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Abstract 

 

Brain and nervous system development in human infants during the first 1000 days 

(conception to two years of age) is critical, and compromised development during 

this time (such as from under nutrition or poverty) can have life-long effects on 

physical growth and cognitive function. Cortical mapping of cognitive function 

during infancy is poorly understood in resource-poor settings due to the lack of 

transportable and low-cost neuroimaging methods. Having established a signature 

cortical response to social versus non-social visual and auditory stimuli in infants 

from 4 to 6 months of age in the UK, here we apply this functional Near Infrared 

Spectroscopy (fNIRS) paradigm to investigate social responses in infants from the 

first postnatal days to the second year of life in two contrasting environments: rural 

Gambian and urban UK. Results reveal robust, localized, socially selective brain 

responses from 9 – 24 months of life to both the visual and auditory stimuli. In 

contrast at 0 - 2 months of age infants exhibit non-social auditory selectivity, an effect 

that persists until 4 – 8 months when we observe a transition to greater social 

stimulus selectivity. These findings reveal a robust developmental curve of cortical 



specialization over the first two years of life.  

Keywords fNIRS, infancy, low- and middle-income countries, nutrition, poverty, 

social cognition 

 

 

 

1. Introduction  

 

Infants in resource-poor settings may be frequently exposed to a range of social, 

environmental, nutritional and pathological insults. Approximately 1 in 2 children 

are thought to live in poverty (Currie and Almond, 2011; UNICEF, 2013), and 165 

million children worldwide are under nourished and stunted (UNICEF, 2013), the 

majority of whom live in Sub-Saharan Africa or South Asia.  According to a recent 

study, one third of children in developing countries fail to reach their developmental 

milestones in cognitive and/or socio-emotional growth, with the largest number of 

affected children in sub- Saharan Africa (McCoy et al., 2016). This means that over 80 

million children in low and middle income countries (LMICs) fail to develop a core 

set of age-appropriate skills that allow them to maintain attention, understand and 

follow simple directions, communicate and cooperate with others, control 

aggression, and solve complex problems. The absence of these skills has significant 

impact on their academic achievement and mental health into adulthood, and as 

such their potential to lead full and productive lives and support future generations. 

While many studies suggest that the presence of these risk factors in infancy has a 

lasting impact throughout the life course (Hackman and Farah, 2009; Martorell et al., 

2010; Victora et al., 2008), almost nothing is known about the neural bases of these 

early deficits. The first 1000 days of life are a critical window for brain and nervous 

system maturation, and impaired development during this time can have a 

significant impact on cognitive outcome (Cusick and Georgieff, 2012; Mendez and 

Adair, 1999; Powell et al., 1995). To inform interventions that may reduce the impact 

of these insults, early detection of atypical neurocognitive function is required.  

However, to date there has been a lack of suitable methods for use from early infancy 

(Isaacs, 2013). Investigation of the developing brain in rural field settings has been 

broadly limited to behavioural assessments (Georgieff, 2007; Sabanathan et al., 2015). 



However, measurements of behaviour come with some limitations. Firstly, they can 

only be used to detect effects once they reach the point of observable behaviour, 

usually in the second year of life or later. For example, whilst behavioural measures 

have been unable to distinguish between infants with low and high-risk of 

developing autism (defined by a familial diagnosis) before the first year of life, 

several recent neuroimaging studies have identified differences in brain function in 

young infants (Elsabbagh et al., 2012, 2009; Fox et al., 2013; Guiraud et al., 2011; 

Lloyd-Fox et al., 2013; Luyster et al., 2011; McCleery et al., 2009). Furthermore, work 

on the relationship between family socio-economic status (SES) and infant brain 

development has evidenced atypical neural activity using electroencephalography 

(EEG) in six to nine month old infants from low SES backgrounds in the UK, 

highlighting the importance of the early-life environment on brain development 

(Tomalski et al., 2013). Secondly, there are issues relating to the implementation, 

cultural adaptation and standardisation of behavioural assessments between 

contrasting populations. For example, many standardised assessment measures are 

developed and normed within a limited number of high-income countries (Mullen, 

1995). Therefore researchers need to develop country-specific norms for these 

measures or create independent measures and questionnaires for their own 

populations (i.e. Abubakar et al., 2016; Kariuki et al., 2016; Sabanathan et al., 2015). 

Adjustments to these measures can produce more robust and reliable datasets within 

populations, but can also hinder cross-cultural comparison due to issues with 

measurement equivalence.  

 

Neuroimaging paradigms can be designed to be unbiased, objective and applicable 

across different populations. However, to date, there has been a lack of 

neuroimaging studies in infants in LMICs. In many instances this is because the 

engineering and technical issues associated with applying neuroimaging techniques 

in resource-poor settings have not been addressed. For example, the high cost and 

low portability of neuroimaging methods such as magnetic resonance imaging (MRI) 

has excluded their use in resource poor settings and field-based research. Direct 

measures of brain activity are possible in such settings using EEG methods, however 

their use can be limited by testing constraints (including the need for controlled 

temperature and humidity levels in hot countries, Kappenman and Luck, 2010), and 

most studies are not undertaken until infants reach the age of 18 months of age or 



older (Fernandes et al., 2014). Functional near infrared spectroscopy (fNIRS) is a non-

invasive optical neuroimaging technique, which can measure cortical brain function. 

Infants wear lightweight headgear which facilitates the delivery to, and detection of 

near infrared light from the head. Changes in near infrared light intensity are a 

correlate of changes in haemodynamics and oxygenation arising from localized 

neuronal activity in the underlying cortical tissue (Villringer and Chance, 1997). 

fNIRS headgear can be rapidly administered and is well tolerated by young infants 

from birth. With optimal positioning of measurement channels (pairs of source lights 

and detectors), fNIRS generally allows for more specific spatial localization of 

activation with respect to EEG. Though the depth resolution of fNIRS is dependent 

on the age of the infant and the optical properties of the tissue (Fukui et al., 2003), 

and it offers lower spatial resolution relative to fMRI, it is similar in that it measures 

the haemodynamic response resulting from neuronal activation. Research from 

adults has shown a high degree of correlation between simultaneous recordings of 

haemodynamic responses with fNIRS and fMRI (Sato et al., 2013; Steinbrink et al., 

2006). We believe fNIRS can be widely adopted for field based research due to its 

low cost (relative to other neuroimaging methods such as MRI), portability, ease of 

use with infants (Gervain et al., 2011; Lloyd-Fox et al., 2010) and clinical populations 

(Jackson and Kennedy, 2013; Kolyva et al., 2013), and suitability for use in 

naturalistic settings (Lloyd-Fox et al., 2015).  

