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Abstract

In multi-cell networks where resources are aggressively reused and the cell

sizes are shrinking to accommodate more users, eliminating interference is

the key factor to reduce the system energy consumption. This growth in

the demand of wireless services has urged the researchers to find new and

efficient ways of increasing coverage and reliability, i.e., coordinated signal

processing across base stations. The optimum exploitation of the benefits

provided by coordinated signal processing can be achieved when a perfect

channel state information at transmitter (CSIT) is available. The assump-

tion of having perfect knowledge of the channel is, however, often unreal-

istic in practice. Noise-prone channel estimation, quantization effects, fast

varying environment combined with delay requirements, and hardware lim-

itations are some of the most important factors that cause errors. Providing

robustness to imperfect channel state information (CSI) is, therefore, a task

of significant practical interest.

Current robust designs address the channel imperfections with the worst-

case and stochastic approaches. In worst-case analysis, the channel uncer-

tainties are considered as deterministic and norm-bounded, and the result-

ing design is a conservative optimization that guarantees a certain quality of

service (QoS) for every allowable perturbation. The latter approach focuses

on the average performance under the assumption of channel statistics, such

as mean and covariance. The system performance could break down when

persistent extreme errors occur. Thus, an outage probability-based ap-

proach is developed by keeping a low probability that channel condition

falls below an acceptable level. Compared to the worst-case methods, this

approach can optimize the average performance as well as consider the ex-

treme scenarios proportionally.

In existing literature, robust precoder designs for single-cell downlink trans-

missions have been extensively investigated, where inter-cell interference

was treated as background noise. However, robust multi-cell signal pro-

cessing has not been adequately explored.



In this thesis, we focus on robust design of downlink beamforming vec-

tors for multiple antenna base stations (BSs) in a multi-cell interference

network. We formulate a robust distributed beamforming (DBF) to inde-

pendently design beamformers for the local users of each BS. In DBF, the

combination of each BS’s total transmit power and its resulting interference

power toward other BSs’ users is minimized while the required signal-to-

interference-plus-noise-ratios (SINRs) for its local users are maintained.

In our first approach of solving the proposed robust downlink beamforming

problem for multiple-input-single-output (MISO) system, we assume only

imperfect knowledge of channel covariance is available at the base stations.

The uncertainties in the channel covariance matrices are assumed to be con-

fined in an ellipsoids of given sizes and shapes. We obtain exact reformu-

lations of the worst-case quality of service (QoS) and inter-cell interference

constraints based on Lagrange duality, avoiding the coarse approximations

used by previous solutions. The final problem formulations are converted

to convex forms using semidefinite relaxation (SDR). Through simulation

results, we investigate the achievable performance and the impact of pa-

rameters uncertainty on the overall system performance.

In the second approach, in contrast to the ‘average case’ and ‘worst-case’ es-

timation error scenarios in the literature, to provide the robustness against

channel imperfections, the outage probability-based approach is proposed

for the aforementioned optimization problem. The outages are due to the

uncertainties that naturally emerge in the estimation of channel covari-

ance matrices between a BS and its intra-cell local users as well as the

other users of the other cells. We model these uncertainties using ran-

dom matrices, analyze their statistical behavior and formulate a tractable

probabilistic approach to the design of optimal robust downlink beamform-

ing vectors by transforming the probabilistic constraints into a semidefinite

programming (SDP) form with linear matrix inequality (LMI) constraints.

The performance and power efficiency of the proposed probabilistic algo-

rithm compare to the worst-case approach are assessed and demonstrated

through simulation results.

Finally, we shift to the case where imperfect channel state information is

available both at transmitter and receiver sides; hence we adopt a bounded

deterministic model for the error in instantaneous CSI and design the down-

link beamformers. The robustness criterion is to minimize the transmitted



power while guaranteeing a certain quality of service per user for every pos-

sible realization of the channel that is compatible with the available channel

state information. To derive closed form solutions for the original non-

convex problem we transform the worst-case constraints into a SDP with

LMI constraints using the standard rank relaxation and the S-procedure.

Superiority of the proposed model is confirmed through simulation results.
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Chapter 1

Introduction

1.1 Motivation1

Increasing fuel prices and predicted long-term resource scarcity have brought the field

of green communications to the forefront in recent times. Rigorous efforts are being

made to cut down power consumption, particularly in wireless communications, whilst

at the same time maintaining an acceptable quality of service. It is believed that more

than 75% of total energy consumption in cellular networks are dissipated on radio

parts, i.e. base stations (BSs) [6]. In particular, cooling systems alone consume 40%

to 60% of the base station’s (BS) energy consumption2. Recent analysis by network

operators and manufacturers has indicated that current wireless networks are not very

energy efficient, particularly the BSs by which user terminals access service from the

network [7]. Reducing transmit power at BSs will lead to substantial energy savings

for the entire network.

Applications of mobile internet in different areas such as education, health care,

smart grids and security have been growing very fast. As a result of increasing de-

pendency on these applications in our day to day activities, demand for a significant

increase in user data rate per area and the spectral efficiency are inevitable over the

next 10 years. On the other hand, delivering higher data rate per area requires more

transmission power which is constrained not only by the safety limits but also by the

importance of global warming issues and the need for greener communications. There-

fore, high speed transmission would mean diminishing coverage range, as otherwise,

an enormous increase of transmission power is required by both mobile terminals and

base stations to maintain the current cell size and achieve the ambitious targets of the

1Source: [5]
2Source: Vodafone Group R&D, 2009.
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Chapter 1: Introduction

beyond IMT-advanced technologies.

Cell splitting, i.e., dividing large cells into a number of smaller cells, is a promising

method that can significantly increase both capacity and coverage of the future cellular

networks. But for this approach the network providers need a lot of new base stations.

The required infrastructure (electrical energy, mast, fiber or wireless link to the next

base station controller, etc.) and the base station itself are very expensive. Moreover

the large number of smaller cells increases the number of inter-cell handovers and the

signaling load.

Co-channel interference has been identified as one of the major impairments that

degrades the performance of wireless systems [8–10]. Co-channel interference is caused

by simultaneous transmission of data to proximal users assigned the same frequency-

time resources. The presence of interference forces BSs to increase their transmit power

if certain quality of service for their user terminals is to be maintained. Therefore, mit-

igating co-channel interference is a key factor leading to the reduction of BSs’ transmit

power.

Recently, the idea of multi-cell processing (MCP) in cellular networks has been rec-

ognized as an effective technique to overcome inter-cell interference and substantially

improve the capacity [11–15]. In MCP, a coordinated virtual architecture is mapped

over a cellular infrastructure such that the individual mobile user is collaboratively

served by its surrounding base stations rather than only by its designated base station.

In this architecture, base stations are equipped with multiple antennas but user termi-

nals can have either single or multiple antennas. Using coordinated scheduling alone or

incorporation with beamforming amongst a number of local base stations enables the

network to constructively overlay the desired signals at an intended user and eliminate

or sufficiently mitigate them at the other unintended users. Ideally, in this way, each

user within a cell feels free of inter-cell-interference and, hence, can potentially achieve

the highest capacity with the lowest energy consumption under the reuse one regime,

i.e., while all the available spectrum is fully reused within the adjacent cells.

Transmit beamforming is a technique using at least two antennas to transmit a

radio frequency signal. The phases of the transmissions across these antennas are con-

trolled such that useful signals are constructively added up at a given desired receiver

while interfering signals are eliminated at unintended user terminals. Given a fixed

transmit power at each antenna element, an ideal transmit beamforming with M an-

tenna elements yields a M2-fold gain in received power compared to a single-antenna

transmission [16]. Therefore in a power-limited regime, transmit beamforming with M

antenna elements results in a M-fold increase in rate, a M-fold increase in free space

2



Chapter 1: Introduction

propagation range or a M-fold decrease in the net transmitted power.

Given the channel state information of a set of active user terminals, the task of a

beamforming designer is to calculate beamforming vectors, known as beamformers, for

the user terminals under a certain system requirement. It must be noted that chan-

nel state information is assumed to be available to the beamforming designer. Due

to the limited channel training and/or feedback resources, the downlink channel state

information (CSI), in terms of either the downlink channel vectors, i.e., instantaneous

CSI in slow-fading scenarios, or the downlink channel covariance matrices, i.e., sta-

tistical CSI in fast-fading scenarios, may not be perfectly known at the BS, e.g., in

frequency-division duplex (FDD) systems or in time-division duplex (TDD) where, the

main problem in CSI acquisition is the channel estimation at the transmitter and the

delay before the transmitter resources can be adapted based on the computed chan-

nel estimate. To accommodate the scenarios that only estimated and/or erroneous

CSI is available at the BS, various robust downlink beamforming schemes have been

proposed, see, e.g., [17–28]. The existing contributions on robust beamforming can

generally be categorized into two classes, namely the deterministic (worst-case) design,

see, e.g., [17–22], and the probabilistic design (also known as chance-constrained ap-

proach and outage-constrained approach), see, e.g., [23, 24, 26–28]. Unlike multi-user

downlink beamforming with perfect CSI [12, 29–35], the robust multi-user downlink

beamforming problem cannot be efficiently solved to optimality, and convex approx-

imation methods are widely applied (see, e.g., [21, 23]). The system requirement in

transmit beamforming usually defines an optimization problem.

1.2 Contributions

This thesis contributes towards robustness against uncertainties in channel parame-

ters, in cellular networks. We formulate robust optimization problems that minimize

a linear combination of total transmitted power at each BS and the induced aggregate

interference power on the users of the other cells. The aim is to solve optimization

problems with respect to different channel uncertainty models, to design robust beam-

forming vectors that guarantee the quality of service (QoS) at mobile users by ensuring

that a set of signal-to-interference-plus-noise ratio (SINR) targets are met, despite the

presence of erroneous CSI.

The significant contribution of this thesis is to develop approaches that mathemat-

ically reformulate physical problems and efficiently solve them with the aid of convex

optimization tools. A key aspect of the effort is to recast non-convex optimization
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problems into convex optimization ones. In the proposed problems formulations and

their solutions by considering more realistic models for defining the channel uncer-

tainties and by avoiding the conservative steps involved in the reformulations of the

corresponding beamforming problems we avoid the drawbacks of previous methods.

The principal contributions are divided in three Chapters (3, 4 and 5 ), with respect

to assumptions on system setup and channel state information model.

In Chapter 3, an optimization problem is developed under a limited cooperation

amongst BSs to both tackle inter-cell interference problem and improve energy effi-

ciency in cellular wireless networks. A significant utilization of backhaul is required to

overcome inter-cell interference in multi-cell processing networks where multiple BSs

simultaneously transmit to their intended local users with aggressive frequency reuse.

Chapter 3 proposes a downlink transmission strategy that enables each BS to design

locally its own beamforming vectors without relying on data or downlink CSI of links

from other BSs to the users. With only imperfect knowledge of second-order statistical

CSI available at each BS, the objective of the proposed scheme is to design a set of

beamforming vectors for a number of simultaneously active users, such that a combi-

nation of total transmit power and the worst-case of the resulting total interference

on the other vulnerable users of the adjacent cells at each BSs is minimized, while the

QoS satisfies in the worst-case scenario. In our approach of solving the proposed robust

downlink beamforming problem a spherical uncertainty set to model the uncertainty

in the channel covariance matrices is assumed. We obtain exact reformulations of the

worst-case QoS and interference constraints based on Lagrange duality, avoiding the

coarse approximations used by previous solutions [17]. The final problem formulations

are converted to a more tractable convex forms using semidefinite relaxation (SDR).

These particular contributions have been published in [36].

In Chapter 4 we present an alternative approach to the optimization problem pro-

posed in Chapter 3. In Chapter 3 the CSI errors are adversarially chosen from some

bounded set which results in worst-case robust beamformers design; in this approach

one does not utilize any distributional properties of the errors. In contrast to the

conservative approach of Chapter 3, the analyzed uncertainty model is fundamentally

changed in this chapter. We propose a chance-constrained optimization problem, where

errors follow a certain fully specified distribution, whose properties are then exploited

to yield outage-constrained robust beamformers design. The objectives are to mini-

mize the total transmit power and imposing an upper limit on the interference at the

outer-cell users, subject to targeting a lower bound on the received SINR for all (cell-

edge) users so that the QoS targets are satisfied with the specified probabilities. The
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probability (chance)-constrained problems are known to be difficult to solve because

the probabilistic constraints in general do not have closed-form expression and are

not convex. Hence by applying Schur complement the original optimization problem

with probabilistic constrains can be rewritten with equivalent linear matrix inequality

(LMI) constraints in a convex SDR form. Furthermore, the proposed scheme is in con-

trast to the methods that approximate the probabilistic constraints with their convex

upper-bounds and, hence, effectively find a feasible worst-case solution without any op-

timality guarantee. The analytical details of our novel approach that directly accounts

for the probabilistic constraints without approximating them by convex upper-bounds

are described in this chapter.

We also establish a novel connection between the proposed probability-constrained

stochastic optimization problem in this chapter and the worst-case optimization prob-

lem in Chapter 3. In practical scenarios CSI imperfections are unbounded random

variables, hence bounded uncertainty region in the worst-case approach would natu-

rally imply that with a certain probability, the uncertain CSI may fall outside of the

considered uncertainty region. Thus, in this chapter we provide a relationship between

the probability and the uncertainty parameter in the worst-case approach to provide a

practical rule for choosing the uncertainty parameter based on the QoS requirements.

These particular contributions have been published in [37, 38].

In Chapter 5 we assume a bounded deterministic model for the error in CSI and

adopt a new SINR criterion considering imperfect channel knowledge at both transceivers

sides; something that has been lacking in previous studies. It is well-known that imper-

fect CSI can significantly degrade the system performance [39–41]. In other words, if

one derives algorithms for transceiver design based on erroneous channel coefficients as

if they were perfect, some promised QoS targets in the system might often be violated.

In fact, beamforming designs without estimation-error-proof measures (e.g. robust de-

sign) may result in fragile system performance. Hence, it is of great importance to take

imperfect CSI as an influential factor in beamforming design. The robust constraints

guarantee the quality of service (QoS) at mobile users (MUs) by ensuring that a set

of SINR targets are met, despite the presence of erroneous CSI at both the BS and

the MU sides. The imperfect CSI affected QoS constraints are then converted into

finite number of linear matrix inequalities (LMIs) by utilizing S-procedure and the

original intractable non-convex problem is approximated through SDR. Our approach

differs from the existing ones in inclusion of a robust ICI controlling cost term in the

objective function of the proposed optimization problem. This transmission strategy

can increase the scalability of multi-cell networks with highly efficient re-usability of
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spectral resources across the adjacent cells. These particular contributions have been

published in [42]

1.3 Thesis Outline

The outline of the thesis can be summarized as follows: Chapter 1 includes the moti-

vation and states the contributions of the thesis. Chapter 2 is divided into two main

parts: the first part is devoted to the state of the art and the literature reviews of

multi-antenna systems, coordinated and robust beamforming, and the second part fo-

cuses on a general and introductory presentation of mathematical preliminaries. The

presented concepts are used to develop robust beamforming schemes for cellulatr net-

works discussed in Chapters 3, 4 and 5. This chapter is included to have this thesis self

contained, but it is not intended to be comprehensive. For more details of the reviewed

content, classical texts are cited as well. In Chapter 3, robust precoders are designed

with imperfect knowledge of second-order statistics of channel satisfying worst-case

constraints. In Chapter 4, a novel method to design robust beamformers with prob-

abilistic constraints is derived. In Chapter 5, with imperfect CSI at both transceiver

sides, a novel technique to compute robust beamforming vectors is developed. The

closing Chapter 6 deals with conclusions and future work.

1.3.1 Publications

A collection of contributions for this thesis has been complied from the following list

of publications:

1. T. A. Le, S. Nasseri, A. Zarrebin-Esfahani, A. Mills, and M. R. Nakhai, “Power-

efficient downlink transmission in multicell networks with limited wireless back-

haul,” IEEE Wireless Communications Magazine, Special Issue on Technologies

for Green Radio Communication Networks, vol. 18, no. 5, pp. 82–88, Oct. 2011.

2. S. Nasseri, T. A. Le, and M. R. Nakhai, “Robust and power efficient interference

management in downlink multi-cell networks,” in Proc IEEE 24th International

Symposium on Personal Indoor and Mobile Radio Communications (PIMRC),

Dec. 2013, pp. 1097–1101.

3. S. Nasseri and M. R. Nakhai, “Robust Interference Management via Outage-

Constrained Downlink Beamforming in Multicell Networks” in Proc IEEE Global

Communications Conference (GLOBECOM 2013), Dec. 2013, pp. 3492–3497.
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4. S. Nasseri and M. R. Nakhai, “Min-Max Robust Transmit Beamforming for Power

Efficient Quality of Service Guarantee,” in Proc IEEE Global Communications

Conference (GLOBECOM 2014), Dec. 2014, pp 3448–3453.
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Chapter 2

Background study

This chapter gives a basic introduction to the topic of this thesis. The framework is

based on the concept of design of reliable and efficient communication systems. The

practical performance of multi-cell systems is limited by a variety of nonidealities, such

as insufficient channel knowledge, high computational complexity, heterogeneous user

conditions, limited backhaul capacity, transceiver impairments, and the constrained

level of coordination between base stations. A major complication in cellular networks

is inter-cell interference that arises and limits the performance when multiple users

are served in parallel. To mitigate the inter-cell interference in downlink transmissions

many researchers have studied coordinated signal processing across base stations. To

improve the throughput, user satisfaction, and revenue of multi-cell systems, we take

advantage of multiple antenna which provides diversity gain in spatial domain without

extra bandwidth expansion or transmit power. In order to further exploit the benefits of

multiple antenna system, transmit beamforming (precoding) is widely implemented for

enhancing the performance and increasing the system throughput. A major drawback

of most existing transmit beamforming techniques is that they require nearly perfect

knowledge of the channel at the transmitter, which is typically not available in practice.

The channel imperfections could lead to severe performance degradation. Hence, robust

transmit beamforming design is required to provide robustness against the imperfect

channel

In this chapter, we give a general overview of topics such as multi-antenna systems,

multi-cell coordination, and robust beamforming and its use in wireless communica-

tions. The purpose of this chapter is to provide sufficient background to be able to

understand the basic research problems that are considered herein and how this the-

sis contributes to these areas. Next, in Section 2.7, mathematical concepts that are

frequently used in the subsequent chapters are summarized.
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Chapter 2: Principles and Concepts

2.1 Radio Resource Management in a Cellular Con-

cept

Figure 2.1: Illustration of a cellular system, where each cell is served by one BS in
the cell-center.

In order to offer sophisticated mobile communications over a large area, wireless

cellular networks divide the covered area into cells, as shown in Fig. 2.1. All communi-

cations within each cell are served by one base station (BS) located in the cell-center.

The same frequency resource is repeatedly available (reused) for other cells. Hence,

the main advantage of using cellular systems is that through reusing radio channels in

cells, the network coverage can be provided to areas of any size.

However, how to determine the size and the shape of a cell, as well as how to

allocate resources among cells are very important in radio network planning, as they

may largely influence the system performance. The size and the shape of each cell

depend on signal quality received within the covered cell-area, which is related to

many factors, such as the surrounding terrain, buildings, the height of transmission

antennas, the transmission power of the BS, the expected traffic demands and density,

as well as the atmospheric conditions, etc. Cells are generally represented as idealized
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Figure 2.2: A typical two-cell layout, where the cell-edge user is interfered by BS A
from the neighboring cell [1]

regular hexagons, but because of topographical and environmental conditions, this is

only an approximation of what actually occurs [43]. Naturally, in a real world scenario,

the cell shapes are very irregular and overlap with each other by approximately 10 to

15%. This enables users operating near the boundary of a cell to choose which BS they

are associated to.

