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Abstract 

 

Increasing pre-clinical evidence supports a role of neuronal-immune interactions in chronic 

pain. Here, we investigated the involvement of G-protein receptor 84 (GPR84), an immune 

cell receptor that is markedly induced in monocytes/macrophages and microglia under 

inflammatory conditions, in chronic pain signalling.  

 

GPR84 knock-out (KO) mice exhibited normal acute pain thresholds but showed deficits in 

neuropathic and inflammatory pain responses. Thus, in contrast to wild-type (WT) mice, 

KOs did not develop mechanical allodynia or thermal hyperalgesia subsequent to partial 

sciatic nerve ligation (PNL) and exhibited attenuated mechanical, thermal and cold 

hyperalgesia after intraplantar injection of complete Freund’s adjuvant (CFA). Nerve injury 

or inflammation also resulted in increased Iba1 and phosphorylated p38 mitogen-activated 

protein kinase (MAPK) immunoreactivity in spinal microglia, as well as increased Iba1 

expression in macrophages of the sciatic nerve post PNL, with no difference between 

genotypes. 

 

In WT mice, GPR84 mRNA expression was up-regulated in the spinal cord and sciatic nerve 

at 7 and 21 days post PNL, as well as in microglia or macrophage cultures at 3 hours post 

lipopolysaccharide (LPS) stimulation. Concurrent with these changes, we identified 86 

dysregulated genes in the sciatic nerve and spinal cord following injury and 30 dysregulated 

mediators in macrophages following treatment. Interestingly, expression of arginase-1 

(ARG1), a marker for anti-inflammatory macrophages, was considerably up-regulated by 

20.8-fold in KO sciatic nerve at 7 days post PNL. In addition, forskolin-induced levels of 3'-

5'-cyclic adenosine monophosphate (cAMP) were greater in KO than WT macrophages. 

Together these data are indicative of an anti-inflammatory macrophage phenotype in KO 

mice under pathological conditions.  

 

We suggest that GPR84 is a pro-inflammatory receptor involved in nociceptive signalling in 

animal models of persistent pain, possibly mediating its effects via the modulation of 

peripheral macrophages. Based on these results GPR84 may be a promising new target with 

therapeutic potential in chronic pain.  
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growth factor receptor  

eNOS/NOS3 - Endothelial NOS  

EP - Prostaglandin 

EPSC - Excitatory postsynaptic current  

ER - Endoplasmic reticulum  

EREG - Epiregulin 

ERK - Extracellular signal-regulated kinase 

 

FBS - Fetal bovine serum  

FC - Fold change 

FCεRI - Immunoglobulin E receptor 

FDR - False discovery rate  

FFA - Free fatty acid  

 

GABA - γ-aminobutyric acid 

GAP - GTPase-accelerating protein 

GAPDH - Glyceraldehyde-3-phosphate 

dehydrogenase  

GBS - Guillain-Barré Syndrome  

GDNF - Glial-derived neurotrophin factor 

GDP - Guanosine diphosphate 

GEF - Guanine nucleotide exchange factor 

GFAP - Glial fibrillary acidic protein  

GFP - Green fluorescent protein  

GPCR - G-protein-coupled receptor 

GPR84 - G-protein 84 

GRK - G-protein-coupled receptor kinase 

GTP - Guanosine triphosphate 

GTPase - Guanosine triphosphatase 

 

H+ - hydrogen 

H1 - Histamine receptor 1 

H2.EB1 - Histocompatibility 2, class II antigen Eβ 

HBEGF - Heparin-binding EGF-line growth factor 

HET - Heterozygous 

HIV - Human immunodeficiency virus 

HK - Housekeeping 

HPRT – Hypoxanthine phosphoribosyltransferase  

HSP - Heat shock protein 

 

I.p. - Intraperitoneal  

IASP - International Association for the Study of 

Pain 

IB4 - Isolectin B4 

Iba1 - Ionised calcium binding adaptor molecule 1  

IBS - Irritable bowel syndrome 

IFN - Interferon 

IKK - Kinase complex  

IL - Interleukin 

IL-1ra - Interleukin-1 receptor antagonist 

iNOS - Inducible nitric oxide synthase  

[Ca2+]i - Intracellular calcium concentration 

IP3 - Inositol 1, 4, 5-triphosphate 

IP3R - Inositol 1, 4, 5-triphosphate receptor 

IPSC - Inhibitory post-synaptic current 

IRAK4 - IL-1 receptor-associated kinase 4  

ITGAM - Integrin alpha M/CD11b 

IκB - Inhibitory κB 

 

JNK - c-Jun N-terminal 

 

K+ - Potassium 

KCC2 - Potassium chloride co-transporter 2  

KO - Knock-out 

 

LCFFA - Long chain free fatty acid 

LPS - Lipopolysaccharide 

LTA - Lipoteichoic acid  

LTB4 - leukotriene-B4  

LTP - Long-term potentiation 

 

MAPK - Mitogen-activated protein kinase 

MCFFA - Medium chain free fatty acid 

Mg2+ - Magnesium 

mGLUR - Metabotropic glutamate receptor  

MKK - MAPK kinase 

MMP - Matrix metalloproteinase  

MRC1 - Mannose receptor c-type 1  

MS - Multiple sclerosis 

MUFA - monounsaturated  
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MyD88 - Myeloid differentiation primary 

response gene 88  

 

Na+ - sodium  

NADPH - Nicotinamide adenine dinucleotide 

phosphate  

NCX - Sodium/calcium exchanger 

ND - Non-detectable 

NeuN - Neuronal nuclei  

NF200 - Neurofilament 200  

NF-κB - Nuclear factor kappa-light-chain-

enhancer of activated B cell 

NGF - Neurotrophin growth factor 

NK1 - Neurokinin 1 

NMDAR - N-methyl-D-aspartate receptor 

nNOS - NOS 

NNT - Numbers needed to treat 

NNH - Numbers needed to harm 

NO - Nitric oxide  

NOS2 - Nitric oxide synthase 2  

NRG1 - Neuregulin 1  

NSAID - Non steroidal anti-inflammatory drug 

 

OA - Osteoarthritis 

6-OAU - 6-n-octylamino uracil  

OCT - Optimum cutting temperature 

OX-42 - Cluster of differentiation molecule 11B 

(CD11B)  

 

P2X - Purigenic ionotropic receptor 

P2Y - Purigenic metabotropic receptor  

PAG - Periaqueductal grey matter 

PAMP - Pathogen associated molecular pattern 

PB - Parabrachial 

PB - Phosphate buffer  

PBS - Phosphate buffered saline  

PCR - Polymerase chain reaction  

PDE - Phosphodiesterase 

PET- Positron emission tomography 

PFA - Paraformaldehyde  

PG - Prostaglandin 

PGE2 - prostaglandin E2 

PGI2 - Prostacyclin 

PI3K - Phosphoinositide 3-kinase 

PIP2 - Phosphatidylinositol 4,5-bisphosphate 

PKA - Protein kinase A 

PKC - Protein kinase C  

PLA2 - Phospholipase A2 

PLC - Phospholipase C 

PLT - Paucity of lymph node T-cells 

PMCA - Plasma membrane calcium-ATPase 

PMN - Polymorphonuclear leukocyte 

PNL - Partial nerve ligation  

PNS - Peripheral nervous system 

P-p38 - Phosphorylated p38 

PROX - Proximal 

PRR - Pattern recognition receptor 

PTGS2 - cyclooxygenase-2 

PUFA - polyunsaturated 

PWL - Paw withdrawal latency 

PWT - Paw withdrawal threshold  

 

qRT-PCR - Quantitative real-time PCR 

 

3Rs - Replacement Refinement and Reduction 

RA - rheumatoid arthritis  

Rag-1 - Recombinant activating gene-1 null mice  

RET - Receptor tyrosine kinase 

RGS - Regulator of G-protein signalling protein 

RM - Repeated measure 

ROC - Receptor-operated channel  

RVM - Rostral ventromedial medulla  

RyRs - Ryanodine receptors  

 

SCFFA - Small chain free fatty acid 

SD - Standard deviation  

SEM - Standard error of the mean  

5HT - Serotonin/5-hydroxytryptamine 

SNARE - Soluble N-ethylmaleimide-sensitive 

factor attachment protein receptor 

SNI - Spared nerve injury  

SNK - Student-Newman-Keul  

SNL - Spinal nerve ligation  
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SOC - Store-operated channel  

SP - Substance P 

SSNRIs - Serotonin and norepinephrine 

reuptake inhibitors 

STZ - Streptozotocin 

 

TAB - TAK-1 binding protein 

TAK1 - Transforming growth factor-β-activated 

kinase 

Tc - cytotoxic T cell   

TCA - Tricyclic antidepressant 

TGF - Transforming growth factor  

Th - T-helper cells  

TIR - Toll-interleukin-1 receptor 

TLR - Toll-like receptor 

TNF - Tumor necrosis factor  

TRAF6 - Tumor necrosis factor receptor-

associated factor 6 

Tregs - regulatory T cells 

Trk – Tropomyosin receptor kinase 

TRPA - Transient receptor potential cation 

channel, subfamily A, member  

TRPC - Transient receptor potential cation 

channel subfamily C, member  

TRPM - Transient receptor potential cation 

channel subfamily M, member  

TRPV - Transient receptor potential cation 

channel subfamily V, member  

TTX - Tetrodotoxin 

TXA2 - Thromboxane 

 

VGCC - Voltage-gated calcium channel 

VZV - Varicella zoster virus 

 

WD - Wallerian degeneration  

WDR - Wide dynamic range neuron  

WT - Wild-type 

 

XCL - Chemokine (C motif) ligand 

 

ΔΔCT - Delta delta cycling time 
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1.1 The clinical problem of chronic pain 

 

The nervous system is a specialised network of cells that integrates sensory information 

from an organism’s internal and external environment and coordinates an appropriate 

response. The sensation of pain is mediated by a complex system of neuronal activity, 

providing a protective mechanism against potential tissue injury and facilitating the process 

of healing in the event of damage. According to the International Association for the Study of 

Pain (IASP), pain is defined as ‘an unpleasant sensory and emotional experience associated 

with actual or potential tissue damage, or described in terms of such damage’. The 

importance of pain as a survival mechanism is particularly evident when considering 

individuals born with genetic abnormalities that affect the normal function of this system. 

For example, congenital insensitivity to pain is a rare disorder characterised by the inability 

to detect and thus respond to a painful stimulus. It can be caused by mutations in the 

tropomyosin receptor kinase A (TrkA) gene, which render the encoded neurotrophin 

growth factor (NGF) receptor unresponsive to NGF (Pezet and McMahon, 2006), or by 

mutations in the SCN9A gene encoding the α-subunit of the voltage-gated sodium (Na+) 

channel, Nav1.7 (Cox et al., 2006). As a result these individuals tend to have extensive burns, 

bruises and lacerations, particularly during childhood, and often die prematurely from 

repetitive illness (Verpoorten et al., 2006). 

 

On the other hand, when pain becomes maladaptive and outlasts healing of the underlying 

tissue damage it surpasses its usefulness as a protective mechanism. Such pain chronicity 

may be broadly classified into three categories: pain caused by tissue disease or damage 

(inflammatory pain), pain owing to disease or damage of the somatosensory system 

(neuropathic pain) and the coexistence of the former two (mixed pain) (Baron et al., 2010). 

Currently chronic pain is a major public health concern, impacting on millions of people 

with epidemiological studies reporting a prevalence of 7-8% in the European population 

(Bouhassira et al., 2008). Symptoms of chronic pain are severely debilitating and inflict 

considerable personal suffering in relation to ensuing co-morbidities such as insomnia, 

depression and social isolation. In one study it was reported that around 60% of patients 

were less able or unable to work and that 20% had lost their jobs as a result of their medical 

condition (Breivik et al., 2006). In Europe it is estimated that chronic pain results in 

enormous socioeconomic costs in lost productivity that amounts to 1.5% of the total gross 

domestic product (Phillips, 2006). 
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1.2 Treatments 

 

Many patients report a lack of satisfaction with currently available pain treatments, with 

less than 50% experiencing effective pain relief and 64% reporting that their treatment 

inadequately controls their pain (Breivik et al., 2006). Furthermore, many prescription 

drugs require long-term use due to a lack of disease-modifying capabilities and as a result 

are accompanied by adverse and intolerable side effects. Despite the increase in the number 

of clinical trials, many drugs have failed to show efficacy, most likely due to the underlying 

heterogeneity of chronic pain and the complex contribution of psychological and emotional 

factors. This poor prognosis indicates the continuing challenge of chronic pain and the need 

for better understanding of its pathology. In addition, the implementation of ‘tailor-made’ 

therapeutic approaches where specific drugs are targeted at particular groups of patients 

may provide a promising approach towards the development of safer and more effective 

treatments (Baron et al., 2010). 

 

For a long time non-steroidal anti-inflammatory drugs (NSAIDs), weak opioids, 

anticonvulsants and anti-depressants have been the mainstay of conventional chronic pain 

treatment. NSAIDs such as aspirin, ibruprofen and the related compound, paracetamol, are 

amongst the most widely used, with more than 50 types currently available on the market. 

NSAIDs generally provide pain relief and alleviation of swelling in chronic inflammatory 

joint diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA) as well as in acute 

inflammatory conditions such as fractures and soft tissue damage. The primary mode of 

action of this class of drugs is inhibition of cyclooxygenase (COX) enzymes and resultant 

reductions in the synthesis of prostaglandins (PGs), which are nociceptor sensitisors 

(Ferreira, 1980). Most NSAIDs share similar anti-inflammatory, analgesic and antipyretic 

effects and thus also tend to induce similar adverse reactions typically involving irritation of 

the gastric system.  

 

Opioids are currently commonly used analgesics by chronic pain patients due to their 

proven efficacy in several types of peripheral and central neuropathic pain disorders 

(Dworkin et al., 2010). Opioids such as morphine, oxycodone, methadone, levorphanol and 

tramadol exert their effects at pre- and post-synaptic μ-opioid receptors. Oxycodone also 

antagonises the κ-receptor and tramadol inhibits the uptake of monoamines (Baron et al., 

2010). The downstream effect of opioids is the closure of voltage-gated calcium (Ca2+) 

channels (VGCCs) and the opening of potassium (K+) channels, resulting in reduced neuronal 

excitability and neurotransmission. Although opioids are amongst the most effective 
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analgesics available, they are associated with many adverse side effects including 

constipation, nausea and sedation. Furthermore, there are still major concerns related to 

long-term use, such as misuse and addiction as well as complications such as immunologic 

changes, hypogonadism and opioid-associated hyperalgesia. Therefore, routine use of this 

class of drugs is strongly discouraged except in exceptional circumstances where immediate 

pain relief is necessary (O'Connor and Dworkin, 2009). For example, patients who are 

waiting upon first-line medications or have acute neuropathic pain symptoms or patients 

with chronic neuropathic pain suffering from bouts of exacerbated pain symptoms will be 

treated with opioids.  

 

The anticonvulsants gabapentin and pregabalin, are routinely used for treating neuropathic 

pain, both of which act by binding to the α2-δ1 subunit of T-type Ca2+ channels on primary 

afferent nociceptors and in CNS neurons. This consequently reduces the release of 

excitatory neurotransmitters including glutamate and substance P (SP). These drugs are 

well characterised in animal models of chronic pain and have exhibited efficacy in several 

clinical trials across various peripheral and central neuropathic pain conditions. However 

pregabalin has failed to relieve HIV neuropathy and there is no conclusive evidence for 

superior efficacy of either of these α2-δ1 binding agents (Finnerup et al., 2010). Gabapentin 

was originally developed for the treatment of epilepsy and designed as a blood brain 

barrier–penetrating γ-aminobutyric acid (GABA) analogue, but was later found to also be an 

effective analgesic. Both gabapentin and pregabalin have moderate drug interactions but 

patients do exhibit some side-effects such as sedation, dizziness and peripheral oedma 

(Baron et al., 2010; Dworkin et al., 2010). 

 

Anti-depressant drugs such as the tricyclic antidepressants (TCAs; amitriptyline, 

desipramine, nortriptyline) and selective serotonin and norepinephrine reuptake inhibitors 

(SSNRIs; duloxetine, venlafaxine) constitute first-line treatments for neuropathic pain 

patients. TCAs have demonstrated efficacy in central pain but amitriptyline was ineffective 

in patients with HIV or chemotherapy-induced neuropathies. Duloxetine and venlafaxine are 

particularly efficacious in painful poly-neuropathy, however, in a single study venlafaxine 

failed to relieve neuropathic pain of various aetiologies (Finnerup et al., 2010). Generally, 

their mode of action involves the inhibition of serotonin and norepinephrine uptake by 

monoaminergic nerve terminals, leading to increased extracellular concentrations of these 

transmitters. Besides providing pain relief, the anti-depressant effect is an additional benefit 

for patients who frequently suffer from chronic pain-associated depression. Like opioids, 

antidepressants have demonstrated efficacy in various types of neuropathic pain disorders 
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but also elicit a number of unwanted side effects, such as mouth dryness, blurred vision, 

constipation and urinary retention (Dworkin et al., 2010).  

 

Patients with postherpetic neuralgia or focal neuropathy who require localised peripheral 

pain relief can be treated with topical application of 5% lidocaine (non-specific Na+ channel 

blocker) in a patch or gel form. The lidocaine patch is recommended as a first-line drug 

treatment for such patients based on three published positive trials. Besides providing 

satisfactory pain relief in these cases, another advantage of this treatment is the minimal 

adverse side effects (erythema or rash) due to limited systemic absorption. Furthermore, 

since the risk of neuropathic pain is greater in the increasingly aging population, the use of 

topical drugs with fewer side effects is well suited for this group of patients. However, two 

trials have failed to demonstrate efficacy of the lidocaine patch/cream in patients with 

peripheral nerve injury or mixed neuropathic pain. Therefore results for this treatment 

option in placebo-controlled trials remain conflicting (Finnerup et al., 2010). 

 

Meta-analysis studies and systematic reviews are particularly informative for comparing the 

efficacy and safety of compounds used for different neuropathic pain conditions. Here, 

measurements such as numbers needed to treat (NNT) or numbers needed to harm (NNH) 

can be used in conjunction with the National Institute for Health and Care Excellence 

guidelines to provide appropriate treatment recommendations for individual patients. 

Whilst NNT is the number of patients treated with a drug until one experiences 50% pain 

relief, NNH is the number of patients needed to treat until one drops out as a result of 

adversive effects. Table 1 summarises combined NNT and NNH values across different 

neuropathic conditions. However, one must consider that such head-to-head comparisons 

can be misleading due to the heterogeneity of the studies involved (e.g. different drug doses, 

study design and placebo responses). Likewise, adverse side effects differ in severity and 

relevance, depending on a patient’s condition and dropout rates may also be influenced by 

trial duration. Therefore NNH values do not necessarily provide a definitive measure of 

long-term side effects (Finnerup et al., 2010).  
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Table 1.1: Combined NNT and NNH for different classes of drugs commonly used for the 
treatment of several types of neuropathic pain conditions 

 

The data presented here is from a systematic review of 174 randomized, double-blind, placebo 

controlled trials showing combined NNT and NNH values for drugs used for neuropathic pain 

treatment (95% confidence interval). Ns, relative risk not significant (Finnerup et al., 2010). 

 

Besides the aforemented drug classes that are commonly used for various neuropathic pain 

conditions, in many acute and chronic inflammatory diseases such as RA, irritable bowel 

syndrome (IBS), multiple sclerosis (MS) and psoriasis, natural and synthetic glucocorticoids 

are at the forefront of available therapies. The anti-inflammatory and immunosuppressive 

actions of these drugs are mainly attributed to the suppression of nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB) mediated transcription of pro-

inflammatory chemokines/cytokines in leukocytes (Coutinho and Chapman, 2011). 

However, their excellent clinical efficacy is compromised by serious metabolic side effects 

associated with long term use.  

 

Although a diverse range of pharmacological treatments are available for a number of 

chronic pain conditions many are associated with adverse side effects and there is a lack of 

Painful 

poly- 

neuropathy

Postherpetic 

neuralgia

Peripheral 

nerve 

injury

HIV 

neuropathy

Central 

pain

Mixed 

neuropathic 

pain NHH

Antidepressants

TCAs 2.1 2.8 2.7 15.9

SNRIs 5.0 13.1

SSRIs 6.8 ns

Anticonvulsants

Gabapentin 6.4 4.3 32.5

Pregabalin 4.5 4.2 5.6 3.8 10.6

Lacosamide 7.8

Valproate 2.1 ns

Lamotrigine 11.7

Topiramate 6.3

Levetiracetam ns

Carbamazepine/ 

Oxcarbazepine 3.7 6.6

Opioids

Opioids 2.6 2.6 5.1 2.1 17.1

Tramadol 4.9 4.8 13.3

Various

Cannabinoids 3.4 8.3 ns

Topical lidocaine ns

NMDA antagonists 3.5 12.5

Topical/NGX capsaicin 11.0 3.2 6.5 11.5
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patient satisfaction. This suggests that pain management requires further improvement via 

the development of new drugs with better efficacy, tolerability and safety. Despite this 

pessimistic outlook, treatment strategies have profoundly changed over the years and are 

continuing to evolve. This is particularly illustrated by the great wealth of research over the 

past two decades on the contribution of the immune system and its multiple pro-

inflammatory mediators in nociceptive transmission, which has subsequently led to more 

recent biological therapies. These include receptor antagonists of the cytokines, interleukin 

(IL)-1β (Anakinra), tumor necrosis factor (TNF)-α (Etanercept) and IL-6 (Tocilizumab), 

which have proven to be particularly efficacious in patients with RA. However, as with all 

forms of treatment, biological inhibitors are associated with some side effects related to 

their immunosuppressive actions such as increased susceptibility to infections. Regardless 

of this, they are generally well tolerated and form a promising new approach as disease-

modifying agents from the conventional symptomatic relieving medications (Upchurch and 

Kay, 2012).  

 

1.3 Pain transmission 

 

1.3.1 Sensory neurons 

 

Over a century ago, Charles Sherrington proposed the existence of primary sensory neurons 

(nociceptors), which are activated by stimuli deemed as potentially tissue damaging 

(Sherrington, 1906). This view was later reinforced by Ed Perl, who postulated that pain is 

mediated by specialised high threshold nociceptive sensory neurons (Bessou and Perl, 

1969), in strong opposition to Patrick Wall’s and Ron Melzack’s argument for a central 

origin of pain (Melzack and Wall, 1965). Today, we recognise that nociceptors do indeed 

form a peripheral pathway for pain detection and that altered processing in the central 

nervous system (CNS) may contribute to hypersensitivity. 

 

Sensory neurons are located within the dorsal root ganglion (DRG) and originate from 

multipotent neural crest stem cells that delaminate from the neural tube during the third 

wave of neurogenesis. DRG neurons consists of four main functional components; the 

peripheral terminal which transduces external inputs via action potential generation; the 

axon whereby these action potentials are propagated; the soma which maintains neuronal 

function and integrity and the central terminals, which engage in synaptic communication 

with central post-synaptic neurons via the release of neurotransmitters across the synaptic 

cleft (Marmigere and Ernfors, 2007). 
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1.3.2 Anatomical and electrophysiological properties of sensory neurons 

 

There are three main classes of sensory neurons. The first class are the thinly myelinated, 

medium diameter Aδ-fibre afferents, some of which convey acute well-localised ‘fast/sharp’ 

pain, and coduct at a velocity of approximately 2.2-8 m/s in rats. The second class are the 

unmyelinated small diameter C-fibre afferents, which conduct poorly localised ‘slow/dull’ 

pain at a velocity of < 1.4 m/s (Harper and Lawson, 1985b, a). Due to their cutaneous 

innervation and role in mediating painful sensations, together these two classes have been 

historically termed as nociceptors and constitute 70% of all neuronal cell bodies in the DRG 

(Ralston et al., 1984). Aδ nociceptors may be further categorised into type I high threshold 

mechanical nociceptors, which respond to mechanical, chemical and high threshold thermal 

stimuli ( > 50C) and type II low thermal threshold / high mechanical threshold nociceptors 

(Basbaum et al., 2009). Similarly, C-fibres consist of a heterogenous population of polymodal 

afferents that include mechano-heat-responsive, heat-responsive, and mechanically 

insensitive ‘silent’ nociceptors that develop mechanical sensitivity subsequent to injury 

(Schmidt et al., 1995). Notably, some C-fibres respond to cooling or innocuous stroking and 

thus not all C-fibres are involved in mediating noxious stimuli (Olausson et al., 2008). Lastly, 

the thickly myelinated large diameter Aβ-fibre afferents rapidly conduct stimuli at 14-30 

m/s and belong to large DRG neurons (constituting approximately 12% of DRG neurons) 

(Harper and Lawson, 1985a). Under normal conditions these fibres are predominantly low-

threshold mechanoreceptors that are responsive to innocuous stimulation of the skin, 

muscle and joint. However, approximately 20% of A-fibre nociceptors appear to conduct 

within the Aβ- conduction velocity range, and may be referred to as the ‘Aβ-nociceptors’ 

(Djouhri and Lawson, 2004).  

 

1.3.3 Biochemical and molecular properties of sensory neurons 

 

Nociceptors have also been classified according to their neurochemical properties, which 

encompasses an extensive list of cell markers utilised for the study of these neurons. 

Immunohistochemical studies have revealed two large groups of C-fibre neurons. The 

peptidergic population makes up 40% of DRG neurons and characteristically contain the 

neuropeptides SP and calcitonin-gene related peptide (CGRP) and express TrkA receptors 

(McCarthy and Lawson, 1989; Averill et al., 1995; Lawson, 2002). The non-peptidergic 

population makes up 30% of DRG neurons and express the glial-derived neurotrophin 

factor (GDNF) sensitive receptors, receptor tyrosine kinase (RET) in complex with GDNF 

family receptor α1/α2. Many RET-positive neurons also bind Bandeiraea simplicifolia 

isolectin B4 (IB4) and express the ionotropic purinergic receptor, P2X3 as well as Mrg class 
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G-protein-coupled receptors (GPCRs) (Molliver et al., 1997; Bradbury et al., 1998; Snider 

and McMahon, 1998; Vulchanova et al., 1998; Bennett et al., 2000). Lastly, the Aβ-fibres can 

be immunohistochemically labelled for phosphorylated neurofilament 200 (NF200) and 

express both tyrosine kinase receptor B (TrkB) and tyrosine kinase receptor C (TrkC) 

receptors, which are responsive to the neurotrophins, brain derived neurotrophic factor 

(BDNF), neurotrophin (NT) -3, 4, 5, respectively (McMahon et al., 1994).   

 

In addition, molecular studies have identified selective expression of receptors and ion 

channels that are involved in the modulation of pain transmission in nociceptors (Basbaum 

et al., 2009). For example, most C-fibres express transient receptor potential (TRP) channels 

sensitive to thermal stimuli (TRPV1) (Caterina et al., 1997; Michael and Priestley, 1999) and 

Aδ-fibres express both TRPV1 and TRPV2 (Bridges et al., 2003). Differential expression of 

other ion channels such as those responding to cold stimuli (TRPM8) (Bautista et al., 2007) 

or chemical irritants (TRPA1) (Bautista et al., 2006) as well as the acid sensing ion channels 

(ASICs) can potentially be used to distinguish between sensory neuron sub-populations 

(Garcia-Anoveros et al., 2001; Julius and Basbaum, 2001).  

 

1.4  The dorsal horn of the spinal cord 

 

DRG neurons relay sensory information to the spinal cord where their primary afferent 

terminals synapse with second order dorsal horn neurons. Work pioneered by Bror Rexed 

in the cat led to the establishment of an organised system of 10 laminae, which constitute 

the grey matter of the spinal cord according to the size and packing density of neurons 

(Rexed, 1952). A majority of dorsal horn neurons (laminae I – VI) are interneurons that are 

confined to the spinal cord and innervate localised regions. Interneurons may be 

electrophysiologically or immunohistochemically classified as excitatory (glutamatergic) or 

inhibitory (GABA-ergic). Many inhibitory neurons may also express glycine suggesting that 

in some cases both GABA and glycine are co-released (Todd, 2010). The dorsal horn also 

contains ascending and descending projection neurons to and from supraspinal sites. 

Lamina I, also referred to as the marginal layer, is a thin cell layer that covers the top of the 

dorsal horn. This lamina has the greatest number of projection neurons in the dorsal horn 

but mainly consists of interneurons, 45% of which are positive for the SP receptor, 

neurokinin 1 (NK1) (Todd et al., 1998). The interneurons are smaller than the projection 

neurons and hence there is some variation in size and shape within this layer. Lamina II 

(substantia gelatinosa) is much wider than lamina I and is divided into two parts; lamina II 

inner (IIi) or outer (IIo). Lamina II consists of densely packed interneurons in the outer 
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region and together laminae I and II are collectively referred to as the superficial dorsal 

horn and are mainly targeted by nociceptive afferents (Light and Perl, 1979a, b). The 

neurons in this region respond to noxious input and many are electrophysiologically 

classified as nociceptor specific. Lamina III is densely packed with interneurons that are 

larger than the ones that constitute lamina II and the border between these laminae can be 

clearly identified by the characteristic presence of myelinated axons in lamina III.  Deeper 

laminae (III - VI) receive both innocuous and noxious input (Light and Perl, 1979a, b) and 

are thus electrophysiologically classified as wide dynamic range neurons (WDR), 

responding to a broad range of stimulus intensities. Lastly, laminae VII - IX comprise the 

motor neuron-containing ventral horn, while lamina X surrounds the central canal. 

 

 

 

 

 

 

 
Figure 1.1: Anatomical characterisation of primary afferent fibres, their DRG neurons and 
connections with the spinal cord 

 

Simplified schematic illustrating anatomical features of the three main classes of primary afferent 

sensory neurons. Thickly myelinated Aβ-fibres, with large neuronal cell bodies terminate in laminae 

III - V and also have some extensions into lamina II. Thinly myelinated Aδ-fibres with medium sized 

neuronal cell bodies aborize laminae I, IIo and V. A-fibres may be identified with the neurochemical 

marker NF200. Unmyelinated C-fibres with small sized neuronal cell bodies are further categorised 

as peptidergic (SP, CGRP) or non-peptidergic (IB4, P2X3) and terminate superficially in lamina I/IIo 

and IIi, respectively. 
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The functional class of primary afferents determines their specific termination patterns. 

Cutaneous nociceptors (Aδ- and C-fibres) generally innervate laminae I and II. However, 

there are some subclass differences; for instance Aδ- nociceptors primarily terminate in 

lamina I, whilst Aδ- hair follicle afferents innervate the border region between lamina II and 

III (Light and Perl, 1979a). Likewise, non-peptidergic C-fibres terminate centrally in lamina 

IIi, whereas peptidergic heavily arborize laminae I and IIo. C-fibres may also 

polysynaptically innervate lamina III - V (Light and Perl, 1979a, b; Todd, 2010). Finally the 

Aβ-fibres, arborize laminae III - V but also have some extensions into lamina II (Light and 

Perl, 1979a). Termination patterns and neurochemical markers for the different sensory 

neuron classes is presented in Fig. 1.1.  

 

1.5 Supraspinal centres and pain 

 

Information regarding noxious stimuli is transmitted from the dorsal horn of the spinal cord 

along ascending neuronal pathways to higher centres located in the brain. These projection 

neurons are particularly concentrated in lamina I and dispersed throughout laminae III – VI 

(Todd, 2010). Retrograde and anterograde tracing approaches have been valuable in 

enhancing our understanding of neuronal networks between the spinal cord and the brain. 

Lamina I ascending pathways, also referred to as the spinoparabrachial tract, target 

supraspinal areas such as the periaqueductal grey matter (PAG), the parabrachial (PB) and 

nuclei of the thalamus. Eighty percent of these projection neurons are NK1 positive (Hunt 

and Mantyh, 2001) and may project onwards to areas such as the amygdala and 

hypothalamus, which are involved in the affective/emotional aspects of the pain experience 

(Hunt and Mantyh, 2001). The NK1 receptor has attracted considerable attention due to its 

nociceptor-specific anatomical location. Studies in rodents using antagonists or the SP-

conjugated neurotoxin saporin, which selectively ablates NK1 positive cells, have 

demonstrated analgesic effects in experimental models of neuropathic and inflammatory 

pain (Mantyh, 1997; Ma and Hill, 1999). However, despite their success in animals, NK1 

antagonists failed to show efficacy in clinical trials, perhaps due to physiological species 

differences (Hill, 2000). This failure shed some doubt on the relevance of SP/NK1 signalling 

in pain pathways and brought forward the hypothesis that ablating NK1 positive cells 

produces analgesic effects due to loss of projection neurons rather than diminished 

nociceptor transduction.  

 

Arising from the deeper laminae (III - VI) of the dorsal horn is the spinothalamic pathway, 

which predominantly projects to the thalamus and carries information regarding the 
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sensory/discriminative aspects of the pain experience (Doyle and Hunt, 1999). In addition, a 

third pathway originating from lamina II interneurons that are in contact with IB4 positive 

C-fibres, primarily targets the amygdala, hypothalamus and globus pallidus through contact 

with lamina V projection neurons. This ascending pathway is connected to non-peptidergic 

nociceptors and parallels lamina I projection neurons that are connected to peptidergic 

nociceptors, indicating that the two nociceptive classes may possess their own pain 

pathways (Braz et al., 2005).  

 

Amongst the various pathways descending from the brain to the spinal cord are the two 

main monoamine-containing pathways: the serotonergic system, originating in the nucleus 

raphe magnus and the noradrenergic system, derived from the locus coeruleus and adjacent 

pontine regions. These descending axons terminate diffusely throughout the dorsal horn but 

mainly in superficial laminae I and II. Monoaminergic descending pathways projecting from 

the rostral ventromedial medulla (RVM) critically modulate nociceptive spinal cord activity 

and exert both facilitatory (Serotonin/5-hydroxytryptamine (5HT)3 receptors) and 

inhibitory (α2 adrenoceptors) control (Suzuki and Dickenson, 2005; D'Mello and Dickenson, 

2008; Todd, 2010).  

 

1.6 Peripheral sensitisation 

 

Abnormal pain sensations such as hyperalgesia, allodynia and spontaneous pain may be 

caused by tissue inflammation and nerve injury. According to IASP, hyperalgesia is defined 

as an increased pain response to normally noxious stimuli.  The change in threshold within 

the proximity of the injury site is referred to as primary hyperalgesia, whereas secondary 

hyperalgesia defines threshold changes in the surrounding undamaged tissue. Allodynia is 

defined by IASP as a noxious response to a normally innocuous stimulus. However, this 

terminology was recently clarified so that unless a pain response is known to be evoked by 

low-threshold fibres it is referred to as hyperalgesia (Sandkuhler, 2009). Thus with regards 

to the peripheral nervous system (PNS), hypersensitivity refers to a decrease in thresholds 

so that a previously innocuous stimulus can now recruit nociceptors, as well as an increase 

in neuronal excitability so that a noxious stimulus elicits a greater response; this augmented 

activity is a phenomenon referred to as peripheral sensitisation. 

 

Peripheral sensitisation is typically a result of changes in the chemical milieu caused by cell 

damage and mediator release from keratinocytes, fibroblasts, endothelial cells, peripheral 

nerve terminals glial and immune cells (see Chapter 3). These locally released mediators 
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facilitate the inflammatory process, and are commonly referred to as an ‘inflammatory soup’ 

consisting of prostanoids, kinins, histamine, neuropeptides (SP, CGRP), 5HT, adenosine 

triphosphate (ATP), adenosine, growth factors, protons, cytokines and chemokines 

(Marchand et al., 2005; Woolf and Ma, 2007; Basbaum et al., 2009). Subsequent to release 

these agents may act directly on nociceptor terminals or indirectly on other target cells via 

their cognate membrane ion channels/receptors, resulting in the induction of multiple 

intracellular signalling pathways including protein kinase A (PKA), protein kinase C (PKC), 

phosphoinositide 3-kinase (PI3K), and the MAPKs: extracellular signal-regulated kinase 

(ERK), p38, c-Jun N-terminal (JNK). This leads to the phosphorylation of various proteins 

and a substantial increase in the transcription of neuropeptides, growth factors and 

receptors/ion channels in the somata of nociceptors (Costigan et al., 2002; Xiao et al., 2002). 

Consequentially, primary sensory neurons undergo a phenotypic switch that alters their 

neurochemical characters and properties. This results in raised basal sensitivity to noxious 

and innocuous stimuli and a subsequent increase in excitability and action potential firing. 

Voltage-gated Na+ channels are responsible for the initiation of action potentials and 

together with K+ channels regulate the excitability of sensory neurons and communicate 

amplified sensory information from the periphery to the spinal cord. Thus the combination 

of phosphorylation- and transcriptional-dependent events drives peripheral sensitisation 

and contributes to enhanced central transmission (Woolf and Ma, 2007). These mechanisms 

are summarised in Fig. 1.3. 

 

The receptors of inflammatory mediators fall into three broad classes: ionotropic 

receptors/ion channels (ATP receptors, P2X2 and P2X3; TRP channels); receptor tyrosine 

kinases (NGF and BDNF receptors, TrkA and TrkB, respectively) and GPCRs (bradykinin 

receptors 1 and 2 (B1 and B2); chemokine receptors e.g. chemokine (C-C motif) receptor 2 

(CCR2), chemokine (CX3C-motif) receptor 1 (CX3CR1)). These receptor classes shall be 

addressed below. 

 

1.6.1 Ionotropic receptors/ion channels 

 

Thermal hyperalgesia is a key sensory maladaptation associated with inflammation and is 

mediated by TRPV1, which is one of the most studied vanilloid receptors in pain research. 

TRPV1 is a six transmembrane domain non-selective cation channel and its activation 

produces an influx of Na+ and Ca2+, which depolarises the neuron and activates downstream 

signalling molecules (Caterina et al., 1997). TRPV1 is expressed by small- to medium- sized 

DRG neurons and is activated by noxious temperatures (> 42 C), capsaicin (extract from 

hot chilli peppers) and protons. The most compelling evidence for a role of this ion channel 
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in nociception is the reported alleviation of CFA or mustard oil-induced thermal 

hyperalgesia in the TRPV1 null mouse. In contrast, nerve injury induced thermal and 

mechanical hypersensitivity was normal in TRPV1 KOs as well as responses to acute 

thermal stimuli in intact animals, except at high temperatures (Caterina, 2000). The 

participation of TRPV1 in inflammatory pain is well documented but in neuropathic pain the 

role of this receptor is less understood. TRPV1 expression up-regulates in models of 

inflammatory pain but contrastingly down-regulates in a number of models of neuropathic 

pain, except for some up-regulation in surviving DRG somata (Hudson et al., 2001; Rasband 

et al., 2001; Schafers et al., 2003a). These polymodal signal integrators can be substantially 

modulated by components of the inflammatory soup, which may involve the lowering of 

temperature- or agonist-dependent thresholds required for activation. This results in the 

firing of neurons to a stimulus that was previously innocuous, which correlates with acute 

hyperalgesia. Concurrently, long-term changes encompass increased protein expression and 

insertion of TRPV1 channels into the plasma membrane of nociceptor terminals (Ji et al., 

2002; Linley et al., 2010).  

 

Extracellular protons and lipids behave as direct allosteric modulators of the channel, 

whereas bradykinin, ATP and NGF can indirectly modulate TRPV1 through the mobilisation 

of down-stream intracellular signalling cascades (Basbaum et al., 2009). NGF/TrkA and 

bradykinin/B2 mediated sensitisation was previously proposed to be via phospholipase C 

(PLC) mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), which is a tonic 

inhibitor of TRPV1 (Chuang et al., 2001; Prescott and Julius, 2003). However, later findings 

opposed this accepted model and demonstrated that in fact PIP2 promotes the activation of 

TRPV1. Instead it was proposed that NGF mediated activation of PI3K subsequently 

activates Src kinase, which phosphorylates tyrosine residues on the N-terminus of TRPV1 

and promotes trafficking of the receptor to the plasma membrane (Zhang et al., 2005d; Stein 

et al., 2006). This enhanced expression at the plasma membrane is thought to be the main 

contributor to thermal hyperalgesia. NGF/TrkA is also retrogradely transported in 

endosomes to the cell bodies of sensory neurons, where it activates p38 MAPK, leading to 

increased translation and transport of TRPV1 to peripheral nociceptor terminals (Ji et al., 

2002). However, NGF may also mediate transcriptional-dependent effects, and in a model of 

CFA, up-regulation in the expression of TRPV1 was dependent on both NGF and GDNF in 

Trk-A and IB4/RET positive neurons, respectively (Amaya et al., 2004). In addition, PKA 

and/or PKC have been documented to facilitate TRPV1 signalling possibly via increasing the 

open probability of the channel, which consequently augments TRPV1 currents (Lopshire 

and Nicol, 1998; Bhave et al., 2003). For example, prostaglandin E2 (PGE2) sensitises TRPV1 

channels through both PKA (EP4) and PKC (EP1) dependent signalling pathways (Lopshire 
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and Nicol, 1998; Moriyama et al., 2005). In addition to the mediators mentioned above, a 

number of other pro-algesic substances may exert sensitising effects on TRPV1 channels 

during peripheral inflammation including glutamate, 5HT, adenosine, histamine, 

chemokines and cytokines (Ma and Quirion, 2007). 

 

Tissue injury results in local acidosis and the production of hydrogen ions, which is a 

hallmark of a physiological inflammatory response that can be detected by TRP and ASIC 

channels. TRPA1 mediates sensory responses to many chemical irritants such as mustard 

oil, garlic and membrane permeable electrophiles (allyl isothiocyanate from wasabi or 

allicin from garlic) as well as endogenous proalgesic agents that are produced in response to 

damage or stress. Like TRPV1, these channels are expressed by peptidergic C-fibres and 

consist of six transmembrane domains with a non-cation selective central pore (Nilius et al., 

2012). Pharmacological blockade of TRPA1 was shown to inhibit formalin responses and 

attenuate mechanically evoked C-fibre firing in rodents, indicating a role in the transduction 

of both noxious chemical and mechanical stimuli (Kerstein et al., 2009). Interestingly, in a 

study utilising TRPA1 null mice, the channel was demonstrated to be a target of pro-

inflammatory factors such as bradykinin, which elicit hypersensitivity in pain pathways via 

PLC signalling (Bautista et al., 2006). Bradykinin is a peptide cleaved by enzymes 

(kallikreins) from circulating plasma proteins upon tissue injury and directly activates 

nociceptive DRG neurons causing pain in animals and humans (Levine et al., 1993). 

Subsequent to activation of the bradykinin B2 receptor, mobilisation of PLC and cAMP-

induced PKA contributes to TRPA1 sensitisation, probably via a phosphorylation dependent 

mechanism (Wang et al., 2008). Conversely, in a number of nerve injury models of 

neuropathic pain the expression of TRPA1 is down-regulated (Andrade et al., 2012). 

Although one study showed that whilst TRPA1 mRNA was down-regulated in the injured-L5 

DRG, it was up-regulated in the un-injured L4 DRG and was found to contribute to the 

development of cold hyperalgesia (Katsura et al., 2006).  

 

 ASICs are sodium selective cation channels that are activated by low extracellular pH and 

are thought to play a role in sensing tissue acidosis during inflammation, where pH values 

may drop as low as 5.4 (Jacobus et al., 1977; Wang et al., 2013).  ASIC channels consist of 

two transmembrane domains and are located in sensory neurons innervating the skin and 

in DRG somas of variable sizes (Wemmie et al., 2006). Similar to the TRPA1s, ASIC channels 

exhibit changes in activity subsequent to exposure to inflammatory mediators. For example, 

application of NGF, bradykinin, 5HT and IL-1β enhanced ASIC3 mRNA expression in 

cultured DRG neurons, which showed some correlation with augmented channel activity 

and increased sensory neuron excitability (Mamet et al., 2002). It was also previously 
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reported that ASIC expression in small DRG neurons increases in CFA treated rats (Voilley et 

al., 2001). A recent study demonstrated that 5HT-induced nociceptive behaviours are 

attenuated in ASIC3 KO mice and inhibited by the non-selective antagonist, amiloride, in WT 

mice. It was proposed that 5HT enhances proton-evoked currents of ASIC3 channels by 

binding to the non-proton ligand sensing domain and sensitising the channel to respond to 

extracellular mild pH (Wang et al., 2013).   

 

Enhanced activity of voltage-gated Na+ and Ca2+ channels and suppression of voltage-gated 

K+ channels is also implicated in the establishment of hyperalgesia. For example, the Kv7 

family of K+ channels are inhibited via the activation of PLC coupled receptors as a result of 

PIP2 depletion (Li et al., 2005) or inositol triphosphate (IP3) -mediated increases in 

intracellular Ca2+ levels (Gamper and Shapiro, 2003). Kv7 channels are involved in the 

regulation of neuronal excitability and so inhibition results in augmented neuronal activity. 

Similarly, in the setting of nerve injury and inflammation several voltage gated K+ channels 

have been reported to be down-regulated (Kv4.3, Kv3.4, Kv9.1 and the Kv2 subunit), which 

has been linked to a heightened neuronal excitability (Takeda et al., 2006; Chien et al., 2007; 

Takeda et al., 2008; Tsantoulas et al., 2012; Tsantoulas and McMahon, 2014; Tsantoulas et 

al., 2014). Small DRG neurons express a combination of tetrodotoxin (TTX) -sensitive fast 

kinetics (Nav1.7) and TTX-resistant slow kinetics (Nav1.8, Nav1.9) Na+ channels. Evidence 

from multiple KO studies support the considerable contribution of these Na+ channels to 

inflammation-induced hypersensitivity (Kerr et al., 2001; Nassar et al., 2004; Amaya et al., 

2006), as well as studies utilising animal models of inflammation. For example, intraplantar 

CFA was shown to evoke an increase in the expression of Nav1.7 and Nav1.8 in the DRG 

(Gould et al., 2004) and sensitising agents released during inflammation such as PGE2, 

adenosine and 5HT enhanced Na+ conductance, induced a hyperpolarising shift and 

accelerated current activation (Gold et al., 1996). Likewise, Nav1.9 currents were 

potentiated by a combination of pro-inflammatory mediators in rat DRG neurons (Maingret 

et al., 2008) possibly via PKC mediated phosphorylation (Liu and Wood, 2011). In contrast, 

TTX-resistant Na+ channels seem unlikely to participate in neuropathic pain. Both Nav1.8 

and Nav1.9 are down-regulated in injured neurons and KO studies show little impact on pain 

thresholds (Dib-Hajj et al., 1999; Priest et al., 2005; Amaya et al., 2006). For example, Nav1.7 

and Nav1.8 double KO mice continue to develop neuropathic pain behaviours after nerve 

injury (Nassar et al., 2005). In addition to changes in the properties of voltage-gated Na+ and 

K+ channels, Ca2+ channels are also altered by inflammatory mediators. Low voltage 

activated T-type Ca2+ channels expressed in nociceptors are activated by weak 

depolarisation and facilitate the initiation of action potentials (Coste et al., 2007). Increases 

in their density as a result of exposure to inflammatory mediators such as hydrogen 
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sulphide, enhances their currents (Kawabata et al., 2007). C-fibre expressed N- and T-type 

Ca2+ channels are also up-regulated in models of nerve injury, and Cav2.2 or 3.2 deficient 

mice exhibit attenuated pain behaviours after inflammation or nerve injury, respectively 

(Cao, 2006). 

 

ATP released from damaged cells, skin keratinocytes exposed to mechanical or chemical 

stimuli, or sensory neurons, activates ionotropic purinergic receptors such as P2X2 and P2X3 

(Linley et al., 2010). These non-cation selective receptors are expressed in small DRG 

neuronal cell bodies and their axons, and the opening of these receptors results in an influx 

of Na+ and Ca2+ and an efflux of K+ (Lewis et al., 1995). This initiates depolarisation and a 

secondary influx of Ca2+ via VGCCs. The substantial rise in intracellular Ca2+ and subsequent 

activation of kinases such as ERK leads to the release of secondary mediators (Dai et al., 

2004). Intraplantar injection of ATP has exhibited dose-dependent pro-nociceptive effects, 

and was reported to enhance pain behaviours in three independent paradigms of peripheral 

sensitisation (Hamilton et al., 1999). Notably, P2X3 expression falls by ∼ 50% in the DRG 

following nerve transection (Bradbury et al., 1998) but increases following intraplantar CFA 

(Xu and Huang, 2002) possibly due to an NGF/GDNF mediated effect (Ramer et al., 2001). 

Furthermore, P2X2 and P2X2/P2X3 KO mice exhibit attenuated pain-related behaviours in 

response to intraplantar formalin, and DRG neurons from these mice show minimal ATP 

responses, indicating that these subunits account for virtually all ATP responses in sensory 

neurons (Cockayne et al., 2005). 

 

1.6.2 Receptor tyrosine kinases 

 

The neurotrophins NGF and BDNF and their cognate receptors TrkA and TrkB, respectively, 

form a well-documented pro-nociceptive signalling system (Pezet and McMahon, 2006). The 

Trk receptors are tyrosine kinase receptors that dimerise and autophosphorylate upon 

ligand binding to initiate two major biochemical pathways involving PI3K and MAPK. These 

signalling pathways contribute to transcriptional and post-translational regulation of 

neuropeptides/neuromodulators (CGRP, SP, BDNF), receptors (TRPV1, ASIC, P2X3, μ-opioid) 

and voltage-gated ion channels (TTX -sensitive and -resistant Na+ channels) in nociceptive 

neurons (Pezet and McMahon, 2006). As aforementioned, NGF/TrkA-induced hyperalgesia 

through TRPV1 sensitisation has been demonstrated to occur through a number of 

downstream second messengers including, PKA, PKC, PLC, PI3K and MAPK (Chuang et al., 

2001; Ji et al., 2002; Zhang et al., 2005d; Stein et al., 2006; Zhu and Oxford, 2007). 
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1.6.3 GPCRs 

 

The purpose of this thesis was to examine the role of GPR84 in chronic pain mechanisms. 

Therefore, a more in depth discussion about the GPCR class of receptors is appropriate with 

regards to the aim of this thesis. 

 

GPCRs are the largest family of membrane proteins with more than 800 genes and 

remarkably orchestrate a diverse range of biological processes from hormonal and 

neurotransmitter signalling, to mediating sensory responses such as sight and smell. Thus it 

isn’t surprising that the majority of currently used drugs in the clinic target these receptors. 

Pioneering work by Rall and Sutherland in the 1950’s lead to the establishment that a series 

of hormones bind to specific heptahelical receptors linked to highly specialised intracellular 

transducer systems. These receptors generically consist of 7 transmembrane domains 

connected by 3 intracellular and extracellular loops, in addition to a cytoplasmic domain 

which interacts with G-proteins. GPCRs are grouped into three families according to 

sequence similarity within the transmembrane core or the presence of certain conserved 

residues or motifs (Pierce et al., 2002). Family A constitutes the largest group of these 

receptors and includes the rhodopsin, adrenergic and olfactory receptors. Family B is 

considerably smaller and includes gastrointestinal peptide hormone receptors, such as 

vasoactive intestinal peptide. Lastly, family C is the smallest class and consists mainly of the 

metabotropic glutamate and GABA receptor families. This group characteristically possesses 

very large extracellular amino terminals that are important for the binding of ligands and 

subsequent activation (Pierce et al., 2002). Once activated, the GPCR initiates signal 

transduction by interacting with a heterotrimeric G protein (α, β, γ) and so in effect acts as a 

guanine nucleotide exchange factor (GEF) for Gα subunits and facilitates the exchange of 

guanosine diphosphate (GDP) for guanosine triphosphate (GTP) (Siderovski and Willard, 

2005). This leads to the dissociation of the Gα-GTP complex from the inhibitory βγ subunit 

(Hamm, 1998), enabling Gα-GTP and the βγ dimer to interact with downstream effectors 

which drive further intracellular signalling cascades (see Fig. 1.2). The duration of these 

signalling events is determined by the rate of guanosine triphosphatase (GTPase) mediated 

hydrolysis of the Gα-subunit and consequential re-association of Gα-GDP with Gβγ (Hamm, 

1998). This process is accelerated in heterotrimeric G-proteins by regulator of G-protein 

signalling (RGS) proteins, which stimulate signal termination by acting as GTPase-

accelerating proteins (GAPs) for Gα (Siderovski and Willard, 2005). 

 



Chapter 1 - General Introduction 

 

35 

 

 

 

Figure 1.2: Generic heterotrimeric GPCR activation model 

 

Ligand binding to a hepathelical GPCR leads to a conformational change and the interaction of the 

receptor with the αβγ complex bound to GDP. GDP is subsequently exchanged for GTP, initiating the 

dissociation of Gα-GTP and Gβγ, which go on to activate down-stream second messengers such as 

cAMP and Ca2+. RGS proteins stimulate signal termination by acting as GAPs. Here GTP is rapidly 

hydrolysed into GDP and inorganic phosphate.  

 

 

Based on the homology of the α-subunit sequences, G-proteins are classically divided into 

four main families: Gαs (activates adenylate cyclase (AC)), Gαi/o (inhibits AC), Gαq/11 

(activates PLC) and Gα12/13 (activates Rho-GEFs) (Hamm, 1998; Cabrera-Vera et al., 2003). 

The Gα-subunits are comprised of two specific domains, a GTPase domain that mediates 

binding and hydrolysis of GTP and a helical domain that buries GTP within the protein core. 

The Gγ-subunit extensively interacts with the Gβ-subunit through N-terminal coiled coils 

(Lambright et al., 1996) and is bound to Gα-GDP via a hydrophobic pocket. Upon GTP 

binding to Gα the hydrophobic pocket is removed, causing loss of affinity for Gβγ (Cabrera-

Vera et al., 2003). 
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 Gαs family 

 

An important aspect of the regulation of receptors/ion channels in the context of peripheral 

hypersensitivity is the mechanisms by which the channels become sensitised or 

desensitised as a result of alterations in the surrounding chemical milieu of nociceptive 

terminals. GPCRs are of particular interest as their various secondary pathways have been 

implicated in nociceptor sensitisation. Furthermore, many of the mediators released during 

an inflammatory response act via GPCRs and initiate many intracellular signalling cascades 

that contribute to the modulation of ion channels and the generation of hyperalgesia. For 

instance, the prostaglandin (EP2, EP4, IP and DPI) (Smyth et al., 2009) and 5HT receptors 

(5HT4,6,7) (Cardenas et al., 2001) are coupled to the Gαs family, which stimulate the enzyme 

AC to catalyse the formation of cAMP from ATP. Newly synthesised cAMP subsequently 

binds to PKA, initiating the dissociation of the PKA regulatory and catalytic subunits and 

passive diffusion into the nucleus (Taylor et al., 1992). In turn, activated PKA 

phosphorylates numerous targets such as cAMP response element-binding protein (CREB), 

which binds to the conserved cAMP response element expressed within the promoter 

region of many cAMP-responsive genes. CREB may then form a complex with its 

transcription co-activator, CREB binding protein (CBP), subsequent to phosphorylation and 

translocate to the nucleus to initiate RNA synthesis (Mayr and Montminy, 2001; Racioppi 

and Means, 2008). 

 

PGE2/EP4 signalling induces the sensitisation of TRP channels (Lopshire and Nicol, 1998) 

and TTX-resistant Na+ channels (Gold et al., 1996) and suppresses K+ channels (Nicol et al., 

1997) probably via PKA mediated phosphorylation. As previously mentioned, Lopshire and 

Nicol (1988) demonstrated that PGE2 or cAMP analogs transiently increase capsaicin-gated 

channel activity in embryonic rat sensory neurons by enhancing the amplitude of whole cell 

currents. They also demonstrated that this sensitising effect could be blocked by a PKA 

inhibitor, leading to the suggestion that capsaicin-gated ion channels may be modulated by 

PKA-mediated phosphorylation of the serine residue S116 (Lopshire and Nicol, 1998; Bhave 

et al., 2002). Cyclic AMP was in fact one of the first second messengers implicated in pain 

and nociceptor sensitisation, and elevated levels of this signalling molecule is associated 

with increased neuronal excitability. This is illustrated by a study showing that intradermal 

injection of cAMP-inducing agents such as forskolin in rats produces dose-dependent 

hyperalgesia that can be blocked via the cAMP analog, RP-cAMP (Taiwo and Levine, 1991). 

Furthermore, transgenic mice that do not express particular isoforms of AC exhibit 

attenuated pain behaviours and correspondingly pre-treatment with AC inhibitors 



Chapter 1 - General Introduction 

 

37 

decreases PGE2-induced behavioural hyperalgesia (Aley and Levine, 1999; Wei et al., 2002; 

Kim et al., 2007b). 

 

 Gαq/11 family  

 

The histamine (H1), bradykinin (B2), prostaglandin (EP1) and SP (NK1) receptors are 

coupled to the Gαq/11 family of G-proteins, which activate PLC. The PLC family consists of a 

diverse group of enzymes that are divided into 3 subtypes. There are 4 members of the PLCβ 

family, 2 members of the PLCγ family and 4 members of the PLCδ family. The Gα subunits 

(αq, α11, α14, α16) belonging to the Gq subfamily selectively activate PLC-β isozymes via 

interaction with its COOH-terminal. Activation of PLC results in the biosynthesis of diacyl-

glycerol (DAG) and IP3 from the membrane-bound lipid precursor, PIP2. DAG may then 

activate PKC, whilst IP3 binds to its IP3 receptors (IP3Rs), expressed by intracellular stores. 

This leads to the mobilisation of a Ca2+ response and consequently activates an array of Ca2+ 

dependent kinases. PKC has a well documented role in nociceptor activation and 

sensitisation, which is thought to be mainly via the direct phosphorylation of receptors and 

ion channels (Hucho and Levine, 2007). For example, PKCε is able to augment TRPV1 

channel activity and restore currents subsequent to desensitisation by directly 

phosphorylating S800 residues (Mandadi et al., 2006). PKC also promotes soluble N-

ethylmaleimide-sensitive factor attachment protein receptor (SNARE) -dependent 

trafficking of TRPV1 to the membrane, which enhances channel currents and thus 

contributes to thermal hyperalgesia (Morenilla-Palao et al., 2004). As previously discussed it 

was thought that bradykinin-B2 signalling sensitised TRPV1 via PLC activation and 

subsequent PIP2 depletion (Chuang et al., 2001), however this mechanism has been 

questioned in light of new findings (Stein et al., 2006).  

 

Gαi/o family 

 

Stimulation of the Gαi/o pathway in nociceptors usually involves the inhibition of AC and the 

activation of phosphodiesterases, which reduces cAMP levels and the activity of PKA.  Gαi/o 

activation also leads to an inhibition of presynaptic VGCCs and a consequential suppression 

of synaptic transmission. Therefore this pathway is associated with a state of reduced 

excitability and analgesia that is best illustrated by the activation of opioid receptors, which 

are expressed in 29-38% of C-fibre axons (Ingram and Williams, 1994; Coggeshall et al., 

1997). However, the most compelling evidence for the involvement of Gαi/o signalling in 

peripheral sensitisation is the direct and indirect effects of chemokines. Chemokine 

receptors are widely distributed in neurons, leukocytes and glial cells and signal via the 
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Gαi/o family of G-proteins (Kiguchi et al., 2012). Activation of these receptors leads to the 

mobilisation of Ca2+ via a PLC-β-dependent pathway and the subsequent initiation of various 

intracellular kinases such as the calmodulin-kinases (CAMKs) and MAPKs (Elzi et al., 2001; 

Sassone-Corsi, 2012). Ultimately, via a combination of phosphorylation and/or 

transcription-dependent events there is an increase in receptor/ion channel membrane 

density and currents in nociceptors as well as enhanced release of mediators; immune and 

glial cells may also show enhanced secretion and expression of cell surface receptors. The 

contribution of some chemokine receptors to peripheral sensitisation is well documented 

(Abbadie et al., 2009) and will be discussed more thoroughly later in this chapter.  

 

Termination of receptor activation is crucial for the tight regulation of intracellular 

signalling. One of the most widespread mechanisms for regulating GPCR activity is via G-

protein-coupled receptor kinase (GRK) driven receptor desensitisation. GRKs only 

phosphorylate the receptor in its agonist bound state and promote the binding of arrestin 

proteins, which act as sterical inhibitors of receptor/G-protein interaction. Second 

messenger kinases such as PKA and PKC may also serve as negative feedback regulators and 

promote G-protein uncoupling by phosphorylating receptors. Besides acute 

phosphorylation-dependent effects, dampening of receptor signalling may also entail slower 

regulatory mechanisms such as receptor degradation and gene transcription/translation, in 

addition to the intrinsic regulation of GTPase activity via RGS proteins. On the other hand, 

receptor internalisation serves as a mechanism by which receptors are resensitised and 

made ready to respond to a subsequent stimulus. This usually involves β-arrestin-

dependent mechanisms via clathrin coated or uncoated vesicles (Pierce et al., 2002). 
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Figure 1.3: Signalling pathways involved in peripheral sensitisation 

 

Keratinocytes, fibroblasts, endothelial cells, peripheral nerve terminals, glial and immune cells 

release mediators such as PGs, histamine, bradykinin, SP, chemokines (CCL2, CCL3), ATP, cytokines 

(TNF-α, IL-1β), growth factors (NGF, BDNF), protons (H+). These mediators act via their cognate 

receptors (GPCR, ionotropic receptors, tyrosine kinase receptors) expressed by peripheral nerve 

terminals and activate multiple intracellular signalling pathways (PKA, PKC, PI3K, MAPK’s). This 

leads to the phosphorylation of various proteins and post-translational modifications such as 

increased trafficking/changes in properties of receptors/ion channels. There is also a substantial 

increase in the transcription of neuropeptides, growth factors and receptors/ion channels in the 

somatas of nociceptor neurons. The combination of phosphorylation-dependent and transcriptional-

dependent events sensitises nociceptors and drives peripheral sensitisation. 