 

In 2013 we transported an fNIRS neuroimaging system to a field station in rural 

Gambia and demonstrated its use to acquire maps of cortical function from young 

infants. The findings from our studies in 4 – 8 month Gambian infants were 

previously described by Lloyd-Fox et al. (Lloyd-Fox et al., 2014a). In this paper we 

present data from Gambian infants aged 19 days to 24 months of age (see Figure 1). 

 

The primary aim of the current work was to assess the specialization of cortical 

activation in response to social cues from the first days of life to the second year. A 

secondary goal was to compare the responses from the rural Gambian cohorts with 

known responses in infants from an urban UK population. We use the term ‘social’ 

in this paper in the broadest sense, i.e. they are human-generated sensory stimuli in 

either the visual or auditory domain. This does not necessarily imply that these cues 



are intended to be communicative. We chose to use these stimuli for several reasons. 

Firstly, previous research suggests that infants are able to identify, and learn from, 

voices in their surroundings from a very early age (Ockleford et al., 1988), making 

this an ideal stimulus to use for our 0 – 24-month age range. Secondly, whilst there is 

an extensive and rich body of fNIRS research on infant language and speech 

processing (Quaresima et al., 2012), we chose to use non-speech vocalisations in the 

current paradigm because a suitable paradigm would have been challenging to 

develop for all of the languages spoken in the West Kiang district of The Gambia 

where Keneba is situated. We therefore felt that the non-speech vocalization 

paradigm would be more widely applicable across different languages and cultures. 

Thirdly, recent fNIRS research in typically developing infants from high-income 

urban environments has shown robust and consistent activation to social vs non-

social visual and auditory stimuli in the inferior frontal, anterior temporal and 

posterior superior temporal – temporo parietal junction (pSTS-TPJ) regions of the 

cortex (Grossmann et al., 2010; Lloyd-Fox et al., 2012, 2009; Minagawa-Kawai et al., 

2011). Therefore we were confident that we could optimize this paradigm across a 

wider age range. Having previously established this signature response in infants 

from 4 to 8 months of age in rural Gambia (Lloyd-Fox et al., 2014a), here we applied 

this paradigm to the investigation of social versus non-social cortical responses in 

infants from the first days of life to the second year. 

 

 

 

2. Materials and Methods 

 

2.1. Participants 

 

Participants were recruited from villages neighbouring a field station in Keneba, 

West Kiang District in The Gambia (see (Lloyd-Fox et al., 2014a) for further details),  

identified using the West Kiang Demographic Surveillance System 

(http://www.ing.mrc.ac.uk/research_areas/west_kiang_dss.aspx). All infants were 

born full term (37-42 weeks gestation) and with normal birth weight. A combination 

of prenatal growth retardation, poor-quality and often contaminated foods and high 

http://www.ing.mrc.ac.uk/research_areas/west_kiang_dss.aspx


levels of infection cause moderate to severe growth faltering in height and weight 

gain from around 3 months of age in the local population (Lunn et al., 1991; Lunn, 

2000; van der Merwe et al., 2013). Therefore exclusion criteria included weight-for-

height or head circumference less than 3 z-scores below WHO standards. Growth 

measures for those included in the study indicate the infants were in the typical 

range for their age (see Table 1). Ethical approval was given by the joint Gambia 

Government - MRC Unit Ethics Committee, and written informed consent was 

obtained from all parents/carers prior to participation.  

These participants were recruited into one of three cohorts (see Figure 2). Cohort 1 

participated at 0 - 2 months of age. Cohort 2, which included longitudinal data 

collection, participated at 4 - 8 months of age (see previously published results in 

Lloyd-Fox et al., 2014) and at two further sessions, six (aged 9 – 13 months) and nine 

months (aged 12 – 16 months) later. Cohort 3 participated at 18 – 24 months of age.  

Following each session, infant’s data could be excluded for the following reasons; 

due to (1) motion artefact in the data, (2) an insufficient number of valid trials 

according to looking time measures, (3) tiredness/fussiness resulting in session 

finishing early, (4) experimenter error, (5) hair obscuring array and preventing 

measurements, or (5) their weight for height (WHZ) or head circumference (HCZ) z-

scores falling below -3. Therefore for Cohort 1, 18 infants participated in the study (4 

female, mean age = 41.0 days, SD = 14.32): a further eight infants participated but 

were excluded from group analyses. For Cohort 2 (longitudinal), 42 infants were 

initially recruited into the study. At 4 – 8 months of age (previously published in 

(Lloyd-Fox et al., 2014a)), 24 infants participated in this study (10 female, mean age = 

174.4 days, SD = 40.7) and a further 18 infants participated but were excluded from 

group analyses. Six months later parents and infants were asked to return for a 

second session. Now aged 9 – 13 months, 25 infants participated in this study (10 

female, mean age = 348.4 days, SD = 37.8) and a further 12 infants participated but 

were excluded from further analyses. In addition five infants from the first session at 

4 – 8 months of age could not participate at this time point either because they were 

away from the region at time of testing (4 infants) or had died since the last visit (1 

infant). Three months later parents and infants were asked to return for a final 

session. Now aged 12 – 16 months, 19 infants participated in this study (10 female, 

mean age = 428.2 days, SD = 34.1) and a further 18 infants participated but were 



excluded from further data analyses. In addition three infants from the first session 

could not participate at this time point either because they were away from the 

region at time of testing (1 infant) or had died since the last visit (2 infants). For 

Cohort 3, 16 infants participated in the study (9 female, mean age = 631.2 days, SD = 

76.0) and a further 8 infants participated but were excluded from the study. Figure 2 

provides detail of the participants tested in this study and reasons for exclusion.  