Enhancing the cell coverage by allowing as many users to communicate reliably

irrespective of their location and mobility appears to be a primary concern of network

service providers. This task is typically fulfilled by doing aggressive spectrum reuse

which on one side enhances the spectral efficiency, whereas on the other side it causes

severe inter-cell interference (ICI) among the users of same spectrum, particularly cell-

edge users located close to the cells boundaries as shown in Fig. 2.2

Radio resource management has been evolved as an efficient tool to coordinate,

mitigate and manage ICI while enhancing the network performance in a cellular net-

works. The incurred ICI in cellular networks with universal frequency reuse is severe

and random due to its dependence on the channel statistics and on the dynamics of

the multi-user scheduling decisions. Therefore, it is important for the system designers

to accurately characterize the behavior of the ICI in order to quantify various net-

work performance metrics and to develop efficient resource allocation and interference

mitigation schemes. More specifically, efficient spectrum allocation and power control

management solutions are needed to leverage the potential of cellular networks.

This thesis considers cellular networks and studies how the transmissions within

a cell should be designed to optimize the performance and how to coordinate the

operation of multiple cells. The main focus is on transmission from a BS to multiple

user devices, which is commonly viewed as more difficult than transmission in the

opposite direction.
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Figure 2.3: Multiple antenna technologies.

2.2 Introduction to Multiple Antenna Systems

Multiple antennas technologies proposed for cellular systems have gained much atten-

tion in the last few years because of the huge gain they can introduce in the com-

munication reliability and the channel capacity levels. Furthermore, multiple antenna

systems can have a big contribution to reduce the interference both in the uplink and

the downlink by employing smart antenna technology. To increase the reliability of the

communication systems, multiple antennas can be installed at the transmitter or/and

at the receiver. Such systems are called multiple-input multiple-output (MIMO). Each

transmit antenna can be viewed as a mouth and each receive antenna as an ear. The

extra mouths and ears can be used for diversity or multiplexing. Fig. 2.3 summarizes

the different multiple antenna technologies and gives some examples of these technolo-

gies. In Fig. 2.3 multiple antenna technologies are categorized into two main groups.

In the first group the techniques related to spatial diversity and spatial multiplexing,

and in the second group the smart antenna techniques are introduced. The advantages

of multiple antenna in gaining transmission efficiency can be boosted by combining the

two groups in Fig. 2.3. For example in [44], a transmission scheme that effectively

combines conventional transmit beamforming with orthogonal spacetime block coding

is proposed, where numerical results demonstrates significant gains over a system using
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conventional beamforming systems.

2.2.0.1 Spatial (antenna) Diversity

Figure 2.4: transmission comparison of single-antenna and multi-antenna. With a
single antenna, The signal propagates in all directions (and most directions will not
lead to the user). With multiple antennas, the signal can be directed towards the
users (called beamforming). Multiple signals in parallel can be sent using different
beamforming (called multiplexing).

The multi-path propagation between each pair of transmit and receive antennas

will be different. This creates a diversity of routes that the transmitted signal can

travel to the destination. The strongest signal will be carried in one of these routes

and should be used for transmission. Certainly, better performance will be achieved

by selecting the best route out of many possibilities, compared with the single antenna

case that we are stuck with only one possibility. The result can be viewed as speaking

with many mouths in such a way that the voice is directed towards the user and using

the ears to listen carefully in this direction. Note that the best route is usually not to

select one antenna/mouth at the transmitter and one antenna/ear at the receiver, but

to combine all of them in a smart way to achieve one strong voice that is easy to hear.

This directing is called beamforming since it forms a directed signal beam towards the

receiver, instead of sending in all directions as with a single antenna; see Fig. 2.4.

2.3 Spatial Multiplexing

Instead of using only the best route as in the diversity case, MIMO techniques can

be used to send multiple data signals in parallel. If each transmit antenna can be
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viewed as a mouth and each receive antenna as an ear, then the idea can be viewed

as listening to different voices with each ear, this is called multiplexing. It can be

achieved by directing the signals toward different ears using the beamforming idea in

Fig. 2.4. To multiplex four data signals, both the transmit antenna and the receive

antenna need to have four antennas, it is the minimum of the number of transmitters

and the number of receivers that decides how many signals that can be multiplexed.

It is not obvious whether the antennas should be used to achieve diversity or to

perform multiplexing, or a little bit of both. Diversity reduces the risk of errors in

the transmission (since all ears are focused on the same signal), while multiplexing

increases the total data rate (since ears are listening to different signals). Beamforming

requires knowledge of how the channel behaves; otherwise the desirable beam direction

will remain unknown. Therefore, multiplexing is preferred if the channel knowledge

is accurate, while diversity can protect against inaccuracies. How to perform reliable

transmission, robust to imperfection in channel knowledge is the main topic of this

thesis.

The advantages of multi-antenna transmission all depend on whether the channels

from each transmit antenna to each receive antenna experience different multi-path

propagation (i.e., the signals travel different routes). This is not necessarily the case:

if the transmitter and receiver are located in a tunnel that acts like a waveguide, there is

basically just one route between them irrespectively of how many antennas we employ.

Fortunately, such closed environments are rare in practice. Instead, the important

thing is that the antennas are sufficiently separated to be able to observe different

signal routes. The wavelength decides what is a good separation, and it is short when

the frequency is high and vice versa. For frequencies in the range of 0.7-5 GHz, a

good separation is one or a few decimeters. Thus, we can expect the next generation

of communication systems to employ, for example, two antennas in hand-held devices,

up to four antennas in laptops, and perhaps even more at the base stations (which are

less size-constrained). Of course, there will always be some similarities between the

antennas; this is called spatial correlation. Geometrically, it means that transmissions

in some spatial directions are more probable to arrive at the receiver and that the

receiver is more probable to hear strong signals from certain directions. This behavior

is natural; if the base station is placed on a roof top, it is probably better to use

beamforming to send signals along a street leading towards the receiver than to send

it in a completely different direction.
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2.4 Smart Antenna Systems

Smart antenna was born in the early 1990 when well developed adaptive antenna arrays

originate from Radar system. Later, Smart antenna technique is applied in wireless

communications system. Recently, Smart antenna technique has been proposed as a

promising solution to the future generations of wireless communication systems, such

as the Fourth-Generation mobile communication systems, broadband wireless access

networks, where a wide variety of services through reliable high-data rate wireless

channels are expected. Smart antenna technique can significantly increase the data

rate and improve the quality of wireless transmission, which is limited by interference,

local scattering and multi-path propagation [45, 46]. Smart antennas offer the following

main applications in high data-rate wireless communication systems [47]

• Spatial Diversity

• Co-channel interference reduction

• Angle reuse or space division multiple access (SDMA)

• Spatial multiplexing

Smart antenna system can be categorized into two main groups:

• Switched array systems (switched beamforming) with a finite number of fixed,

predefined patterns or combining strategies (sectors)

• Adaptive Array systems (AAS) (adaptive beamforming) with an infinite number

of patterns (scenario-based) that are adjusted in real time

Switched beamformers electrically calculate the direction of arrival (DoA) and switch

on the fixed beam. The user only has the optimum signal strength along the center of

the beam. The adaptive beamformer deals with that problem and adjusts the beam

in real time to the moving user equipment (UE). The complexity and the cost of such

a system is higher than the first type. To match the characteristics in each radio

frequency chain of the transmitter and receiver, on-line calibration is required in smart

antenna systems. On-line calibration technique can compensate the errors such as

the distortions of radio frequency components due to small environment changes, the

nonlinear characteristics of mixer, amplifier and attenuator, I/Q imbalance errors, etc.
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2.4.1 Beamforming

Beamforming is a signal processing technique that is used to steer a signal from a set

of non-directional antennas into a certain direction. By combining the signals of these

antennas a new simulated antenna is created. This simulated antenna can then be

electrically pointed in a certain direction, without physically moving the real antennas

[48]. Previously a lot of work has been done in the area of beamforming. Initially, not

intended for telecommunications, beamforming algorithms found there place in this

area as well. Later on, when the theory was further developed for the use of cellular

networks, many excellent works were created that describe beamforming for space divi-

sion purposes in mobile communications1. Cox, 1987 [53] was one of the first to develop

an adaptive beamforming strategy, similar to ones used in contemporary works. A lot

of problems with wireless networks result from environmental or external conditions

that interfere with or completely destroy communication paths. Exploring the concept

of spatial selectivity opens new opportunities for performance improvements. An ideal

situation would be if the base station had perfect knowledge of the exact user locations.

An infinite precision in space may lead to the formation of single narrow beams. Such

a configuration is impossible in a real situation, with no feasible hardware to make

that precision, but still this idea gives some powerful insight of what could be done to

benefit the mobile air interface.

Introduction of antenna arrays and an adaptive algorithm, made it possible to

calculate and create different radiation patterns. This operation is called beamforming.

The variable patterns follow from spatial constructive and destructive interference of

the signal wavefront in different directions. Feeding of different antenna elements with

a phased signal results in pattern change. Such a procedure generally steers the main

lobe in the plane, where the elements are arranged, and eventually steers the nulls as

well. Furthermore, a large variety of possible patterns can also be achieved by changing

each element’s signal amplitude [56]. By dynamically varying both according to some

algorithms the array turns into an adaptive one. The adaptive antennas are used for

mobile communications nowadays are two dimensional arrays, as shown on Fig. 2.5.

Generally, in the vertical plane elements are ordered in columns and fed with the

same amplitude and phase to form a vertical pattern with a narrow beam. Such a beam

is needed for each antenna to focus its radiation to the surface of the surrounding area.

In the horizontal plane the antenna can be seen as a horizontal array of columns. The

signal arriving at, and departing from them is predistored using an adaptive algorithm.

The idea is to change the amplitudes and phases of the signals in the different element

1Examples include [12, 27, 49–55] and many others

15



Chapter 2: Principles and Concepts

Figure 2.5: Two dimensional antenna array [2]

columns. This can be interpreted as a multiplication with complex coefficients from the

base-band signals point of view. This results in steering of the main lobe in azimuth

(horizontal plane) so that its peak can target a particular user in the cell. The adaptive

algorithm has to calculate the best complex coefficients achieving which is achieved with

regard to the user locations. Moreover, in order to not cause interference towards other

users, the pattern nulls have to be pointed in their directions. Such a procedure aims

to achieve interference rejection and spatial filtering. The adaptive antenna arrays

together with the adaptive processing unit are called Smart Antennas or Adaptive

Antenna Systems. Conventional directional antenna for mobile communications, a

beamforming antenna, and its typical design sketch are shown On Fig. 2.6. It can be

seen from 2.6(c) that the beamforming antenna is wider in size, as it contains a number

of conventional antennas inside its radome.

The proper formation of the beams requires knowledge of user’s locations. Location

detection techniques using electronic scanning with antenna arrays are considered a

mature technology, and have been heavily developed over the last decades. Mainly for

military purposes and satellite communications, and have been recently introduced in

cellular networks as well. Many excellent texts, such as [57], give a detailed description

of various location techniques. They are usually coined as estimation of direction

of (signal) arrival (or angle of arrival). The idea is to find the angle between the

user’s location and BS and the antenna boresight. The antenna boresight is the plane
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Figure 2.6: a) Conventional antenna for cellular communications b) Beamforming an-
tenna c) Sketch of the structure of a beamforming antenna [2]

perpendicular to the antenna surface. The base station has to respond to the user in

the same direction where its signal came from. Therefore in the downlink transmission

the angle of departure (AoD) has to be the same as the direction of arrival for the

specific user. AoD is a more common term in the standardization documents of 3GPP

and their technical report 25.996 assesses issues like AoD and spatial channel models

[58]. Fig. 2.7 depicts this angle. The arrays used for BSs are assumed to be equidistant,

i.e., distance between each two adjacent elements is equal to d. To find θ, the distance

has to be: d ≤ λ
2
. Increasing the distance between the antenna elements, increases the

sidelobes as well. When d = λ
2
a critical point is reached. New parasite sidelobes named

grating lobes appear as d grows further, and are a result of spatial undersampling of the

transmitted/received signal. Grating lobes lead to ambiguities in the directions of the

departing/arriving signals, since parasite copies of these signals replicate themselves in

space in unwanted directions.

The next key component needed for beamforming is the channel state information

(CSI). The base station needs CSI to be aware of the radio environment features-path

loss, fading, etc. (Independent of beamforming, CSI has other uses as well, for example

choosing the best coding and modulation scheme). Precoding in digital systems is done

by applying complex weighting to the signal before radiating it in the air. Without

loss of generality it is assumed that in every antenna element branch, the signal has
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Figure 2.7: Direction of Arrival

two components: in-phase (I) and the shifted by 90 ◦ quadrature one (Q). The signal

in each is scaled by a factor. This is equivalent to multiplication of the complex signal

samples (I+jQ) with a set of complex numbers (beamforming weights). Let us assume

that the signal we want to transmit with M antennas is sT ∈ CM , and the weights are

represented with the vector w ∈ C
M . Therefore, the resulting output is

x =

M∑

i=1

wisi. (2.1)

Many different algorithms with a different degree of precision have been used so far

for finding the beamforming vectors w. All of them are based on having the CSI

available at the transmitter. Channel estimation techniques can be found in [59–

65] and references therein. Finding the optimal CSI is a mathematical optimization

problem, which is further discussed in Section 2.7.2.

2.5 Inter-Cell Interference in LTE

A cellular network consists of a large number of cells and each user connects to the

closest base station (i.e., the one with the strongest channel). There are invisible edges

between each cell where user devices switch between the corresponding base stations.
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The activities in one cell will be affected by activities in neighboring cells. For example

when two users are next to each other, but at different sides of the cell edge, i.e., belong

to different cells, are served in parallel ( at the same subchannel), their respective data

signals will cause severe interference to each other; see Fig. 2.8. Present LTE systems

suffer greatly from this problem. Examples of coverage (downlink received levels), and

downlink data rate predictions of a real LTE network are shown in Figs. 2.9 and 2.10

[3]. The base stations are indexed as A-J. It can be seen clearly that in the cell-edge

areas, despite of a high received signal power level, the throughput is very low, the

deep blue color in Fig. 2.10 shows these areas. Hence, there needs to be some kind

of coordination of resource allocation between adjacent cells. Preventing the adjacent

cells to use the same subchannels would be the simplest coordination scheme. This

will basically remove the interference between cells, but leads to poor exploitation

of the scarce frequency resources. Multi-antenna transmission enables more intricate

coordination schemes where base stations avoid allocating the same time/frequency

resource to adjacent users at the cell edge; see Fig. 2.11. Such schemes require that

base stations share decisions with neighboring base stations. In addition, each base

station needs to know the channels to all users in adjacent cells that they might cause

interference to.

Figure 2.8: Uncoordinated Multi-cell: Strong interference might be caused to cell edge
users.

In addition to interference avoidance, multi-cell coordination can also be used to

jointly serve certain users through multiple base stations and thereby remove the strict

cell edges. Joint transmission to a user is called coordinated multipoint (CoMP) trans-

mission and will ideally make all the cells act as just one cell (with transmit antennas

at different locations). This has great potential as it makes the the number of parallel

data signals limited by the total number of antennas (mouths) at all base stations.

But just as every other advanced transmission scheme, CoMP transmission requires
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Figure 2.9: Received downlink signal level (dBm) [3]

Figure 2.10: Downlink peak throughput per user (Mb/s) [3]

Figure 2.11: Coordinated Interference: Base stations cooperate by only sending parallel
transmissions to users in different directions.
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very accurate channel knowledge and good backhaul networks between base stations

to enable fast coordination.

2.6 Coordinated Multipoint Transmission in LTE-

Advanced

CoMP is widely regarded as a technique that will increase data transmission rates

and help ensure consistent service quality and throughput on LTE wireless broadband

networks as well as on 3G networks. By coordinating and combining signals from

multiple antennas, CoMP, will make it possible for mobile users to enjoy consistent

performance and quality when they access and share videos, photos and other high-

bandwidth services whether they are close to the center of an LTE cell or at its outer

edges. This feature can be implemented in both downlink and uplink. A short and

precise presentation of CoMP can be found in [66].

CoMP processing schemes are generally divided into Joint Processing (JP) and

Coordinated Scheduling/Coordinated Beamforming (CS/CB).

In JP a number of BSs transmit towards a single mobile user (MS) and the MS data

has to be available at each BS. A major drawback of JP is the backhaul between the

coordinated transmission points because every station has to receive the user informa-

tion and also has to exchange its CSI with all of the neighboring stations, in due time.

A more backhaul friendly type of CoMP, which is the focus of this thesis is coordinated

beamforming (CB), because transmission takes place at one base station only, so there

is no need to exchange the user data. The only requirement is to exchange user loca-

tions and their channel parameters. Example scenarios of coordinated beamforming

and joint transmission are shown in Fig. 2.12. Generally successful beamforming is

Figure 2.12: a) Coordinated beamforming b) Joint transmission

not always possible, because it heavily depends on user locations. If users are too close
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to one another or are located at the cell edges or two or more of them are aligned

towards a particular BS, the required transmit power to serve them would go very

high. In these situations, whenever one station is increasing its level to serve its own

user it will automatically cause interference to the other users due to their proximity

of alignment. This results in a demand for more power, radiated towards the second

user, which would increase the interference imposed on the first one. Whenever this

happens, scheduling 1 is needed to enable both users to operate properly. This is why

CB is having a scheduling counterpart as well and the whole strategy is called CS/CB.

In the rest of this project, we use the term CB instead of CS/CB for convenience and

that the focus is only on the beamforming aspects of transmission.

2.6.1 Centralized and Decentralized in CoMP

Depending on where the coordination procedure takes place, the solution may be cen-

tralized or distributed. In centralized CoMP systems, cooperative BSs should be con-

nected with a central processing unit (CU) by low latency backhaul links [68, 69].

Under such a framework, each user feeds back its CSI to its local BS, and then the CU

collects CSI from all BSs through backhaul links. With CSI of all users at CU, the cen-

tralized CoMP systems enable globally optimal cooperation among BSs, which however

pays the penalty of increasing infrastructural costs, unaffordable feedback overhead and

difficulty of network upgrading. In currently deployed cellular systems and emerging

mobile standards, the backhaul latency is in an order of 10 to 20 milliseconds [70].

This leads to severe performance deterioration of multi-user multiple-antenna CoMP

systems. Hence, recently considerable research has been directed towards the decen-

tralization of CoMP in order to cope with the drawbacks of the centralized CoMP

systems [71–74]. Furthermore, CoMP requires the provision of full CSI at the trans-

mitter, i.e., CSIT, in order to effectively design downlink beamforming towards the end

user terminals. Yet, the CSI at the transmitter might not be perfect, due to various

reasons such as uncertainties from channel estimation, feedback delay and quantiza-

tion errors between a user and the BS. The CoMP designs based on the assumption of

perfect CSIT may yield unpredictable results in practical scenarios where the captured

CSIT may be imperfect. Hence, robustness against CSI errors in conjunction with

distributiveness is another key consideration in achieving the promised gains of CoMP.

1As previously mentioned the frequency reuse factor of the LTE-advanced systems is one, which
means that all BSs use the whole available spectrum. A scheduler is used to avoid ICI by allocating,
based on some parameters, orthogonal time or frequency resources to different MSs. Since scheduling
is out of the scope of this project, the reader is recommended to read [67] for more information
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2.6.2 Robust Signal Processing under Model Uncertainties

Figure 2.13: Conventional approach to deal with model uncertainties: Treat the es-

timated parameters and the model as if they were true and perfectly known. The

parameters for the signal processing algorithm are optimized under these idealized

conditions [4].

Figure 2.14: Different design paradigms and their sensitivity to the size of the model

uncertainty or the parameter error [4].

The design of adaptive signal processing relies on a model of the underlying physical

technical system. The choice of a suitable model follows the traditional principle: it

should be as accurate as necessary and as simple as possible. Typically, with the

model complexity, the complexity of signal processing algorithms increases. On the

other hand the performance degrades in case of model-inaccuracies. For example, the

following practical constraints lead to an imperfect characterization of the real system:

• To obtain an acceptable complexity of the model, some properties are not modeled

explicitly.

• The model parameters, which may be time-variant, have to be estimated. Thus,

they are not known perfectly.
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Figure 2.15: General approach to robust optimization of signal processing algorithms
under model uncertainties and two important special cases [4].

Often a pragmatic design approach is pursued (Fig 2.13) which is characterized by two

design steps:

• An algorithm is designed assuming the model is correct and its parameters are

known perfectly.