EP, H1, B2, NK1,
Chemokine receptors

PGs, histamine, bradykinin, 
SP, chemokines

VGCs

Na+, Ca2+, K+

P2X3

ATP

TNF-α, IL-1β

TNFR1/2, 
IL-1R

TrkA, TrkB

NGF, BDNF

TRPV1, TRPA1
ASIC

PKA, PKC, PI3K, MAPKS

Phosphorylation-
dependent modifications

Gene transcription

Increased excitability of 
nociceptors

(peripheral sensitisation)

H+

Thermal stimuli, H+, 
proalgesic agents 

Action potential



Chapter 1 - General Introduction 

 

40 

1.7 Central sensitisation 

 

Nociceptor afferents terminate in the superficial dorsal horn of the spinal cord and synapse 

with second-order neurons, transferring incoming peripheral information about the 

intensity and duration of a noxious stimulus to the CNS. Central sensitisation is manifested 

as a state of hyperexcitability of dorsal horn neurons, which can be electrophysiologically 

characterised as an elevation in spontaneous activity, a reduction in thresholds, heightened 

responses to incoming stimuli and an increase in receptive fields (Latremoliere and Woolf, 

2009). In contrast to peripheral sensitisation, central sensitisation contributes to 

hypersensitivity in unaffected areas (secondary hyperalgesia). Peripheral sensitisation is 

most certainly involved in changes in the nociceptive system and constitutes the trigger for 

central changes; this form of hypersensitivity is localised to the site of injury/damage 

(primary hyperalgesia) and plays a major role in thermal hyperalgesia. On the other hand, 

central sensitisation is thought to be the main driver of mechanical hyperalgesia as a result 

of CNS plasticity that alters responsiveness to stimulus inputs (Woolf and Salter, 2000; 

Latremoliere and Woolf, 2009). Evidence of this striking phenomenon in the context of pain 

was first shown by Woolf in 1983, who measured the flexor reflex withdrawal response of 

α-motorneurons as an output indicator to noxious stimuli. He reported that under normal 

conditions spontaneous activity was absent and that activation of motor neurons required a 

noxious input. However, after repeated application of a noxious heat stimulus to the paw, he 

observed an increase in motor neuron excitability, a reduction in thresholds and an increase 

in cutaneous receptive fields. This meant that a peripheral stimulus such as light touch was 

consequentially able to evoke a response. He verified that these findings were exclusively 

due to a central mechanism by showing that electric stimulation of Aβ-fibres elicited 

responses only after induction of inflammation, and that local administration of an 

anaesthetic at the site of injury bore no effect on the enlarged receptive fields. Importantly, 

he also confirmed that this central hypersensitive state could be recapitulated by repeated 

electrical stimulation at C-fibre strength (Woolf, 1983). 

 

Glutamate is the primary fast excitatory neurotransmitter of the CNS and mediates its 

effects via its ionotropic receptors: N-methyl-D-aspartate receptor (NMDAR), α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and kainate receptors and 

metabotropic glutamate receptors (mGluR). AMPAR and NMDAR receptors are found at 

virtually every synapse in the superficial laminae, whereas mGluRs are more localised to 

extrasynaptic sites (Alvarez et al., 2000; Antal et al., 2008). Excitatory postsynaptic currents 

(EPSCs) are mainly generated via the activation of AMPA and kainate receptors expressed 
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by second order dorsal horn neurons whilst NMDARs are normally blocked by magnesium 

ions (Mg2+) (Mayer et al., 1984). In the setting of tissue damage or injury, the sustained 

release of neurotransmitters and neuromodulators such as glutamate, BDNF, SP and CGRP 

from nociceptor terminals into the superficial dorsal horn contribute to the summation of 

EPSCs in second order neurons. This eventually generates a sufficient level of depolarisation 

that removes the NMDAR Mg2+ block and opens the pore (Mayer et al., 1984; Mannion et al., 

1999; Woolf and Salter, 2000; Kawasaki et al., 2004; D'Mello and Dickenson, 2008). The 

activation of NMDARs produces a large inward Ca2+ current and the mobilisation of multiple 

downstream signalling cascades (MAPK, PKA, PKC, PI3K, Src) that facilitate C-fibre mediated 

central sensitisation of dorsal horn neurons (Latremoliere and Woolf, 2009). Essentially, 

these Ca2+-dependent protein kinases contribute to phosphorylation-dependent 

modifications of NMDAR and AMPAR, as well as numerous other receptors and ion channels. 

Such modifications may include changes in channel kinetics, as well as increased synaptic 

density caused by enhanced synthesis and trafficking of ion channels and scaffold proteins. 

These changes subsequently strengthen nociceptive transmission by increasing membrane 

excitability and synaptic efficacy (Costigan et al., 2009a; Latremoliere and Woolf, 2009). 

 

In addition to phosphorylation-dependent modifications, longer-lasting transcription-

dependent (phosphorylation-independent) processes contribute to the establishment of 

central hyperexcitability. A body of literature supports a key role of the MAPK, ERK, in 

neuronal plasticity. One of the earliest studies demonstrated that MAPK phosphorylation in 

the dorsal horn was very much dependent on nociceptive activity (Ji et al., 1999; Ji et al., 

2009). This was shown to depend on the intensity and duration of the noxious stimulus i.e. 

only noxious stimuli of a duration greater than ten seconds was capable of activating ERK; 

however, this may well change in the setting of injury (Ji et al., 1999; Wang et al., 2004; Wei 

et al., 2006). As the ERK pathway integrates multiple protein kinases that are triggered by 

various receptors (NMDARs, mGluRs, TrkB, NK1 or CGRP), many signalling pathways 

converge to activate ERK. In addition, raised intracellular Ca2+ levels via the glutamatergic 

receptors critically mobilises several Ca2+ dependent kinases (PKC, PI3K) that 

phosphorylate ERK in dorsal horn neurons (Pezet et al., 2008). Correspondingly, the 

distribution of phosphorylated ERK reveals neurons that have been stimulated with 

nociceptive input. The activation of ERK is necessary for the phosphorylation of CREB and 

other transcription factors that drive the expression of genes such as c-Fos, NK1, COX-2 and 

TrkB (Latremoliere and Woolf, 2009). Such transcriptional regulation is critical for long-

term changes that drive the maintenance of central sensitisation, whereas posttranslational 

regulation is only sufficient for inducing central sensitisation. 
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Another mechanism which contributes to central sensitisation is the loss of inhibitory 

control. GABAergic or glycinergic inhibitory interneurons are densely found in the 

superficial dorsal horn. Experimentally induced inhibition of GABAA or glycine receptors via 

spinal administration of bicuculline or strychnine, respectively, generates behavioural 

hypersensitivity in rats similar to that seen after peripheral nerve injury (Sivilotti and 

Woolf, 1994). In accordance with these findings, nerve injury results in diminished 

GABAergic currents and suppressed glycinergic currents, suggested to be a result of 

inhibitory neuron cell death (Moore et al., 2002). Other studies have shown that BDNF 

release from microglial cells may contribute towards a state of disinhibition in the spinal 

cord. Under physiological conditions the potassium chloride co-transporter 2 (KCC2) drives 

chloride (Cl-) out of the cell. Therefore the opening of Cl- channels causes hyperpolarisation 

of neurons due to the influx of Cl- along the electrochemical gradient. However, after 

peripheral nerve injury microglial derived BDNF induces a down-regulation of KCC2 in 

lamina I projection neurons (Coull et al., 2003). The decrease in expression of KCC2 

produces a rise in the intracellular Cl- concentration and a depolarising shift in the anion 

reversal potential, hence impeding the inhibitory tone of GABA and glycine channels (Coull 

et al., 2005). In addition, disinhibition may occur via PGE2/EP2 -induced activation of the 

cAMP/PKA pathway, where the phosphorylation of glycine receptors consequently inhibits 

the responsiveness of neurons to glycine (Harvey et al., 2004). 

 

Finally, glial cells may also contribute to the development and maintenance of central 

sensitisation, which will be discussed below. 

 

1.8 Immune cells and pain 

 

Tissue or peripheral nerve damage is accompanied by an immune cell response, which 

encompasses the activation of resident immune cells, infiltration of inflammatory cells and 

the release of immune mediators. This response is evident in damaged tissues or nerves, the 

DRG and spinal cord as well as supraspinal sites. Accumulating evidence has supported the 

critical involvement of immune cells and immune mediators in the development of 

hyperalgesia. Microglia and macrophages are the key phagocytic cells of the innate immune 

system in CNS and PNS, respectively, and are the most studied immune cells in the field of 

pain with a wealth of literature supporting their contribution to nociceptive transmission. 
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1.8.1 Mast cells 

 

Bone marrow derived mast cells are a heterogenous population originating from 

haematopoietic progenitors and are easily recognised by their distinctive heavily granulated 

appearance. These cells are typically found in body tissues exposed to the external 

environment such as the skin and mucosal layers of the airways and intestines, but are also 

found in nerves. Like other immune cells, mast cells engage in numerous immunological 

activities ranging from phagocytosis and antigen processing to the synthesis and secretion 

of cytokines (Metcalfe et al., 1997; Galli et al., 2005; Urb and Sheppard, 2012). Mast cells are 

major players in inflammatory responses and are considered as effector cells in allergic 

disorders. As one of the resident classes of immune cells in peripheral nerves they are 

thought to play a role in the development of inflammation and the establishment of a 

hypersensitive state. The most characterised mechanism of activation of these cells is via 

their high-affinity immunoglobulin E receptors (FCεRI). However, mast cells may also be 

activated via the engagement of their pattern recognition receptors (PRRs) in a similar 

fashion to other leukocytes. Upon activation mast cells rapidly degranulate releasing 

histamine, heparin, 5HT and proteases (e.g. tryptase) in addition to secreting prostaglandins 

and a number of chemokines and cytokines (Urb and Sheppard, 2012). Several of the 

mediators released have demonstrated pro-nociceptive properties that contribute to 

hyperalgesia. For example, histamines, TNF-α, 5HT and tryptase are able to both activate 

and sensitise nociceptors, and TNF-α has been shown to directly increase firing rates of 

sensory axons (Rueff and Dray, 1993; Sorkin et al., 1997; Herbert et al., 2001; Kawabata et 

al., 2001). Correspondingly, treatment of neuropathic rats with histamine inhibitors has 

been shown to alleviate the development and maintenance of mechanical and thermal 

hyperalgesia (Zuo et al., 2003). However, as expected, this method of treatment only 

provided partial relief as multiple mediators contribute to neuropathic pain. Many mast cell 

derived mediators also possess chemoattractant properties and thus are able to recruit 

other immune cell types, particularly neutrophils that release further algogenic and pro-

inflammatory mediators at the site of injury (Moalem and Tracey, 2006). 

 

One of the most striking studies supporting the involvement of mast cells in neuropathic 

pain demonstrated that the development of behavioural hyperalgesia was alleviated in rats 

treated pre and post PNL surgery with sodium cromoglycate, an agent that stabilises mast 

cells and prevents them from degranulating. This effect was also associated with a reduction 

in the recruitment of neutrophils and macrophages to the site of nerve injury (Zuo et al., 

2003). Cromoglycate treatment also exhibited analgesic effects in the second-phase of 

formalin evoked pain (Parada et al., 2001). Furthermore, depletion of mast cell granules via 
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chronic treatment with compound 48/80 results in attenuated CFA or zymosan and acetic 

acid-induced hyperalgesia (Woolf et al., 1996; Ribeiro et al., 2000). Conversely, 

subcutaneous injection of a single dose of 48/80 evoked acute nociceptive behaviours in 

rats (Parada et al., 2001).  

 

Interestingly, mast cell depletion results in a loss of NGF-induced thermal sensitisation in 

skin preparations of the saphenous nerve attached to dorsal skin of the hind paw (Rueff and 

Mendell, 1996). NGF indirectly augments an inflammatory response by exerting cytokine-

like action on TrkA-positive inflammatory cells such as mast cells, basophils, lymphocytes 

and neutrophils. This results in proliferation and the synthesis of cytokines that contribute 

to the sensitisation of peripheral nerve terminals. In addition, NGF promotes mast cell 

survival and degranulation. Depletion of mast cells results in a reduction in the NGF 

sensitising effect and prevents an increase in NGF from baseline levels in CFA treated rats. 

This is not only because mast cell depletion eliminates the indirect effect of NGF in evoking 

mediator release (which in turn induces NGF production in other cell types), but also 

because mast cells are themselves sources of NGF (Woolf et al., 1996).  

 

1.8.2 Neutrophils 

 

Neutrophils, also referred to as polymorphonuclear leukocytes (PMNs), are the most 

abundant type of white blood cell in mammals, comprising 60-70% of the total white blood 

cell pool. These short-lived (24 hours) cells form a crucial component of the inflammatory 

response by orchestrating the recruitment, activation and programming of antigen 

presenting cells (Witko-Sarsat et al., 2000; Nathan, 2006; Caielli et al., 2012). Under normal 

conditions neutrophils are in a circulating non-adherent state and are undetectable in 

peripheral nerves. However, subsequent to nerve injury/tissue damage, the local 

appearance of inflammation-induced adhesion molecules enables the extravasation and 

migration of these cells to the site of inflammation where their numbers become 

considerably greater (Clatworthy et al., 1995; Perkins and Tracey, 2000; Zuo et al., 2003; 

Nathan, 2006; Cunha et al., 2008a). For example, a 3-fold increase in neutrophils was 

reported in the rat ipsilateral DRG at 7 days post chronic constriction injury (CCI) surgery 

(Morin et al., 2007).  

 

As neutrophils migrate towards a stimulus along the concentration gradient of 

chemoattractants such as NGF-β, chemokine (C-X-C motif) ligand (CXCL)1 and leukotriene-

B4 (LTB4) (Scholz and Woolf, 2007) they discharge two distinctive sets of granules, the 

peroxidase-negative and the peroxidise-positive granules (Nathan, 2006). Peroxidase-
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negative granules are secreted first and contain large amounts of lactoferrin, lipocalin, 

lysozymes and the chemotactic antimicrobial peptide LL37. They also contain matrix 

metalloproteinase (MMP) 8, 9 and 25, which facilitate neutrophil recruitment and tissue 

break-down. The second group of granules released are peroxidase-positive and contain 

small α-defensins, myeloperoxidase and a selection of potent antibiotics (Nathan, 2006). 

The release of these factors, particularly superoxides and other reactive oxygen species as 

well as many pro-inflammatory cytokines (IL-1β, TNF-α, IL-6), contribute to inflammation 

by directly or indirectly exciting sensory neurons (Cunha et al., 1992; Schafers et al., 2003b; 

Zelenka et al., 2005; Nathan, 2006). In addition, the release of CCL3, CCL4 and defensins co-

ordinates the recruitment of macrophages, which perpetuate the inflammatory response 

once neutrophil numbers begin to dwindle subsequent to their initial peak at 24 hours post 

injury (Scapini et al., 2000; Witko-Sarsat et al., 2000; Zuo et al., 2003).  

 

The most convincing evidence for the involvement of neutrophil invasion in neuropathic 

pain is derived from studies examining the effects of neutrophil recruitment/depletion on 

pain behaviours. For example, it was shown that the hypernociceptive effects of the potent 

neutrophil chemoattractants, LTB4 and complement 5a (C5a), were dependent on 

neutrophil migration (Levine et al., 1984; Levine et al., 1985). Administration of PMX53, 

which is a C5a receptor antagonist, exerted analgesic effects in the zymosan, carrageenan 

and LPS models of peripheral inflammation (Ting et al., 2008). Similarly, a single study 

showed that inhibition of neutrophil migration via orally administered DF 2162, a selective 

inhibitor of the CXC chemokine receptors 1 and 2 (CXCR1 and CXCR2), prevented pro-

nociceptive behaviours induced by LPS, CFA or zymosan in rats (Cunha et al., 2008b). Cunha 

et al. (2008) also showed that this compound could reduce neutrophil infiltration, oedema 

and behavioural hypersensitivity in a model of collagen-induced arthritis. Accordingly, early 

depletion of neutrophils in rats with a PNL injury was reported to considerably attenuate 

the development of hyperalgesia (Perkins and Tracey, 2000; Zuo et al., 2003).  

 

Integrin α4β1, is expressed by human and rat neutrophils as well as other immune cell types 

and mediates the process of extravasation, including neutrophil tethering, rolling and firm 

adhesion, by binding to vascular cell adhesion molecule-1. Early treatment with a 

neutralising antibody against α4β1 produced a reduction in neutrophil infiltration at the site 

of injury and alleviated mechanical allodynia in spinal cord injured rats (Fleming et al., 

2009). In a related study, pre-treatment with a leukocyte adhesion inhibitor (fucoidin), 

which prevents neutrophil infiltration, alleviated carrageenan-induced hyperalgesia in a 

dose-dependent manner but bore no effect on the induction of inflammatory cytokines (IL-

1β, TNF-α, CXCL1) (Cunha et al., 2008a). It was also found that in vitro stimulation of 
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neutrophils with IL-1β resulted in the production of PGE2, whilst intraplantar IL-1β elicited 

PGE2 production in the hind paw that was abolished via pre-treatment with fucoidin. 

Furthermore, depletion of the neutrophil population at a later stage of nerve injury-induced 

pathology (8 days post PNL) had no effect on behavioural hypersensitivity (Zuo et al., 2003). 

Thus together these data indicate that neutrophils are important in the induction of 

inflammatory hyperalgesia via the release of numerous pro-nociceptive mediators such as 

PGE2 and chemoattractant cytokines. However, neutrophils are unlikely to contribute 

significantly at later stages of neuropathic pain, which corresponds with their succeeding 

decrease in numbers subsequent to the initial peak. 

 

Early on in the inflammatory response, neutrophils may also release opioid peptides, which 

exert anti-nociceptive effects via their neuronally expressed opioid receptors (Brack et al., 

2004). This adds to the complexity of an inflammatory response and may be a mechanism 

which is lost or outweighed in the pathology of neuropathic pain.  Netherless, what we can 

gather from these experimental studies is that although the neutrophil response is limited 

and relatively short-lived, these cells release important mediators that attract other immune 

cell types, particularly macrophages, which surpass the initial contribution of neutrophil 

cells and maintain the inflammatory response by releasing further mediators. 

 

1.8.3 Macrophages 

 

Macrophages are large phagocytic cells of the innate immune system that are distributed 

throughout the body and can be broadly categorised into tissue or circulating macrophages. 

Under normal conditions macrophages closely survey their microenvironment for 

pathogens or tissue injury and maintain homeostasis by phagocytosing necrotic cells and 

rapidly responding to local disturbances. In the bone marrow, myeloid progenitor cells give 

rise to monoblasts, pro-monocytes and eventually monocytes, which are subsequently 

released into the bloodstream where they are thought to continue developing and maturing 

(Mosser and Edwards, 2008). In mice and humans there are two main subsets of monocytes 

that exhibit specific migration and functional differences, the ‘inflammatory’ and ‘resident’ 

monocytes. These subsets are thought to be derived from macrophage dendritic cell 

precursors and whilst inflammatory monocytes may further differentiate into dendritic 

cells, resident monocytes give rise to macrophages upon migration from the blood into the 

tissue (Zhang and Mosser, 2008; David and Kroner, 2011). Resident monocytes are CD115+ 

(cluster of differentiation 115; macrophage colony stimulating factor receptor) and possess 

high levels of CX3CR1 but lack expression of C-C chemokine receptor type (CCR)2,  GR1 

(Ly6C) and CD62L (L-selectin). On the other hand, inflammatory monocytes are 
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characterised as CD115+ and GR1+ (Ly6C), express high levels of CCR2 and CD62L and low 

levels of CX3CR1 (Zhang and Mosser, 2008; David and Kroner, 2011). 

 

Macrophages are also classified according to their functional characteristics as either M1 

(classically activated pro-inflammatory macrophages) or M2 (alternatively activated anti-

inflammatory macrophages). M1 macrophages, which are associated with the inducible 

nitric oxide synthase (iNOS) marker, are produced during a cell-mediated immune response. 

These macrophages are induced by interferon (IFN)-γ released from other immune cell 

types (natural killer cells and Th-1 lymphocytes), exhibit greater microbiocidal capacity and 

secrete higher levels of the pro-inflammatory mediators IL-1β, IL-6 and IL-23 compared to 

the M2 class (Mosser and Edwards, 2008; David and Kroner, 2011). In contrast, M2 

macrophages express higher levels of some anti-inflammatory cytokines such as IL-10 and 

transforming growth factor (TGF)-β and up-regulate ARG1 whilst down-regulating pro-

inflammatory mediators during a response. This subtype may be further subdivided into 

M2a (immunity against parasites), M2b (pro- and anti-inflammatory function) and M2c 

(pro-healing/regulatory) (David and Kroner, 2011). 

 

Subsequent to injury or infection, macrophages form one of the first lines of defence of the 

immune system and become rapidly activated in response to various exogenous and 

endogenous ‘danger signals’ such as pathogen associated molecular patterns (PAMPs), 

alarmins and heat shock proteins (HSP) (Zhang and Mosser, 2008). Macrophages also 

respond to the release of mediators from other innate immune cells. One of the most well 

established modes of activation is via a family of highly conserved PRRs such as the toll-like 

receptors (TLRs) which are able to recognise PAMPs, including the typical LPS and 

lipoteichoic acid (LTA) outer membrane components of Gram-negative and -positive 

bacteria, respectively. Once activated macrophage cells undergo profound physiological 

changes and up-regulate a number of cell surface receptors, secrete a range of mediators 

and exhibit enhanced phagocytic activity (Zhang and Mosser, 2008). 

 

Macrophages also play a key role in the process of Wallerian degeneration (WD) by 

phagocytosing damaged axons, myelin sheaths, debris and necrotic cells distal to the site of 

injury (Perrin et al., 2005). As previously discussed, peripheral macrophages consist of a 

heterogenous population of resident and infiltrating cells. The faster responding resident 

macrophages are important in initiating the clearance response and are assisted by a large 

influx of the hematogenous derived infiltrating population (Ton et al., 2013). The clearance 

process is orchestrated by a number of chemokines including CCL2, CCL3 and IL-1β and is 

necessary for axonal regeneration. In the PNS, this process occurs rapidly within a matter of 
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days, in the CNS, WD is much slower and can take as long as months (Perry et al., 1987; 

Perrin et al., 2005). Interestingly, WD may be interrupted by the application of CCL2, CCL3 

or IL-1β neutralising antibodies (Perrin et al., 2005), which prevents the infiltration of 

macrophages, or enhanced by the application of TLR2 or TLR4 ligands (zymosan and LPS, 

respectively) (Boivin et al., 2007). Furthermore, mice pre-treated with the glucocorticoid 

dexamethasone, or deficient in TLR signalling exhibit reduced recruitment/activation of 

macrophage cells and a delayed clearance of myelin debris and regeneration of the injured 

nerve (Boivin et al., 2007). TLR signalling is coupled to the activation of NF-κB, which 

orchestrates the transcription of many pro-inflammatory mediators in response to PAMPs 

such as HSP60 and 70, necrotic cells and components of the extracellular matrix (ECM) that 

are abundantly found at sites of injury (Nguyen et al., 2002; Willis et al., 2005). Based on 

these studies it is evident that TLRs do indeed contribute to the process of WD and in this 

setting are activated by a number of endogenous ligands.  

 

The findings of Perrin et al. (2005) and Boivin et al. (2007) are particularly interesting as 

they implicate impairment of WD and the macrophage response in the alleviation of pain-

related behaviours. Their work is supported by a previous study that used C57BL/WLD 

mice, which exhibit reduced rates of WD as a result of over-expression of the nicotinamide 

mononucleotide adenylyltransferase gene (Myers et al., 1996; Mack et al., 2001). These mice 

displayed delayed macrophage recruitment and WD that correlated with attenuated nerve 

injury-induced thermal hyperalgesia compared to WT controls (Myers et al., 1996). In 

addition, macrophage depletion via systemic administration of clodronate-containing 

liposomes not only reduced axonal degeneration but also alleviated mechanical and thermal 

hyperalgesia (Liu et al., 2000; Barclay et al., 2007). Correspondingly, mechanical thresholds 

increased by the time the macrophage population recovered at 8 days post injury, as 

revealed by ED1 and ED2 immunoreactivity in the spleen (Barclay et al., 2007). Notably, 

macrophages have been shown to play a limited role in mechanical allodynia and neither 

systemic/perineural administration of a macrophage inihibitor nor depletion or transfer of 

activated macrophages to the perineurium can alter mechanical thresholds (Rutkowski et 

al., 2000; Barclay et al., 2007).  

 

Interestingly, evidence from pain models of disease associated pathologies suggests that 

macrophages play a modality specific role in neuropathic pain mechanisms that is very 

much dependent on aetiology. For example, in a model of streptozotocin (STZ) -induced 

diabetes (where macrophages infiltrate L4/L5 DRGs by 1 week and diabetic nerves by 

weeks 2 and 3) depletion via clodronate treatment alleviated beta cell damage and 

mechanical allodynia, but not thermal hyperalgesia (Conti et al., 2002; Mert et al., 2009; Ton 
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et al., 2013). Similarly, in rat models of HIV-1 or chemotherapy-induced neuropathy, the 

infiltration of peripheral macrophages into the sciatic nerve and DRG correlated with 

mechanical allodynia (Peters et al., 2007b; Peters et al., 2007a; Wallace et al., 2007b; Liu et 

al., 2010; Kamerman et al., 2012). Accordingly, pre-treatment with minocycline diminished 

paclitaxel-evoked allodynia and attenuated macrophage infiltration (Liu et al., 2010). In a 

model of vincristine-induced pain it was reported that expression of IL-6 was co-localised 

with infiltrating macrophages in the sciatic nerve and lumbar DRG. Correspondingly, 

administration of an IL-6 neutralising antibody to the sciatic nerve attenuated mechanical 

allodynia and IL-6 KO mice showed reduced behavioural hypersensitivity (Kiguchi et al., 

2008b).  

 

Attenuation in neuropathic pain-associated behaviours in TLR2, 3 and 4 null mice has 

mainly been attributed to an impaired microglial response (Tanga et al., 2005; Kim et al., 

2007a; Obata et al., 2008). However, a recent study using TLR2 null mice supported a 

prominent role of peripheral macrophages in behavioural hypersensitivity and found no 

evidence of microglial involvement (Shi et al., 2011). Here, it was reported that thermal 

hyperalgesia was abolished in nerve-injured TLR2 KO mice whilst mechanical allodynia was 

partially attenuated. This correlated with a reduction in macrophage infiltration as well as a 

decrease in the expression of IκB-α and TNF-α in the injured sciatic nerve of KO mice at 14 

days post injury. In contrast, WT mice exhibited normal thresholds and an increase in these 

markers, which co-localised with ED1+ cells (Shi et al., 2011). In contradiction with previous 

findings (Kim et al., 2007a), Shi et al. (2011) found no evidence of a microglial phenotype 

and reported that expression of TLR2 and IκB-α mRNA was undetectable in the spinal cords 

of WT mice, but strikingly induced along with TNF-α in injured sciatic nerves. 

   

Peripheral inflammatory models such as carrageenan and CFA are thought to mediate their 

effects in a TLR-dependent manner (Bhattacharyya et al., 2008) and evoke the release of 

ATP from monocytes, which in turn activates P2X4 receptors via autocrine signalling. This 

leads to the mobilisation of Ca2+ and subsequent phosphorylation of p38 and the release of 

pro-inflammatory PGE2. Mice deficient in the expression of P2X4 show attenuated formalin, 

CFA or carrageenan-induced pain behaviours due to a reduction in PGE2-driven neuronal 

hyperexcitability (Ulmann et al., 2010). This effect is attributed to resident macrophages in 

the paw, as the expression of P2X4 is restricted to this cell type. In support of this, transfer of 

ATP-primed WT but not KO macrophages to the hind paws of naïve mice recapitulated pain 

behaviours (Ulmann et al., 2010). Interestingly, CCR2 null mice also exhibit marked 

reductions in inflammatory and neuropathic pain behaviours, linked to a diminished 
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microglial response and evidence of reduced monocyte recruitment (Izikson et al., 2000; 

Abbadie et al., 2003). 

 

Macrophages contribute significantly to inflammatory pain by releasing many inflammatory 

mediators (Marchand et al., 2005). Intraperitoneal administration of zymosan and acetic 

acid elicited dose-dependent writhing responses which could be enhanced by peritoneal 

pre-treatment with thioglycollate, or reduced by macrophage removal via saline lavage 

(Ribeiro et al., 2000). The aforementioned experiments illustrate that the pain response is 

dependent on the number of macrophages present in the peritoneal cavity. Furthermore, it 

was also shown that this response was dependent on the release of TNF-α, IL-1β and IL-

8/CXCL8, as pre-treatment with corresponding neutralising antibodies attenuated 

nociceptive behaviours, whereas administration of all three recombinant cytokines induced 

hypernociception in mice (Ribeiro et al., 2000). These findings are further supported by a 

study that demonstrated that intraperitoneal administration of LPS-stimulated macrophage 

supernatants produced nociceptive writhing responses in rats that could be inhibited via 

pre-treatment with dexamethasone, paracetamol or indomethacin (Thomazzi et al., 1997). It 

was also shown that pre-incubation of LPS stimulated macrophage supernatants with 

neutralsing antibodies for TNF-α, IL-1β and IL-8/CXCL8 produced some alleviation of pain 

behaviours (Thomazzi et al., 1997). Accordingly, intraplantar administration of LPS or 

carrageenan evoked mechanical hyperalgesia and an increase in TNF-α and IL-1β 

immunoreactivity in the skin of treated paws (Cunha et al., 2000). 

 

Macrophage-derived mediators such as TNF-α, IL-1β, IL-6, CCL3, PGs and nitric oxide (NO) 

may directly or indirectly contribute to the development of hyperalgesia (Woolf and Ma, 

2007; Austin and Moalem-Taylor, 2010). For example, PGs are up-regulated in macrophages 

located in the peripheral nerve and contribute to the development of pain behaviours by 

directly sensitising nociceptors and increasing neuronal excitability (Samad et al., 2002; Ma 

and Eisenach, 2003b). TNF-α and IL-1β have been documented to increase in the sciatic 

nerve and spinal cord of STZ-treated rats, and IL-1β was co-localised with ED-1 positive 

macrophages in the nerve (Conti et al., 2002; Drel et al., 2010; Bishnoi et al., 2011). TNF-α 

has also been reported to co-localise with ED-1 positive macrophages in the sural nerves of 

patients with established diabetic neuropathy, though this was not a model of pain 

(Kawamura et al., 2008). In the injured sciatic nerves of mice, the dramatic up-regulation of 

CCL3 is thought to contribute to macrophage recruitment and hence the development of 

neuropathic pain (Kiguchi et al., 2010a). Perineural administration of anti-CCL3 delays the 

onset of hypernociception, whereas intraneural or perineural application of recombinant 

CCL3 evokes allodynia and thermal hyperalgesia. Furthermore, perineural application of 
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nicotine, which acts at nicotinic acetylcholinergic receptors to suppress cell migration and 

cytokine expression, reduces both pain behaviours and the expression of CCL2 and IL-1β 

(Cloez-Tayarani and Changeux, 2007; Kiguchi et al., 2010a).   

 

1.8.4 T cells 

 

T lymphocytes are effector cells of the adaptive immune system and are derived from 

haematopoietic stem cells in the bone marrow. Later these cells transit into the blood 

stream and populate the thymus where they mature into thymocytes (Schwarz and 

Bhandoola, 2006). T cells are a heterologous population of immune cells comprising of CD4+ 

T-helper (Th) cells, CD8+ cytotoxic T (Tc) cells or CD4+ regulatory T cells (Tregs) and upon 

maturation and selection they exit the thymus and enter the blood circulation. Th cells may 

be further subdivided into pro-inflammatory Th1 cells or anti-inflammatory Th2 cells, 

which depends greatly on the transcription factors they induce and a number of external 

cues (cytokines). A Th1 phenotype is directed by IL-12 and these cells produce INF-γ 

through a STAT 4 dependent pathway, whereas a Th2 phenotype is directed by IL-4 and 

these cells also produce IL-4 along with IL-5 through a STAT 6 dependent pathway (O'Garra 

and Arai, 2000). Th1 cells promote cellular immunity and play an important role in the 

removal of various types of pathogens such as bacteria, parasites, yeasts and viruses. 

Characteristically, this T cell phenotype produces INF-γ and TNF-α and tends to be 

associated with the recruitment of NK cells and cytotoxic CD8+ T cells. On the other hand 

Th2 cells mainly mediate humoral immunity and typically produce IL-4, IL-5 and IL-13. This 

class of T cells engage mast cells and eosinophils in the removal of parasites and suppress 

macrophage activation and the production of pro-inflammatory cytokines (O'Garra and Arai, 

2000). (Moalem et al., 2004) 

 

The first implication of T cells in nociception came from a study examining the inflammatory 

response in three models of neuropathic pain in rats. Here it was found that after CCI, PNL 

or ischaemic lesion/transection injury, there was a considerable increase in T cells in the 

injured sciatic nerve compared to sham controls (Cui et al., 2000). Moalem and Yu (2004) 

later reported that T cell infiltration into the sciatic nerve occurs as soon as 3 days post CCI, 

which peaks at day 21 and remains present for 5-6 weeks. They also demonstrated that 

nerve-injured congenitally athymic nude rats, which lack mature T cells, exhibit attenuated 

mechanical allodynia and thermal hyperalgesia. To further elucidate the role of T cells in 

neuropathic pain, Moalem and Yu (2004) subsequently showed that the application of Th 

cells polarised to either a pro-inflammatory Th1 phenotype or anti-inflammatory Th2 

phenotype elicited behavioural hypersensitivity in nude rats or modestly attenuated pain 
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behaviour in littermate controls, respectively. These findings were later confirmed in nude 

and recombinant activating gene-1 null mice (Rag-1; encodes an enzyme essential for T-cell 

maturation) that again exhibited attenuated mechanical hypersensitivity after nerve injury, 

which was reversed by adoptive transfer of CD4+ leukocytes (Cao and DeLeo, 2008; Costigan 

et al., 2009b). It has also been reported that T cells infiltrate the dorsal horn, peaking at 7 

days post injury. Interestingly, nude rats exhibited reduced GFAP immunoreactivity in the 

spinal cord, which is suggestive of a possible T cell-glial interaction in nociceptive 

transmission (Cao and DeLeo, 2008).   

 

In contrast to adult rats, nerve-injured neonatal rats do not develop neuropathic pain, which 

is a striking phenomenon also observed in humans. One of the most important studies 

illustrating the T cell contribution to neuropathic pain delineated the transcriptional profile 

differences in the dorsal horn between adult and neonatal rats. It was identified that in the 

setting of nerve injury a greater microglial and T cell response occurred in adult rats 

compared to younger animals. Central chemokine profiles were also different between these 

two age groups and INF-γ was particularly up-regulated in the dorsal horns of adults but not 

neonates (Costigan et al., 2009b). Furthermore, it has also been shown that although 

neonates have a limited Th population, they possess a relatively larger Th2 population, 

which may account for the differences in pain responses compared to adults (Morein et al., 

2007). 

 

Despite the selection process which only allows functional, non self-reactive T cells into the 

periphery, some autoreactive T cells escape thymic censorship and are released into the 

circulation. T cells are associated with many autoimmune diseases that are accompanied by 

debilitating pain symptoms, such as Guillain-Barré Syndrome (GBS). In a model of 

experimental autoimmune neuritis (EAN) that mimics acute inflammatory demyelinating 

polyradiculoneuropathy in GBS, rats exhibited neuropathic pain-associated behaviours that 

coincided with significant T cell infiltration into the sciatic nerve (Moalem-Taylor et al., 

2007). Similarly, in experimental autoimmune encephalomyelitis (EAE; model of MS) mice 

developed mechanical allodynia during the early disease stages, where significant T cell 

infiltration into the superficial dorsal horn was accompanied by increased glial reactivity 

(Olechowski et al., 2009).  
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1.9 Glia and pain 

 

In the CNS, glial cells (astrocytes, oligodendrocytes and microglia) account for 

approximately 70% of the total cell population and are involved in the formation of the 

blood brain barrier, the development of the myelin sheath and defence against invading 

pathogens or damage. Glial cells also regulate neuronal function via neurotransmitter 

release and express an array of receptors/ion channels that allow them to directly respond 

to neuronal signals. In the PNS, glial cells (satellite cells and Schwann cells) also undertake 

numerous roles in metabolic and ionic homeostasis, myelin sheath development and trophic 

support. 

 

Over the past two decades glial cells, particularly microglia and astrocytes, have received 

considerable attention for their involvement in chronic pain, stemming from some of the 

early work of Garrison et al. (1991). 

 

1.9.1 Microglia 

 

Del Rίo-Hortega was the first to introduce the concept of microglia with a series of 

published studies between 1919 and 1927, which adopted the classic silver carbon labelling 

technique. The origin of these cells has long been the subject of great controversy within the 

glial field. Initially it was believed that microglia were of mesodermal origin and Rio-

Hortega postulated that these cells invaded the brain early during development where they 

matured into amoeboid cells. Although this view was widely accepted, others disagreed and 

proposed that glioblasts of the neuroectoderm were the precursors of microglial cells and 

thus argued that all glial cells shared a common stem cell population (Paterson et al., 1973; 

Kitamura et al., 1984). The third view, which was originally proposed by Leblond and 

colleagues in the 1930s was that microglia are of the monocytic lineage. This theory was 

later verified using autoradiography, which showed that amoeboid microglia exhibiting 

monocytic characteristics later transformed into ramified microglia (Imamoto and Leblond, 

1978; Ling et al., 1980). These findings were further validated by subsequent studies and 

the use of newly developed immunohistochemical markers (Perry et al., 1985; Graeber et al., 

1988). 

 

It is now generally accepted that microglial cells are of the monocytic lineage and share 

many functional similarities of peripheral monocytes/macrophages. Recent findings suggest 

that these cells originate from the foetal yolk sac and migrate into the CNS during early 
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embryonic development; however microglia are also thought to differentiate from 

circulating monocytes entering the CNS during the early stages of postnatal development 

(Perry et al., 1985; Saijo and Glass, 2011). Under normal conditions microglia are in a 

‘quiescent’ state and are involved in immune surveillance and CNS homeostasis. In this state 

microglia morphology is typically ramified with a small cell body and fine long projections 

that continuously survey the local microenvironment. However, subsequent to infection or 

injury microglia undergo considerable morphological changes; their processes shorten and 

thicken and their distal branches become de-ramified. Their cell bodies also increase in size 

and adopt a more rounded ‘amoeboid’ shape. Microglia also up-regulate multiple cell 

surface glycoproteins (MHC-II, CD45), considerably increase in numbers by means of 

proliferation and enhanced migratory capacity, become more phagocytic and release a 

range of pro-inflammatory substances. This response is collectively referred to as 

microgliosis (Ransohoff, 2007; Ransohoff and Perry, 2009). As microglia express a 

repertoire of ionotropic and metabotropic receptors, it is apparent that a single mechanism 

of activation is unlikely, and that these cells are engaged by various signals that lead to 

different morphological and secretory responses. Such signals include invading pathogens 

or nerve/tissue damage, which is accompanied by the release of a number of mediators such 

as ATP, glutamate, cytokines, chemokines, PGs, neuropeptides and NO. In turn microglia 

release a repertoire of neuroexcitatory substances, which directly/indirectly excite and 

sensitise dorsal horn neurons and thus enhance nociceptive transmission, leading to 

hyperalgesia and allodynia (DeLeo and Yezierski, 2001; Watkins et al., 2001; Watkins and 

Maier, 2003). 

 

The role of microglia in chronic pain mechanisms has been well characterised in a number 

of neuropathic and inflammatory pain paradigms. Many of the initial findings were based on 

studies using general glial inhibitors, which proved to be effective in reducing/preventing 

hyperalgesia and allodynia in animal pain models (Meller et al., 1994; Watkins et al., 1997; 

Sweitzer et al., 2001; Raghavendra et al., 2003a; Raghavendra et al., 2003b; Hua et al., 2005; 

Ledeboer et al., 2005; Clark et al., 2007a). Fluorocitrate attenuates metabolic activity 

specifically in glial cells by inhibiting the enzyme aconitase and consequently blocking the 

citric acid cycle (Goncharov et al., 2006). Propentofylline is a derivative of methyl xanthine 

and mediates its glia suppressing effects via the inhibition of adenosine transporters and 

phosphodiesterases, which leads to a reduction in cAMP (Tawfik et al., 2008). Minocycline 

belongs to the tetracycline class of antibiotics and exerts a number of inhibitory effects on 

microglial cells, including the suppression of iNOS and IL-1 as well as the phosphorylation of 

p38 MAPK (Lai and Todd, 2006). Although much of the work using propentofylline and 

fluorocitrate illustrated the involvement of glial cells in the regulation of pain sensitivity, 
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these inhibitors failed to distinguish which glial cell type is involved. Furthermore, their 

biological actions lacked the necessary selectivity to be entirely convincing, with even 

suspected effects on neuronal function. On the other hand, the literature supports a selective 

mode of action of minocycline in microglial cells. In one study minocycline reduced the 

development of nerve injury induced neuropathic pain but failed to attenuate existing 

mechanical allodynia and hyperalgesia (Raghavendra et al., 2003a), indicating that microglia 

may play a more important role in the initiation rather than maintenance of chronic pain. 

Conversely, it has also been demonstrated that administration of agents capable of directly 

activating microglia, including LPS and the HIV glycoprotein 120, evoke nociceptive 

behaviours in naïve rats (Milligan et al., 2000; Cahill et al., 2003; Clark et al., 2006). 

 

Out of the three glial inhibitors discussed, propentofylline is the only one that has been 

taken to a high-profile clinical trial and failed to show efficacy in alleviating pain associated 

with post-herpetic neuralgia. In cases like this, the lack of translation from pre-clinical 

rodent models of pain to humans is thought to be due to a number of reasons such as the 

lack of predictability of animal models, functional differences between rodent and human 

microglia and different methods of pain measurement (evoked pain vs spontaneous pain). 

Such failures highlight the limitations of preclinical research and emphasise the importance 

of using human tissues and primary cells to improve translation to the human condition 

(Landry et al., 2012). 

 

Progression on to more targeted interventions has led to a wealth of literature exploring 

specific microglial receptors using pharmacological tools and transgenic technology. Like 

peripheral macrophages, microglia express a number of TLRs, which initiate a cellular 

response upon detection of numerous endogenous and exogenous danger signals, as 

previously described (section 1.8.3). The expression of TLR4 is exclusive to microglia in the 

CNS, which has been shown to up-regulate in the spinal cord of nerve-transected rats as 

soon as 4 hours post surgery up until day 14 (Tanga et al., 2004). In a later study, Tanga et 

al. (2005) showed that nerve-injured TLR4 KO mice exhibited attenuated mechanical 

allodynia and thermal hyperalgesia compared to WT controls, which correlated with 

reduced microglia reactivity in the spinal cord as revealed by OX-42 (cluster of 

differentiating molecules 11b; CD11b) staining. These studies suggest that TLR4 signalling 

contributes to the activation of microglia during the induction of neuropathic pain. 

Moreover, as reduced microglia activity is associated with attenuated pain behaviours it is 

evident that these cells are important in chronic pain pathways. This is further supported by 

studies examining the function of other microglial receptors in models of neuropathic pain, 
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such as CX3CR1, P2X4, P2X7 and CCR2 (Abbadie et al., 2003; Tsuda et al., 2003; Chessell et al., 

2005; Tanga et al., 2005; Clark et al., 2010b; Staniland et al., 2010). 

 

In contrast to neuropathic models of traumatic nerve injury, evidence for microglial 

involvement in models of peripheral inflammatory pain is circumstantial (McMahon et al., 

2005; McMahon and Malcangio, 2009). Intraplantar administration of various inflammogens 

such as zymosan, formalin, carrageenan and CFA elicit hypersensitivity of the ipsilateral 

hind paw. However, the extent of the glial response is notably moderate and discrepancies 

between groups are evident throughout the literature. For instance, many studies have 

reported contradictory observations on the regulation of glial cell markers in numerous 

inflammatory models; whilst some failed to observe any change in the microglial response 

(Molander et al., 1997; Honore et al., 2000; Zhang et al., 2003; Clark et al., 2007a) others 

have reported clear changes (Fu et al., 1999; Sweitzer et al., 1999; Sweitzer et al., 2001; Yeo 

et al., 2001; Aumeerally et al., 2004; Raghavendra et al., 2004), which is supported by 

studies using glial inhibitors, particularly minocycline (Meller et al., 1994; Watkins et al., 

1997; Hua et al., 2005). It should be noted, however, that differences between inflammatory 

models and time points examined may account for some of the discrepancies. Furthermore, 

many of these studies have used markers such as OX-42 and ionised calcium binding 

adaptor molecule 1 (Iba1) to illustrate microglia activation but it remains unclear whether 

these markers are associated with pain hypersensitivity. Nevertheless, certain microglial 

markers such as P2X4, CX3CR1 and TLR4 are up-regulated in the context of 

injury/inflammation and inhibition of these receptors attenuates neuropathic/ 

inflammation-induced pain (Tsuda et al., 2003; Tanga et al., 2004; Zhuang et al., 2007; Clark 

et al., 2012). In addition to these exclusive markers, strong evidence for microglial 

involvement in inflammation-induced pain has been demonstrated using p-p38 MAPK as a 

marker of microglia activation, which is a nociceptive specific kinase (Kim et al., 2002; 

Kumar et al., 2003; Svensson et al., 2003a; Svensson et al., 2003b; Ji and Suter, 2007; Ji et al., 

2009; Clark et al., 2012). 

 

MAPKs are an evolutionally conserved family of molecules that possess various roles in gene 

expression and cell signalling. MAPKs are comprised of three main members: ERK (1 and 2), 

p38 (α,β,γ,δ) and JNK (1-3), which are activated via MAPK kinase mediated phosphorylation 

and exert a range of transcriptional-dependent and independent effects (Ji et al., 1999). 

Phosphorylated p38 is induced by pro-inflammatory cytokines and a number of cell 

stressors, and has a crucial role in inflammatory responses. Accordingly, the administration 

of p38 inhibitors in models of inflammatory and neuropathic pain confers analgesia (Ji and 

Woolf, 2001; Ji et al., 2002; Kumar et al., 2003; Svensson et al., 2003a; Svensson et al., 
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2003b; Tsuda et al., 2004; Clark et al., 2006; Ji and Suter, 2007). Activated microglia produce 

numerous inflammatory mediators such as IL-1β, IL-6, TNF-α, PGE2, NO and BDNF (Ji and 

Suter, 2007), some of which can induce the activation of p38 (Ji and Woolf, 2001; Abbadie et 

al., 2003; Svensson et al., 2005). In turn, p38 regulates the transcription of many mediators 

in an NF-κB dependent manner, particularly IL-1β, IL-6 and TNF-α (Ji and Woolf, 2001; 

Svensson et al., 2003a; Sung et al., 2005; Clark et al., 2006). These cytokines contribute to 

central sensitisation via a combination of modulatory effects on excitatory and inhibitory 

synaptic transmission, which involve the phosphorylation of CREB and transcription of pro-

nociceptive genes (Kawasaki et al., 2008).  

 

The modulation of microglial activation has also proven to be efficacious in some pain 

models of disease-associated pathologies. For example, inhibition of p-p38, pERK1/2, p-Src 

and p-JNK via the administration of gabapentin, minocycline, lidocaine or MAPK inhibitors 

prevented/reversed microglial activation and hence alleviated the development of diabetic 

and paclitaxel-induced neuropathic pain in rats (Sweitzer et al., 2004; Daulhac et al., 2006; 

Tsuda et al., 2008; Wodarski et al., 2009; Pabreja et al., 2011; Suzuki et al., 2011; Burgos et 

al., 2012). Correspondingly, the inhibition or modulation of mediators released by activated 

microglia also attenuates behavioural hypersensitivity. Intrathecal administration of a TNF-

α neutralising antibody or an IL-1 receptor antagonist reduced vincristine or paclitaxel-

induced mechanical allodynia, respectively, whilst  IL-10 gene therapy prevented and 

reversed the allodynic state in paclitaxel-treated rats (Ledeboer et al., 2007; Kiguchi et al., 

2008a). Similarly, gp120-treated rats exhibited spinal microgliosis that correlated with the 

development of behavioural hypersensitivity, whereas treatment with minocycline or a 

TNF-α neutralising antibody attenuated these behaviours (Herzberg and Sagen, 2001; 

Wallace et al., 2007b; Wallace et al., 2007a; Zheng et al., 2011b; Blackbeard et al., 2012). 

Microglial activation is also documented to contribute to bone cancer-induced neuropathic 

pain (Zhang et al., 2005b; Mao-Ying et al., 2012). Early minocycline treatment prevented 

bone cancer-induced behavioural hypersensitivity by inhibiting the release of BDNF from 

microglial cells. Concurrent treatment with fluorocitrate or an ERK kinase inhibitor reduced 

spinal p-ERK expression and attenuated mechanical allodynia (Wang et al., 2011; Wang et 

al., 2012a; Wang et al., 2012b). Furthermore, intrathecal administration of a CCL2 

neutralising antibody attenuated bone cancer-induced pain possibly by inhibiting 

microglial-neuronal communication (Hu et al., 2012). 
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1.9.2 Astrocytes, Schwann cells and satellite cells 

 

Astrocytes are the most abundant cell population of the CNS and arise from neuroepithelial 

stem cells, sharing the same origin as oligodendrocytes and neurons. These cells form close 

connections with neurons and capillaries and are active cells that are normally involved in 

regulating most aspects of neuronal function (Butt, 2011). Garrison et al. (1991) were 

amongst the first to propose a role for astrocytes in neuropathic pain by describing 

astrocytic hypertrophy in the spinal cord of nerve-injured rats, which was evident by an 

increase in glial fibrillary acidic protein (GFAP) immunoreactivity. This result triggered 

many more studies that confirmed the reactive astrocytic phenotype in a number of models 

of inflammatory and neuropathic pain (Sweitzer et al., 1999; Ma and Quirion, 2002; Gao et 

al., 2009).  

(Garrison et al., 1991) 

Astrocytes are believed to play a prominent role in the maintenance of neuropathic pain, as 

illustrated by studies that show astrocytic activation succeeding microglial activation at 4 

days and lasting up to 12 weeks post peripheral nerve injury in rats (Tanga et al., 2004). 

This temporal dissociation between microglia and astrocytes is supported by the fact that 

neuropathic GFAP null mice exhibit initial development of behavioural hypersensitivity but 

the duration of these pain behaviours is considerably shorter (Kim et al., 2009). In the 

context of injury/tissue damage, astrocytes, like microglia, are engaged by a wide range of 

neurotransmitters that initiate the transition into a reactive astrocytic state. Once activated, 

these cells may in turn release many mediators including PGs, NO, glutamate, ATP, cytokines 

and chemokines (Hansen and Malcangio, 2013; Mika et al., 2013) that directly or indirectly 

contribute to pain hypersensitivity.  

 

In the PNS there are two main types of glial cells, the Schwann and satellite cells. Schwann 

cells are derived from the neural crest and comprise of two main phenotypes: the 

myelinating Schwann cell and the ensheathing/non-myelinating Schwann cell (Campana, 

2007). Myelinating Schwann cells wrap around medium and large diameter axons and 

provide a lipid rich membrane that facilitates axonal conduction, whereas non-myelinating 

Schwann cells ensheath unmyelinated small diameter axons in small bundles known as 

Remak bundles (Murinson and Griffin, 2004). Satellite cells surround neuronal somas within 

the DRG and are thought to exert similar metabolic homeostasis functions as astrocytes (Lu 

and Richardson, 1991). In the context of nerve injury, Schwann cells mediate the process of 

WD by orchestrating demyelination and nerve regeneration (Campana, 2007). Shortly after 

nerve injury Schwann cells undergo a phenotypic switch and stop producing myelin 

proteins, proliferate, migrate and release multiple mediators such as cytokines (IL-1β, TNF-
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α, IL-6, CCL2), growth factors (NGF, BDNF, GDNF), PGE2 and ATP. These mediators sensitise 

nociceptors through direct or indirect mechanisms and promote the recruitment of other 

immune cells, namely via CCL2-mediated recruitment of macrophages (Shamash et al., 

2002; Tofaris et al., 2002; Muja and DeVries, 2004; Austin and Moalem-Taylor, 2010; Gaudet 

et al., 2011). In the DRG, satellite cells also become activated and proliferate extensively (Lu 

and Richardson, 1991), leading to an increase in GFAP immunoreactivity and the release of 

pro-inflammatory cytokines (IL-1β, TNF-α), which contribute to enhanced neuronal firing 

(Takeda et al., 2007).  

 

From the literature it is clear that the release of mediators from immune cells significantly 

contributes to the development and maintenance of hypersensitivity. Therefore it is 

plausible that blocking the release of these signalling molecules or their receptors may 

alleviate pain. For example, anti-NGF treatment effectively reverses established 

hyperalgesia in rodent models of inflammatory and neuropathic pain (Wild et al., 2007), 

whilst anti-TNF-α therapy is a clinical success in the treatment of RA (Haraoui, 2005). 

 

1.10 Cytokines and chemokines 

 

The contribution of pro-inflammatory cytokines and chemokines to the exacerbation of 

inflammatory and neuropathic pain is supported by a wealth of studies. These signalling 

molecules are released by resident dendritic cells, macrophages, lymphocytes and mast cells 

as well as other cell types of the nervous system in response to various stimuli. 

Cytokines/chemokines signal in an autocrine, paracrine or hormonal fashion and have 

multiple roles in the modulation of the immune system and the inflammatory response 

(Sommer and Kress, 2004; Wells et al., 2006; Kiguchi et al., 2012).  

 

Cytokines are small polypeptides (5-140kDa) with diverse molecular structures and 

relatively short half-lives and can be categorised into four main groups: growth factors, 

interleukins, interferons and TNF. The members of these groups can also be further 

classified as pro- or anti-inflammatory, depending on their primary function. Pro-

inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-12, IL-15, IL-17, IL-18, IFN-γ) promote an 

inflammatory response and are implicated in nociception by facilitating neurogenic 

inflammation (Opree and Kress, 2000). In contrast, anti-inflammatory cytokines (IL-4, IL-10, 

TGF-β) suppress the immune response. On the other hand, chemokines form a distinct 

group of chemotactic cytokines that possess exclusive chemical properties. They are 

typically much smaller than cytokines with a molecular weight ranging from 8-10kDa and 
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act on cell membrane expressed GPCRs coupled to the inhibitory Gαi/o family of G-proteins. 

Functionally, this group of approximately 50 signalling molecules exhibits great redundancy 

and overlap, as there are several ligands for each of the 20 receptors. Likewise, single 

chemokines are recognised by multiple receptors expressed by a range of cell types 

including leukocytes, neurons and glial cells (Ubogu et al., 2006). Generally, chemokines 

consist of four or more cysteine residues that form disulphide bonds, and are thus classified 

into 4 main groups according to the position of the first two conserved cysteine residues 

near the N-terminus (see Fig. 1.4). The CC group constitutes the largest family of 

chemokines and possesses 2 adjacent cysteines (CCL2, CCL3, CCL4, CCL5). This chemokine 

group predominantly attracts macrophages and eosinophils. The CXC group has a single 

amino acid between the two cysteine residues and may be further divided based on the 

presence or absence of an ELR motif (glutamic acid-leucine-arginine) on the N-terminus just 

before the CXC (CXCL5, CXCL8). These chemokines primarily recruit neutrophils, while the 

non-expressing ELR motif chemokines are involved in lymphocyte recruitment (CXCL9, 

CXCL10, CXCL12, CXCL13) (Clark-Lewis et al., 1991; Ubogu et al., 2006; Verri et al., 2006). 

The CX3C group features 3 amino acids between the two cysteine residues and has currently 

a single member (CX3CL1 (fractalkine)) that acts on multiple cell types including monocytes, 

T lymphocytes and natural killer cells. Unlike the other groups, chemokines of the C family 

only have a total of 2 cysteines (Chemokine (C motif) ligand (XCL) 1 and 2) and 

preferentially recruit lymphocytes (Zlotnik and Yoshie, 2000; Verri et al., 2006). 

 

A number of groups have demonstrated the onset of mechanical and thermal hyperalgesia 

subsequent to local, intraneural, systemic or intrathecal injection of cytokines and 

chemokines, which can be reversed via neutralising antibodies or inhibitors (Ferreira et al., 

1988; Follenfant et al., 1989; Cunha et al., 1992; Safieh-Garabedian et al., 1995; Woolf et al., 

1997; Sung et al., 2004; Zelenka et al., 2005). Furthermore, in experimental models of 

neuropathic and inflammatory pain these cytokines and their receptors are up-regulated in 

the sciatic nerves and DRG neurons of rodents. Accordingly, pre-treatment with neutralising 

antibodies or inhibitors exhibits analgesic effects (Ferreira, 1980; Cunha et al., 1991; Cunha 

et al., 1992; Murphy et al., 1995; Safieh-Garabedian et al., 1995; DeLeo et al., 1996; Woolf et 

al., 1997; Cunha et al., 2000; Ribeiro et al., 2000; Shubayev and Myers, 2000; Okamoto et al., 

2001; Homma et al., 2002; Sommer and Kress, 2004; Svensson et al., 2005; Marchand et al., 

2009). Some of these experiments are discussed in more detail in Chapters 2 and 3.  

 

Cytokines generate a state of hypersensitivity by exerting a combination of direct and 

indirect effects. This is supported by evidence of the expression of cytokine receptors on 

peripheral axons, suggesting that their ligands are able to directly mediate sensitising 
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effects on nociceptors (Sommer and Kress, 2004). For example, subsequent to nerve injury 

there is a marked increase in the expression of the TNF-α receptors, TNF 1 and 2, in 

peripheral nerve axons, DRG somata, peripheral immune cells and spinal microglia (Ohtori 

et al., 2004; George et al., 2005). Therefore, it is likely that TNF-α signalling can directly 

induce the excitation of sensory neurons and contribute to the development of 

hypersensitivity. The IL-1β receptor, IL-1R, is also expressed by DRG neurons indicating that 

IL-1β may mediate direct sensitising effects via an IL-1R/tyrosine kinase/PKC-dependent 

pathway (Sommer and Kress, 2004). However, in most cases the algesic effects of cytokines 

are mediated indirectly via the induction of other mediators such as PGE2, which directly 

bind to their cognate receptors on nociceptor afferents and sensitise them. Evidence of this 

was shown in earlier studies, where pre-treatment with intraplantar indomethacin (COX 

inhibitor) attenuated IL-1β or IL-6 evoked behavioural hyperalgesia, whilst pre-treatment 

with atenolol (B1 blocker) attenuated IL-8/CXCL8 evoked hyperalgesia (Cunha et al., 1991; 

Cunha et al., 1992), indicating that these cytokines can elicit their effects indirectly via the 

COX pathway or the sympathetic nervous system, respectively. In accordance with these 

findings, later studies showed that IL-1β and TNF-α signalling induces NF-κB mediated 

transcription of a number of genes including COX-2, NO, IL-1β, TNF-α and IL-6 (Pahl, 1999; 

Moalem and Tracey, 2006). IL-1β has also been shown to mediate thermal hyperalgesia via 

activating the iNOS-NO cascade in the spinal cord (Sung et al., 2004). Furthermore, IL-6 

promotes the induction of BDNF in rat DRG neurons, which is attenuated in IL-6 KO mice 

(Murphy et al., 2000). These mice also exhibited attenuated pain hypersensitivity after 

injury, suggesting that IL-6 contributes to sensitisation via BDNF synthesis (Murphy et al., 

2000). IL-6 also promotes OX-42 expression in spinal microglia as well as the up-regulation 

of the chemokine CX3CR1 (Latremoliere et al., 2008; Lee et al., 2010). 

 

In the spinal cord, pro-inflammatory cytokines secreted by microglia and astrocytes 

enhance neuronal excitability and synaptic transmission, which are characteristic features 

of central sensitisation (Woolf and Salter, 2000; DeLeo and Yezierski, 2001; Watkins et al., 

2001). IL-1β, TNF-α and IL-6 perfusion can augment excitatory AMPAR and NMDAR-

induced currents, while IL-1β can inhibit GABAergic and glycinergic currents in lamina II 

neurons (Kawasaki et al., 2008). These modulatory effects are possibly via the induction of 

protein kinases, which phosphorylate excitatory and inhibitory receptor subunits and 

mediate transcriptional-dependent changes that contribute towards long-term neural 

plasticity (Ji et al., 2003; Kawasaki et al., 2008). 

 

During inflammation the most important role of chemokines is the promotion of leukocyte 

migration and recruitment to the site of damage. Experimental evidence suggests that these 
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signalling molecules contribute to nociception mainly by activating immune cells in the 

periphery or spinal microglia. However, chemokines may also be able to exert direct effects 

via chemokine receptors expressed by primary afferent neurons or second order dorsal 

horn neurons. Similar to previous studies on cytokines; peripheral or central administration 

of chemokines elicits pain behaviours in rodents, which can be reversed via the 

administration of neutralising antibodies (Clark et al., 2007b; Thacker et al., 2009; Kiguchi et 

al., 2010b; Kiguchi et al., 2010a; Dawes et al., 2011). In addition, the development of pain 

behaviours is abolished in CCR2 and CX3CR1 (CX3CL1/fractalkine receptor) KO mice in 

various pain models (Abbadie et al., 2003; Staniland et al., 2010). 