 

 ********** TABLE 1 ABOUT HERE ********* 

 

2.2. Procedure 

2.2.1. fNIRS Measurements 

Infants wore custom-built fNIRS-CBCD headgear consisting of an array over the 

right hemisphere (Lloyd-Fox et al., 2010). Note that measurements were restricted to 

the right hemisphere as (1) our funding only allowed for a restricted number of 

sources and detectors with respect to the NIRS system used in the UK, and (2) we 

localized the channels to one hemisphere to ensure we could measure the entire 

temporal lobe area. This array varied in size and configuration according to the age 

group tested (see Figure 3). The array contained up to a total of 12 channels (source-

detector separations 2 cm), and infants were tested with the UCL optical topography 

system (Everdell et al., 2005). For Cohort 1 we used a smaller array to adjust for the 

smaller head size at this age employing 8 channels to cover the same area of the 

head. For Cohort 2 at 4 – 8 and 12 – 16 months of age we used the full number of 12 

channels. For Cohort 2 at 9 – 13 months of age and Cohort 3 we employed a different 

shaped array to enable additional measurements over the prefrontal cortex (which 

was designed to test a different paradigm at the same visit when both of these age 

groups were tested). However this design resulted in sub optimal placement of 

channels over the posterior temporal ROI (pSTS-TPJ - posterior Superior Temporal 

Sulcus –Temporoparietal Junction), which meant that we may not have measured the 

full extent of the cortical activation for the visual social/non-social contrast at these 

age points (see Figure 3). For the source detector separations used in this study, light 

transport models predict light penetration depths of up to approximately 1 cm from 

the skin surface, potentially allowing measurement of both the gyri and parts of the 

sulci near the surface of the cortex (Fukui et al., 2003; Richards et al., 2012; Salamon et 



al., 1990). With the use of the co-registration MRI-fNIRS data from our recent work 

(Lloyd-Fox et al., 2014b) we can approximate the underlying cortical anatomy of the 

fNIRS channels used in the current study. Therefore, we are confident that we can 

localize our investigation to specific regions of the social brain network and draw 

comparisons with findings from adult populations. Before the infants began the 

study, head measurements were taken to align the headgear with 10–20 coordinates 

(Lloyd-Fox et al., 2014b). The head measurements showed that the infants’ head 

circumference did not change considerably between 4 and 24 months of age so we 

utilized the same 2cm separations throughout the cohorts. The headgear was placed 

with the source light optode positioned between channel 4 and 7 on Figure 3 centred 

above the pre-auricular point (T4 according to the 10–20 system).  

 

 

The protocol for Cohorts 2 and 3 followed an identical procedure to that outlined in 

our previously published study (Lloyd-Fox et al., 2014a). For the readers convenience 

we repeat text from this previous work, but with additional information provided 

about the different testing protocol followed for Cohort 1. Once the fNIRS headgear 

was placed on their heads, the infants sat on their parent’s lap in front of a screen (for 

Cohorts 2 & 3) or asleep on a mattress or their parent’s lap for Cohort 1. For Cohort 1 

we waited for the swaddled infants to fall asleep, then wrapped the headband 

around their head and waited for them to settle before beginning the study. We 

prioritized placing the infants on a cushioned mattress for the study but if they were 

restless they were held in their parent’s arms, therefore whilst sleep state was 

prioritized some infants were tested while in a quiet alert state. For two of the infants 

they became alert and then fussy and it was necessary to feed them during the study 

and trials during this section of the data were excluded from data analysis. For all 

participants the parent was instructed to refrain from interacting with the infant 

during the stimuli presentation unless the infant became fussy or sought their 

attention. The sequence of stimulus presentation has been used in previous research 

(Lloyd-Fox et al., 2012, 2013) and is illustrated in Figure 3. The conditions alternated 

one after the other, with a period of baseline between each. The three types of 

conditions (visual-social (silent), auditory social, auditory non-social) were presented in 

the same order across infants in a repeating loop (V-S, A-NS, A-S, V-S, A-S, A-NS) of 



trials (single presentation of a condition) until the infants became bored or fussy as 

judged by the experimenter who was monitoring their behaviour. A restriction of 

studying auditory processing in awake infants of this age is that they need to be 

presented with concurrent visual stimulation to reduce infant movement and thus 

artefact in the signal. We chose to employ the same visual stimuli during the 

presentation of the auditory stimuli that we collected data from when auditory 

stimulation was absent. . For Cohort 1 we used the same paradigm and equipment, 

placing the TV monitor at the same distance from the infants’ head as used for 

Cohorts 2 & 3. 

Visual stimuli. These consisted of full-color, life-size (head and shoulders only) social 

videos of adults (Gambian nationals) who either moved their eyes left or right or 

performed hand games —‘‘Peek-a-boo’’ and ‘‘Incy-Wincy Spider.’’ Two visual social 

videos were presented for varying duration over each 9–12 s trial to avoid inducing 

anticipatory brain activity. To ensure infants’ continuous attention – especially since 

the social visual stimuli was also presented during auditory trials - there were six 

different visual social videos (two actors; three types of social video), while each 

auditory condition employed two different recordings (two speakers; one recording 

each – see below). During the baseline, visual stimuli were displayed, which 

consisted of full-color still images of different types of transport (i.e., cars and 

helicopters) presented randomly for a pseudorandom duration (1–3 s) for 9–12 s 

(Lloyd-Fox et al., 2012). Dynamic non-social baseline stimuli have also been used in 

previous work investigating responses to visual social dynamic stimuli, and have 

been found to produce similar effects to the static non-social baseline used in the 

current study (Lloyd-Fox et al., 2011, 2009). These visual stimuli were displayed on a 

24-inch plasma screen with a viewing distance of approximately 100 cm.  