• The model uncertainties are ignored and the estimated parameters are applied

as if they were error-free.

It yields satisfactory results as long as the model errors are “small”. A robust algo-

rithm design aims at minimizing the performance degradation due to model errors or

uncertainties. Certainly, the first step towards a robust performance is an accurate

parameter estimation which exploits all available information about the system. But

in a second step, we would like to find algorithms which are robust, i.e., less sensitive,

to the remaining model uncertainties.

Sometime suboptimum algorithms turn out to be less sensitive although they do

not model the uncertainties explicitly; they give a fixed robust design which cannot

adapt to the size of uncertainties (Fig 2.14).
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An adaptive robust design of signal processing yields the optimum performance for

a perfect model match (no model uncertainties) and an improved or in some sense op-

timum performance for increasing errors (Fig 2.14). Conceptually, this can be achieved

by

• defining a mathematical model of the considered certainties and

• constructing an optimization problem which includes these uncertainties.

Practically, this corresponds to an enhanced interface between system identification

and signal processing (Fig 2.15(a)). Now, both tasks are not optimized independently

from each other but jointly.

In this thesis, we focus on two important types of uncertainties in the context of

wireless communications:

• Parameter errors with stochastic error model,

• Parameter errors with a deterministic error model.

The two underlying design paradigms are depicted in Fig 2.15(b) and 2.15(c), which

are special case of the general approach in Fig 2.15(a); the first clearly shows the

enhanced interference compared to Fig 2.13 and is suitable for treating parameter errors

(2.15(b)). The second version guarantees a worst-case performance for the uncertainty

set C employing a maxmin or minimax criterion; in a first step, it chooses the least-

favorable model or parameters in C w.r.t the conventional optimization criterion of

the considered signal processing task. Thus, optimization of the algorithm is identical

to Fig 2.13, but based on the worst-case model. In important practical cases, this is

identical to the problem of designing a maximally robust algorithm.

Finally, let us emphasize that the systematic approach to robust design has a long

history and many applications; since the early 1960s robust optimization has been

treated systematically in mathematics, engineering, and other sciences.

2.6.3 Imperfect Knowledge of Wireless Channels and Related

Works

The benefits promised by the earlier mentioned beamforming scheme depend upon the

quality of the channel state information. The fast varying wireless environment, in

combination with often very stringent delay constraints, makes the provision of perfect

CSI extremely difficult. Mostly it is assumed that the receive side may obtain this
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knowledge through pilot transmission process in which a set of certainly known data

is transmitted towards the receiver [75], [76]. This process is inherently erroneous. At

the transmitters, some additional obstacles appear. In time-division-duplex (TDD)

systems, the transmitter might be able to exploit the channel reciprocity. This means

using estimated channels from the phase where it operated as a receiver. Other option

is the supply of CSI from the receiver using feedback channels. In both scenarios, the

rapidly changing wireless environment can result in outdated estimates. Furthermore,

the feedback links are typically of limited capacity [77], which increases the uncertainty

in the CSI at the transmitter.

It is well-known that imperfect CSI can significantly degrade the system perfor-

mance [40, 41, 53, 75, 78, 79]. In other words, designing beamforming vectors based on

perfect CSI can violate the promised quality-of-service (QoS) at users end. Therefore,

designing beamforming vectors which are robust to imperfect CSI is a task of great

practical interest. To cope with imperfect CSI, the paradigm of robust optimization

has been employed. There are various ways to introduce robustness to CSI errors in

wireless systems. For example, the limited feedback channels have attracted a lot of

attention recently [80]. In this approach, the receiver uses estimates of the channel to

inform the transmitter by quantizing either the channel coefficients themselves or the

required properties of the transmitted signal [77, 81, 82]. The accent in the work on

limited feedback is put either on vector quantization of the channel or on construction

of precoding codebooks.

Downlink beamforming techniques have been implemented in many modern wire-

less communications standards such as the WiMAX, LTE, and LTE-A [83, 84]. As

a result multi-user downlink beamforming has become an active area of research in

recent years (see for example [78]] and the references therein). There are a number of

beamforming techniques that have been developed assuming the availability of perfect

CSI. In the schemes of [30, 31, 85–87] the availability of perfect instantaneous CSI at

the transmitter is considered. On the other hand, in this thesis, contrary to the related

work in the literature which is mainly based on the assumption of perfect channel state

information at both transmitter and receiver, we will focus on robust transmission.

Furthermore, when imperfections in CSI occur due to channel estimation errors, it will

be assumed that the CSI errors have certain properties, either in terms of shapes of

uncertainty regions, or statistics. The model is, therefore, quite general. The main goal

is the provision of some QoS targets despite the channel uncertainty. For this problem

formulation, optimization based on worst-case or based on chance-constraints are two

methodologies of particular interest. One of the oldest, well-established approaches in
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robust designs is the worst-case philosophy [88]. In worst-case methods, one usually

assumes that the errors in channel knowledge are bounded. Typically, no statistical

assumption on the mismatch is needed, which indeed might not exist. The aim is to

optimize the system to guarantee certain performance for all channels from the uncer-

tainty regions. Recently, there has been a number of applications of this concept in

wireless communications. The modern treatment of the robust beamforming started

with the seminal works of Bengtson and Ottersten [17, 49]. In these works, the authors

used the worst-case design approach to guarantee the performance of the beamformer

even when the least favorite channel realizations are occurring. The authors recast

the original formulation to be in a semidefinite optimization form and then relaxed

it to be convex. It is noteworthy that this way of treatment had a great impact for

upcoming research in this area, as the semidefinite relaxation is an important tool,

and is adopted in many beamforming research papers afterwards. Robust worst-case

approach, applying semidefinite optimization for point-to-point MIMO channels, have

been developed in [89, 90]. Robust designs with SINR as a QoS measure were devel-

oped in [91–96]. Worst-case approaches present a convenient framework for modeling

quantization errors, since these errors are normally bounded. They are also appropri-

ate for handling slow fading channels, where no sufficient statistics for the averaging is

available [97]. However, the requirement to satisfy some goals for all uncertain channels

from a specified region might sometimes lead to designs which are overly conservative.

Furthermore, the CSI errors are often unbounded. The most prominent example is

the channel estimation process. The estimation errors are typically modeled as ran-

dom variables with the Gaussian distribution. In the unbounded case, it is usually not

possible to guarantee any QoS targets with an absolute certainty. The idea to exploit

statistical properties of the CSI error, if they exist, and require the fulfillment of some

performance targets with certain probabilities, leads to the concept of probabilistically

constrained (also coined as chance constrained, or outage based) signal processing

[98, 99]. The knowledge about the error might be more precise, as in the case when

the exact distribution is available. Sometimes, however, only some parameters, like the

error covariance matrix, could be provided. The first applications of these ideas in the

contexts of estimation theory and wireless communications have been proposed recently

in [24, 100–103]. Most of the problems in this young area remain open though. There

exists also a related group of stochastic (or Bayesian) robust designs which exploit the

statistical information about the error and improve the average performance of the

system. Relied on the knowledge of statistical distribution of uncertainty in channel

covariance, and under the constraint that the outage probability does not exceed, the
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total downlink transmmit power is minimized in [24]. Later, a sub-optimal method

based on SDP that guarantees the probabilistic SINR requirements was proposed in

[104].

In [52, 105], for a MISO system, the problem of minimizing the sum transmit power

in the network subject to QoS constraints was examined. A novel S-procedure method

was presented to solve the robust multi-cell downlink problem [52].

2.7 Mathematical Preliminaries

2.7.1 Introduction

Convex optimization, a subfield of optimization, which includes least-squares and linear

programming problems, studies the problem of minimizing convex function over convex

set. It is well known that least-squares and linear programming problems have a fairly

complete theory, arise in a variety of applications, and can be solved numerically very

efficiently.

Several related recent developments have stimulated new interest in convex opti-

mization. These new methods allow us to solve certain new classes of convex opti-

mization problems, such as semidefinite programs and second-order cone programs,

almost as easily as linear programs, i.e., a program with linear objective function and

linear/affine constraints.

There are great advantages to recognizing or formulating a problem as a convex op-

timization problem. The most basic advantage is that the problem can then be solved,

very reliably and efficiently, using interior-point methods or other special methods for

convex optimization. These solution methods are reliable enough to be embedded in

a computer-aided design or analysis tool, or even a real-time reactive or automatic

control system.

This Section concisely reviews concepts of convex optimization. Linear program-

ming, and semidefinite programming (SDP) methods, together with its application for

solving the problem of multi-user beamforming in a single-cell scenario are discussed.

Finally a description of Lagrange duality in convex optimization is given. The concepts

presented in this chapter are beneficial to the developments of beamforming schemes

introduced in Chapters 3, 4 and 5. Readers interested in convex optimization and

applications of convex optimization in communications are referred to [106], [107] and

[108] for more details.
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2.7.2 Convex Optimization

A convex program is an optimization problem where we seek the minimum of a convex

function over a convex set. Its objective function as well as the constraints are convex.

Convex optimization problems often occur in signal processing, communications, struc-

tural analysis and many other fields. Convex problems can be solved numerically with

great efficiency and global optimums can be obtained. Efficient interior-point methods

are available for the solution of convex optimization problems. However, the difficulty

is often to recognize convexity; convexity is harder to recognize than say, linearity.

One important feature of convexity is that it is possible to address difficult, nonconvex

problems (such as combinatorial optimization problems) using convex approximations

that are more efficient than classical linear ones. Convex optimization is especially

relevant when the data of the problem at hand is uncertain, and robust solutions are

sought.

2.7.2.1 Convex Set

A convex set C is the region such that, for every pair of points within the region C,

every point on the straight line segment that joins the pair of points is also within the

C, i.e., if for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ) x2 ∈ C. (2.2)

Figure 2.16: Some simple convex and non-convex sets

Some simple convex and non-convex sets is shown in Fig. 2.16. The hexagon

including its boundary is a convex set whereas the kidney shaped set is not convex,

since the line segment between the two points is partly not contained in the set.
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2.7.2.2 Convex Functions

A function f : Rn→ R is convex if the domain of f is a convex set and if for all x, y

that belong to the domain of f and for any 0 ≤ θ ≤ 1, we have

f (θx+ (1− θ) y) ≤ θf (x) + (1− θ) f (y) . (2.3)

Geometrically, the inequality 2.3 can be interpreted as a line segment between (x, f(x))

Figure 2.17: Graph of a convex function

and (y, f(y)) that lies above the graph of f , Fig 2.17. A function f is strictly convex

if strict inequality holds in 2.3 whenever x 6= y and 0 < θ < 1. f is said to be concave

if −f is convex, and strictly concave if −f is strictly convex. Examples of convex

functions are

• The exponential function f(x) = eax is convex on R, for any a ∈ R.

• Function f(x) = |x|p, for p ≥ 1, is convex on R.

• Function f(x) = xa, for a ≥ 1 or a ≤ 0, is convex on R++.

2.7.2.3 Convex Optimization Problem

The generic standard form of an optimization problem [109] is as follows

min
x

f0(x)

subject to fi(x) ≤ 0, i = 1, 2, .., m,

hi(x) = 0, i = 1, 2, .., p,

(2.4)

where x ∈ Rn is the optimization variable, f0 : Rn→ R is the objective function,

fi : R
n → R, i = 1, 2, .., m, are the inequality constraint functions, and hi : R

n → R,
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i = 1, 2, .., p are the equality constraint functions. This notation is to describe a

problem which tries to find the minimum value of the objective function f0(x) subject

to m and p inequality and equality constraints, respectively.

In its standard form, a convex optimization problem can be expressed as

min
(x)

f0(x)

subject to fi(x) ≤ 0, i = 1, 2, .., m,

aT
i (x) = bi, i = 1, 2, .., p,

(2.5)

where f0, f1, ..., fm are convex and ai and bi, i = 1, 2, .., p, are fixed parameters.

The convexity is often considered as a criterion that separates efficiently solvable

from difficult optimization problems. Almost all convex problems can be solved, either

in a closed form or using iterative algorithms. Some classes of them have very efficient

numerical solutions.

2.7.3 Linear Programming

Linear programming (LP) is a considerable field of optimization. Many practical prob-

lems in operations research can be expressed as linear programming. An optimization

of a linear objective function, subject to linear equality and linear inequality constraints

can be expressed in canonical form as:

min fTx

subject to Ax ≤ b

and x ≥ 0

(2.6)

where the vector x is a variable to be determined, c and b are vector of coefficients, A

is a matrix of coefficients. Solving linear programs are reliable and computation time

proportional to n2p if p ≥ n.

More special cases of convex optimization problems that are mostly used in sci-

ence and technology, namely, Second Order Cone Programming (SOCP) problems and

Semidefnite Programming (SDP) problems. In this thesis we mostly focus on SDPs,

as the objective and constraints of beamforming design problems are stated using this

problem.
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2.7.4 Semidefinite Programming

In a SDP we minimize a linear function of a variable xR\ subject to a matrix inequality.

The standard form of a SDP is defined as [34, 106]:

min
x

fTx

subject to A(x) � 0
(2.7)

where

A = A0 +

n∑

i=1

xiAi (2.8)

is a Hermitian matrix that depends affinely on x and the n× n Hermitian matrix Ai,

∀1 ≤ i ≤ n, is deterministic data.

SDP unifies several standard problems (e.g., linear and quadratic programming)

and finds many applications in engineering and combinatorial optimization. Although

SDP problems are much more general than LP problems, they are not much harder to

solve. Most interior-point methods for LP have been generalized to SDP problems. As

in LP, these methods have polynomial worst-case complexity, and perform very well in

practice.

The dual problem associated with the SDP (2.7) is [110]

max
Z

− Tr (A0Z)

subject to Tr (AiZ) = fi, i = 1, 2, · · · , n
Z = ZH � 0.

(2.9)

The dual problem (2.9) is also a SDP, i.e., it can be cast in the same form as the

primal problem (2.7). For simplicity, we assume that the matrices A1,A2, · · · ,An are

linearly independent. Then the affine set Tr(AiZ) = fi, ∀i can be expressed in the

form:

{G(y) = G0 + y1G1 + · · ·+ ypGp} (2.10)

where p = m(m+ 1)/2− n and Gi are appropriate matrices. Defining

d =
[
Tr(F0G1) Tr(F0G2) · · · Tr(F0Gp)

]T
.

Hence,

dTy = Tr (F0[G(y)−G0]) .
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Therefore, the dual problem (2.9) becomes

min
y

dTy

subject to G(y) � 0
(2.11)

which is a standard SDP form defined in (2.7). This concludes that the problem (2.9)

is also a SDP.

Many convex optimization problems, e.g., LP and (convex) quadratically con-

strained quadratic programming, can be cast as SDP problems, so SDP offers a unified

way to study the properties and derive algorithms for a wide variety of convex opti-

mization problems. Most importantly SDP problems can be solved more efficiently,

both in theory and in practice.

The SeDuMi solver [111] is a common optimization packet that can be used to solve

SOCP and SDP. An elegant Matlab-based modeling system for convex optimization,

i.e., CVX which supports the SeDuMi solver, has been developed by Michael Grant

and Stephen Boyd [112].

The complexity of SeDuMi solver is given in [113] as follows

• Asymptotic computational complexity. Let n be the number of decision

variables and m the number of rows of the LMIs. The computational complexity

of SeDuMi (including main and inner iterations) is in O (n2m2.5 +m3.5) while

the algorithm in [114] has a complexity O (n3m). The former algorithm is more

efficient for problems with a large number of variables. This is of major interest

when solving large scale problems or when implementing LMI-based iterative

algorithms as in [115–118].

For more details on convex optimization, or interior-point methods and their com-

plexity analysis interested readers are referred to [106]

2.7.5 Multi-user Downlink Beamforming Algorithm

Consider a base station (BS) equipped with an array ofM antenna elements tra’nsmitting

to U single-antenna users. The signal received by an user i, i.e., yi, i ∈ {1, · · · , U}, is
given by

yi = hiwisi +
U∑

j=1,j 6=i

hiwjsj + ni (2.12)

where hi ∈ C1×M is the MISO vector channel between user i and the BS, wi ∈ CM×1

represents the beamforming vector for user i, si is the intended symbol for user i
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and finally ni is the zero mean circularly symmetric complex Gaussian (ZMCSCG)

random variable, i.e., ni ∼ N(0, σ2), modeling the additive white Gaussian noise at the

receiving point of user i. Without loss of generality, assuming that E
(
|si|2

)
= 1, ∀i.

The signal-to-interference-plus-noise ratio for any user i is expressed as

SINRi =
|hiwi|2∑U

j=1,j 6=i |hiwj|2 + σ2
. (2.13)

A common class of optimal transmit downlink beamforming for multiple users is to

find a set of wi that minimizes the total transmit power while guaranteeing all users’

SINR requirements γi, ∀i:

min
wi

U∑

i=1

wH
i wi

subject to
|hiwi|2∑U

j=1,j 6=i |hiwj|2 + σ2
≥ γi, ∀1 ≤ i ≤ U.

(2.14)

For simplicity, it is assumed that the set of γi in (2.14) is feasible. It can be verified

that the SINR constraints in (2.14) are non-convex. In the next section, a technique

to reformulate (2.14) in Semidefinite relaxation (SDR) form is presented.

2.7.6 Semidefinite Relaxation Algorithm

The introduction of the SDR technique in early 2000s has provided a capability of

obtaining accurate, and sometime near optimal, approximation convex forms from

non-convex problems, see [119], [120] and references therein. This section illustrates a

method to cast (2.14) in a convex form using the SDR technique.

Let Ri = hH
i hi and Fi = wiw

H
i . It is clear that Fi, ∀1 ≤ i ≤ U , is a positive

semidefinite and Hermitian matrix. Further more the rank of the matrix is one. The

multiuser downlink beamforming problem in (2.14) can be expressed as

min
wi

U∑

i=1

wH
i wi

subject to
wH

i Riwi∑U
j=1,j 6=iw

H
j Riwj + σ2

≥ γi, ∀1 ≤ i ≤ U.

(2.15)

Using the following equality:

xHAx = Tr
(
AxxH

)
. (2.16)

34



Chapter 2: Principles and Concepts

If A = I then

xHx = Tr
(
xxH

)
. (2.17)

Rearranging the ith SINR constraints of (2.15), we arrive at

(
1 +

1

γi

)
Tr (RiFi)−

∑

j=1,j 6=i

Tr (RiFj)− σ2 ≥ 0. (2.18)

The problem (2.15) can be rewritten as

min
Fi

U∑

i=1

Tr (Fi)

subject to
1

γi
Tr (RiFi)−

∑

j=1,j 6=i

Tr (RiFj)− σ2 ≥ 0,

Fi = FH
i � 0,

rank (Fi) = 1, ∀1 ≤ i ≤ U.

(2.19)

The second constraints in (2.19) is to guarantee that Fi, ∀1 ≤ i ≤ U , is a posi-

tive semidefinite and Hermitian matrix. Dropping the last constraints in (2.19), i.e.,

rank (Fi) = 1, results in a SDP form, i.e.,

min
Fi

U∑

i=1

Tr (Fi)

subject to
1

γi
Tr (RiFi)−

∑

j=1,j 6=i

Tr (RiFj)− σ2 ≥ 0,

Fi = FH
i � 0, ∀1 ≤ i ≤ U.

(2.20)

Dropping these rank one constraints not only enlarges the feasible set of the problem

(2.19) but also leads to a relaxed SDP problem. This relaxation is referred to as

semidefinite relaxation technique. For general nonconvex quadratic problems, solving

a SDR problem usually gives an optimal solution with rank of larger than one. In

such cases, SDR can only provide a lower bound on the optimal objective function and

possibly attain an approximate solution to the original problem [120]. When using

SDR results in Fi solutions with ranks higher than one, a randomization procedure,

e.g., see [119], [121] and [86], can be used to find approximate rank-one solutions.