 

In response to nerve injury macrophages infiltrate the peripheral nerve and DRG and up-

regulate the expression of the fractalkine receptor CX3CR1 and the production of the 

protease cathepsin S (CatS) and the chemokine IL-8/CXCL8 (Barclay et al., 2007; Holmes et 

al., 2008). CXCL8 was one of the first chemokines implicated in nociceptive transmission as 

intradermal injection produces hypersensitivity in rats, as previously discussed (Cunha et 

al., 1991). Similarly fractalkine is also pro-nociceptive when administered intrathecally and 

CX3CR1 null mice exhibit attenuated pain behaviours after nerve injury (Milligan et al., 2005; 

Clark et al., 2007b; Staniland et al., 2010). In the spinal cord the membrane-bound form of 

fractalkine is cleaved from neurons by the microglial-derived CatS and may subsequently 

bind to CX3CR1, which is exclusively expressed by spinal microglia (Clark and Malcangio, 

2012). This feedback mechanism initiates the activation of the p38 MAPK pathway and 

subsequent release of pro-inflammatory mediators that contribute to pain hypersensitivity 

(Clark et al., 2007b; Clark et al., 2011). In addition, intraplantar injection of CatS elicited 

transient mechanical hyperalgesia in naïve rats, whereas systemic administration of an 

irreversible CatS inhibitor reversed mechanical hyperalgesia in nerve-injured rats (Barclay 

et al., 2007).  

 

Other chemokines suggested to contribute to neuron-glia nociceptive transmission are CCL2 

and CCL3. Spinally released CCL2 and CCL3 from sensory neurons may recruit and activate 

CCR2+ and CCR1/CCR5+ microglia cells, respectively. This is supported by studies 

demonstrating that the exogenous application of CCL2 or CCL3 to the spinal cord induces 

microglia activation and hyperalgesia in rodents, which is abolished in CCR2 null mice or via 

the administration of CCL2 or CCL3 neutralising antibodies (Zhang et al., 2007; Kiguchi et al., 

2010b). In the periphery CCL2 is released in large amounts from Schwann cells and 

constitutes a crucial chemoattractant for infiltrating CCR2+ macrophages. The migration of 

macrophages occurs 2-3 days post injury, in accordance with the onset of WD (Gaudet et al., 

2011). Thus it is not surprising that CCR2 null mice show attenuated macrophage 
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recruitment and WD as well as reduced behavioural hypersensitivity (Siebert et al., 2000; 

Abbadie et al., 2003). CCL3-CCR1 signalling has also been proposed to elicit some 

interesting peripheral actions that contribute to pain hypersensitivity, such as the 

sensitisation of TRPV1 receptors in DRG neurons. CCR1 and TRPV1 are co-expressed in 

small to medium sized DRG neurons. Activation of CCR1 initiates PLC mediated hydrolysis of 

PIP3 and Ca2+ mobilisation. This leads to the activation of PKC, which is proposed to 

phosphorylate TRPV1 and remove inhibitory PIP2, leading to thermal hyperalgesia (Zhang 

et al., 2005a). 

 

 

 

Figure 1.4: Chemokine ligands and their receptors 

  

Chemokines are classified into 4 main groups (CC, CXC, CX3C, XC) according to the position of the first 

two conserved cysteine residues near the N-terminus. Functionally, this group of approximately 50 

signalling molecules exhibits great redundancy and overlap, as there are several ligands for each of 

the receptors. Likewise, single chemokines are recognised by multiple receptors expressed by a range 

of cell types including leukocytes, neurons and glial cells (Wells et al., 2006). 
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Although only some of the literature concerning cytokines and chemokines in pain has been 

discussed, it is evident that these signalling molecules play a crucial and complex role in the 

development and maintenance of chronic pain in the nervous system. The immune system 

and its array of signalling molecules have been implicated in various diseases associated 

with chronic pain such as diabetes, MS, RA, fibromyalgia, Crohn’s disease and IBS (Sommer 

and Kress, 2004; Abbadie, 2005; McMahon et al., 2005; Austin and Moalem-Taylor, 2010; 

Calvo et al., 2012). In the clinic, evidence of elevated levels of chemokines and cytokines as 

well as increased leukocyte counts in diseased tissues have been reported in patients with 

various pain associated pathologies. For example, in patients with inflammation of the 

connective tissue, the severity of reported pain correlates with levels of TNF-α in the 

synovial fluid (Nordahl et al., 2000). Similarly, raised levels of CXCL8 or CCL2 were found in 

the cerebral spinal fluid (CSF) of patients with back pain and demyelinating polyneuropathy 

(Brisby et al., 2002; Ochi et al., 2003). In cohorts of patients with complex regional pain 

syndrome (CRPS), painful neuropathy or spinal cord injury, levels of pro-inflammatory TNF-

α, IL-2 and IL-6 were raised, whilst levels of anti-inflammatory IL-4 and IL-10 were reduced. 

Conversely, patients with painless neuropathy exhibited increased levels of anti-

inflammatory cytokines (Davies et al., 2007; Uceyler et al., 2007b; Uceyler et al., 2007a). In 

addition to raised expression of cytokines, evidence of increased inflammatory cell 

recruitment has been reported in patients. For example, patients with CRPS showed an 

enhanced pro-inflammatory monocyte phenotype, in contrast to healthy control patients 

(Ritz et al., 2011) and in nerve biopsies from neuropathic pain patients the severity of 

immune cell infiltration correlated with the extent of experienced pain (Lindenlaub and 

Sommer, 2003). Microgliosis in the thalamus of patients suffering from chronic phantom-

limb pain has also been documented in a PET scan study (Banati et al., 2001) and evidence 

of gliosis in the spinal cord has been reported in a post-mortem examination of a CRPS 

patient (Del Valle et al., 2009). Furthermore, patients with inflammatory diseases such as 

interstitial cystitis and chronic pancreatitis, where pain is a cardinal sign, have increased 

levels of mast cells compared to patients without pain (Oberpenning et al., 2002; 

Hoogerwerf et al., 2005). Approximately 90% of MS patients exhibit elevated levels of 

immunoglobulin G in the brain or cerebrospinal fluid, which is indicative of CNS 

inflammation (Gilden, 2005). Unsurprisingly CNS diseases such as Parkinson’s disease, 

Alzheimer’s disease and stroke may also be associated with a pro-inflammatory component 

and an altered immune cell presence (DeLeo and Yezierski, 2001), however further research 

is required to fully understand the mechanisms and implications of this. 

 

In conclusion, it is apparent that basic research as well as some clinical evidence strongly 

supports the role of immune cells and pro-inflammatory cytokines/chemokines in chronic 
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pain mechanisms. Therefore, the development of novel immunomodulatory analgesics that 

are selective for particular receptors could provide a successful approach in the treatment 

of chronic pain. Moreover, as chemokines signal via GPCRs, they are plausible targets for 

pharmacological manipulation with regards to the immense success of current drugs on the 

market that largely act on this class of receptors.  

 

1.11 GPR84 (EX33) 

 

In a series of screening studies GlaxoSmithKline identified the orphan GPR84 as a promising 

immune cell target in chronic pain pathways. Therefore, this thesis examines GPR84 as a 

novel candidate for the treatment of chronic pain.  Despite being discovered well over a 

decade ago, very little is known about GPR84 and its functional role. However, some groups 

have utilised transgenic mice and heterologous in vitro systems to elucidate the contribution 

of GPR84 in neuroimmune and neuroinflammatory processes. 

 

GPR84 consists of a generic heptahelical structure of a typical GPCR and is thought to belong 

to the rhodopsin superfamily, with little similarity to other known receptors. Expression 

analysis has revealed that this receptor is predominantly expressed in hematopoietic tissues 

in both humans and mice, and that particularly high levels of GPR84 mRNA are found in 

bone marrow. In the mouse there is also some expression in the spleen, lung and lymph 

nodes (Wittenberger et al., 2001; Yousefi et al., 2001; Wang et al., 2006a). Strikingly, GPR84 

expression is restricted to immune cells and exclusive to microglia in the CNS, while upon 

appropriate immune stimulation such as LPS exposure, GPR84 expression is considerably 

up-regulated. TNF-α and IL-1β can also induce GPR84 expression and accordingly, LPS-

induced GPR84 expression was attenuated in TNF-α and IL-1β null mice (Wang et al., 2006a; 

Bouchard et al., 2007; Lattin et al., 2008). This finding is consistent with the up-regulation of 

GPR84 mRNA in cortical and spinal microglia in a model of endotoxemia (systemic 

administration of LPS) and EAE and perhaps indicates a role in neuroinflammation 

(Bouchard et al., 2007). Furthermore, its restricted expression and up-regulation only upon 

immunostimulation makes it an appealing target for selective pharmacological 

manipulation. A selective ligand for GPR84 is yet to be identified. However, free fatty acids 

(FFAs) of a medium chain length of C9-C14, including undecanoic acid (C11:0), capric acid 

(C10:0) and lauric acid (C12:0), have exhibited efficacy in GPR84 transfected Chinese 

hamster ovary (CHO) cells (Wang et al., 2006a). Little is known about the signalling pathway 

of this receptor, although in one study Wang et al. (2006) showed that capric acid inhibited 

forskolin-induced cAMP in CHO cells with greater efficacy than other screened ligands. It 
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was also shown that this effect was Bordetella pertussis toxin-sensitive, indicating that 

GPR84 may be coupled to the Gαi/o family (Wang et al., 2006a; Suzuki et al., 2013). However, 

these findings were opposed by a later study that demonstrated that medium chain free 

fatty acids (MCFFAs) do not signal via a Gαi/o coupled pathway in neutrophils (Versleijen et 

al., 2009). FFAs have diverse actions on a number of different tissues and are associated 

with diseases such as diabetes, obesity and dyslipidemia (Hwang, 2000; Evans et al., 2004). 

Therefore, it is possible that FFAs have an immunomodulatory role via GPR84 mediated 

signalling, providing a feasible link between obesity-related metabolic syndromes and 

inflammation. Intriguingly, GPR84 has been reported to be up-regulated in adipocytes of 

high fat chow induced obese mice in response to TNF-α release from infiltrating 

macrophages, suggesting a potential link between GPR84 signalling and inflammation-

induced adiposity and diabesity (Nagasaki et al., 2012). 

 

There is some evidence suggesting that GPR84 may be involved in the regulation of a subset 

of chemokines and cytokines. Wang et al. (2006) showed that undecanoic acid, capric acid 

and lauric acid were able to dose-dependently increase the secretion of IL-12p40 from 

macrophages under LPS stimulated conditions.  Pro-inflammatory IL-12 plays a key role in 

promoting Th1-driven immunity and inhibiting Th2 anti-inflammatory responses. This 

indicates that activation of GPR84 promotes Th1 differentiation and the production of Th1-

associated cytokines such as INF-γ and IL-2. In accordance with this finding, Venkataraman 

and Kuo (2005) found that when stimulated under Th1 or Th2 differentiation conditions, 

GPR84 null T-cells exhibited enhanced production of Th2 cytokines IL-4, IL-5 and IL-13. 

Interestingly, Th1-driven immunity is associated with many autoimmune and inflammatory 

diseases such as MS, IBS and RA (Verri, 2005). However, despite a hyper Th2 cytokine 

phenotype and augmented anti-CD3 induced production of IL-4, GPR84 null mice exhibit 

normal T and B cell proliferation (Venkataraman and Kuo, 2005).  

 

More recent studies using modified medium chain FFAs with additional hydroxyl groups or 

the surrogate agonist, 6-n-octylamino uracil (6-OAU), revealed that GPR84 promotes 

leukocyte and macrophage chemotaxis. It was also found that under LPS-stimulated 

conditions GPR84 activation via these ligands resulted in the production of pro-

inflammatory IL-8/CXCL8 from leukocytes and TNF-α from macrophages (Suzuki et al., 

2013). In addition, systemic administration of 6-OAU in rats increased plasma levels of the 

potent neutrophil and macrophage chemoattractant, CXCL1 (Suzuki et al., 2013).   

 

Owning to the compelling body of evidence on the interaction between neurons, immune 

and glial cells, it is now recognised that the pathogenesis of chronic pain is not limited to the 
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aberrant activity of neurons but also depends on a self-perpetuating neuro-immune 

component (Marchand et al., 2005; Scholz and Woolf, 2007; Thacker et al., 2007; Austin and 

Moalem-Taylor, 2010; Calvo et al., 2012). Therefore, researchers are challenged with the 

diversity of neuronal-immune-glial interactions in their quest to identify novel exploitable 

targets for the treatment of neuropathic pain. Pro-inflammatory GPR84 is an exciting new 

candidate in the field of chronic pain, not only because it is restricted to immune cells but 

also due to the fact that it is only up-regulated upon appropriate immunostimulation. Thus 

pharmacological manipulation of this receptor is likely to have limited side effects, which is 

always a detrimental set back in patient health care treatment. Although there is currently 

no evidence for a role of this receptor in nociceptive transmission, up-regulation of GPR84 

has been observed in clinically relevant animal models of diabesity and EAE, which feature 

pain-associated pathologies (Bouchard et al., 2007; Nagasaki et al., 2012). Furthermore, the 

current literature indicates that GPR84 promotes a pro-inflammatory T cell phenotype and 

the release of a subset of cytokines known to contribute to inflammation and nociceptive 

signalling. Therefore, GPR84 is a promising and relevant target to examine in the context of 

chronic pain. 

 

1.12 Aims of thesis 

 

The aim of this thesis is to investigate the role of GPR84 in chronic pain mechanisms. In 

Chapters 1 and 2 we characterise mechanical and thermal thresholds of GPR84 transgenic 

mice using a range of behavioural tests in a model of nerve injury (PNL) and in two models 

of inflammation (CFA, LPS). We immunohistochemically examine the spinal microglial and 

peripheral macrophage responses in these models, as GPR84 is an immune cell expressed 

receptor and these cells are well documented to play a prominent role in persistent pain 

mechanisms. To gain an understanding of the functional role of GPR84 in pain pathways, we 

investigate the transcriptional regulation of 92 different chemokines, cytokines, growth 

factors and cell markers known to be immune-regulated in the sciatic nerve and spinal cord 

tissues of nerve injured GPR84 WT and KO mice. Similarly, we profile LPS-induced gene 

transcription in GPR84 WT and KO macrophages to investigate whether GPR84 regulates 

the pro-inflammatory response of these immune cells. Lastly, Chapter 3 entails a screening 

study of three potential GPR84 ligands, examining their selectivity and efficacy using Ca2+ 

and cAMP signalling assays. Here the aim is to identify a selective agonist that could be 

utilised in further studies to facilitate our understanding of the role of GPR84 in chronic pain 

mechanisms. 
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To summarise, in this thesis we have used a combination of behavioural testing, molecular 

and biochemical techniques to test the hypothesis that pro-inflammatory GPR84 contributes 

to persistent pain pathways via the modulation of immune cells. 
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2.1 Introduction 

 

2.1.1 Neuropathic pain 

 

Neuropathic pain is defined as ‘‘pain arising as a direct consequence of a lesion or disease 

affecting the somatosensory system” (Treede et al., 2008). Aside from traumatic nerve 

injuries such as mechanical damage during surgery or compression injury in carpal tunnel 

syndrome, neuropathic pain is associated with a wide spectrum of neuropathologies. Such 

diverse aetiologies include metabolic diseases (diabetic polyneuropathy); viral infections 

(Human Immunodeficiency Virus (HIV), Varicella zoster virus (VZV)); neurotoxicity 

(chemotherapeutic drugs or anti-viral therapy); autoimmune diseases (MS) and 

sympathetic nervous system dysfunction (CRPS) (Zimmermann, 2001). Symptoms of 

neuropathic pain are typically associated with sensory abnormalities that clinically manifest 

as a combination of paraesthesias (tickling, tingling, burning, pricking, numbing); 

dysaesthesias (electrical, ‘pins and needles’, itching); evoked pain (mechanical allodynia, 

thermal hyperalgesia) and spontaneous pain. While these are considered as positive 

symptoms that are caused by hyperexcitability of the nervous system, patients also 

experience negative symptoms (hypoesthesia and hypoalgesia) as a result of axonal 

degeneration and neuronal necrosis. Due to treatment side effects and accompanying co-

morbidities such as poor sleep, depression and anxiety, neuropathic pain severely 

debilitates the lives of patients. Despite the overwhelming number of analgesics available, 

therapeutic treatment is still considered to be insufficient and many patients report lack of 

adequacy in the management of their pain. Therefore, optimal pain care continues to remain 

elusive (Breivik et al., 2006).   

 

2.1.2 Animal models of neuropathic pain 

 

Due to difficulties in studying the underlying pathophysiological mechanisms of neuropathic 

pain in humans, several animal pain models have been developed as tools to assist research 

for more effective treatments. Many of these involve surgical injury to the sciatic nerve to 

induce sustained pain-related behaviours of the hind paw (see Fig. 2.1). Complete sciatic 

nerve transection (CST) was one of the first models employed to study neuropathic pain 

mechanisms and closely simulates symptoms of phantom limb pain seen after complete 

axotomy in humans (Wall et al., 1979). As a result of motor dysfunction caused by complete 

deinnervation of the limb, the assessment of pain behaviours to an applied stimulus is not  



Chapter 2 - The Role of GPR84 in Neuropathic Pain 

 
 

71 

 

 

Figure 2.1: Commonly used traumatic nerve injury models of neuropathic pain 

 

possible in this model. However, animals do show autotomy (self-mutilation), which is 

thought by many to reflect a level of spontaneous activity in the damaged sensory neurons 

and has thus been used to quantify the degree of neuropathic pain. Although in similar 

models of nerve lesions this autotomic behaviour is absent due to the presence of some 

sensory innervation. Therefore the self-mutilating response in the CST model may be 

attributed to excessive grooming in the absence of sensory feedback from the affected hind 

paw rather than representing an abnormal pain state (Rodin and Kruger, 1984).  

 

The CCI model, entails loosely tying the sciatic nerve with four chromic catgut ligatures to 

simulate a chronic nerve compression injury and is accompanied by an inflammatory 

response and a subsequent degree of peripheral nerve axotomy (Bennett and Xie, 1988). 

Simulation of partial injuries encountered in the clinic is achieved by the PNL model (Seltzer 

et al., 1990). This model involves the tight ligation of 1/3 to 1/2 of the sciatic nerve, which 

keeps some fibres intact so that painful sensory information can still be detected from the 

periphery. In this model a greater number of axons are injured, and these consist of a 

random subset of damaged and intact L4 and L5 fibres. Due to inconsistencies in 

constriction, both the PNL and CCI models exhibit some variability.  

 

The spinal nerve ligation (SNL) (Kim and Chung, 1992) and spared nerve injury (SNI) 

(Decosterd and Woolf, 2000) models are popular for their accuracy and minimal variability. 
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SNL is performed via the tight ligation of both or either of the L5 or L6 spinal nerves so that 

whilst the primary sensory neurons of the L5/L6 DRG are axotomised, L4 is left uninjured. 

This allows the investigator to determine the relative contribution of injured and intact 

neurons in the development of pain associated behaviours. SNI entails the sectioning of the 

tibial and peroneal nerves while the sural nerve is left intact, thus enabling the study of 

injured and non-injured neuronal populations. These models of traumatic peripheral nerve 

injury (schematically presented in Fig. 2.1) have been shown to produce neuropathic 

symptoms such as allodynia and hyperalgesia (except CST). However, the duration and 

magnitude of these pain components vary considerably (Kim et al., 1997; Dowdall et al., 

2005).  

 

In addition to traumatic nerve injury models there are also disease-based models that are 

considered to be more clinically relevant and representative of the diverse human 

neuropathic pain condition. These include models of painful diabetic neuropathy such as the 

streptozocin-induced diabetic neuropathy model (Wuarin-Bierman et al., 1987); models of 

viral infections such as HIV associated neuropathy (Wallace et al., 2007b) and post-herpetic 

neuralgia (Fleetwood-Walker et al., 1999); neuropathy induced by chemotherapy and 

antiretroviral  therapy (Aley et al., 1996; Polomano et al., 2001; Wallace et al., 2007a), and 

bone cancer pain models (Medhurst et al., 2002), although in the latter model there is 

debate about the degree of nerve injury.  

 

A majority of work published on pain testing in rodents involves the application of 

mechanical or thermal stimuli to the affected hind paw. This initiates a spinally mediated 

reflex flexion withdrawal response as a result of the activation of peripheral nociceptors. 

The application of graded filaments to the plantar surface of the hind paw as a measure of 

sensitivity to punctuate mechanical stimuli was first described by von Frey (1986). This 

method was later adapted to enable the calculation of the 50% paw withdrawal threshold 

(PWT) (Chaplan et al., 1994). Likewise, the application of a heat source in the form of 

radiant light to the plantar hind paw surface can be used to examine sensitivity to thermal 

stimuli. This method was developed by Hargreaves and colleagues (1988) and the latency of 

the withdrawal reflex is measured as an indicator of sensitivity. In addition to these two key 

methods, the paw-pressure test as a measure of mechanical hypersensitivity, hot-plate and 

tail-flick tests as measures of thermal sensitivity and cold-plate and acetone tests as 

measures of cold sensitivity are also regularly used. Whilst these forms of behavioural pain 

assessment in rodent models are well established in the literature, they do not account for 

the presence of spontaneous pain or the global impact of pain and poorly address 
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ethological validity (Andrews et al., 2012). As previously mentioned, the behaviours 

typically measured are spinal reflexes (paw withdrawal), spino-bulbospinal reflexes 

(jumping) or innate behaviours (biting, licking, scratching, vocalization and guarding). 

Importantly, one must note that evoked withdrawal responses are a measure of 

hypersensitivity (allodynia and hyperalgesia) rather than the pain itself (Mogil, 2009). 

Furthermore, in the clinical setting spontaneous pain is a much better indicator of a 

patient’s pain rating than measures of hypersensitivity. Moreover, while von Frey fibres are 

generally used for testing static/punctate allodynia, the most problematic symptom in 

patients is dynamic allodynia. Consequentially, the clinical reality is poorly reflected by the 

behavioural measures adopted in animal experiments (Mogil, 2009), an issue that needs 

careful consideration when interpreting animal pain studies and their translation to the 

human condition. Hence some research groups are now attempting to establish alternative 

animal pain paradigms focused on operant measures (Rice et al., 2008; Mogil, 2009; 

Andrews et al., 2011; Andrews et al., 2012), which can also be used in conjunction with 

conventional behavioural tests. 

 

2.1.3 Mechanisms of Neuropathic pain: Immune and glial cells 

 

Traumatic nerve injury animal models have been used by many research groups to study 

peripheral and central neuronal mechanisms in neuropathic pain. However, as a result of 

tissue damage caused by nerve injury, an inflammatory response generated by the immune 

system undoubtedly marks the contribution of these non-neuronal cells to neuropathic pain 

mechanisms (Bennett, 1999). Therefore, it is now recognised that the pathogenesis of 

neuropathic pain is not limited to the aberrant activity of neurons but also depends on a 

self-perpetuating neuro-immune component (Marchand et al., 2005; Scholz and Woolf, 

2007; Thacker et al., 2007; Austin and Moalem-Taylor, 2010; Calvo et al., 2012).  

 

Nerve injury results in immediate and irreversible interruption of electrical nerve 

conduction and the intrinsic degeneration of damaged axons in a process referred to as WD, 

which triggers a vigorous cascade of non-neuronal responses (Gaudet et al., 2011). Schwann 

cells, the principle glial cells of the PNS that support neuronal function, rapidly undergo a 

phenotypic switch which involves the secretion of numerous pro-inflammatory cytokines, 

including  IL-1β, TNF-α, IL-6 and PGE2 as well as MMPs, which coordinate WD and immune 

cell recruitment (Campana, 2007). In juxtaposition, growth factors such as BDNF and GDNF 

are also released and transported retrogradely to promote axonal growth and re-

myelination (Ramer et al., 2003; Scholz and Woolf, 2007; Austin and Moalem-Taylor, 2010). 
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One of the first responders to a peripheral insult are the resident mast cells, which 

degranulate at the site of injury releasing histamine, serotonin, proteases, PGs and 

chemokines that mediate sensitisation of primary afferent axons and attract neutrophils and 

macrophages (Austin and Moalem-Taylor, 2010). Experimental evidence has shown that 

inhibition of mast cell degranulation reduces the infiltration of neutrophils and 

macrophages, attenuating nerve injury induced hyperalgesia (Zuo et al., 2003).   

 

Subsequent to nerve injury, resident macrophages (the primary phagocytic cells of the PNS) 

proliferate extensively and circulating monocytes are attracted to the lesion site via 

chemokines, resembling a ‘rapid-response team’. These later acting cells play a crucial role 

in WD and the phagocytosis of necrotic tissue, cellular debris and axotomised processes 

(Perry et al., 1987; Austin and Moalem-Taylor, 2010). Inhibition of macrophage infiltration 

or activation has been experimentally demonstrated to interrupt WD. Here, Perrin et al. 

(2005) showed that application of neutralising antibodies for the chemokines CCL2 and IL-

1β interrupts macrophage recruitment and suppresses myelin clearance, whereas 

administration of recombinant forms of these chemokines elicits a rapid macrophage 

response (Perrin et al., 2005). Boivin et al. (2007) demonstrated that mice deficient in TLR 

signalling exhibited a significant attenuation in the recruitment/activation of macrophage 

cells and the persistence of myelin debris, delaying regeneration of the injured nerve. In 

contrast, WD was accelerated via the administration of TLR ligands, and this effect was 

thought to be partially mediated by macrophages as glucocorticoid treatment resulted in 

delayed clearance and functional recovery (Boivin et al., 2007). In addition to their role in 

phagocytosis and regeneration of injured nerves, macrophages have also been implicated in 

pain-associated behaviour. The most compelling evidence for the role of these cells in 

neuropathic pain mechanisms comes from a study on C57BL/WLD mice, which have an 

intrinsic genetic defect in peripheral axons that causes an abnormal rate of WD and delayed 

macrophage recruitment (Myers et al., 1996). Here it was observed these mice exhibited 

delayed macrophage recruitment and WD that correlated with reduced CCI-induced thermal 

hyperalgesia (Myers et al., 1996). Furthermore, it has been demonstrated that systemic 

depletion of macrophages in a range of animal models of nerve injury not only reduced 

axonal degeneration but alleviated mechanical and thermal hyperalgesia (Liu et al., 2000; 

Barclay et al., 2007). Notably, other groups have reported the inability to relieve mechanical 

allodynia using this approach, hence highlighting the distinct mechanisms underlying 

different pain modalities (Rutkowski et al., 2000; Barclay et al., 2007).  
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‘Activated’ macrophages release many algesic mediators such as TNF-α, IL-1β, IL-6, PGs and 

NO that directly or indirectly sensitise nociceptors by binding to their cognate receptors and 

activating various intracellular signalling pathways (Woolf and Ma, 2007). Aptly, this pro-

inflammatory macrophage phenotype has also been observed in patients with CRPS, who 

exhibit raised blood monocyte levels (Ritz et al., 2011). Furthermore, a number of gene 

profiling studies in rodents have illustrated a dramatic regulation of cytokines in the context 

of neuropathic pain, highlighting the importance of temporal and spatial expression 

patterns of pro-inflammatory (particularly IL-1β, IL-6 and TNF-α) and anti-inflammatory 

(IL-10) cytokines, in correlation with behavioural hypersensitivity and a delayed resolution 

component (Gillen et al., 1998; Okamoto et al., 2001; Costigan et al., 2002; Tanga et al., 

2005). Many of the cytokines and chemokines released following nerve injury modulate the 

transduction properties of nociceptive sensory axons and evoke ongoing activity in 

myelinated and unmyelinated axons. Ectopic firing is a crucial component underlying 

spontaneous activity in neuropathic pain and has been shown to arise in multiple locations, 

such as at the site of injury and in the DRG (Amir et al., 2005). Increased density of cytokine 

receptors in nociceptive afferents as a result of enhanced membrane trafficking means that 

these fibres also become more sensitised and hyper-responsive to inflammatory factors, 

which may contribute to ectopic firing. For example, raised TNF-α expression has been 

documented in the injured nerves of patients and rodents (Empl et al., 2001; George et al., 

2004). This cytokine is able to directly stimulate neurons, evoke action potential firing and 

elicit pain behaviours when injected intraneurally in rodents (Wagner and Myers, 1996; 

Schafers et al., 2003b). Conversely, pre-emptive pharmacological blockade studies using the 

competitive TNF-α inhibitor, Etanercept, have demonstrated attenuation of pain-associated 

behaviour in rodents (Sommer et al., 2001; Svensson et al., 2005) and thus this conceptual 

approach has progressed on to trials of anti-TNF-α therapy in humans.  

 

In addition to the mobilisation of the immune system and accumulation of a large 

‘inflammatory soup’ of mediators within the endoneurium, an immune response also occurs 

within the proximity of the cell bodies of injured and spared sensory neurons. In response 

to the release of ATP and perhaps other factors, satellite glial cells become activated, 

proliferate and release soluble molecules such as TNF-α and IL-1β (Ohara et al., 2009), 

accompanied by the rapid recruitment of neutrophils, macrophages and T lymphocytes. T 

lymphocytes have been shown to infiltrate the nerve at a much later stage than their innate 

immune system counterparts and enter the DRG via deep ganglionic blood vessels and cell 

surface meninges. This recruitment is perhaps driven by signals originating from neurons 

and satellite cells that project into the axons of damaged nerves (Hu and McLachlan, 2002; 
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Moalem et al., 2004). T cells have also been implicated in nerve injury-induced neuropathic 

pain behaviour and a key study showed that congenetically athymic nude rats, which lack 

functional T cells, had attenuated mechanical allodynia and thermal hyperalgesia post CCI in 

contrast to their WT littermate controls (Moalem et al., 2004). Alongside the immune 

response, the DRG also undergoes cascades of transcriptional changes that encompass the 

up- and down-regulation of pro-inflammatory mediators, ionotropic and metabotropic 

receptors, neuropeptides, ion channels, signalling molecules and vesicular proteins 

(Costigan et al., 2002; Xiao et al., 2002). This extensive phenotypic change contributes to an 

increase in DRG neuronal excitability, which is synaptically communicated to first order 

dorsal horn neurons of the spinal cord. 

 

In the CNS, microglia are one of the first responders to disturbances in the homeostasis of 

the microenvironment by pathogens or damage and undergo a repertoire of morphological, 

immunophenotypic and gene expression changes (as described in Chapter 1). Their 

numbers increase drastically by means of proliferation and migration in a process defined 

as microgliosis, a phenomenon also observed in the thalamus of amputee patients with 

chronic phantom-limb pain and in a post-mortem study of a patient with CRPS where 

‘reactive’ microglia were observed in the spinal cord (Banati et al., 2001; Del Valle et al., 

2009). The transition from a normally ‘quiescent’ to a ‘pain-related’ enhanced response 

state (McMahon and Malcangio, 2009) is thought to be initiated by multiple endogenous 

signals from primary afferent nociceptive inputs, as well as mediators released from 

localised astrocytes, microglia and neurons. Such mediators are thought to include 

adenosine, ATP, glutamate, cytokines/chemokines, arachadonic acid, neuropeptides (SP, 

CGRP) and NO, some of which act on their respective ionotropic or metabotropic microglial 

expressed receptors (DeLeo and Yezierski, 2001; Watkins et al., 2001). This in turn drives 

signalling pathways involving the phosphorylation of the MAPKs, p38 and ERK and the 

subsequent initiation of several transcription factor cascades including NF-κB, which 

controls the expression of a plethora of pro-inflammatory mediators such as IL-1β, IL-6, 

TNF-α, PGE2, NOS, COX-2, ATP, BDNF and CatS (DeLeo and Yezierski, 2001; Watkins et al., 

2001; Coull et al., 2005; Ji and Suter, 2007; Kawasaki et al., 2008; Clark et al., 2009). The 

secretion of pro-inflammatory mediators contributes to central sensitisation via enhancing 

excitatory synaptic transmission and suppressing synaptic inhibition. IL-1β, IL-6 and TNF-α 

have been shown to augment EPSCs and suppress inhibitory post-synaptic currents (IPSCs) 

in the superficial dorsal horn of the spinal cord, inducing central sensitisation, hyperalgesia 

and long-term synaptic plasticity via the induction of CREB induced gene transcription 

(Kawasaki et al., 2008). Spinal blockade of pro-inflammatory cytokines is analgesic, whilst 
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spinal injection of recombinant factors is pro-nociceptive (DeLeo et al., 1996; DeLeo and 

Yezierski, 2001; Watkins et al., 2001).  

 

TLR4 is also an important player in the activation of microglial cells, triggering a cascade of 

downstream signalling pathways that culminate to engage NF-κB (Baeuerle and Henkel, 

1994). In pathological states the TLRs respond to cell body damage, components of the ECM, 

HSPs 60 and 70, cations and proteoglycan fragments (Tanga et al., 2005). Importantly, data 

suggests that the TLRs co-ordinate WD in the injured nerve and neuroinflammation via the 

modulation of Schwann cells/macrophages or microglial cells, respectively (Aravalli et al., 

2007). Conversely, pharmacological or genetic manipulation of this single transmembrane 

receptor results in impairment of these processes and attenuation of behavioural 

hypersensitivity (Tanga et al., 2005; Boivin et al., 2007). Similar studies involving the 

manipulation of specific microglial receptors in the CNS: CX3CR1, P2X4, P2X7, CCR2 and TLR4 

(see Chapter 1) (Abbadie et al., 2003; Tsuda et al., 2003; Chessell et al., 2005; Tanga et al., 

2005; Clark et al., 2010b; Staniland et al., 2010) or the use of general glial inhibitors 

(Sweitzer et al., 2001; Ledeboer et al., 2005; Clark et al., 2007a) demonstrate inhibition or 

reversal of neuropathic pain behaviours and together form a wealth of evidence supporting 

the contribution of microglial cells to experimental pain states. Furthermore, the role of 

microglial cells in pain has also been explored in humans with post-mortem evidence of 

‘reactive’ microglia and astrocytes in the spinal cords of patients with CRPS (Del Valle et al., 

2009).  In addition to reports of raised pro-inflammatory and reduced anti-inflammatory 

cytokine profiles in the CSF of two CRPS patients compared to control patients, which 

correlated with pain intensity (Alexander et al., 2005). 

 

Microglia are also involved in the recruitment of T cells, which have been shown to infiltrate 

the spinal cord, peaking in cell numbers at 7 days post nerve injury (Cao and DeLeo, 2008). 

Cao and DeLeo (2008) reported a significant reduction in behavioural hypersensitivity in 

CD4+ KO mice that was reversed via the adoptive transfer of CD4+ leukocytes and 

hypothesised that T cells interact with both microglia and astrocytes to exacerbate 

inflammation and neuronal sensitisation (Cao and DeLeo, 2008). Subsequent to nerve 

injury, astrocytes proliferate and undergo considerable morphological and 

immunophenotypic changes, which was first documented by Garrison et al. (1991). These 

changes are characterised by hypertrophy and a dramatic increase in GFAP staining that 

parallels with the extent of behavioural hyperalgesia in rats (Garrison et al., 1991). 

Recruitment of reactive astrocytes is thought to be due an array of signals from 

neighbouring microglia, astrocytes and neurons. Once ‘activated’, astrocytes release many   
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Figure 2.2: Neuroimmune interactions occuring subsequent to peripheral nerve injury 

 

At the site of peripheral nerve injury, Schwann cells and resident mast cells proliferate and release a 

combination of ATP, growth factors, histamines, cytokines, and TLR ligands, which sensitise axons or 

may be transported retrogradely to the DRG where they alter gene transcription. The release of 

mediators also activates resident macrophages and neutrophils and contributes to the recruitment of 

other immune cells, such as infiltrating monocytes and T-cells. These non-neuronal cells in turn 

release further algogenic substances that contribute to ectopic activity of the injured nerve. In the 

CNS, incoming signals from the periphery lead to the activation of dorsal horn neurons, microglia and 

astrocytes. Activated microglia proliferate and release cytokines such as IL-1β, TNF-α and IL-6, which 

activate intracellular signalling pathways and initiate further sustained release of mediators that 

enhance excitability of dorsal horn neurons.  
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factors through JNK mediated cellular pathways and are essentially thought to play a role in 

the persistence of pain (Ji et al., 2006; Gao et al., 2009; Ji et al., 2009; Ransohoff and Perry, 

2009). Fig. 2.2 summarises the neuroimmune interactions that can occur subsequent to 

peripheral nerve injury. 

 

In conclusion, experimental evidence has pointed towards a critical role of immune and glial 

cells as well as pro-inflammatory mediators in the generation of neuropathic pain. It is 

apparent that specific roles of individual cells and molecules are regarded as particularly 

important. In terms of translational human research, the immune cell component in chronic 

pain is very much dependent on genetic and environmental factors as well as the nature of 

the associated pathology. Despite the growing amount of clinical evidence supporting 

immune cell involvement in chronic pain, neuro-immune interactions are complex and their 

role in the induction and maintenance of pain are not yet fully understood. In light of this 

credible evidence, scientists are challenged with the diversity of neuronal-immune-glial 

interactions to identify novel exploitable targets in the treatment of neuropathic pain.  

 

GPR84 was identified by GSK as a potential new target for the development of analgesics for 

chronic pain patients. GPR84 is an immune cell expressed receptor that is up-regulated 

upon appropriate immunostimulation and has some implications in neuroinflammation (see 

Chapter 1). Although there is currently no evidence for the role of this receptor in 

nociceptive transmission, an increase in GPR84 expression has been documented in animal 

models that feature pain-associated pathologies (Bouchard et al., 2007; Nagasaki et al., 

2012). Therefore GPR84 qualifies as a valid and interesting new target to examine within 

the context of chronic pain mechanisms. 

 

2.1.4 Aims 

 

In this chapter we utilised the PNL model (Seltzer et al., 1990) in transgenic mice to examine 

GPR84 in neuropathic pain mechanisms. The PNL model is documented to produce 

consistent and reproducible pain-associated behaviours in rodents, which correlates with 

robust peripheral and central immune and glial reactivity. We assessed neuropathic pain 

behaviours of GPR84 WT and KO mice in conjunction with a prominent focus on the 

macrophage and microglia response. We also investigated mRNA transcript expression of 

92 different chemokines, cytokines, growth factors and cell markers known to be immune-

regulated in the sciatic nerve and spinal cord tissue of nerve injured WT and KO mice. This 
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approach enabled us to identify putative mediators that are modulated by GPR84 and may 

thus contribute to neuropathic-pain behaviour via down-stream signalling of this receptor.  
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2.2 Materials and methods 

 

2.2.1 Generation, Breeding and Genotyping of GPR84 knock-out Mice 

 

GPR84 (NM_030720, ENSMUSG00000063234) KO mice were provided by Deltagen Inc. 

under a GlaxoSmithKline license agreement (CA). Genomic DNA  from recombinant 

embryonic stem cells 129/OlaHsd was used for gene targeting and assayed for homologous 

recombination using long range polymerase chain reaction (PCR) analysis (Fig. 2.2A). PCR 

was used to confirm correctly targeted ES clones using one primer within the LacZ/Neo 

Cassette and another primer outside the targeting construct for both 5′ and 3′ ends of the 

targeted locus, as follows:  

5’ end: 5' external primer #28016; TGGTCAATCATTGTCCTCTCTGAACC and LacZ/Neo 

primer #2416; GGGATCTTGGCCATGGTAAGCTGAT; expected amplicon size 4.6kb. 3’ end: 3' 

external primer #28005 AAACCACAGTTTATCACTTACTAGCCC and LacZ/Neo primer 1431 

ACGTACTCGGATGGAAGCCGGTCTT; expected amplicon size 4.0kb.  

PCR cycling conditions were 96 C for 20 s; 30 cycles of 96 C for 8 s, 63 C for 10 s, 68 C for 

2 min 15 s; followed by 5 cycles of 96 C for 8 s, 63 C for 10 s and 68 C for 8 min. Those ES 

cells that were correctly targeted were injected into C57BL/6 host blastocyts to generate 

chimeric mice. Male chimaeras were crossed with C57BL/6 females to produce 

heterozygous (HET) N1F0 offspring. HET’s were repeatedly bred, or backcrossed, onto the 

C57BL/6 genetic background, which was later verified using 98 single nucleotide 

polymorphism markers (Markel et al., 1997; Wakeland et al., 1997).  Fully backcrossed mice 

exhibited > 98% coverage with the C57BL/6 marker. HET backcrossed mice were inter-

mated to produce F1 animals homozygous for the GPR84 mutation or WT littermate 

controls. Mice were genotyped by PCR using the following primers:  

GS(E) #35788 5’:-ACAGCTCAGATGCCAACTTCTCCTG ;-3’,  

GS (TE)#35789  5’:-TCCTAGAGCAATGAGACAGAGGGTG;-3’                                        

and Neo(T) #40610  5’:- GACGAGTTCTTCTGAGGGGATCGATC;-3’                                                   

Ear punched samples were lysed and the DNA was run with a Taq polymerase (Qiagen) mix. 

PCR cycling conditions were 95°C for 3 min, followed by 30 cycles—95°C for 30 s, 58°C for 

30 s, 72°C for 30 s, with a final extension at 72°C for 3 min and maintained at 4°C. The PCR 

products were run and visualised on a 2% agarose gel; the WT allele generated a 344-bp 

band using primers GS(E) 35788 and GS (TE) 35789, whereas the mutant allele generated a 

583-bp band from primers GS (TE) 35789 and Neo(T) 40610 (Fig. 2.2B). All experiments 

were conducted according to the requirements of the United Kingdom Animals (Scientific 

Procedures) Act (1986) and conformed to GlaxoSmithKline ethical standards. 
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Figure 2.3: Generation of GPR84 KO mice 

 

(A) Schematic of single coding exon 2 is shown. Thicker lines indicate the relative positioning of the 

gene target. Targeting replaced 257 bp of coding sequence with an Internal Ribosome Entry Site - 

LacZ-polyA expression cassette and a positive selection cassette that contains the neomycin 

phosphotransferase gene driven by the PGK promoter (Neo). Correctly targeted ES clones were 

identified via the PCR primers indicated, which were also used to genotype F1 mice. The insertion of 

the LacZ IRESLacZ introduces a premature translational stop signal that deletes the first three 

predicted trans-membrane domain sequences of the seven transmembrane domain receptor 

molecule. (B) An example of GPR84 genotyping results from F1 intercross. The genotyping primers 

(GS(T) #35788, GS(TE) #35789, Neo(T) #40610) generate a 344 bp and 558 bp product for WT and 

KO mice,  respectively. In HETs both products are observed.  
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2.2.2 Animals 

 

 Breeding and husbandry 

 

Mice forming the initial breeding pairs were supplied by GlaxoSmithKline, which consisted 

of HET F1 offspring from WT and KO breeding. HET pairs were bred from 8 weeks old to 

produce litters of mixed genotypes according to Mendelian genetics: 50% HETS, 25% 

homozygous WT and 25% homozygous KO.  Breeding pairs and their litters were delegated 

identity codes. From 10 days of age each mouse received an identity ear notch mark and a 

unique corresponding animal number and was genotyped as previously described. Breeding 

pairs had a maximum of 6 litters before the pair were retired. On average, litter sizes were 

around 4-12 pups and weaning occurred 21 days after birth. WT and KO mice were used for 

experimental purposes from 7-14 weeks of age and HETS were only used for breeding.  

 

Experimental animals 

 

Experiments were conducted on randomly selected mixed sex and age-matched mice 

weighing 20-25 g (7-14 weeks old). Mice were housed individually or in groups (no more 

than 4 per cage) in standard environmental conditions (12 hour light/dark cycle) with ad 

libitum access to food and water. Animal husbandry and experiments were carried out in a 

non-sterile housing environment in accordance with the United Kingdom Animals (Scientific 

Procedures) Act 1986.  

 

To calculate the number of animals required for behavioural studies a priori power analysis 

was carried out using G*Power (v-3.1.7) software. Based on an estimated 60% reduction 

effect (deduced from previous experimental studies in our lab), the software estimated that 

a total sample size of 32 (n = 8 per group) would be required to detect statistical differences 

(α = 0.05, 1-β = 0.95, d = 7). Four groups of animals were tested including a control sham-

operated group and a nerve-injured group for each genotype. For all studies the 

experimenter was blinded to genotype and treatment. Allocation concealment was carried 

out by assigning individual animals with identification numbers (as previously mentioned) 

and by employing an independent investigator to re-blind animals after surgery. Blinding 

codes were broken after completion of behavioural experiments to determine if further 

anatomical assessment was necessary. According to pre-determined exclusion criteria, 

animals were excluded from experimental analysis if they died during surgery, if the surgery 
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was flawed or if animals reached end points as specified by the project license e.g. excessive 

self-mutilation. 

 

2.2.3 Neuropathic pain model: PNL  

 

Animals were anesthetised with 2-3% isoflurane (Abbott Animal Health, UK) inhalation 

anaesthesia. The left hind paw was secured, shaved and sterilised. The sciatic nerve was 

carefully exposed and isolated from neighbouring connective tissue via a small incision 

midway of the left thigh. At a site within close proximity of the trochanter, distal to the 

posterior biceps semitendinosus nerve branch, a 5-0 vicryl suture (Ethicon, UK) was 

inserted into the nerve and ligated so that 1/3 to 1/2 of the nerve was held tightly within 

the ligature, as previously described (Seltzer et al., 1990). In sham operated mice the same 

procedure was carried out except that the nerve was not ligated. Mechanical (von Frey) and 

thermal (Hargreaves) withdrawal thresholds were examined pre-surgery (at least three 

baseline measurements) and post-surgery on days 4, 7, 11, 14, 18 and 21. 

 

2.2.4 Mechanical withdrawal threshold 

 

Von Frey 

 

Tactile mechanical thresholds of alert and unrestrained mice were examined via von Frey 

hair application (0.008-1 g, Touch Test, Stoelting, USA) to the plantar surface of the hindpaw 

via the ‘up-down’ method (Chaplan et al., 1994). Before testing mice were acclimatised for a 

period of 1 hr in individual acrylic testing cubicles (8 x 5 x 10 cm) on an elevated wire mesh 

floor. Placement in testing cubicles was selected at random for each testing day. This 

enabled access to the lateral paw surface. Calibrated von Frey hairs were applied starting 

with the 0.6 g filament, in an alternate fashion to the left and right hind paw. The flexible 

nylon hair was applied so that the fibre bent for a duration of 3 s or until a paw withdrawal 

reflex occurred that was not coupled with movement or grooming. A positive withdrawal 

response is followed by a lower force hair and vice versa for a negative response until a 

change in behaviour occurs. Using this ‘up-down’ sequence four subsequent hairs were 

assessed and the 50% PWT was calculated according to the method described by Dixon 

(1980). (Dixon, 1980) 
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Paw pressure 

 

Noxious mechanical thresholds were examined in the hindpaws of restrained alert mice via 

an Analgesymeter (7200; Ugo Basile, Italy) (Randall and Selitto, 1957). Each hindpaw was 

tested separately; briefly, the plantar surface was placed on a pedestal with a probe resting 

on the dorsal surface. Increasing pressure was applied via the probe, up to a maximum of 

120 g to prevent tissue damage. The nociceptive threshold was taken as the force at which 

the mouse responded. 

 

2.2.5 Thermal withdrawal threshold 

 

Hargreaves 

 

Thermal thresholds in unrestrained and alert mice were determined with the Hargreaves 

method using the Plantar Test (7370; Ugo Basile, Italy) (Hargreaves et al., 1988). Prior to 

testing, mice were acclimatised for 1 hr in individual acrylic testing cubicles (8 x 5 x 10 cm) 

on a glass plate. Placement in testing cubicles was selected at random for each testing day. 

An infrared light source of an arbitrary intensity of 30 (calibrated to elicit a paw withdrawal 

latency (PWL) of 10-15 s in naïve mice) was directed onto the plantar surface of the hind 

paw through the glass plate. The PWL was automatically recorded in secs upon a 

withdrawal reflex. The left and right paws were tested alternately and responses were 

recorded for each paw on three separate occasions with at least 2 mins between assays. 

Each test had a maximum latency of 23 s to prevent tissue damage.  

 

Tail immersion-withdrawal 

 

Thermal thresholds of the tails of lightly restrained mice were examined via the tail 

immersion-withdrawal test (Mogil et al., 1999). The distal third of the tail was directly 

immersed in water at a set temperature of either 49°C or 52°C ± 0.2°C (Grant SUB14; Grant 

Instruments Ltd, UK). The thermal withdrawal latency was recorded to the nearest 0.01 s as 

a characteristic abrupt tail reflex. A maximum latency of 20 s and 10 s was permitted at 

temperatures of 49°C and 52°C, respectively, to prevent tissue damage. 
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Hot plate 

 

Noxious thermal thresholds of the hind paws were examined via the hot plate test (Eddy 

and Leimbach, 1953) using a hot/cold plate (IITC Life Sciences, USA) set at a temperature of 

49°C ± 0.1°C. Unrestrained mice were placed on the hot plate in a 10 cm-diameter acrylic 

testing box. A jumping, licking and stamping reflex was taken as the latency to respond and 

recorded to the nearest 0.01 s. A maximum latency of 20 s was permitted to prevent tissue 

damage. 

 

Cold plate 

 

Noxious cold thresholds of the hind paws of lightly restrained mice were examined using the 

cold plate (IITC Life Sciences, USA) set at a temperature of 10°C ± 0.1°C. Each paw was 

tested separately by being placed with the plantar surface touching the plate. The latency to 

withdraw was taken as the threshold and recorded to the nearest 0.01 s. A 20 s cut-off was 

implemented to prevent tissue damage. 

 

Locomotor function (RotaRod) 

 

Balance and co-ordination was examined via the locomotor test, using a RotaRod that 

accelerates from 2 to 40 rpm over a period of 300 s (7650; Ugo Basile, Italy). Mice were 

initially trained before testing. Unsuccessful test runs were trialled again and no mice 

remained on the apparatus after 100 s. 

 

2.2.6 Tissue preparation and immunohistochemistry 

 

On days 7 or 21 following PNL or sham surgery, GPR84 WT and KO mice were anaesthetised 

with sodium pentobarbital (0.2 g/mL intraperitoneal (i.p.); Euthatal, Merial Animal Health 

Ltd) and perfused transcardially with a 0.9% saline and 0.1% heparin solution (Leo 

Laboratories Ltd, UK) followed by fixation with 4% paraformaldehyde (PFA) (VWR, UK) in 

0.1 M phosphate buffer (PB). Lumbar spinal cord and sciatic nerve were dissected and post-

fixed for 2 hrs in PFA and cryoprotected in a 20% sucrose/0.1 M PB solution (VWR, UK) for 

a minimum of 3 days at 4°C. Subsequently, tissue was embedded in Optimum Cutting 

Temperature (OCT) medium (VWR, UK), snap frozen with liquid nitrogen and stored at -

80°C. Prior to embedding sutures were removed from injured sciatic nerves. Transverse 

spinal cord sections of the L4 and L5 lumbar region and longitudinal nerve sections were 
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cut on the cryostat in sets of 8 series at 20 μm and 15 μm thickness, respectively, and 

subsequently thaw-mounted onto Superfrost plus microscope slides (VWR, UK). After 

drying, 7 day post-PNL or sham surgery spinal cord sections were incubated overnight with 

primary antibody solution for p-p38 (rabbit anti-p-p38; 1:100; Sigma, UK), and visualised 

with extra avidin-FITC following two stages of signal amplification with Avidin Biotin 

Complex (ABC; Vector Laboratories, USA) and biotinyl tyramide (PerkinElmer Life Sciences, 

UK) as previously shown (Clark et al., 2006). The sections were then incubated overnight 

with the second primary antibody, raised against rabbit anti-Iba1 (1:1000; Wako Chemicals, 

Germany). Spinal cord (21 day) and sciatic nerve sections were only incubated with Iba1. 

After anti-Iba1 incubation sections were incubated with the secondary antibody solution for 

2 hrs (1:1000; IgG conjugated Alexa Fluor 488 or 546; Invitrogen, USA). All antibodies were 

prepared in PBS supplemented with 0.1% Triton X-100 (VWR, UK) and 0.2% sodium azide 

(Sigma, UK). Slides were carefully cover slipped with Vectashield Mounting Medium 

containing 4',6-diamidino-2-phenylindole (DAPI) (Vector Laboratories, UK), nail-varnished 

and dried.  

 

Quantification of immunoreactivity 

 

Images were visualised and captured using a Zeiss Axioplan microscope (Zeiss, UK) and for 

blinding purposes were labelled according to the identification code of the animal. Blinding 

codes were broken after study completion. Analysis of p-p38 and Iba1 immunoreactivity 

was performed by counting the number of positive profiles within three fixed 4x104 μm2  

boxes in the lateral, central and medial areas of the dorsal horn, using the nuclear marker 

DAPI to assist in determining positive cells, as previously described (Clark et al., 2007a). A 

mean value was obtained for both the ipsilateral and contralateral dorsal horns of a 

minimum of three sections per animal. For analysis of Iba1 staining in the sciatic nerves, 

four boxes of 4x104 μm2 area, two distal and two proximal to the nerve lesion, were placed 

randomly along the nerve.  The number of Iba1 positive cell profiles were counted within 

the boxes and a mean value was obtained for both the distal and proximal regions of the 

nerve. A minimum of three sections per animal were assessed. The experimenter was 

blinded to both the genotype and treatment throughout the analysis. 

 

2.2.7 RNA extraction and cDNA synthesis 

 

On days 7 or 21 following PNL or sham surgery, mice were anaesthetised with sodium 

pentobarbital (0.2 mg/mL i.p.); Euthatal, Merial Animal Health Ltd, UK). The lumbar regions 
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of the spinal cord were quickly dissected, separated into the ipsilateral and contralateral 

sides and placed into separate 1.5 mL Eppendorf tubes.  The ipsilateral and contralateral 

sciatic nerves of approximately 1 cm in length were also collected and stored in separate 

Eppendorf tubes. The collected tissue was immediately snap frozen in liquid nitrogen and 

stored at -80°C for further processing. RNA was extracted via homogenising the tissue 

samples using a hybrid method of phenol extraction (Trizol, Invitrogen, UK) and column 

purification (RNeasy, Qiagen, UK). For injured sciatic nerves, the sutures were removed 

prior to RNA extraction and mini elute columns (Qiagen, UK) were used, which are 

optimized for samples with small RNA amounts. Sham nerves were pooled to increase the 

yield of RNA isolation. After purification the RNA was eluted using RNAse-free water and its 

concentration and purity were estimated using a NanoDrop ND-100 Spectrophotometer 

(Thermo Fischer Scientific, UK). All 260:280 absorbance ratios were in the range of 1.96-

2.15. Samples were also deoxyribonuclease (DNase; Qiagen, UK) treated during RNA 

isolation to prevent genomic contamination. RNA integrity was confirmed by running 

samples on a RNA 6000 Nano Chips Bioanalyzer (Agilent). Complementary deoxyribonucleic 

acid (cDNA) was subsequently synthesised from the ribonucleic acid (RNA) using the 

SuperScript II reverse transcriptase kit (Invitrogen, UK) according to the manufacturers 

protocol.   

 

2.2.8 Taqman array set-up and quantitative real-time PCR 

 

Taqman® PCR mouse mediator arrays cards were custom designed using the Applied 

Biosystem website (http://www.appliedbiosystems.com). The cards use micro-fluidic 

technology, comprising of 384 wells and 4 sets of 96 different primer/probe pairs against 

specific genes within the mouse genome, including four housekeeping (HK) genes: 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S ribosomal RNA, β-actin, and 

hypoxanthine phosphoribosyltransferase (HPRT). Spinal cord and sciatic nerve cDNA 

samples from 7 and 21 days post PNL or sham surgery were diluted and added in a 1:1 ratio 

to Taqman universal PCR master mix (Applied Biosystems, UK; contains DNA Taq 

polymerase and dNTPs). Dnase-free water was added to the sample mix producing a final 

[cDNA] of 2 ng/μl in a total volume of 20 μl. The sample mix was loaded into the appropriate 

port and the cards were centrifuged so that 1 μl was channelled into each well. Cards were 

then sealed and placed into a 7900 HT Fast Real-Time PCR system (Applied Biosystems, 

UK), where cDNA samples underwent 40 amplification cycles, and amplification products 

were analysed in real time with DSD 2.1 software. Real-Time PCR records fluorescence 

emitted from a reporter molecule upon the amplification of target DNA. Thus upon 
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amplification the complementary Taqman probe is degraded releasing a reporter molecule 

from local proximity of the quencher, which produces fluorescent emissions during each 

amplification cycle. The number of cycles required to pass an arbitrary threshold of 

fluorescence (calculated for each individual card) is measured to quantify the amount of the 

target sequence present in the sample. Hence the lower the cycling time (CT) the greater the 

expression of a particular transcript. Relative expression values of gene transcripts using 

the delta delta cycling time (ΔΔCT) method as previously described (Schmittgen and Livak, 

2008) were calculated for each sample and normalised against the mean of the CT values of 

the four HK genes via the R packages ReadPCR and NormqPCR (Perkins et al., 2012). For 

each transcript the ΔΔCT values are presented as fold change (FC = PNL/sham for each 

genotype). Transcripts with undetermined values in more than 50% of the samples were 

assigned an average default CT value of 38. If this occurred in both PNL and sham sample 

groups, no FC value was calculated. Transcripts that were undetermined in less than 50% of 

samples obtained an average CT value based on the remaining data values.   

 

2.2.9 Data and statistical analysis 

 

All behavioural and immunohistochemical data were analysed using SigmaPlot 12.3 and 

SigmaStat software. For single comparisons between two groups, a paired student t-test was 

applied (behavioural data). For multiple comparisons, one-way (immunohistochemical 

data) or two-way (behavioural data) analysis of variance (ANOVA) was used, followed by 

Student-Newman-Keuls (SNK) post hoc test to determine individual group differences. For 

the Taqman mouse PCR array card data, two-sided Welch’s t-test were run in the R 

programme on the ΔCT values. The p values were adjusted using the false discovery rate 

(FDR) to correct for multiple hypothesis testing, as previously described (Benjamini et al., 

2001). Non-parametric tests were applied where the data was not normally distributed. In 

all cases the data is presented as the mean ± standard error of the mean (SEM) and p < 0.05 

was set as the statistical significance level.  
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2.3 Results 

 

2.3.1 Acute pain thresholds and locomotor ability are normal in GPR84 KO mice 

 

In order to investigate whether deletion of the GPR84 gene impacts on acute pain thresholds 

of naïve mice, GPR84 WT and KO mice were behaviourally assessed following acute 

peripheral application of a range of mechanical and thermal stimuli (Fig. 2.4). GPR84 KO 

mice exhibited normal thermal pain thresholds to varying levels of intensity applied to the 

hind paw or tail compared to WT mice (A, WT: 10.5 ± 0.4 s, KO: 11.6 ± 0.4 s; B, WT: 5.2 ± 0.3 

s, KO 5.0 ± 0.3 s; C, WT: 2.2 ± 0.1 s, KO: 2.0 ± 0.2 s; D, WT: 14.0 ± 1.2 s, KO: 12.6 ± 2.0 s; Fig. 

2.4A-D). In addition, acute cold pain thresholds were unaffected (WT: 20.1  ± 2.1 s, KO: 20.3 

± 1.6 s; Fig. 2.4E). GPR84 KO mice also exhibited normal mechanical thresholds of low and 

high intensity (Fig. 2.4F & G) compared to WT mice and showed no deficits in locomotor 

function (F, WT: 0.72 ± 0.05 g, KO: 0.71 ± 0.1 g; G, WT: 104.8 ± 2.0 g, KO: 118.2 ± 4.4 g; H, 

WT: 87.6 ± 1.9 s, KO: 82.1 ± 2.6 s; Fig. 2.4H). There were no significant differences between 

the genotypes in any of the acute tests. These data indicate that naïve GPR84 KO mice 

exhibit normal thermal and mechanical acute thresholds and are equally capable as their 

WT littermate controls to elicit paw withdrawal responses to an applied stimulus. 

 

2.3.2 GPR84 KO mice do not develop pain-associated behaviours after nerve injury 

 

It is well established that peripheral nerve injury results in the development of evoked pain-

associated behaviours such as mechanical allodynia and thermal hyperalgesia in the 

ipsilateral, but not the contralateral hindpaw, which serves as a control. In our studies we 

utilised the PNL model, which is a well documented model of peripheral nerve injury. To 

demonstrate the reproducibility of this model and confirm that we were also able to induce 

a neuropathic pain state in mice, mechanical and thermal thresholds were examined before 

and after PNL or sham surgery. As expected, nerve injured mice showed a significant 

reduction in mechanical and thermal paw withdrawal thresholds (data not shown). 

 

Having demonstrated the ability to reiterate pain-associated behaviours using the PNL 

model as reported in the literature we then compared mechanical and thermal thresholds of 

nerve injured GPR84 KO mice to WT littermate controls. As before, injured WT mice showed 

an average reduction of 68.8% in mechanical thresholds from baseline (D0, 0.8 ± 0.1 g) and 

thresholds remained reduced from day 4 (0.3 ± 0.1 g) up to day 21 (0.1 ± 0.1 g). On days 18 

(0.2 ± 0.1 g) and 21 there was a significant difference compared to WT sham controls (D18, 
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0.6 ± 0.1 g; D21, 0.5 ± 0.1 g; Fig. 2.5A). Similarly, WT PNL mice exhibited an average 

reduction of 25.4% in thermal thresholds from baseline (D0, 10.1 ± 1.0 s) over the 21 testing 

days, which was significant from baseline on days 4 and 21 and WT sham controls on days 4, 

7 and 21 (D4, 6.1 ± 0.8 s; D7, 7.6 ± 1.4 s; D21, 6.5 ± 0.6 s vs WTS: D4, 11.7 ± 1.1 s; D7, 11.1 ± 

1.7 s; D21, 11.5 ± 1.3 s; Fig. 2.5B). Strikingly, nerve injured GPR84 KO mice did not develop 

mechanical (Fig. 2.5C) or thermal (Fig. 2.5D) hypersensitivity over the 21 testing days and 

thresholds did not drop from baseline or differ from KO sham controls; (KOPNL mechanical: 

D0, 0.7 ± 0.1 g to D21, 0.6 ± 0.1 g vs KOS: D0, 0.8 ± 0.1 g to D21, 0.5 ± 0.1 g; KOPNL thermal: 

D0, 11.3 ± 1.1 s to D21, 11.1 ± 1.4 s vs KOS: D0, 12.1 ± 0.8 s to D21, 11.9 ± 1.1 s). 