Auditory Stimuli. During the presentation of visual stimuli the infants were presented 

with auditory stimuli (see Figure 3) at the onset of two out of every three of the trials. 

The content and duration of the social videos (9–12 s) were not synchronized with 

the auditory stimuli. Each auditory stimulus presentation lasted 8 s and consisted of 

four different sounds (of vocal or non-vocal stimuli) presented for 0.37–2.92 s each, 

interleaved by short silence periods (of 0.16–0.24 s). The two auditory conditions 

were equivalent in terms of average sound intensity and duration (p = 0.65). Within 

the auditory social condition infants were presented with non- speech adult 



vocalizations of two speakers (who coughed, yawned, laughed, and cried). Within 

the auditory non-social condition, the infants were presented with common 

environmental sounds (that were not human or animal produced, but were likely to 

be familiar to infants of this age; running water, bells and rattles). Vocal and non- 

vocal stimuli were chosen from the Montreal Affective Voices (for more detail, see 

(Belin et al., 2000)) and the stimuli of the voice functional localizer 

(http://vnl.psy.gla.ac.uk/resources_ main.php). Additional non-vocal stimuli (toy 

sounds) were also recorded by the authors (Blasi et al., 2011).  

 
2.3. Data processing and analysis.  

The NIRS system measured the light attenuation from each source detector pair. 

These light attenuation measures were used to calculate changes in the concentration 

of oxy-haemoglobin (HbO2) and deoxy-haemoglobin (HHb) in µMol which were 

used as haemodynamic indicators of cortical neural activity (Obrig and Villringer, 

2003). The analysis procedure followed a similar protocol to previous infant research. 

Initially, the recorded near infrared attenuation measurements for each infant were 

analyzed separately. Trials were rejected from further analysis based on looking time 

measures (coded offline by a researcher unfamiliar with the study’s aims, trials with 

>60% trial looking were considered valid) and channels were rejected based on the 

quality of the signal, using artefact detection algorithms (Lloyd-Fox et al., 2010, 

2009). For each infant, the light attenuation signal was low-pass filtered, using a cut 

off frequency of 1.8Hz. The data was then divided into blocks consisting of 4 seconds 

of the baseline trial prior to the onset of the stimulus, the experimental stimulus trial, 

plus the following baseline. The light attenuation data was detrended with a linear 

fit between the first and last 4 sec of each block. The data were then converted into 

changes in concentration (µMol) in HbO2 and HHb using the modified Beer Lambert 

law (Delpy et al., 1988) and assuming a differential pathlength factor for infants (5.13; 

based on (Duncan et al., 1995)). A minimum of three valid trials per condition was 

set as a threshold for inclusion within infants. Inclusion criteria required each 

channel to contain valid data in all three experimental conditions. For each infant, 

the trials and channels that survived these rejection criteria were entered into further 

analyses. Following this, valid trials for each condition (visual-social (silent), auditory 

social, auditory non-social) were averaged together within channels for each infant, 

and a time course of the mean concentration change in HbO2 and HHb was compiled 



for each channel. Two time windows were selected between 8 – 12 and 12 - 16 

seconds post-stimulus onset for each trial. This period of time was selected to include 

the range of maximum concentration changes observed across infants for HbO2 and 

HHb, based on visual inspection of the current data, and informed by data analysis 

approaches using the same paradigm in previous cohorts (Lloyd-Fox et al., 2013, 

2012, 2009). The time window was split into two epochs to allow us to investigate 

latency further, as we have noted differences in the timing and shape of the response 

across the different visual and auditory conditions in previous research. For each 

channel, statistical comparisons (two-tailed t-tests) of the maximum change 

(amplitude) (in HbO2 (increase in chromophore concentration) and/or HHb 

(decrease in chromophore concentration)) were performed for the (1) visual-social 

(silent) condition compared to the non-social baseline condition (with silence) and the 

(2) direct comparison of the auditory social and non-social conditions during the 

specified time windows. In addition for Cohort 1 only, the contrast between the two 

auditory conditions and silence was also performed to explore the age dependent 

specialization of this response further. Either a significant increase in HbO2 

concentration, or a significant decrease in HHb, is commonly accepted as an 

indicator of cortical activation in infant work, however in accordance with previous 

research (Lloyd-Fox et al., 2010) we found that the majority of the significant effects 

were in HbO2 and so focused our results on this signal. The significant HHb 

responses are reported in Supplementary Data. To resolve statistical problems of 

multiple comparisons for these group analyses we applied the false discovery rate 

(FDR) correction (Benjamini and Hochberg, 1995). The channels that did not survive 

this correction are highlighted in Table 2, however we chose to report the results in 

full in the Results section as the replication of effect across ages allays the need for a 

strict FDR correction.  

 

 

3 Results 

The findings reveal localized patterns of activation in regions of the posterior 

superior temporal, anterior temporal and inferior frontal cortex to the visual and 

auditory social stimuli, in concordance with previous cohorts of infants studied in 

the UK.  



3.1. Visual Social versus Non-Social  

To assess the responses to the visual social stimuli the visual-social (silent) condition 

was analysed relative to the non-social baseline condition (with silence) (t-test, two-

tailed) for each cohort (at each age point: see Table 2) in two time epochs (1) 8 – 12 

seconds and (2) 12 – 16 seconds post stimulus onset. Note that Cohort 1 did not 

contribute data to this contrast as they were either asleep or in a position where they 

were unable to view the visual stimuli. This analysis revealed significant increases in 

HbO2 centered over the posterior area of the arrays (see Figures 4 & 5), 

corresponding to the posterior STS-TPJ region of the cortex.  

 

 

As shown in Figure 5 the visual-social>non-social response was localized to the same 

region from 4 – 24 months of age with one channel (Channel 9) consistently revealing 

significant activation across all four cohorts. Haemodynamic time courses for 

Channel 9 are shown in Figure 6.  Responses at 9 – 13 and 18 – 24 months were less 

robust than at 4 – 8 and 12 – 16 months of age due to the sub-optimal headgear 

placement (this may have contributed to the diminished response seen in the time 

course of Cohort 3 (18 – 24 months) in Figure 5 as coverage may not have reached the 

area of peak activation for this age group). No significant HHb responses were found 

for either the 8 – 12 or 12 – 16 s time epochs of analysis. 