Since (2.14) has a specific structure that it can be turned into a convex form, strong

duality holds for (2.14). Furthermore, it can be shown that the SDR of (2.19), i.e.,
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(2.20), is the Lagrangian dual of (2.14) [120]. Therefore, (2.20) is exactly equivalent

to the original problem (2.14). This fact has been confirmed in [49]. The authors of

[49] noticed that the solution to (2.20) always admits rank-one matrices Fi, ∀i, which
directly yields the solution to (2.14) using Fi = wiw

H
i .

2.7.7 The Lagrange dual function

This section reviews main steps for Lagrangian duality in convex optimization for

single-cell-multi-user beamforming.

We define the Lagrangian associated with the problem (2.14) as

L(wi, λi) =

U∑

i=1

wH
i wi +

U∑

i=1

λi

[
U∑

j=1,j 6=i

|hiwj |2 + σ2 − 1

γi
|hiwi|2

]

=
U∑

i=1

wH
i wi +

U∑

i=1

λi

[
U∑

j=1,j 6=i

wH
j h

H
i hiwj + σ2 − 1

γi
wH

i h
H
i hiwi

].

We refer to λi as the ith Lagrange multiplier associated with the ith constraint. Equiv-

alently,

L(wi, λi) =
U∑

i=1

λiσ
2 +

U∑

i=1

wH
i

[
I+

U∑

j=1,j 6=i

λjh
H
i hi −

λi
γi
hH
i hi

]
wi. (2.21)

The dual function is

g(λi) = inf
wi

L(wi, λi). (2.22)

The dual function takes on the values

g (λi) =

{ ∑U
i=1 λiσ

2, if
(
I+

∑U
j=1,j 6=i λjh

H
i hi − λi

γi
hH
i hi

)
� 0

−∞, otherwise .
(2.23)

Therefore, the Lagrangian dual problem can be stated as

max
λi

U∑

i=1

λiσ
2

subject to

(
I+

U∑

j=1,j 6=i

λjh
H
i hi −

λi
γi
hH
i hi

)
� 0, ∀1 ≤ i ≤ U.

(2.24)
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2.8 Conclusion

This chapter provides the background study on the main topic of this thesis, robust

optimization for multi-antenna downlink transmission in cellular networks, and re-

views basic concepts on multi-antenna transmission, cooperative beamforming, robust

optimization. In addition we give the mathematical preliminaries that are used in

the subsequent chapters and review topics such as convex optimization, linear and

semidefinite programming, followed by SDP application in finding optimal solutions

to the multi-user beamforming problem. Finally, a brief review on Lagrangian duality

technique is given.
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Chapter 3

Worst-Case Robust Optimization of

Downlink Multi-Cell Networks

In this chapter, we focus on robust design of downlink beamforming vectors for multiple

antenna base stations (BSs) in a multi-cell interference network. We formulate a robust

optimization problem where an individual BS within a cell designs its beamforming vec-

tors to minimize a combination of its sum-power, used for assuring a desired quality of

service at its local users, and its aggregate induced interference on the users of the other

cells, to balance inter-cell interference across the multiple cells. The proposed robust

formulation uses spherical uncertainty sets to model imperfections in the second-order

statistical channel knowledge between the BS and the users. To maintain tractability

of the robust solutions, we derive an equivalent semidefinite programming (SDP) for-

mulation that is convex under standard rank relaxation. The numerical results confirm

the effectiveness of the proposed algorithm under various sizes of uncertainty set and

the fact that the attained robust solutions always satisfy the rank constraint.

3.1 Introduction

Joint signal processing across the base stations (BSs) with multiple antennas for co-

ordinated downlink beamforming has shown promising results in enhancing spectral

efficiency and providing a uniform capacity coverage in cellular networks, e.g., [122–

125]. However, most of these works make the important assumption that channel state

information (CSI) is accurately and globally available to all BSs via an ideal backhaul

network. Whereas in practical scenarios, available CSI is inaccurate and establishing

ideal backhaul links is not affordable due to the scarcity of communications resources.

Thus, there has recently been a growing interest in decentralized and robust design for
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cellular networks.

Assuming precisely known CSI and ignoring the influence of parameter uncertain-

ties in designing optimization models for cellular networks lead to generating optimal

solutions that may violate critical constraints and show unpredictably poor perfor-

mance in realistic wireless channel conditions. As explained in section 2.6.3, in order

to address such real-world problems in downlink beamforming, a number of authors

have recently reported robust modeling and designing techniques, e.g., [17, 126]. In

[126], a conservative model that captures uncertainties in channel parameters is used to

map a nominal optimization problem for sum-power minimization to its robust coun-

terpart. In [17], error is assumed inside the estimate of channel covariance matrix

and a semidefinite programming (SDP) based numerical method, ignoring the positive

semidefinite property of the covariance matrix is proposed, which yields a subopti-

mal solution to the downlink (DL) power optimization problem. However, the robust

formulation for multi-cell coordinated beamforming is more challenging since the asso-

ciated SINR constraints involve CSI errors not only in the desired signal and intra-cell

interference terms, but also in the inter-cell interference. Hence the techniques of

[17, 126], if applied to multi-cell networks, encounter severe performance degradation.

This motivates the design of transmission techniques that can utilize the knowledge of

inter-cell interference. Only very recently did there appear a few attempts to develop

multi-cell beamforming under imperfect CSI [105]. In [105], bounded channel error is

assumed, and suboptimal solutions are obtained by optimizing only the lower bound

of the worst-case SINR, which yields some power penalty. To deal with this problem,

the authors in [52] approximate the worst-case SINR constraints as linear matrix in-

equalities (LMIs) by semidefinite relaxation method and can obtain the exact solution.

However, these approaches ignore the overall interference power on the outer-cell users

due to transmissions to the locally active users within a cell.

In this chapter, we minimize the transmitting power by individual BSs and the

resulting inter-cell interference jointly and in a robust manner. In cellular systems

where each BS can capture the cross channel information between itself and the users

of adjacent cells, e.g., via overhearing and exploiting the channel reciprocity in the time

division duplex (TDD) systems [14], or where the cross-channel information of the users

of the neighboring cells are attained from their corresponding BSs via backhaul, the

scheme can be classified as decentralized; in a sense that each BS designs its beamform-

ing vectors independently. In either case, channel parameters are prone to imperfection

and the robustness of the designed downlink beamforming vectors against uncertainties

in channel statistics is a critical task from a practical point of view. Under a spheri-
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cal uncertainty model for second order statistical CSI, locally measured at individual

BSs, we formulate a robust optimization problem that minimizes a combination of

two utility functions subject to satisfying certain signal-to-interference-plus-noise ratio

(SINR) levels at user terminals. While the first utility function attempts to maintain

local users’ SINR demands in power efficient way, the second utility function tries to

bring into balance and stabilize the multi-cell network at an equilibrium by controlling

inter-cell interference.

The main contribution of this chapter is the consideration of channel uncertainties

in both of the objective function and the constrains, which makes the optimization

problem analytically and numerically intractable. Using Lagrange duality we overcome

this problem and present exact reformulations of the part of the objective function and

the constraints affected by uncertainties in equivalent and convenient forms. Finally, we

transform the original non-convex robust optimization problem to a convex semidefinite

programming (SDP) [110] using the standard rank relaxation method.

The rest of this chapter is organized as follows. System model and problem formu-

lation are given in Section 3.2. A robust beamforming scheme is proposed in Section

3.3. Simulation results are presented in Section 3.4. Finally, Section 3.5 concludes the

chapter.

3.2 System Model and Problem Formulation

Figure 3.1: Illustration of multiuser multi-cell networks.

Consider a downlink multi-cell network where each cell consists of a single BS with

M transmit antennas and U single-antenna users. Let the set of indices of BSs in

the network be denoted as Sb = {1, · · · , N} and the set of active users in each cell
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as Sl = {1, · · · , U}, where index i(q), i ∈ Sl and q ∈ Sb, indicates the ith user in cell

q. Each BS communicates with its intra-cell users over the same frequency band as

the adjacent BSs via the corresponding downlink beamforming vectors. Assume that

wi(q) ∈ CM×1 and hi(q)(q) ∈ CM×1 are, respectively, the beamforming vector and the

vector of channel coefficients of user i(q) as seen by the BS of cell q. Hence, the received

signal at user i(q) can be written as

yi(q) = hH
i(q)(q)wi(q)si(q) +

∑

j∈Sl,j 6=i

hH
i(q)(q)wj(q)sj(q) + ζi(q) + ni(q), (3.1)

where si(q) represents data symbol intended for user i(q) and ni(q) ∼ CN(0, σ2
n) is

assumed to be zero mean circularly symmetric complex Gaussian (ZMCSCG) noise.

In (5.2), ζi(q) denotes the induced ICI on user i(q) due to the transmissions of all BSs,

other than cell q, in the network. Let R̃i(q)(q) = E

(
hi(q)(q)h

H
i(q)(q)

)
and R̃t(k)(q) =

E
(
ht(k)(q)ht(k)(q)

H
)
indicate, respectively, the channel covariance matrix of user i(q)

and the cross-channel (i.e., the ICI channel) covariance matrix of user t of cell k, as

seen by the BS in cell q. We assume that only an imperfect knowledge of R̃i(q)(q) and

R̃t(k)(q), i.e., Ri(q)(q) and Rt(k)(q), respectively, are available to the BS q, such that

R̃i(q)(q) = Ri(q)(q) +∆i(q),

R̃t(k)(q) = Rt(k)(q) +∆t(k),

where ∆i(q) and ∆t(k) are the uncertainty matrices. Letting the average energy in

transmitting the ith symbol si(q) be normalized to unity, i.e., Esi(q)

(∣∣si(q)
∣∣2
)
= 1, SINR

can be expressed at any local user i ∈ Sl as

SINRi(q) =
wH

i(q)

(
Ri(q)(q) +∆i(q)

)
wi(q)∑

j∈Sl,j 6=iw
H
j(q)

(
Ri(q)(q) +∆i(q)

)
wj(q) + ξi(q) + σ2

n

, (3.2)

where ξi(q) = E

(∣∣ζi(q)
∣∣2
)
is the total inter-cell interference power imposed on user i(q).

Furthermore, we have assumed a Gaussian model for the inter-cell interference and

that any local user i(q) ∈ Sl, can measure the arrived outer-cell interference, i.e., using

the MMSE approach described in [127], and report it to its local BS. The BSs use

the received information, i.e., ξi(q), to design their beamforming vectors towards their

corresponding users. In the sequel, we introduce an optimization problem to calculate
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the downlink beamforming vectors at a given BS, as

min
wi(q)

∑

k∈Sb,k 6=q

∑

t∈Sl

∑

i∈Sl

wH
i(q)

(
Rt(k)(q) +∆t(k)

)
wi(q) +

∑

i∈Sl

wH
i(q)wi(q)

subject to SINRi(q) ≥ γi(q), ∀i ∈ Sl, q ∈ Sb,

(3.3)

where γi(q) is the target SINR level required by an active local user i ∈ Sl in cell q. The

first term of the objective function in (3.3) indicates overall interference power on the

outer-cell users due to the transmissions to the locally active users within a cell, while

the second term represents total signal power transmitted to local users. By setting

∆t(k) = ∆i(q) = 0, where 0 indicates a matrix with all zero elements, the problem

(3.3) reduces to the non-robust optimization form, where precise channel parameters

are assumed.

3.3 Robust Downlink Beamforming

In this section, we map problem (3.3) to an optimization problem that is robust against

worst-case imperfection in CSI values, as follows

min
wi(q)

max
∆t(k)

∑

k∈Sb,k 6=q

∑

t∈Sl

Ct(k) +
∑

i∈Sl

wH
i(q)wi(q)

subject to min
∆i(q)

SINRi(q) ≥ γi, ∀i ∈ Sl, q ∈ Sb,
(3.4)

where

Ct(k) =
∑

i∈Sl

wH
i(q)

(
Rt(k)(q) +∆t(k)

)
wi(q). (3.5)

We assume that the uncertainty in the estimation of channel covariance matrices is

confined in an ellipsoid set defined as

Et(k) =
{
∆t(k) ∈ C

M×M : Tr(∆t(k)Tt(k)∆
H
t(k)) ≤ δ2t

}
(3.6)

for the outer-cell users’ indices t ∈ Sl and, similarly, Ei(q) for local users’ indices i(q) ∈
Sl. In (3.6), the weight matrix Tt(k) is positive definite. In this chapter, and without

loss of generality, we have used a spherical uncertainty set by setting Tt(k) = I in

(3.6). Hence, Tr(∆t(k)I∆
H
t(k)) = ‖∆t(k)‖2F ≤ δ2t and similarly ‖∆i(q)‖2F ≤ δ2i . For

simplicity and without loss of generality, it is assumed δt = δi = δ. In the sequel,

we use the uncertainty set (3.6) that captures the variations of interfering channel

covariance matrices and find an expression for the worst case inter-cell interference,
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i.e., max
‖∆t(k)‖

F
≤δ

∑

k∈Sb,k 6=q

∑

t∈Sl

Ct(k) in (3.4). In this direction and substituting for Ct(k)

from (3.5), we solve the following individual problems

max
‖∆t(k)‖

F
≤δ

∑

i∈Sl

wH
i(q)

(
Rt(k)(q) +∆t(k)

)
wi(q), ∀t ∈ Sl. (3.7)

Using the property xHYx = Tr
(
YxxH

)
, problem (3.7) can be rewritten in the follow-

ing equivalent optimization problem for any t ∈ So.

min
∆t(k)

−
(
Tr
(
Rt(k)(q)A

)
+ Tr

(
∆t(k)A

))

subject to
∥∥∆t(k)

∥∥
F
≤ δ

−Rt(k)(q)−∆t(k) � 0

(3.8)

where A =
∑

i∈Sl Fi(q) and Fi(q) = wi(q)w
H
i(q). The second constraint in (3.8) guarantees

that Rt(k)(q) +∆t(k) is a positive semidefinite matrix. The Lagrangian of (3.8) can be

formed as

L
(
λt(k),∆t(k),St(k)

)

= −Tr
(
Rt(k)(q)A

)
− Tr

(
∆t(k)A

)
+ λt(k)

(∥∥∆t(k)

∥∥2 − δ2
)
− Tr

((
Rt(k)(q) +∆t(k)

)
St(k)

)

= −Tr
(
Rt(k)(q)

(
A+ St(k)

))
− Tr

(
∆t(k)

(
A+ St(k)

))
+ λt(k)

(∥∥∆t(k)

∥∥2 − δ2
)

(3.9)

where λt � 0 and St � 0 are Lagrange multipliers for the first and second constraints

in (3.8), respectively. To find the infimum in (3.9), we differentiate with respect to

∆t(k) and equate the resulting expression to zero, i.e., ∇∆t(k)
L
(
λt(k),∆t(k),St(k)

)
= 0.

Using the property ∂
∂X

= ‖X‖2F = ∂
∂X

Tr
(
XXH

)
= 2X and utilizing the fact that the

matrices A,∆t(k),St(k) are all Hermitian, we find the optimal value for ∆t(k) as

∆opt
t(k) =

1

2λt(k)

(
A+ St(k)

)
. (3.10)

Plugging ∆opt
t(k) from (3.10) back in (3.9), we can write

g
(
λt(k),St(k)

)
= inf

∆t(k)

L
(
λt(k),∆t(k),St(k)

)

= −
∥∥A+ St(k)

∥∥2

4λt(k)
− λt(k)δ

2 − Tr
(
Rt(k)(q)

(
St(k) +A

))
.
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Hence, the dual problem associated with the primal problem (3.8) can be expressed as

max
λt(k),St(k)

−
∥∥A+ St(k)

∥∥2
F

4λt(k)
− λt(k)δ

2 − Tr
(
Rt(k)(q)

(
St(k) +A

))

subject to λt(k) ≥ 0,St(k) � 0.

(3.11)

We proceed by solving (3.11) with respect to λt(k) ≥ 0 for any given St(k). Differen-

tiating the objective function in (3.11) with respect to λt and equating the resulting

expression to zero, one can get the optimal value of λt as

λoptt(k) =

∥∥A+ St(k)

∥∥
F

2δ
. (3.12)

Plugging λoptt(k) from (3.12) back in (3.11), we arrive at the following equivalent dual

problem

max
St(k)

− δ
∥∥A+ St(k)

∥∥
F
− Tr

(
Rt(k)(q)

(
St(k) +A

))

subject to St(k) � 0,
(3.13)

which is, in turn, equivalent to

min
St(k)

δ
∥∥A+ St(k)

∥∥
F
+ Tr

(
Rt(k)(q)

(
St(k) +A

))

subject to St(k) � 0.
(3.14)

Since (3.8) is a convex optimization problem for any given A, strong duality holds

between the primal problem (3.8) and its associated equivalent dual problem (3.14).

Hence, (3.8) and (3.14) have the same optimal solutions.

In the sequel, we further simplify the optimization problem (3.4) by deriving an

equivalent expression for its constraint,

min
‖∆i(q)‖

F
≤δ

SINRi(q) ≥ γi(q). (3.15)

Defining a new variable Bi(q) = γii(q)
∑

j∈Sl,j 6=iFj(q) − Fi(q), and using the equality

xHYx = Tr
(
YxxH

)
, we can rewrite (3.15) as

−
[
Tr
(
Ri(q)(q)Bi(q)

)
+ γi(q)

(
ξi(q) + σ2

n

)]
≥ max

‖∆i(q)‖
F
≤δ

Tr
(
∆i(q)Bi(q)

)
, (3.16)
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or equivalently,

min
‖∆i(q)‖

F
≤δ

−
[
Tr
(
Ri(q)(q)Bi(q)

)
+ Tr

(
∆i(q)Bi(q)

)
+ γi(q)

(
ξi(q) + σ2

n

)]
≥ 0. (3.17)

Following the approach used for inter-cell constraint (3.7), we can observe that the

minimization on the left side of (3.17) can be substituted by the closed form solution

of the following optimization problem:

min
∆i(q)

−
[
Tr
(
Ri(q)(q)Bi(q)

)
+ Tr

(
∆i(q)Bi(q)

)
+ γi(q)

(
ξi(q) + σ2

n

)]

subject to
∥∥∆i(q)

∥∥
F
≤ δ

−Ri(q)(q)−∆i(q) � 0

(3.18)

For a given matrix Bi(q), (3.18) is a convex problem in variable ∆i(q). Using the fact

that the Lagrange dual of (3.18) would provide a lower bound to its solution, we replace

(3.18) by its dual. Therefore, we write the Lagrange dual function for problem (3.18)

as

g
(
λi(q),Zi(q)

)
= inf

∆i(q)

L
(
λi(q),∆i(q),Zi(q)

)
, (3.19)

where the Lagrangian function L
(
λi(q),∆i(q),Zi(q)

)
is given as

L
(
λi(q),∆i(q),Zi(q)

)

= −Tr
(
Ri(q)(q)Bi(q)

)
− Tr

(
∆i(q)Bi(q)

)
− γi(q)

(
ξi(q) + σ2

n

)
+ λi(q)

(∥∥∆i(q)

∥∥2 − δ2
)

− Tr
((
Ri(q) +∆i(q)

)
Zi(q)

)

= −Tr
(
Ri(q)

(
Bi(q) + Zi(q)

))
− Tr

(
∆i(q)

(
Bi(q) + Zi(q)

))
+ λi(q)

(∥∥∆i(q)

∥∥2 − δ2
)

− γi(q)
(
ξi(q) + σ2

n

)
(3.20)

where λi(q) � 0 and Zi � 0 are Lagrange multipliers for the first and second constraints

in (3.18), respectively. Utilizing the fact that the matrices Zi(q), λi(q),Bi(q) and Ri(q)

are all Hermitian, we differentiating with respect to ∆i(q) and equating the resulting

expression to zero, i.e., ∇∆i(q)
L
(
λi(q),∆i(q),Zi(q)

)
= 0, hence we find the optimal value

for ∆i(q) as

∆opt
i(q) =

1

2λi(q)

(
Bi(q) + Zi(q)

)
. (3.21)
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Substituting ∆opt
i(q) from (3.21) in (3.20), the Lagrange dual function (3.19) becomes

g
(
λi(q),Zi(q)

)
= −

∥∥Bi(q) + Zi(q)

∥∥2

4λi(q)
−Tr

(
Ri(q)(q)

(
Zi(q) +Bi(q)

))
−λi(q)δ2−γi(q)

(
ξi(q) + σ2

n

)
.