 

Data are presented separately for each genotype and only the ipsilateral paw withdrawal 

responses of each experimental group are shown for clarity. However, statistical analysis 

was performed across all four experimental groups. These data suggest that deletion of the 

GPR84 gene impairs the development of neuropathic pain behaviours in nerve injured mice. 

This result was obtained across three independent experiments; in every one of them, 

experimental procedures were carried out exactly the same and the experimenter was blind 

to treatment and genotype. One animal was excluded as a result of death during surgery. 
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Figure 2.4: GPR84 KO mice display normal responses to acute painful stimuli and normal 

locomotor ability 

 

To assess acute nociception in naïve GPR84 WT and KO mice, responses to a range of thermal and 

mechanical acute pain tests were compared. There were no significant differences in the responses of 

WT and KO mice in the temperature threshold tests (Hargreaves, (A); tail immersion withdrawal at 

49°C, (B), or 52°C, (C); hot plate at 49°C, (D); cold plate at 10°C, (E)) or mechanical threshold tests 

(von Frey, (F); paw pressure, (G)). GPR84 KO mice also displayed normal locomotor function using 

the RotaRod apparatus, (H). Data are presented as the mean ± SEM. p > 0.05, independent Student’s t-

test, n = 8-14. 
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Figure 2.5: Reduced neuropathic pain in GPR84 knockout mice 

 

Mechanical (A, C) and thermal (B, D) withdrawal responses of GPR84 WT (A, B) and KO (C, D) mice 

were measured before (day 0) and up to 21 days post PNL or sham surgery. WT mice developed 

significant mechanical hypersensitivity and showed reduced thermal thresholds compared to sham 

(WTS) controls. Mechanical allodynia and thermal hyperalgesia were absent in KO mice and did not 

differ from sham values at any time (KOS). Data are presented as the mean ± SEM. *p < 0.05, **p < 

0.01, ***p < 0.001 vs baseline (day 0). #p < 0.05, ##p < 0.01, ###p < 0.001 vs sham control, two-way 

repeated measure (RM) ANOVA with SNK post hoc, n = 9-12. 
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2.3.3 GPR84 KO mice exhibit a normal microglial response 7 days post PNL 

 

Having established a behavioural phenotype, we then sought to correlate these findings 

with histological analysis. Microglia are known to play a key role in the initiation of pain-

associated behaviours and GPR84 is exclusively expressed on these cells in the CNS 

(Bouchard et al., 2007); we therefore investigated the microglial phenotype after nerve 

injury in WT and KO mice to elucidate if GPR84 deletion alters the microglial response. To 

achieve this we examined immunohistochemical changes of microglia in lumbar spinal cord 

sections at 7 days post PNL; a time point where anatomical changes in response to nerve 

injury such as microgliosis are robust.  

 

To investigate whether deletion of GPR84 specifically alters microglial numbers, we stained 

for Iba1, which is a marker of microglial cells. Quantification of immunoreactivity revealed 

that there was no significant difference between GPR84 WT and KO microglial cell numbers 

in the ipsilateral or contralateral dorsal horns of sham controls (Fig. 2.6). Therefore, under 

normal conditions GPR84 deletion has no effect on microglial numbers. Furthermore, we 

also observed that under these conditions, microglia morphology in the KO was no different 

to that of the WT and microglial cells exhibited characteristic long, thin processes and a 

ramified appearance. Subsequent to peripheral nerve injury both GPR84 WT and KO mice 

showed a significant 3.2 fold increase in Iba1 positive cells in the ipsilateral dorsal horn 

(WTPNL, 21.1 ± 1.7/4x104 μm2; KOPNL, 21.6 ± 2.4/4x104 μm2) compared to sham controls 

(WTS, 6.6 ± 2.0/4x104 μm2; KOS, 6.7 ± 0.7/4x104 μm2; Fig. 2.6). There was no significant 

difference between the genotypes. Microglia morphology in response to nerve injury was 

typically de-ramified and amoeboid in shape, which was again exhibited by both genotypes. 

This indicates that GPR84 KO mice are capable of launching a normal microgliosis response 

subsequent to peripheral nerve injury and thus this receptor does not play a role in 

regulating microglial numbers under neuropathic conditions.  

 

Although there were no differences in microglial numbers, we also investigated whether 

GPR84 deletion may effect phosphorylation of p38 MAPK, which is a key kinase in 

nociceptive pathways and a marker of microglial activation (Ji and Suter, 2007; Ji et al., 

2009). In sham animals, we found no significant difference in the number of p-p38 positive 

cell numbers in ipsilateral or contralateral dorsal horn between GPR84 WT and KO (Fig. 

2.6). Therefore, under normal circumstances GPR84 deletion has no effect on microglial 

activation. Subsequent to peripheral nerve injury both GPR84 WT and KO mice showed a 

significant 3.4 and 4.1 fold increase in p-p38 positive cells, respectively, in the ipsilateral 
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dorsal horn (WTPNL, 20.4 ± 2.1/4x104 μm2; KOPNL, 18.6 ± 3.7/4x104 μm2) compared to 

sham controls (WTS, 6.0 ± 2.3/4x104 μm2; KOS, 4.5 ± 1.3/4x104 μm2; Fig. 2.6) and there was 

no significant difference between genotypes. These results suggest that GPR84 is not 

important for the regulation of p-p38 expression in microglial cells under neuropathic pain 

states. 
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Figure 2.6: Nerve injured GPR84 KO mice exhibit a normal microglial response in the spinal 

cord 7 days post PNL 

 

Subsequent to peripheral nerve injury there was a significant increase in Iba1 and p-p38 positive 

cells in the ipsilateral dorsal horn of the spinal cord of GPR84 WT (WTPNL) and KO (KOPNL) mice, 

compared to control sham groups (WTS and KOS, respectively) (A), quantified in (B). There was no 

significant difference between genotypes. Data are presented as the mean ± SEM. ***p < 0.001 vs 

contralateral; ###p < 0.001 vs sham, one-way RM ANOVA with SNK post hoc, n = 4-6. Scale bar = 200 

μm.  
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2.3.4 GPR84 KO mice exhibit a normal microglial response 21 days post PNL 

 

So far we have seen no evidence of a role of GPR84 in the microgliosis response at 7 days 

post PNL, therefore we investigated whether deletion of this receptor affects the microglial 

phenotype at a later time point of 21 days. Although there may be an element of resolution 

at this later time point, there is still a significant difference in the mechanical and thermal 

paw withdrawal thresholds of the WT PNL group compared to the WT sham group. 

Importantly, this difference is absent in the KO at this later time point. Furthermore, 

behavioural hypersensitivity correlating with increased microglial cell numbers in the 

ipsilateral dorsal horn has been reported up to 50 days post PNL in rats (Clark et al., 2006).  

 

To investigate if deletion of GPR84 specifically alters microglial numbers, we stained for 

Iba1 in L4 and L5 spinal sections. Similar to our findings at day 7 post PNL, there was no 

significant difference between GPR84 WT and KO microglial cell numbers in the ipsilateral 

or contralateral dorsal horns of sham controls at 21 days post surgery (Fig. 2.7). Microglial 

morphology was also observed to be no different between genotypes. Subsequent to 

peripheral nerve injury both GPR84 WT and KO mice showed a significant 1.8 fold increase 

in Iba1 positive cells in the ipsilateral dorsal horn compared to sham controls (WTPNL, 9.3 ± 

0.7/4x104 μm2; KOPNL, 11.1 ± 0.8/4x104 μm2 vs WTS, 5.3 ± 0.6/4x104 μm2; KOS, 6.1 ± 

0.9/4x104 μm2; Fig. 2.7). The increased number of microglial cells in response to injury 21 

days post PNL was similar to that seen at the earlier time point, and there was no significant 

difference between the genotypes. Again, morphological changes of microglial cells in 

response to nerve injury were similar and no different between the genotypes. However, it 

is worth noting that the increase in microglial numbers at 21 days post PNL was 

approximately 50% of that at 7 days post injury, confirming a degree of resolution at this 

later time point. These data illustrate that GPR84 KO mice are capable of an extensive 

microgliosis response over the course of traumatic neuropathy and that GPR84 deletion 

does not alter microglial numbers.  
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Figure 2.7: Nerve injured GPR84 KO mice exhibit a normal microglial response in the spinal 

cord 21 days post PNL 

 

Subsequent to peripheral nerve injury there was a significant increase in Iba1 positive cells in the 

ipsilateral dorsal horn of the spinal cord in WTPNL and KOPNL mice compared to control sham 

groups (WTS and KOS, respectively) (A), quantified in (B). There was no significant difference 

between the genotypes. Data are presented as the mean ± SEM. **p < 0.01, ***p < 0.001 vs 

contralateral; ###p < 0.001 vs sham, one-way RM ANOVA with SNK post hoc, n = 4. Scale bar = 200 μm.  
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2.3.5 GPR84 KO mice exhibit a normal macrophage response 7 days post PNL 

 

So far we have seen no evidence of a CNS change in the microglial profile of GPR84 KO mice 

that correlates with the behavioural phenotype after injury. As GPR84 expression is 

restricted to immune cells, we decided to examine the response of macrophages in the 

sciatic nerves. These are the key phagocytic immune cells of the PNS and have been well 

documented to play a role in nerve injury-induced behavioural hypersensitivity (Myers et 

al., 1996; Liu et al., 2000; Barclay et al., 2007). 

  

To elucidate whether deletion of GPR84 may alter the peripheral inflammatory response to 

nerve damage mediated by infiltrating macrophage cells, we carried out immunostaining of 

Iba1 in longitudinal sciatic nerve sections, distal and proximal to the site of injury. We 

examined this marker of macrophage cells at 7 days post PNL, as the immune response at 

this time point is robust and correlates with the behavioural hypersensitivity seen in WT 

mice. We found that there was no significant difference between GPR84 WT and KO 

macrophage cell numbers in the ipsilateral sciatic nerves of sham controls (Fig. 2.8.). 

Therefore GPR84 deletion has no effect on macrophage cell numbers per se. Following 

peripheral nerve injury both WT and KO mice showed a 95.1% and 91.3% increase in Iba1 

positive cells, respectively, in the ipsilateral sciatic nerve, distal to the lesion site compared 

to sham controls (WTPNL, 10.0 ± 1.2/4x104 μm2; KOPNL, 9.4 ± 0.3/4x104 μm2 vs WTS, 0.5 ± 

0.2/4x104 μm2; KOS 0.8 ± 0.1/4x104 μm2; Fig. 2.8). Due to a degree of macrophage 

infiltration into intact axons of the nerve injury site, proximal counts of the injured nerve 

were also greater than sham controls, which were significant in WT mice (WTPNL, 3.0 ± 

1.0/4x104 μm2; KOPNL, 2.0 ± 0.5/4x104 μm2). There was no significant difference between 

the genotypes. These data demonstrate that GPR84 has no effect on macrophage infiltration 

in response to nerve injury and therefore these cells are not essential for the behavioural 

phenotype observed in GPR84 KO mice. However, we must acknowledge that following 

nerve injury macrophage cells can also infiltrate the CNS and contribute to the Iba1 cell 

population in the dorsal horn, and thus a CNS macrophage involvement cannot be excluded 

(Zhang et al., 2007). The contribution of macrophage infiltration into the DRG in GPR84 WT 

and KO mice is yet to be established. 
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Figure 2.8: GPR84 KO mice exhibit a normal macrophage response in the sciatic nerve 7 days 

post PNL 

 

There was a significant increase in Iba1 positive cells in the injured ipsilateral sciatic nerve in GPR84 

WTPNL and KOPNL mice compared to their corresponding control sham groups (WTS and KOS, 

respectively) (A), quantified in (B). There was no significant difference between genotypes. Data are 

presented as the mean ± SEM. *** p < 0.001 vs corresponding proximal (PROX); #p < 0.05, ###p < 0.001 

vs corresponding sham group, one-way RM ANOVA with SNK post hoc, n = 4.  Scale bar = 200 μm. 
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2.3.6 Raw PCR array data: Comparing nerve injury induced mediator transcript 

changes in GPR84 WT and KO mice 

 

We have shown that deletion of GPR84 results in the prevention of behavioural 

hypersensitivity after nerve injury (Fig. 2.5). To investigate whether this correlates to 

changes in mediator expression induced by peripheral nerve injury we utilised high 

through-put custom-made Taqman array cards, to compare the expression of a range of 

putative mediators of interest (a majority of which were chemokines and cytokines) in 

sciatic nerve and spinal cord tissue of GPR84 WT and KO at two time points. An explanation 

of analysis is provided in the methods section (2.2.8) and in more detail in (Perkins et al., 

2012). 

 

Appendix Tables 1-8 display the raw CT values of 92 different chemokine/cytokines, growth 

factors and cell markers as well as raw CT values of control HK genes in the sciatic nerve at 

7 and 21 days post sham or PNL surgery (1, 2), (5, 6) respectively; and in the spinal cord at 7 

and 21 days post PNL or sham surgery (3, 4), (7, 8) respectively, in GPR84 WT and KO mice.  

Transcripts which had amplification curves that failed to pass a set threshold within the 

exponential phase were denoted as non-detectable (ND). Note that ARG1, Mannose receptor 

c-type 1 (MRC1), Colony stimulating factor 3 (granulocyte) receptor (CSF3R), neuregulin 1 

(NRG1) were only examined at 7 days post PNL; CCL26, CCL28, Colony stimulating  factor 1 

(macrophage) receptor (CSF1R), Histocompatibility 2, class II antigen E beta (H2.EB1) were 

only examined at 21 days post PNL.  

 

Gene expression was measured via the amplification of a target cDNA sequence that 

corresponds to a particular gene of interest. The samples were subjected to 40 cycles of 

temperature controlled PCR amplification, which entails three key phases of denaturation, 

primer annealing and elongation. During amplification the level of fluorescence was 

measured and once it reached above background to a set threshold within the exponential 

phase, the number of cycles required to reach this threshold were used to estimate the 

amount of cDNA sequence present and hence the amount of transcript in the original sample 

(Perkins et al., 2012). A CT value of 1 corresponds to doubling of a transcript and so the 

lower the CT value the greater the expression of the gene. 

 

Incomplete reverse transcription of RNA or error in sample loading can result in faulty 

reactions and incorrectly calculated CT values. However, the raw CT values of individual 

genes were generally consistent within experimental groups (Appendix Tables 1-8), 
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implicating biological differences rather than experimentally-driven variability. At the end 

of each table within an experimental group are the raw CT values for the four HK genes, 

which are used to normalise the data. We observed that the CT values of the HK genes 

within experimental groups varied no more than 1 cycle, particularly in the spinal cord 

tissue, which is indicative of consistency. In the sciatic nerve tissue the CTs were slightly 

more variable at both time points, perhaps reflecting differences in tissue compositions. 

Overall consistency was also exhibited between experimental groups of both genotypes, 

where the average CT values for HK genes varied no more that 1 cycle in the spinal cord 

tissue at both time points and in the sciatic nerve tissue at D7. Likewise, in the D21 sciatic 

nerve tissue, all HK genes except 18s exhibited an average increase of 1 CT in the WT PNL 

group and 2 CTs in the KO PNL group, compared to corresponding sham groups. Despite 

this, an up-regulation in the HK genes in fact reduces the FC values of up-regulated 

transcripts rather than enhances them and hence limits significance. Therefore, we can 

assume that the data is consistent enough to limit the incidence of false positives. 

 

It was observed that a majority of fluorescent readings for each gene transcript crossed the 

arbitrary threshold within the exponential phase generally between 15 and 35 cycles. 

Transcripts that were below detection level, and did not cross the threshold or had CT 

values close to 38 were denoted as ND (Appendix Tables 1-8). As stated in the methods 

section, transcripts that attained a ND CT value in more than 50% of the samples within an 

experimental group were given a default value of 38, and if this occurred in both 

experimental groups (i.e. PNL and sham) then the transcript did not obtain a FC value. In all 

cases the amplification plots of individual transcripts for each card were checked for faulty 

reactions caused by bubbles or evaporation of the reaction mixture due to unsealed wells. 

Hence we can be confident that lack of gene detection was due to a biological factor rather 

than a technical error. 

 

2.3.7 Top dysregulated mediators in nerve injured GPR84 WT and KO mice  

 

Tables 2.1-2.4 display the top differentially regulated genes in GPR84 KO mice. Data are 

displayed as the mean FC relative to control levels (see Appendix Tables 11 and 12 for FC 

values of all genes profiled). The standard deviation (SD) values are only those of the case 

samples where variability is considered to be the greatest, rather than the control samples. 

A FC threshold of ≥ 2 in one or both genotypes for a particular gene was set to reduce noise 

by eliminating those genes that showed marginal expression changes. A FC ratio (KO FC/WT 

FC) threshold of ≥ 1.5 was also set and genes were ranked according to this ratio. The FC 
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ratio was employed in the screening criteria so that unless a particular transcript changed 

by ≥ 1.5 fold between genotypes, it would not be considered to be transcriptionally 

regulated by GPR84. This enabled us to efficiently filter irrelevant genes that are un-related 

to the behavioural pain phenotype despite a correlated expression and thus focus on 

transcripts that were considerably dysregulated between genotypes. With such a large data 

set it is important to implement careful criteria to dissociate genes of interest from those 

not showing substantial transcriptional changes (Antunes-Martins et al., 2013). However, 

setting up a very stringent threshold also creates the possibility that some genes of 

relevance may be disregarded.  

 

The concept that the development of behavioural hypersensitivity is driven by an increased 

expression of mediators has led many genomic studies to focus on those genes that are up-

regulated after nerve injury. However, nociception is also driven by a down-regulation in 

the expression of some genes, hence why we have examined both up- and down-regulated 

transcripts. Table 2.1A displays the top ranking down-regulated genes in the sciatic nerve of 

GPR84 KO mice 7 days post PNL. These genes are of particular interest because they were 

either up-regulated or more greatly expressed in WT than KO mice after nerve injury by a 

FC ratio of ≥ 1.7, correlating with an absence of behavioural hypersensitivity in the KO. As 

expected GPR84 was not detectable in the KO, but was strikingly up-regulated in WT sciatic 

nerve tissue after nerve injury (FC: 51.3). Intriguingly, of the top 10 down-regulated 

transcripts half, were epidermal growth factors (EGFs): amphiregulin (AREG) (WT FC: 12.2, 

KO FC: ND); betacellulin (BTC) (WT FC: 4.1, KO FC: 2.0); artemin (ARTN) (WT FC: 4.5, KO FC: 

2.4); epiregulin (EREG) (WT FC: 55.3, KO FC: 30.5); heparin-binding EGF-line growth factor 

(HBEGF) (WT FC: -3.3, KO FC: -5.7). Unlike the other EGFs, which exhibited similar patterns 

of up- or down-regulation between the genotypes, amphiregulin was particularly interesting 

despite a lack of significance as it was not detectable in the KO and was considerably up-

regulated in the WT. The other top five down-regulated transcripts were cytokines, 

including the pro-inflammatory IL-23a and IL-5. However, since these were down-regulated 

in both genotypes (although considerably more in the KO) they are unlikely to be related to 

the KO behavioural phenotype.  

 

Table 2.1B ranks the top up-regulated genes in KO sciatic nerve 7 days post PNL compared 

to WT. Intriguingly, the pro-inflammatory mediators IL-1β, IL-6, TNF-α, CCL2 and CCL3, 

which are well documented to play a role in nociception (Thacker et al., 2007; Austin and 

Moalem-Taylor, 2010) were up-regulated in both genotypes but to a greater extent in the 

KO. This finding was unexpected as KO mice did not display neuropathic pain-related 
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behaviour at this time point. IL-1β, TNF-α and CCL3 were significantly expressed in both 

genotypes, where IL-6 and CCL2 were detected only in the KO: (IL-1β: WT FC: 24.9, KO FC: 

71.9; IL-6: WT FC: 1.8, KO FC: 14.3; TNF-α: WT FC: 6.8, KO FC: 18.3; CCL2: WT FC: 1.9, KO FC: 

4.9; CCL3 WT FC: 10.2, KO FC: 25.7. A majority of up-regulated transcripts in the KO were 

chemokines, reflecting their important role in neuropathology. Pro-inflammatory IL-12b, 

CCL4, CCL7, CCL8, CCL9, CXCL9, CXCL10 and chemotactic XCL1 were significantly induced in 

the KO and showed a greater FC increase than the WT (Table 2.1B) along with a few 

immune cell markers including ARG1, allograft inflammatory factors-1 (AIF1), and T-cell 

surface glycoprotein CD3 delta chain (CD3D). AIF1 (Iba1 gene) was up-regulated in both 

genotypes but was 2.1 times more greatly expressed in the KO (AIF1: WT FC: 4.3, KO FC: 

9.2). This complies with our previous observation that macrophage infiltration into the 

sciatic nerve after injury is normal in the KO (Fig. 2.8). Interestingly ARG1, a marker of a 

sub-population of anti-inflammatory macrophages was significantly up-regulated in the KO 

in contrast to the WT (WT FC: 5.7, KO FC: 20.7). 

 

In the spinal cord 7 days post PNL, very few transcripts met the threshold criteria. FC values 

of individual genes were also smaller than that seen in the sciatic nerve and did not reach 

significance (Table 2.2). CXCL3 and IL-24 were up-regulated in the WT and were 

undetectable or less expressed in the KO, respectively; however, these proteins are not 

documented to have a role in nociception (Table 2.2A). Top up-regulated transcripts in the 

KO included a mixture of chemokines and cytokines (Table 2.2B), three of which are 

implicated in pro-nociceptive transmission: CCL5, TNF-α and IL6 (DeLeo et al., 1996; 

Homma et al., 2002; Benamar et al., 2008). Notably, CXCR3 (the receptor for pro-

inflammatory CXCL10) was the top up-regulated transcript in the KO and was down-

regulated in the WT (WT FC: -1.5, KO FC: 7.0). CXCL10 mRNA was found to be significantly 

induced in both the sciatic nerve and spinal cords of KO mice 7 days post PNL (Table 2.1B). 

Therefore, elevated expression of CXCR3 could be a result of infiltrating T-cells via the 

chemotactic properties of CXCL10 (Taub et al., 1993), a hypothesis also supported by an 

increased expression of the T cell receptor, CD3D, in the spinal cord tissue of KO mice. 

 

We also examined transcriptional changes induced by the PNL model in the sciatic nerves 

and spinal cords of GPR84 WT and KO mice at a later time point as behavioural 

hypersensitivity was absent throughout the 21 testing days in the KOs (Fig. 2.5). Table 2.3 

illustrates a range of chemokines, cytokines and growth factors differentially regulated 

between the genotypes in the nerve. However, none of these changes were significant except 

for BTC which was up-regulated in the KO (unlike the earlier time point where it was up-
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regulated in the WT) (Table 2.3B). The only other top regulated EGF at this later time point 

was EREG, which showed considerably less induction in the WT compared to day 7 and was 

not detectable in the KO (Table 2.3A). Despite a lack of significance, the pro-nociceptive 

mediators IL-1β, IL-6, COX-2 (PTGS2), inducible nitric oxide synthase 2 (NOS2)  and CCL3 

were amongst the top 17 ranking genes that showed a greater expression in the WT sciatic 

nerve than the KO, correlating with the observed behavioural hypersensitivity in 

neuropathic WT mice (Table 2.3A). At the earlier time point these mediators were in fact 

considerably up in the KO as opposed to the WT, which represents a striking transcriptional 

switch between the genotypes at the later time point. Consistent with the earlier time point, 

CXCL17, CCL8 and CXCL9 were up-regulated in the KO but down-regulated or undetectable 

in the WT and the pro-nociceptive mediators IL-12b, BDNF and CCL21a,b also had a higher 

expression in the KO. The immune cell marker, integrin alpha M (ITGAM; CD11b), was 

amongst the top hits and showed a greater induction in the KO, which again supports our 

observation that the macrophage response to nerve injury is indistinguishable from the WT 

(Fig. 2.8). 

 

In spinal cord tissue at 21 days post PNL fewer genes met the threshold criteria and 

transcript changes were smaller and lacked significance, similar to the D7 time point (Table 

2.4). None of the top up-regulated (A) or top down-regulated (B) transcripts in the KO were 

consistent with the earlier time point except for CCL8, which was consistently up-regulated 

in the KO spinal cord. Top regulated mediators included pro-inflammatory IL-12b, IL-23a, 

CCL7, and CXCL9; with only IL-12b and CXCL9 being previously implicated in nociceptive 

transmission. Contrary to the early time point, CXCR3 exhibited reduced expression in the 

KO, although there was an increase in the selective ligand CXCL9 (Table 2.4). CXCR3 is 

preferentially expressed by pro-inflammatory T helper type 1 (Th1) lymphocytes and so 

this could indicate resolution of T cell infiltration into the spinal cord at this later time point, 

consistent with the behavioural phenotype in the KO mice. On the other hand, the greater 

expression of CXCR3 in the WT is suggestive of increased T-cell infiltration into the spinal 

cord, which could mark the slower onset of the T-cell contribution to neuropathic pain (WT 

FC: 3.5, KO FC: 1.2). 

 

In summary, we have identified a number of genes which were dysregulated in the nerves 

and spinal cords of GPR84 KO mice at two time points after nerve injury. It is evident that 

the greatest transcriptional changes occurred in the sciatic nerve at both time points, an 

observation further highlighted in the profile distribution graphs (Fig. 2.9). This 

representation shows the distribution of average FC values relative to sham controls and the 
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FC ratios of genes in the sciatic nerve and spinal cord of GPR84 WT and KO mice at 7 and 21 

days post PNL. The gene profiles are ranked in order of FC ratio from the greatest down-

regulated to the most up-regulated in the WT as opposed to the KO. The blue shaded region 

corresponds to the cut off threshold of a FC of 2. 

 

The profile distribution graphs illustrate the important temporal relationships in gene 

expression as well as the differences in gene regulation between distinct tissue types. 

Considering that a majority of the transcripts screened are driven by intrinsic 

immunological activity, gene expression changes may be somewhat diluted in the spinal 

cord compared to the sciatic nerve due to different cellular compositions. As previously 

discussed, both tissues exhibited greater transcriptional changes at the early time point. The 

spatial temporal relationship with transcriptional regulation is an interesting aspect of 

these data sets and would require additional studies examining different time points to gain 

further understanding. Interestingly, at the earlier time point in both tissue types a subset of 

genes were more strongly induced in the KO than the WT (Fig. 2.9A & B).  However, the vast 

majority of FC ratio values resided below threshold and only a minority of genes were 

differentially regulated between the genotypes. These results indicate that transcriptional 

changes in response to peripheral nerve injury are generally similar between the two 

genotypes, as illustrated by the tight correlation profiles of the FC values. In contrast to the 

earlier time point, more genes are differentially regulated between the genotypes in the 

sciatic nerve at D21 as indicated by the FC ratio profile (despite lower FC values). In the 

spinal cord, the FC profiles are tighter at the later time point but there is a similar number of 

dysregulated genes as in the D7 data set.  

 

In each genotype FC data points that clearly resided outside the threshold are differentially 

regulated from control tissue and those genes that also have FC ratios ≥ 1.5 are differentially 

regulated between the genotypes. These genes are of particular interest as they could 

potentially play a role in behavioural hypersensitivity modulated by GPR84 and are 

presented and evaluated in the tables below. 
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Table 2.1: Top down- (A) and up- (B) regulated genes in GPR84 KO sciatic nerve 7 

days post PNL 

 

 

 

 

 

 

 

 

2.1 (A)

Rank ID WT KO

KOFC / WTFC 

RATIO

1 GPR84 51.3 (22.43-117.2)** ND -51.3

2 AREG 12.2 (2.5-59.1) ND -12.2

3 IL5 -1.5 (0.1-3.6) -16.2 (0.05-0.08)*** -10.8

4 IL23A -3.0 (0.3-0.4)* -7.3 (0.02-1.2) -2.4

5 BTC 4.1 (2.2-7.4)* 2.0 (0.5-7.6) -2.0

6 IL34 -4.5 (0.1-0.4)* -8.7 (0.03-0.4) -1.9

7 ARTN 4.5 (2.4-8.3)* 2.4 (1.3-4.6) -1.9

8 EREG 55.3 (18.6-163.9)* 30.5 (11.8-78.6)* -1.8

9 HBEGF -3.3 (0.2-0.4)** -5.7 (0.09-0.4)* -1.7

10 CXCL13 -11.7 (0.05-0.1)*** -20.1 (0.02-0.2)* -1.7

Top down-regulated genes in GPR84 KO sciatic nerve tissue 7 days post  PNL

2.1 (B)

Rank ID WT KO

KOFC / WTFC 

RATIO

1 IL6 1.8 (0.3-9.5) 14.3 (4.8-42.6)* 8.0

2 CCL1 -1.3 (0.2-3.1) 8.0 (2.5-25.8) 6.4

3 CCL7 1.6 (0.7-4.0) 7.6 (3.5-16.6)* 4.7

4 XCL1 4.7 (0.9-24.3) 19.8 (9.5-41.0)* 4.2

5 CCL4 8.3 (6-11.4)** 32.0 (17.7-57.7)** 3.9

6 IL12B 7.1 (1.4-36.2) 26.2 (16-43.1)* 3.7

7 ARG1 5.7 (4.7-7.0) 20.7 (9.8-43.8)** 3.6

8 CXCL17 -6.2 (0.02-1.3) -1.9 (0.2-1.2) 3.2

9 CXCL10 1.8 (1.0-3.1) 5.5 (2.4-12.3)* 3.1

10 IL1B 24.9 (13.7-45.2)* 71.9 (42.1-123.0)*** 2.9

11 CXCL9 3.5 (2.4-5.0)* 9.8 (4.4-21.8)* 2.8

12 CXCL2 20.0 (13.3-30.0)** 55.9 (41.9-74.7)** 2.8

13 CCL8 7.6 (7.0-8.2) 21.0 (9.0-49.3)* 2.8

14 TNF 6.8 (5.3-8.6)** 18.3 (13.3-25.2)** 2.7

15 CCL2 1.9 (1.1-3.3) 4.9 (2.8-8.5)* 2.5

16 CCL3 10.2 (8.3-12.5)** 25.7 (17.0-38.9)*** 2.5

17 CSF2 -1.4 (0.1-3.8) 3.5 (0.9-13.9) 2.4

18 CD3D 2.5 (0.4-14.2) 5.9 (3.1-11.0)* 2.4

19 CCL9 1.8 (1.6-2.1) 4.2 (2.6-6.6)* 2.3

20 AIF1 4.3 (3.2-5.8)** 9.2 (5.8-14.6)** 2.1

Top up-regulated genes in GPR84 KO sciatic nerve tissue 7 days post  PNL
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Table 2.2: Top down- (A) and up- (B) regulated genes in GPR84 KO spinal cord 7 days 

post PNL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 (A)

Rank ID WT KO

KOFC / WTFC 

RATIO

1 GPR84 2.6 (1.5-4.4) ND -2.6

2 IL19 -1.4 (0.6-0.9) -3.1 (0.1-1.5) -2.3

3 CXCL3 2.0 (0.8-5.2) ND -2.0

4 IL24 9.0 (2.3-35.1) 5.7 (2.1-15.8) -1.6

Top down-regulated genes in GPR84 KO spinal cord tissue 7 days post  PNL

2.2 (B)

Rank ID WT KO

KOFC / WTFC 

RATIO

1 CXCR3 -1.5 (0.4-1.1) 7.0 (3.5-13.9) 4.7

2 CCL8 1.2 (0.7-2.3) 3.8 (2.4-6.0) 3.0

3 CCL5 1.0 (0.6-1.6) 2.3 (1.0-5.8) 2.3

4 TNF 2.2 (1.5-3.1) 4.1 (3.1-5.3) 1.9

5 CD3D -2.3 (0.1-1.9) 3.9 (2.1-7.1) 1.7

6 IL6 1.5 (0.6-3.3) 2.4 (1.5-3.8) 1.6

Top up-regulated genes in GPR84 KO spinal cord tissue 7 days post  PNL
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Table 2.3: Top down- (A) and up- (B) regulated genes in GPR84 KO sciatic nerve 21 

days post PNL 

 

 

 

 

 

2.3 (A)

Rank Gene WT FC KO FC

KOFC/WTFC 

RATIO

1 IL1B 42.8 (17.7-103.6) 3.2 (0.6-17.8) -13.3

2 IL27 16.4 (9.8-27.6) 2.2 (0.8-6.2) -7.4

3 XCL1 17.2 (0.3-1140.4) 2.5 (1.1-5.6) -7.0

4 CCL3 17.8 (6.9-46.2) 4.0 (1.7-9.7) -4.4

5 GPR84 3.6 (1.1-11.5) ND -3.6

6 IL6 -1.4 (0.2-2.8) -4.4 (0.1-0.5) -3.1

7 CXCL11 -3.7 (0.3-0.6) -11.1 (0.02-0.4) -3.0

8 EREG 2.9 (0.8-11.1) ND -2.9

9 PPBP -2.6 (0.2-0.8) -7.1 (0.1-0.3) -2.8

10 PTGS2 -1.5 (0.2-2.1) -3.7 (0.1-1.0) -2.5

11 CCL4 8.0 (4.6-14.0) 3.3 (0.8-13.9) -2.4

12 IL23A -6.0 (0.04-0.6) -14.3 (0.01-0.4) -2.4

13 CXCL1 2.2 (0.9-5.7) 1.0 (0.1-7.5) -2.1

14 CCL28 -3.2 (0.2-0.5) -6.4 (0.1-0.4) -2.0

15 NOS2 4.3 (3.5-5.4) 2.2 (1.7-2.9) -2.0

16 CCL22 3.1 (0.8-12.3) 1.8 (0.4-8.7) -1.7

17 CXCL3 18.1 (3.0-107.5) 12.4 (1.5-100.8) -1.5

Top down-regulated genes in GPR84 KO sciatic nerve tissue 21 days post  PNL

2.3 (B)

Rank Gene WT FC KO FC

KOFC/WTFC 

RATIO

1 CXCL17 -2.1 (0.1-0.9) 12.1 (4.1-35.7) 5.7

2 IL12B ND 4.7 (1.3-16.7) 4.7

3 CCL8 3.3 (2.3-4.6) 13.4 (7.1-25.3) 4.1

4 IL34 -3.6 (0.2-0.5) -1.1 (0.1-11.5) 3.2

5 STAT4 -9.4 (0.03-0.4) -3.4 (0.1-0.6) 2.8

6 BDNF 8.3 1.1-62.2) 23.0 (3.1-310.0) 2.8

7 CXCL14 1.2 (0.6-2.2) 3.2 (1.3-7.7) 2.7

8 CCL24 -4.2 (0.1-0.4) -1.7 (0.3-1.2) 2.4

9 CCL21A,B -4.5 (0.2-0.4) -1.9 (0.2-1.9) 2.4

10 CXCL9 1.3 (0.7-2.2) 2.9 (1.9-4.6) 2.3

11 CCL25 -3.5 (0.2-0.5) -1.6 (0.4-0.9) 2.2

12 FGF7 -4.5 (0.1-0.4) -2.4 (0.1-1.7) 1.9

13 CXCL13 -9.9 (0.03-0.4) -5.5 (0.1-0.2) 1.8

14 BTC 2.8 (1.3-6.3) 5.0 (3.3-7.4)* 1.8

15 ITGAM 2.0 (0.9-4.3) 3.2 (1.2-8.0) 1.6

16 CCL19 -2.3 (0.2-1.1) -1.5 (0.2-2.3) 1.6

17 IL18 -3.2 (0.2-0.6) -2.1 (0.3-0.9) 1.5

18 IL1A 11.5 (1.7-79.0) 17.3 (6.3-47.1) 1.5

Top up-regulated genes in GPR84 KO sciatic nerve tissue 21 days post  PNL
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Table 2.4: Top down- (A) and up- (B) regulated genes in GPR84 KO spinal cord 21 

days post PNL 

 

 

 

 

 

 

 

 

 

Tables  2.1-2.4:  Top down- (A) and up- (B) regulated gene transcripts in the sciatic nerve and 

spinal cord of nerve injured GPR84 KO mice  

 

Tables displaying the top down-regulated (A) and the top up-regulated (B) genes in the ipsilateral 

sciatic nerve at 7 and 21 days post PNL (2.1 and 2.3, respectively) and ipsilateral spinal cord at 7 and 

21 days post PNL (2.2 and 2.4, respectively). The genes are ranked in descending order of FC ratio. FC 

ratio = KO FC/WT FC, where FC = PNL/sham within each genotype. Only genes with a FC of ≥ 2 within 

one or both of the genotypes and a FC ratio of ≥ 1.5 have been ranked. This enables the identification 

of transcripts that exhibit the greatest FC from control and are considerably dysregulated between 

genotypes. Genes with a FC ratio of less than 1.5 are considered to be similarly expressed between 

genotypes. Data are presented as the mean FC (± 1 SD range of the case samples (PNL tissue)). P < 

0.05*, p < 0.01**, p < 0.001*** vs sham; T-test with FDR correction for multiple testing, n = 4. ND, not 

detected.  

 

 

2.4 (A)

Rank ID WT FC KO FC

KOFC/ WTFC 

RATIO

1 CXCR3 3.5 (2.7-4.6) 1.2 (0.6-2.5) -2.9

2 CXCL17 4.2 (3.2-5.5) 2.2 (1.3-3.8) -1.9

3 IL23A 1.3 (1.0-1.6) -2.3 (0.04-4.5) -1.8

4 IL12B 2.0 (0.5-8.5) -3.1 (0.1-1.3) -1.6

Top down-regulated genes in GPR84 KO spinal cord tissue 21 days post  PNL

2.4 (B)

Rank ID WT FC KO FC

KOFC/ WTFC 

RATIO

1 CCL7 1.6 (0.6-4.6) 7.5 (3.7-15.2) 4.6

2 AREG -1.1 (0.3-3.5) 2.6 (0.7-9.7) 2.4

3 IL11 -1.2 (0.6-1.2) -2.1 (0.2-1.0) 1.7

4 CXCL9 1.5 (0.4-6.4) 2.5 (0.9-6.9) 1.7

5 CXCL13 2.9 (0.6-13.4) 4.7 (0.7-31.3) 1.7

6 IL19 1.4 (0.8-2.5) 2.2 (0.5-10.0) 1.5

7 CCL8 2.4 (0.9-6.3) 3.7 (2.5-5.6) 1.5

Top up-regulated genes in GPR84 KO spinal cord tissue 21 days post  PNL
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Figure 2.9: Distribution of PNL induced gene transcript changes in the sciatic nerve and spinal 

cord of GPR84 WT and KO mice 

 

Transcript expression profiles of a range of cytokines, growth factors and cell markers 7 and 21 days 

post PNL in ipsilateral sciatic nerve (A & C, respectively) and ipsilateral spinal cord (B & D, 

respectively) of GPR84 WT and KO mice relative to appropriate sham control tissue. Transcripts are 

ranked in order of increasing FC ratio. Where FC ratio = WT FC/KO FC; FC = PNL/sham. The 

distribution profiles for most genes are similar between the genotypes, however a subset are 

considerably dysregulated. The greatest transcript FCs occur in the sciatic nerve 7 days post PNL (A), 

where a greater subset of transcripts appear to be up- or down-regulated in KO mice as opposed to 

day 21 (C), where transcript FCs are smaller but exhibit greater dysregulation between the 

genotypes. In the spinal cord, transcript changes post PNL are much smaller compared to the nerve, 

particularly at day 21 and show tighter FC profiles and hence greater similarity between the 

genotypes. The data points show the average FC or FC ratio for each gene transcript ranked from the 

most down-regulated to the most up-regulated. The blue shaded box represents an area of > 2 and 

each data point shows the mean FC for each individual transcript. Adjacent FC data points represent 

the same gene transcript, n = 92. The x-axis is on a log 2 scale. 
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2.3.8 Correlation of PNL induced gene expression between GPR84 WT and KO mice 

 

To directly compare nerve injury induced transcriptional changes between genotypes, 

average FC values for each gene in GPR84 WT and KO mice are plotted against each other 

(Fig. 2.10). As indicated by the Pearson’s correlation coefficient, there is a positive 

correlation between the WT and KO data sets in each tissue and at each time point, which is 

significant (p < 0.001). This relationship is stronger in the sciatic nerve (0.868 (A), 0.734 

(C)) than the spinal cord (0.643 (B), 0.360 (D)) and at 7 days (0.868 (A), 0.643 (B)) than 21 

days post PNL (0.734 (C), 0.360 (D)). These data indicate that mediator changes induced by 

PNL required for the development of behavioural hypersensitivity is generally similar 

between genotypes. Although, the R values for the D21 data sets are notably lower than the 

D7 data sets, particularly in the spinal cord, the correlations are significant. However, this 

leaves us some room to speculate that transcriptional regulation in the nerve and spinal 

cord at D21 is different between the genotypes. Therefore, our focus is on the few outlying 

transcripts, which are identified as data points that deviate markedly from the correlation of 

the data sets. These data points skew the Pearson’s correlation coefficient as they are 

differentially regulated between genotypes and have been highlighted in red on the graphs. 

GPR84 is denoted as a red triangle.  

 

Presenting the transcript changes in this format enables the assessment of data scatter and 

the identification of genes that do not conform to the rest of the data.  In the sciatic nerve 7 

days post PNL amphiregulin showed a strong induction in the WT but was not detectable in 

the KO (A). At 21 days post PNL, IL-1b showed a marked up-regulation in the WT sciatic 

nerve tissue compared to the KO, whereas contrariwise CXCL17 showed a considerable 

induction in the KO and down-regulation in the WT tissue (C). In the spinal cord at 7 days 

post PNL, CXCR3 and CD3D were more abundant in the KO tissue than the WT and at 21 

days IL-12b went up in the WT and down in the KO tissue, whereas CCL7 was induced more 

substantially in the KO (D). All these outliers are top hits in the gene ranking tables above.  

 

2.3.9 A direct comparison between nerve injured GPR84 WT and KO tissues 

 

Figure 2.11 compares transcriptional changes between GPR84 WT and KO nerve injured 

tissues directly where the FC is expressed as KOPNL/WTPNL. In this case, FC values of gene 

transcripts in nerve injured KO mice are expressed relative to those in nerve injured WT 

mice, where the WT serves as a control. Figure 2.11A presents the FC profiles of transcripts 

across the tissue types and time points examined, which are ranked from the lowest to the 
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highest FC. Adjacent data points do not necessarily correspond to the same gene across the 

experimental groups.  We found that processing the data in this format yields similar key 

findings to the alternative method of analysis presented previously. The greatest 

transcriptional changes in response to nerve injury occurred in the sciatic nerve, with more 

genes up-regulated at 7 days post PNL and down-regulated at 21 days post PNL in the KO 

relative to the WT. Not surprisingly, the three most down-regulated data points correspond 

to GPR84 as it is non-detectable in the KO (7 day sciatic nerve, 7 and 21 day spinal cord). 

The overall trend indicates that most genes are not differentially regulated between 

genotypes and lie below the threshold, implicating a similar transcriptional response to 

nerve injury in WT and KO mice. 

 

 To compare gene changes between the two time points (7 and 21 days post PNL) the 

average FC values for each transcript are plotted against each other. As indicated by the 

Pearson’s correlation coefficient there is no relationship between the sciatic nerve time 

point data sets (-0.0622), which implies no consistency in transcriptional regulation 

between 7 and 21 days post PNL and that overall changes in gene expression vary 

considerably over time in the sciatic nerve (Fig. 2.11B).  The few genes that were 

consistently up- or down-regulated in the sciatic nerve at both time points are highlighted in 

red: CXCL17 (D7 FC: 2.9 (1.3-6.6), D21 FC: 2.1 (0.7-6.2)) or IL23a (D7 FC: -2.3 (0.1-3.7), D21 

FC -2.5 (0.1-2.2)), respectively. GPR84 is denoted as a red triangle. Intriguingly, the anti-

inflammatory chemokine, CXCL17, has continuously been a top ranking gene in the data 

analysis and thus may be a plausible target for further validation.  

 

Despite a significant positive correlation (0.740), which is clearly driven by a single data 

point rather than a relationship in the scatter between the two data sets, most of the gene 

changes in the spinal cord have a FC < 2 (Fig. 2.11C). The only consistent transcript changes 

between the two time points above the threshold criteria was IL-19 (D7 FC: -2.4 (0.1-1.9), 

D21 FC -3.5 (0.1-1.3)) and GPR84, which are highlighted in red. None of the average FC 

values for individual genes were significant via this method of analysis (except for GPR84 in 

the sciatic nerve at D7).  
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Figure 2.10: Correlation of injury-induced transcriptional changes in the sciatic nerve and 

spinal cord of GPR84 WT and KO mice 

 

Transcript expression changes of a range of cytokines, chemokines, growth factors and cell markers 

in the ipsilateral sciatic nerve and spinal cord of nerve injured GPR84 WT and KO mice relative to 

sham tissues are plotted against each other on a log 2 scale.  The Pearson’s correlation coefficient for 

the sciatic nerve (0.868 (A), 0.734 (C)) and spinal cord (0.643 (B), 0.360 (D)) at 7 and 21 days post 

PNL, respectively, indicate a significant relationship between genotypes (p < 0.001). Expression of the 

data in this format enables the identification of gene transcripts that have a FC induction or reduction 

≥ 2, where FC = PNL/sham. Visual analysis of the FC scatter identifies gene transcripts that show 

differential regulation between genotypes (highlighted in red, see text). Red triangle denotes GPR84 

FC. Data is presented as the mean FC. Pearson’s correlation coefficient, n = 92.  
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Figure 2.11: Analysis of the distribution and correlation of gene transcripts induced by PNL in 

the sciatic nerve and spinal cord of nerve injured GPR84 KO mice relative to nerve injured WT 

mice 

 

Direct comparison of nerve injury-induced gene expression changes in GPR84 WT and KO mice 

showing expression profiles of a range of cytokines, chemokines, growth factors and cell markers at 7 

and 21 days post PNL in ipsilateral sciatic nerve and spinal cord (A). Transcripts are ranked in order 

of increasing FC; FC = (KOPNL/WTPNL). Generally, the gene distribution profiles between the two 

genotypes are similar. The greatest transcript FCs occur in the sciatic nerve tissue where at 7 days 

post PNL where a subset of transcripts appear to be more strongly up- or down-regulated in the KO. 

In both tissues at 21 days post PNL, a greater proportion of transcripts appear to be down-regulated 

in the KO relative to the WT in contrast to transcriptional changes at the earlier time point. In the 

spinal cord transcriptional changes are much smaller compared to the nerve, at both time points. The 

data points show the average FC for each gene transcript ranked from most down- to most up-

regulated. The blue shaded box represents an area of < 2 and each data point shows the mean FC for 

FC ratio rank
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each individual transcript. Adjacent data points do not necessarily represent the same gene 

transcript, n = 88. The x-axis is on a log 2 scale. Transcript expression changes in the sciatic nerve and 

spinal cord at the two examined time points are plotted against each other to investigate the factor of 

time, on a log 2 scale. The Pearson’s correlation coefficients for the sciatic nerve (-0.0622) (B) and 

spinal cord (0.740) (C) at 7 and 21 days post PNL indicate that there is no correlation between both 

time points in sciatic nerve and a significant positive relationship between both time points in spinal 

cord tissue (p < 0.001). Expression of the data in this format enables the identification of gene 

transcripts that have a consistent FC induction or reduction of ≥ 2 between the two time point data 

sets. Red triangle denotes GPR84 FC. Data is presented as the mean FC. Pearson’s correlation 

coefficient, n = 88.  

 

These analyses exclude the following genes as they were not examined at both time points: ARG1, 

MRC1, CSF3R, NRG1, CCL26, CCL28, CSF1R and H2EB1.  
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Table 2.5: The top five down- and up-regulated super ranked genes in the sciatic 

nerve and spinal cord of nerve injured GPR84 KO mice compared to WT mice 

 

 

 

 

 

 

Tables displaying the top five down-regulated (A) and top 5 up-regulated (B) genes super ranked by 

FC ratio in GPR84 KO mice from left to right, where FC ratio = (KOPNL/KO sham)/(WTPNL/WT 

sham). Genes are super ranked via the FC ratio’s of genes from either two data sets: sciatic nerve 

7/21 days; spinal cord 7/21 days; time point 7, sciatic nerve/cord; time point 21, sciatic nerve/cord; 

or all four data sets: sciatic nerve/spinal at 7/21 days excluding those genes that were only examined 

at one time point: ARG1, MRC1, CSF3R, NRG1 (only examined at 7 days post PNL); CCL26, CCL28, 

CSF1R, H2EB1 (only examined at 21 days post PNL). 

  

2.5 (A)

Super rank

Nerve 7 + 21 

days 

Spinal cord 7 

+ 21 days

7 days nerve + 

spinal cord 

21 days nerve 

+ spinal cord All tissues

1 GPR84 IL23A GPR84 IL23A GPR84

2 EREG CXCL2 AREG CCL22 IL23A

3 IL23A CCL11 IL23A CXCL1 CCL11

4 CXCL11 CCL22 CCL11 CCL3 CCL22

5 AREG IL25 CXCL3 GPR84 TXLNA

Top down-regulated genes in GPR84 KO mice

2.5 (B)

Super rank

Nerve 7 + 21 

days

Spinal cord 7 

+ 21 days

7 days nerve + 

spinal cord 

21 days nerve 

+ spinal cord All tissues

1 CXCL9 CCL8 CD3D CXCL9 TNF

2 CCL8 CCL21A,B CCL8 CCL21A ARG1

3 ARG1 CCL5 CXCL17 CCL8 CCL21A,B

4 CXCL17 STAT4 IL6 STAT4 STAT4

5 IL12B CD3D CCL17 IL5 CCL8

Top up-regulated genes in GPR84 KO mice
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The extensive analysis of transcriptional profiles in WT and KO tissues before and after 

injury highlighted some interesting outliers that are differentially regulated between 

genotypes. Super ranking the data permits the identification of transcripts that are 

consistently down- or up-regulated in the KO across time points or tissues (Table 2.5) and 

hence strengthens the hypothesis that these genes warrant further investigation. Genes are 

super-ranked by cross-comparing top up- and down-regulated transcripts ranked by FC 

ratio in each of the four data sets. For each data set, those genes with the largest FC obtained 

the lowest value, whilst undetected genes were given a rank of 84. The average rank values 

across different data sets, as specified in the table 2.5A and B, was used to give a super-rank 

value for each gene so that those transcripts with lower values were the most consistently 

up- or down-regulated. 

 

Many of the top super ranking hits are common denominators within the top hit tables (2.1-

2.4). In the sciatic nerve these include; top down-regulated: IL23a, EREG, GPR84 (Table 

2.5A); top up-regulated: IL-12b, CCL8, CXCL9, CXCL17 (Table 2.5B). In the spinal cord none 

of the super-ranked down-regulated genes were previous hits (Table 2.5A) and only CCL8 

was a top up-regulated hit (Table 2.5B). At D7, GPR84 was a top down-regulated gene and 

IL-6, CCL8 and CD3D were top up-regulated genes (Table 2.5A,B). At D21, IL-23a was a top 

down-regulated gene and CCL8 was a top up-regulated gene in this data set and across all 

four data sets (Table 2.5A,B).  IL-23a and CCL8, are in fact consistently regulated across 3-4 

data sets, but these pro-inflammatory mediators are unlikely to play a role in the 

behavioural phenotype as IL-23a is down-regulated in both genotypes but more 

substantially in the KO and CCL8 is consistently up-regulated in the KO. By super-ranking 

the data many top regulated genes in particular tissues and time points are substituted by 

lower ranking genes that are more commonly regulated across data sets. These genes tend 

to show little relevance to the behavioural phenotype such as IL-23a and CCL8.  Therefore, it 

may be more appropriate to analyse individual data sets to identify genes of interest rather 

than conducting cross analysis over multiple data sets.  

 

In agreement with our hypothesis that GPR84 is a target in chronic pain mechanisms, its 

expression in the WT was up-regulated in both sciatic nerve and spinal cord after PNL in 

comparison to sham at both time points; however this trend was only significant in the 

nerve 7 at days post PNL (Fig.2.12A & B). Hence, in conjunction with the stiking behavioural 

phenotype observed in nerve injured GPR84 KO mice this receptor is clearly a potential 

pain-mediating target. ARG1 was also amongst the top up-regulated genes in the sciatic 

nerves of KO mice 7 days post PNL. This anti-inflammatory macrophage marker increased 
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significantly after nerve injury compared to the WT, along with a marginal increase in Mrc1. 

Mrc1 is an alternative anti-inflammatory macrophage marker that also showed a greater 

induction in the sciatic nerves of KO mice compared to WT mice, although not significant 

(Fig. 2.13).  ARG1 is a potentially interesting target as there is a substantial degree of 

dysregulation between the genotypes after nerve injury and its anti-inflammatory role 

corresponds with the absence of behavioural hypersensitivity in nerve injured KO mice.  It 

would therefore be interesting to further validate this transcript and examine the M1 and 

M2 macrophage populations in the sciatic nerves of neuropathic WT and KO mice. 
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Figure 2.12: Nerve injury induces an increase in GPR84 expression in the sciatic nerve and 

spinal cord of WT mice 

 

Subsequent to nerve injury there is an induction of GPR84 expression in the sciatic nerve (A) and 

spinal cord (B) at 7 and 21 days post PNL compared to sham tissue. This was only significant in the 

sciatic nerve at 7 days post PNL. Changes in mRNA expression are normalised to the mean ΔCT of 

sham groups, where ΔCT = (mean GPR84 CT) – (mean CT of the HK genes). Data are presented as the 

mean ± SEM. P < 0.01** vs sham, T-test with FDR for multiple testing correction, n = 4. 
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Figure 2.13: Nerve injured GPR84 KO mice show a greater induction of the anti-inflammatory 

macrophage markers, Arginase 1 (Arg1) and Mannose receptor c-type 1 (Mrc1) 

 

(A) Nerve injury induces a significant increase in the expression of Arginase 1 and a greater induction 

in the expression of Mannose receptor c-type 1 in sciatic nerve of GPR84 KO mice 7 days post PNL, in 

comparison to their WT littermate controls. Changes in mRNA expression are relative to the four HK 

genes and expressed as a FC (PNL/sham). Data are presented on a log 2 scale as the mean ± SEM. p < 

0.01** vs WT, T-test with FDR for multiple testing correction, n = 4.   
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2.4 Discussion 

 

Neuropathic pain is a debilitating disease affiliated with a spectrum of pathologies. 

Neuronal-immune and glial interactions as well as the vast signalling networks of immune 

mediators play a principal role in neuropathic pain. In this chapter we utilised transgenic 

mice, exploiting the PNL model (Seltzer et al., 1990) to examine the role and function of 

GPR84 in neuropathic pain states. Peripheral nerve injury elicits profound adaptive and 

maladaptive transcriptional changes in metabolism, cell survival, excitability and 

transmitter synthesis, ultimately leading to the generation of neuropathic pain (Costigan et 

al., 2002). Amongst the many receptor classes that show substantial up- or down-regulation 

in response to nerve injury, GPCRs are one of the foremost classes. We have demonstrated 

that following PNL, the relative expression of GPR84 increased in the sciatic nerves and 

spinal cords of WT mice and that deletion of this GPCR abolished mechanical and thermal 

hypersensitivity; consistent with a critical role in neuropathic pain modulation. GPR84 

appears to be exclusively expressed on immune cells and is therefore a new alternative non-

neuronal target in therapeutic treatment of chronic pain. 

 

2.4.1 GPR84 plays a role in neuropathic pain mechanisms independent of microglia 

and macrophage recruitment 

 

The PNL paradigm (Seltzer et al., 1990) is a well established model of peripheral nerve 

injury that results in considerable damage to both myelinated and unmyelinated axons. As a 

partial nerve injury model, the preservation of some input enables behavioural 

responsiveness to mechanical and thermal stimuli to be tested. This model shows highly 

consistent pain-related changes in rodents (Malmberg and Basbaum, 1998). Although many 

groups initially employed rats to determine the molecular basis of pain pathology, there is 

an increasing shift towards the use of transgenic mice. The use of transgenic mice enables 

researchers to study specific proteins in complex pain mechanisms, which is an approach 

we have also adopted in our own studies to investigate the role of GPR84. 

 

We showed that after nerve injury there was a significant reduction in mechanical and 

thermal thresholds of neuropathic mice in contrast to sham controls, recapitulating the 

literature. An accumulating body of literature has reported that these pain-related 

behaviours correlate with a rapid spinal cord glial response (Garrison et al., 1991). 

Alongside neuronal changes in the dorsal horn, microglial cells undergo extensive 

proliferative and morphological changes (Kreutzberg, 1996) by increasing the expression of 
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an array of cell surface receptors (e.g. CD11b, MHCII, CD4+) and by releasing algesic 

mediators (Watkins et al., 2001; Coull et al., 2005; Clark et al., 2007a). This rapid phenotypic 

switch, which can be visualised by Iba1 and OX-42 antibody markers, normally correlates 

with the presence of hyperalgesic and allodynic behaviours. Pharmacological blockade of 

glial metabolism via inhibitors such as minocycline, fluorocitrate and propentofylline has 

demonstrated anti-allodynic properties and the attenuation of microglial activation, as 

revealed by reduced OX-42 immunofluorescence (Sweitzer et al., 2001; Ledeboer et al., 

2005; Clark et al., 2007a). Targeting of specific microglial pathways or receptors in the CNS 

also alleviates pain associated behaviours; TLR4 and CX3CR1 null mice exhibit decreased 

microglial proliferation and activation, as shown by reduced OX-42/Iba1 immunoreactivity 

and p-p38 expression (Tanga et al., 2005; Staniland et al., 2010). Moreover, neuropathic 

pain was inhibited with intrathecal administration of CCL2 neutralising antibody and 

abolished in the CCR2 null mouse (Abbadie et al., 2003; Thacker et al., 2009). In both cases 

this correlated with decreased microglial activation. However, there is some controversy 

with regards to the cell types that express CCR2, which has been reported to be exclusively 

neuronal in contrast to evidence of predominant microglial expression (Abbadie et al., 2003; 

Gosselin et al., 2005; Gao et al., 2009). Furthermore, the role of the purigenic microglial 

expressed receptors, P2X4 and P2X7 has been underscored by studies using null mice or 

selective antagonists, which also report diminished neuropathic pain (Tsuda et al., 2003; 

Chessell et al., 2005; Clark et al., 2010b).  Thus, an overwhelming amount of data deriving 

from the manipulation of microglial signalling in the CNS, supports a role of these immune 

cells in the pathology of neuropathic pain (Watkins and Maier, 2003; McMahon and 

Malcangio, 2009).  

 

On the other hand, in the periphery macrophages are the key immune cell players. Here, 

they infiltrate damaged axons, mediate WD via the phagocytosis of cell debris (Perry et al., 

1987) and release a repertoire of pro-inflammatory mediators that sensitise primary 

afferent axons. This temporal relationship has been shown to strongly correlate with 

behavioural hypersensitivity (Myers et al., 1996). Importantly, pharmacological 

manipulation of macrophage expressed receptors, systemic depletion or attenuation of 

macrophage cell recruitment and infiltration is linked to reduced neuropathic pain 

behaviours (Myers et al., 1996; Perrin et al., 2005; Barclay et al., 2007; Boivin et al., 2007). 

Furthermore, a recent study showed that administration of the anti-inflammatory 

transforming growth factor-β1 (TGF-β1) directly into partially ligated sciatic nerves of mice 

reduced pro-inflammatory MAC+ (CD11b/CD18) macrophages at the site of injury with a 

corresponding decrease in IL-6 and CCL3 and reduced neuropathic pain behaviours 
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(Echeverry et al., 2013). Treatment with this cytokine had no effect on the ED1+ (CD68) 

population of phagocytic macrophages and the WD process was normal. Based on these 

findings the authors proposed the notion of targeting specific macrophage populations to 

alleviate neuropathic pain without compromising nerve regeneration (Echeverry et al., 

2013). 

 

In light of this evidence and the fact that GPR84 is selectively expressed by immune cells, we 

focused on characterising the microglia and macrophage response to nerve injury in GPR84 

WT and KO mice. To quantify these populations, reliable and sensitive methods are 

required. We used Iba1 and p-p38, which are well established immunohistochemical 

markers used to quantify the abundance and activation status, respectively, of microglia in 

the dorsal horn. We also stained for Iba1 in the sciatic nerve to quantify the presence of 

macrophages. It is well documented that nerve injury results in increases in both the 

activation and population size of microglia in the dorsal horn and macrophages in the 

injured sciatic nerve (Thacker et al., 2007; Austin and Moalem-Taylor, 2010; Gaudet et al., 

2011; Calvo and Bennett, 2012; Calvo et al., 2012). Moreover, attenuation of behavioural 

hypersensitivity by pharmacological manipulation of membrane receptors or metabolic 

activity of these cells results in a reduction in these markers (Liu et al., 2000; Sweitzer et al., 

2001; Ma and Eisenach, 2003b; Ledeboer et al., 2005; Tanga et al., 2005; Clark et al., 2007a). 