 

 

3.2. Auditory Social versus Non-Social  

For Cohort 1 initial statistical analyses of auditory social and non-social responses 

compared with silence (visual social only) were conducted (see Figure 7) for each 

time epoch (8 – 12 and 12 – 16 seconds post stimulus onset). This analysis revealed a 

more widespread HbO2 response to the non-social stimuli (5 significant channels) 

compared with the social stimuli (3 significant channels). One of these channels also 

revealed a significant HHb response. 

 

 

 



Following this, paired sample channel-by-channel t-tests (two-tailed) were 

performed to assess the presence of auditory social and non-social selective 

activation across each cohort (see Table 2). An age dependent response was revealed 

across 0 – 24 months of age. For Cohort 1 (0 – 2 months) and Cohort 2 at 4 – 8 months 

significant non-social > social HbO2 selectivity was evidenced in a posterior temporal 

region of the array (see Figures 4, 5 and 7). As reported previously (Lloyd-Fox et al., 

2014a), a social > non-social response was also evident in the 4 – 8 month old infants 

but confined to HHb (the analyses of HHb with the new time epochs are reported in 

Supplementary Data and confirm this previous finding). For Cohort 2 at 9 – 13 and 12 

– 16 months of age, and for Cohort 3 (18 – 24 months) significant social > non-social 

HbO2 selectivity was evidenced in an anterior temporal region of the array (see 

Figure 4 and 5). These significant responses were localized within the same 3 

channels across 9 – 24 months of age (see Figure 5 & 6). There were no significant 

HHb responses in Cohort 2 at 9 – 13 and 12 – 16 months of age, and Cohort 3 (18 – 24 

months). Haemodynamic time courses for the channels showing significant social 

selectivity in Cohort 2 at 9 – 13 and 12 – 16 months of age, and Cohort 3 (18 – 24 

months) and non-social selectivity for Cohort 1 (0 – 2 months) and Cohort 2 at 4 – 8 

months are shown in Figure 8. 

 

 

 

 

4 Discussion 

 

We have successfully implemented a social versus non-social fNIRS paradigm in two 

contrasting environments: rural Gambian and urban UK. To our knowledge this 

research in The Gambia is the first neuroimaging study to investigate cortical 

specialization to social cues across such a wide span of early development, with 

participants ranging in age from newborn to toddlerhood. Furthermore, the stability 

of the elicited social response from 9 – 24 months, and the transition from non-social 

to social selectivity seen prior to this age, provides us with a robust developmental 

curve of specialisation to social cues over the first two years of life. 

 



With the use of fNIRS we were able to measure localized brain responses to visual 

and auditory social cues across the first two years of life. For the visual social versus 

non-social contrast, the response was remarkably consistent across 4 – 24 months of 

age. In the two measurement channels that were placed in the same position over all 

four time points (Cohort 2 at 4 – 8, 9 – 13, and 12 – 16 months of age and Cohort 3 at 

18 – 24 months of age), a significant response was found in the same channel at each 

age. Furthermore, for the longitudinal cohort the response appears to become more 

rapid with age, with a faster rise to peak seen at each subsequent age point. Using co-

registration fNIRS – MRI data from previous cohorts of UK infants we were able to 

extrapolate the approximate position of these channels over underlying anatomy 

(Lloyd-Fox et al., 2014b; Lloyd-Fox et al., 2015) and identify that this region of the 

array was positioned over the pSTS-TPJ. These responses largely replicated our 

previous findings from the UK in 4 – 8 month old infants (Lloyd-Fox et al., 2013, 2012, 

2009). Furthermore, given the interest in comparing the results from the Gambian 

cohorts with age-matched data in other participants, using an identical protocol we 

were able to collect data from a cohort of 12 – 16 month olds in the UK (see Box 1). 

Despite the smaller sample size (N = 12), we found very similar results in this cohort 

with significant responses localized within the same region of pSTS-TPJ channels, 

supporting the current findings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

The auditory social versus non-social contrast, which was used at all five age points 

from 0 – 24 months of age, revealed evidence of a developmental change in 

specialization for auditory social stimuli across infancy. Whilst the 0 – 2 (Cohort 1) 

and 4 – 8 (Cohort 2) month olds evidenced significant HbO2 auditory non-social 

selectivity (non-social > social) in a region of channels localized over the pSTS-TPJ, 

Cohort 2 at 9 – 13 and 12 – 16 months of age and the 18 – 24 month olds (Cohort 3) 

evidenced significant HbO2 auditory social selectivity (social > non-social) in a region 

of channels localized over the anterior temporal cortex. Furthermore, the group 

averaged haemodynamic responses of the infants from 9 – 24 months of age to the 

social and non-social auditory stimuli are remarkably similar, despite the contributed 

data being derived from different combinations of infants at each age point (within 

the longitudinal cohort it was dependent on those available for follow up, and who 

then contributed valid data, and Cohort 3 compromised a cross-sectional sample). In 

contrast the averaged haemodynamic responses of the 4 – 8 month olds (Cohort 2) 

suggest that the lack of social selectivity and evident non-social selectivity may be 

due to a delayed response to the social stimuli. The non-social selectivity is only 

apparent during the earlier time epoch and the response to both stimuli becomes 

equivalent at a later time point during stimulus presentation. Although speech 

perception in newborn infants is well described (Dehaene-Lambertz and Spelke, 

2015; Gervain et al., 2008; Pena et al., 2003; Vannasing et al., 2016), responses to 

human vocalisations are less well known. To allow us to compare these responses 

with a UK cohort, in collaboration with colleagues in Cambridge, we were able to 

use the auditory paradigm with newborn infants at the local maternity hospital. The 

findings from the UK cohort of 1 – 4 day old newborns were consistent with the 

current findings (Chuen Wai Lee, Topun Austin et al. unpublished results). 