(3.22)

Hence the dual problem corresponding to (3.19) can be written as

max
λi(q),Zi(q)

−
∥∥Bi(q) + Zi(q)

∥∥2
F

4λi(q)
− λi(q)δ

2 − Tr(Ri(q)(q)(Zi(q) +Bi(q)))− γi(q)(ξi(q) + σ2
n)

subject to λi(q) ≥ 0,Zi(q) � 0.

(3.23)

Maximizing the objective function in (3.23) with respect to λi leads to the following

Lagrange dual to the problem (3.19) :

max
Zi(q)

− δ
∥∥Bi(q) + Zi(q)

∥∥
F
− Tr

[
Ri(q)

(
Zi(q) +Bi(q)

)
− γi

(
ξi(q) + σ2

n

)]
,

subject to Zi(q) � 0
(3.24)

which is, in turn, equivalent to,

− δ
∥∥Bi(q) + Zi(q)

∥∥
F
− Tr

[
Ri(q)(q)

(
Zi(q) +Bi(q)

)]
≥ γi(q)

(
ξi(q) + σ2

n

)
, (3.25)

if there exists some positive semidefinite matrices Zi(q), i.e., Zi(q) � 0, that satisfy

(3.25). Finally, using (3.14) and the fact that the condition in (3.25) together with

Zi(q) � 0 are equivalent to the constraint in (3.15), we can rewrite the original opti-

mization problem (3.4) in the following equivalent form

min
Fi(q),St(k),Zi(q)

∑

k∈Sb,k 6=q

∑

t∈Sl

(
δ
∥∥A+ St(k)

∥∥
F
+ Tr

(
Rt(k)(q)

(
St(k) +A

)))
+
∑

i∈Sl

Tr
(
Fi(q)

)

subject to − δ
∥∥Bi(q) + Zi(q)

∥∥
F
− Tr

(
Ri(q)(q)

(
Zi(q) +Bi(q)

))
− γi

(
ξi(q) + σ2

n

)
≥ 0,

St(k) � 0, Zi(q) � 0, Fi(q) = FH
i(q) � 0, rank

(
Fi(q)

)
= 1,

∀i ∈ Sl, q ∈ Sb,

(3.26)

The optimization problem in (3.26) is in the standard SDP form if the non-convex rank-

one constraint of rank
(
Fi(q)

)
= 1 is relaxed. Then using the CVX [112], the resulting

convex problem can be solved efficiently. Interestingly, our numerical solutions confirm

that the resulting optimal solutions always admit the dropped rank-one constraint.

In general, if solving the relaxed rank-one problem results in a set of rank-one
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matrices Fi(q) for all i(q), then Fi(q) is also the optimal solution to the problem (3.26).

Otherwise, the randomization technique in [12] will be used to generate a set of rank-one

solutions of Fi(q). Given a rank-one Fi(q) solution, one can obtain the ith beamforming

vector wi(q) as wi(q) =
√
ρi(q)xi(q), where ρi(q) and xi(q) are the eigenvalue and the

eigenvector of Fi(q), respectively.

From the robust objective function in (3.26), it can be verified that the term
∑

k∈Sb,k 6=q

∑
t∈Sl δ

∥∥A+ St(k)

∥∥+ Tr
(
Rt(k)(q)St(k)

)
provides necessary protection to the

nominal objective function. However, this protection comes at the price of a worse

optimized objective function value than the original nominal counterpart. Similarly,

a comparison between the robust constraint in (3.26) and the nominal constraint in-

dicates that the term −δ
∥∥Bi(q) + Zi(q)

∥∥ − Tr
(
Ri(q)Zi(q)

)
gives required protection to

the ith constraint. In fact, these functions and parameter δ determine and control the

trade off between robustness and optimality.

3.4 Simulation results

3.4.1 Simulation setup
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Figure 3.2: An example of random user distribution.
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Table 3.1: Simulation parameters

Parameter Value
Number of cells 3
Number of locally active users per cell 2
Number of antenna elements per sector 6
Antenna spacing λ/2
Array antenna gain 15 dBi
Noise power spectral density (all users) -174 dBm/Hz
BS-to-BS’s distance 0.5 km
Path loss model (l > 35 in meter ) 34.53 + 38log10(l)
Angular offset’s standard deviation 2◦

Log-normal shadowing’s standard deviation 10 dB
Complex Gaussian fading coefficient’s variance 1/2 per dimension

In this section, the performance of the proposed approach is observed and compared

against the non-robust scheme [128], where perfect statistical CSI is assumed, a central-

ized robust coordinated beamforming (CBF)[50] and a robust conventional approach

within three adjacent sectors of three neighboring BSs. Two users are randomly se-

lected/dropped in each sector. A set of locations of six random users is referred to

as one user distribution. Monte-Carlo simulations are carried out over 30 indepen-

dent user distributions. Fig. 3.2 shows an example of one user distribution. Such a

3-cell scenario is also used in a number of other papers, e.g., [129, 130], for simulation

purposes.

Throughout the analytical parts of this paper, we use a similar model as in [49, 51]

and model the entries of [R̃i(q)(q)]nm and [R̃t(k)(q)]nm as

e
j2πΛ

λ [(n−m)sinθi(p)]e−2[πΛσas
λ {(n−m)cosθi(p)}]2 , (3.27)

where λ is the carrier wavelength, Λ = λ/2 is the antenna spacing at BSs, and

θi(p) is the angle of departure for user i(p) with respect to the broadside of the an-

tenna array. Furthermore it is assumed that the resulting angle spread/offset due

to the scatterers is distributed as normal with zero mean and standard deviation of

σas = 2◦. In order to capture the effects of fading, path-loss and shadowing, we have

scaled the channel covariance matrices and their corresponding uncertainty matrices

by Li(q)(q)σ
2
F e

−0.5
(σsln10)

2

100 , where Li(q)(q) is the path loss coefficient between BS q and

user i(p) according to 34.53 + 38 log10(ℓ), i.e., where ℓ is the distance between the BS

and the user, σ2
F = 1 is the variance of the complex Gaussian fading coefficient and
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σs = 10 is the standard deviation of the log-normal shadow fading coefficient. In our

simulation, each and every user estimates the variance of arriving aggregate inter-cell

interference as a result of the concurrent transmissions of the BSs over the duration

of the current frame and reports it back to its corresponding BS. The BSs use the re-

ceived information, i.e., ξi(q), i ∈ Sl, to design their beamforming vectors towards their

corresponding users. Table 3.1 characterizes the parameters used in our simulations in

the following Section.

3.4.2 Simulation results

Let

ψi(q) =
wH

i(q)

(
Ri(q)(q) +∆i(q)

)
wi(q)

γi(q)

(∑
j∈Sl,j 6=iw

H
j(q)

(
Ri(q)(q) +∆i(q)

)
wj(q) + ξi(q) + σ2

n

) (3.28)

denote the normalized SINR constraint value with respect to the target SINR at user

i(q). According to this definition, the SINR constraint of user i(q) is satisfied if ψi(q) ≥
1. Fig. 3.3 illustrates the histograms of normalized SINR constraints for δ = 0.1

and a target SINR of γi(q) = 10 dB at all users. As the non-robust scheme does not

provide any protection against perturbations in CSI, it fails to satisfy about half of the

constraints, whereas, the proposed robust scheme guarantees that all of the constraints

are satisfied above the target SINR level.

0.95 1 1.05 1.1 1.15 1.2
0

0.2

0.4

Normalized constraint value

P
ro

ba
bi

lit
y

 

 
non−robust

0.95 1 1.05 1.1 1.15 1.2
0

0.2

0.4

Normalized constraint value

P
ro

ba
bi

lit
y

 

 
proposed robust

Figure 3.3: Histogram of normalized SINR constraints for δ = 0.1 and target SINR
values of 10 dB.

Fig. 3.4 illustrates the effect of various levels of δ on the performance of the proposed

scheme. The figure shows that at a given SINR, the total transmit power increases as
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Figure 3.4: Total transmit power versus the target SINR at each user for the proposed
scheme with various values of δ.

uncertainty level increases. The results also confirm that achieving robustness at higher

uncertainty levels comes at the expense of lower achievable limits of SINR targets at

affordable power levels. From Fig. 3.4, it can be observed as a cost of robustness, the

robust scheme requires more transmit power at a given SINR target with respect to

the non-robust scheme, but it clearly follows from Fig. 3.3, the non robust scheme does

not guarantee to satisfy all users’ SINR constraints, hence the proposed robust scheme

is preferred.

Fig. 3.5 compares the proposed scheme with the conventional method and the

coordinated beamforming (CBF) scheme, i.e., [50, section III.B], in terms of total

transmit power versus SINR, using perturbed CSI with δ = 0.05. As for the robust

conventional method, we used the proposed optimization problem in (3.3) without the

first utility function that accounts for the effect of induced total inter-cell interference

on the users of the other cells. The CBF scheme jointly designs the beamforming vectors

of all BSs in a centralized manner. The results in Fig. 3.5 confirm the effectiveness

of the inter-cell interference balancing term in the proposed objective function of (3.3)

in reducing the total transmit power at BSs. For instance, with an average transmit

power of 6.55 dBm and at δ = 0.05, the proposed scheme can attain 12 dB of target

SINR, whereas the robust conventional method requires 18.56 dBm to support 12 dB

of SINR target at the same error radius. Furthermore, it also can be seen that for
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Figure 3.5: Total transmit power of 3 BSs of various schemes against the targeted
SINR at each user.

a given level of power budget, the robust conventional method can support shorter

range of SINR targets than the proposed robust scheme. For instance the robust

conventional downlink beamforming scheme can only achieve the SINR target of up

to 12 dB with affordable levels of power consumption, whereas, the proposed robust

scheme can support target SINR levels of up to 16 dB. This is due to the so-called ping-

pong effect in a multi-cell environment, where each BS keeps increasing its transmit

power to maintain its users SINR requirements and, inevitably, keeps increasing its

interference on the users of the other cells. Whereas the second term of the objective

function of the proposed optimization problem in (3.4) controls the inflicted inter-cell

interference by each BS and stabilizes the egoistic dynamic of the conventional network

in an equilibrium point, agreed by all BSs. Furthermore a comparison of proposed

decentralized scheme against the robust centralized CBF, shows that the proposed

scheme closely follows the power efficiency of the centralized CBF up to target SINR

of 12 dB and then gradually departs as the target SINR values increase. However,

such a centralized processing requires an additional resources of an ideal backhaul,

which is prohibited in practical systems as it limits the scalability of the network.

Hence, recently the research interests have been shifted towards as much as possible

decentralization of the coordinated multi-point (CoMP) communications systems to

relax the backhaul overhead [27, 71, 131, 132].
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3.5 Conclusion

We formulated an optimum downlink beamforming scheme that accounts for imperfec-

tion and the uncertain nature of the estimated channel parameters at base stations in

cellular networks. The aim is to provide desired levels of quality of services for the users

who are located within the adjacent cells and communicate with their corresponding

BSs over a shared bandwidth. We demonstrate the performance of the proposed robust

scheme under various channel uncertainties. We show the trade-off between reliably

achievable quality of services at user terminals and the cost of robustness in terms of

power consumption. The results confirm that as the uncertainty region of the channel

parameters grows, power consumption at BSs increases and the range of quality of

service in term of SINR targets, achievable at affordable levels of power consumption

at BSs, shrinks.
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Chapter 4

Chance-Constrained beamforming

design for Downlink Multi-cell

Networks

We introduce a downlink robust optimization approach that minimizes a combination

of total transmit power by a multiple antenna base station (BS) within a cell and the

resulting aggregate inter-cell interference (ICI) power on the users of the other cells.

This optimization is constrained to assure that a set of signal-to-interference-plus-noise

ratio (SINR) targets are met at user terminals with certain outage probabilities. The

outages are due to the uncertainties that naturally emerge in the estimation of channel

covariance matrices between a BS and its intra-cell local users as well as the other users

of the other cells. We model these uncertainties using random matrices, analyze their

statistical behavior and formulate a tractable probabilistic approach to the design of

optimal robust downlink beamforming vectors. The proposed approach reformulates

the original intractable non-convex problem in a semidefinite programming (SDP) form

with linear matrix inequality (LMI) constraints. The resulting SDP formulation is con-

vex and numerically tractable under the standard rank relaxation. We compare the

performance of the proposed chance-constrained approach with that of the worst-case

robustness. The simulation results confirm that the proposed approach can be con-

siderably more power efficient than its conservative worst-case counterpart, specially,

when higher SINR targets are desired.
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4.1 Introduction

Joint signal processing across the base stations (BSs) with multiple antennas for coor-

dinated downlink beamforming has shown promising results in enhancing spectral effi-

ciency and providing a uniform capacity coverage in cellular networks, e.g., [122–125].

An effective downlink beamforming requires the availability of an accurate channel

state information (CSI) at BSs. However, the assumption that the CSI are accurately

and globally available to all BSs via an ideal backhaul network is not a realistic one. In

many practical scenarios, the available CSI at BSs is imperfect due to several reasons,

e.g., estimation error, delay and the quantization error that may arise as a result of

limited feedback from a user terminal to a BS. Ignoring the effect of CSI uncertainties

in forming optimization models for cellular networks can lead to optimal solutions that

may violate critical constraints and results in a poor outcome in realistic channel con-

ditions [41]. These practical considerations have recently motivated a growing interest

towards robust design of cellular networks.

Commonly, there are two methods of deterministic and stochastic modeling of im-

perfect CSI. In the former, the imperfection in the CSI is assumed to be bounded

within an uncertainty region and the objective is to provide worst-case guarantees

for the performance of the network. More specifically, robust designs based on the

deterministic model are conservative, make no assumptions on the distribution of er-

ror and optimize the worst-case performance of the system, e.g., see the works in

[19, 36, 89, 105, 133, 134] for worst-case CSI modeling examples. Although, the de-

terministic optimization approaches provide robustness against CSI imperfections, the

actual worst-case may occur with a very slim chance in practice. Hence, a deterministic

design may lead to an inefficient design, as most system resources could be dedicated

to provide guarantees for the worst-case scenarios. In order to provide less conservative

solutions in favor of improved resource-efficient design, in the second approach, the per-

turbations in CSI are modeled to be statistically unbounded according to some known

distributions. In the designs based on the stochastic modeling, the beamforming vectors

are designed such that the quality-of service (QoS) requirements are met with a high

probability, e.g., [135]. The probability (chance)-constrained problems are known to be

difficult to solve because the probabilistic signal-to-interference-plus-noise ratio (SINR)

constraints in general do not have closed-form expression and are not convex. The ma-

jority of available algorithms mainly rely on deriving analytical convex upper bounds

for the probabilistic constrains and only find a feasible worst-case solution without any

optimality guarantee. In [135], weighted variable-penalty alternating direction method

of multipliers is used for a chance-constrained robust multi-cell beamforming problem
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to minimize the sum power of all BSs subject to SINR constraints at user terminals in a

distributed fashion. In this approach, the probabilistic constraints are upper-bounded

by tractable convex approximating functions. Transceiver design with QoS guarantee

in the presence of uncertain CSI at the transmitter is studied for a broadcast scenario

with a multi-antenna BS and single antenna user terminals in [136]. In this study, the

scenario is formulated as an optimization problem and conservative approaches that

yield deterministic convex approximation for randomly perturbed second order cone

constraints are used to guarantee the satisfaction of the probabilistic constraints. In

a similar broadcast scenario, [137] studies power allocation strategies to satisfy QoS

targets at user terminals in the presence of channel estimation error with Gaussian

distribution. The authors in [137] use Vysochanskii-Petunin inequality in combination

with the theory of interference functions to find conservative solutions to the problem.

The transmit power minimization subject to probabilistic SINR constraints in a single-

cell beamforming scenario is considered in [28] and [23]. The authors used conservative

methods based on Bernstein inequality in [28] and relaxation-restriction approach in

[23] to approximate the probabilistic constraints.

In this chapter, we introduce a chance-constraint downlink beamforming approach

that minimizes a linear combination of total transmit power at individual BSs and the

resulting overall interference on the other users of the other cells, subject to satisfying

outage-based probabilistic QoS requirements (i.e., in terms of SINR) at user terminals

in the presence of channel uncertainties. The outage-based constraints are motivated

by the fact that most wireless systems can tolerate occasional outages in the QoS

requirements [138–140]. While the proposed objective function maintains the local

users’ QoS demands in a robust and power efficient way, it balances the inter-cell

interference (ICI) in an optimal way across the multiple cells under imperfect CSI

and frequency reuse of one. In the following, we summarize the contributions of this

chapter.

• We provide a new chance-constraint resource allocation formulation to handle

the second-order CSI uncertainty with controlled percentage of outages in MISO

multi-cell downlink beamforming channels.

• We derive a new analytical approach to solve the problem by directly character-

izing the statistical behavior of the random matrix, modeling the imperfection

in estimated second order statistical CSI. Our approach is in contrast to the

methods that approximate the probabilistic constraints with their convex upper-

bounds and effectively find a feasible worst-case solution without any optimality

guarantee.
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• We find a relationship between the Frobenius norm of the random matrix, model-

ing the radius of a hyper-spherical uncertainty region in the worst-case approach,

and the outage parameter controlling the probability of the satisfaction of QoS

requirement at users in the chance-constraint approach. This relation reveals and

quantifies the implicit outage in the worst-case approach, i.e., due to the fact that

the uncertainties in practical scenarios are statistically unbounded, and helps to

compare it with the chance-constraint approach, fairly.

The rest of this chapter is organized as follows. System model and problem formu-

lation are given in Section 4.2. The proposed beamforming problem is formulated as

a probability constrained stochastic optimization problem in Section 4.3. In Section

4.4, we develop a technique based on the outage probability and show its relationship

to the worst-case based approach of Chapter 3. Simulation results are presented and

discussed in Section 4.5. Finally, Section 4.6 concludes the chapter.

4.2 Problem Formulation

Adopting the same system model as Chapter 3, recall that the estimate of the true

channel covariance matrix of user i(q) and the cross-channel (i.e., the ICI channel)

covariance matrix of user t of cell k, as seen by the BS in cell q are represented as

R̃i(q)(q) and R̃t(k)(q), respectively. We assume that only an imperfect knowledge of

R̃i(q)(q) and R̃t(k)(q), i.e., Ri(q)(q) and Rt(k)(q), respectively, are available to the BS q,

such that

R̃i(q)(q) = Ri(q)(q) +∆i(q),

R̃t(k)(q) = Rt(k)(q) +∆t(k),

∆i(q) and ∆t(k) are random error matrices with respective rd-entries of [∆i(q)]rd and

[∆t(k)]rd, independently distributed as [∆i(q)]rd ∼ CN(0, σ2
rd) and [∆i(q)]rd ∼ CN(0, σ2

rd).

In Section 3.3, we introduced a robust optimization problem as

min
wi(q)

max
∆t(k)

∑

i∈Sl

wH
i(q)wi(q) +

∑

k∈Sb,k 6=q

∑

t∈Sl

∑

i∈Sl

wH
i(q)

(
Rt(k)(q) +∆t(k)

)
wi(q)

subject to SINRi(q) =
wH

i(q)

(
Ri(q)(q) +∆i(q)

)
wi(q)∑

j∈Sl,j 6=iw
H
j(q)

(
Ri(q)(q) +∆i(q)

)
wj(q) + ξi(q) + σ2

n

≥ γi(q),

∀i ∈ Sl, q ∈ Sb, (4.1)
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to design the transmit beamforming vectors and compute the power allocations at BS

antennas in the downlink in the presence of channel uncertainties, in the worst-case

scenario. In the following sections we provide a new chance-constrained approach to

solve the optimization problem (4.1). More specifically, this approach measures the

channel uncertainties by using the outage probability, i.e., the probability that the

performance degradation caused by the error falls below a certain threshold. This

approach is related to the statistical approach, which assumes that the covariance of

the mismatched error matrix is known at transmitter.