 

We report that neuropathic pain is abolished in nerve injured GPR84 KO mice in contrast to 

WT littermates. As expected, WT mice demonstrated a significant reduction in mechanical 

and thermal withdrawal thresholds. This induction in behavioural hypersensitivity 

correlated well with a significant increase in microglial numbers and activation in the 

ispilateral dorsal horn, as revealed by enhanced Iba1 and p-p38 immunoreactivity, 

respectively. A significant degree of macrophage infiltration into the injured sciatic nerve 

was also shown by an increase in Iba1 positive cells. Interestingly, although behavioural 

hypersensitivity was absent, nerve injured GPR84 KO mice exhibited microgliosis and 

macrophage infiltration similar to that of the WT mice. Put together, these data suggest that 

GPR84 is a novel and promising target as gene deletion diminished neuropathic pain but did 

not alter acute pain thresholds. Although the recruitment of microglia and macrophage cells 

appears to play a limited role in neuropathic pain mechanisms mediated by GPR84, perhaps 

other features of these cells may be important or other immune cell types. We set out to test 

the former possibility with PCR array cards as discussed below. 
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2.4.2 GPR84 regulates the expression of a subset of pro-inflammatory mediators 

 

In order to correlate the observed KO behavioural phenotype to altered genomic regulation, 

we next investigated whether GPR84 deletion affects transcriptional changes of mediators 

induced by nerve injury. Using custom designed mouse PCR array cards we examined 

changes in the sciatic nerve and spinal cord tissue of GPR84 WT and KO mice in the PNL 

model at two different time points. This produced four sets of gene expression data. Despite 

the immense potential of large data sets, the amount of information gathered can be difficult 

to interpret and manage. In addition, there are concerns about the representation, 

sensitivity and reproducibility of such data (Costigan et al., 2002). Therefore the 

implementation of a standard criteria, as well as the validation of gene changes at both 

mRNA and protein level are crucial steps for the conclusive determination of novel pain 

mediators. 

 

We analysed the data sets via implementing a strict threshold criteria of a FC ≥ 2 and a FC 

ratio ≥ 1.5 and conducted multiple comparisons. Based on this approach, we examined the 

top ranking genes for consistency within and across data sets in addition to analysing 

transcriptional profiles and correlations between genotypes. Despite extensive analysis of 

the data it is unclear as to which mediators are contributing to the KO behavioural 

phenotype. It is evident that the largest transcriptional changes occurred in the sciatic 

nerve, some of which were only significant at 7 days post PNL. Greater changes in gene 

expression were observed at 7 days than at 21 days in both tissues and more genes were 

dysregulated in the sciatic nerve than in the spinal cord (at both 7 and 21 days). Therefore, 

as the more robust regulatory response was observed in the sciatic nerve at 7 days, we 

chose to subject this data set to further analysis. Here, nerve injury induced an up-regulation 

of 33 genes in the WT and 44 genes in the KO, and a down-regulation of 18 genes in the WT 

and 16 genes in the KO. It is well recognised that rodent models of peripheral nerve injury 

possess an inflammatory component (some to a greater extent than others) (Bennett, 1999; 

Bridges et al., 2001), which is accounted for in our data by an induction of pro-inflammatory 

genes. However, unexpectedly the induction of gene expression was similar between 

genotypes and KO mice exhibited as great, if not greater, increases in some pro-

inflammatory mediators, particularly algogenic factors such as IL-1β, IL-6, TNF-α, PTGS2, 

NOS2 and CXCL5 (Follenfant et al., 1989; DeLeo et al., 1996; Aley et al., 1998; Homma et al., 

2002; Ma and Eisenach, 2002; Dawes et al., 2011). There was also an increase in the cell 

surface markers AIF and ITGAM, which corresponded with our previous 
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immunohistochemical findings of a normal macrophage response in the KO as discussed in 

2.3.5.  

 

2.4.3 GPR84 is involved in the regulation of a subset of growth factors in the sciatic 

nerve 7 days post PNL 

 

Strikingly, many of the top down-regulated transcripts in the injured sciatic nerves of 

GPR84 KO mice (compared to WT) were EGFs. AREG, was not detected in the KO but was 

induced by nerve injury in the WT. BTC and EREG were induced in both genotypes but to a 

greater extent in the WT. HBEGF was down-regulated in both genotypes but more so in the 

KO. EGFs mediate multiple and versatile cellular functions including cell proliferation, 

survival, development and homeostasis via binding to their tyrosine-kinase epidermal 

growth factor receptors (EGFR/ERBBI) to initiate receptor dimerisation, 

autophosphorylation and the activation of vast signalling cascades (Schneider and Wolf, 

2009). In the last decade, experimental evidence has revealed that GPCRs are able to 

augment potent mitogenic signals via a signalling partnership with EGFRs in a 

metalloprotease-dependent process. This pathway has been linked to many crucial 

physiological events such as cell proliferation, apoptosis, migration and disease (Schneider 

and Wolf, 2009). Little is known about EGFs in association with pain transmission, although 

one study reported that intradermal administration of EGF did not generate mechanical 

hyperalgesia and blocked PGE2-mediated sensitisation, indicating a role in the attenuation of 

nociception (Andres et al., 2010). Then again, ERBB mediated signalling has been implicated 

in pain pathways (Calvo et al., 2010; Calvo et al., 2011). 

 

ARTN, a member of the GDNF family, was induced in both genotypes after nerve injury but 

more substantially in the sciatic nerves of WT mice. Neurotrophins derived from immune 

cells such as mast cells and T lymphocytes exert multiple actions on sensory neurons and 

after nerve injury some neurotrophins and their receptors including NGF, BDNF and GDNF 

are markedly increased, particularly in Schwann cells (Woolf and Salter, 2000). We 

observed that NGF and BDNF were similarly induced by nerve injury in both genotypes, 

indicating that GPR84 is not involved in the regulation of these growth factors. Unlike NGF 

and BDNF, which are well documented in literature to play a role in pain transmission via 

sensitising nociceptors and increasing the excitability of dorsal horn neurons (Woolf, 1996; 

Latremoliere and Woolf, 2009), the story around GDNF is contradictory. GDNF has been 

postulated to have a neuroprotective role (Bennett et al., 2000; Ramer et al., 2003), and 

intrathecal administration was shown to reverse nerve injury induced behavioural 
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hypersensitivity; an effect attributable to normalised expression of sodium channels in the 

DRG (Boucher, 2000; Wang et al., 2003). Systemic administration of ARTN was also shown 

to reverse neuropathic pain behaviours in a dose and time-dependent manner and 

morphological/neurochemical manifestations generated by nerve injury were normalised 

by treatment (Gardell et al., 2003; Bennett et al., 2006). On the other hand, GDNF has also 

been shown to contribute to inflammatory induced pain in a model of CFA (Fang et al., 

2003) and acute administration of GDNF induced mechanical hyperalgesia in the rat by 

sensitising nociceptors (Bogen et al., 2008). 

 

2.4.4 GPR84 is involved in the regulation of cytokine/chemokine expression in the 

sciatic nerve 7 days post PNL 

 

We report that nerve injury induces an increase in expression of many chemokines and 

cytokines that have been well documented for their pro-nociceptive properties. 

Interestingly, many of the pro-nociceptive cytokines, such as TNF-α, IL-1β, and IL-6, were 

amongst the top up-regulated hits in the sciatic nerve of KO mice. Subsequent to peripheral 

nerve injury Schwann cells, resident macrophages and mast cells release TNF-α, whose 

expression peaks concurrently with the maximal decrease in pain thresholds (Shubayev and 

Myers, 2000). Subcutaneous administration of TNF-α elicits mechanical allodynia and 

thermal hyperalgesia, which is rapidly reversed via the application of neutralising 

antibodies (Homma et al., 2002).  IL-1β is up-regulated within hours of peripheral nerve 

injury and intraplantar or intraneural administration of the rat sciatic nerve produces a 

rapid onset of hypersensitivity (Follenfant et al., 1989; Zelenka et al., 2005). The role of IL-6 

in pain is less clear due to its multifunctional role that has caused conflicting experimental 

reports. After nerve injury the expression of IL-6 and its receptor, IL-6R, increase proximal 

to the site of damage, in the DRG and in the spinal cord (Murphy et al., 1995; DeLeo et al., 

1996). Whilst some have demonstrated that spinal administration of IL-6 produces dose-

dependent anti-allodynic effects in SNL rats (Flatters et al., 2003, 2004), others have shown 

that intrathecal administration of IL-6 generates pain behaviours, which can be markedly 

attenuated in several models of neuropathy via anti-IL-6 neutralising antibodies (DeLeo et 

al., 1996; Lee et al., 2010). Amongst the top down-regulated transcripts in the sciatic nerves 

of KO mice were IL-5, IL-11, IL-23a, IL-34 and CXCL13. Little is known about these 

mediators in the context of pain but given that they were down-regulated in both genotypes 

(albeit to a greater extent in the KO) they are unlikely to play a role in the attenuated 

behavioural pain phenotype of KO mice.  
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A majority of the top ranking up-regulated genes in the KO vs WT were chemokines 

including CCL1, 2, 3, 4, 7, 8, 9; CXCL9, 10, 17 and XCL1. Chemokines have also been reported 

in pain transmission, acting on their neuronal, immune and glial cell expressed receptors, 

which are coupled to Gαi/o signalling pathways (see Chapter 1). These pathways play a 

pivotal role in inflammation and orchestrate numerous cellular functions such as leukocyte 

trafficking, angiogenesis and haematopoiesis (White et al., 2013).  As previously discussed, 

neuropathic pain is abolished in CCR2 null mice and hypersensitive behaviours are 

attenuated with the administration of CCL2 neutralising antibodies. These observations 

correlate not only with an attenuated microglial response, but also with a reduction in 

macrophage recruitment (Abbadie et al., 2003). CCL3 is similarly postulated to contribute to 

neuropathic pain; peripheral or central administration of this ligand elicits pain behaviours 

that are reversed via antibody neutralisation (Kiguchi et al., 2010b). After nerve injury 

increased expression of CCL3 facilitates WD and nociceptor sensitisation via direct action on 

its CCR1+ and CCR5+ Schwann and macrophage cells (Kiguchi et al., 2012). The receptor for 

the chemokine IL-8 (CXCL8), CXCR2, was interestingly up-regulated 2.8 times more in the 

KO than in the WT.  IL-8 is thought to facilitate inflammation and studies using CXCR2 null 

mice report defective neutrophil recruitment (Chapman et al., 2009). Chemotactic 

chemokines CCL4, CCL7 and CCL8 are involved in the recruitment of macrophages, acting 

through the same receptors that confer the pro-nociceptive properties of CCL2, CCL3 and 

CCL5 and thus could potentially play a role in nociceptive pathways (Wells et al., 2006). In 

addition, these chemokines also act through CCR1, 2 and 5, which have been well 

documented to increase in expression in a range of PNS inflammatory disorders in humans.  

For instance, sural nerve biopsies from patients with Guillain-Barré syndrome exhibited an 

increase in CCR1 and CCR5 due to infiltrating endoneurial macrophages (Kieseier et al., 

2002).  

 

Pro-inflammatory CXCL9 and CXCL10 interact independently and synergistically at their 

receptor, CXCR3, which is primarily expressed by T lymphocytes. In chronic inflammatory 

conditions such as RA and experimental models of MS, CXCL9 and CXCL10 are considerably 

up-regulated in synchrony with their receptors, where they critically orchestrate leucocyte 

entry into the nervous system (Iwamoto et al., 2008; Kohler et al., 2008). Increased 

expression of these chemokines may be indicative of enhanced nerve injury-induced T-cell 

recruitment in the KO. Despite a lack of significance, intriguingly, CCL1 was up-regulated in 

the KO but down-regulated in the WT sciatic nerve. The relevance of CCL1 signalling via its 

receptor, CCR8, in pain or inflammation is yet to be determined. Nevertheless, CCL1 has 
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been shown to possess chemotactic properties and induce the expression of pro-

inflammatory cytokines (Reimer et al., 2011).  

 

The anti-inflammatory chemokines, CXCL17 and XCL1, were up-regulated in the sciatic 

nerves of KO mice 7 days post PNL. CXCL17 is thought to be involved in tissue repair in 

response to injury and XCL1, also known as lymphotactin, harbours its chemotactic effects 

via its receptor, XCR1. Both chemokines are involved in the regulation of T cell function and 

the suppression of the immune response, but little is known with regards to their 

contribution to nociceptive pathways (Nguyen et al., 2008; Lee et al., 2013). Based on these 

data, we can conclude that the deletion of GPR84 causes an up-regulation of a subset of 

chemokines and cytokines in the injured sciatic nerve; unexpectedly a majority of which are 

pro-inflammatory or implicated in nociception. However, it is possible that GPR84 mediated 

signalling may usually exert a suppressive role over these particular mediators. It is a 

common concept that heterotrimeric Gαi/o protein signalling in macrophage cells favours a 

pro-inflammatory cytokine response, although intriguingly inhibition of Gαi subunits in 

murine macrophages has been documented to augment LPS induced cytokines (Fan et al., 

2007). This striking observation parallels our own studies as we to report increased 

expression of many pro-inflammatory mediators as a result of the deletion of a Gαi/o coupled 

receptor. In relation to the behavioural phenotype this finding is unexpected and does not 

coincide with our original hypothesis that GPR84 deletion would in fact attenuate the 

expression of some key pro-nociceptive mediators, hence emphasising the differential 

regulation of chemokines via Gαi/o proteins and the possibility of compensatory systems. 

 

2.4.5 GPR84 signalling 

 

Under basal conditions GPR84 has a low level of expression in macrophage and microglial 

cells but is markedly induced by factors that activate the NFκB pathway such as LPS, TNF-α, 

IL-1β and MCFFAs (Wang et al., 2006a; Bouchard et al., 2007). IL-1β and TNF-α null mice 

exhibit reduced expression of GPR84 mRNA in the cerebral cortex, while the addition of IL-

1β and TNF-α blocking antibodies also reduces GPR84 transcripts in microglial cell cultures 

(Bouchard et al., 2007). Interestingly, we did not see differential regulation between the 

genotypes of these mediators in our studies, suggesting that these cytokines are not 

positively regulated by GPR84 activation after nerve injury. Wang et al. (2012) were the first 

to report that MCFFAs with carbon chain lengths of 9-12 residues may serve as endogenous 

ligands of GPR84. During a screen of more than 20 cytokines, MCFFA stimulation was shown 

to dose-dependently amplify LPS-stimulated production of pro-inflammatory IL-12p40 (IL-
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12b) (Wang et al., 2006a).  This indicated that activation of GPR84 promotes Th1 

differentiation and the production of Th1-associated cytokines such as INF-γ and IL-2. 

Therefore, we may have expected to see IL-12p40 expression decrease or remain 

unchanged in the injured sciatic nerve tissue of GPR84 KO mice along with 

decreased/unchanged expression of Th1-associated cytokines and an increase in Th2-

associated cytokines such as IL-4, 5, 6, 10 and 13. Interestingly, another study examining 

GPR84 KO T-cells showed an increased IL-4 production in response to in vitro stimulation 

with anti-CD3 (Venkataraman and Kuo, 2005). Thus, GPR84 is implicated in the regulation 

of T cells and the production of a subset of cytokines. However, in contrast to what we 

would anticipate from the Wang (2012) study, we found an increase in IL-12p40 expression 

in the injured sciatic nerves of KO mice compared to WT. Moreover, there was no change or 

detection of IL-2, 4 and 13 and a decrease in IL-5 expression, although we did observe an 

increase in IL-6 and IL-10. Although our data does not entirely coincide with previous 

findings, we must consider the fact that functional in vitro assays do not necessarily reflect 

the in vivo situation. Furthermore, IL-12p40 may either form a functional pro-nociceptive 

IL-12p70 subunit (via heterodimersation with the IL-12p35 (a)), or a biological blocker of 

IL-12p70 (via homodimerisation with other IL-12p40 subunits), which has been 

documented to produce analgesic effects when administered to nerve injured mice (Chen et 

al., 2013).  Therefore, we can postulate that the observed decrease in IL-12p35 mRNA in the 

injured sciatic nerves of KO mice indicates a consequential increase in IL-12p40 

homodimerisation; this would inhibit IL-12 and attenuate the pro-inflammatory Th1 

phenotype, consistent with the behavioural phenotype of GPR84 null mice. 

 

More recent studies using modified MCFFAs with added hydroxyl groups revealed that 

GPR84 mediates granulocyte and macrophage chemotaxis and the production of pro-

inflammatory IL-8 and TNF-α, respectively, under LPS stimulated conditions (Suzuki et al., 

2013). Systemic administration of the surrogate agonist, 6-OAU, was also shown to raise 

CXCL1 levels in rats (Suzuki et al., 2013). We did not see corresponding changes in the 

expression of these cytokines in GPR84 KO mice, but as previously discussed, these 

experimental conditions may diverge from cytokine/chemokine changes induced by the 

PNL model. 

 

2.4.6 Future work 

 

The expression of GPR84 was significantly up-regulated in the sciatic nerve at 7 days after 

peripheral nerve surgery. This finding, in conjunction with the striking behavioural 
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phenotype of null mice, suggests that GPR84 is critical for neuropathic pain. In light of this 

evidence we hypothesised that GPR84 deletion might affect transcriptional changes of pro-

nociceptive mediators that are normally induced by nerve injury; these mediators may be 

involved in the activation of GPR84 and/or downstream signalling effects of this receptor in 

neuropathic states. We also characterised the microglia and macrophage response as key 

immune cell players in neuropathic pain mechanisms. However, we unexpectedly found that 

key allogenic mediators were up-regulated in the KO and that the microglia and macrophage 

phenotype did not differ between the genotypes. Thus the mechanisms behind GPR84 

nociceptive signalling are unclear. 

 

It is apparent that GPR84 is not necessary for global changes in inflammatory mediators but 

may be important in regulating specific factors produced by microglia and/or macrophage 

cells. Our screening study indicated that the gene for the anti-inflammatory macrophage cell 

marker, ARG1, may be of particular importance. We observed a striking up-regulation of 

ARG1 in the injured sciatic nerve of KO mice in contrast to WT mice. Macrophages can be 

broadly categorised into two basic subsets: the pro-inflammatory classically-activated M1 

class and the anti-inflammatory alternatively-activated M2 class, as discussed in Chapter 1. 

In a study investigating the role of TNF-α in a model of EAN, clinical severity scores were 

attenuated in TNF-α null mice, correlating with a pro-M2 macrophage phenotype (Zhang et 

al., 2012b). In another study, IL-12p40 null mice exhibited enhanced polarity for the M2 

phenotype as well as increased secretion of the anti-inflammatory TGF-β (Bastos et al., 

2002). Therefore, it would be instrumental to further validate the pro-M2 phenotype we 

observed in the PNL model and examine the expression of M1 and M2 macrophages in the 

injured sciatic nerves of GPR84 WT and KO mice. 

 

Importantly, we must note that our examination was limited to a set array of 92 genes of 

interest to our group, and thus further studies profiling alternative mediators may prove 

more informative. We utilised the PNL model not only because it is mechanistically simple 

but also due to the remaining innervation of un-ligated nerve fibres, which allowed us to 

measure reproducible behavioural outcomes between the genotypes. However, we found 

that transcript changes were only significant in the sciatic nerve at 7 days and so a more 

robust nerve injury model may be more appropriate. For example, the SNI model  

(Decosterd and Woolf, 2000) would induce greater transcriptional changes as more neurons 

are damaged, hence providing a larger scope to observe differential regulation of transcripts 

between the genotypes. We did not observe positive evidence for the involvement of 

microglia or macrophage cell recruitment in GPR84 mediated nociceptive signalling. 
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Therefore, it would be interesting to further investigate other immune cell types known to 

play a role in neuropathic pain behaviours, such as neutrophils and T-cells. 

 

In light of the behavioural phenotype in null mice and up-regulation of GPR84 mRNA in 

response to nerve injury, GPR84 appears to be a promising new target in pain research. 

Unfortunately, we were unable to visualise staining of this receptor in the PNL model as 

protein expression was not high enough for detection via this method (data not shown). It 

would be interesting to determine whether intrathecal or subcutaneous administration of a 

GPR84 blocking antibody to nerve injured mice would alleviate behavioural 

hypersensitivity. Conversely, the putative role of this receptor could be thoroughly tested by 

administration of a selective agonist to determine whether direct GPR84 activation can 

generate behavioural hypersensitivity in naïve mice.  
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3.1 Introduction 

 

3.1.1 Inflammatory pain 

 

Inflammation is a protective response that is usually a result of tissue damage, infection or 

irritation and is classically associated with symptoms of redness (rubor), heat (calor), pain 

(dolor), swelling (tumor) and loss of function (function laesa). Vasodilation of blood vessels 

during inflammation decreases vascular resistance and thus enables increased blood flow to 

the area of damage, resulting in redness and heat. Increased vascular permeability facilitates 

the exudation of plasma proteins and fluid into the tissue, producing swelling (oedema). 

Concurrently, the process of inflammation activates free nerve endings, ultimately leading to 

the sensation of pain (Chiu et al., 2012). In doing so, the inflammatory response facilitates 

tissue healing by removing damaged tissue and limiting the use of the affected area. The 

final stage of a successful acute inflammatory response is resolution, which is a passive but 

highly co-ordinated sequence of events that restores homeostasis (Lee and Surh, 2012). 

However, in some cases where the pro-inflammatory signals persist and the immune 

response is uncontrolled, inflammatory pain outlasts the healing process of the underlying 

tissue damage and so no longer serves as a protective mechanism, leading to the 

development of chronic pain (Lee and Surh, 2012). Chronic inflammatory pain is a major 

clinical problem in many human diseases such as RA, OA, cancer, diabetes, fibromyalgia, 

inflammatory back pain and IBS and not only compromises the quality of lives of patients 

but also amounts to huge socioeconomic costs in patient care. Furthermore, increasing 

evidence has highlighted the role of neuroinflammatory processes in the etiology of many 

neurological diseases such as Alzheimer’s, Parkinson’s disease and multiple sclerosis 

(DeLeo and Yezierski, 2001). Therefore, the convergent involvement of the immune system 

and its multiple signalling molecules in the genesis of many inflammatory diseases is an 

important avenue for the development of successful therapeutic treatments. 

 

3.1.2 Models of inflammatory pain 

 

Hyperalgesia is a symptom that follows various forms of tissue injury and is typically 

characterised by a reduction in nociceptive thresholds. Such abnormal sensations may also 

be accompanied by allodynia and spontaneous pain, which are measurable behavioural 

outcomes in animal models of pain, although interpretation of the latter is subjective. To 

study chronic inflammatory pain, a number of experimental models in rodents have been 

developed that entail the cutaneous or subcutaneous application of an inflammogen or 
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chemical irritant to the hind paw, joint or muscle tissue followed by behavioural tests to 

examine changes in thermal and mechanical pain thresholds (Zhang and Ren, 2010). Some 

of the classical models routinely used include CFA (inactivated mycobacteria tuberculosis 

emulsified in mineral oil), zymosan (extract of yeast cell wall), carrageenan (seaweed 

extract) and formalin (Pillemer and Eaker, 1941; Freund, 1947; Dubuisson and Dennis, 

1977; Svensson et al., 2003b). CFA, zymosan and carrageenan produce a rapid local 

inflammatory response, paw oedema and persistent pain. The hyperalgesia and allodynia 

last for approximately 1-2 weeks in the CFA model and 24 hours in the carrageenan and 

zymosan models. On the other hand, formalin consists of two phases; an initial 5 minute 

period of guarding, licking and biting behaviour, which is attributed to direct activation of 

nociceptor afferent terminals followed by a second phase of shaking and licking that lasts 

approximately 40 minutes and is thought to be mediated by central sensitisation of dorsal 

horn neurons within the spinal cord (Dubuisson and Dennis, 1977; Dickenson and Sullivan, 

1987). Formalin treated rodents may also exhibit behavioural hypersensitivity lasting up to 

4 weeks as a result of central sensitisation caused by ongoing peripheral signals from 

inflamed tissues and nerve damage (Fu et al., 1999). Several clinically relevant models of 

inflammatory pain have also been developed including the application of CFA into the knee 

joint or base of the tail to induce models of monoarthritis or polyarthritis, respectively (De 

Castro Costa et al., 1981). Type II collagen emulsified in Freund’s incomplete adjuvant may 

also be injected into the base of the tail to induce polyarthritis (Baek et al., 2005). 

 

CNS inflammation is a common feature of many neurological pathologies associated with 

pain (Felts et al., 2005). A number of inflammogens have been injected into the CNS to 

experimentally induce central inflammation. These include the cytokines IL-1β, TNF-α and 

INF-γ as well as LPS (Andersson et al., 1992a, b; Minghetti et al., 1999). LPS is a cell wall 

component of Gram-negative bacteria and is an amphiphillic compound consisting of a lipid 

A, a core oligosaccharide and an O side-chain. LPS is one of the most potent inflammatory 

inducing agents of the immune system and may be administered in several ways; for 

instance, systemic administration is used as a model of endotoxemia, while intrathecal 

treatment generates an inflammatory response that is isolated from immune-mediated 

disease processes (Andersson et al., 1992b; Felts et al., 2005). 

 

3.1.3 LPS/TLR4 signalling pathway 

 

LPS stimulation of mammalian cells occurs via the interaction with several binding proteins 

including CD14, MD2 and TLR4 followed by a cascade of signalling pathways. TLR4 is 
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believed to be unable to directly bind to LPS and so LPS/TLR4 signalling is permitted by the 

physical association of the MD2 protein on the cell surface, which may also be facilitated by 

the TLR4 co-receptor, CD14 (Lu et al., 2008). The Toll protein was first discovered in 

Drosophila and research carried out on the C3H/HeJ mouse, which possesses a defective LPS 

response, warranted the notion that TLR4 signalling is an essential component of the LPS 

response (Poltorak, 1998). Briefly, upon LPS recognition, TLR4 undergoes oligomerization 

and interacts with one of the five Toll-interleukin-1 receptor (TIR) domain-containing 

adaptor proteins, most commonly, the myeloid differentiation primary response gene 88 

(MyD88) (Poltorak, 1998). Once associated with the TIR domain of the TLR, MyD88 recruits 

the serine/threonine kinase, IL-1 receptor-associated kinase 4 (IRAK4), to the TLR complex 

via an interaction between the death domains of both molecules and undergoes rapid 

phosphorylation and re-association with tumor necrosis factor receptor-associated factor 6 

(TRAF6) (Cao et al., 1996a; Cao et al., 1996b). TRAF6 and phosphorylated TRAK1 

subsequently dissociate from the receptor complex and go on to interact with TGF-β 

activated kinase (TAK1) and TAK-1 binding proteins (TAB) where a cascade of 

ubiquitination reactions occur on TRAF6 (Doyle and O'Neill, 2006). Eventual 

phosphorylation of TAK1 and TAB2 triggers the dissociation of the membrane bound 

TRAF6/TAK1/TAB1,2 complex to the cytosol where IRAK-1 is subsequently degraded. As a 

result, TAK1 is activated and phosphorylates the inhibitory κB (IκB) kinase complex (IKK) 

(Cao et al., 1996a; Cao et al., 1996b). The activated IKK complex in turn mediates 

phosphorylation and degradation of the IκB protein and subsequent liberation of NF-κB. NF-

κB may then translocate to the nucleus to initiate the transcriptional regulation of many 

pro-inflammatory cytokines and immune-related genes (Lu et al., 2008). In parallel TAK1 

also activates the MAPK kinases (MKKs), resulting in the eventual phosphorylation and 

activation of MAPKs such as p38 and JNK. Initiation of MAPK pathways leads to the 

activation of transcription factors, which drive the synthesis of many pro-inflammatory 

cytokines that facilitate pain-signalling (Lu et al., 2008). Fig. 3.1 summarises the LPS/TLR4 

signalling pathway. 
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Figure 3.1: Diagram of LPS/TLR4 signalling pathway 

 

Molecular components involved in TLR4 signalling pathway. Activated TLR4 interacts with MyD88, 

leading to the recruitment of IRAK, which undergoes rapid phosphorylation and re-association with 

TRAF6. After a series of phosphorylation-dependent events, the IKK complex is activated and 

mediates the phosphorylation and degradation of the IκB protein. Liberated NF-κB may then 

translocate to the nucleus to initiate the transcriptional regulation of many target genes. TRAF6 

mediated activation of MKK leads to the mobilisation of MAPKs such as p38, which may also activate 

NF-κB. 

 

 

In this chapter, we utilised a peripheral (CFA) and a central (LPS) model of inflammation. 

Injection of CFA to the hind paw produces a dose-dependent inflammation and behavioural 

hyperalgesia in rodents via the activation of the innate immune system and subsequent 

activation of the adaptive immune system in a TLR dependent manner (Freund, 1947; Marta 

et al., 2009). As GPR84 is normally only expressed by immune cells, the CFA model is 

appropriate for investigating the role of this receptor in persistent inflammatory induced 

pain. Intrathecal administration of LPS into the lumbar spinal cord is also associated with 

hyperalgesia in the hind paw (Cahill et al., 2003) and triggers the production of cytokines 
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such as IL-1β, TNF-α and IL-6 that contribute to the initiation and maintenance of 

behavioural hypersensitivity (DeLeo and Yezierski, 2001; Wieseler-Frank et al., 2005). Since 

TLR4 serves as a specific sensor of LPS and is exclusively expressed by microglial cells in the 

CNS (Lehnardt et al., 2002) we employed the LPS-induced CNS inflammatory model to 

selectively evaluate the response of microglial cells to a robust inflammatory stimulus in the 

absence of GPR84. Notably, GPR84 expression is up-regulated in microglia and macrophage 

cells by LPS or cytokines which are capable of stimulating the NF-κB pathway, such as TNF-

α and to a lesser extent IL-1β (Wang et al., 2006a; Bouchard et al., 2007). Therefore, we also 

measured GPR84 expression in cultured microglia and macrophage cells subsequent to LPS 

stimulation and examined LPS-induced mediator profiles in WT and KO macrophages. 

 

3.1.4 Mechanisms of chronic inflammatory pain 

 

Subsequent to an inflammatory insult, multiple factors are released from damaged cells, 

producing an ‘inflammatory soup’ rich in protons (K+, H+), histamine, 5HT, PGs, growth 

factors, bradykinin, ATP and cytokines (Scholz and Woolf, 2002; Marchand et al., 2005; 

Linley et al., 2010). These nociceptor sensitizers act via their cognate receptors expressed 

on C-fibre terminals and generate an axonal reflex response by inducing the release of the 

neuropeptides, SP and CGRP (Chiu et al., 2012). SP and CGRP are considered to be the main 

initiators of neurogenic inflammation and upon C-fibre stimulation are released into the 

periphery where they act directly on vascular endothelial smooth muscle cells to elicit 

vasodilation and plasma extravasation, respectively. This results in the aforementioned 

characteristic redness and swelling (Chiu et al., 2012). Other mediators released in response 

to tissue damage such as PGE2 and bradykinin, contribute to peripheral sensitisation of 

nociceptors by driving the activation of multiple intracellular transduction signalling 

pathways such as PKA, PKC and PI3K, as well as the MAPKs, p38, ERK and JNK (Fig. 3.2) 

(Woolf and Ma, 2007). There are two main downstream effects of these cascades, one being 

rapid phosphorylation-dependent modifications in ionotropic and metabotropic receptors, 

receptor subunits and subsets of ion channels, which alter activation thresholds and kinetic 

properties of nociceptor terminals. The other encompasses changes in transcriptional 

programmes that generate long-term effects (Linley et al., 2010). For example, sensitising 

agents such as PGE2, adenosine and 5HT may enhance Na+ conductance of TTX resistant 

channels by shifting the voltage-dependence and accelerating channel activation (Gold et al., 

1996). Products of the COX pathway may also induce a transcriptional increase in the 

expression of Nav1.7 and Nav1.8 in large and small DRG neurons (Gould et al., 2004). In 

addition to increased excitability of primary afferent neurons, thermal hypersensitivity is a 

cardinal sign of an inflammatory response, and appears to be largely driven by enhanced 
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TRPV1 currents. NGF mediated activation of PI3K via TrkA activation leads to the down-

stream phosphorylation of TRPV1 by src kinase and hence an increase in membrane current 

(Zhang et al., 2005d). Increased membrane currents of ion channels is mainly attributed to 

sensitisation or greater trafficking out of the DRG cell bodies to the surface membrane of 

peripheral processes (Coggeshall et al., 2004; Zhang et al., 2005d). In addition to post-

translational effects, NGF may also mediate transcriptional regulation over multiple 

ionotropic (TRPV1, P2X3, ASIC3) and metabotropic (B2 receptor, μ-opiod receptor) 

receptors and voltage-gated ion channels (Na+, Ca2+, K+) (Pezet and McMahon, 2006). NGF is 

a major contributor to inflammatory hyperalgesia and has been shown to be up-regulated in 

various experimental models of inflammation as well as in a number of human diseases with 

some correlation to the extent of reported pain. Correspondingly, anti-NGF treatment has 

successfully demonstrated alleviation of behavioural hyperalgesia in experimental models 

of inflammation using rodents (Pezet and McMahon, 2006). 

 

Mobilisation of the resident immune cell response occurs in conjunction with the activation 

of sensory neurons. Here, activated mast cells and dendritic cells release a range of 

chemokines and cytokines that contribute to the localised pool of accumulating signalling 

molecules, many of which possess chemotactic properties for neutrophils, eosinophils, 

macrophages and T-cells (Chiu et al., 2012). The synthesis and release of chemotactic and 

cellular adhesion molecules establishes a concentration gradient, which is essential for the 

re-orientation, homing and migration of target leucocytes to active sites of inflammation 

(DeLeo and Yezierski, 2001). Immune cell infiltration and migration to the injury site is a 

hallmark of the stereotypical inflammatory response, where the initial activation of the 

innate immune system results in further production of cytokines and the expression of cell 

surface antigens, leading to the recruitment of the adaptive immune system (DeLeo and 

Yezierski, 2001).  

 

In effect, activation of the immune system generates a second series of signals, which 

unanimously contribute to changes in the chemical milieu and transduction properties of 

nociceptive neurons. Cytokines are well documented to play an important role in the 

pathogenesis of many inflammatory diseases via their direct or, more commonly, indirect 

actions (Arai et al., 1990; Woolf et al., 1997). Characteristically, cytokines exhibit functional 

redundancy and overlap as they tend to share multiple receptors to carry out various 

autocrine, paracrine and hormonal effects. The complex signalling pathways of these 

molecules encompass a combination of pro- and anti-inflammatory actions on a broad range 

of cell types. This may involve transcription-dependent or independent effects that 

contribute to peripheral sensitisation and hence inflammatory pain hypersensitivity (Woolf 



Chapter 3 - The Role of GPR84 in Chronic Inflammatory Pain 

 

141 

et al., 1997; Verri et al., 2006). The first cytokines described to play a role in inflammatory 

and/or neuropathic pain mechanisms were IL-1β, TNF-α, IL-6 and IL-8/CXCL8 followed by 

the more recently discovered contribution of IL-12 and IL-18. IL-1β and TNF-α are 

expressed by a range of cells and are prototypically involved in the establishment of 

peripheral sensitisation via recruiting and activating immune cells (Verri et al., 2006). These 

cytokines may also induce the expression of NGF and PGE2 and exert direct effects on 

nociceptive neurons, which exacerbates neuronal excitability and evokes spontaneous firing 

(Woolf et al., 1997; Binshtok et al., 2008). Intraplantar administration of IL-1β was shown to 

elicit mechanical hypersensitivity in rodents that was dependent on the release of 

prostanoids, whereas local injection of the anti-inflammatory IL-1 receptor antagonist (IL-

1ra) inhibited carrageenan and LPS induced hyperalgesia by means of competitive action at 

the IL-1R (Ferreira et al., 1988; Cunha et al., 2000). Consistent with this, mechanical and 

thermal hypersensitivity in the CFA model, were reported to be alleviated with pre-

treatment of IL-1ra or an NGF neutralising antibody (Safieh-Garabedian et al., 1995).  

 

TNF-α is a potent pro-inflammatory cytokine predominantly produced by macrophage cells 

in response to aberrant stimuli and mediates its effects through its high affinity receptors, 

TNFR1 and TNFR2. Similar to IL-1β, TNF-α has been experimentally demonstrated to evoke 

mechanical hypersensitivity subsequent to intraplantar administration and pre-treatment 

with anti-TNF-α antiserum attenuated CFA induced mechanical and thermal hyperalgesia 

(Woolf et al., 1997). In models of overt pain, subcutaneous injection of formalin or 

intraperitoneal zymosan/acetic acid evoked the release of IL-1β, TNF-α and IL-8/CXCL8, 

which are concomitantly involved in the writhing response, whereas administration of their 

corresponding anti-serums inhibited nociceptive behaviours  (Ribeiro et al., 2000). Patients 

with chronic inflammation of the connective tissue exhibit raised levels of TNF-α in the 

temporomandibular joint synovium, which correlates with reported symptoms of local 

allodynia at the joint (Nordahl et al., 2000). Encouragingly, anti-TNF-α therapy is beneficial 

in some inflammatory diseases such as OA and psoriatic arthritis and has exemplified 

clinical success in RA treatment (Rankin et al., 1995; Haraoui, 2005). 

 

 IL-6 elicits a range of bio-activities that encompass both anti- and pro-inflammatory effects. 

Like the previously discussed cytokines, IL-6 administration to the hind paw induces a 

bilateral dose- and time-dependent mechanical hypersensitivity, which is indicative of 

systemic distribution (Cunha et al., 1992; Verri et al., 2006). This concept is supported by 

the fact that smaller doses of IL-6 produce correspondingly smaller effects in the 

contralateral paw and that intraplantar administration of IL-6 antagonists and neutralising 

antibodies inhibit hypersensitivity of the ipsilateral paw, with no effect on the contralateral 
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paw (Cunha et al., 1992). Furthermore, pre-treatment with indomethacin (COX inhibitor) 

specifically attenuated IL-1β or IL-6 evoked behavioural hyperalgesia whilst bearing no 

effect on IL-8 evoked hyperalgesia. Likewise, pre-treatment with atenolol (B1 blocker) 

attenuated IL-8 but not IL-1β or IL-6 evoked hyperalgesia (Cunha et al., 1991; Cunha et al., 

1992). This suggests that these cytokines elicit their effects via different mechanisms, 

involving either the COX pathway (IL-1β/IL-6) or the sympathetic nervous system (IL-8) 

(Cunha et al., 1991; Cunha et al., 1992).  In a model of carrageenan evoked hyperalgesia, it 

was further demonstrated that co-administration of atenolol and anti-IL-8 serum were not 

additive in contrast to co-administration of indomethacin and anti-IL-8 serum, which 

exhibited additive effects and abolished behavioural hypersensitivity in the rat (Cunha et al., 

1991). In addition, TNF-α induced mechanical hypersensitivity is partially attenuated with 

pre-treatment of indomethacin or atenolol and is abolished by co-treatment of these drugs 

(Verri et al., 2006). Correspondingly, anti-IL-1β, anti-IL-8 or anti-IL-6 treatment partially 

attenuated TNF-α induced hypersensitivity, whereas the combination of anti-IL-1β and anti-

IL-8 or anti-IL-6 and anti-IL-8 neutralising antibodies abolished pain behaviours (Cunha et 

al., 1992; Verri et al., 2006). This evidence therefore suggests that TNF-α possess a pivotal 

role in inflammatory mechanisms and its effects are mediated by two distinguishable 

pathways: TNF-α/IL-1β/IL-6/prostaglandin and TNF-α/IL-8/sympathetic (Cunha et al., 

1992; Verri et al., 2006).   

 

Subsequent to inflammatory stimuli, IL-12 and IL-18 are also released from a range of 

immune cells including monocytes, macrophages, B cells and dendritic cells (Nakanishi et 

al., 2001; Verri et al., 2006) and synergistically promote Th1 differentiation and the 

production of IFN-γ (Nakanishi et al., 2001). Like IL-6, IL-12 exhibits dual roles; while it 

exacerbates collagen-induced arthritis when administered during the early stages of the 

disease, it exerts anti-inflammatory effects when administered at later stages (Joosten et al., 

1997). IL-12 has also been shown to consistently produce pain in humans. For example, a 

cohort of renal cancer patients receiving intravenous recombinant IL-12 therapy presented 

cases of arthralgias in the finger joints and shoulder region (Gollob et al., 2000). Intraplantar 

administration of IL-12 also elicits hypernociceptive behaviours in rodents (Verri, 2005). IL-

18 is a member of the IL-1 family and shares caspase 1 with IL-1β, which is the enzyme that 

catalyses the cleavage of its pro-IL-18 precursor molecule to yield the active glycoprotein 

(Bazan et al., 1996). Normally IL-18 is constitutively expressed in many cell types, unlike 

many other cytokines that are induced upon appropriate stimulation. In various 

inflammatory diseases including Crohn’s disease, type 1 diabetes and RA, IL-18 expression 

increases in specific tissues associated with the particular disease (Nakanishi et al., 2001). 

In a collagen-induced arthritis model, IL-18 null mice were reported to show attenuated 
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disease severity, which correlated with reduced levels of TNF-α. The authors postulated that 

this was a neutrophil mediated mechanism as IL-18 promotes neutrophil migration via 

inducing TNF-α, which in turn up-regulates the neutrophil chemoattractant molecule LTB4 

(Canetti et al., 2001; Wei et al., 2001). 

 

Incoming signals from the periphery and subsequent release of neurotransmitters into the 

dorsal horn generates changes in the chemical milieu of the CNS. Microglia and astrocytes 

respond via gliosis and a concomitant release of mediators (see Chapter 1) that contribute to 

the development of central sensitisation and behavioural hypersensitivity (Watkins et al., 

2001; Watkins and Maier, 2003). Centrally released glutamate and SP directly activate 

NMDA and NK1 receptors expressed by microglial cells, which induces the activation of NF-

κB and the sequential synthesis of pro-inflammatory mediators (Rasley et al., 2002). Upon 

neuronal activation the chemokine, fractalkine, is diffusely released from neuronal cell 

membranes and binds to its exclusively expressed microglial receptor, CX3CR1. This forms a 

direct neuronal to glial cell signalling pathway, which essentially drives p38 activation and 

down-stream events that maintain hyperalgesia (Chapman et al., 2000). Once activated p38 

is translocated to the nucleus where it phosphorylates transcriptional factors including 

activating transcription factor 2 (ATF-2), which mediates the biosynthesis of many 

mediators such as IL-1β, TNF-α, COX-2 and iNOS (Kumar et al., 2003; Svensson et al., 2003b; 

Ji and Suter, 2007; Ji et al., 2009). In addition to orchestrating transcriptional events, p38 is 

also thought to exert its effects via direct interaction with enzymes, receptors and ion 

channels (Svensson et al., 2003a). For example, during inflammation spinal p38 activates 

phospholipase A2 (PLA2) leading to the generation of arachidonic acid and the production of 

PG. Conversely, it was shown that pre-treatment with intrathecally administered p38 

inhibitors (SB20358 or SD-282) prevented COX-2 up-regulation with a concomitant 

attenuation of intraplantar formalin/carrageenan- and intrathecal SP-induced hyperalgesia 

(Svensson et al., 2003a; Svensson et al., 2003b). Similarly, Clark et al. (2006) showed that 

the release of IL-1β from LPS stimulated spinal cord slices was mediated by p-38 activation 

in spinal microglia, which could be prevented by the administration of a p-38 inhibitor. This 

was later shown to be dependent on the activation of the P2X7 receptor as a result of LPS 

evoked ATP release (Clark et al., 2010b). Neuronally released ATP activates microglial cells 

via a selection of purigenic metabotropic (P2Y) and ionotropic (P2X4 and P2X7) receptors, 

which in turn initiate the release of several cytokines (Franke et al., 2007). As previously 

discussed (Chapter 2) the central release of proinflammatory cytokines (IL-1β, TNF-α, IL-6) 

enhances EPSCs and potentiates AMPA and NMDA currents in lamina II dorsal horn neurons 

via a combination of direct and indirect effects on neuronal properties (Kawasaki et al., 

2008). Here chemokines are critical players in neuroinflammatory responses to a peripheral  
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Figure 3.2: Inflammation-induced pain mechanisms 

 

Subsequent to tissue damage, resident mast cells and macrophages are activated and blood-borne 

immune cells (neutrophils and monocytes) infiltrate the site of inflammation. Various mediators are 

released from damaged tissue cells and immune cells, which act via their cognate receptors expressed 

on primary afferent neurons. For example, TNF-α/TNFR, histamine/H1, bradykinin/B2, NGF/TrkA, 

PGE2/EP2, CCL2/CCR2, CCL3/CCR1,5 signalling leads to the activation of intracellular kinases (PKA, 

PKC, PI3K, MAPK), which initiate post-translational modifications such as phosphorylation and 

increased trafficking of ion channels and receptors. Chemokines and cytokines may exert their pro-

nociceptive effects directly by binding to their receptors expressed on nociceptors. They may also act 

indirectly via recruiting immune cells and initiating the release of other mediators such as PGs, which 

can activate and sensitise nociceptors. Modified from Marchand et al. (2005). 
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insult and in addition to neuronal modulation they may also induce further release of COX2, 

NOS and SP. Ultimately, microglial activation and the subsequent release of cytokines, 

glutamate, ATP, prostanoids, NO and proteases drives multiple signalling pathways that 

contribute to increased excitability, the up-regulation of neuronal receptors and enhanced 

neurotransmission leading to centrally maintained hypersensitivity (DeLeo and Yezierski, 

2001; Watkins et al., 2001; Watkins and Maier, 2003). 

 

3.1.5  Aims 

 

In this chapter we utilised a peripheral (CFA) and a central (LPS) model of inflammation in 

transgenic mice to evaluate the role of GPR84 in persistent inflammatory pain mechanisms. 

In both models we characterised pain behaviours of GPR84 WT and KO mice and examined 

the spinal microglial phenotype. Lastly, we investigated changes in mRNA transcript 

expression of 92 different chemokines, cytokines, growth factors and cell markers in LPS 

stimulated WT and KO macrophage cells. This approach enabled us to identify putative 

mediators that are modulated by GPR84 and hence may contribute to inflammatory-pain 

behaviour via down-stream signalling of this receptor. 
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3.2 Materials and methods 

 

3.2.1 Animals 

 

Breeding and genotyping of GPR84 WT and KO animals was carried out as described in the 

methods section in Chapter 2. Experiments were conducted on randomly selected mixed sex 

and age-matched mice weighing 20-25 g (7-14 weeks old). Mice were housed individually or 

in groups (no more than 4 per cage) in standard environmental conditions (12 hour 

light/dark cycle) with ad libitum access to food and water. Animal husbandry and 

experiments were carried out in a non-sterile housing environment in accordance with the 

United Kingdom Animals (Scientific Procedures) Act 1986.  

 

To calculate the number of animals required for behavioural studies a priori power analysis 

was carried out using G*Power (v-3.1.7) software. Based on an estimated 60% reduction 

effect (deduced from previous experimental studies in our lab), the software estimated that 

a total sample size of 36 (n = 9 per group) would be required to detect statistical differences 

(α = 0.05, 1-β = 0.95, d = 3 or 6). For the CFA study two groups of animals were tested and 

the contralateral paw was used as a control for both genotypes. For the CNS inflammatory 

model four groups of animals were tested including a saline-treated control group and an 

LPS-treated group for each genotype. For all studies the experimenter was blinded to 

genotype and treatment. Allocation concealment was carried out by assigning each animal 

with an individual identification number (see Chapter 2) and by employing an independent 

investigator to prepare treatments. Blinding codes were broken after completion of 

behavioural experiments to determine if further anatomical assessment was necessary. 

According to pre-determined exclusion criteria, animals were excluded from experimental 

analysis as specified by the project license e.g. excessive self-mutilation. 

 

3.2.2 Inflammatory pain models 

 

Complete Freund’s Adjuvant (CFA) 

 

A single 15 μl dose of CFA (1 mg/mL, Mycobacterium tuberculosis in mineral oil; Sigma, UK) 

was injected into the plantar surface of the left hind paw. The contralateral paw served as a 

control. Mechanical (von Frey, paw pressure) and thermal/cold (Hargreaves, cold plate) 

withdrawal thresholds were examined pre- and post-CFA on days 1, 3, 7, 10 and 14. To 
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quantify the degree of paw oedema the dorsal-ventral thickness was measured using a 

pocket thickness gauge (Mitutoyo, UK) pre and post CFA treatment. 

 

Lipopolysaccharide (LPS) – induced mechanical hyperalgesia 

 

Animals were anesthetised with 2-3% isoflurane (Abbott Animal Health, UK) inhalation 

anaesthesia. Two intrathecal injections of LPS were administered into the lumbar region of 

the spinal cord, an initial ‘priming’ dose and a second dose 24 hrs later. Intrathecal 

injections were carried out using a 25 G needle on a Hamilton syringe, which was inserted at 

a 20° angle between the L5/L6 vertebrae as previously described (Hylden and Wilcox, 

1980). LPS-treated mice received two 5 μl doses of 2 μg of LPS (Sigma, UK; dissolved in 0.9% 

saline) while control mice received two 5 μl doses of 0.9% saline. Mechanical (von Frey, paw 

pressure) and cold (cold plate) withdrawal thresholds were examined pre- and at 1 and 3 

hrs post-LPS (Clark et al., 2006; Clark et al., 2010b).  

 

3.2.3 Mechanical withdrawal threshold 

 

Von Frey 

 

Tactile mechanical thresholds of alert and unrestrained mice were examined via von Frey 

hair application (0.008-1 g, Touch Test, Stoelting, USA) to the plantar surface of the hindpaw 

via the ‘up-down’ method (Chaplan et al., 1994). Before testing, mice were acclimatised for a 

period of 1 hr in individual acrylic testing cubicles (8 x 5 x 10 cm) on an elevated wire mesh 

floor. Placement in testing cubicles was selected at random for each testing day. This 

enabled access to the lateral paw surface. Calibrated von Frey hairs were applied starting 

with the 0.6 g filament, in an alternate fashion to the left and right hind paw. The flexible 

nylon hair was applied so that the fibre bent for a duration of 3 s or until a paw withdrawal 

reflex occurred that was not coupled with movement or grooming. A positive withdrawal 

response is followed by a lower force hair and vice versa for a negative response until a 

change in behaviour occurs. Via this ‘up-down’ sequence four subsequent hairs were 

assessed and the 50% PWT was calculated according to the method described by (Dixon, 

1980).  
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Paw pressure 

 

Noxious mechanical thresholds were examined in the hindpaws of restrained alert mice via 

an Analgesymeter (7200; Ugo Basile, Italy) (Randall and Selitto, 1957). Each hindpaw was 

tested separately; briefly, the plantar surface was placed on a pedestal with a probe resting 

on the dorsal surface. Increasing pressure was applied via the probe, up to a maximum of 

120 g to prevent tissue damage. The nociceptive threshold was taken as the force at which 

the mouse responded. 

 

3.2.4 Thermal withdrawal threshold 

 

Hargreaves 

 

Thermal thresholds in unrestrained and alert mice were determined with the Hargreaves 

method using the Plantar Test (7370; Ugo Basile, Italy) (Hargreaves et al., 1988). Prior to 

testing, mice were acclimatised for 1 hr in individual acrylic testing cubicles (8 x 5 x 10 cm) 

on a glass plate. Placement in testing cubicles was selected at random for each testing day. 

An infrared light source of an arbitrary intensity of 30 (calibrated to elicit a PWL of 10-15 s 

in naïve mice) was directed onto the plantar surface of the hind paw through the glass plate. 

The PWL was automatically recorded in secs upon a withdrawal reflex. The left and right 

paws were tested alternately and responses were recorded for each paw on three separate 

occasions with at least 2 mins between assays. Each test had a maximum latency of 23 s to 

prevent tissue damage.  

 

Cold plate 

 

Noxious cold thresholds of the hind paws of lightly restrained mice were examined using the 

cold plate (IITC Life Sciences, USA) set at a temperature of 10°C ± 0.1°C. Each paw was 

tested separately by being placed with the plantar surface touching the plate. The latency to 

withdraw was taken as the threshold and recorded to the nearest 0.01 s. A 20 s cut-off was 

implemented to prevent tissue damage. 

 

3.2.5 Tissue preparation and immunohistochemistry 

 

On completion of behavioural testing, mice were anaesthetised with sodium pentobarbital 

(0.2 g/mL i.p.; Euthatal, Merial Animal Health Ltd) and perfused transcardially with a 0.9% 

saline and 0.1% heparin solution (Leo Laboratories Ltd, UK) followed by fixation with 4% 
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paraformaldehyde (PFA; VWR, UK) in 0.1 M PB. Lumbar spinal cords were dissected and 

post-fixed for 2 hrs in PFA and cryoprotected in a 20% sucrose/0.1 M PB solution (VWR, 

UK) for a minimum of 3 days at 4°C. Subsequently, tissue was embedded in OCT medium 

(VWR, UK), snap frozen with liquid nitrogen and stored at -80°C. Transverse spinal cord 

sections of the L4 and L5 lumbar region were cut on the cryostat in sets of 8 series at 20 μm 

thickness and subsequently thaw-mounted onto Superfrost plus microscope slides (VWR, 

UK). After drying, spinal cord sections were incubated overnight with primary antibody 

solution for p-p38 (rabbit anti-p-p38, 1:100; Sigma, UK) or GPR84 (goat anti-GPR84, 1:100; 

Santa Cruz, UK), and visualised with extra avidin-FITC following two stages of signal 

amplification with Avidin Biotin Complex (ABC; Vector Laboratories, USA) and biotinyl 

tyramide (PerkinElmer Life Sciences, UK) as previously shown (Clark et al., 2006). The 

sections were then incubated overnight with the second primary antibody, raised against 

Iba1 (rabbit anti-Iba1, 1:1000; Wako Chemicals, Germany), neuronal nuclei (mouse anti-

NeuN clone A60, 1:500; UK) or GFAP (rabbit anti-GFAP, 1:1000; DakoCytomation, 

Denmark), and subsequently incubated with the appropriate secondary antibody solution 

for 2 hrs (1:1000; IgG conjugated Alexa Fluor 350, 488 or 546; Invitrogen, USA). All 

antibodies were prepared in PBS supplemented with 0.1% Triton X-100 (VWR, UK) and 

0.2% sodium azide (Sigma, UK). Slides were carefully cover slipped with Vectashield 

Mounting Medium with or without DAPI (Vector Laboratories, UK), nail-varnished and 

dried.  

 

Quantification of immunoreactivity 

 

Images were visualised and captured using a Zeiss Axioplan microscope (Zeiss, UK) and for 

blinding purposes were labelled according to the identification code of the animal. Blinding 

codes were broken after study completion. Analysis of p-p38 and Iba1 immunoreactivity 

was performed by counting the number of positive profiles in the whole dorsal horn (7.3 x 

105 μm2) or within three fixed 4 x 104 μm2  boxes in the lateral, central and medial areas of 

the dorsal horn, using the nuclear marker DAPI to assist in determining positive cells, as 

previously described (Clark et al., 2007a). A mean value was obtained for both the 

ipsilateral and contralateral dorsal horns of a minimum of three sections per animal. The 

experimenter was blinded to both the genotype and treatment throughout the analysis. 
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3.2.6 In vitro assays 

 

Bio-gel elicited peritoneal macrophage (B-GEPM) cell culture and stimulation 

 

Adult GPR84 WT and KO mice were given an i.p. injection (1 mL) of Bio-Gel P-100 2% 

polyacrylamide beads (Bio-Rad, UK). Four days later mice were culled via neck dislocation, 

and the layer of skin covering the peritoneum was wiped with 70% ethanol. A total volume 

of 20 mL of sterile cold phosphate-buffered saline (phosphate buffered saline (PBS); 

Invitrogen, UK) containing ethylenediaminetetraacetic acid (EDTA; 3 mM; Invitrogen, UK) 

was injected into the peritoneal cavity using a 25 G needle. After gentle massaging the buffer 

was retrieved in 14 mL Falcon tubes, filtered to remove the polyacrylamide beads and spun 

to obtain a pellet. Cells were then re-suspended and plated at a density of 2 x 106 cells/well 

in Dulbecco’s Modified Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS) 

(Invitrogen, UK) and incubated at 37°C. The cells were washed 2 hrs after plating and the 

medium was replaced. Twenty four hrs later the media was replaced with FBS-free medium 

for 2 hrs, followed by 3 hrs of LPS stimulation (1 μg/mL; Sigma, UK). The culture medium of 

control wells was replaced with fresh FBS-free medium without subsequent stimulation. 

 

Microglial cell culture and stimulation 

 

Mixed primary cell cultures of glial cells were isolated from the cortical tissue of P7 rat pups 

(Staniland et al., 2010). Cultures were maintained for two weeks at 37°C (5% CO2/95% O2) 

in medium containing 1% penicillin-streptomycin (Sigma, UK) and 15% FBS (Invitrogen, 

UK), which was changed every 2-3 days. Two weeks later the microglial cells were 

harvested via forceful shaking of the flask and plated in 6 well plates at a density of 5 x 105 

cells/well. Forty eight hrs later the medium was replaced with FBS-free medium, for a 

duration of 2 hrs followed by 3 hrs of LPS stimulation (1 μg/mL; Sigma). For control 

experiments, culture medium was replaced with FBS-free media and the stimulation step 

was omitted. 

 

3.2.7 RNA extraction and cDNA synthesis 

 

Following LPS stimulation of cultured microglia and B-GEPMs, cells were homogenised by 

removing the media and adding Trizol (Invitrogen, UK) directly to the well and pipetting up 

and down. RNA was extracted and cDNA was synthesised as described in Chapter 2.   
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3.2.8 Taqman array set-up and quantitative real-time PCR 

 

Taqman® PCR mouse mediator arrays cards were custom designed using the Applied 

Biosystem website (http://www.appliedbiosystems.com). Each card contained 92 different 

transcripts and 4 HK genes and was run and subsequently analysed as described in Chapter 

2. For each transcript the ΔΔCT values are presented as FC (FC = LPS/control). Transcripts 

with undetermined values in more than 50% of the samples were assigned an average 

default CT value of 38. If this occurred in both LPS and control sample groups, no FC value 

was calculated. Transcripts that were undetermined in less than 50% of samples obtained 

an average CT value based on the remaining data values.   

 

To validate GPR84 and CCL19 expression in microglia and macrophage cells, respectively, 

individual quantitative real-time PCR (qRT-PCR) was performed using the Corbett Rotor-

Gene 6000. Samples were added to Roche LightCycler master mix containing SYBR Green 

(Roche, UK) to produce a final [cDNA] of 5 ng/μl in a total volume of 20 μl. Four samples per 

experimental group were run in duplicate and subjected to 40 cycles of amplification. 

Primer sequences were designed using the Primer Blast software 

(http://www.ncbi.nlm.nih.gov/tools/primer-blst/) and tested to ensure an amplification 

efficiency within the range of 0.8-1.2 (see table below). Transcript levels were calculated 

using the ΔΔCT method, normalised against GAPDH (for GPR84 quantification) or HPRT (for 

CCL19 quantification). For each transcript the ΔΔCT values are presented as FC (FC = 

LPS/control). Control reactions with RNAse-free water produced no amplification signal. 

 

Gene Primer sequence Product size (bp) 

GAPDH 
Forward  5’ - TGTGTCCGTCGTGGATCTGA - 3’ 

Reverse  5’ - TTGCTGTTGAAGTCGCAGGAG - 3’ 
150 

HPRT 
Forward  5’ - GTCCTGTGGCCATCTGCCTAG - 3’ 

Reverse  5’ - TGGGGACGCAGCAACTGACA - 3’ 
93 

GPR84 

(rat) 

Forward  5’ - TCAGGTGAGTCTCCATCATGTGGAA - 3’ 

Reverse  5’ - AGAAAGGCTGCAGGAGCGTGC - 3’ 
246 

CCL19 

(mouse) 

Forward  5’ - CTTCTGCCAAGAACAAAGGCAA - 3’ 

Reverse  5’ - ACAGACTTGGCTGGGTTAGG - 3’ 
150 
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3.2.9 Data and statistical analysis 

 

All behavioural and immunohistochemical data were analysed using SigmaPlot 12.3 and 

SigmaStat software.  For single comparisons between two groups, a paired Student’s t-test 

was applied (behavioural data). For multiple comparisons, one-way (immunohistochemical 

data) or two-way (behavioural data) ANOVA was used, followed by SNK post hoc test to 

determine individual group differences. For the Taqman mouse PCR array card data, two-

sided Welch’s t-tests were run in the R programme on the ΔCT values. The p values were 

adjusted using the FDR method to correct for multiple hypothesis testing, as previously 

described (Benjamini et al., 2001). Non-parametric tests were applied where the data was 

not normally distributed. In all cases the data is presented as the mean ± SEM and p < 0.05 

was set as the statistical significance level. 
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3.3 Results 

 

3.3.1 GPR84 KO mice show attenuation of pain-associated behaviours after CFA 

 

Having established that GPR84 plays a role in neuropathic pain mechanisms (see Chapter 2) 

we investigated whether this receptor may also contribute to chronic inflammatory pain 

pathways, especially in light of its documented role in clinically-relevant pathologies 

associated with inflammatory pain such as endotoxemia, EAE (model of MS), obesity and 

diabetes (Bouchard et al., 2007; Nagasaki et al., 2012). It is well established that 

experimental administration of inflammogens to the hind paw of rodents produces 

nociceptive hypersensitivity (Raghavendra et al., 2004; Clark et al., 2007a). Therefore, we 

utilised the CFA model as a relatively ‘pure’ model of persistent peripheral inflammation.  

 

To investigate whether GPR84 deletion alters inflammatory pain-associated behaviours, 

CFA was administered to the hind paw of GPR84 WT and KO mice and mechanical and 

thermal thresholds were examined. As expected, WT mice showed a significant reduction in 

ipsilateral paw pressure thresholds by day 3 (D3, 64.3 ± 2.7 g) which remained down up 

until day 14 (D14 76.3 ± 6.0 g) compared to baseline (D0, 118.1 ± 4.2 g) or the contralateral 

paw (D3, 104.4 ± 3.1 g; D14, 110.6 ± 5.6 g) which served as an additional control (Fig. 3.3A). 