Widespread non-social responses (non-social > silence) were found, whilst an 

isolated region of the anterior temporal lobe responded to social sounds (social > 

silence). Furthermore a significant non-social > social selective response was 

localized within the pSTS-TPJ region of the cortex in these newborns. These findings 

are also in line with other recent research (Cristia et al., 2014) suggesting auditory 

responses to such cues are less specialized at this age. This comparison with previous 

research at 0 – 2 months is also important, as whilst in these other studies all infants 



were asleep, in the current study some of our participants in Cohort 1 were in a quiet 

alert state. Therefore it is important to see that the responses were largely replicated 

across the Gambian and UK infants despite these differences in their state of 

alertness at time of test. Previous research with 4 – 7 month olds would suggest that 

auditory social > non-social selectivity emerges from the first months of life 

becoming more robust in the second half of the first year of life (Grossmann et al., 

2010; Lloyd-Fox et al., 2012). Grossmann and colleagues only found social selectivity 

once the infants reached 7 months of age, and Lloyd-Fox and colleagues reported the 

strength of the response across 4 – 7 months of age correlated with age of infant. In 

the current work, we did find evidence of a social > non-social response at this age 

point but only within the HHb response. Interestingly, this was also the case for one 

of our previous studies in UK infants (Lloyd-Fox et al., 2012), whilst in other infants 

we have found a significant HbO2 selective response (Lloyd-Fox et al., 2013). 

Collectively, this research supports the view that this age range marks a shift in 

specialisation to social over non-social sounds and future research should focus on 

both HbO2 and HHb responses in this age group. In contrast, by 9 months of age 

onwards the social > non-social selectivity (and absence of non-social > social 

selectivity) becomes a robust response localized within a specific anterior temporal 

region of the cortex with all three of the older aged cohorts showing responses in this 

area. Furthermore, in support of these findings, the location and selectivity of this 

response was replicated in our UK 12 – 16-month-old cohort (see Box 1). 

 

There are a number of potential challenges in performing neuroimaging studies in a 

rural location in The Gambia, including transportation of the instrumentation, and 

introduction of experimental methods to a new community and population of Africa 

infants. The portability of the fNIRS technology allowed us to transport it to the 

village of Keneba with relative ease. The technology and experimental paradigms 

were readily accepted by infants, parents and local field staff. For many of these 

infants this may have been the first time that they have viewed a TV monitor, and so 

we should be conscious of this in our interpretation of the results, nevertheless the 

responses in the Gambian infants were remarkably consistent with the UK 

population and infants were calm and attentive during the study. Indeed, the 

attrition rates were within the standard range for infant fNIRS studies with 

approximately 20 – 30% excluded for inattention or fussiness using a three condition 



contrast design (previous research indicates that in awake infants attrition can 

increase by approximately 10% with each additional experimental condition 

employed - see review by (Lloyd-Fox et al., 2010)). For the first visit of Cohort 2 (4 – 8 

months) 7 out of the 42 infants were also excluded due to experimenter error. 

However this is expected considering that this data was collected at the first session 

of fNIRS testing in the Gambia, and due to time and budget constraints, we began 

the study without any lead in time to train with new staff and in the new setting. The 

infants excluded due to motion artifact or experimenter error in Cohort 1 (0 – 2 

months) were also mostly those infants tested at the beginning when we were getting 

used to conducting fNIRS studies in this age group (as this was the first time the 

team had worked with such young infants) and so the infant position and study 

setup for data collection was optimized over time. During later visits there was no 

attrition due to this factor. For Cohort 2 at 12 – 16 months of age infants, they seem to 

have been more liable to look away or fuss out compared to the other age points, 

however this is behaviour consistently reported at this age point in developmental 

research. Furthermore, children who were excluded due to fussiness or inattention 

were not more likely to be those with very low HCZ or WHZ (only 3 infants under 

this exclusion category also had z scores under – 3) indicating that these infants can 

be measured with fNIRS. Other than growth faltering, we used the same exclusion 

criteria in The Gambia as we would have in the UK, and so as long as they were well 

enough to contribute enough valid data for a session, they were included in the 

study. Specific tests for ongoing infections or neurodevelopmental problems were 

not administered on the day of the visit and future larger scale research projects 

should take this into account. The CBCD designed headgear fit well on each age of 

infant and provided robust signals. It may be pertinent to note here that the 

restriction on funding that allowed us to only measure the right hemisphere may 

have been an advantage as it allowed for optimal fit of the headgear over the region 

of interest with a headband less liable to move on the head and cause artefact in the 

data. For example, once the infants’ hair became thicker at older age points we 

sometimes had difficulty measuring through braids on the female participants but 

found we could measure robust signals between the braids on the same participant. 

Balanced against this advantage of a smaller headgear providing more robust 

signals, was the issue of trying to run more than one cognitive paradigm with a 

single optical array design. The limited number of channels in the optical arrays only 



allowed us to measure a certain number of cortical regions.  Therefore for one testing 

time point (when we were following up our longitudinal cohort at 9 – 13 month olds 

and testing 18 – 24 month olds) in Keneba we compromised data collection on the 

social paradigm because we only had two channels placed over our ROI for the 

visual social response rather than the original four channels. In particular, this may 

have contributed to the diminished response seen in the time course at 18 – 24 

months in Figure 5. Whilst the pSTS-TPJ ROI was within reach in the 9 – 13 months 

who wore this headgear design, coverage in this oldest age group may not have 

reached the area of peak activation. Though we had checked that head circumference 

did not change significantly between 9 and 24 months of age in these Cohorts, and 

therefore utilised the same sized headband, it may be that the pSTS-TPJ had 

extended out of reach of some of our measurement channels in a ventro-dorsal, 

rather than an anterior-posterior direction, by 18 – 24 months (Kabdebon et al., 2014; 

Lloyd-Fox et al., 2014b). In retrospect, and with information now available from this 

more recent research, we can see that future headgear designs should be more 

sensitive to these changes in anatomy over this wider age range by employing a 

larger number of channels over regions of interest to account for individual 

variability in anatomy. 