4.3 Outage based probabilistic optimization

In this section, we reformulate the optimization problem in (4.1) with chance-constrained

settings. Defining A =
∑

i∈Sl Fi(q), where Fi(q) = wi(q)w
H
i(q) and using xHYx =

Tr
(
YxxH

)
, we can rewrite the problem in (4.1) as

min
Fi(q),ν

∑

i∈Sl

Tr
(
Fi(q)

)
+ ν

subject to Pr
(
SINRi(q) ≥ γi(q)

)
≥ 1− ρ,

Pr

(
∑

k∈Sb,k 6=q

∑

t∈Sl

Tr
{(

Rt(k)(q) +∆t(k)

)
A
}
≤ ν

)
≥ 1− ρ,

Fi(q) = FH
i(q) � 0, rank

(
Fi(q)

)
= 1, ∀i ∈ Sl, q ∈ Sb,

(4.2)

where ν is a slack variable and ρ is the probability of outage. The first and the

second constraints in (4.2), respectively, ensure that the events SINRi(q) ≥ γi(q) and
∑

k∈Sb,k 6=q

∑
t∈Sl Tr

{(
Rt(k)(q) +∆t(k)

)
A
}

≤ ν hold with a minimum probability of

1 − ρ for every instantiation of the random matrices ∆i(q) and ∆t(k). Solving the op-

timization problem in (4.2) that involves probabilistic constraints is NP-hard, because

the solutions should be feasible in the intersection of an infinite number of constraints.

In the sequel, we overcome this problem by transforming the probabilistic constraints

to more convenient and equivalent forms.

Lemma 4.1. Let X be a M ×M random matrix with independently distributed ZMC-

SCG entries characterized as [X]ij ∼ CN(0, σ2
ij). Then, for any L, L ∈ CM×M ,

Tr (LX) ∼ N
(
0, ‖|L| ⊙ΣX‖2F

)
, (4.3)

where |L| is a real-valued M ×M matrix with entries [|L|]ij = |[L]ij |, i.e., equal to
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the absolute values of the entries of L ∈ CM×M , ΣX is a real-valued M ×M matrix

with entries [ΣX]ij = σij and ⊙ defines the Hadamard product, i.e., the element-wise

product of two matrices.

Proof. We can write Tr (LX) =
(
vec(LH)

)H
vec(X). Note that Tr (LX) is also a ZM-

CSCG random variable, because it can be written as a weighted sum of independently

distributed ZMCSCG random variables. Hence, the random variable Tr (LX) can be

characterized as Tr (LX) ∼ CN(0, σ2
LX). The variance σ2

LX can be calculated as

σ2
LX = E

[(
vec(LH)

)H
vec(X)vec(X)Hvec(LH)

]

=
(
vec(LH)

)H
E[vec(X)vec(X)H ]vec(LH)

=
(
vec(LH)

)H
diag[vec(ΣX)]diag[vec(ΣX)]vec(L

H)

=
(
diag[vec(ΣX)]vec(L

H)
)H

diag[vec(ΣX)]vec(L
H)

= ‖|L| ⊙ (ΣX)‖2F (4.4)

Corollary 1: Let U ∼ N(0, 1) be a standard normal random variable. Then, the

random variable Tr (LX) in (4.3) can be expressed as Tr (LX) = ‖|L| ⊙ΣX‖F U .
In the sequel, we expand the event SINRi(q) ≥ γi(q) in the optimization problem

(4.2) as

Tr
((
Ri(q)(q) +∆i(q)

)
Fi(q)

)
≥ γi(q)

∑

j∈Sl,j 6=i

Tr
((
Ri(q)(q) +∆i(q)

)
Fj(q)

)
+ γi(q)(ξi(q) + σ2

n),

(4.5)

and compactly rewrite it as

Tr
(
Bi(q)∆i(q)

)
≤ τ, (4.6)

where Bi(q) = γi(q)
∑

j∈Sl,j 6=iFj(q)−Fi(q) and τ = −Tr
(
Bi(q)Ri(q)(q)

)
−γi(q)

(
ξi(q) + σ2

n

)
.

Using Lemma 4.1 and corollary 1, (4.6) can be written as

U ≤ τ∥∥∥
∣∣Bi(q)

∣∣⊙Σ∆i(q)

∥∥∥
F

. (4.7)

Hence, the left-hand-side (LHS) of the first constraint in problem (4.2) is evaluated as

Pr(U ≤ τ∥∥∥
∣∣Bi(q)

∣∣⊙Σ∆i(q)

∥∥∥
F

) = Φ(
τ∥∥∥

∣∣Bi(q)

∣∣⊙Σ∆i(q)

∥∥∥
F

), (4.8)
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where Φ(u) = Pr(U ≤ u) = 1
2
[1+erf( u√

2
)] is the cumulative distribution function (CDF)

of a standard normal random variable U , and erf (x) = 2√
π

∫ x

0
exp (−t2) dt. Using (4.8),

we can rewrite the LHS of the first constraint in problem (4.2) as

Pr
(
SINRi(q) ≥ γi(q)

)
=





1
2
+ 1

2
erf

(
τ√

2
∥

∥

∥|Bi(q)|⊙Σ∆i(q)

∥

∥

∥

F

)
, τ > 0,

1
2
− 1

2
erf

(
−τ√

2
∥

∥

∥|Bi(q)|⊙Σ∆i(q)

∥

∥

∥

F

)
, τ ≤ 0.

(4.9)

To ensure that the first constraint in (4.2) is satisfied with an outage probability of no

more than 50%, i.e., ρ < 0.5 for reliable communications purposes, we enforce (4.9)

with τ > 0. Notice that designs based on using (4.9) with τ ≤ 0 lead to ρ > 0.5.

Hence, the first probabilistic constraint in (4.2) can be written as

1

2
+

1

2
erf



 τ
√
2
∥∥∥
∣∣Bi(q)

∣∣⊙Σ∆i(q)

∥∥∥
F



 ≥ 1− ρ, (4.10)

or equivalently as

τ ≥ c
∥∥∥vec(

∣∣Bi(q)

∣∣⊙Σ∆i(q)

)
‖, (4.11)

where c ,
√
2erf−1 (1− 2ρ). Finally, using the Schur complement [106], we can write

(4.11) in linear matrix inequality (LMI) form as




1
c
τ vecH

(∣∣Bi(q)

∣∣⊙Σ∆i(q)

)

vec
(∣∣Bi(q)

∣∣⊙Σ∆i(q)

)
1
c
τI



 � 0, ∀i ∈ Sl. (4.12)

Similarly, we consider the second constraint in (4.2) and expand the event
∑

k∈Sb,k 6=q

∑
t∈Sl Tr

{(
Rt(k)(q) +∆t(k)

)
A
}
≤ ν as

∑

k∈Sb,k 6=q

∑

t∈Sl

Tr
(
A∆t(k)

)
≤ ν −

∑

k∈Sb,k 6=q

∑

t∈Sl

Tr
(
ARt(k)(q)

)
. (4.13)

It follows from Lemma 4.1 that the LHS of (4.13), which is sum of normally distributed

random variables, is distributed as

∑

k∈Sb,k 6=q

∑

t∈Sl

Tr
(
A∆t(k)

)
∼ N(0,

∑

k∈Sb,k 6=q

∑

t∈Sl

∥∥∥|A| ⊙Σ∆t(k)

∥∥∥
2

F
). (4.14)

Hence, according to corollary 1, we can express (4.13) in terms of standard normal
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variable U , as

U ≤ ν − b√
∑

k∈Sb,k 6=q

∑
t∈Sl

∥∥∥|A| ⊙Σ∆t(k)

∥∥∥
2

F

, (4.15)

where b =
∑

t∈Sl Tr
(
ARt(k)(q)

)
. Consequently, the LHS of the second constraint in

problem (4.2) can be expressed as

Φ(
ν − b√

∑
k∈Sb,k 6=q

∑
t∈Sl

∥∥∥|A| ⊙Σ∆t(k)

∥∥∥
2

F

) =





1
2
+ 1

2
erf
(

ν−b√
2a

)
, ν > b,

1
2
− 1

2
erf
(

b−ν√
2a

)
, ν ≤ b,

(4.16)

where a =

√
∑

k∈Sb,k 6=q

∑
t∈Sl

∥∥∥|A| ⊙Σ∆t(k)

∥∥∥
2

F
. For the same reason of ensuring a

reliable communications as in (4.9), we enforce (4.16) with v > b. Hence the second

probabilistic constraint in (4.2) can be substituted by

1

2
+

1

2
erf




ν − b√
2
∑

k∈Sb,k 6=q

∑
t∈Sl

∥∥∥|A| ⊙Σ∆t(k)

∥∥∥
2

F


 ≥ 1− ρ, (4.17)

or equivalently by

ν − b ≥ β

√ ∑

k∈Sb,k 6=q

∑

t∈Sl

∥∥∥|A| ⊙Σ∆t(k)

∥∥∥
2

F
, (4.18)

where β =
√
2erf−1 (1− 2ρ). Let ̺ be defined as

̺ =
[
vecH(|A| ⊙Σ∆1(1)

) · · ·vecH(|A| ⊙Σ∆U(q−1)
), vecH(|A| ⊙Σ∆1(q+1)

) · · ·
vecH(|A| ⊙Σ∆U(N)

)
]H
. (4.19)

Then (4.18) can be written as ν − b ≥ β‖̺‖ and by applying the Schur complement is

finally expressed in form as

[
1
β
(ν − b) ̺

H

̺
1
β
(ν − b) I

]
� 0, ∀t ∈ Sl. (4.20)

Hence, the optimization problem in (4.2) with probabilistic constrains can be rewritten
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with equivalent LMI constraints as

min
Fi(q),ν

∑

i∈Sl

Tr
(
Fi(q)

)
+ ν (4.21)

subject to LMIs in (4.12) and (4.20),

Fi(q) = FH
i(q) � 0, rank

(
Fi(q)

)
= 1, ∀i ∈ Sl, q ∈ Sb.

The optimization problem in (4.21) is a convex semidefinite programming (SDP) prob-

lem if the non-convex rank-one constraint is relaxed. The resulting SDP problem can

be efficiently solved in Fi(q) = wi(q)w
H
i(q) using the CVX [112]. In cases where the solu-

tion Fi(q) is not of rank-one, standard randomization techniques [119] can be applied to

approximate Fi(q) by a rank-one matrix with sufficient accuracy. Finally, the optimal

solution wi(q) is determined as the principal eigenvector of the rank-one Fi(q) solution.

4.4 Implicit outage in worst-case setting

In this section, we establish a connection between the proposed probability-constrained

stochastic optimization problem and the worst-case optimization problem in Chapter

3. In Chapter 3 it is assumed that the imperfections in CSI is bounded within a

hyper-spherical region, hence the problem in (4.1) is expressed as

min
wi(q)

max
‖∆t(k)‖F≤δt

∑

i∈Sl

wH
i(q)wi(q) +

∑

k∈Sb,k 6=q

∑

t∈Sl

∑

i∈Sl

wH
i(q)

(
Rt(k)(q) +∆t(k)

)
wi(q)

subject to min
‖∆i(q)‖F≤δi(q)

SINRi ≥ γi(q), ∀i ∈ Sl, q ∈ Sb, (4.22)

where δt and δi indicate the radii of the hyper-spheres corresponding to the uncertainties

in the crosstalk and the local channel knowledge, respectively, at a given BS. For

simplicity and without loss of generality, it is assumed δt = δi = δ. The detailed

solution can be found in Chapter 3.

In practical scenarios, the entries of ∆t(k) and ∆i(q) are unbounded random vari-

ables. Then, indeed their Frobenius norms, i.e., ‖∆t(k)‖F and ‖∆i(q)‖F , become un-

bounded random variables. Hence, confining the CSI imperfections within a bounded

uncertainty region in the worst-case approach would naturally imply that with a cer-

tain probability the uncertain CSI may fall outside of the considered uncertainty region.

Thus, with certain outage probabilities the norm constraints in problem (4.22) may not

hold in a realistic scenario and, hence, their corresponding optimal solutions may no

longer be feasible. In this section, we find a metric that enables us to illustrate a link
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between the worst case-based and probabilistically constrained robust designs. We

provide an explicit relationship between the outage probability ρ and the uncertainty

parameter δ and, therefore, provide a practical rule for choosing δ based on the QoS

requirements.

Lemma 4.2. Let ∆ be a n × n random matrix with ZMCSCG entries defined as

[∆]ij ∼ CN(0, σ2). Then Pr(‖∆‖2F ≤ δ2) = 1− ρ, where

δ =

√
σ2Ψ−1

X2(2n2)(1− ρ)

2
, (4.23)

0 ≤ ρ ≤ 1 is the outage, i.e., the probability that ‖∆‖2F > δ2 and Ψ−1
X2(2n2)(.) is the

inverse CDF of a standard chi-square random variable with 2n2 degrees of freedom.

Proof. We can write

‖∆‖2F =

n∑

i=1

n∑

j=1

|[∆]ij |2, (4.24)

where |[∆]ij |2 = ℜ{[∆]ij}2 + ℑ{[∆]ij}2. Since [∆]ij is ZMCSCG, then its real and

imaginary parts can be expressed in terms of standard normal random variables Uk ∼
N(0, 1) as ℜ{[∆]ij} = σ√

2
Uk and ℑ{[∆]ij} = σ√

2
Uk+1, respectively. Hence, (4.24) can

be rewritten as

‖∆‖2F =
σ2

2
Q, (4.25)

where Q =
∑2n2

k=1U
2
k is distributed as a standard chi-square random variable with 2n2

degrees of freedom, i.e., Q ∼ X2(2n2). Hence, Pr(‖∆‖2F ≤ δ2) = Pr(Q ≤ 2δ2

σ2 ) =

ΨX2(2n2)(
2δ2

σ2 ), where ΨX2(2n2) (·) indicates the CDF of a standard chi-square random

variable with 2n2 degrees of freedom. By setting ΨX2(2n2)(
2δ2

σ2 ) = 1− ρ and calculating

δ in terms of the outage probability ρ, we obtain (4.23). (see Appendix A for more

details)

4.5 Simulation results

In this section, computer simulations are carried out to verify the performance of our

proposed approach compared to Bengtssons method [49], which is used for perfect

CSI case, a conventional downlink beamforming and worst-case robust approach of

Chapter 3. For the conventional beamforming, we remove the ICI-balancing term, i.e.,
∑

k∈Sb,k 6=q

∑
t∈Sl
∑

i∈Sl w
H
i(q)(Rt(k)(q) +∆t(k))wi(q) in the proposed objective function in

(4.1), to illustrate the effect of ICI balancing term on the total transmit power of BSs.
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We adopted the same simulation parameters as Table 3.1 and carried out Monte-

Carlo simulations with 6 antenna elements per sector BSs and over 30 independent user

distributions. An example of one user distribution has been shown in Fig. 3.2, Chapter

3. In the following simulations, we have assumed that the entries of each one of the

random matrices ∆i(q) and ∆t(k) have the same variances, i.e., [∆i(q)]rd ∼ CN(0, σ2
i )

and [∆t(k)]rd ∼ CN(0, σ2
t ), ∀r, d, and furthermore σ2

i = σ2
t = σ2.
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Figure 4.1: The proposed probabilistic approach with various variances of uncertainties
at a fixed outage of ρ = 0.3.

Fig. 4.1 shows that at a fixed outage probability of ρ = 0.3, the total transmit

power of 3 BSs increases as the variance, i.e., σ2, of channel uncertainty increases, in

the proposed probabilistic approach. In addition an increase in power level as a result of

an increased variance of CSI error, i.e., σ2, leads to an increase in interference power,

which reduces the convergence speed of the algorithm as it requires more iterations

to stabilize the network in an equilibrium. To further verify the proposed approach

and to illustrate the impact of the ICI-balancing term on the total transmit power

of BSs, we have also shown in Fig. 4.1 the result for chance-constraint conventional

beamforming. A comparison of the results confirms the effectiveness of the proposed

ICI-balancing term in significant reduction of the total transmit power at BSs and in

achieving higher SINR targets with affordable sum-power levels at BSs. Furthermore

from Fig. 4.1, the non-robust approach in [49] appears to be more power efficient than

the proposed probabilistic design. This increase in transmit power in the proposed
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Figure 4.2: Histogram of normalized SINR constraints for σ2 = 0.01, ρ = 0.1 and target
SINR values of 10 dB.
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Figure 4.3: The proposed probabilistic approach with various outages at fix error
variance of σ2 = 0.2.

design is the price to be paid to achieve robustness against channel uncertainties. We

have further shown the trade-off between the cost and the pay-off of our robust design

scheme in Fig. 4.2, where we plot the histogram of the achievable normalized QoS

using equation 3.28, as given previously in Chapter 3. As explained in Chapter 3, due

to the normalization, a value greater than one for ψi(q) corresponds to the satisfied QoS
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Figure 4.4: Comparison of the proposed approach with σ2 = 0.01 with the worst-case
approach at various outages.

constraints. As it can be seen in Fig. 4.2, when exposed to a scenario with channel

estimation error, the non-robust scheme [49] fails to satisfy users SINR constraints in

more than 50% of beamforming instances. This result reveals the fact that a design

based on perfect CSI assumption can be quite sensitive to CSI errors in a realistic

scenario.

To investigate the power consumption of the proposed approach, we plot the total

transmit power of BSs at a fixed statistical CSI uncertainty of σ2 = 0.2 versus the re-

quired SINR threshold, with different outage probability constraints measured by ρ, in

Fig. 4.3. From Fig. 4.3, it can be observed for a given SINR target the required trans-

mit power increases as the outage probability decreases. For instance, the proposed

method with ρ = 0.1 requires 4.87 dB more power than with ρ = 0.49 for SINR = 8

dB. This is due to the cost to be paid in terms of more power consumption to achieve

the pay-off in terms of gaining more insurance level for robustness against channel un-

certainties. When the outage constraint is becoming stricter (i.e., less values of ρ), the

probability of non-outage, e.g., 1 − ρ, which defines the probability of delivering the

required quality of service to the users, increases, and therefore, more power is required

to meet the requested targets by the users, as shown in the Fig. 4.3. Further, it can

be observed that at ρ = 0.1 the proposed method cannot go beyond a critical SINR

point of 8.96 dB with limited transmit power. It is noticed that higher SINR targets
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Figure 4.5: Histogram of normalized SINR constraints for target SINR value of 8 dB.

at lower transmit power can be achieved at higher outage probabilities, i.e., ρ, hence

the critical SINR decreases with a smaller ρ value.
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In Fig. 4.4, we have compared the performance of the proposed approach with that

of the worst-case approach in Chapter 3 at various outage probabilities of 0.46, 0.1 and

0.02 and a fixed statistical CSI uncertainty of σ2 = 0.01. Using (4.23), we calculate the

deterministic upper bounds in the worst-case, i.e., conservative, approach in Chapter

3 as δ = 0.6, 0.66 and 0.7, respectively, corresponding to ρ = 0.46, 0.1 and 0.02 in∥∥∆i(q)

∥∥
F
≤ δ and

∥∥∆t(k)

∥∥
F
≤ δ. A comparison of results in Fig. 4.4 shows that the

proposed probabilistic approach is more power efficient than its conservative worst-

case counterpart in Chapter 3. In particular, this superiority in being more power

efficient becomes even more significant at higher SINR targets, i.e., SINR> 8 dB.

Furthermore, Fig. 4.4 also confirms that the results for conservative cases are less

sensitive to variations in outage values than the results for the probabilistic cases.

Figs. 4.5 and 4.6 demonstrate the corresponding histograms for the normalized

SINR constraint at 10% and 46% outages, respectively, at a target SINR = 8 dB.

Comparing 4.5(a) with 4.5(b) and 4.6(a) with 4.6(b), one can see that although, the

worst-case approach in 4.5(b) and 4.6(b) fully satisfy the set SINR target, it consumes

nearly 72% more power at SINR = 8 dB than the proposed approach, i.e., see Fig. 4.4.

Furthermore, a comparison of 4.5(a) and 4.6(a) reveals that although, the proposed

approach at 46% of outage ensures the satisfaction of SINR targets at above 95% of

beamforming instants, it perfectly meets, i.e., well above 100%, the target SINR at

10% of outage.

