet room. Thousand beats
were chosen for analysis in each mouse.

Statistics. All results relating to the WT and KI mice are presented as mean±s.e.
of the mean (s.e.m.). Differences between groups were assessed by ANOVA
followed by post-hoc t-test. Differences were considered significant at the 95%
confidence level. In PV loop analysis measurements 42 s.d.s from the mean were
excluded, which resulted in one mouse per group being omitted.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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