We believe that these experiences have allowed us to optimize data collection across 

0 – 24 months of age for research in field settings such as Keneba and this knowledge 

can be, and indeed is being, used to establish fNIRS research in other similar settings 

and for larger scale studies. To optimize higher rates of valid data we would 

recommend (1) a brief period of training with new staff alongside an experienced 

researcher while the team learns how to successfully use fNIRS with 

infants/children; (2) headgear which is stable, optimized for brain regions of interest, 

and able to measure through hair (our 60-channel bilateral headgear is currently 

being successfully used with 36 month olds in Bangladesh); (3) acknowledgement 

that data attrition will likely be higher with certain age ranges (i.e. 12 – 16 months of 

age); (4) optimized paradigms for successful data collection (i.e. a 2 condition 

contrast design would result in <20% data dropout, and we have previously 

conducted a 1 condition design which had an attrition rate of 4% - Lloyd-Fox et al., 

2009); and (5) ideally more than one fNIRS session per individual and larger sample 

sizes to allow one to trace developmental change, while accounting for attrition of 



data. With these factors taken into account we are confident that fNIRS can become a 

valid measure for larger scale research studies. 

 

We have now demonstrated that fNIRS can be easily implemented in a resource-poor 

rural setting and used from the first few days of life through to toddlerhood to 

provide quantitative and objective markers of neurocognitive function. Furthermore, 

the stability of the elicited social response from 9 – 24 months, and the transition 

from non-social to social selectivity seen prior to this age, provides us with a robust 

developmental curve of specialisation to social cues over the first two years of life. 

An area that merits future investigation is to further interrogate the specifics of the 

neurovascular response by using a mathematical model of cerebral blood flow and 

metabolism (Banaji et al., 2008) to more fully interpret the hemodynamic responses 

across our five age points. Given the stability of this developmental curve of 

specialisation, future research of compromised development could use this fNIRS 

paradigm to interrogate atypicalities in brain function and their association with risk 

factors such as under nutrition and poverty. For example, in infants tested with 

fNIRS at 4 – 6 months of age - who later go on to develop autism at three years 

(when behavioural atypicalities become evident) - it can be seen, using this 

paradigm, that the auditory non-socially selective response is of a greater magnitude 

than in low risk age matched infants (Lloyd-Fox, Johnson, personal communication). 

Further, the magnitude and latency of the response appears to differ for the visual 

social stimuli in high versus low risk infants (Lloyd-Fox et al., 2013). This research 

suggests that atypical brain responses may be measurable long before behavioural 

symptoms become apparent (which typically manifest between 2 – 3 years of age). 

These developmental haemodynamic response curve markers of timing and 

magnitude are ideal candidates to follow in future research in infants at risk (Aslin, 

2012; Vanderwert and Nelson, 2014). The current findings are however limited to the 

study paradigm employed and may not be directly applicable to the impact of 

environmental early life risk factors. As longitudinal prospective research continues 

in this field, increased sample sizes and age points, and fNIRS paradigms that 

investigate responses across multiple underlying core constructs, rather than just the 

social domain, will allow us to interrogate antecedent biomarkers of compromised 

development (such as poverty and under nutrition) in greater depth. Furthermore, 



the collection of this data from as early in life as possible should allow one to identify 

how different factors (such as maternal under-nutrition, family poverty, or infant 

under-nutrition, caregiving practices) compound, or compensate for, risk for 

compromised development. Importantly, neuroimaging measures such as fNIRS 

allows us to identify markers of atypical function from a far earlier age (i.e. from 

birth) than behavioural assessments are typically able to (from 2-3 years onwards). 

Larger scale prospective longitudinal studies could allow us to identify individuals 

at greatest risk, target additional family support to those families with the greatest 

need and target interventions from an early age before critical developmental 

milestones have been affected. The long-term aim of our research is to establish 

fNIRS as a universal assessment tool for the investigation of the impact of adversity 

on cognitive development in infants irrespective of where those infants might have 

been born. 
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 Figure 1: fNIRS headgear on a newborn (Cohort 1), 6 month old infant and 13 month 

old infant (Cohort 2: longitudinal) and a 2 year old toddler (Cohort 3). 

  



 

Figure 2: A flowchart illustrating the cohorts in the study. 

  



 

 

Figure 3: Upper panel - fNIRS headgear: Cohort 2 at 4 – 8 and 12 – 16 months of age 
wore the full array (blue and green channels), Cohort 2 at 9 – 13 months and Cohort 3 

(18 – 24 months) wore the partial array (green). Cohort 1 (0 – 2 months) wore an array 
covering channels 5, 6, 7, 8, 9, 10, 11 & 12. Source lights are indicated by a star and 
detectors by a circle. Lower panel – Stimulus presentation. 
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Figure 4: Significant HbO2 haemodynamic responses for each age group in the visual 
social > non-social contrast and the auditory social versus non-social contrasts. Note 
that for the auditory contrast for Cohort 2 when the infants are aged 4 – 8 months 
they evidence a significant non-social > social response, whilst by the next session 
when they are aged 9 – 13 months and beyond, they show a social > non-social 
response (similar to Cohort 3 at 18 – 24 months of age). No auditory non-social > 
social responses were found between 9 – 24 months of age. Significant results are 
shown for two time windows, 8 – 12 seconds post stimulus onset (grey) and 12 – 16 
seconds post stimulus onset (black). 
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Figure 5: A summary of the locations of the significant HbO2 haemodynamic 
responses for each age group in the visual and auditory social versus non-social 
contrasts. This figure combines all significant results across the time windows 8 - 12 
and 12 – 16 seconds post stimulus onset. Note that for Cohort 2 at 4 – 8 months of age 
the infants do exhibit a significant auditory social > non-social response, but only in 
HHb and is therefore not illustrated here (see Supplementary Table 2 for details of 
significant HHb responses). 
  