4.6 Conclusions

We have proposed a probabilistic robust downlink beamforming approach to deliver

users’ desired SINR targets with certain adjustable outages. Users who are located

within the adjacent cells of a cellular network communicate only with their own BSs

and over a shared bandwidth. The proposed scheme is amenable to distributed imple-

mentation. This is due to accounting for the inter-BS coupling effect by minimizing the

resulting inflicted aggregate ICI by each BS on the users of the other cells as an integral

part of the proposed objective function of optimization. However, such an amenability

to distributed implementation comes at the price of additional computational complex-

ity at user terminals for estimating the incoming ICI from the other BSs in the adjacent

cells and feeding it back to the local BSs. In this chapter, we have relaxed the rank

one constraints and solved the proposed optimization problem using the SDP method.

Interestingly, our simulations by CVX always generate exact rank one solutions, such

that we have never needed to use an additional randomization process to approximate
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the rank one solutions with an additional computational complexity. An interesting

direction for future research is to attempt to prove analytically that the proposed op-

timization problem always generates rank one solutions by SDP approach. Simulation

results confirm that not only does the proposed approach outperforms the conventional

scheme, but it also shows a significantly superior power saving performance at higher

SINR targets, when compared with its conservative worst-case design counterpart.
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Chapter 5

Robust Downlink beamforming

with imperfect CSI on both

transceiver sides

In this chapter, we consider the problem of power-efficient transmit beamforming design

at multi-antenna base stations (BSs) of a multi-cell network, when the channel state

information (CSI) at both transceiver ends are imperfect. We introduce an optimiza-

tion problem that accounts for robustness at, both, the constraints and the objective

function. The robust constraints guarantee the quality of service (QoS) at mobile users

(MUs) by ensuring that a set of signal-to-interference-plus-noise ratio (SINR) targets

are met, despite the presence of erroneous CSI at both the BS and the MU sides. The

robust objective function minimizes a linear combination of total transmit power at

each BS and the overall inflicted interference power on the other users of the other cells

under the worst-case of channel uncertainties. As the proposed problem is NP-hard,

in general, we reformulate the problem into a semidefinite programming (SDP) with

linear matrix inequality (LMI) constraints using the standard rank relaxation and the

S-procedure. The simulation results confirm the effectiveness of the proposed robust

beamforming design in terms of power efficiency at BSs and QoS guarantee at MUs,

when compared with the conventional method in the presence of imperfect CSI.

5.1 Introduction

In a fully loaded cellular environment, cell-edge users experience considerably large

inter-cell interference (ICI) causing severe degradation in system performance. Since,

the adverse effect of ICI cannot be mitigated by increasing the transmission power, the
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spectrum efficiency is compromised by employing orthogonal frequency reuse schemes

in current cellular systems. Recently, cooperative multipoint (CoMP) transmission

scheme, e.g., [51], [141], has been adopted by cloud-random access network (C-RAN)

[142] to improve the spectrum efficiency of future multi-cell wireless networks. How-

ever, there are several problems, such as the provision of accountable channel state

information, backhaul overhead and scheduling, that limits the scalability and effec-

tive application of this technology in practical networks.

In this chapter, we focus on the robustness of downlink coordinated beamforming

design in the presence of imperfect CSI, both at the transmitter (CSIT), i.e., at the base

station (BS), and at the mobile user (CSIR). The BS can capture CSIT by exploiting the

channel reciprocity in time division duplex (TDD) systems or via a feedback mechanism

initiated by the mobile user (MU) in frequency division duplex (FDD) systems. In

both cases, however, CSIT can be contaminated by various sources of errors, such as

estimation error, delay, e.g., due to high mobility, and quantization error, i.e., due

to limited backhaul resources. Furthermore, the CSIR is also vulnerable to channel

estimation error at the receiving side. As an erroneous CSIR affects the optimality of

symbol detection at the receiving end, the assumption of perfect CSIR in designing the

information beams at BSs may lead to unexpected results in practical scenarios.

Recently, multiple efforts have been made to design robust multi-cell beamformers.

For instance, in [143], assuming second order statistical channel knowledge with imper-

fect CSIT and perfect CSIR, the authors design robust downlink beamforming vectors

that minimize the total transmit power at BSs under both worst-case and probabilistic

SINR constraints at user terminals. In [105], the authors focus on maximizing the

weighted sum-rate as well as the minimum worst-case rate of a multi-cell network by

adopting a bounded deterministic model for the uncertainty region and design central-

ized (fully cooperative) and distributed (limited cooperation) precoding algorithms at

BSs. Most of the previous works on downlink beamforming designs assume imperfect

CSIT, only, e.g., [144]. Most recently, in [145], robust downlink beamforming designs

are studied with both imperfect CSIT and CSIR in the downlink of a single cell mul-

ticast scenario, comprising of a several groups of single antenna mobile terminals, to

minimize the transmit power, subject to ensuring SINR targets in the worst-case of

channel uncertainties. However, the approach in [145] is a single cell design and ignores

the overall interference power on the other users of the other cells.

In this chapter, assuming instantaneous channel knowledge with imperfect CSIT

and CSIR, we formulate a robust optimization problem that minimizes a linear com-

bination of total transmitted power at each BS and the induced aggregate interference
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power on the users of the other cells, in the worst-case. The aim is to guarantee a set of

SINR targets at user terminals under the worst-case of channel uncertainties. Our ap-

proach differs from the existing ones in inclusion of a robust ICI controlling cost term in

the objective function of the proposed optimization problem. This transmission strat-

egy can increase the scalability of multi-cell networks with highly efficient re-usability

of spectral resources across the adjacent cells. The robust SINR constraints account

for the uncertainties in both CSIT and CSIR, which are assumed to be confined within

a hyper-spherical set, and achieves a power-efficient and stable QoS guarantee in terms

of the satisfaction of SINR targets at user terminals.

The remainder of this chapter is structured as follows. System model and problem

formulation are given in Section 5.2. In section 5.3, we develop a tractable robust

beamforming solution to the proposed problem. Simulation results are presented in

Section 5.4. Finally, 5.5 concludes the chapter.

5.2 System Model and problem formulation

In this chapter we adopt a same system model as previous chapters and we assume

that only a corrupted version of actual channel between a BS and a user is known and

is modeled as

hi(q)(q) = h̃i(q)(q) + ei(q), (5.1)

where hi(q)(q) ∈ CM×1 is the actual complex channel vector between BS q and user

i(q), h̃i(q)(q) is the corrupted version of the actual channel by an error ei(q) ∈ CM×1.

The CSI error vector is modeled to be bound within a spherical region with radius ǫ,

i.e.,
∥∥ei(q)

∥∥2 ≤ ǫ2. Hence, the received signal at user i in cell q can be written as

yi(q) =
(
h̃H
i(q)(q) + eHi(q)

)
wi(q)si(q) +

∑

j∈Sl,j 6=i

(
h̃H
i(q)(q) + eHi(q)

)
wj(q)sj(q) + vi(q) + ni(q),

(5.2)

In detecting the received symbol si(q), we assume that the receiver considers the

estimated channel as the actual one and models the effect of channel estimation er-

ror as an additional Gaussian noise, statistically uncorrelated from noise and other
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inter/intra-cell interferences at user i(q). Expanding (5.2), we get

yi(q) = h̃H
i(q)(q)wi(q)si(q)︸ ︷︷ ︸
desired signal

+
∑

j∈Sl,j 6=i

h̃H
i(q)(q)wj(q)sj(q)

︸ ︷︷ ︸
intra-cell interference

+

∑

j∈Sl,j 6=i

eHi(q)wj(q)sj(q) + eHi(q)wi(q)si(q) + ni(q)

︸ ︷︷ ︸
noise

+ vi(q)︸︷︷︸
inter-cell interference

. (5.3)

Therefore the worst effective SINR at the input of an optimal detector, detecting the

transmitted symbol si(q), at user i(q) is given by

eSINRi(q) =

∣∣∣h̃H
i(q)(q)wi(q)

∣∣∣
2

∑
j∈Sl,
j 6=i

∣∣∣
(
h̃H
i(q)(q) + eHi(q)

)
wj(q)

∣∣∣
2

+
∣∣∣eHi(q)wi(q)

∣∣∣
2

+ ξi(q) + σ2
n

, (5.4)

where ξi(q) = E

(∣∣vi(q)
∣∣2
)
is the total ICI power received by user i(q). We have assumed

a Gaussian model for the ICI and that each user i(q) ∈ Sl can estimate the arrived

total ICI power ξi(q), i.e., using the MMSE approach described in [127], and feed it

back to its local BS. The BSs use the received information, i.e., ξi(q), to design their

beamforming vectors towards their corresponding users. Interested readers are referred

to [127] for more details on ICI modeling. To design the downlink beamforming vectors

at any given BS q, we propose a robust optimization problem given by

min
wi(q)

max
‖et(k)‖2≤ǫ2

∑

i∈Sl

wH
i(q)wi(q) +

∑

k∈Sb,k 6=q

∑

t∈Sl

∑

i∈Sl

∣∣∣
(
h̃H
t(k)(q) + eHt(k)

)
wi(q)

∣∣∣
2

s.t. min
‖ei(q)‖2≤ǫ2

∣∣∣h̃H
i(q)(q)wi(q)

∣∣∣
2

∑
j∈Sl,
j 6=i

∣∣∣
(
h̃H
i(q)(q) + eHi(q)

)
wj(q)

∣∣∣
2

+
∣∣∣eHi(q)wi(q)

∣∣∣
2

+ ξi(q) + σ2
n

≥ γi(q),

∀i ∈ Sl, q ∈ Sb, (5.5)

where γi(q) is the eSINR target required by an active local user i(q). The first term of

the objective function in (5.5) indicates the total signal power transmitted to locally

active users in cell q, while the second term represents the overall interference power on

the users of the other cells due to the transmissions to the locally active users within

cell q. Note that h̃t(k)(q) ∈ CM×1 is the corrupted cross channel vector between the BS

of cell q and the user t of cell k and et(k) ∈ CM×1 is its associated error.
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5.3 Min-Max Robust Optimization

In order to ensure robustness, the feasibility region of the optimal solutions to the opti-

mization problem in (5.5) should fall in the intersection of an infinite number of SINR

constraints, making the numerical solution intractable. In this section, we propose

a tractable solution to the problem in (5.5) by applying semidefinite relaxation and

rewriting the constraints in more convenient forms. Introducing a new matrix variable

as Wi(q) = wi(q)w
H
i(q) ∈ CM×M and using the slack variable ν, we can reformulate the

problem in (5.5) as

min
Wi(q),ν

∑

i∈Sl

Tr
(
Wi(q)

)
+ ν (5.6a)

s.t. min
ei(q)

eSINRi(q) ≥ γi(q), (5.6b)

∥∥ei(q)
∥∥2 ≤ ǫ2, ∀i ∈ Sl (5.6c)

∑

k∈Sb,k 6=q

∑

t∈Sl

∑

i∈Sl

∣∣∣
(
h̃H
t(k)(q) + eHt(k)

)
wi(q)

∣∣∣
2

≤ ν (5.6d)

∥∥et(k)
∥∥2 ≤ ǫ2, ∀t ∈ Sl, (5.6e)

Wi(q) = WH
i(q) � 0, (5.6f)

rank
(
Wi(q)

)
= 1, ∀i ∈ Sl. (5.6g)

The constraint (5.6b) can be expanded as follows

min
ei(q)

h̃H
i(q)(q)Wi(q)h̃i(q)(q)

∑
j∈Sl,
j 6=i

(
h̃i(q)(q) + ei(q)

)H
Wj(q)

(
h̃i(q)(q) + ei(q)

)
+ eHi(q)Wi(q)ei(q) + ξi(q) + σ2

n

≥ γi(q),

(5.7)

and rewritten as

τi(q) ≥ max
ei(q)

[ (
h̃i(q)(q) + ei(q)

)H
Bj(q)

(
h̃i(q)(q) + ei(q)

)
+

(
eHi(q)Wi(q)ei(q)

) ]
, (5.8)

where Bj(q) =
∑

j∈Sl,j 6=iWj(q) and

τi(q) =
h̃H
i(q)(q)Wi(q)h̃i(q)(q)

γi(q)
− ξi(q) − σ2

n. (5.9)
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The right-hand side of (5.8) is the upper-bound of sum of two non-negative terms.

Defining the auxiliary scalar variables of ωi(q) and κi(q), we decompose (5.8) into three

constraints, as

ωi(q) ≥
(
h̃i(q)(q) + ei(q)

)H
Bj(q)

(
h̃i(q)(q) + ei(q)

)
, (5.10)

κi(q) ≥
(
eHi(q)Wi(q)ei(q)

)
, (5.11)

τi(q) ≥ ωi(q) + κi(q). (5.12)

Note that the constraints (5.10), (5.11) and (5.12) involve infinite number of inequal-

ities, due to the existence of variable ei(q), and hence, make the solution to the opti-

mization problem in (5.6) intractable. To overcome this problem, we convert the set

of intractable robust constraints into tractable ones using the S-procedure.

Lemma 5.1. (S-procedure [106]) Let

fi(e) = eHAie+ 2ℜ
{
eHri

}
+ ci, for i = 0, 1, (5.13)

where Ai ∈ HM×M , ri ∈ CM×1 and ci ∈ R. Suppose that there exists an ê ∈ CM×1 such

that f1(ê) ≤ 0. Then the following two statements are equivalent:

1. f0(e) ≥ 0 and f1(e) ≤ 0 are satisfied for all e ∈ CM×1

2. There exists a λ ≥ 0 such that

[
Q0 r0

rH0 c0

]
+ λ

[
Q1 r1

rH1 c1

]
� 0. (5.14)

Using the constraints in (5.10) and (5.6c) and after some algebra, we form

f0(ei(q)) = −eHi(q)Bj(q)ei(q) − 2ℜ
{
eHi(q)Bj(q)h̃i(q)(q)

}
− h̃H

i(q)(q)Bj(q)h̃i(q)(q) + ωi(q) ≥ 0,

f1(ei(q)) = eHi(q)Iei(q) − ǫ2 ≤ 0. (5.15)

Notice that, since ǫ2 ≥ 0, there exists a point êi(q) such that f1(êi(q)) ≤ 0. Hence,

according to Lemma 5.1, there exists αi(q) ≥ 0, such that the equivalent LMI for the

set of constraints in (5.10) and (5.6c) can be formed as




−Bj(q) + αi(q)I −Bj(q)h̃i(q)(q)(
−Bj(q)h̃i(q)(q)

)H
ti(q)


 � 0, (5.16)
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where ti(q) = ωi(q)− h̃H
i(q)(q)Bj(q)h̃i(q)(q)−αi(q)ǫ

2. Following the same approach, we can

write the equivalent LMI for the constraints (5.11) and (5.6c) as

[
−Wi(q) + µi(q)I 0

0 κi(q) − µi(q)ǫ
2

]
� 0, (5.17)

where µi(q) ≥ 0 is the auxiliary variable of S-Procedure. Furthermore, the constraint

(5.6d) can be rewritten as

∑

k∈Sb,k 6=q

∑

t∈Sl

(
h̃H
t(k)(q) + eHt(k)

)
Ai(q)

(
h̃t(k)(q) + et(k)

)
≤ ν, (5.18)

where Ai(q) =
∑

i∈Sl Wi(q). Defining

g0(et(k)) = −eHt(k)Ai(q)et(k) − 2ℜ
{
eHt(k)Ai(q)h̃t(k)(q)

}
− h̃H

t(k)(q)Ai(q)h̃t(k)(q) + ν ≥ 0,

g1(et(k)) = eHt(k)Iet(k) − ǫ2 ≤ 0, (5.19)

and applying Lemma 5.1, we can form the equivalent LMI for the set of constraints in

(5.6d) and (5.6e) as

∑

k∈Sb,k 6=q

∑

t∈Sl




−Ai(q) + λt(k)I −Ai(q)h̃t(k)(q)(
−Ai(q)h̃t(k)(q)

)H
dt(k)


 � 0, (5.20)

where dt(k) = −
(
h̃H
t(k)(q)Ai(q)h̃t(k)(q)

)
−λt(k)ǫ

2+ ν and λt(k) are the auxiliary variables

of S-Procedure. Finally, the original optimization problem in (5.5) is reformulated with

equivalent LMI constraints as

min
Wi(q),ν

∑

i∈Sl

Tr
(
Wi(q)

)
+ ν (5.21)

subject to (5.12), (5.16), (5.17) and (5.20),

Wi(q) = WH
i(q) � 0, rank

(
Wi(q)

)
= 1,

∀i ∈ Sl, ∀t ∈ Sl, ∀k ∈ Sb.
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Algorithm 5.1 Gaussian Randomization Procedure for BS q

1: Given: A number of randomization iterations R, the optimal solutions W∗
i(q), ∀i ∈

Sl to problem (5.21);

2: for l = 1 : R do

3: Generate random vectors w
(l)
i(q) ∼ CN

(
0,W∗

i(q)

)
, ∀i;

4: Set beam directions u
(l)
i(q) = w

(l)
i(q)/

∥∥w(l)
i(q)

∥∥, ∀i;
5: Using Wi(q) = ui(q)u

(l)
i(q)

(
u
(l)
i(q)

)H
, ∀i, in (5.21), where

√
ui(q) =

∥∥w(l)
i(q)

∥∥, solve

min
ui(q)≥0,∀i

∑

i∈Sl

ui(q) + ν

subject to: constraints in (5.21).

(5.22)

6: Let
{
u
(l)
i(q)

}
i∈Sl

and F (l) be the set of feasible solutions to and the optimum

objective value of (5.22), respectively;

7: end for

8: Let L be the set of indexes l for which (5.22) is feasible;

9: l∗ = arg
{
minl∈L F

(l)
}
;

10: return w∗
i(q) =

√
u
(l∗)
i(q)u

(l∗)
i(q), ∀i.

The problem in (5.21) is convex if the rank one constraints are relaxed. Hence,

ignoring the rank one constraint, one can solve the optimization problem in (5.21), e.g.,

using the SeDuMi solver [111], and find the optimum solutions, W∗
i(q). If the rank of an

optimum solution is one, then the corresponding direction of the optimum beamforming

vector can be found as the eigenvector associated with the nonzero eigenvalue of the

optimum solution. Then, the square root of the nonzero eigenvalue corresponds to the

Euclidean norm of the optimum beamforming vector. Otherwise the randomization

technique, i.e., the Gaussian randomization procedure [144], detailed in pseudo-code in

Algorithm 1 for the problem in (5.21), is used to find the rank one approximations to

the optimal solutions W∗
i(q). Notice that using an adequate number of randomization

iterations R in Algorithm 1, the gap between the approximation and the exact optimal

solutions can be sufficiently reduced.
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5.4 Simulation results

5.4.1 simulation set up

The numerical results of the computer simulation will be presented in this section to

asses the performance of the proposed beamforming design against the conventional

robust and the non-robust approaches. Please see appendix B for the non-robust

approach formulation stages.

We consider a 3-cell cellular network, where two simultaneously active users per

cell are randomly scheduled within their 3 adjacent sectors to reflect a severe impact of

ICI on the network. Fig. 3.2, chapter 3 illustrates an example of one user distribution

with 6 users. To obtain the channel model between any BS q and any user i in cell p,

we use a similar model as in [146, 147], as

hT
i(p)(q) = hT

wR
1/2
i(p)(q), (5.23)

where hw ∈ CM×1 is a ZMCSCG random vector with unit variance entries, Ri(p)(q) ∈
CM×M is the spatial covariance matrix of user i(p) as seen by BS q. The (m,n)th

element of the spatial covariance matrix Ri(p)(q) in (5.23) is given by equation (3.27),

in Section 3.4.1. Monte-Carlo simulations are carried out with 6 antenna elements

per sector BSs and over 30 independent random user distributions and 1000 channel

realizations per distribution. The simulation parameters used in the following chapter

are the same as the previous chapters. Table 3.1 summarizes these parameters.