In contrast, KO mice showed an initial reduction at day 1 (88.1 ± 3.5 g) in ipsilateral 

thresholds compared to baseline (117.5 ± 4.1 g) and the contralateral paw (D1, 110.0 ± 3.1 

g), which recovered by day 3 (93.1 ± 3.1g) and reached contralateral values by day 7 (106.2 

± 3.5 g) and remained unchanged (Fig. 3.3A). There was an average reduction of 35.2% in 

WT mice and 14.8% in KO mice from baseline over the 14 testing days. In both genotypes 

contralateral values did not significantly differ from baseline at any point. Area under the 

curve (AUC) quantification revealed that, in contrast to WT, KO mice did not develop 

mechanical hyperalgesia in the CFA treated paw and that there was a significant difference 

in ipsilateral thresholds between genotypes (Fig. 3.3B). Mechanical thresholds were also 

assessed using von Frey filaments. Interestingly, both genotypes showed a non-significant 

reduction in mechanical paw withdrawal thresholds expressed as calculated AUC of the 

ipsilateral hind paw compared to the contralateral side (Fig. 3.3D). These data suggest that 

GPR84 is involved in the maintenance of nociceptor driven mechanical hyperalgesia induced 

by inflammation but not mechanical allodynia.  

 

Following peripheral inflammation, WT mice also showed a significant reduction in thermal 

thresholds of the ipsilateral hind paw from day 1 to 7 (D1, 3.9 ± 0.4 s; D3, 3.0 ± 0.4 s; D7, 4.8 

± 1.3 s; Fig. 3.3C) compared to baseline (D0, 8.9 ± 0.5 s) or the contralateral paw (D1, 11.2 ± 
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0.9 s; D3, 10.7 ± 0.6 s; D7, 13.9 ± 1.1 s). On day 7 thresholds started to recover to baseline 

and by this time point there was an average reduction of 55.8%. By day 10 thresholds were 

no longer significantly different from baseline (D10, 8.9 ± 1.6 s). Contralateral values did not 

significantly differ from baseline at any point. Similarly, KO mice showed an average 

reduction of 35.1% in thermal thresholds of the ipsilateral paw by day 7, which recovered to 

baseline thereafter. However, this was attenuated on days 1 and 3 (D1, 8.9 ± 3.7 s; D3, 4.7 ± 

0.5 s) compared to WT mice. At no point was the change in thermal thresholds significantly 

different to baseline (10.1 ± 0.7 s) and only on days 3, 7 and 10 (D10, 7.1 ± 1.3 s) was there a 

significant difference from the control contralateral paw (D3, 11.0 ± 1.4 s; D7, 13.2 ± 1.3 s; 

D10, 15.7 ± 1.2 s).  

 

Changes in sensitivity to cold stimuli was assessed, and as expected, WT mice developed 

significant cold hyperalgesia of the ipsilateral hind paw post CFA by day 3, which lasted up 

to day 14 (D3, 7.5 ± 0.6 s; D7, 9.9 ± 0.9 s; D10, 10.4 ± 0.8 s; D14, 8.7 ± 0.9 s) compared to 

baseline (D0, 17.5 ± 0.7 s) and the contralateral paw  (D3, 10.7 ± 0.7 s; D7, 16.1 ± 1.0 s; D10, 

16.5 ± 0.9 s; D14, 15.3 ± 1.6 s; Fig. 3.3F). Although, perhaps surprisingly, induction of cold 

hypersensitivity did not occur before day 3. There was an average reduction of 38.0% from 

baseline. Strikingly, KO mice showed an initial reduction of 32.1% in ipsilateral cold 

thresholds compared to baseline (16.4 ± 1.6 s) on day 1 (11.1 ± 1.0 s), which rapidly 

recovered to contralateral thresholds by day 3 (ipsi: 11.7 ± 0.6 s vs contra: 12.7 ± 0.5 s) and 

baseline thresholds by day 7 (15.5 ± 1.8 s) and remained unchanged throughout the rest of 

the testing days. In both genotypes contralateral values did not significantly differ from 

baseline at any point. AUC analysis showed that WT but not KO mice developed significant 

cold hyperalgesia in the CFA treated paw and that there was a significant difference 

between ipsi values of the two genotypes (Fig. 3.3G). Together these data show that GPR84 

KO mice developed a transient thermal and cold hypersensitivity after peripheral 

inflammation that quickly recovered back to baseline. In contrast, the development of 

thermal and cold hypersensitivity in WT littermate controls was maintained. This finding 

suggests that GPR84 may be important for the maintenance rather than the initiation of 

inflammatory thermal and cold hyperalgesia.  

 

GPR84 is expressed by immune cells involved in peripheral inflammation. To compare 

levels of peripheral inflammation between genotypes, the extent of oedema in the ipsilateral 

hind paw was assessed by measuring dorso-ventral paw thickness (Fig. 3.3E). We observed 

paw oedema in both genotypes from 24 hrs post CFA, which became significant on days 3 

(both genotypes) and 7 (only KO mice) in comparison to baseline. However, there was no 

significant difference between genotypes. This result suggests that GPR84 deletion has no 
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effect on the degree of hind paw inflammation (WT: D0, 1.6 ± 0.1 mm; D1, 3.4 ± 0.5 mm; D3, 

3.2 ± 0.2 mm; D7, 2.8 ± 0.1 mm vs KO: D0, 1.7 ± 0.03 mm; D1, 3.12 ± 0.4 mm; D3, 3.1 ± 0.2 

mm; D7, 3.2 ± 0.1 mm). 



Chapter 3 - The Role of GPR84 in Chronic Inflammatory Pain 

 

156 

 

 

***

Paw pressure

Days after CFA
0 1 3 7 10 14

P
W

T
(g

)

40

60

80

100

120

140

WT ipsi
KO ipsi
WT contra 
KO contra 

***
***

***
***

***

A.

***

†††

†††
†††

†††

†††

†††
††

†

Paw pressure

A
U

C
(a

rb
it

ra
ry

 u
n

it
s)

0
Contra Ipsi Contra Ipsi

B.
WT 
KO 

1000
1200
1400
1600
1800

***
###

200
400
600
800

Days after CFA

C. Hargreaves

Days after CFA
0 1 3 7 10 14

P
W

L
(s

)

0

2

4

6

8

10

12

14

16

**#
††† †††

†††

†††

†††

††
†††

***

Paw oedema

Day 0 Day 1 Day 3 Day 7

P
aw

 t
h

ic
k

n
es

s 
(m

m
)

* * *

E.

0

1

2

3

4

von Frey

A
U

C
(a

rb
it

ra
ry

u
n

it
s)

0
Contra Ipsi Contra Ipsi

D.

2

4

6

8

10

***

†††

Cold plate 10oC

0 1 3 7 10 14

L
at

en
cy

(s
)

2

4

6

8

10

12

14

16

18

20

22

**

***

*** ***

F.

††††††
††

†††

Cold plate 10oC

**
#

Contra Ipsi Contra Ipsi

G.

0

50

100

150

200

250

A
U

C
(a

rb
it

ra
ry

 u
n

it
s)

###

#

###
### #

#

###
### ###



Chapter 3 - The Role of GPR84 in Chronic Inflammatory Pain 

 

157 

Figure 3.3: CFA treated GPR84 KO mice show attenuated inflammatory pain hypersensitivity 

 

(A) Starting at 24 hrs post intra-plantar CFA administration (15 μl; 1 mg/mL), GPR84 WT mice 

showed a significant reduction in ipsilateral mechanical PWTs compared to baseline (day 0) and the 

control contralateral hind paw, which persisted throughout the 14 testing days. In contrast, GPR84 

KO mice showed an initial reduction that recovered to baseline by day 7 and remained unchanged up 

until day 14. There was a significant difference between genotypes. ***p < 0.001 vs baseline; †††p < 

0.001 vs contralateral paw; ###p < 0.001 vs KO, two-way RM ANOVA; post-hoc SNK. (B) AUC analysis 

for WT and KO ipsilateral and contralateral PWTs from baseline to 14 days post CFA were calculated 

(arbitrary units). In contrast to WT littermates, KO mice did not develop mechanical hyperalgesia in 

the ipsilateral hind paw. There was a significant difference between genotypes. ***p < 0.001 vs 

contralateral paw; ###p < 0.001 vs KO, one-way ANOVA; post-hoc SNK. (C) WT mice showed a 

significant reduction in thermal PWLs of the ipsilateral paw from baseline on days 1 to 7, which 

recovered to baseline by day 14. In contrast, KO mice showed an attenuated level of reduction in 

thermal thresholds of the ipsilateral paw on days 1 and 3, which was significant on day 1. The 

thresholds of KO mice were not significantly different from baseline at any point. *p < 0.05, **p < 0.01 

vs baseline; ††p < 0.01, †††p < 0.001 vs contralateral paw; #p < 0.05 vs KO; two-way RM ANOVA, post-

hoc SNK. (D) WT and KO mice showed equivalent levels of mechanical allodynia in the ipsilateral hind 

paw, expressed as calculated AUC over the 14 day testing period. (E) Dorso-ventral paw thickness 

was measured as an indicator of paw oedema following CFA injection. WT and KO mice showed an 

equivalent increase in dorso-ventral paw thickness post CFA at all time points tested and there was 

no significant difference between genotypes at any point. *p < 0.05 vs baseline, Friedman RM ANOVA 

on Ranks, post-hoc Bonferroni–Dunn. (F) WT mice showed a long-lasting reduction in cold sensitivity 

thresholds post CFA injection in contrast to KO mice, which after an initial reduction recovered to 

baseline by day 3 and remained unchanged thereafter. There was a significant difference between 

genotypes on all testing days from 1 to 14. **p < 0.01, ***p < 0.001 vs baseline; #p < 0.05, ##p < 0.01, 

###p < 0.001 vs KO; ††p < 0.01, †††p < 0.001 vs contralateral paw, two way RM ANOVA with SNK. (G) 

Calculation of AUC for cold PWLs of both genotypes from baseline to 14 days post CFA. WT, but not 

KO, mice developed significant cold hyperalgesia in the ipsilateral paw. There was a significant 

difference between genotypes. **p < 0.01 vs contralateral paw; #p < 0.05 vs KO, one-way ANOVA; 

post-hoc SNK. In all cases data are presented as the mean ± SEM, n = 8, except von Frey data where n 

= 16 up to day 7 and n = 8 thereafter. 
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3.3.2 CFA induced microgliosis is attenuated in GPR84 KO mice  

 

Having established a behavioural phenotype, we then sought to correlate this with 

anatomical findings. In virtually all animal models of inflammation-induced pain, a 

microglial response has been immunohistochemically detected in the spinal cord (Sweitzer 

et al., 1999; Svensson et al., 2003b; Raghavendra et al., 2004; Hua et al., 2005; Guo et al., 

2007; Sun et al., 2007). Therefore, to examine microglial cells in GPR84 mediated 

inflammatory pain we examined immunophenotypic changes of these cells in lumbar spinal 

cord sections of WT and KO mice at 14 days post CFA.  

 

Quantification of Iba1 immunoreactivity revealed that at 14 days post CFA there was a 

significant 1.8-fold increase in microglia cell numbers in the ipsilateral dorsal horn of WT 

mice (8.7 ± 1.1/4x104 μm2) compared to saline control (4.9 ± 0.5/4x104 μm2; Fig 3.4A, B). 

This is in accordance with previous work where microglial activation was observed 4-14 

days after CFA treatment (Raghavendra et al., 2004). In CFA treated KO mice there was a 

non-significant 1.8 fold increase (8.6 ± 1.6/4x104 μm2) in microglial cells numbers in the 

ipsilateral dorsal horn compared to saline controls (4.9 ± 0.5/4x104 μm2). Therefore both 

genotypes exhibited an equivalent increase in Iba1 positive cells and there was no 

significant difference between them. These data suggest that GPR84 does not play a role in 

regulating microglial numbers subsequent to a peripheral inflammatory insult. In CFA-

treated mice both genotypes also exhibited similar microglial morphology, which varied 

from the typical ramified ‘quiescent’ state through to various stages of ‘activation’, in which 

cells appeared deramified and more amoeboid in shape with thicker and shorter processes. 

 

We also investigated whether GPR84 deletion may alter the ability of microglial cells to 

respond to an inflammatory insult by examining staining for the microglia activation marker 

p-p38 MAPK (Ji and Suter, 2007; Ji et al., 2009). Quantification of immunoreactivity revealed 

a significant 1.8-fold increase in p-p38 positive cells in the ipsilateral dorsal horn of WT 

mice (8.6 ± 1.1/4x104 μm2) compared to saline controls (4.9 ± 0.4/4x104 μm2; Fig 3.4A, B). 

CFA treated KO mice showed a 1.7-fold increase (8.3 ± 1.8/4x104 μm2) in p-p38 positive 

cells in the ipsilateral dorsal horn, which was not statistically significant compared to saline 

control (4.9 ± 0.3/4x104 μm2). Again, there was no significant difference between the 

genotypes, suggesting that GPR84 signalling may not be important in the activation of 

microglial cells in inflammatory pain states. 
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Figure 3.4: CFA induced microgliosis is attenuated in GPR84 KO mice  

 

Subsequent to intraplantar CFA, there was a significant increase in Iba1 and p-p38 positive cells in 

the ipsilateral dorsal horn of the spinal cord in WT mice (WT CFA) compared to saline control (WTC). 

CFA-injected KO mice (KO CFA) also showed an increase in Iba1 and p-p38 positive cells compared to 

saline control (KOC), however, this was not significant (A); quantified in (B). There were no 

significant differences between genotypes. Data are presented as the mean ± SEM; *p < 0.05, vs 

control; one-way ANOVA on ranks; post-hoc Tukey, n = 4-6. Scale bar = 200 μm. 
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3.3.3 LPS treated GPR84 KO mice show attenuated behavioural hyperalgesia 

 

Although a number of experimental models of neuropathic and inflammatory pain 

demonstrate that microglia activation plays a role in the development of chronic pain 

(DeLeo and Yezierski, 2001; Watkins and Maier, 2003; McMahon et al., 2005; Clark et al., 

2007a), we have been unable to correlate the behavioural phenotype of GPR84 KO mice 

after PNL or CFA to an altered microglial response. Therefore, to conclusively exclude the 

contribution of microglial cells in GPR84 mediated signalling we examined the role of these 

cells in the CNS by utilising the LPS-induced inflammatory model. Since intrathecal LPS 

specifically activates microglial cells via the TLR4 and is associated with heat and 

mechanical hyperalgesia (Lehnardt et al., 2002; Cahill et al., 2003), we investigated whether 

GPR84 deletion alters microglia mediated nociceptive behaviour. 

  

Mice were primed with intrathecal LPS (2 μg/mouse) on day 1, which has been previously 

reported not to alter PWT to noxious or innocuous mechanical stimuli (Clark et al., 2006). As 

expected, the second dose of LPS 24 hrs later induced transient mechanical allodynia in 

GPR84 WT mice at 1 hr post treatment (0.4 ± 0.1 g), which rapidly recovered by 3 hrs (0.7 ± 

0.1 g) and was no longer significantly different from baseline (0 hr, 0.9 ± 0.1 g) or control 

animals (0hr, 0.9 ± 0.1 g; 1hr, 0.9 ± 0.2 g; 3hr, 0.7 ± 0.1 g; Fig 3.5A). KO mice also showed a 

reduction in mechanical thresholds in response to intrathecal LPS however, this was not 

significant (LPS: 0hr, 0.8 ± 0.1 g; 1hr, 0.4 ± 0.1 g; 3hr, 0.6 ± 0.1 g vs control: 0hr, 0.8 ± 0.03 g; 

1hr, 0.7 ± 0.2 g; 3hr, 0.7 ± 0.1 g; Fig 3.5B). One hr post LPS, WT and KO mice showed 

reductions of 57.5% and 52.2%, respectively, and there was no significant differences 

between genotypes. 

 

Subsequent to priming and the second dose of intrathecal LPS, WT mice also developed 

significant mechanical hyperalgesia at 3 hrs post treatment (88.9 ± 1.6 g) in comparison to 

saline controls (100.8 ± 1.1 g; Fig. 3.5C). According to the literature, intrathecal LPS has 

been shown to induce significant mechanical hyperalgesia from as early as 1 hr post 

treatment that persists up to 6 hrs and returns to baseline thresholds by 24 hrs (Clark et al., 

2006). Interestingly, we observed an increase in thresholds at 1 hr post treatment (112.5 ± 

1.9 g) that dropped 15% below baseline (104.6 ± 1.7 g) by 3 hrs. Similarly KO mice also 

exhibited an increase in thresholds at 1 hr post treatment (112.5 ± 3.1 g) compared to 

baseline (101.9 ± 1.9 g) or saline controls (102.5 ± 0.6 g). However, at 3 hrs post LPS, KO 

mice showed a marginal 5.6% drop in mechanical thresholds (96.3 ± 4.0 g) from baseline 

and did not significantly differ from saline controls (101.3 ± 1.5 g) in contrast to WT mice 

(Fig. 3.5C).  
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In both genotypes cold sensitivity was unaltered 1 hr (WT: 13.1 ± 0.2 s; KO: 13.2 ± 0.5 s) 

after the second LPS dose but significantly dropped 3 hrs post treatment (WT: 10.7 ± 0.7 s; 

KO: 10.7 ± 0.4 s) in comparison to baseline (WT: 12.2 ± 0.4 s; KO: 12.4 ± 0.3 s; Fig 3.5D). 

There were no significant differences between genotypes. Together, the above data suggests 

that GPR84 may be involved in mediating mechanical hyperalgesia via the modulation of 

microglial cells but not mechanical allodynia or cold hyperalgesia. This modality-specific 

inhibition could be a result of phenotypic differences in populations of afferent fibres such 

as the expression of TRP channels and mechanosensors, which may be regulated down-

stream of GPR84 activation under inflammatory conditions.  
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Figure 3.5: LPS treated GPR84 KO mice show attenuated behavioural hyperalgesia  

 

GPR84 WT (A) and KO (B) mice showed a reduction in PWTs 1 hr after a second dose of intrathecal 

LPS, in comparison to vehicle treated mice (WTC, KOC, respectively). There was no significant 

difference between genotypes. (C) GPR84 WT, but not KO mice, mice showed a significant reduction 

in paw pressure thresholds 3 hrs post LPS in comparison to baseline and WTC. There was a 

significant difference between the LPS treated genotype groups. (D) Both GPR84 WT and KO mice 

showed significant increases in cold sensitivity at 3 hrs post LPS. There was no significant difference 

between genotypes. Data are presented as the mean ± SEM. *p < 0.05, ***p<0.001 vs baseline; †p < 

0.05, ††p < 0.01, †††p < 0.001 vs saline control; #p < 0.05 vs KO, two-way RM ANOVA, post-hoc SNK, n = 

6-9.  
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3.3.4 LPS treated GPR84 KO mice exhibit a normal microglia response  

 

Despite a weak behavioural phenotype, we sought to immunohistochemically characterise 

the microglial response to LPS in order to determine whether direct activation of these cells 

is altered in the absence of GPR84. Therefore, we immunostained lumbar spinal cord 

sections for Iba1 and p-p38 to examine microglia numbers and activation, respectively, at 3 

hrs after the second dose of LPS. 

 

In accordance with literature (Clark et al., 2006), we observed a significant 1.5-fold bilateral 

increase in Iba1 and p-p38 positive cells (61.7 ± 3.9/7.3 x 105 μm2 and 61.7 ± 3.9/7.3 x 105 

μm2, respectively) in the dorsal horns of LPS treated WT animals in comparison to saline 

controls (41.7 ± 3.4/7.3 x 105 μm2; 41.6 ± 3.4/7.3 x 105 μm2, respectively; Fig 3.6A, B). 

Interestingly, GPR84 KO mice exhibited a similar 1.5-fold bilateral increase in Iba1 and p-

p38 positive cells (61.8 ± 3.7/7.3 x 105 μm2 and 61.5 ± 3.7/7.3 x 105 μm2, respectively) in 

LPS treated animals in comparison to saline controls (41.5 ± 5.1/7.3 x 105 μm2; 41.4 ± 

5.2/7.3 x 105 μm2, respectively) (Fig 3.6A, B). These data indicate that deletion of GPR84 

does not impair the ability of microglial cells to respond to a potent inflammatory stimulus 

and thus it is unlikely that the KO behavioural phenotype is mediated by microglial cells in a 

GPR84 dependent manner. 

  



Chapter 3 - The Role of GPR84 in Chronic Inflammatory Pain 

 

164 

 

 

 

 

Figure 3.6: LPS treated GPR84 KO mice exhibit normal microgliosis  

 

There was a significant bilateral increase in Iba1 and p-p38 positive cells in the dorsal horn of the 

spinal cord subsequent to intrathecal LPS in both GPR84 WT and KO mice (WT LPS, KO LPS, 

respectively) compared to vehicle control (saline) groups (WTC, KOC respectively) (A), quantified in 

(B). There was no difference between genotypes. Data are presented as the mean ± SEM. *p < 0.05, **p 

< 0.01 vs control, one-way ANOVA; post-hoc SNK, n = 4. Scale bar = 200 μm.  
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3.3.5 Immunohistochemical assessment of GPR84 protein expression  

 

Under physiological conditions GPR84 expression is low and virtually undetectable even 

with a sensitive method like qPCR. However, subsequent to an appropriate immunological 

stimulus such as LPS, GPR84 expression increases in both monocytes/macrophages and 

microglial cells (Wang et al., 2006a; Bouchard et al., 2007). To characterise the protein 

expression of GPR84 we used a commercially available antibody against lumbar spinal cord 

sections from saline or LPS treated WT and KO mice. 

 

In accordance with the literature (Bouchard et al., 2007), GPR84 immunostaining was 

absent in saline treated spinal cords of either WT or KO mice (Fig. 3.7A). However, 

characteristic bilateral GPR84 immunoreactivity was detected in LPS stimulated WT mice, 

which exhibited a punctate pattern that resembled microglial morphology (Fig. 3.7A). In 

contrast, GPR84 staining was completely absent in LPS treated KO mice, validating GPR84 

silencing in this transgenic. To determine the identity of cells expressing GPR84 we carried 

out triple staining against GPR84, Iba1 (microglial marker), NeuN (neuronal marker) and 

GFAP (astrocytic marker; Fig. 3.7B). GPR84 immunoreactivity co-localised with a majority of 

Iba1 positive cells but did not co-label with NeuN or GFAP. This confirms that GPR84 is 

exclusively expressed by microglial cells and raises the possibility that only a subpopulation 

of microglia express this receptor.  
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Figure 3.7:  Protein verification of GPR84 deletion and co-localisation with microglia cells 

 

GPR84 deletion was confirmed via the absence of staining in KO mice in both saline (KOC) and LPS 

stimulated conditions (KO LPS) (A). GPR84 immunoreactivity was not present in saline treated WT 

animals (WTC) but under LPS conditions (WT LPS) bilateral punctuate staining was evident (A). 

GPR84 immunoreactivity exclusively co-labelled with Iba1 positive cells under LPS stimulated 

conditions in WT mice (B). Scale bars = 200 μm.  
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3.3.6 GPR84 mRNA is induced in cultured microglia and macrophage cells 

subsequent to LPS stimulation 

 

GPR84 gene transcription is strongly induced by diverse endogenous and exogenous 

inflammatory stimuli in a time dependent manner in subsets of central microglial cells and 

peripheral macrophages, as demonstrated by both in vitro and in vivo studies (Wang et al., 

2006a; Bouchard et al., 2007). To verify our observation of GPR84 expression in central 

microglia in addition to peripheral macrophages, we cultured cortical microglial cells and 

peritoneal macrophage cells and measured GPR84 expression subsequent to 3 hrs of LPS (1 

μg/ml) stimulation.  

 

Since the moderate number of macrophage cells normally harvested from the peritoneum 

cavity are insufficient for extensive studies, eliciting agents such as Bio-Gel, thioglycollate 

and proteose-peptone are used to increase monocyte migration into the peritoneum and 

thus enhance yields (Zhang et al., 2008). Elicited macrophage populations consist of a 

mixture of resident and infiltrating cells of haematogenous origin similar to what we see in 

the in vivo situation. Both populations play an equal role in the response to a peripheral 

insult; the faster-acting resident cells initiate the response, followed by the later recruitment 

of infiltrating cells (Ton et al., 2013). We therefore utilised B-GEPMs not only for their 

practical advantages (ready availability, easy access and high yields), but also because this 

approach allowed us to study a heterogenous population of cells. In addition, these cells 

have been extensively studied in literature, where most of our understanding of tissue 

resident macrophages originates (Gordon, 2007; Zhang et al., 2008). B-GEPMs are also free 

of intracellular debris as they are unable to phagocytose the Bio-Gel beads. Nevertheless, B-

GEPMs differ from resident cells in numbers and function and exhibit increased membrane 

turnover, respiratory and phagocytic capacity as well as alternative responses to various 

chemokines (Zhang et al., 2008). In comparison to other relevant sources of cells such as 

bone-marrow derived macrophages (BMM), elicited macrophages are similarly F4/80high, 

CD11bhigh, and CD68+. However, GPR84 expression is restricted to BMMs and microglia in 

non-stimulated conditions and robustly increases in both BMMs and elicited peritoneal 

populations subsequent to LPS exposure (Lattin et al., 2008). Likewise, although we have 

focused on spinal microglia in this thesis, we have utilised cortical microglia in this study 

due to the requirement of greater cell yields. 

 

 Using qPCR, we observed a significant increase in GPR84 expression subsequent to LPS 

stimulation by 2.6-fold (1.7-3.6) in cortical microglial cells (A) and 30.8-fold (23.0-41.2) in 

B-GEPMs (B, Fig. 3.8). Therefore, GPR84 is highly inducible under inflammatory conditions 
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and is likely to act down-stream of pro-inflammatory mediators. Interestingly, there was a 

greater induction in macrophages than in microglia, which may indicate a more prominent 

role in regulating peripheral macrophages with regards to our previous findings (Fig 3.4 

and 3.6). Furthermore, the exclusive expression of GPR84 in cells of the myelomonocytic 

lineage and the fact that its expression is only up-regulated in response to peripheral or 

central insult makes it an attractive therapeutic target. 

 

3.3.7 Raw PCR array data: Comparing LPS induced mediator transcripts in GPR84 

WT and KO Bio-Gel elicited macrophages 

 

Using two models of inflammation (CFA and LPS) we have shown that GPR84 KO mice 

exhibit attenuated behavioural hypersensitivity that is restricted to particular modalities. 

We have verified that the microglial response does not correlate with GPR84 mediated 

nociceptive signalling in these models. The role of macrophages in chronic pain is well 

documented in models of inflammation and traumatic nerve injury. These cells promote the 

inflammatory response by releasing a range of mediators such as TNF-α, IL-1β, NGF, NO and 

PGE2 (Marchand et al., 2005). TLR4 is an important player in the activation of macrophages 

and application of a potent exogenous TLR4 agonist (LPS) to cultured B-GEPMs provides a 

simple in vitro paradigm where the macrophage response can be evaluated. Therefore, to 

investigate whether there is any impairment in the ability of macrophage cells to launch an 

inflammatory response in the absence of GPR84, we have utilised high through-put custom-

made Taqman array cards to analyse the relative expression of putative mediators in WT 

and KO B-GEPMs following LPS exposure. An explanation of analysis is provided in the 

methods section (2.2.8) and in more detail in (Perkins et al., 2012). 

 

Appendix Tables 9 and 10 display the raw CT values of 92 different chemokines, cytokines, 

growth factors and cell markers as well as the HK genes of control and LPS stimulated 

GPR84 WT and KO macrophages. Generally, CT values exhibited consistency within 

experimental groups and the HKs varied no more than 1 cycle, except HPRT, which 

decreased by an average CT of 1.6 in LPS stimulated KO macrophages. Therefore, the data is 

consistent enough to assume a limited incidence of false positives and negatives. In the case 

of transcripts below detection level, the relevant amplification plots were checked for faulty 

reactions to confirm that the lack of gene detection was due to a biological factor rather than 

a technical error. 
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3.3.8 A subset of gene transcripts induced by LPS are differentially regulated by 

GPR84 WT and KO macrophages  

 

Tables 3.1A and B display the top differentially regulated genes in GPR84 KO mice. Data are 

displayed as the mean FC relative to control (see Appendix Tables 11 and 12 for FC values of 

all genes profiled). The SD values are only those of the case samples where variability is 

considered to be the greatest, rather than the control samples. For each gene, a FC threshold 

of ≥ 2 in one or both genotypes was set to reduce noise by eliminating those genes that 

showed marginal expression changes. A FC ratio (KO FC/WT FC) threshold of ≥ 1.5 was also 

set and genes were ranked according to FC ratio. The FC ratio was employed in the 

screening criteria so that unless the FC value of a particular transcript differed by ≥ 1.5 – 

fold between genotypes, it would not be considered to be transcriptionally regulated by 

GPR84. This enabled us to efficiently filter irrelevant genes and focus on those transcripts 

that were considerably dysregulated between genotypes. 

 

As expected, GPR84 was undetectable in KO macrophages but strongly up-regulated in LPS 

stimulated WT cells (FC: 30.8). Strikingly, both pro-inflammatory CCL19 and anti-

inflammatory IL-13 were up-regulated in WT cells but remained un-detectable in the KO 

(FC: 71.0; FC: 7.7, respectively). Other pro-inflammatory mediators including IL-18, CCL2, 

CCL3, CCL7, CXCL5 and CXCL9 were significantly induced in both genotypes but to a greater 

extent in the WT (IL-18, WT FC: 4.0, KO FC: 2.6; CCL2, WT FC: 27.2, KO FC: 15.6; CCL3, WT 

FC: 249.5, KO FC: 165.1; CCL7, WT FC: 41.4, KO FC: 21.3; CXCL5, WT FC: 33.7, KO FC: 18.5; 

CXCL9, WT FC: 25.4, KO FC: 11.8), of which IL-18, CCL2, CCL3 and CXCL5 are documented to 

be pro-nociceptive (Wei et al., 2001; Abbadie et al., 2003; Kiguchi et al., 2010b; Dawes et al., 

2011). These data suggest that in the absence of GPR84 mediated signalling macrophage 

cells exhibit an attenuated release of some pro-inflammatory cytokines/chemokines. 

However, key pro-inflammatory factors that are well documented to contribute directly or 

indirectly to pro-nociceptive behaviours were equivalently or more greatly induced in the 

KO subsequent to LPS stimulation compared to the WT, including IL-1β: (WT FC: 749.5 

(548.0-1030.0), KO FC: 823.0 (555.0-1220.0)); IL-6: (WT FC: 1785.4 (1430.0-2220.0), KO 

FC: 1440.0 (878.0-2360.0)); TNF-α: (WT FC: 134.6 (119.0-152.0), KO FC: 267.0 (236.0-

301.0));  PTGS2: (WT FC: 1120.5 (906.0-1390.0), KO FC: 1290.0 (902.0-1850.0));  PTGES: 

(WT FC: 30.1 (18.9-47.9), KO FC: 41.1 (24.5-69.0))  and NOS2: (WT FC: 130.0 (92.2-183.0), 

KO FC: 204.0 (81.8-510.0); (p < 0.05)). This suggests that under inflammatory conditions, 

GPR84 may suppress the expression of particular mediators whilst promoting the 

expression of others, thus reflecting the differential regulation of mediators by Gαi/o coupled 
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receptors. These data also indicate that on the whole, KO macrophages are equally capable 

of a robust inflammatory response as their WT controls. 

 

Interestingly, IL-10, which is a potent anti-inflammatory interleukin, was one of the top five 

dysregulated factors and exhibited a greater induction in the WT. AIF1 (Iba1 gene) 

remained unchanged in the WT and was down-regulated in the KO, which is an unexpected 

finding with regards to our previous observations that LPS treated mice exhibited increased 

Iba1 immunoreactivity in the spinal cord (Fig 3.6). Notably, upon LPS stimulation all 

classical immune cell markers either remained unchanged or were down-regulated in both 

genotypes, including H2-EB1 (MHC class II), TLR4 and ITGAM (CD11b). Genes for IL-19, IL-

20, CCL22, CCL24, CXCL3 and CXCL13 were also more greatly induced in the WT, some of 

which are implicated in inflammation but not documented to have a role in nociceptive 

pathways. Nevertheless, they may contribute via the exacerbation of inflammation or 

through binding to receptors that are known to mediate the effects of algogenic chemokines. 

For example, CXCL3 binds to CXCR2, which is the same receptor that pro-nociceptive CXCL5 

binds to (Dawes et al., 2011). 

 

Amongst the top up-regulated transcripts in the KO were the growth factors EREG and 

BDNF. EREG was significantly induced in both genotypes but by 1.8-fold more in the KO, 

whereas BDNF was down-regulated in the WT and remained unchanged in the KO. BDNF 

has a well established role in pain transmission (Latremoliere and Woolf, 2009), as opposed 

to EREG for which little is known. A selection of cytokines and chemokines were also more 

significantly induced in the KO, including IL-23A, IL-33, CCL20, CXCL11 and CSF2 (Table 

3.1(B)). Of those, IL-33 and CXCL11 have been recently implicated in inflammatory pain 

pathways (Strong et al., 2012; Han et al., 2013; Zarpelon et al., 2013). In contrast, there is no 

established link between IL-23A, CCL20 and CSF2 and pain signalling and thus, although 

possible, a specific relevance to the KO behavioural phenotype is unlikely. 

 

3.3.9 Distribution and correlation of LPS induced genes in GPR84 WT and KO 

macrophages  

 

We have identified a number of genes which were dysregulated in GPR84 KO macrophages 

after a robust inflammatory stimulus. However, upon closer inspection it is evident that the 

majority of the 92 profiled transcripts exhibit similar changes in expression between 

genotypes. The distribution graph (Fig. 3.9A) illustrates the profiles of average FC values of 

individual genes relative to control (non-stimulated cells) for each genotype as well as the 

FC ratios of each gene. Gene profiles are ranked in order of FC ratio from the most down-
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regulated to the most up-regulated in the WT vs the KO. The blue shaded region 

corresponds to the cut-off threshold of a FC ≥ 2. Within each genotype FC data points that 

clearly reside above or below this threshold are differentially regulated from control tissue 

and those genes that also have FC ratios ≥ 1.5 are differentially regulated between 

genotypes. 

 

In both genotypes, it is evident that LPS exposure elicits a substantial induction of many of 

the 92 different transcripts examined, with very few genes down-regulated. In the WT 49 

genes were up-regulated, 36 genes were unchanged and 7 genes were down-regulated. 

Similarly, in the KO 46 genes were up-regulated, 40 genes were unchanged and 6 genes 

were down-regulated. The FC profiles of the genotypes are tightly correlated, which 

indicates that the transcriptional response to LPS was similar (Fig 3.9A). This is further 

supported by the fact that a majority of FC ratio values are < 1.5 and only a small subset of 

genes are differentially regulated between the genotypes. These genes are of particular 

interest as they could potentially play a role in behavioural hypersensitivity mediated by 

GPR84 signalling and are presented and evaluated in the tables 3.1A and B. 

 

To directly compare LPS induced transcriptional changes between genotypes, WT and KO 

average FC values are plotted against each other (Fig. 3.9B). Presenting the transcript 

changes in this format enables the assessment of data scatter and the identification of genes 

that do not conform to the rest of the data. As indicated by the Pearson’s correlation 

coefficient, there is a positive correlation between the WT and KO data sets (p < 0.001). This 

indicates that the transcriptional changes in macrophage cells required to launch an 

inflammatory response are similar between genotypes and is not hindered in the absence of 

GPR84. Therefore, a majority of the 92 different pro-inflammatory genes profiled are not 

regulated by GPR84 except for those outliers highlighted in red (CCL19 and IL-13), which 

are also top hits in the ranking table 3.1A. These outliers are data points that skew the 

Pearson’s correlation coefficient as they markedly deviate from the positive correlation of 

the two data sets, which is due to considerable differences in expression between the 

genotypes.  

 

3.3.10 Validation of CCL19 expression 

 

The extensive analysis of the Taqman PCR array data has led to the identification of two LPS 

induced mediators that are differentially regulated between WT and KO macrophages. Both 

CCL19 and IL-13 were undetectable in baseline conditions in both genotypes, however 

subsequent to LPS stimulation both mediators were up-regulated in WT cells in contrast to 
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KO cells.  CCL19 is a pro-inflammatory chemokine with some implications in nociceptive 

transmission (Biber et al., 2011; Schmitz et al., 2013) and exhibited a significant up-

regulation (p < 0.001), whereas IL-13 exhibited a non-significant up-regulation and 

possesses anti-inflammatory properties that are less fitting to the behavioural phenotype in 

question. Thus based on this evidence we decided to further validate the expression of 

CCL19 in WT and KO macrophage cells using conventional qRT-PCR. We found that the 

results were highly consistent with the original findings of the Taqman PCR array method; 

we observed a significant induction of CCL19 expression post LPS stimulation in WT but not 

in KO macrophages (WTC: 1.0 ± 0.3, WT LPS: 12.4 ± 7.3 vs KOC: 1.1 ± 0.1, KO LPS: 3.2 ± 1.1; 

Fig. 3.10A). However, when we repeated the experiment in an independent group of animals 

(Fig. 3.10B) CCL19 induction in the WT LPS group was considerably less and both genotypes 

showed an equivalent level of CCL19 up-regulation (WTC: 1.0 ± 0.6, WT LPS: 4.8 ± 0.4 vs 

KOC: 0.7 ± 0.2, KO LPS: 4.3 ± 1.0; p < 0.05 Fig. 3.10B). Due to time constraints, it was not 

possible to repeat the experiment; however, it would be worthwhile re-validating CCL19 

expression alongside other differentially regulated mediators. 
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Figure 3.8: LPS stimulation induces an abundant increase in GPR84 expression in microglia 

and macrophage cells 

 

The relative expression of GPR84 in WT cortical microglia (A) and Bio-gel elicited peritoneal 

macrophage cells (B), significantly increased subsequent to 3 hrs LPS (1 μg/ml) stimulation.  Change 

in mRNA expression is normalised to the mean ΔCT of control cells where ΔCT = (mean GPR84 CT) – 

(mean HK CT). Data are presented as mean ± SEM. A, HK: GAPDH; t-test, *p < 0.05 vs control, n = 4. B, 

HKs: GAPDH, HPRT, X18S, ACTB, p < 0.001*** vs control, t-test with FDR for multiple testing 

correction, n = 4. 
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Table 3.1: Top down- and up-regulated gene transcripts in GPR84 KO macrophages 

subsequent to LPS stimulation 

 

Tables displaying the top down- (A) and top up- (B) regulated gene transcripts 3 hrs post LPS 

stimulation (1 μg/ml) in GPR84 KO B-GEPMs ranked in order of FC ratio, where FC = LPS/control; FC 

ratio = KOFC/WTFC. Only genes with a FC  ≥ 2 and a FC ratio of ≥ 1.5 have been ranked. Genes with a 

FC ratio < 1.5 are considered equally expressed between genotypes. Data are presented as the mean ± 

SD range of the case samples (LPS stimulated cells); p < 0.05*, p < 0.01**, p < 0.001*** vs control; t-

test with FDR correction for multiple comparisons, n = 4.  

3.1 (A)

Rank Gene WT FC KO FC 

KOFC/WTFC  

RATIO

1 CCL19 71.0 (49.8-101.0)*** ND -71.0

2 GPR84 30.8 (23.0-41.2)*** ND -30.8

3 IL13 7.7 (1.9-31.8) ND -7.7

4 FGF7 -2.2 (0.3-0.8) -12.1 (0.04-0.2)** -5.0

5 IL10 153.2 (100.0-234.0)** 42.2 (34.0-524.0)** -3.6

6 CXCL13 4.2 (2.4-7.3) 1.3 (0.6-2.8) -3.2

7 CCL22 2360.1 (1080.0-5150.0)*** 798.4 (142.0-450.0)** -3.0

8 IL19 219.6 (17.4-27.7)* 100.0 (68.3-147.0)** -2.2

9 CXCL9 25.4 (23.1-27.9)** 11.8 (7.1-19.6)** -2.2

10 AIF1 1.0 (0.9-1.2) -2.2 (0.2-2.2)* -2.0

11 CCL7 41.4 (23.4-73.3)*** 21.3 (10.4-43.6)** -1.9

12 CXCL5 33.7 (23.7-47.8)*** 18.5 (11.1-30.8)* -1.8

13 CCL2 27.2 (17.0-43.6)*** 15.6 (12.4-19.7)*** -1.7

14 IL20 13.1 (6.1-28.0)* 7.6 (2.9-20.1)* -1.7

15 CXCL3 959.8 (796.0-1160.0)*** 597.2 (394.0-905.0)*** -1.6

16 IL18 4.0 (3.2-4.9)** 2.6 (1.5-4.4) -1.5

17 CCL3 249.5 (197.0-317.0)*** 165.1 (129.0-211.0)*** -1.5

18 CCL24 3.0 (1.8-5.1)* 2.1 (1.5-2.9) -1.5

Top down-regulated genes in LPS stimulated GPR84 KO macrophages

3.1 (B)

Rank Gene WT FC KO FC 

KOFC/WTFC  

RATIO

1 CXCL11 35.1 (26.8-46.1)*** 268.9 (112.0-647.0)*** 7.7

2 CCL11 4.3 (1.1-17.4) 11.3 (2.1-61.6) 2.6

3 CCL20 28.7 (19.5-44.4) 66.6 (25.3-176)* 2.3

4 BDNF -2.5 (0.1-1.9) 1.2 (0.3-5.9) 2.1

5 TNF 134.6 (119-152)*** 266.6 (236-301)*** 2.0

6 IL23A 1227.4 (812.0-1860)*** 2374.0 (1300-4350)** 1.9

7 CCL28 -2.2 (0.2-1.0) 1.2 (0.5-2.5) 1.9

8 EREG 19.7 (14.9-26.2)** 35.6 (23.0-55.1)*** 1.8

9 CSF2 6884.0 (3450.0-13800)*** 11030.0 (2980.0-40800.0)** 1.6

10 NOS2 130.0 (92.2-183.0)*** 204.2 (81.8-510.0)** 1.6

11 IL33 7.5 (4.3-13.1)** 11.5 (7.7-17.2)** 1.5

Top up-regulated genes in LPS stimulated GPR84 KO macrophages
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Figure 3.9: Distribution and correlation of LPS induced genes in GPR84 WT and KO 

macrophages 

 

(A) Transcript expression profiles of a range of cytokines, growth factors and cell markers 

subsequent to 3 hrs LPS (1 μg/ml) stimulation of GPR84 WT and KO B-GEPMs. Transcripts are 

ranked in order of increasing FC ratio, where FC = LPS/control; FC ratio = WT FC/KO FC.  Both 

genotypes demonstrate similar distribution profiles and only a few transcripts are differentially 

regulated as indicated by the FC ratio. The data points show the average FC or FC ratio for each gene 

transcript ranked from the most down-regulated to the most up-regulated in the WT. The blue 

shaded box represents an area of 2 ≤ FC and each data point shows the mean FC for each individual 

transcript. Adjacent FC data points represent the same gene transcript, n = 92. The x-axis is on a log 2 

scale. (B) Transcript expression changes in WT and KO macrophages are plotted against each other 

on a log 2 scale. The Pearson’s correlation coefficient (r = 0.960) indicates that there is a positive 

relationship between the two data sets (p < 0.001). Outliers are highlighted in red, see text. GPR84 is 

denoted as a red triangle. Data is presented as the mean FC. Pearson’s correlation coefficient, n = 92.  
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Figure 3.10: qRT-PCR validation of CCL19 expression in LPS stimulated GPR84 WT and KO 

macrophages  

 

Following LPS stimulation (1 μg/ml), CCL19 mRNA expression increased in GPR84 WT but not KO 

macrophages (A). There was no significant difference between the LPS stimulated genotype groups. 

In an independent second experiment the expression of CCL19 significantly increased in both LPS 

stimulated GPR84 WT and KO macrophages compared to their appropriate control groups (B). There 

was no significant difference between the LPS stimulated genotype groups. Changes in mRNA 

expression is relative to the mean ΔCT of control cells where ΔCT = (mean CCL19 CT) – (mean HPRT 

CT). Data are presented as the mean ± SEM; *p < 0.05, **p < 0.01; (A): Kruskal one-way ANOVA on 

ranks, post hoc Dunn’s method; (B): one-way ANOVA, post hoc Tukey; n = 4.  
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3.4 Discussion 

 

Chronic inflammatory pain is associated with a range of pathologies from autoimmune and 

neurological diseases to OA and cancer. Patients often have to contend with additional 

associated co-morbidities and thus quality of life is greatly compromised with current 

therapeutic treatment largely inadequate. The immune system with its array of signalling 

molecules plays a principle role in inflammation and thus the identification of key immune 

targets is a viable approach in the development of new therapeutic treatments. In this 

chapter we utilised two well documented experimental models of inflammatory pain to 

investigate the role of the immune cell expressed GPR84 in nociceptive transmission. We 

have demonstrated that following intraplantar CFA or intrathecal LPS, GPR84 KO mice 

exhibit attenuated behavioural hyperalgesia restricted to particular modalities; this 

however did not correlate with an altered microglia phenotype. We also verified deletion of 

GPR84 in the KO at the protein level and showed exclusive co-localisation with microglia in 

the CNS. Finally, we showed that subsequent to LPS stimulation, GPR84 mRNA expression is 

induced in cultured microglia and macrophages and that a subset of transcripts are 

differentially regulated in LPS stimulated KO macrophages. Therefore, GPR84 is a pro-

inflammatory receptor mediating inflammation-induced pain and is specifically up-

regulated upon exposure to appropriate inflammatory stimuli, which makes it an appealing 

target in chronic pain treatment. 

 

3.4.1 GPR84 plays a role in inflammatory pain pathways that is independent of 

microglial activation 

 

Intraplantar administration of CFA to the hind paw is one of the most common models of 

persistent inflammation that possesses both a peripheral and a central component, where 

the development of central sensitisation is manifested as thermal and mechanical 

hyperalgesia. Microglia are active participants in the initiation of chronic pain states by 

releasing a plethora of algesic factors, which is well documented in experimental models of 

nerve injury-induced neuropathic pain. However, the involvement of these cells in 

experimental models of inflammatory pain is somewhat more questionable (DeLeo and 

Yezierski, 2001; Watkins et al., 2001; Watkins and Maier, 2003; McMahon et al., 2005; 

McMahon and Malcangio, 2009). In a study utilising the CFA model, sustained spinal 

microglia activation was observed up to 14 days post CFA, indicated by an up-regulation of 

TLR4, CD14 and Mac-1 mRNAs  as well as elevated OX-42 immunoreactivity, which 

correlated with behavioural allodynia and hyperalgesia (Raghavendra et al., 2004). In an 
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earlier study using two models of peripheral inflammation, animals treated with 

intraplantar formalin and zymosan exhibited spontaneous pain and persistent mechanical 

allodynia at later time points (Sweitzer et al., 1999). Immunohistochemical analysis 

revealed that glial activation correlated with the development and maintenance of 

mechanical allodynia, however, this was only evident as a moderate bilateral increase in OX-

42 and GFAP staining (Sweitzer et al., 1999). Administration of formalin to the hind paw 

produces two phases of spontaneous nociceptive behaviour followed by a later onset of 

prolonged allodynia for up to three weeks. Using this model many groups have reported an 

ipsilateral increase in microglia numbers as revealed by OX-42 staining in the superficial 

dorsal horn that correlates with the onset of allodynia (Fu et al., 1999; Aumeerally et al., 

2004). However, discrepancies in the literature with regards to microglial markers and their 

temporal regulation suggests caution should be applied to the interpretation of these 

results. For example, Fu et al. (1999) reported an ipsilateral increase in OX-42 in the medial 

portion of the dorsal horn and gracile nucleus of the brainstem post formalin administration 

but failed to observe any change in OX-6 (marker for MHC class II). Likewise, Sweitzer et al. 

(2001) reported an absence of MHC class II as well as CD4 in the spinal cord following 

intraplantar zymosan and observed a mild glial activation that paralleled with behavioural 

allodynia. In contrast, Yeo and colleagues (2001) demonstrated an increase in microglial cell 

markers in the caudal spinal trigeminal nucleus, including OX-18 (marker for MHC class I), 

OX-42 and OX-6, 21 days post subcutaneous formalin injection into the lateral facial surface 

of rats. Notably, the most striking observations using the formalin model ultimately indicate 

that the microglia response tends to peak 3 to 7 days post treatment despite the fact that 

nociceptive behaviours are most prominent within the first 2 hours of treatment. This 

microglia response also parallels with the development of allodynia, which has been 

documented to persist for up to three weeks post formalin. Together, these data argue 

against a contribution of microglial cells in the early formalin-induced nociceptive 

behaviour phase; in contrast there appears to be an association with long-lasting 

inflammation and tissue damage, implying a relationship between microglial activation and 

the extent of nerve damage rather than nociception (Fu et al., 1999; Wu et al., 2004).  

  

 Evidence against a central microglial role has also been documented in other inflammatory 

as well as neuropathic pain models, where authors reported unaltered OX-42 staining in 

response to CFA, topical application of mustard oil and CCI surgery (Colburn et al., 1997; 

Molander et al., 1997; Honore et al., 2000; Zhang et al., 2003; Clark et al., 2007a). On the 

contrary, many recent studies have demonstrated that microglia do in fact show an early 

response to peripherally injected inflammogens with increases in OX-42 staining within 

hours of treatment (Svensson et al., 2003a; Hua et al., 2005; Clark et al., 2007a; Guo et al., 
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2007; Sun et al., 2007). Notably, whilst early studies have relied on observing morphological 

changes or increases in the density of microglia markers as a criterion, more recent work 

reflects the importance of using markers that reflect alterations in intracellular function, 

such as p-p38, rather than markers like OX-42 that require de novo protein synthesis (DeLeo 

and Yezierski, 2001; Hua et al., 2005). Phosphorylated p-38 is a prerequisite for NF-κB 

mediated cytokine synthesis and release from microglial cells and since phosphorylation is a 

very rapid process, p-p38 is regarded as a sensitive marker of spinal microglia activation (Ji 

and Suter, 2007; Ji et al., 2009). Indeed, this marker has been reported to correspond closely 

with the development of behavioural hyperalgesia in a variety of experimental models of 

inflammation (Kim et al., 2002; Svensson et al., 2003b). While intrathecal or systemic 

infusion of p38 inhibitors alleviate pain symptoms (Kumar et al., 2003; Svensson et al., 

2003a; Svensson et al., 2003b). Interestingly, contradictory temporal and expression 

findings are also present in studies using this marker of microglia activation. For example, Ji 

et al. (2002) failed to see p38 phosphorylation in the dorsal horn but observed an increase 

in p-p38 expression in small DRG neurons 6 hours to 7 days post CFA treatment. Svensson 

et al. (2003) and Kim et al. (2002) observed an increase in spinal microglia p-p38 

immunoreactivity following intraplantar formalin, with the former reporting a transient 

peak at 5 minutes whilst the later observed an increase in immunostaining 12 hours-2 days 

post treatment (Kim et al., 2002; Svensson et al., 2003b). Despite some discrepancies in the 

literature, on the whole these data support a clear role of spinal microglial cells in numerous 

models of inflammation that correlates with the development of pain behaviours. (Yeo et al., 

2001) 

In light of this evidence and the fact that GPR84 is a pro-inflammatory receptor exclusively 

expressed by microglial cells in the CNS (Bouchard et al., 2007; Suzuki et al., 2013) we 

utilised the CFA model to investigate whether GPR84 contributes to inflammatory pain via 

the modulation of microglial cells. We report that GPR84 KO mice exhibited attenuated 

mechanical, thermal and cold hyperalgesia in contrast to WT littermate controls and that 

both genotypes exhibited non-significant mechanical allodynia. As expected WT mice 

developed significant mechanical, thermal and cold hyperalgesia subsequent to intraplantar 

CFA that correlated with a significant increase in microglial numbers and activation in the 

ipsilateral dorsal horn, as revealed by enhanced Iba1 and p-p38 immunoreactivity, 

respectively. Similarly, CFA treated KO mice exhibited increased ipsilateral Iba1 and p-p38 

immunoreactivity in the dorsal horn, but this did not reach significance. Furthermore, we 

did not find a statistical difference between the CFA treated genotype groups and so these 

findings indicate that GPR84 may not be involved in the modulation of microglial cells in 

persistent inflammatory pain mechanisms. Together our data suggest that GPR84 mediated 
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nociceptive signalling encompasses specific modalities and is unlikely to involve the 

modulation of microglial cells.  

 

Studies examining the role of microglial expressed Gαi/o coupled GPCRs in transgenic mice 

have demonstrated a strong correlation between the observed behavioural phenotype and 

an altered microglial response. For example, zymosan treated CX3CR1 null mice developed 

mechanical allodynia but showed an absence of thermal hyperalgesia which, unlike our 

findings, correlated with reduced microglial numbers in the dorsal horn as revealed by Iba1 

immunoreactivity (Staniland et al., 2010). Likewise, CFA treated CCR2 null mice exhibited 

attenuated mechanical allodynia compared to WT controls from 6 hours to 2 days post 

treatment, in addition to markedly reduced pain compared to WT controls in the 2nd 

formalin phase (Abbadie et al., 2003). Administration of a CCL2 neutralising antibody 

reversed both mechanical allodynia and microglial activation. However, the reversal effect 

of an anti-CCL2 antibody has only been documented in a model of nerve injury (Thacker et 

al., 2009). These studies showed that paw oedema occurred in both genotypes, indicating an 

equivalent level of peripheral inflammation, which was a finding we also documented 

(Abbadie et al., 2003; Staniland et al., 2010). The central role of microglial cells in the 

initiation and maintenance of pain states is further supported by studies using microglial 

inhibitors. For example, administration of fluorocitrate attenuated the 2nd phase of formalin 

evoked flinching behaviours and zymosan-induced hyperalgesia (Meller et al., 1994; 

Watkins et al., 1997). Intrathecal minocycline also alleviated formalin and carrageenan 

evoked hyperalgesia, which corresponded with reduced spinal p-p38 immunoreactivity 

(Hua et al., 2005). However, in the CFA model the role of microglial cells is not that well 

established. Clark et al. (2007) reported an absence of microgliosis 24 hours post CFA 

despite the presence of behavioural hyperalgesia and intrathecal fluorocitrate failed to 

reduce pain behaviours. Furthermore, Raghavendra et al. (2004) reported low levels of 

microgliosis 1 day post CFA and in a study using CFA treated CCR2 null mice, animals 

showed a non-significant reduction of mechanical allodynia (Abbadie et al., 2003). The 

expression of P2X4, which has been shown to up-regulate in reactive microglia, also 

remained unaltered 7 days post CFA (Tsuda et al., 2003). However, these studies have 

examined earlier time points than the one we report, and in accordance with a study 

examining the microglia response 14 days post CFA we observed significant microgliosis in 

the dorsal horn (Raghavendra et al., 2004). Put together, these data suggest that microglia 

may not be involved in the early stages of acute pain but may play a more important role in 

the later chronic phase of this model. 
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Previously we were unable to correlate the behavioural phenotype of GPR84 KO mice to an 

altered microglial phenotype in a peripheral nerve injury model of neuropathic pain (see 

Chapter 2) and have found no evidence of microglial involvement in a peripheral 

inflammation model. Therefore, to directly evaluate the contribution of microglial cells to 

GPR84 mediated nociceptive signalling we examined the role of these cells in an LPS-

induced CNS inflammatory model. Intrathecal LPS specifically activates microglial cells via 

the TLR4 and induces thermal hyperalgesia and tactile allodynia, which is dependent on a 

prior priming dose (Lehnardt et al., 2002; Cahill et al., 2003). Such acute activation of spinal 

microglia has relevance to both inflammatory and neuropathic pain mechanisms as nerve 

injured TLR4 null mice display attenuated behavioural hypersensitivity and decreased 

expression of proinflammatory cytokines (Tanga et al., 2005). LPS stimulation initiates 

dimerization of the TLR4 cytoplasmic domains and subsequent activation of p38 MAPK and 

NF-κB mediated transcription, which induces the release of pro-inflammatory cytokines 

such as IL-1β and TNF-α, leading to an increase in excitability of dorsal horn neurons (Reeve 

et al., 2000; Clark et al., 2006; Clark et al., 2010b). Phosphorylation of p38 MAPK in 

microglia is a key intracellular signal that orchestrates their pain-related actions and 

correlates with the development of behavioural hypersensitivity. This has been 

demonstrated by spinal cord administration of LPS in ex vivo and in vivo models of CNS 

inflammation and a number of nociceptive models (Svensson et al., 2003b; Clark et al., 

2006). The effects of LPS are very much dependent on the induction of pro-inflammatory 

cytokines and systemic administration of LPS has been shown to induce an increase in IL-

1β, TNF-α, IL-6, CCL2 and CCL5 in the DRG and spinal cord. Correspondingly, systemic or 

perineural administration of these individual cytokines elicits mechanical hypersensitivity 

and thermal hyperalgesia (Cunha et al., 1992; Safieh-Garabedian et al., 1995; Woolf et al., 

1997; Cunha et al., 2000; Strong et al., 2012; Yoon et al., 2012). Conversely, administration 

of minocycline suppresses systemic LPS induced hyperalgesia by reducing 

microglial/macrophage cell numbers and cytokine expression (Yoon et al., 2012) and pre-

treatment of BV-2 cells with a p38 inhibitor reduces LPS stimulated cytokine production 

(Horvath et al., 2008).  

 

In a model of neonatal priming, which reflects the long-term neuro-developmental changes 

in adults associated with neonatal surgery and intensive care, adult rats exhibited a similar 

predisposition to enhanced sensory sensitivity and stress to that seen in humans (Beggs et 

al., 2012). It was shown that rodents which received a hind paw incision at 3 days of age had 

increased hyperalgesic responses in comparison to animals that did not experience an early 

life pain experience, and this change was correlated to increased microglial reactivity in the 

adult dorsal horn. Selective targeting of microglial cells via intrathecal administration of 
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minocycline prevented hypersensitivity and the early microglia response seen in animals 

that had a prior neonatal injury (Beggs et al., 2012).  Together these studies underscore the 

key role of microglia in nociception and importantly the notion of a required priming 

stimulus for the development of behavioural hypersensitivity, which is a crucial factor in the 

LPS model presented in this chapter.  

 

We report that GPR84 KO mice exhibited attenuated mechanical hyperalgesia subsequent to 

intrathecal LPS administration but showed an equivalent development of mechanical 

allodynia and cold hyperalgesia to WT mice. In accordance with literature, the development 

of behavioural hyperalgesia in WT mice correlated with a significant increase in dorsal horn 

Iba1 and p-p38 immunoreactivity; however, a similar microglial response was also 

observed in the KO despite the behavioural differences. It has been previously reported that 

LPS induced mechanical hypersensitivity is absent in P2X7 null mice, which corresponds 

with reduced p38 MAPK phosphorylation of spinal microglia (Clark et al., 2010b). Therefore 

our findings are somewhat puzzling as one would expect the KO behavioural phenotype to 

correlate with an altered microglial response, considering that these cells have been 

selectively activated and solely express GPR84, which is itself robustly induced by LPS 

exposure. In conclusion, these data suggest that GPR84 exerts its effects through complex 

signalling pathways that may involve a specific subset of afferent fibres or 

mechanoreceptors but does not regulate microgliosis in response to CNS inflammation. 

Interestingly, a previous study showed that administration of P2X4 antisense 

oligodeoxynucleotides does not prevent activation of microglial cells despite suppressing 

both allodynia and an increase in P2X4 expression in nerve injured rats (Tsuda et al., 2003). 

In light of this evidence, the up-regulation of GPR84 expression alone in response to nerve 

injury or inflammation could perhaps be the important factor contributing to nociceptive 

transmission. However, we have been unable to investigate this due to a lack of 

pharmacological tools. 

 

3.4.2  GPR84 expression is exclusive to spinal microglial cells and is up-regulated in 

response to inflammatory stimuli  

 

GPR84 is a pro-inflammatory receptor that is highly inducible upon endogenous or 

exogenous inflammatory insult. In experimental models of endotoxemia, EAE and diabesity 

GPR84 is markedly up-regulated due to the release of soluble mediators (Bouchard et al., 

2007; Nagasaki et al., 2012). Molecules able to stimulate the NF-κB pathway such as LPS, IL-

1β and TNF-α enhance the expression of GPR84 in monocytes/macrophages and microglial 

cells, which can be blocked via the administration of NF-κB inhibitors (Wang et al., 2006a; 



Chapter 3 - The Role of GPR84 in Chronic Inflammatory Pain 

 

183 

Bouchard et al., 2007; Lattin et al., 2008; Nagasaki et al., 2012). Furthermore heterologous 

expression systems have demonstrated that GPR84 is involved in the regulation of subsets 

of cytokines/chemokines (Venkataraman and Kuo, 2005; Wang et al., 2006a; Suzuki et al., 

2013). Therefore, it is likely that the expression of this receptor is regulated by multiple 

pathways involving the activation of TLR4, TNFR or IL-1R, which eventually culminate in 

NF-κB mediated GPR84 transcription. In accordance with literature, we showed that under 

normal conditions GPR84 immunoreactivity was absent in the spinal cord of saline treated 

WT mice, in contrast to LPS treated mice which exhibited bilateral punctate staining that 

resembled microglial morphology. We also showed that GPR84 immunoreactivity 

exclusively co-localised with a majority of Iba1 positive cells and failed to co-label with 

NeuN and GFAP. This confirms that GPR84 expression is restricted to microglial cells and 

raises the possibility that only certain microglial subpopulations express this receptor. As 

expected, GPR84 staining was absent in the spinal cords of both saline and LPS treated KO 

mice. Lastly, in conjunction with these findings we demonstrated that GPR84 expression is 

robustly up-regulated in cortical microglia and B-GEPMs subsequent to LPS exposure.  