 

 

Figure 6: Haemodynamic time courses of the response to the visual social stimuli in 
Channel 9 for Cohort 2 (longitudinal) at 4 – 8 months (green), 9 – 13 months (orange) 
and 12 – 16 months (red) and for Cohort 3 (18 – 24 months) (purple). Note HbO2 
responses are in full, while HHb responses are dashed, and the location of this 
response is indicated on the schematic of the head. 

  



 

Figure 7: Significant HbO2 haemodynamic responses for Cohort 1 (0 – 2 month olds): 
(1) auditory social vs silence, (2) non-social vs silence and (3) non-social > social 
contrasts. Significant results are shown for two time windows, 8 – 12 seconds post 
stimulus onset (grey) and 12 – 16 seconds post stimulus onset (black). 

  



 

Figure 8: Haemodynamic time courses of the response to the auditory social stimuli 
(left panels) and non-social stimuli (right panels) in a socially selective channel (on 
upper row) for Cohort 2 (longitudinal) at 4 – 8 months (green), 9 – 13 months (orange) 
and 12 – 16 months (red) and for Cohort 3 (18 – 24 months) (purple) and two non-
socially selective channels (on lower row) for Cohort 1 (0 – 2 months) (blue) and 
Cohort 2 at 4 – 8 months (green). Note HbO2 responses are in full, while HHb 
responses are dashed, and the location of this response is indicated on the schematics 
of the head (9 – 24 month olds (black), 0 – 2 month olds (blue) and 4 – 8 month olds 
(green). 
 



 

Table 1: Participant Characteristics.  
 
Characteristics 0 – 2 mths 4 – 8 mths 9 – 13 mths 12 – 16 mths 18 – 24 mths 

Sex (m/f) 14 / 4 10 / 14 15 / 10 9 / 10 7 / 9 

Age (days) 41.0 ± 14.323 174.4 ± 40.7 348.4 ± 37.8 428.2 ± 34.2  631.2 ± 76.0 

Weight (kg) 4.59 ± 1.04 6.91 ± 0.75 8.12 ± 1.48 8.24 ± 0.84 9.42 ± 1.44 

Length (cm) 54.9 ± 3.46 64.46 ± 3.39 70.4 ± 2.89 72.88 ± 2.8 79.87 ± 4.16 

Head circumference H-C (cm) 37.5 ± 1.68 41.45 ± 1.3 43.85 ± 1.52 44.48 ± 1.30 45.91 ± 1.46 

MUAC1 (cm) 12.3 ± 0.12 13.8 ± 0.59 14.1 ± 7.04 13.9 ± 0.55 14.1 ± 0.85 

Growth anthropometric z-

scores2 

     

Weight-for-age  -0.41 ± 1.24 -0.75 ± 0.86 -1.28 ± 1.50 -1.49 ± 0.91 -1.51 ± 1.15 

Length-for-age -0.43 ± 1.08 -0.82 ± 1.21 -1.65 ± 1.08 -1.67 ± 0.98 -1.37 ± 1.04 

H-C-for-age (HCZ) -0.25 ± 0.9 -0.89 ± 0.99 -1.20 ± 1.16 -1.13 ± 0.93 -0.91 ± 0.88 

Weight-for-length (WHZ) -0.05 ± 1.1 -0.21 ±0.82 -0.57 ± 1.67 -1.67 ± 0.86 -1.16 ± 1.13 

      

1 Mid upper arm circumference; 
2 With the use of WHO reference curves. 
3 Mean ± SD (all such values) 
4 z score ± SD (all such values thereafter) 
 

  



Table 2: Significant HbO2 responses to the Social > Non-Social Visual and Auditory contrasts across the three Cohorts. 

 

  4 – 8 months (Cohort 2) 12 – 16 months (Cohort 2) 
      

 Visual Social > Non-Social  Auditory Social > Non-Social  Visual Social > Non-Social  Auditory Social > Non-Social 

Ch TW t p df Ch TW t p df Ch TW t p df Ch TW t p df 

8 * 12-16 2.55 0.018 23      6* 12-16 2.22 0.04 18 5 * 12-16 2.83 0.011 18 

9 12-16 3.57 0.0016 23      9 8-12 3.63 0.002 17 6 * 12-16 2.16 0.045 18 

11 * 8-12 2.56 0.018 23      9 12-16 3.55 0.0025 17      

11 12-16 3.54 0.0017 23      11 8-12 3.67 0.0018 17      

12 8-12 3.21 0.0004 23      11 12-16 3.39 0.0035 17      

 12-16 5.15 0.00003 23      12 8-12 4.63 0.0002 17      

          12 12-16 4.60 0.0003 17      

                    
                    

      

9 – 13 months (Cohort 2) 18 – 24 months (Cohort 3) 

 Visual Social > Non-Social  Auditory Social > Non-Social  Visual Social > Non-Social  Auditory Social > Non-Social 

Ch TW t p df Ch TW t p df Ch TW t p df Ch TW t p df 

9 * 12-16 2.35 0.027 24 5 * 12-16 2.74 0.011 24 9 * 12-16 2.21 0.045 13 5 12-16 4.11 0.0009 15 
      

0 - 2 months (Cohort 1) 0 - 2 months (Cohort 1) 

 Auditory Social > Silence  Auditory Non-Social > Silence  Auditory Non-Social > Non-Social 

Ch TW t p df Ch TW t p df Ch TW t p df      

1 * 8-12 2.46 0.025 17 1 8-12 4.90 0.00016 17 6 * 8-12 2.45 0.025 17      

1 * 12-16 2.37 0.03 17 4 8-12 4.23 0.0006 17           

2 * 8-12 2.35 0.032 17 4 * 12-16 3.30 0.0043 17           

2 * 12-16 2.39 0.029 17 5 8-12 4.77 0.00021 17           

4  8-12 3.29 0.0044 17 6 8-12 3.38 0.0036 17           

 12-16 4.57 0.0003 17 6 * 12-16 2.47 0.025 17           

     8 * 8-12 2.14 0.047 17           



Box 1: 

 

 
 

 