5.4.2 Performance evaluation

To illustrate the advantage of the proposed robust design, histograms of the distribution

of SINR satisfaction are shown in Fig. 5.1. We define ζi(q) as the normalized SINR,

i.e., the ratio of the achievable SINR to the target one, given by

ζi(q) =

∣∣∣h̃H
i(q)(q)wi(q)

∣∣∣
2

γi(q)



∑
j∈Sl,
j 6=i

∣∣∣
(
h̃H
i(q)(q) + eHi(q)

)
wj(q)

∣∣∣
2

+
∣∣∣eHi(q)wi(q)

∣∣∣
2

+ ξi(q) + σ2
n




, ∀i ∈ Sl.

(5.24)

A comparison of results in Figs. 5.1 (a) and (b) confirms the effectiveness of the

proposed robust design against channel uncertainties. As seen in Fig. 5.1 (a), the

non-robust design fails to meet the SINR targets in more than 50% of occasions in
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the presence of channel imperfection, whereas, Fig. 5.1 (b) confirms that the proposed

robust design scheme satisfies the SINR constraints above the set targets in all of the

trials, despite the presence of the same channel uncertainties.
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Figure 5.1: Histogram of normalized QoS constraints for ǫ2 = 0.01 and target SINR
values of 10 dB.

Fig. 5.2 shows the total transmit power versus various target SINR levels for a

robust conventional, proposed robust and non-robust designs (see appendix B for the

optimization problem with perfect CSI, i.e., non-robust) in the presence of different

channel uncertainties. These results confirm that robustness comes at the price of in-

creased transmit power. Furthermore, as the uncertainty level increases, more transmit

power is required to meet the same SINR targets. Results in Fig. 5.2 also confirm that

the dynamic range of SINR targets supported by the design at affordable transmit

power levels diminishes fast as the severity of channel imperfections grows. The non-

robust appears to be more power efficient but, as can be observed from Fig. 5.1, the

additional required transmit power of the proposed method compared to the non-robust

method is the cost of the guaranteed QoS performance, in terms of SINR, against the

channel uncertainty. In order to further illustrate the benefits of the proposed robust

approach, we compare the performance of our scheme against the robust conventional

scheme, where there is no control on the induced inter-cell interference, i.e., in the

absence of the ICI controlling term of
∑

k∈Sb,k 6=q

∑
t∈Sl
∑

i∈Sl

∣∣∣
(
h̃H
t(k)(q) + eHt(k)

)
wi(q)

∣∣∣
2

of the proposed objective function in (5.5), on the total transmit power of BSs. As

indicated in Fig. 5.2 a comparison of results between the robust conventional at a fixed

CSI uncertainty level of ǫ2 = 0.01 and the proposed robust design shows that the robust
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conventional scheme fails to operate efficiently in terms of power consumption beyond

4 dB of SINR target. This is due to the fact that in the robust conventional design,

there is no control on inflicted ICI and as each BS strives to satisfy a certain SINR

for its own local users, it, inevitably, degrades the neighboring ones, who reciprocally

respond in the same manners. Whereas the second utility of the objective function of

the proposed optimization problem in (5.5) controls the inflicted interference by the

BSs and stabilizes the egoistic dynamic of the robust conventional network in an equi-

librium point, agreed by all BSs. Hence the proposed scheme and its ICI-balancing

term offers a significant reduction of the total transmit power at BSs and achieves

higher SINR targets with affordable sum-power levels at BSs.
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Figure 5.2: Minimum transmit power required versus the target SINR

As shown in Fig. 5.2 there exists a limit on the maximum achievable SINR and the

simulation under given scenarios may not yield feasible solutions during each simula-

tion. The optimization problem becomes infeasible beyond this limit. The feasibility

rate versus the target SINR, i.e., the percentage of channel realizations for which the

different schemes under consideration yield feasible solutions is shown in Fig. 5.3. We

observe that the percentage of feasibility runs for the proposed robust approach de-

creases exponentially as the CSI uncertainty together with the target SINR increases.

Moreover the non-robust approach has a 100% feasibility rate as shown in Fig. 5.3. But

when the method is tested with channel estimation errors it fails to satisfy the needed
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Figure 5.3: Feasibility rate versus SINR target

SINR in more than 50% of the beamforming cases, i.e., see the histograms in Fig. 5.1.

Furthermore, as confirmed by the extracted results in Fig. 5.3, the proposed robust

approach shows an increased feasibility rate as compared to the robust conventional

approach.

The low feasibility in robust designs can be explained in the following way: a perfect

CSI would correspond to a single point in space, where a particular user is located.

When an error is present the beamforming has to be done for a wider region of space,

i.e. the bigger the error radius is, the wider the beams become and eventually they start

to overlap over the different users causing interference to them. This in turn results in

higher power and if this higher power can not solve the case, it iteratively goes up to

infinity, which results in infeasibility. A possible solution for this is the investigation of

the problem with larger antenna array systems with more than 8 elements, which can

form narrower beams and steer them in space with greater precision. They can also

form more complex patterns that can better avoid this overlapping.

In a real situation whenever the system finds that the instant solution is going

to infinity in terms of transmit power (is infeasible in terms of convex optimization),

scheduling should be used, especially when trying to serve two users per cell at a time

in the same frequency. Thus it is not surprising why one of the currently proposed

methods for CoMP is Coordinated Scheduling/Coordinated Beamforming, i.e., a com-
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bination of these two. The topic of scheduling is beyond the scope of this thesis but

could be considered as an extension to this work for the future research.

5.5 conclusion

We investigate robust transmit beamforming design under the assumption of that both

CSIT and CSIR are imperfect. The proposed robust design minimizes a combination

of the total transmit power required by each BS, to deliver to its locally active users a

certain set of desired SINR levels, and the resulting inflicted inter-cell interference on

the users of the other cells. As the originally proposed problem is naturally non-convex

and intractable due to the presence of robust constraints, we employ the S-procedure

and the semidefinite relaxation method [119] to derive an equivalent formulation which

is numerically tractable and convex. It is shown that when accounting for the CSI er-

rors, power-efficient feasible solutions can be achieved for certain sets of SINR targets.

Simulation results reveal that the proposed robust design with imperfect CSI offers

superior results compared to a robust conventional method in terms of minimized

transmit power. We also observed that the achievable SINR targets at user terminals

shrinks with an increase in error bound, i.e., the radius of the hyper-spherical uncer-

tainty set. Furthermore, increasing the error bound leads to increased transmit power

at base stations.
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Conclusions and future work

This thesis focuses on the optimization of the system level performance of multiple

antenna cellular wireless communication systems that employ beamforming to provide

a reliable and robust transmission against channel imperfections. Beamforming is one

of the popular techniques to exploit the benefits of multiple antenna systems with

the requirement of perfect CSI. However, only imperfect CSI is available in real sce-

narios, which leads to significant performance degradation, and consequently posing

challenges in system analysis and signal design. It motivates to exploit a robust trans-

mit beamforming against errors in CSI. Our proposed techniques provide robustness

against various types of channel uncertainty. Commonly, there are two methods of

deterministic (or worst-case) and stochastic modeling of imperfect CSI. The system

performance of the proposed optimization problem is evaluated under deterministic as

well as stochastic channel estimation error. The objective of the proposed design is

to minimize the transmit power by individual BSs and the resulting inter-cell interfer-

ence jointly and in a robust manner, while still guarantee a QoS requirement for all

active user terminals. For the different scenarios, the optimal solution of the problem

was investigated and low complexity efficient algorithms were proposed. Simulation

results provide a substantially improved robustness against imperfect knowledge of the

wireless channel with respect to their classical non-robust counterparts, by means of

maintaining the required QoS for all active user terminals.

This chapter summarizes the findings of previous chapters and outlines possible

future research directions.

6.1 Thesis summary

The introductory chapter outlined the motivation and the contributions of this thesis.
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6.1.1 Summary of Chapter 2

In this chapter, we investigated the literature survey of topics required for understand-

ing the novel contributions of this thesis. In addition, some mathematical preliminary

topics such as the concepts of Convex Optimization and semidefinite programming were

reviewed. Furthermore, an optimization problem to calculate transmit beamformers

for multiple active users in a single-cell scenario and some different approaches to solve

the optimization problem were outlined.

6.1.2 Summary of Chapter 3

In this chapter, we proposed a worst-case based robust approach for solving the prob-

lem of multi-cell downlink beamforming using second order covariance-based CSI. A

spherical uncertainty set to model imperfections in the second-order statistical channel

knowledge between the BSs and the users was adopted. A robust optimization problem

was formulated to minimize a linear combination of total transmitted power at each

BS and the induced aggregate interference power on the users of the other cells. The

aim was to maintain local users SINR demands in a power efficient way, under the

worst-case of channel uncertainties. Furthermore, by introducing the second utility

function in the objective function of the proposed optimization problem, we controlled

the inter-cell interference and brought into balance and stabilized the multi-cell net-

work in order to provide the desired levels of quality of services for the users who were

located within the adjacent cells and communicated with their corresponding BSs over

a shared bandwidth.

In our problem formulations and their derived solutions, we avoided the coarse

approximations used in the previous methods. The exact reformulations of worst-

case QoS and inter-cell interference constraints using Lagrange duality were derived.

The resulting problem was then converted into a SDP problem that is convex under

standard rank relaxation. The simulation results revealed that an increase in the

uncertainty region of the CSI led to increased power consumption at the BSs, and

also adversely affected the range of quality of service in terms of limited SINR targets

achievable at affordable levels of power consumption at the BSs. The effectiveness of the

proposed approach in terms of transmitted power in comparison to the conventional

technique was also verified through simulations. Moreover, it was shown that the

proposed decentralized scheme in which each BS locally designed its own beamforming

vectors without relying on data or downlink CSI of links from other BSs to the users,

closely followed the coordinated beamforming schemes in terms of the total transmitted
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power for lower SINR targets.

6.1.3 Summary of Chapter 4

In this chapter, in order to provide less conservative solutions in favor of improved

resource-efficient design, the aforementioned multi-cell downlink beamforming opti-

mization problem proposed in chapter 3 was optimally solved in a closed form using

the probabilistic constraints. We considered an analytical approach to solve the prob-

lem by directly characterizing the statistical behavior of the random matrix to model

the imperfections in second order statistical CSI at the transmitter. Additionally, a

relationship between the Frobenius norm of the random matrix, modeling the radius

of a hyper-spherical uncertainty region in the worst-case approach, and the outage pa-

rameter controlling the probability of the satisfaction of QoS requirement at users in

the chance-constraint approach were developed. This relation revealed and quantified

the implicit outage in the worst-case approach, i.e., due to the fact that the uncer-

tainties in practical scenarios are statistically unbounded, and helped to compare it

with the chance-constraint approach fairly. The performance of the proposed chance-

constraint robust method was compared with the robust method based on worst-case

performance optimization as well as non-robust and conventional chance-constraint

methods in terms of the total transmit power of the BSs. Simulation results confirmed

that not only the proposed robust chance-constraint method outperforms the conven-

tional chance-constraint scheme, but it also showed a significantly superior power saving

performance at higher SINR targets, when compared with its conservative worst-case

design counterpart.

6.1.4 Summary of Chapter 5

In this chapter a bounded deterministic model for the error in instantaneous CSI was

assumed, and a new SINR criterion considering imperfect channel knowledge at both

transceivers sides was adopted. The proposed robust design minimized a combination of

the power allocation among the signals to be transmitted to the users, and the resulting

inflicted inter-cell interference on the users of the other cells, while a certain predefined

quality of service per user was guaranteed. The formulated problem was within the

framework of convex optimization that employed S-procedure and the semidefinite

relaxation methods, which enabled us to efficiently find the solution to the robust

optimization problem. The simulation results showed that when accounting for the CSI
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errors, power-efficient feasible solutions can be achieved for certain sets of SINR targets.

We proved that the proposed design improves the performance achieved by the non-

robust design in terms of satisfying the users’ QoS. In particular, it was shown that the

proposed robust technique demands less power than the robust conventional methods

while still guaranteeing QoS. Furthermore, the results confirmed that increasing the

error bounds shrinks the range of achievable SINR targets at user terminals.

6.2 Future research directions

There is an endless road of possible improvements and generalizations to the results

of this thesis. Some extensions have intentionally been left out to make the thesis

coherent, while other limitations were necessary to achieve analytical tractability or to

avoid making assumptions that would affect the generality. However, several ideas for

future work have been conceived in the process of writing this thesis:

6.2.1 Rate maximization under power constraint

The focus of this thesis is on robustness and energy efficiency. The objective function

that was defined in this thesis, was aimed to minimize a linear combination of two

utility functions, characterizing each BS’s weighted sum of transmitted power to the

intra-cell users and its resulting weighted sum of interference power inflicted upon the

users of the other cells. The constraints of all optimization problems introduced in

this thesis is on users’ signal-to-interference-plus-noise ratios (SINRs). In other words,

beamforming schemes proposed in this thesis ensure all users’ quality of services above

requirement levels with minimum total transmit power. A possible extension for the

work in this thesis is to maximize the effective sum rate under transmit-power and

backhaul-power constraints.

6.2.2 Multi-antenna users

An assumption used to develop beamforming schemes in this thesis is that user termi-

nals are equipped with single antenna. When user terminals and base stations both

have multiple antennas, there are more degree of freedom to effectively control in-

terference. However, transmit and receive beamforming should be jointly designed.

A question arising here is whether global optimality can be achieved by iteratively

optimizing transmit and receive beamforming. Complexity and signalling overhead
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are expected to significantly increase. Therefore, practical solutions to the optimal

beamforming and trade-off between optimality and complexity are open problems for

research.

6.2.3 Rank-one solution

In this thesis, we have relaxed the rank one constraints and solved the proposed op-

timization problems using the SDP method. Interestingly, our simulations by CVX

always generate exact rank one solutions, such that we have never needed to use an

additional randomization process to approximate the rank one solutions with an ad-

ditional computational complexity. An interesting direction for future research is to

attempt to prove analytically that the proposed optimization problem always generates

rank one solutions by SDP approach.

6.2.4 Beamforming scheduling

The robust downlink beamforming problems presented in this thesis can be infeasible

depending upon the number of transmit antennas, the number of users, channel con-

ditions, value of noise power and the required thresholds for the QoS constraints. In

this case, however, some kind of admission control can be introduced that selects a

number of users from the complete set of users and tries to solve the robust beamform-

ing problem only for the selected users. Note that the admission control techniques

for the non-robust conventional downlink beamforming have already been presented in

[148–151] where the instantaneous CSI is used.
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6.3 Chi-square distribution with σ2 for a complex

standard random variable

If Z1, ..., Zk are independent standard normal random variables, then the sum of their

squares,

Q =

k∑

i=1

Z2
i , Zi ∼ N(0, 1), (6.1)

is distributed according to the Chi-squared distribution with k degrees of freedom.

This is usually denoted as

Q ∼ X2(k). (6.2)

Now consider Xi ∼ N(0, σ2) then

σ2Q =
k∑

i=1

X2
i . (6.3)

Therefore the cumulative distribution function (CDF) can be written as

Pr
(
σ2Q ≤ d

)
= Pr

(
Q ≤ d

σ2

)
(6.4)

= CDFX2(k)

(
d

σ2

)
∼= Ψ

(
d

σ2

)
, (6.5)

(6.6)
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where Ψ
(

d
σ2

)
is the CDF of standard Chi-square calculated at d

σ2 .

Now consider the Chi-square when Zi ∼ CN(0, 1), i.e., complex standard random

variable (ZMCSCG)

Zi = ZR
i + jZI

i , where ZR
i , Z

I
i ∼ N(0,

1

2
) (6.7)

let |Zi| = ZR2

i + ZI2

i then Q́ =
2k∑
i=1

y2i , where y
2
i ∼ N(0, 1

2
).

yi replaces both Z
R
i , Z

I
i random variables; hence there are 2k random variables in total

and Q́ ∼ X2(2k).

In terms of standard Chi-square :

yi =

√
1

2
Xi, Xi ∼ N(0, 1)

Q́S = 2Q́ =

2k∑

i=1

X2
i ⇒ Q́ =

1

2
Q́S

Pr(
1

2
Q́S ≤ d2) = Pr(Q́S ≤ 2d2). (6.8)

Therefore

CDFX2(2k)

(
2d2
)
= Ψ

(
2d2
)
. (6.9)

Similarly when Zi ∼ CN (0, σ2), then

CDFX2(2k)

(
2d2

σ2

)
= Pr(σ2Q́S ≤ 2d2). (6.10)

Let ∆ be a n× n random matrix with ZMCSCG entries defined as [∆]ij ∼ CN(0, σ2).

Denote [∆]ij = dij , we can write

‖∆‖2F =
n∑

i=1

n∑

i=1

| [∆]ij | =
n∑

i=1

n∑

i=1

|dij|2, (6.11)

where |dij|2 = ℜ{dij}2 + ℑ{dij}2 and ℜ{dij}2 ,ℑ{dij}2 ∼ N
(
0, σ

2

2

)
. Hence the real

and imaginary parts can be expressed in terms of standard normal random variables
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U ∼ N(0, 1) as ℜ{dij} = σ2
√
2
U and ℑ{dij} = σ2

√
2
U respectively. Therefore,

‖∆‖2F =
σ2

2

2n2∑

i=1

U2
i

=
σ2

2
Q, Ui ∼ (0, 1) (6.12)

where Q ∼ X2(2n2), i.e., standard Chi-square random variable with 2n2 degrees of

freedom. Hence,

Pr
(
‖∆‖2F ≤ δ2

)
= Pr

(
σ2

2
Q ≤ δ2

)
= (6.13)

Pr

(
Q ≤ 2δ2

σ2

)
= ΨX2(2n2)

(
2δ2

σ2

)
. (6.14)

By setting ΨX2(2n2)

(
2δ2

σ2

)
= 1− ρ we can find a relation between the outage ρ and δ as

2δ2

σ2
= Ψ−1

X2(2n2)(1− ρ) (6.15)

⇒ δ =

√
σ2Ψ−1

X2(2n2)(1− ρ)

2
, (6.16)

where Ψ−1
X2(2n2)(·) is the inverse CDF of a standard chi-square random variable with 2n2

degrees of freedom.
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6.4 Beamforming strategy with perfect CSI

We assume the channel vectors hi(q)(q) and ht(k)(q) are perfectly known at both

transceiver sides for the proposed optimization problem in chapter 5, and introduce

the following optimization problem for the non-robust design of beamforming vectors

as

min
Wi(q)

∑

i∈Sl

wH
i(q)wi(q) +

∑

k∈Sb,k 6=q

∑

t∈Sl

∑

i∈Sl

∣∣hH
t(k)(q)wi(q)

∣∣2

s.t.

∣∣∣hH
i(q)(q)wi(q)

∣∣∣
2

∑
j∈Sl,j 6=i

∣∣∣hH
i(q)(q)wj(q)

∣∣∣
2

+ ξi(q) + σ2

≥ γi(q), ∀i ∈ Sl. (6.17)

The constraints involve quadratic nonconvex functions of variables. However, it can be

modified into the SDP standard formulation. This can be done by changing the vector

variables wi(q) into matrix variables Wi(q). Let us define Wi(q) = wi(q)w
H
i(q), therefore,

using the following conditions

wH
i(q)wi(q) = Tr

(
wi(q)w

H
i(q)

)
= Tr

(
Wi(q)

)
, (6.18)

∑

i∈Sl

Wi(q) = W, (6.19)
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problem (6.17) can be represented as

min
Wi(q)

∑

i∈Sl

Tr
(
Wi(q)

)
+

∑

k∈Sb,k 6=q

∑

t∈Sl

(
Wi(q)ht(k)(q)h

H
t(k)(q)

)

s.t. Tr
(
Vi(q)hi(q)(q)h

H
i(q)(q)

)
≥ ξi(q) + σ2,

Wi(q) � 0,

rank(Wi(q)) = 1, ∀i ∈ Sl

where

Vi(q) =
Wi(q)

γi(q)
−

∑

j∈Sl,j 6=i

Wj(q). (6.20)

Problem (6.20) can be solved by the SeDuMi solver [111], to find Wi(q). However,

to obtain the optimal beamforming vectors wi(q), ∀i ∈ Sl, we are only interested in

Wi(q) solutions of (6.20) that are of Rank 1.[111]
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