 

3.4.3 A subset of LPS induced gene transcripts are differentially regulated in GPR84 

WT and KO macrophages  

 

As GPR84 is a highly inducible pro-inflammatory receptor we expected to observe a more 

robust behavioural phenotype in the two inflammatory models examined, similar to our 

previous findings in the neuropathic pain model. However, we saw a mild behavioural 

phenotype that was restricted to particular modalities, suggesting that the signalling 

pathway of GPR84 is complex and may encompass different mechanisms in animal models 

of persistent inflammatory and neuropathic pain. Due to the restricted expression of this 

GPCR to spinal microglial cells and marked up-regulation by an appropriate immunological 

stimulus, we expected to see an altered microglial phenotype in KO mice. However, the 

microglial response was equivalent between the genotypes in both the CFA and LPS-induced 

CNS inflammation models. We also demonstrated a dissociation of microglial and 

macrophage involvement in GPR84 mediated pain pathways in a nerve injury-induced 

model of neuropathic pain (Chapter 2). These findings are puzzling in light of the 

behavioural phenotype in KO mice as microglia and macrophage cells are well documented 

to contribute to pain behaviours.  Based on this evidence and the fact that we observed a 

partial reduction in inflammation-induced hyperalgesia in the KO that was not associated 

with an altered microglia response, we sought to examine the possible contribution of 

peripheral macrophages by assessing the ability of B-GEPMs to launch an inflammatory 

response in the absence of GPR84. Here, we used a simple in vitro system to measure 
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transcriptional changes of a selection of putative mediators subsequent to LPS stimulation. 

Macrophage cells are central players in the innate immune response to a peripheral insult 

and promote inflammation by releasing a range of mediators such as TNF-α, IL-1β, NGF, NO 

and PGE2 (Nathan, 1987; Tannenbaum and Hamilton, 1989; Marchand et al., 2005). LPS 

stimulation of cultured macrophage cells increases cytokine synthesis in a TLR4 dependent 

manner (Feng et al., 2002; Schmid et al., 2009) and application of LPS to the injured sciatic 

nerve enhances the recruitment of macrophage cells to the site of injury and the process of 

WD (Boivin et al., 2007). Therefore, our in vitro paradigm using a potent exogenous TLR4 

agonist is a relevant representation of the in vivo situation. 

 

Using custom designed mouse PCR array cards we examined LPS induced transcriptional 

changes in GPR84 WT and KO mice relative to appropriate control cells of each genotype. 

We analysed the data sets via implementing strict threshold criteria and examined top 

ranking up- or down-regulated genes in addition to transcriptional profiles and correlations 

between the two genotypes. We found that GPR84 KO macrophages were as equally capable 

as WT cells at launching a pro-inflammatory response upon LPS exposure and that there 

was an equivalent, if not greater induction of pro-nociceptive IL-1β, TNF-α, IL-6, PTGS2, 

PTGES and NOS2 in the KO than the WT. However, a subset of pro-nociceptive mediators 

(IL-18, CCL2, CCL3 and CXCL5) showed an attenuated induction in the KO in contrast to the 

WT. This reflects the differential regulation of mediators by Gαi/o proteins and suggests that 

GPR84 may concurrently down-regulate the expression of some mediators whilst up-

regulating the expression of others. Together, these data indicate that GPR84 may be 

involved in the regulation of a small subset of cytokines that are known to contribute to 

nociceptive transmission.  

 

IL-18 possesses a variety of functions particularly concerned with the regulation of T-cells, 

including the promotion of Th1 cell development and the activation/facilitation of IFN-γ and 

TNF-α secretion (Nakanishi et al., 2001). Intrathecal or intraplantar administration of this 

cytokine generates behavioural hypersensitivity (Verri, 2005; Verri et al., 2006; Miyoshi et 

al., 2008) and SNL-injured rodents exhibit increased expression of IL-18 and its receptor, IL-

18R, in microglia and astrocytes, respectively (Miyoshi et al., 2008). It has also been 

reported that LPS stimulation potentiates IL-18 expression in microglial cells, indicating 

that IL-18 induction is downstream of TLR4-dependant activation of microglial cells 

(Miyoshi et al., 2008).  

 

CCL2 is a chemotactic factor that contributes to the recruitment and activation of 

macrophages and microglial cells to the site of inflammation or injury (Charo and Ransohoff, 
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2006). Intraspinal administration of CCL2 in naïve rats results in microglial activation and 

pain behaviours, which are reversed via CCL2 neutralising antibodies (Thacker et al., 2009). 

Furthermore, CCR2 null mice show a reduction in pain behaviours in models of 

inflammatory and neuropathic pain (Abbadie et al., 2003). CCL3 is predominantly expressed 

in hematopoietic immune cells and exerts similar chemotactic properties to CCL2, 

regulating migration, proliferation and cytokine synthesis of immune cells via its cognate 

CCR1 and CCR5 receptors (Charo and Ransohoff, 2006). Intrathecal administration of CCL3 

in naïve mice produced dose-dependent pain behaviours that were reversed via antibody 

neutralisation (Kiguchi et al., 2010b). CXCL5 is also involved in immune cell recruitment and 

activation and in an ultraviolet B model of inflammation high levels of expression of this 

chemokine correlated with peak behavioural hypersensitivity (Charo and Ransohoff, 2006; 

Dawes et al., 2011). In addition, intraplantar injection of CXCL5 evoked mechanical allodynia 

but not thermal hyperalgesia, attributed to the infiltration of macrophage and neutrophil 

cells (Dawes et al., 2011). 

 

Among the top up-regulated genes in the KO were the growth factors BDNF and EREG. BDNF 

was down-regulated in the WT and remained unchanged in the KO after LPS, whereas EREG 

was up-regulated in both but to a greater extent in the KO. Little is known about EREG in 

nociceptive pathways and the expression pattern of pro-nociceptive BDNF (Latremoliere 

and Woolf, 2009) does not correspond to the behavioural phenotype in the KO. A subset of 

cytokines/chemokines were also induced in both genotypes but to a greater extent in the 

KO including IL-23a, IL-33, CCL20, CXCL11 and CSF2. Whilst a majority of these are 

currently unrelated to pain with only recent implications for IL-33 and CXCL11 (Strong et 

al., 2012; Han et al., 2013; Zarpelon et al., 2013), these expression patterns are unlikely to be 

relevant to the KO behavioural phenotype. This is because an increase in the expression of 

pro-nociceptive mediators does not coincide with our previous observations of an absence 

of mechanical hyperalgesia in CFA or LPS treated KO mice. 

 

Pro-inflammatory CCL7, CCL19 and CXCL9 as well as IL-13, IL-19, IL-20, CCL22, CCL24, 

CXCL3 and CXCL13 showed attenuated induction in LPS stimulated KO cells. Whilst CCL7, 

CCL19 and CXCL9 have been linked to nociception (Biber et al., 2011; Dawes et al., 2011; 

Strong et al., 2012; Schmitz et al., 2013), the latter group have very little documentation in 

the context of pain. The transcriptional regulation of CCL19 was striking and under basal 

conditions this chemokine was undetectable, whereas subsequent to LPS stimulation CCL19 

was markedly induced in WT but not KO cells. In response to inflammatory insult, CCL19 is 

co-released with CCL21a from a variety of stromal cells within the lymphoid organs where 

they act with similar affinities on CCR7+ T-cells, B-cells and dendritic cells to promote 
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migration into lymphatic vessels and mediate the adaptive immune response (Comerford et 

al., 2013). Subsets of macrophage populations are also CCR7+ and migrate in response to 

CCL19 and CCL21a to the marginal zone of the spleen where blood-borne pathogens are 

cleared (Ato et al., 2004). In a study utilising the paucity of lymph node T-cells (PLT) mice, 

which have a naturally occurring defect in the expression of both CCL19 and CCL21a, pain 

associated behaviours were absent subsequent to SNI and microglia failed to up-regulate 

P2X4 mRNA expression (Biber et al., 2011). Intrathecal administration of CCL21a in these 

mice produced long lasting mechanical allodynia to a similar extent to that seen in the WT 

mice, which was dependent on P2X4 receptor function. Although CCL19 was undetected in 

neuronal tissue and plays a minimal role in the behavioural phenotype of PLT mice, the 

contribution of this chemokine was not entirely excluded (Biber et al., 2011). A similar study 

also reported the anti-nociceptive effects of CCL19/21a deficient mice in the SNI model and 

again showed that this was not related to a reduced microglial response but rather due to an 

altered feature of microglial cells (Schmitz et al., 2013). 

 

In light of this evidence and the intriguing transcriptional regulation of this chemokine we 

further validated the differential regulation of CCL19 between genotypes and were 

successfully able to re-produce the original Taqman PCR array data via individual qRT-PCR. 

However, we were unable to repeat these data in an independent group of animals. This 

could be due to the fact that the WT cells were not as stimulated as before and hence did not 

induce CCL19 to the same extent as seen previously or perhaps because the original findings 

were a false positive. It would therefore be interesting to re-validate our findings to clarify 

this discrepancy.  

 

3.4.4 GPR84 signalling 

 

The intriguing finding that GPR84 expression is restricted to immune cells sparked recent 

studies into the functional characterisation of this receptor under in vitro and in vivo 

conditions. In one study it was shown that T-cells from GPR84 null mice exhibited a hyper 

Th2 cytokine production of IL-4, IL-5 and IL-13 in contrast to WT controls, indicating that 

GPR84 may suppress anti-inflammatory cytokines. However, this hyper Th2 cytokine 

phenotype was not present in immunised KO mice in vivo, perhaps due to a degree of 

compensation driven by the effects of an active immune response or due to differences 

between in vitro and in vivo systems (Venkataraman and Kuo, 2005). As the expression of 

GPR84 is robustly induced by an inflammatory stimulus, many studies have examined the 

functional responses of immune cells subsequent to LPS stimulation, particularly since 

GPR84 has a very low level of expression under basal conditions. Exposure of RAW 264.7 
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cells to GPR84 ligands such as capric acid and lauric acid subsequent to LPS stimulation 

produced a dose-dependent increase in IL-12p40 transcription and secretion (Wang et al., 

2006a). This was consistent with findings from Venkataraman and Kuo (2005) who 

reported increased Th2 cytokine production in KO T-cells. Suzuki et al. (2013) also showed 

that under LPS conditions, granulocyte and macrophage cells exhibited amplified 

production of IL-8 and TNF-α subsequent to stimulation with the GPR84 ligand 6-OAU. In 

addition, intravenous dosing with 6-OAU increased levels of CXCL1 in rodents (Suzuki et al., 

2013). Based on this literature, we anticipated that LPS-stimulated GPR84 KO cells would 

exhibit enhanced production of Th2-associated cytokines: IL-4, IL-5, IL-6, IL-10 and IL-13 

and decreased/unchanged production of Th1-associated cytokines: IFN-γ and IL-2 as well as 

decreased/unchanged levels of IL-12p40. We report non-detectable levels of IL-2 and IL-4 

in LPS stimulated WT and KO macrophages; IL-13 increased in WT cells and was non-

detectable in KO cells. There was also a robust up-regulation of IL-6, IL-10 and IL-12p40 in 

both genotypes. Although our findings do not entirely align with previous reports, we 

hypothesise that this is due to the use of different cell types where GPR84 may exert 

different functions. 

 

As a Gαi/o coupled receptor, GPR84 is likely to be involved in the differential regulation of 

subsets of cytokines and chemokines exerting both positive or negative modulatory effects, 

which is also supported by our findings in this chapter. In a study examining the differential 

regulation of LPS-induced cytokines and chemokines in peritoneal macrophages from mice 

lacking particular isoforms of Gαi proteins, it was found that the KO mice generally exhibited 

attenuated induction of cytokines/chemokines except for some notable cases (Fan et al., 

2007).  TNF-α, IL-6 and IL-10 were all decreased in Gαi2 and Gαi1/3 KO mice in contrast to 

WT littermates, whereas CCL3 and CSF2 were more greatly expressed in Gαi1/3 null mice and 

IL-1β remained unchanged in both Gαi2 and Gαi1/3 null mice (Fan et al., 2007). Therefore, it is 

apparent that Gαi proteins are capable of exerting both positive and negative regulatory 

effects on the expression of some pro-inflammatory cytokines and chemokines. Likewise, 

we observed equivalent or greater induction of pro-nociceptive mediators IL-1β, TNF-α, IL-

6, PTGS2, PTGES and NOS2 in the KO than in the WT and attenuated expression of IL-18, 

CCL2, CCL3 and CXCL5, suggesting that GPR84 exerts both positive and negative effects.  

 

3.4.5 Future work 

 

In this chapter we examined the role of GPR84 in two experimental models of inflammatory 

pain and established a modality specific behavioural phenotype in KO mice, but found no 

evidence for the contribution of microglial cells. Resident or recruited macrophages have 
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been reported to contribute to inflammatory pain by the release of mediators such as TNF-α, 

IL-1β, NGF, NO and PGE2 (Marchand et al., 2005). Experimental depletion or recruitment of 

these cells has been shown to significantly reduce or enhance zymosan and acetic acid 

induced pain (Ribeiro et al., 2000) while intraperitoneal administration of supernatants 

from LPS stimulated macrophages is hyperalgesic (Thomazzi et al., 1997). Furthermore, 

during an inflammatory response macrophage cells also contribute to the recruitment and 

activation of other immune cell types such as neutrophils (Souza et al., 1988). Therefore, it 

would be interesting to characterise the peripheral macrophage response in WT and KO 

mice via examining immunohistochemical markers of macrophage cells (Iba1 and F4/80) in 

the hind paws of CFA treated mice as well as profile transcriptional changes between 

genotypes in spinal cord and hind paw tissue. In addition, we characterised the peripheral 

response by measuring paw oedema and found no differences between the genotypes. 

However, the extent of peripheral inflammation could be further investigated by measuring 

myeloperoxidase activity and carrying out an assessment of leucocyte infiltration into the 

hind paw. Since we have only achieved successful GPR84 staining after LPS treatment it may 

also be interesting to behaviourally assess WT and KO mice subsequent to intraplantar 

administration of LPS, in conjunction with examining GPR84 immunoreactivity and 

immunophenotypic changes of peripheral macrophages that have infiltrated the hind paw. 

 

As a pro-inflammatory receptor, it is likely that GPR84 may be involved in regulating the 

expression of subsets of mediators in response to an inflammatory insult. Therefore, the 

validation of CCL19 will need to be repeated alongside other top dysregulated genes (IL-18, 

CCL2, CCL3, CXCL5) in an independent group of animals, as this would prove instrumental 

in warranting further in vivo studies. Unfortunately, our examination was limited to a set 

selection of 92 genes and thus further studies profiling alternative mediators may prove to 

be more informative. The development of a selective agonist or antagonist would also 

permit the direct evaluation of the contribution of GPR84 activation or inhibition to pain 

pathways.  
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4.1 Introduction 

 

Signal transduction is performed via membrane proteins and vitally determines cellular 

homeostasis and activity. Under normal conditions, GPCRs exist in an equilibrium of 

conformations, which are altered upon ligand binding. Activating ligands (agonists) stabilise 

receptor conformation and promote signalling via the coupled heterotrimeric G-protein 

subunit, whereas inhibitory ligands (antagonists) stabilise conformations that decrease 

signalling. Such pharmacological tools have been widely exploited in experimental studies 

investigating the physiological role and signalling pathways of receptors in vitro and in vivo. 

Throughout this thesis, we have utilised transgenic mice to examine GPR84 in chronic pain 

mechanisms, and have been able to show that this receptor indeed contributes to the 

development and maintenance of pain-associated behaviours. However, a lack of 

commercially available agonists or antagonists selective for GPR84 has hindered further 

progression in the characterisation of this receptor. Therefore, in this chapter we assessed 

three putative ligands using two different functional assays to identify a selective agonist 

that could be used in further characterisation studies.  

 

GPR84 is an orphan receptor and its signalling pathway is currently unknown, with only a 

single study postulating that the free fatty acid, capric acid (CA), is the natural ligand that 

activates GPR84 in a Gαi/o -dependent pathway (Wang et al., 2006a). Based on this limited 

evidence we tested CA and two other ligands kindly provided by GSK/Convergence 

Pharmaceuticals (Embelin and CNV) for efficacy and selectivity in microglia and 

macrophage cells via Ca2+ and cAMP signalling assays. 

 

4.1.1 Calcium signalling in microglia and macrophages 

 

Calcium is a second messenger that regulates a range of cellular functions, including 

metabolism, secretion, proliferation, exocytosis and transcription (Kettenmann et al., 2011). 

Like any other eukaryotic cell, microglia and macrophages tightly control their intracellular 

Ca2+ concentration ([Ca2+]i), which is determined by a delicate balance between processes 

that introduce Ca2+ into the cell (channels, receptors, intracellular stores) and those that 

remove Ca2+ (buffers, pumps, exchangers) as summarised in Fig. 4.1. The influx and 

intracellular release of Ca2+ is a passive but gated function, whereas extrusion of Ca2+ from 

the cell or sequestration into intracellular stores is constitutive but energy-dependent 

(Moller, 2002).  
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In neurons, changes in [Ca2+]i  participates in electrical excitability (∼ -70 mV to ∼ +150 mV), 

neurotransmitter release and synaptic efficacy. In contrast, microglia and macrophages are 

non-excitable cells, meaning that they are unable to generate propagating electrical 

responses (action potentials). However, like neurons they express VGCCs and so are able to 

depolarise their membranes (∼ -70 mV to ∼ -10 mV) in response to external stimuli and 

thus can be considered as ‘internally Ca2+ excitable’. Generally, extracellular Ca2+ levels are 

20,000 fold higher than intracellular levels. In neurons Ca2+ signalling is at the fast end of the 

scale ranging from microseconds to milliseconds, with a resting [Ca2+]i of ∼100 nM that can 

rise to several μM (Clapham, 1995; Verkhratsky et al., 1998; Kettenmann et al., 2011). In 

non-excitable cells Ca2+ signalling is also a transient event, ranging from milliseconds to 

minutes, with a resting [Ca2+]i of ∼50 nM that can rise to several μM. This enables the cell to 

respond appropriately to extracellular signals, depending on the magnitude, duration and 

location of the Ca2+ signal. (Clapham, 1995; Moller, 2002). 

 

The tight regulation of Ca2+ influx during numerous physiological mechanisms underlying 

cell activation is mediated via VGCCs (L-type), or receptor-operated channels (ROCs) 

(ionotropic glutamate and purinergic receptors), which are triggered by membrane 

depolarisation or ligand binding, respectively (Moller, 2002; Kettenmann et al., 2011). 

Essentially, ion channels control the flow of ions across the cell membrane and hence 

influence intracellular voltage-gated channels, membrane potential and cell volume. 

Correspondingly, the modulation of these features affects many processes such as 

respiration, proliferation, migration, secretion and cell morphology (Eder, 2005). Evidence 

for the existence of microglial expressed VGCCs is limited to a single study, in which the 

authors demonstrated the presence of a current with properties similar to that of L-type 

Ca2+ channels in rat microglial cells (Colton et al., 1994). It was shown that administration of 

the L-type Ca2+ channel opener, BAY K8644, enhanced the inward Ca2+ current, whereas the 

L-type antagonist, nifedipine, reduced the current and the production of superoxide anions 

(Colton et al., 1994). It was thus proposed that this small VGCC current contributed to 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase synthesis of superoxide 

anions, which are cytoactive molecules released in response to infection or injury (Colton et 

al., 1994). The presence of L-type VGCCs has also been documented in macrophages where 

increases in [Ca2+]i during membrane depolarisation was dependent on external Ca2+ and 

blocked by nifedipine and verapamil whilst enhanced by BAY K8644 (Hijioka et al., 1992; 

Kong et al., 1992). Moreover, it has also been documented that non Ca2+ permeable voltage-

gated channels may participate in Ca2+ signalling. For example, K+ channels negatively 

regulate membrane potential, which enhances Ca2+ influx through non-selective cation 
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channels and intracellular stores, and in effect modulates functions such as proliferation and 

cell volume (Rouzaire-Dubois et al., 2000).  

 

ROCs, such as the ionotropic ATP receptors (P2X4 and P2X7), were first identified in rodent 

and human microglial cultures (McLarnon et al., 1999; Kettenmann et al., 2011). Activation 

of P2X receptors results in Na+ and Ca2+ influx and K+ efflux through non-selective cationic 

channels and subsequent membrane depolarisation (McLarnon, 2005). Low levels of ATP 

(micromolar range) activate P2X4 receptors while higher levels (millimolar range) also 

recruit P2X7 receptors. P2X7 receptors possess a large pore that is permeable to hydrophilic 

molecules of high molecular weights (> 600 Da) (Farber and Kettenmann, 2006b). 

Activation of these receptors produces a strong cellular depolarisation, a substantial 

increase in [Ca2+]i and p38/ERK mediated release of signalling molecules such as TNF-α 

(Suzuki et al., 2004; McLarnon, 2005; Farber and Kettenmann, 2006a). ATP-induced Ca2+ 

signalling may also be facilitated via inward rectifying K+ channels, as blocking these using 

barium attenuates Ca2+ levels (Franchini et al., 2004).  

 

 In non-excitable cells, Ca2+ signals are predominantly produced via metabotropic receptors 

and subsequent mobilisation of the second messenger IP3, which activates Ca2+ channels 

(IP3Rs) expressed by the endoplasmic reticulum (ER) (Verkhratsky and Parpura, 2013).  

The ER is a major Ca2+ store and consists of a membranous network that extends from the 

cell membrane through the cytoplasm to the nuclear envelope. Here, Ca2+ release is executed 

by several different types of endomembrane-resident Ca2+ channels, including the well-

characterised ryanodine receptors (RyRs) and IP3Rs. Microglial cells possess both types of 

Ca2+ channels, but while RyRs are currently considered less important, IP3R signalling 

pathways are the primary route for generating an increase in microglial [Ca2+]i (Kettenmann 

et al., 2011). IP3Rs are initiated via transduction pathways involving the activation of 

specific isoforms of PLC coupled to metabotropic GPCRs or receptor tyrosine kinases. For 

example, microglia express a number Bordetella pertussis toxin-sensitive heterotrimeric 

GPCRs for the chemokines CCL2 (CCR2), CCL3 and CCL4 (CCR1, 5, 9), CCL5 (CCR3) and 

fractalkine (CX3CR1) (Murdoch and Finn, 2000; Flynn et al., 2003). Activation of PLC results 

in the biosynthesis of DAG and IP3 from the membrane-bound lipid precursor, PIP2. While 

DAG goes on to activate PKC, soluble IP3 diffuses across the cytosol and binds to ER IP3Rs. 

This results in increased IP3Rs sensitivity to Ca2+ and the initiation of a biphasic Ca2+ signal; 

thus at low [Ca2+]i the receptor is activated but subsequent to calcium release, high [Ca2+]i 

inhibits the receptor (Murdoch and Finn, 2000; Kettenmann et al., 2011). In neurons, newly 

released Ca2+ binds to calmodulin (CaM), which possesses four high affinity Ca2+ binding 

sites. Upon formation of the Ca2+/CaM complex, CaM increases its affinity for target enzymes 
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such as Ca2+/calmodulin-dependent kinase kinase (CaMKK) and its substrates, 

Ca2+/calmodulin-dependent kinase (CaMK) I and IV, which are phosphorylated and 

activated by CaMKK (Soderling, 1999; Racioppi and Means, 2008). The CaMK cascade 

orchestrates the activity of transcription factors such as CREB and may cross-talk with other 

intracellular pathways. For example, CaMKIV can inactivate AC and thus reduce levels of 

cAMP and may also interact with the MAPK signalling pathways (Soderling, 1999). There 

are reports of the CAMK pathway in microglia and macrophage cells but a majority of 

evidence coincides with neurons (Sola et al., 1999; Suh et al., 2005; Racioppi and Means, 

2008, 2012; Racioppi et al., 2012). In immune cells the initiation of PKC and other Ca2+-

dependent kinases results in protein phosphorylation and a co-ordinated cascade of 

signalling events, which may also entail the activation of Ras and Rho proteins as well as 

PLCA2, PI3k and MAPK pathways (Murdoch and Finn, 2000). 

 

Following depletion of intracellular ER Ca2+ stores, which is sensed by stromal interaction 

molecules, Ca2+-permeable store-operated channels (SOCs) such as the calcium release-

activated Ca2+ channel (CRAC) and transient receptor potential channels (TRPM2,7; TRPC1-

7) are opened to aid the replenishment of Ca2+ levels (Hoth and Penner, 1992; Zhang et al., 

2005c; Feske et al., 2006; Worley et al., 2007). This mechanism is referred to as ‘capacitative 

Ca2+ influx’ and is employed by many non-excitable cells as the main route of Ca2+ entry 

(Putney, 1986, 1990; Semenova et al., 1999; Vig and Kinet, 2009; Gao et al., 2010; 

Verkhratsky and Parpura, 2013). Ca2+ entry in this manner tends to outlast the initial 

stimulus and thus provides a long-lasting influx that is crucial for regulating many aspects of 

microglial cell function such as morphology, proliferation, NO and cytokine production, 

antigen presentation, migration and phagocytosis (Farber and Kettenmann, 2006a; 

Kettenmann et al., 2011). This striking phenomenon was initially demonstrated in cultured 

microglia, where the activation of the P2Y2/4 receptors via supramaximal doses of ATP or 

UTP resulted in complete depletion of the ER Ca2+ store and the prolonged opening of SOCs 

that lasted for tens of minutes (Toescu et al., 1998). Similarly, BDNF and LPS exposure 

acting via TrkB and TLR4, respectively, also induced long-lasting SOC activation in microglia 

(Hoffmann et al., 2003; Mizoguchi et al., 2009). This persistent SOC mediated increase in 

[Ca2+]i is thought to perhaps account for the sustained elevation of basal [Ca2+]i and 

associated attenuation of evoked Ca2+ signals upon further stimulation (Moller et al., 2000; 

Hoffmann et al., 2003). A corresponding elevated [Ca2+]i profile has also been reported in 

cultured microglial cells incubated with toxic β-amyloid fragment (25-35) (Korotzer et al., 

1995) as well as microglial cells isolated from post-mortem brains of Alzheimer patients, 

which exhibited reduced ATP or platelet aggregating factor induced Ca2+ signals (McLarnon 

et al., 2005). Furthermore, LPS stimulation induces the release of many cytokines including 
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TNF-α, IL-1β, IL-6, IFN-γ and IL-12. Accordingly, application of TNF-α, IL-1β or IFN-γ to 

human microglial cells has been demonstrated to evoke sustained Ca2+ signals via TNFR1/2, 

IL-1R and IL-6R, respectively (Goghari et al., 2000; McLarnon et al., 2001; Franciosi et al., 

2002).  

 

Abnormal Ca2+ signalling as a result of aberrant SOC activity has been implicated in several 

human inflammatory diseases such as IBS and allergy (Parekh, 2010). Interestingly, a recent 

study demonstrated that YM-58483, which inhibits SOCs in immune cells, alleviated CFA 

and SNI behavioural hypersensitivity as well as formalin-induced nociceptive behaviour, in 

addition to suppressing the release of pro-inflammatory mediators (Gao et al., 2013). Thus, 

the development of SOC channel inhibitors as a means to control aberrant Ca2+ activity could 

provide considerable clinical benefits for patients suffering from chronic inflammatory 

diseases and/or pain.  

 

Ca2+ signalling in microglia/macrophages varies in magnitude as well as temporally and 

spatially (Moller, 2002; Kettenmann et al., 2011). Rapid Ca2+ signals are usually generated by 

Ca2+ released from internal stores and the fast opening of membrane channels is followed by 

a rapid decay. Other transient [Ca2+] signals are characterized by an extended plateau phase 

and are attributed to an initial Ca2+ release and a subsequent Ca2+ influx through ROCs or 

SOCs, which play an important role in down-stream cellular events such as mediator release, 

transcriptional regulation and cell motility (Moller, 2002). More complex oscillatory Ca2+ 

signals are generated by Ca2+ release from internal stores and subsequent opening of SOCs, 

whereas slow rising Ca2+ signals are a result of modulatory effects on Ca2+ extrusion 

mechanisms (Moller, 2002). Subsequent to a cellular response and an elevation in [Ca2+]i, 

extrusion of Ca2+ is accomplished by plasma membrane Ca2+-ATPase (PMCA) pumps, which 

are facilitated by Na+/Ca2+ exchangers (NCX) (Carafoli, 1994; Nagano et al., 2004; Lytton, 

2007; Staiano et al., 2013). These exchange proteins utilise the Na+ gradient produced by 

Na+ pumps to rapidly expel Ca2+ into the extracellular environment. In addition, Ca2+ may 

also be sequestered into the ER or mitochondria (Moller, 2002). Ca2+ -ATPase located on the 

ER membrane actively transports Ca2+ into the ER, whereas mitochondria act as potent Ca2+ 

buffers and uptake cytosolic Ca2+ via uniporters, which are highly selective integral 

membrane proteins (Carafoli, 1994; Gilabert and Parekh, 2000; Moller, 2002; Nagano et al., 

2004; Staiano et al., 2013). 
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Figure 4.1: Intracellular calcium signalling 

 

Simplified schematic of Ca2+ signalling in microglia and macrophage cells. Ca2+ may enter via ROCs 

(P2X4/7, AMPAR), VGCCs (L-type) and SOCs (TRPM2,7, TRPC1-7, CRAC). Activation of GPCRs (H1, B1/2, 

P2y2/4, chemokine receptors) or tyrosine kinase receptors (TrkB) leads to the mobilisation of Ca2+ via 

IP3Rs. Cytokine receptors and TLR4 also initiate Ca2+ release but the mechanisms are unclear. Ca2+ is 

extruded from the cell via Ca2+-ATPase pumps and Na+/Ca2+ exchangers (NCX) and may also be 

sequestered into the ER or mitochondria. 

 

 

4.1.2 Cyclic AMP signalling in microglia and macrophages 

 

Cyclic AMP was the first ubiquitous second messenger to be discovered and plays a crucial 

role in many cellular functions in response to hormones and neurotransmitters (Sutherland 

and Rall, 1958). Intracellular levels of cAMP are tightly regulated by two key enzymes, ACs 

and cyclic nucleotide phosphodiesterases (PDEs), which are involved in the biosynthesis or 

degradation of cAMP into adenosine monophosphate (AMP), respectively. Mobilisation of 
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AC is down-stream of the activation of GPCRs coupled to stimulatory Gαs by ligands such as 

epinephrine (β2), adenosine (A2a), histamine (H2) and PGE2 (EP2) (Peters-Golden, 2009; 

Kettenmann et al., 2011). Subsequent to ligand binding, GPCRs undergo a conformational 

change and initiate the activation of a G-protein. This leads to the release of αs from the αβγ 

heterotrimeric complex, which binds to AC and catalyses the formation of cAMP from ATP. 

Newly synthesised cAMP then binds to PKA, which consists of a symmetrical complex of two 

regulatory and two catalytic subunits. Binding of cAMP to the two regulatory subunits 

initiates subunit dissociation and passive diffusion into the nucleus (Taylor et al., 1992). In 

turn, activated PKA phosphorylates numerous target proteins such as CREB, which binds to 

the conserved cAMP response element expressed within the promoter regions of many 

cAMP-responsive genes. CREB may then form a complex with its transcription co-activator, 

CBP (Mayr and Montminy, 2001). Alternatively, cAMP may also bind to guanine-nucleotide-

exchange proteins, Epac-1 and 2, which are involved in the activation of the monomeric 

GTPase, Rap-1, which binds to B-Raf (Bos, 2006). The formation of the B-Raf-Rap-1 complex 

has been implicated in the activation of MAPKs such as ERK as well as the regulation of 

CREB-mediated gene transcription in various cell types including microglia and 

macrophages (Wang et al., 2006b). The cAMP/CREB pathway is summarised in Fig. 4.2. 

 

Elevation in intracellular cAMP generally suppresses innate immune function such as 

phagocytosis, microbe killing and the production of pro-inflammatory mediators, whilst 

promoting the release of anti-inflammatory mediators (Bourne et al., 1974; Serezani et al., 

2008; Peters-Golden, 2009). Upon activation, cells of the innate immune system 

(microglia/macrophages) produce an array of pro-inflammatory mediators. Many immune 

system molecules such as chemokines and cytokines act through inhibitory GPCRs and 

reduce the production of cAMP via preventing AC activity. However, the extent to which the 

immunostimulatory effects of these molecules depend on a reduction in intracellular cAMP 

is not clear (Serezani et al., 2008). Elevation of cAMP by mediators such as PGE2 alters the 

release of many cytokines/chemokines and lipid mediators from ‘activated’ microglia or 

macrophage cells. For instance, the expression of pro-inflammatory TNF-α, IL-6, IL-12, 

CCL3, CCL4 and LTB4 is reduced, while levels of anti-inflammatory IL-10 and IL-6 are 

enhanced (Martin and Dorf, 1991; Aloisi et al., 1997; Caggiano and Kraig, 1999; Prinz et al., 

2001; Feng et al., 2002; Iwasaki et al., 2003; Uchiya et al., 2004; Aronoff et al., 2005; Aronoff 

et al., 2006). Notably, Aronoff and colleagues (2005) showed that this mechanism was PKA-

dependent and Epac-1-independent and it was later found that PKA can directly regulate 

NF-κB (Wall et al., 2009). Aronoff et al. (2005) also demonstrated that pre-treatment with 

PGE2 or an Epac-1 agonist prevented phagocytosis, whereas prior exposure of alveolar 

macrophages to a PKA inhibitor had no effect. Phagocytosis is a highly co-ordinated process 
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that entails the re-arrangement of the cytoskeleton and membrane upon complement 

receptor (CR) and FCγ receptor recognition of microbial particials (Gordon, 2007). An 

increase in cAMP levels suppresses CR and FCγ receptor mediated phagocytosis in an Epac-

1-dependent manner and to a lesser extent PKA (Aronoff et al., 2005). However, this can 

very much depend on the cell type; both PKA and Epac-1 have been reported to inhibit 

phagocytic activity in microglia and peritoneal macrophages, but in monocytes this was 

found to be solely dependent on PKA (Bryn et al., 2006; Makranz et al., 2006). Elevated 

levels of intracellular cAMP also suppress microbicidal activity by down-regulating NADPH 

oxidase activity and hence the production of reactive oxygen intermediates such as 

hydrogen peroxide (Aronoff et al., 2005). Accordingly, pre-treatment with PGE2, Epac-1 or 

PKA agonists inhibited the ability of alveolar macrophages to successfully kill ingested 

microbes (Aronoff et al., 2005). The role of cAMP in the regulation of inducible NO synthase 

and NO production is contradictory; while some groups have reported a facilitatory role of 

cAMP others have reported an inhibitory effect (Mustafa, 1998; Chen et al., 1999). Likewise, 

conflicting evidence also applies to phagolysosome maturation. For example, Muschel et al. 

(1977) showed that PKA was necessary for phagosomal acidification, whereas Kalamidas et 

al. (2006) demonstrated that elevated cAMP levels reduced phagolysosome formation and 

acidification via a PKA-dependent mechanism. (Muschel et al., 1977; Kalamidas et al., 2006) 
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Figure 4.2: Cyclic AMP signalling in microglia and macrophages 

 

Schematic illustrating the regulation of intracellular cAMP in microglia and macrophage cells. 

Activation of GPCRs leads to either the stimulation (Gαs) or inhibition (Gαi) of AC mediated synthesis 

of cAMP. Downstream effectors of cAMP (PKA and EPAC1/2) initiate the phosphorylation and 

activation of CREB, which associates with is coactivator, CBP, within the promoter region of target 

genes. 

 

AC

cAMP

αs γβ
αi γβ

αs αi

ATP

Transcription

Translation

Activated, phosphorylated CREB
bound to CBP

Nucleus

Activated PKA

EPAC

ERK B-Raf-Rap-1 
complex



Chapter 4 - GPR84 Cell Signalling 

 

199 

4.1.3 Putative GPR84 ligands 

 

This chapter investigates the efficacy and selectivity of three GPR84 ligands in microglia and 

macrophage cells. The signalling pathway of GPR84 is unknown so we utilised Ca2+ and 

cAMP signalling assays to examine changes in the intracellular concentrations of two well-

characterised second messengers that are down-stream of most classes of heterotrimeric 

GPCRs. There is very little data available on selective GPR84 agonists and antagonists. 

Embelin and CNV were identified as potentially interesting agonists in a series of screening 

assays performed by GSK/Convergence Pharmaceuticals (proprietary GSK/Convergence 

Pharmaceuticals data) and CA was identified by Wang et al. (2006a) as a natural ligand of 

GPR84. 

 

Embelin 

 

Embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone) is a naturally occurring alkyl-

substituted hydroxybenzoquinone derived from the Embelia ribes BURM plant (Myrsinaceae 

family). Strikingly, embelin has demonstrated anti-inflammatory properties in several 

models of acute and chronic inflammation as well as analgesic, anti-tumor, anti-convulsant 

and neuroprotective effects in animals (Nikolovska-Coleska et al., 2004; Kalyan Kumar et al., 

2011; Kumar et al., 2011; Mahendran et al., 2011b; Mahendran et al., 2011a; Thippeswamy 

et al., 2011b; Thippeswamy et al., 2011a). Despite its numerous well-documented 

pharmacological effects in vivo, little is understood about its molecular targets. However, it 

has been postulated that embelin mediates its effects via the inhibition of IκBα kinase and 

subsequent modulation of NF-κB, which is in agreement with its role in the regulation of 

genes associated with inflammation, tumorgenesis, proliferation and apoptosis (Ahn et al., 

2007). In addition, embelin exerts inhibitory effects on X chromosome-linked inhibitor-of-

apoptosis protein, which is thought to contribute to its anti-tumor properties (Nikolovska-

Coleska et al., 2004). The biochemical structure of embelin is presented in Fig. 4.3. 

 

Capric acid 

 

CA is a MCFFA of a carbon chain length of 10 and is derived from animal fats and oils. 

Dietary fatty acids are the precursors for eicosanoids and other lipid mediators and were 

solely regarded as a source of calories. However, it is now well recognised that FFAs can 

behave as direct signalling molecules via cell surface GPCRs and exert many regulatory 

effects on metabolism and the immune system (Hwang, 2000). FFAs can be broadly 

classified into three groups depending on the length of their carbon backbone: short-chain 
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fatty acids (SCFFAs; 1-6 carbon atoms), MCFFAs (7-12 carbon atoms) and long-chain fatty 

acids (LCFFAs; 12 + carbon atoms) (Ulven, 2012). FFAs have obtained a lot of interest due to 

their association with diseases such as obesity and diabetes (Evans et al., 2004), which led 

to the identification of several GPCR receptors activated via lipids of various chain lengths 

(Ichimura et al., 2009). These include GPR40 (FFAR1), which is activated via LCFFAs 

(Briscoe et al., 2003), GPR41 (FFAR3) and GPR43 (FFAR2), which are activated by SCFFAs 

(Brown et al., 2003; Ulven, 2012) and GPR120, which is activated via LCFFAs (Hirasawa et 

al., 2005). GPR84 is thought to be activated by MCFFAs such as CA, which was shown to 

inhibit forskolin-induced cAMP production in transfected CHO cells (Wang et al., 2006a). 

MCFFAs have also been shown to activate leucocytes via the modulation of Ca2+ and PKC 

signalling as well as induce NF-κB transcription and the expression of pro-inflammatory 

markers such as COX-2 in RAW 264.7 cells, suggesting a contributory role in inflammation 

(Hwang, 2000; Lee et al., 2001; Wanten et al., 2004; Wanten and Naber, 2004; Wanten, 

2006). The biochemical structure of CA is presented in Fig. 4.3. 

 

CNV-0022600A 

 

CNV (MW 268) is a novel GPR84 ligand identified by GlaxoSmithKline, which has exhibited 

characteristics of a full agonist in heterologous in vitro systems (proprietary GSK/ 

Convergence Pharmaceuticals data). 

 

 

 

 

Figure 4.3: Molecular structures of Embelin and Capric acid 
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4.1.4 Fatty acid metabolism 

 

Fatty acids are an important source of metabolic energy and can be stored as triglycerides 

until needed for oxidation. They are also substrates for membrane biogenesis and form the 

necessary building blocks for structurally complex glycolipid and phospholipid cell 

membrane components. Furthermore, their down-stream metabolites such as eicosanoids 

and resolvins serve as key intracellular signalling molecules that execute a number of 

physiological roles.  

 

Fatty acids are hydrophobic molecules composed of long saturated, monounsaturated 

(MUFA) or polyunsaturated (PUFA) hydrocarbon chains and a terminal carboxylate group. 

Whilst saturated fatty acids have no double bonds between any of the carbon atoms, 

unsaturated fatty acids have double bonds between adjacent carbon atoms; MUFAs contain 

a single double bond and PUFAs have multiple. Both saturated and unsaturated fatty acids 

can be further sub-categorised according to their carbon chain lengths (Yaqoob, 2004; 

Kalish et al., 2012). 

 

There are three main families of PUFAs: omega (ω) -3, derived from α-linolenic acid (18 : 

3n-3); ω-6, derived from linoleic acid (18 : 2n-6); and ω-9, derived from oleic acid (18 : 1n-

9) (Kalish et al., 2012). As linoleic acid and α-linolenic acid cannot be synthesised de novo 

(unlike oleic acid) and can be metabolised to form all downstream fatty acids, they are 

classified as essential dietary fatty acids. These two main families of PUFAs are uptaken by 

virtually every cell, possibly via diffusion or protein mediated translocation across the 

plasma membrane. Once inside a cell they bind to fatty acid binding proteins and undergo a 

series of desaturation and elongation steps. In humans, the three desaturase enzymes, Δ5, Δ6 

and Δ9, insert double bonds at the corresponding 5th, 6th and 9th carbon atom in a fatty acid 

chain. The metabolism of α-linolenic acid, linoleic acid and oleic acid is a competitive 

process as all three fatty acids compete for the same Δ5 and Δ6 desaturases and elongases 

(Kalish et al., 2012). Linoleic acid is metabolised by Δ6 to γ-linoleic acid, which is elongated 

to form dihomo-γ-linoleic acid and subsequently converted by the Δ5 desaturase enzyme to 

arachidonic acid. Similarly, α-linolenic acid is converted to eicosapentaenoic acid via Δ6 

desaturation, elongation and Δ5 desaturation. Eicosapentaenoic acid may undergo further 

elongation, desaturation and β-oxidation to form docosahexaenoic acid, however, very little 

α-linolenic acid proceeds along the entire metabolic pathway. As linoleic acid is abundantly 

found in vegetable oils, whilst α-linolenic acid is present in green leafy vegetables, vegetable 

and seed oils, the former pathway is more quantitatively important than the latter pathway. 

Finally, oleic acid may be metabolised into mead acid (Yaqoob, 2004; Kalish et al., 2012). 
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As previously mentioned, membrane-bound PUFAs serve as precursors to multiple second 

messengers, which may be pro- or anti-inflammatory. Eicosanoids are a dynamic class of 

signalling molecules that regulate a number of crucial biological functions such as host 

defence, vasoactivity and reproduction and are classically divided into PGs, prostacyclins 

(PGI2s), thromboxanes (TXA2s) and leukotrienes (Funk, 2001). These second messengers 

are not stored in cells but are synthesised upon demand by three key enzymes: COX, 

lipoxygenase and cytochrome P450. COX metabolises arachidonic acid, eicosapentaenoic 

acid and dihomo-γ-linoleic acid into pro-inflammatory PGs and TXA2, whereas lipoxygenase 

mediates the synthesis of leukotrienes and anti-inflammatory lipoxins (see Fig. 4.4). Lastly, 

cytochrome P450 converts arachidonic acid into pro-inflammatory hydroxyeicosatetraenoic 

acid or anti-inflammatory epoxyeicosatrienoic acid. In addition, docosahexaenoic acid may 

be further metabolised to form the D-series of resolvins and protectins, which play immuno-

protective roles during inflammation (Kalish et al., 2012).  

 

Subsequent to nerve injury or inflammatory insult, COX is up-regulated in damaged nerve 

axons or tissues as well as in resident/infiltrating immune cells (Ma and Eisenach, 2002; 

Muja and DeVries, 2004; Durrenberger et al., 2006; Ma et al., 2012). This induces the 

production of pro-nociceptive PGs in nerve terminals and non-neuronal cells and the 

consequential development of behavioural hypersensitivity. PG acts via its four EP receptors 

expressed in DRG neurons to directly excite nociceptors and indirectly stimulate the release 

of SP and CGRP from nociceptors and their peripheral and central terminals (Vasko, 1995; 

Vanegas and Schaible, 2001). As previously described (Chapter 3), SP and CGRP are key 

mediators of neurogenic inflammation and nociception in the periphery, whilst centrally 

they may directly excite nociceptive specific dorsal horn neurons and thus contribute to 

central sensitisation and hyperalgesia. Accordingly, systemic or local administration of 

selective or non-selective COX inhibitors or EP1/EP4 antagonists alleviates neuropathic and 

inflammatory pain-associated behaviours in rodents and reduces the production of SP and 

CGRP in DRG neurons and the spinal cord (Kawahara et al., 2001; Ma and Eisenach, 2002, 

2003a, b; Suyama et al., 2004; Staton et al., 2007; St-Jacques and Ma, 2011). Interestingly, in 

immune cells PG production exhibits immunosuppressive or anti-inflammatory effects as 

discussed in section 4.1.2. In addition, DHA-derived mediators such as D-series resolvins, 

docosatrienes and neuroprotectins, which are produced by COX-2, also exert anti-

inflammatory actions and have been shown to be protective in various models of 

inflammation (Kalish et al., 2012). It is possible that the effects of these mediators are 

dampened in the presence of pathology and are thus potential therapeutic targets. 
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Figure 4.4: The biosynthesis of eicosanoids 

 

Schematic presenting the pathways involved in the formation of eicosanoids from arachidonic acid. 

COX metabolises arachidonic acid, eicosapentaenoic acid and dihomo-γ-linoleic acid into PGs and 

TXA2, whereas lipoxygenase mediates the synthesis of leukotrienes and lipoxins. 
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of a particular receptor in a physiological system. Therefore, the aim of this chapter was to 

identify a GPR84 agonist that could be utilised in further studies to aid our understanding of 

the role of this receptor in chronic pain mechanisms. We explored the efficacy and 

selectivity of three potential GPR84 ligands, embelin, CA and CNV, in microglia and WT and 

KO macrophage cells via Ca2+ and cAMP signalling assays.   
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4.2 Materials and methods 

 

4.2.1 Animals 

 

Breeding and genotyping of GPR84 WT and KO animals was carried out as described in the 

methods section in Chapter 2. Randomly selected mixed sex and age-matched mice weighing 

20-25g (7-14 weeks old) were used for cell culture. Mice were housed individually or in 

groups (no more than 4 per cage) in standard environmental conditions (12 hour light/dark 

cycle) with ad libitum access to food and water. Animal husbandry and experiments were 

carried out in a non-sterile housing environment in accordance with the United Kingdom 

Animals (Scientific Procedures) Act 1986.  

 

4.2.2 Microglial cell culture and stimulation 

 

Mixed primary cultures of glial cells were isolated from spinal cord tissue of P7 rat pups. 

Cultures were maintained for two weeks at 37°C (5% CO2/95% O2) in medium containing 

1% penicillin-streptomycin (Sigma, UK) and 15% FBS (Invitrogen, UK), which was changed 

every 2-3 days. Two weeks later microglial cells were harvested via the forceful shaking of 

the flask and plated in 24 well plates at a density of 5 x 104 cells/well. Forty eight hrs later 

the microglial cells were stimulated for 3 hrs with LPS (1 μg/mL; Sigma, UK) (Clark et al., 

2010a) to up-regulate the expression of GPR84. For control wells, culture medium was 

replaced with fresh medium and the stimulation step was omitted. 

 

4.2.3 Resident and B-GEPM culture and stimulation 

 

For the calcium-imaging assay resident peritoneal macrophages were cultured. For the 

cAMP assay B-GEPMs were cultured as previously described in Chapter 3 as a higher yield of 

macrophages were required for this assay. Briefly, mice were culled via neck dislocation, 

and the layer of skin covering the peritoneum was wiped with 70% ethanol. A total volume 

of 20 mL of sterile cold PBS (Invitrogen, UK) containing 3 mM EDTA (Invitrogen, UK) was 

injected into the peritoneal cavity using a 25 G needle. After gentle massaging the buffer was 

retrieved in 14 mL Falcon tubes and spun to obtain a pellet. Cells were then re-suspended 

and plated in DMEM (Invitrogen, UK) with 10% FBS (Invitrogen, UK) and incubated at 37°C. 

The cells were washed 2 hrs after plating and the medium was replaced. Forty-eight hrs 

later, macrophage cells were stimulated for 3 hrs with LPS (1 μg/mL; Sigma, UK) to up-

regulate the expression of GPR84. The culture medium of control wells was replaced with 
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fresh medium without subsequent stimulation. For B-GEPMs the LPS stimulation protocol 

was carried out 24 hrs after washing.  

 

4.2.4 Cell preparation and immunocytochemistry 

 

Microglia and macrophage cells were fixed with 4% PFA (VWR, UK) in 0.1 M PB for 30 mins 

followed by incubation with ice-cold methanol (VWR, UK) for 23 mins. Subsequently cells 

were washed three times with PBS and incubated for 2 hrs with primary antibody solution 

for Iba-1 (rabbit anti-Iba1, 1:1000; Wako Chemicals, Germany), followed by a 45 min 

incubation period with the secondary antibody solution donkey anti-rabbit Cy3 (1:1000; 

Stratech, UK). All antibodies were prepared in PBS supplemented with 0.1% Triton X-100 

(VWR, UK) and 0.2% sodium azide (Sigma, UK). Slides were carefully cover slipped with 

Vectashield Mounting Medium with DAPI (Vector Laboratories, UK), nail-varnished and 

dried. Images were visualised and captured using a Zeiss Axioplan microscope (Zeiss, UK).  

 

Cell cultures from the naïve peritoneal cavity contain ∼ 40% macrophages, whilst elicited 

cultures contain 40-45% macrophages; purity increases to almost 80-90% by adherence in 

both types of culture. Eosinophils and neutrophils are the main cell types that contaminate 

peritoneal macrophage cultures and can affect the results of in vitro assays, leading to data 

misinterpretation (Fauve et al., 1983; Misharin et al., 2012). Mixed primary cultures of glial 

cells consist of heterogenous populations of astrocytes, oligodendrocytes and microglial 

cells and may become contaminated with fibroblasts. Upon adherence microglial cultures 

have a high purity in the range of ∼ 95-99% (Ni and Aschner, 2010). In our studies, we 

visually verified the purity of microglia and macrophage cell cultures by examining Iba1 

staining relative to DAPI expression as shown in Fig. 4.5. We found that almost all nuclear 

staining (DAPI) was co-localised with Iba1, indicating > 95% purity. 
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Figure 4.5: Verification of macrophage and microglia culture purity 

 

The purity of microglia and macrophage cell cultures was verified via observing colocalisation of 

nuclear staining (indicated by DAPI in blue) with Iba1 (in red). Scale bars = 100 μm. 
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4.2.5 Calcium imaging 

 

Control or LPS stimulated microglia and macrophage cells were incubated for 60-90 mins at 

37°C with the Ca2+ indicator Fura-2AM (2 μM; Invitrogen, UK) in HBSS (Invitrogen, UK) 

containing probenecid (0.5 M; Sigma, UK). Cells were subsequently transferred to a 

perfusion chamber attached to an inverted microscope (Nikon, UK) equipped with a 

monochromator (Photon Technology, UK). Cells were washed and fluorescence was 

measured at 340 nm and 380 nm excitation and 510 nm emission. The baseline level was 

defined as the average [Ca2+] -based ratio taken over the first 2-5 mins of each run under 

continuous perfusion (4 mL/min) with HEPES buffer solution (hydroxyethyl 

piperazineethanesulfonic acid; 10 mM; 7 mM glucose; pH 7.4; Invitrogen, UK) prior to drug 

challenge. Calcium responses to embelin (Sigma, UK) or CA (Sigma, UK) were subsequently 

tested. Each dose was tested on a separate run and continuously perfused for a duration of 1 

min followed by a 5 min wash out period using HEPES buffer.  Ionomycin (Sigma, UK) or 

ATP (Sigma, UK) were used as positive controls to define viable microglia or macrophage 

cells, respectively. All experiments were conducted at room temperature. Results are 

expressed as a change (Δ) in the F340/380 emission ratio, which is proportional to the 

change in [Ca2+]i, where ΔF340/380 = max drug F340/380 – average baseline F340/380 

(Fig. 4.6). In order to be defined as a responder, a cell’s ratio change had to be 10% greater 

than the average baseline value of the cells examined per run, and respond positively to the 

application of ionomycin (microglia) or ATP (macrophages) (Dawes et al., 2011).   

 

 

 

Figure 4.6: Diagram illustrating how ΔF340/380 is calculated 

 

Drug or positive control response = maximum drug or positive control response – average baseline 

Vehicle response (HEPES buffer) = maximum baseline value – average baseline   
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4.2.6 cAMP-screen direct chemiluminescent ELISA 

 

Bio-gel elicited GPR84 WT and KO macrophage cells were harvested as previously described 

in Chapter 3 and plated in cAMP-Screen Direct® pre-coated 96-well assay plates (Invitrogen, 

UK) at a density of 150,000 cells/well. Two hrs later the cells were washed, replenished 

with fresh DMEM (Invitrogen, UK) and left overnight to settle. All cell stimulation protocols 

were carried out 24 hrs later and done in FBS-free DMEM (Sigma, UK) at 37°C.  In order to 

increase GPR84 expression, WT cells were stimulated with LPS (1 μg/ml; Sigma, UK) for 3 

hrs prior to incubation with a GPR84 ligand. WT and KO cells were then incubated for 20 

min with embelin (Sigma, UK), CA (Sigma, UK) or CNV0022600A (CNV; GSK/Convergence 

Pharmaceuticals, UK), followed by 20 mins incubation with forskolin (R&D Systems, UK). 

Each GPR84 ligand was tested on a separate plate. Control wells were incubated with ligand 

solvents DMSO (0.005-0.1%), methanol (0.002%) and ethanol (0.002%). 

 

To terminate the assay the media was aspirated and cells were incubated for 30 mins with 

60 μl of lysis buffer at 37°C. During this time cAMP standards ranging from 0.006 to 6000 

pM were prepared in lysis buffer. After lysis, 60 μl of each standard concentration was 

added to designated wells followed by the addition of 30 μl of cAMP-alkaline phosphatase 

solution and 60 μl of anti-cAMP antibody to every well. Following 1 hr incubation, the plate 

was washed 6 times with wash buffer and 100 μl of disodium 2-chloro-5-(4-methoxyspiro 

[1,2-dioxetane-3,2'-tricyclo [3.3.1.13,7] decan]-4-yl) phenyl phosphate (CSPD)®/Sapphire-

II™ RTU substrate/enhancer solution was added for 30 min. Finally, the luminescence signal 

for each well was measured using a standard luminometer (1 sec/well) and the cAMP 

concentration was calculated via extrapolation from the standard curve (see Fig 4.7). All 

reagents were included in the cAMP-screen direct kit. 

 

 

 

Figure 4.7: Example of a standard curve graph on a log scale 
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4.2.7 Data and statistical analysis 

 

All data were analysed using SigmaPlot 12.3 and SigmaStat software. For single 

comparisons between two groups, a paired Student t-test was applied. For multiple 

comparisons, a one-way ANOVA was used with SNK post hoc test to determine individual 

group differences. For non-parametric data, Kruskal-Wallis one-way ANOVA on ranks was 

carried out, with Dunn’s method. In all cases the data is presented as the mean ± SEM and p 

< 0.05 was set as the statistical significance level. 
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4.3 Results 

 

4.3.1 Calcium fluorometry  

 

Although the use of transgenic animals has been instrumental in our studies, there is the 

possibility of compensatory mechanisms operating to mask phenotypes. For this and other 

practical factors, the development of pharmacological tools could complement experiments 

and further advance our understanding of the role of GPR84 in chronic pain mechanisms. 

Currently, there are no commercially available compounds for GPR84 modulation and there 

is little evidence of a definitive signalling pathway for this receptor. Only a single study 

suggests that GPR84 is sensitive to MCFFAs with carbon chain lengths of 9-14, particularly 

CA. In this study Wang and colleagues showed that CA-mediated activation was dependent 

on a Pertussis toxin-sensitive Gαi/o coupled pathway, which produced a corresponding 

decrease in cAMP levels in transfected CHO cells (Wang et al., 2006a). MCCFAs have also 

been shown to modulate Ca2+ responses in leucocytes (Wanten et al., 2004; Wanten and 

Naber, 2004; Wanten, 2006) and so based on this evidence, we tested the efficacy and 

selectivity of CA in addition to two other agonists provided by GSK/Convergence 

Pharmaceuticals (embelin and CNV) via Ca2+ and cAMP signalling assays.  

 

Intracellular Ca2+ is central to a multitude of cellular processes and may be studied using 

sensitive fluorescent Ca2+ indicators. These indicators can only bind to freely diffusible Ca2+ 

ions, however, a majority of intracellular Ca2+ is bound to various buffers, depending on cell 

type and compartment. In addition, because chemical Ca2+ indicators may themselves act as 

buffers and hence affect Ca2+ signalling kinetics, the type of Ca2+ indicator must be chosen 

with regards to spectral characteristics and binding properties (Paredes et al., 2008). In our 

studies, we utilised Fura-2 engineered with acetoxymethyl (AM) esters, which is one of the 

most popular ratiometric dyes. Addition of the ester permits sufficient hydrophobicity for 

membrane permeability so that the dye can passively diffuse into the cell when added 

extracellularly. Subsequent to loading esterases cleave the ester group, trapping the dye 

intracellularly and thus only alive cells are labelled (Paredes et al., 2008). Upon Ca2+ binding 

the Fura-2 peak absorbance shifts from 380 nm (unbound state) to 340 nm (Ca2+ bound 

state) while fluorescence is emitted at a peak wavelength of 510 nm. Ratiometric indicators 

enable accurate quantification of [Ca2+]i and also control for uneven dye loading and changes 

in cell size (Paredes et al., 2008). As Fura-2 is resistant to photobleaching and has a high 

affinity for Ca2+, less dye can be used thus reducing buffering and cytotoxicity (Di Virgilio et 

al., 1988). However, similar to other types of chemical indicators Fura-2 can become 
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compartmentalized, which is prevented via the addition of probenecid; an organic anion 

transport inhibitor (Di Virgilio et al., 1988). 

 

4.3.2 ATP induces robust Ca2+ responses in microglial cells, whereas embelin 

exhibits poor efficacy  

 

We initially tested the system setup and the ability to obtain calcium responses in microglial 

cells using ATP, which is a well-documented second messenger that generates Ca2+ 

responses via its ionotropic and metabotropic receptors (Farber and Kettenmann, 2006b). 

An intracellular Ca2+ response is represented as ΔF340/380 emission ratio. The ΔF340/380 

ratio for individual cells was calculated by subtracting the average baseline F340/380 ratio 

of the cells examined per run, from the maximum F340/380 ratio upon stimulation. To 

accurately quantify Ca2+ responses we employed two criteria in the analysis of the data; a 

cell was regarded as a responder only if it a) had an average ΔF340/380 value greater than 

10% of the average baseline F340/380 ratio of cells examined in a run and b) produced a 

Ca2+ response to the positive control, ionomycin. Quantification of responders was 

performed by calculating the number of cells that responded to a challenge as a percentage 

of the total number of cells that responded to ionomycin for each run. Ionomycin is an 

ionophore produced by the bacterium Streptomyces conglobatus and acts directly on 

intracellular Ca2+ stores to raise [Ca2+]i, and thus provides an excellent tool for our studies 

(Morgan and Jacob, 1994).  

 

We found that perfusion (4 mL/min) of 100 μM ATP elicited a strong Ca2+ response (Fig. 

4.8A, B). Quantification of the number of responders revealed that almost all viable cells 

examined responded to ATP (93.4 ± 3.5%) and showed a significant ΔF340/380 (0.4 ± 0.08) 

compared to vehicle (0.04 ± 0.01; Fig. 4.8C, D). Following validation of our assay by 

demonstrating ATP-induced Ca2+ transients in microglial cells in accordance with literature 

(Walz et al., 1993; McLarnon et al., 1999; Moller et al., 2000; Hoffmann et al., 2003; 

McLarnon, 2005), we investigated responses to embelin, a compound previously shown to 

possess a high affinity for GPR84 in transfected CHO cells (proprietary GSK data). We report 

that embelin produced small Ca2+ responses in microglial cells as illustrated by image (B) 

and the example trace (E) from a single cell response (Fig. 4.9). Quantification of the 

percentage of responders showed that there was a non-significant number of cells 

responding to embelin at 1 μM (10.7 ± 4.7%), 50 μM (12.5 ± 5.6%) and 100 μM (7.8 ± 3.8%; 

Fig. 4.9F) and only at the 1 μM dose (0.2 ± 0.05) was there a significant increase in the Fura-

2AM based Ca2+ signal compared to vehicle (0.02 ± 5x10-6; Fig. 4.9G). The lack of consistency 
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and concentration dependence suggests that embelin does not effectively evoke receptor-

mediated Ca2+ transients in microglial cells.  

 

4.3.3 ATP induces robust Ca2+ responses in GPR84 WT and KO macrophages  

 

Alongside our studies in microglial cells we also investigated embelin and capric acid 

selectivity for GPR84 by examining Ca2+ responses in WT and KO peritoneal macrophages. 

To confirm we could detect Ca2+ signals from this cell type we examined the responses of 

WT and KO macrophage cells to the positive control ATP, under non-stimulated or LPS 

simulated conditions (1 μg/mL; Fig. 4.10A, B). We observed that both WT and KO 

macrophages produced robust Ca2+ responses represented by the ΔF340/380 ratio (WT: 

ATP, 0.15 ± 0.01 vs vehicle, 0.02 ± 0.001; KO: ATP, 0.17 ± 0.02 vs vehicle, 0.02 ± 0.002), 

which was significantly enhanced by LPS (WT: ATP, 0.23 ± 0.02; KO: ATP, 0.24 ± 0.02; Fig. 

4.10B). Virtually all cells examined in each run responded to ATP under non-stimulated 

(WT: 93.7 ± 5.2%; KO: 99.1 ± 0.4%) and LPS stimulated conditions (WT: 96.3 ± 1.4%; KO: 

99.3 ± 0.4%; Fig. 4.10A). These observations are interesting, considering that previous 

groups have reported attenuated Ca2+ responses to ligands (including ATP) subsequent to 

LPS stimulation (Moller et al., 2000; Hoffmann et al., 2003). However, our protocol entailed 

a much shorter incubation period compared to these studies, which could pose as a reason 

for this discrepancy. Notably, there were no significant differences between genotypes or 

non- and LPS stimulated groups, suggesting that KO macrophages are just as capable as 

their WT controls in generating successful ATP induced Ca2+ responses. Therefore, ATP is an 

excellent positive control for exploring ligand selectivity in WT and KO macrophages.  

 

4.3.4 Embelin-induced Ca2+ transients are attenuated in GPR84 KO macrophages 

 

Having verified the ability to obtain Ca2+ responses from macrophages of both genotypes, we 

examined the selectivity of embelin by comparing the responses of WT and KO cells to 

different doses of this ligand (Fig 4.10). Although we previously observed modest responses 

in microglial cells to embelin, we hypothesised that embelin may be more effective at 

inducing Ca2+ signals in macrophage cells based on our previous findings that peripheral 

macrophages express greater levels of GPR84 mRNA than microglia upon stimulation (see 

Chapter 3). We found that GPR84 WT cells (D) exhibited greater embelin induced Ca2+ 

responses in contrast to KO (G) as illustrated in the example images and traces from single 

WT (I) and KO (J) cells responding to 10 μM embelin. Quantification of the number of 

responders shows that a greater percentage of WT cells responded to embelin than KO cells 

at doses 1, 10 and 50 μM, which was significant compared to vehicle at 10 μM (WT: 41.6 ± 
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10.8%; KO: 13.0 ± 7.6%) (Fig 4.10K). Quantification of the changes in the Fura-2AM signal 

showed that WT macrophages exhibited a greater increase in [Ca2+]i than the KO, which was 

significant at 0.1, 1 and 10 μM (WT: 0.08 ± 0.01, 0.07 ± 0.01, 0.11 ± 0.02; KO: 0.05 ± 0.01, 

0.07 ± 0.004, 0.05 ± 0.02, respectively) compared to vehicle (WT: 0.02 ± 9x10-4; KO: 0.02 ± 

5x10-4). Notably, embelin recruited a greater number of responding WT macrophages than 

microglia (Fig 4.9F), however, interestingly the ΔF340/380 ratios were generally smaller 

but more consistent (Fig 4.10L). As the Ca2+ responses to embelin were generally greater in 

the WT than the KO, this suggests that embelin may exert selective actions at GPR84, 

particularly at a dose of 10 μM where both the percentage of responders and ΔF340/380 

were significant compared to vehicle.  
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Figure 4.8: ATP induces an increase in [Ca2+]i in microglial cells  

 

Subsequent to application of ATP (100 μM) there is a change in [Ca2+]i in comparison to baseline as 

indicated (arrows in A). Representative trace of a single microglial cell showing changes in the 

F340/380 emission ratio in response to ATP (B). Quantification of the number of responders shows 

that the percentage of microglial cells responding to ATP was significantly greater than vehicle 

treatment (HEPES; C). Quantification of the Ca2+ response is represented as a ΔF340/380 emission 

ratio (D). Microglial cells exhibit a robust increase in [Ca2+]i in response to ATP. Data are presented as 

the mean ± SEM. **p < 0.01 vs vehicle, Mann-Whitney Rank Sum Test (C); Student’s t-test (D), n = 5 

experiments; average of ≥ 30 cells. 
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Figure 4.9: Embelin produces weak Ca2+ responses in microglial cells  

 

(A-D) Embelin elicits a weak Ca2+ response in microglial cells. Representative trace of a single 

microglial cell showing the change in F340/380 in response to 1 μM embelin (E). Quantification of the 

number of cells responding to different doses of embelin was not significantly different from vehicle 

(F). Quantification of the Ca2+ response is represented as a ΔF340/380 emission ratio (G). There was 

a significant increase in [Ca2+]i in microglial cells treated with 1 μM embelin compared to vehicle. Data 

are presented as the mean ± SEM. *p < 0.05 vs vehicle, one-way ANOVA (F); Kruskal-Wallis one-way 

ANOVA on ranks, post-hoc Dunn’s method (G), n = 4 experiments; average of ≥ 30 cells.  
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Figure 4.10: Embelin induced Ca2+ transients are attenuated in GPR84 KO macrophages 

 

Quantification of percentage responders (A) and the Ca2+ response (B) to ATP (100 μM) in GPR84 WT 

and KO macrophages under non-stimulated and LPS stimulated conditions. There were a significant 

number of responders to ATP under non- and LPS stimulated conditions in both genotypes compared 

to vehicle. This correlated with an increase in [Ca2+]i, which was significant under LPS stimulated 

conditions compared to vehicle in both genotypes (WTV, KOV). (C-H) Embelin (10 μM) induced Ca2+ 

responses are greater in WT macrophages (D) than KO (G), as illustrated by the example traces from 

single WT (I) and KO (J) cells. Quantification of the number of responders (K) and the Ca2+ response 

(L) to 0.1, 1, 10 and 100 μM doses of embelin. The number of responders (at doses of 1, 10 and 50 

μM) and changes in [Ca2+]i (at doses of 0.1, 1 and 10 μM) was greater in WT than KO cells compared 

to vehicle. Increases in [Ca2+]i are expressed as a Δ340/380 emission ratio. Data are presented as the 

mean ± SEM. **p < 0.01, ***p < 0.001 vs vehicle, Kruskal-Wallis one-way ANOVA on ranks, post-hoc 

Dunn’s method, n = 3-6 experiments; average of ≥ 30 cells. 
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4.3.5 Capric acid elicits Ca2+ transients in microglial cells 

 

To determine whether CA could produce Ca2+ responses in microglia and macrophage cells 

we utilised a similar approach to as previously presented. CA is a FFA with a carbon chain 

length of 10 and is postulated to be a natural ligand of GPR84 (Wang et al., 2006a). We found 

that CA was a successful inducer of Ca2+ transients in microglial cells as represented by the 

ΔF340/380 ratio, which was significant at doses of  1 and 10 μM (0.10 ± 0.02; 0.10 ± 0.03, 

respectively) compared to vehicle (0.02 ± 8x10-4; Fig. 4.11L). CA also recruited a greater 

number of responders compared to embelin, which was significant at doses of 1 and 100 μM 

(33.9 ± 14.0%; 31.6 ± 14.0%, respectively) vs vehicle (Fig. 4.11K). To extend these findings, 

we also investigated two additional parameters: desensitisation upon a second challenge 

and the effect of LPS stimulation. We previously showed that LPS up-regulates the 

expression of GPR84 (Chapter 3), which may enhance Ca2+ responses to CA. In addition, we 

also reported that 3 hrs of LPS stimulation does not attenuate Ca2+ responses (Fig. 4.10A, B) 

and so would not hinder the ability of cells to respond to succeeding challenges.  

 

As illustrated in images (A-H) and the representative traces of single cells responding to 1 

μM CA under non- (I) and LPS (J) stimulated conditions, LPS substantially enhanced CA 

induced Ca2+ transients and the responses of cells to a second challenge of CA were generally 

smaller (Fig. 4.11). Under LPS stimulated conditions, all doses tested (0.1 μM: 23.1 ± 4.9%; 1 

μM: 26.8 ± 7.8%; 10 μM: 27.1 ± 11.9% and 100 μM: 47.6 ± 23.4%) produced a significant 

number of responders compared to vehicle (Fig. 4.11K). Correspondingly, LPS stimulation 

significantly enhanced Fura-2AM based Ca2+ signals compared to vehicle (0.02 ± 6x10-4) at 

every dose tested (0.1 μM: 0.09 ± 0.01; 1 μM: 0.22 ± 0.06; 10 μM: 0.17 ± 0.06 and 100 μM: 

0.13 ± 0.01; Fig. 4.11L). Under non- or LPS stimulated conditions the percentage of 

responders or the ΔF340/380 ratio emissions to the second challenge were either reduced 

or remained unchanged compared to the first dose. Responses to a second challenge were 

significant compared to vehicle in LPS stimulated cells at 1 μM (0.12 ± 0.01), 10 μM (0.07 ± 

0.01) and 100 μM (0.12 ± 0.02). These data suggest that CA induces Ca2+ responses in 

microglial cells, which can be enhanced via prior LPS exposure and that GPR84 may undergo 

receptor desensitisation upon further stimulation. 

 

4.3.6 Capric acid shows weak selectivity for GPR84 in macrophages  

 

In conjunction with our studies where we showed that different doses of CA elicit Ca2+ 

responses in microglia, we also investigated the selectivity of this ligand by comparing Ca2+ 

responses in WT and KO macrophages. As illustrated in the example images (Fig. 4.12A-L) 
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and traces (Fig. 4.12M-P), CA (1 μM) induces Ca2+ responses in both WT and KO 

macrophages that are enhanced by LPS stimulation (3hrs, 1 μg/ml). However it is apparent 

that at this particular dose (under both non- and LPS-stimulated conditions) a greater 

number of WT than KO cells are responsive (Fig. 4.12A-L) and under non-stimulated 

conditions WT cells also exhibited a greater change in [Ca2+]i than KO cells (Fig. 4.12M-P). 

 

Quantification of the percentage of responders revealed that there was a significant number 

of CA responding cells at 1 μM in WT (54.1 ± 10.7%) and 10 μM in both genotypes (WT: 46.3 

± 11.2%; KO: 48.8 ± 13.9%) following LPS exposure compared to vehicle (Fig. 4.12Q). Doses 

of 0.1 μM and 100 μM of CA failed to stimulate a significant number of cells compared to 

vehicle under non- and LPS-stimulated conditions. However, despite a greater percentage of 

WT than KO responders at 1 μM CA, there was an equivalent induction in [Ca2+]i in both 

genotypes (WT: 0.10 ± 0.01; KO: 0.09 ± 0.01) compared to vehicle (WT: 0.02 ± 0.002; KO: 

0.02 ± 0.001; Fig. 4.12R). There was also a significant increase in [Ca2+]i in LPS stimulated 

WT and non-stimulated KO cells at 10 μM and 100 μM doses of CA compared to vehicle (WT: 

10 μM, 0.08 ± 0.001; 100 μM; 0.08 ± 0.003;  KO: vehicle, 0.02 ± 0.002; 10 μM 0.07 ± 0.003; 

100 μM, 0.08 ± 0.004; Fig. 4.12R). In general, the data shows that the effects of CA on 

macrophage Ca2+ responses lack a concentration dependent effect (although the dose-

response curve could be bell-shaped) and that the relationship between the percentage of 

responders and the ΔF340/380 ratio was variable. CA failed to show consistent selectivity 

for GPR84 except at a dose of 1 μM in terms of the percentage of responders (under both 

conditions) and the ΔF340/380 ratio under non-stimulated conditions. Together, these data 

suggest that CA and embelin only show selectivity for GPR84 at particular doses (1 μM and 

10 μM, respectively). Therefore the data must be interpreted with caution and further 

experiments are required to validate these findings.  



Chapter 4 - GPR84 Cell Signalling 

 

220 

 

 

  

 

Low [Ca2+]

High [Ca2+]

Non-stimulated CA response  

Time (s)

F
3

4
0

/3
8

0

0
100 200 300 400 500 600 700

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Ionomycin
(1μM)

CA (1μM) CA (1μM)

Time (s)

F
3

4
0

/3
8

0

0

200 400 600 800 1000

0.9

1.0

1.1

1.2

1.3

1.4

1.5
LPS stimulated CA response 

Ionomycin
(1μM)

CA (1μM) CA (1μM)

CA dose (μM)

N
u

m
b

er
 o

f r
es

p
o

n
d

er
s 

(%
)

0

20

40

60

80

0.1 1 10 100

*

*
*

*

* *

*

Vehicle -/+ LPS 

1st dose 

2nd dose 

1st dose + LPS 

2nd dose + LPS 

- +
Vehicle

***

CA dose (μM)

Δ
F

3
4

0
/3

8
0

- +
Vehicle

0.1 1 10 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30
Vehicle -/+ LPS 

1st dose 

2nd dose 

1st dose + LPS 

2nd dose + LPS 

***

***

***

******

***

***
***

A. B. C. D. 

E. F. G. H. 

I. J. 

K. 

L. 



Chapter 4 - GPR84 Cell Signalling 

 

221 

Figure 4.11: Capric acid produces a Ca2+ response in microglia, which is enhanced by LPS 

 

Under non-stimulated conditions capric acid (CA, 1 μM) produces weak Ca2+ responses in microglial 

cells as illustrated in the top row (panels A-D) and the example trace (I). However, subsequent to 3 

hrs LPS stimulation (1 μg/mL) Ca2+ signals generated by the 1st and 2nd challenges of CA are much 

greater (E-H, J). Under non-stimulated conditions, 1 μM and 100 μM doses recruited a significant 

number of responders to the 1st CA challenge, whereas under LPS stimulated conditions all doses 

recruited a significant number of responders compared to vehicle (K). The number of responders to 

2nd challenges of CA were smaller or unchanged compared to the 1st challenge. Increases in [Ca2+]i in 

response to the 1st and 2nd CA challenge at different doses are quantified in (L). Again, the 1st CA 

challenge produced a significant increase in [Ca2+]i at all doses tested under LPS stimulated 

conditions, whereas only 1 μM and 10 μM CA produced a significant increase in [Ca2+]i under non-

stimulated conditions compared to vehicle. Responses to 2nd CA challenges were smaller or 

unchanged compared to the 1st challenge. Increases in [Ca2+]i are expressed as a Δ340/380 emission 

ratio. Data are presented as the mean ± SEM. *p < 0.05, ***p < 0.001 vs vehicle, Kruskal-Wallis one-

way ANOVA on ranks, post-hoc Dunn’s method, n = 5-6 experiments; average of ≥ 30 cells. 
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Figure 4.12: Capric acid shows weak selectivity for GPR84 in macrophages 

 

Capric acid (CA, 1μM) generates Ca2+ transients in WT (E and F) and KO (G and H) macrophages 

under control (E and G) and LPS stimulated (F and H) conditions. Panels M-P illustrate images and 

example traces of WT (M and N) and KO (O and P) macrophage cells under non-stimulated (M and O) 

and LPS stimulated (N and P) conditions. The number of responders to different doses of CA are 

quantified in (Q). LPS stimulation enhanced the percentage of responding WT cells at 1 μM and in 

both genotypes at 10 μM compared to non-stimulated cells, which was significant in comparison to 

vehicle. LPS stimulation also significantly enhanced [Ca2+]i responses in WT cells to doses of 1, 10 and 

100 μM of CA and in the KO to a dose of 1 μM (R) compared to vehicle. Under non- and LPS stimulated 

conditions there were no significant differences between genotypes. Increases in [Ca2+]i are expressed 

as a Δ340/380 emission ratio. Data are presented as the mean ± SEM. ***p < 0.001 vs vehicle, 

Kruskal-Wallis one-way ANOVA on ranks, post-hoc Dunn’s method, n = 3-8 experiments; average of ≥ 

30 cells. 
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4.3.7 cAMP assay 

 

Although embelin and CA generated Ca2+ transients in microglia and macrophage cells this 

response was considerably variable, resembled an unlikely bell-shaped dose-response curve 

and the relationship between the number of responders and ΔF340/380 ratio was 

inconsistent. This suggests that examining Ca2+ responses to test ligand selectivity might not 

be the most appropriate assay for this receptor and that GPR84 mediated Ca2+ mobilisation 

may be complex and further down-stream in the signalling pathway rather than directly 

coupled to receptor activation. As we were unable to gain definitive answers from these 

studies we sought to investigate selectivity of embelin, CA and CNV by examining changes in 

cAMP levels, based on evidence that GPR84 is directly coupled to the Gi/o G-protein family 

(Wang et al., 2006a). Here, CA was shown to reduce forskolin-stimulated cAMP production 

in a dose-dependent fashion in GPR84 transfected CHO cells (Wang et al., 2006a). We 

therefore hypothesised that a selective ligand would inhibit forskolin-induced cAMP in WT 

macrophages, but have no effect on KO macrophages. Forskolin is a valuable and widely 

used compound due to its ability to directly interact with the catalytic subunit of AC and 

increase the synthesis of cAMP (Insel and Ostrom, 2003) and thus provides an excellent 

positive control for the study of cAMP in our studies.  

 

The cAMP-screen direct chemiluminescent ELISA system provides a rapid and sensitive 

quantification of cellular cAMP for functional assays examining receptor activation and can 

be used for receptor characterisation and ligand identification. In principle, the system is a 

competitive immunoassay where the addition of an AP-labelled cAMP conjugate competes 

with cAMP from sample extracts for a highly specific anti-cAMP antibody. AP is an enzyme 

that removes phosphate groups from a substrate via hydrolysis in a process termed 

dephosphorylation and is most effective in alkaline environments. Subsequent to the 

competitive antibody reaction the addition of the chemiluminescent substrate, CSPD, results 

in enzymatic dephosphorylation by AP, which leads to the formation of a metastable 

phenolate anion that decomposes to emit light at a maximum wavelength of 477 nm. CSPD 

requires an alkaline hydrophobic environment for rapid decomposition and emission of 

bright chemiluminescent signals, which is provided by an enhancer such as sapphire-II. In 

practise, the less cAMP present in the sample, the more cAMP-AP is bound to the antibody 

and the greater the amount of light emitted. Thus the light signal intensity, measured by a 

luminometer, is inversely proportional to the concentration of cAMP in the sample.  
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4.3.8 The effects of embelin, capric acid and CNV on forskolin-induced cAMP levels 

in WT and KO B-GEPMs  

 

We examined inhibition of cAMP in non- and LPS stimulated conditions in WT B-GEPMs to 

determine if increased expression of GPR84 enhances ligand efficacy, which would be 

apparent by augmented inhibition of cAMP levels. GPR84 KO B-GEPMs were only examined 

under non-stimulated conditions. Three doses of each ligand, CA (A), embelin (B) or CNV (C) 

were comparatively examined in both WT and KO macrophages (Fig. 4.13). Despite testing 

two doses of forskolin which are documented to elicit marked increases in intracellular 

cAMP levels (Chang et al., 1984; Kreckler et al., 2009), we were unable to induce cAMP in 

WT macrophages. In general, under LPS stimulated conditions there was a greater induction 

of cAMP and each of the ligands exhibited a slight inhibitory trend, however due to the small 

difference between basal levels and forskolin-induced cAMP levels there was a limited 

window to observe a clear inhibitory effect (Fig. 4.13A, B, C). In contrast, KO cells showed a 

striking induction of cAMP (64.7 ± 6.5 fmol/mL (A); 216 ± 17.0 fmol/mL (B); 469.0 ± 53.9 

fmol/mL (C)) which was significant compared to control (26.2 ± 0.3 fmol/mL (A); 54.2 ± 1.9 

fmol/mL (A); 122.7 ± 3.2 fmol/mL (C)) and forskolin stimulated WT cells (23.4 ± 0.5 

fmol/mL (A); 79.6 ± 0.6 fmol/mL (C)). In KO cells, CA elicited a significant inhibition of 

cAMP levels at the 1 μM dose (38.3 ± 2.3 fmol/mL) compared to the positive forskolin 

control (Fig. 4.13B). The inhibitory effect of CA in KO cells appeared to have a dose-

dependent trend, suggesting that CA could indeed be exerting non-GPR84 selective effects. 

However, this assumption is difficult to ascertain without a comparative effect in the WT. 

Despite this we were able to show that subsequent to appropriate stimulation, KO cells are 

capable of inducing greater cAMP responses than WT cells (KO + FSK: 342.5 ± 37.9 fmol/mL 

vs WT + FSK: 121.2 ± 6.4 fmol/mL), compared to control (WT: 68.5 ± 2.8 fmol/mL vs KO: 

88.4 ± 7.8 fmol/mL; Fig 4.13D). This elevated cAMP phenotype in the KO is particularly 

interesting with regards to the immunosuppressive role of this second messenger (Bourne 

et al., 1974; Serezani et al., 2008; Peters-Golden, 2009) and may be associated with the KO 

behavioural phenotype in experimental models of persistent pain (Chapters 2 and 3). 
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Figure 4.13: The effects of putative GPR84 ligands on forskolin-induced cAMP levels in WT and 

KO B-GEPMs  

 

Examining the production of cAMP in GPR84 WT and KO B-GEPMs to test the selectivity of capric acid 

(CA; A), embelin (EMB; B) and CNV (C). None of the three ligands inhibited forskolin (FSK)-induced 

cAMP in WT cells under non- and LPS stimulated conditions (3hrs; 1μg/ml). Mean ± SEM; ***p<0.001, 

*p<0.05 vs appropriate control (-); ###p<0.001 KO+FSK vs WT+FSK; †p<0.05 CA+FSK vs FSK. One-way 

ANOVA with Tukey’s post-hoc. n = 4-6 wells/condition. (D) GPR84 KO cells show greater FSK induced 

cAMP production (KO FSK) than WT cells (WT FSK) in comparison to control cells (KOC, WTC, 

respectively). Mean ± SEM; ***p<0.001 vs appropriate control. Kruskal-Wallis one-way ANOVA on 

ranks with Tukey’s. n = 12 wells/condition. 
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4.4 Discussion 

 

Pharmacological tools have been widely exploited in experimental studies investigating the 

physiological role and signalling pathways of receptors in vitro and in vivo systems. 

Throughout this thesis, we have utilised transgenic mice to investigate GPR84 in chronic 

pain mechanisms, and have shown that this receptor contributes to pain-associated 

behaviours in a model of nerve injury (PNL) and inflammation (CFA) (Chapter 2 and 3). 

However, a lack of commercially available agonists or antagonists selective for GPR84 has 

prevented further characterisation of this receptor. GPR84 is an orphan receptor and its 

signalling pathway is currently unknown, with only a single study postulating that CA is the 

natural ligand (Wang et al., 2006a). Based on this limited evidence we explored the efficacy 

and selectivity of three potential GPR84 ligands (embelin, CA and CNV) in microglia and WT 

and KO macrophages via Ca2+ and cAMP signalling assays to identify a selective agonist that 

could be utilised in further functional studies. We report that embelin and CA generate Ca2+ 

transients in microglia and WT macrophage cells and exhibited selectivity for GPR84 at 

doses of 10 μM and 1 μM, respectively. We were unable to conclusively show CA, embelin or 

CNV -induced inhibition of cAMP formation and so could not validate ligand efficacy and 

selectivity in this assay. However, interestingly we observed that KO macrophages showed a 

greater increase in forskolin induced cAMP than control WT cells. 

 

4.4.1 GPR84 and Ca2+ signalling 

 

Spinal microglia and peripheral macrophages express a number of chemokine receptors 

such as CCR2, CCR4, CCR5 and CX3CR1, which are altered under chronic pain conditions; 

conversely pain-associated behaviours are attenuated in null mice or via the administration 

of chemokine receptor neutralising antibodies (Kieseier et al., 2002; Abbadie et al., 2003; 

Thacker et al., 2009; Kiguchi et al., 2010b; Staniland et al., 2010). Activation of chemokine 

receptors initiates rapid mobilisation of PLC, the subsequent generation of IP3 and a 

resultant increase in cytosolic [Ca2+]i. This pathway is characteristic of chemokine signalling 

and can be utilised to investigate the responsiveness of these receptors to different ligands. 

PI3K is also a key player in chemokine signalling and initiates the subsequent activation of 

the MAPK cascade, particularly involving ERK (Bajetto et al., 2002).  Elevated levels of [Ca2+]i 

have been experimentally demonstrated in microglia, monocytes and macrophages 

following exposure to CCL2, CCL3, CCL5, CXCL5 and CX3CL1, whereas pharmacological 

antagonism correspondingly blocks Ca2+ signalling (Harrison et al., 1998; Boddeke et al., 

1999; Cardaba and Mueller, 2009; Serrano et al., 2010; Dawes et al., 2011; Clark and 

Malcangio, 2012). The GPR84 signalling pathway is currently unknown, but is postulated to 



Chapter 4 - GPR84 Cell Signalling 

 

229 

be coupled to the Gαi/o family (Wang et al., 2006a) where its activation may lead to the 

mobilisation of intracellular Ca2+ in a similar pathway to that of a chemokine receptor. 

However, there is some evidence that GPR84 signalling may be independent of a Pertussis 

toxin sensitive pathway (Versleijen et al., 2009). Chemokine receptors may also activate  

several other intracellular effectors including PLA2, PI3K and MAPK (Murdoch and Finn, 

2000), leading to the mobilisation of [Ca2+]i and the activation of the p38 MAPK pathway 

(Kreideweiss et al., 1999; Elzi et al., 2001). Upon phosphorylation, p38 MAPK enters the 

nucleus where it phosphorylates transcription factors such as NF-κB, which mediate the 

biosynthesis of many pro-inflammatory factors documented to contribute to nociceptive 

transmission (Jana et al., 2003; Kumar et al., 2003; Ji and Suter, 2007).  

 

Circumstantial evidence has suggested that GPR84 is activated by MCFFAs and cytokines 

(IL-1β, TNF-α) capable of stimulating the NF-κB pathway and that the activation of this 

receptor elicits the release of CXCL1, IL-8 and IL-12p40 (Hwang, 2000; Wang et al., 2006a; 

Bouchard et al., 2007; Suzuki et al., 2013). It has been reported that MCFFAs demonstrate 

efficacy in GPR84 transfected CHO cells and are able to activate leucocytes by increasing 

[Ca2+]i (Wanten et al., 2004; Wanten and Naber, 2004; Wanten, 2006). Therefore, we 

postulated that as a pro-inflammatory receptor, GPR84 activation may be coupled to the 

mobilisation of Ca2+ and thus a functional assay examining Ca2+ responses in microglia and 

macrophages would be a relevant approach to examine the selectivity of embelin and CA.  

 

In accordance with literature we verified the ability to obtain Ca2+ responses in rat spinal 

microglia and GPR84 WT and KO mouse peritoneal macrophages to challenges of ATP (Walz 

et al., 1993; McLarnon et al., 1999; Moller et al., 2000; Hoffmann et al., 2003; McLarnon, 

2005; Farber and Kettenmann, 2006b). Purinergic signalling in these cells is mediated by 

the ionotropic P2X4 and P2X7 receptors and metabotropic P2Y receptors (McLarnon, 2005). 

Activation of P2X4/7 receptors results in the influx of Na+ and Ca2+ and efflux of K+ and 

subsequent depolarisation, whereas activation of the P2Y receptor leads to an increase in 

[Ca2+]i
 as a result of intracellular store depletion and subsequent SOC activation (McLarnon, 

2005). Having successfully shown that ATP elicits Ca2+ responses we then investigated 

whether we could show the same with embelin and CA in microglia and WT macrophage 

cells, where ligand selectivity would be evidential by an attenuated/abolished Ca2+ response 

in KO cells. We found that both ligands produced Ca2+ transients in microglia and 

macrophage cells, but these responses tended to be inconsistent and the number of 

responders did not correlate with changes in [Ca2+]i. Usually dose-response relationships of 

a GPCR ligand are sigmoidal; at low concentrations the biological effect is small but when a 

certain threshold is met the effect increases until it reaches a plateau. However, some drugs 
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may exhibit a bell-shaped relationship, which is characterised by low dose responses but 

loss of the effect at higher doses. Both embelin and CA exhibited bell-shaped dose response 

curves, with a trend towards GPR84 selectively particularly at doses of 10 μM for embelin 

and 1 μM for CA. 

 

Based on the fact that CA is a suggested natural ligand for GPR84 and the fact that CA 

recruited a greater number of microglial cells than embelin, we explored two additional 

parameters using CA to further complement our studies. We examined the concept of 

desensitisation by challenging the cells twice and also looked at the effect of LPS 

stimulation, which increases the expression of GPR84 in immune cells (Wang et al., 2006a; 

Bouchard et al., 2007). Desensitisation is a phenomenon that occurs subsequent to receptor 

activation via a number of mechanisms. These include phosphorylation of the receptor via 

second messenger kinases such as PKA and PKC, leading to the uncoupling of the receptor 

from its respective G-protein, or GRK-mediated phosphorylation and consequential sterical 

inhibition as a result of arrestin binding. Internalisation and sequestration of GPCRs via 

clathrin coated vesicles may also occur (Pierce et al., 2002). Accordingly, we showed that 

under normal and LPS stimulated conditions microglia exhibited reduced or unchanged CA 

responses to a second challenge at every dose tested. We also demonstrated that LPS 

substantially enhanced CA-induced Ca2+ transients in microglia and WT macrophages. 

However, as LPS stimulated KO cells also exhibited increased Ca2+ transients, whether this 

LPS-enhancing effect was due to increased expression of GPR84 is unknown. In conclusion, 

although embelin and CA clearly showed a degree of efficacy and selectivity at particular 

doses, the lack of consistency and residual responses in KO cells adds caution to the 

interpretation of a specific interaction with GPR84. Furthermore, selectivity at the 1 μM CA 

dose was lost in LPS stimulated cells as both WT and KO macrophages showed equivalent 

Ca2+ transients. This indicates a lack of selectivity or the possibility that other FFA-sensitive 

cell membrane receptors (as well as GPR84) may be up-regulated by LPS exposure, and may 

account for the greater Ca2+ responses observed in both genotypes compared to 

unstimulated conditions. 

 

4.4.2 GPR84 and cAMP signalling 

 

Our findings indicate that our initial approach using Ca2+ fluorometry to validate ligand 

selectivity for GPR84 may not have been the most appropriate assay for this receptor. 

GPR84 mediated Ca2+ mobilisation could be further down-stream of receptor activation 

rather than being directly coupled. We therefore supplemented our investigations on the 

selectivity of embelin, CA and CNV by assessing cAMP levels, based on evidence that GPR84 



Chapter 4 - GPR84 Cell Signalling 

 

231 

is coupled to the inhibitory Gαi/o family (Wang et al., 2006a). Here, Wang et al. (2006) 

employed a GPR84 heterologous expression system and showed that CA reduced forskolin-

induced cAMP production in a dose-dependent fashion and that this effect could be 

abolished by Pertussis toxin pre-treatment (Wang et al., 2006a). We therefore hypothesised 

that a selective ligand would inhibit forskolin-induced cAMP in WT macrophages but have 

little or no effect on KO macrophages. 

 

As we were unable to induce a sufficient level of cAMP in WT macrophages it is difficult to 

determine whether CA, embelin or CNV exerted inhibitory actions on cAMP formation and 

thus a comparison between WT and KO cells cannot be made. The induction of cAMP in 

macrophages is usually very small and within the picomolar range. However, forskolin 

induced formation of cAMP in macrophage cells is well documented, and many groups have 

shown the ability to increase cAMP levels using similar concentrations and incubation 

periods to the ones we employed (Chang et al., 1984; Osawa et al., 2006; Kreckler et al., 

2009; Ballinger et al., 2010). Therefore, the poor cAMP responses we obtained should be 

improved by altering experimental conditions such as using higher doses of forskolin and 

extending the incubation period. In contrast, GPR84 KO macrophages exhibited striking 

increases in forskolin-induced intracellular cAMP levels compared to vehicle, which we 

postulate is due to the absence of inhibitory GPR84 signalling. Surprisingly, 1 μM of CA 

significantly inhibited forskolin-induced cAMP in KO cells, which was a dose that appeared 

to be particularly selective in the Ca2+ fluorometry assays. Therefore we did not attempt to 

repeat a second cAMP assay study to test CA with a higher dose of forskolin due to this non-

selective action. However, we used a higher dose of forskolin (50 μM) in subsequent studies 

(embelin, CNV) in attempt to elicit greater cAMP responses in WT macrophages, which was 

disappointingly unsuccessful. 

 

The role of cAMP in macrophage function has historically been the centre of debate owning 

to conflicting data; while some thought that this second messenger enhanced phagocytosis 

and collagen production (Muschel et al., 1977; McCarthy et al., 1980) others believed that 

cAMP in fact did the opposite. However, it is now well established that elevated cAMP levels 

exert a broad range of immunosuppressive actions, including down- or up- regulation of 

pro- or anti-inflammatory mediators, respectively, and a reduction in phagocytic activity 

(Bourne et al., 1974; Aronoff et al., 2005; Serezani et al., 2008; Peters-Golden, 2009; Wall et 

al., 2009) as previously discussed (section 4.1.2). These effects are primarily coordinated by 

two effector molecules, PKA and the exchange proteins, Epac 1 and 2, which are directly 

activated by cAMP and play distinct, redundant or opposing roles in immune cell function 

(Wall et al., 2009; Ballinger et al., 2010). In light of this evidence, the KO macrophage 
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phenotype is very intriguing as upon forskolin stimulation these cells exhibited a robust 

cAMP up-regulation in contrast to WT macrophages, moreover despite a lack of significance, 

KO macrophages also possess slightly greater basal levels of cAMP. This may suggest that 

macrophage cells have a greater polarity towards an anti-inflammatory M2 state in the 

absence of GPR84. Accordingly, we observed increased expression of the M2 macrophage 

marker, ARG1, in the injured sciatic nerves of KO mice (Chapter 2) and have shown that KO 

macrophages exhibit attenuated production of some pro-inflammatory mediators in 

response to LPS (Chapter 3). Therefore, it is feasible that nerve injury and/or inflammation 

leads to an increase in cAMP levels in GPR84 KO microglia/macrophages, which inhibits the 

release of some pro-inflammatory mediators and hence alleviates pain-associated 

behaviours. Furthermore, it has been reported that forskolin increases cellular proliferation 

and differentiation via cAMP-dependent activation of PKA and Epac (Misra and Pizzo, 2005). 

This is consistent with our previous findings of an ipsilateral increase in Iba1 positive cells 

in the spinal cords of KO PNL and CFA treated mice and in the sciatic nerves of KO PNL mice 

(see Chapters 2 and 3). However, we must note that elevated cAMP has also been reported 

to suppress macrophage proliferation (Vairo et al., 1990).  

 

In contrast to its immunosuppressive role in immune cells, cAMP was one of the first second 

messengers to be implicated in nociceptive transmission (Hucho and Levine, 2007). At the 

site of inflammation nociceptor sensitisors such as PGE2 and adenosine activate AC via their 

Gαs coupled GPCRs, which initiates cAMP synthesis. Increased levels of cAMP enhances 

neuronal excitability via the phosphorylation dependent actions of its binding partner, PKA, 

which has been demonstrated to modulate voltage-gated channels (Nav1.8) and ligand-

gated channels (TRPV1) as well as augment neurotransmitter release (Hingtgen et al., 1995; 

Fitzgerald et al., 1999; Bhave et al., 2002). Elevated levels of cAMP is also associated with 

increased neuronal excitability in experimental models of chronic pain and the 

administration of cAMP inducing agents such as forskolin produces dose-dependent 

hyperalgesia in rats that can be prolonged via PDE inhibitors or blocked by the cAMP analog, 

RP-cAMP (Taiwo and Levine, 1991). Conversely, pre-treatment with AC inhibitors decreases 

PGE2 induced behavioural hyperalgesia and administration of PKA inhibitors pre or post 

PGE2 treatment produced a similar inhibitory effect on pain behaviours. Thus indicating that 

PKA plays a key role in the maintenance of hypersensitivity (Aley and Levine, 1999). Knock-

out mice have also been utilised in a number of studies exploring the roles of specific 

isoforms of AC in nociceptive transmission. Behavioural responses to PNL or subcutaneous 

administration of formalin or CFA was attenuated or abolished in AC type 1 and 8 double KO 

mice (Wei et al., 2002). Similarly, AC type 5 null mice demonstrated attenuated formalin or 

SNL evoked pain responses (Kim et al., 2007b). In light of this evidence and with regards to 
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our findings, the development of immune cell specific AC agonists or drugs exploiting cAMP 

function could be therapeutically beneficial in combating chronic inflammatory diseases 

associated with pain. Fascinatingly, several pathogenic microorganisms (Bordetella 

pertussis, Vibrio cholerae and Escherichia coli) have evolved cAMP enhancing mechanisms to 

disable host innate immune defences (Serezani et al., 2008). However, the selectivity of such 

drugs would be crucial, as non-selective effects at other cell types may result in pain. 

 

4.4.3 Future work 

 

In this chapter we tested the efficacy and selectivity of three putative GPR84 ligands 

(embelin, CA and CNV) using Ca2+ and cAMP assays. In the Ca2+ assays, we found that CA and 

embelin exhibited some selectivity for GPR84 at doses of 1 μM and 10 μM, respectively, and 

that LPS increased Ca2+ responses to CA but selectivity was lost. Notably, CA and embelin 

recruited a modest number of responding cells. Thus in light of previous findings, which 

suggested that GPR84 is only expressed by a subset of microglial cells (Chapter 3), it may be 

interesting to characterise which populations of microglia and macrophages express GPR84. 

 

Data from the cAMP assays were inconclusive as we were unable to generate sufficient 

forskolin-induced cAMP responses in WT macrophages. It would therefore be necessary to 

repeat the cAMP studies using an optimised stimulation protocol to achieve a greater cAMP 

induction window where the inhibitory effects of GPR84 ligands can be fully assessed. It 

would also be interesting to further investigate the elevated cAMP/M2 phenotype of KO 

macrophages via immunocytological assessment of cAMP and other relevant markers (p38 

MAPK, ARG1, iNOS) in ligand stimulated WT and KO macrophage cells. Here the 

development of selective agonists or antagonists would permit an extensive 

immunocytological evaluation of the cAMP phenotype. Previously we presented a selective 

antibody for GPR84 (Chapter 3), however as it possesses an intracellular epitope it is not 

appropriate for blocking GPR84 in live cells. Therefore, the development of a selective 

antibody possessing an extracellular epitope may enable further functional analysis of 

GPR84 in vitro and in vivo. Cyclic AMP signalling is also synonymous with the activity of its 

binding partner, PKA, thus it would be interesting to immunohistochemically examine 

immune cell-expressed phosphorylated PKA in the sciatic nerves and spinal cords of PNL 

and CFA treated WT and KO mice.  

 

In the Ca2+ and cAMP signalling assays, we utilised resident and B-GEPMs, respectively, due 

to different protocol demands in cell yields. B-GEPMs consist of a mixture of resident and 

infiltrating cells, and so are representative of the in vivo situation in addition to providing 
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greater yields. This population of macrophages differ in their respiratory and phagocytic 

capacity and chemokine responsiveness compared to resident cells (Zhang et al., 2008). It is 

worth noting that different types of cell cultures or the use of different populations of 

macrophages in primary cell cultures accounts for many of the discrepancies throughout the 

literature. Although B-GEPMs are perhaps the most relevant source of macrophages to use 

in our studies in comparison to other sources such as BMMs, under normal conditions the 

expression of GPR84 is the lowest in this population (Lattin et al., 2008), which could 

possibly account for a lack of potency of the ligands tested. Attempts to increase GPR84 

expression using LPS enhanced Ca2+ responses to ligands in some cases but not always 

specifically in WT cells and only markedly improved inhibition of forskolin-induced cAMP. 

Therefore the consideration of alternative populations of macrophages for future studies 

may be critical in aiding our understanding of the function of GPR84. 
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5.1 Summary of experimental findings  

 

Owning to the compelling body of evidence on the interaction between neurons, immune 

and glial cells in nociceptive transmission (Marchand et al., 2005; Scholz and Woolf, 2007; 

Thacker et al., 2007; Austin and Moalem-Taylor, 2010; Calvo et al., 2012), experimental 

research on immune cell expressed targets is well underway in the chronic pain field. The 

exclusive expression of GPR84 in immune cells and its pro-inflammatory profile warrants 

this receptor as an exciting new candidate in pain pathways. Therefore the aim of this thesis 

was to explore GPR84 signalling in animal models of persistent pain. The main findings are: 

 

1. GPR84 mRNA is up-regulated in microglia and macrophage cells upon LPS 

stimulation as well as in the sciatic nerve and spinal cord tissue of neuropathic mice. 

2. GPR84 KO mice do not develop neuropathic pain behaviours in a model of traumatic 

nerve injury. 

3. Subsets of mediators, particularly ARG1, are dysregulated between the ipsilateral 

sciatic nerve and spinal cord tissues of nerve injured WT and KO mice.  

4. GPR84 KO mice exhibit attenuated pain behaviours in a model of inflammatory pain. 

5. LPS-induced up-regulation of some cytokines/chemokines including CCL2, CCL3 and 

CXCL5 are attenuated in KO macrophages. 

6. KO macrophages exhibit elevated basal and forskolin-induced levels of cAMP 

compared to WT cells. 

 

Using transgenic mice we have shown, for the first time to the best of our knowledge, that 

GPR84 KO mice have attenuated neuropathic and inflammatory pain. This indicates that 

GPR84 is necessary for the development of persistent pain and thus pharmacological 

manipulation of GPR84 signalling in immune cells may alleviate pain behaviours. 

Accordingly, the immunomodulatory role of GPR84 is evident by our gene profiling studies, 

where subsets of immune-derived pro-inflammatory mediators were dysregulated between 

nerve injured WT and KO mice. Although not significant, nerve injury-induced expression 

of IL-1β, IL-12p40, CCL3 and NOS2 was attenuated in the sciatic nerves and spinal cords of 

KO mice 21 days post PNL. These mediators are known to contribute directly or via second 

messengers to peripheral and/or central sensitisation (Sommer and Kress, 2004; Abbadie, 

2005; Austin and Moalem-Taylor, 2010), as previously discussed (Chapter 1), and so 

collectively their diminished expression in the KO may account for the absence of pain 

behaviours subsequent to nerve injury. Using a similar approach, we also observed 

decreased LPS-induced expression of a selection of chemokines and cytokines in KO 
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macrophages, including pro-nociceptive CCL2, CCL3 and CXCL5 (Abbadie et al., 2003; 

Kiguchi et al., 2010b; Dawes et al., 2011).  

 

In both neuropathic and inflammatory pain models, spinal microglia and peripheral 

macrophage responses were equivalent between genotypes, although our 

immunohistological assessment was restricted to Iba1 and p-p38 MAPK. Likewise, LPS 

stimulated KO macrophages appeared just as capable as WT macrophages in launching a 

pro-inflammatory response, except for the attenuated expression of some chemokines. 

Despite the unaltered microglia/macrophage response, an explanation for the behavioural 

phenotype in the KO could indeed lie with reduced chemokine signalling. It is apparent in 

the literature that the interruption of a single receptor or signalling molecule can completely 

abolish pain behaviours due to the integrated nature of the nociceptive transmission 

system. On the other hand, our data could in fact argue against a critical role of microglia 

and macrophages in the pathogenesis of chronic pain. In this thesis we have reported that 

GPR84 mediated signalling contributes to the initiation of nerve injury-induced neuropathic 

pain and the maintenance of CFA-induced inflammatory pain. However, we did not observe 

a corresponding immune cell response via immunohistochemical analysis. Dissociation 

between a microglial or macrophage cell contribution and behavioural hypersensitivity in 

animal models of neuropathic and inflammatory pain has also been previously documented 

(Colburn et al., 1997; Molander et al., 1997; Colburn et al., 1999; Hashizume et al., 2000; 

Honore et al., 2000; Rutkowski et al., 2000; Winkelstein and DeLeo, 2002; Raghavendra et 

al., 2003a; Zhang et al., 2003; Barclay et al., 2007; Clark et al., 2007a; Shi et al., 2011). 

Furthermore, in models that are more representative of disease-associated pain conditions 

such as chemotherapeutic, bone cancer, HIV or VZV -induced neuropathy microgliosis was 

absent (Honore et al., 2000; Zheng et al., 2011a; Blackbeard et al., 2012; Zhang et al., 2012a). 

It was also found that minocycline failed to alleviate mechanical allodynia in painful diabetic 

neuropathy (Liao et al., 2011). Likewise, the clinical evidence for a role of microglia and 

macrophages in chronic pain patients is limited and unclear. For example, propentofylline 

was ineffective for the treatment of post-herpetic neuralgia in a randomised controlled trial 

(Landry et al., 2012) and the CCR2 antagonist AZD2423, bore no efficacy in patients with 

post-traumatic neuralgia (Kalliomaki et al., 2013).  

 

Despite the fact that some pre-clinical and clinical evidence suggests a limited role of 

microglia and macrophages in chronic pain, differences in disease aetiologies, failure of 

translational research and caveats in clinical trial design argue against this. Undoubtedly, 

there is a significant body of basic research supporting microglia and macrophages as active 

participants in chronic pain (discussed in Chapter 1), which is supported by growing clinical 



Chapter 5 - General Discussion 

 

238 

evidence. For example, reactive microglia have been detected in the ipsilateral thalamus of 

amputees with chronic phantom limb pain by positron emission tomography (PET) using a 

radiolabelled ligand for the peripheral benzodiazepine receptor (Banati et al., 2001). This 

technique has also been employed to investigate the neural bases of pain, including the 

involvement of microglia in other types of neuronal injury. PET as well as functional 

magnetic resonance imaging (fMRI) have already exemplified success in animal research 

and therefore provide excellent alternatives to study microglia in humans in a non-invasive 

manner (Imamoto et al., 2013). Besides an obvious change in morphological phenotype and 

numbers, mediators released by microglia are well documented to contribute to behavioural 

hypersensitivity in animal models of chronic pain. Heightened levels of pro-inflammatory 

cytokines were detected in the CSF fluid of two CRPS patients and this increase correlated 

with pain intensity (Alexander et al., 2005; Backonja et al., 2008). However, since a number 

of cell types are capable of producing cytokines, these findings do not conclusively indicate 

microglial activation. A pro-inflammatory monocyte phenotype has also been documented 

in CRPS patients (Ritz et al., 2011) and an increase in inflammatory cell recruitment has 

been reported in nerve biopsies from neuropathic pain patients, where the extent of 

infiltration correlated with the pain experienced (Lindenlaub and Sommer, 2003). Despite 

previous failures, clinical trials examining alternative microglial modulators are well 

underway (NCT01314482) (Grace et al., 2011) and the p38 MAPK inhibitor SB-681323, 

which may also effect macrophages, was efficacious for neuropathic pain in a small double-

blind crossover trial (Anand et al., 2011). 

 

It is possibile that the up-regulation of GPR84 expression alone is driving the pain 

behaviours. Tsuda et al. (2003) demonstrated that the up-regulation of P2X4 receptors in 

hyperactive microglia in the spinal cord is crucial for nerve injury-induced allodynia. 

Pharmacological blockade or intraspinal administration of P2X4 receptor antisense 

oligodeoxynucleotides suppressed pain behaviours, whereas intraspinal transfer of P2X4-

expressing microglia generated behavioural hypersensitivity in naïve rats (Tsuda et al., 

2003). Here we demonstrate that GPR84 mRNA is strikingly up-regulated in the sciatic 

nerve and more modestly in the spinal cord at 7 days post PNL, and this increase persisted 

up to day 21. We also demonstrated that GPR84 mRNA was considerably up-regulated in 

peritoneal macrophages and moderately in cortical microglia subsequent to LPS 

stimulation. Immunohistochemical assessment revealed GPR84 up-regulation in a majority 

of microglial cells in LPS-treated spinal cords, indicating that this receptor may represent a 

sub-population specific marker. Together, these data suggest a prominent role of GPR84 

signalling in peripheral macrophages.  
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Interestingly, we found that under normal conditions GRP84 expression was undetectable, 

however upon appropriate immunostimulation there was an increase in transcript and 

protein levels. Therefore, GPR84 may be a silent receptor that is recruited only under 

pathological circumstances. Accordingly, GPR84 up-regulation has been reported in 

clinically relevant animal models of diabesity and EAE, which feature pain-associated 

pathologies (Bouchard et al., 2007; Nagasaki et al., 2012). This response-specific up-

regulation is a particularly appealing property for the development of selective ligands as 

only erroneous immune activity would be targeted whilst normal nociceptive transmission 

would remain unaffected, limiting the possibility of detrimental side effects. Likewise, 

pharmacological blockade of P2X4 had no effect on acute pain behaviours of naïve rats but 

suppressed tactile allodynia in neuropathic animals (Tsuda et al., 2003). 

 

One of the most intriguing outcomes of the gene profiling studies was the considerable up-

regulation of the anti-inflammatory M2 macrophage marker, ARG1, in the sciatic nerve of 

KO mice 7 days post PNL, in contrast to WT controls. ARG1 is associated with the alternative 

pathway, which entails the metabolism of L-arginine to produce L-ornithine and urea. In 

mammals there are two isoforms of ARG, cytosolic ARGI and mitochondrial ARGII, both of 

which carry out the same reaction (Bogdan, 2001). Ornithine amino transferase may then 

synthesise proline from ornithine, which is crucial in collagen production, whereas 

ornithine decarboxylase generates polyamines that are involved in cellular proliferation. 

Together these pathways contribute to cell growth and differentiation as well as the 

formation of the ECM (Kreider et al., 2007). On the other hand, pro-inflammatory M1 

macrophages are associated with the expression of inducible nitric oxide synthase (iNOS), 

which catalyses the oxidation of the substrate L-arginine to form NO and L-citrulline. The 

transfer of electrons by iNOS subunits to the co-substrate O2 results in the formation of 

superoxide (O-2). Superoxide may then react with NO or L-citrulline to produce the reactive 

nitrogen oxide species, peroxynitrite, or may react with water to form hydrogen peroxide. 

Both of these highly reactive agents are able to cross the membrane and damage biological 

targets (Bronte and Zanovello, 2005). NO exerts multiple immunoregulatory functions in 

host protection such as antimicrobial activity, cytokine modulation and Th cell development. 

Hence the expression of NO in macrophages is tightly regulated by the competing enzymes, 

iNOS and ARG, for their common substrate, L-arginine, where the induction of one enzyme 

suppresses the expression of the other and vice versa (Modolell et al., 1995; Sonoki et al., 

1997; Chang et al., 1998). Notably, there are three isoforms of NOS, neuronal NOS (nNOS), 

endothelial NOS (eNOS, NOS3) and iNOS, with the former two collectively known as cNOS 

due to their constitutive expression. All three isoforms operate in the immune system and 

catalyse the same reaction. Importantly, iNOS expression in macrophages depends on 
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localised chemokine profiles. Thus, Th-1-derived IL-2, IL-12 and INF-γ increase iNOS 

expression and promote M1 polarity. Conversely, Th-2-derived IL-4, IL-10 and IL-13 induce 

ARG1 activity while IL-4, IL-13 also inhibit iNOS mRNA expression and so promote M2 

polarity (Modolell et al., 1995; Munder et al., 1998; Bogdan, 2001). 

 

In the context of neuropathic pain, iNOS+/ARG- M1 macrophages have been reported to 

rapidly infiltrate the injured nerve as soon as day 1, while iNOS-/ARG+ M2 macrophages 

infiltrate the DRG by day 2, suggesting distinct roles of macrophage populations in different 

tissues (Komori et al., 2011). In a similar study, M1 macrophage infiltration in the nerve was 

observed 1-2 days post PNL, while in IL-1R1/TNFR1 null mice, M1 macrophage infiltration 

was attenuated by 90% on day 1 post injury (Nadeau et al., 2011). M1 macrophage 

infiltration has also been observed in the inflamed paws of CFA treated mice, which 

correlated with mechanical hyperalgesia. Administration of the peroxisome proliferator-

activated receptor-γ agonist, rosiglitazone, alleviated pain behaviours by promoting M2 

infiltration at inflamed sites (Hasegawa-Moriyama et al., 2013). In addition to chronic pain, 

the pro-inflammatory M1 macrophage phenotype has been implicated in numerous diseases 

such as cancer and diabetes (Mosser and Edwards, 2008) whereas the M2 phenotype is 

generally perceived as M1 suppressive and pro-healing/repair. This is supported by studies 

demonstrating the beneficial effects of pro-M2 polarity. For example, clinical severity scores 

in a model of EAN were attenuated in TNF-α null mice, correlating with a pro-M2 

macrophage phenotype (Zhang et al., 2012b). In the same model, treatment with compound 

A (a plant-derived glucocorticoid receptor ligand) inhibited the progression of mechanical 

allodynia and increased numbers of M2 macrophages in the sciatic nerve by promoting M2 

polarity (Zhang et al., 2009). These studies are consistent with our own findings of a pro-M2 

state in GPR84 KO mice and diminished chronic pain behaviours and thus provides a 

credible explanation for the behavioural phenotype. 

 

Although the M1/M2 classification is useful in pertaining discrete macrophage populations 

to particular physiological functions, discrepancies in the literature suggest that such a 

broad segregation may not always be appropriate since it undermines the complexity of 

these cells. For instance, whilst ARG1 expression is considered a hallmark of alternative 

activation in murine macrophages, other studies have reported an increase in the 

expression of this marker following LPS stimulation (Sonoki et al., 1997; Menzies et al., 

2010). Therefore it is evident that ARG1 is induced by both innate (LPS) and alternative 

cues and so experimental classification of macrophages should ideally be carried out with 

more than one marker. For example, dectin-1 and MRC-1 can be used as early markers (6 

hours) of alternative activation involved in pathogen recognition and combating fungal 
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infections, whereas fizz1, ym1 and ARG1 can be used as late markers (24 hours) of 

alternative activation and are associated with tissue repair, wound healing and the control 

of parasitic infections. Evidentially, M2 classification encompasses different subtypes of 

macrophage cells, which exhibit a spectrum of overlapping functions and characteristics, as 

discussed in Chapter 1 (Menzies et al., 2010; David and Kroner, 2011). Hence caution should 

be applied when interpreting studies that have used broad markers such as ARG1, as this 

group of cells are not solely involved in passive healing and anti-inflammatory functions.  

 

Nevertheless, in conjunction with our findings of a pro-M2 macrophage polarity in nerve 

injured KO animals, we also observed greater intracellular cAMP production in KO 

macrophages than in WT. Elevated cAMP is associated with a broad range of 

immunosuppressive actions, including the down- or up- regulation of pro- or anti-

inflammatory mediators, respectively, as well as a reduction in phagocytic activity (Bourne 

et al., 1974; Aronoff et al., 2005; Serezani et al., 2008; Peters-Golden, 2009; Wall et al., 2009) 

as previously discussed (Chapter 4). In light of this evidence, we postulate that under 

pathological conditions the ability of GPR84 KO macrophages to launch an inflammatory 

response and release certain subsets of chemokines/cytokines is compromised. Therefore, 

we propose that GPR84 is a pro-inflammatory receptor that suppresses intracellular cAMP 

via Gαi/o coupled signalling mechanism and contributes to peripheral and central 

sensitisation via the release of pro-nociceptive CCL2, CCL3 and CXCL5. As GPR84 expression 

is regulated by LPS and other stimulators of the NF-κB pathway (IL-1β, TNF-α) (Bouchard et 

al., 2007), we suggest that GPR84 may signal in a similar way to chemokine receptors. Thus, 

GPR84 activation may initiate hydrolytic activity of PLA2, leading to the mobilisation of 

intracellular Ca2+ and possibly the activation of several other intracellular effectors 

including, PI3K and p38 MAPK (see Fig. 5.1) (Murdoch and Finn, 2000). According to our 

findings and the literature, GPR84 is also likely to be involved in the induction of NF-κB 

mediated transcription of pro-inflammatory mediators such as CXCL1, IL-8/CXCL8 and IL-

12p40 (Hwang, 2000; Wang et al., 2006a; Bouchard et al., 2007; Suzuki et al., 2013), as well 

as CCL2, CCL3 and CXCL5. We propose that under pathological conditions GPR84 is a FFA 

sensor trans-activated by TLR4 or activated via autocrine cytokine/chemokine signalling.  
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Figure 5.1: GPR84 signalling pathway in a microglia/macrophage cell 

 

MCFFAs bind to GPR84, inhibiting the production of cAMP and initiating the hydrolytic activity of 

PLA2 via a Gαi/o coupled pathway. This leads to mobilisation of Ca2+ from intracellular stores (ER), the 

phosphorylation of p38 MAPK and the activation of NF-κB, which mediates the transcription of target 

genes. GPR84 expression is regulated via the activation of TLR4, TNFR1/2 and IL-1R. 

 

 

As GPR84 expression was more greatly induced by LPS in macrophages than microglia, as 

well as in nerve than spinal cord of neuropathic mice, GPR84 signalling may play a more 

prominent role in peripheral macrophages. Consistent with this, we ruled out microglial 

involvement as we did not observe an altered microglial response between genotypes in the 

PNL, CFA and LPS models of persistent/acute pain, despite an attenuation of pain 

behaviours in the KO. Although we did not see a difference in the injury-induced 

macrophage response in the sciatic nerve between genotypes, we only examined one 

marker (Iba1) at a single time point (7 days) and in a single model (PNL) and so there is 

scope for further investigation. It is also possible that the differences between WT and KO 

macrophages may not be detectable by staining for these traditional markers of activation. 

So far we have only found subtle differences in the capability of KO macrophages to produce 
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some chemokines and cytokines rather than gross differences in their ability to become 

activated, proliferate or infiltrate sites of injury. The question is precisely how these subtle 

differences account for the absence of mechanical allodynia and thermal hyperalgesia in 

nerve injured KO mice.  

 

Macrophages are well-documented to contribute to mechanical and thermal hyperalgesia in 

models of neuropathic and inflammatory pain (Myers et al., 1996; Izikson et al., 2000; Liu et 

al., 2000; Abbadie et al., 2003; Barclay et al., 2007; Ulmann et al., 2010), but are reported to 

have a limited role in mechanical allodynia, since neither systemic or perineural 

administration of a macrophage inhibitor nor depletion or transfer of activated 

macrophages to the perineurium altered mechanical thresholds (Rutkowski et al., 2000; 

Barclay et al., 2007). This indicates that the absence of mechanical allodynia in nerve injured 

KO mice cannot be entirely attributed to a compromised macrophage response. However, in 

PNL injured mice engineered to express green fluorescent protein (GFP) in bone marrow, 

GFP+ monocytes infiltrated the spinal cord, proliferated and differentiated into activated 

microglia (Zhang et al., 2007). The authors concluded that both resident microglia and bone 

marrow-derived macrophages contribute to centrally driven mechanical allodynia and are 

equally important targets in therapeutic treatment. It has also been shown that intraneural 

injection of anti-inflammatory TGF-β1 alleviated mechanical allodynia and thermal 

hyperalgesia by reducing the numbers of pro-inflammatory macrophages in the injured 

sciatic nerve (Echeverry et al., 2013). Furthermore, a recent study using TLR2 null mice 

supported a prominent role of peripheral macrophages in behavioural hypersensitivity and 

found no evidence of microglial involvement (Shi et al., 2011). Here, it was reported that 

thermal hyperalgesia was abolished in nerve injured TLR2 KO mice whilst mechanical 

allodynia was partially attenuated, correlating with a reduction in macrophage infiltration 

(Shi et al., 2011). Therefore, although the contribution of reactive microglial cells to 

mechanisms underlying mechanical allodynia is well established, there is some evidence for 

the involvement of macrophages, however, these cells are unlikely to be the only drivers in 

GPR84 nociceptive signalling. 
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5.2 Future directions and a critical analysis 

 

Immunohistochemistry 

Advantages Disadvantages 

 Short procedure 
 Inexpensive 
 Maintains morphology of surrounding 

tissue 
 Cell numbers and IR can be quantified 

 Antibodies vary in specificity and sensitivity 
 No standard threshold for positivity 
 Non-specific staining 
 Staining can be variable based on tissue 

preparation 
 Overlapping of fluorophore signals can lead 

to false positives 
 A limited number of antibodies can be used 

simultaneously 
 Semi-quantitative, subjective interpretation 

of results 
Western blotting 

Advantages Disadvantages 

 Effectively detects and characterises 
proteins in small amounts 

 Sensitive  

 Antibodies vary in specificity and sensitivity 
 Non-specific staining 
 No morphological correlation 
 Inadequate protein transfer time can 

produce false negatives 
 Technically demanding and time consuming 
 Semi-quantitative 

Flow cytometry 

Advantages Disadvantages 

 Short procedure 
 Quantitative, accurate and reproducible 
 Distinct cell populations are defined by their 

size and granularity and can be sorted 
 Sensitive 
 5-6 antibodies can be assessed 

simultaneously 
 Cell number and IR can be quantified 

 Antibodies vary in specificity and sensitivity 
 No morphological correlation 
 Overlapping of fluorophore signals can lead 

to false positives if compensation is 
ineffective 

 A large number of cells are required 
 Expensive 

qRT-PCR 

Advantages Disadvantages 

 Quantitative, accurate and reproducible 
 High through-put cards enables many genes 

to be examined simultaneously 
 Sensitive 
 Changes in the mRNA expression of cell 

markers and associated cytokines can be 
measured 

 Genomic contamination or faulty reactions 
can lead to inaccurate quantification 

 Time consuming 
 RNA degradation means there’s less/poor 

quality starting material 
 Protein verification is required 
 Non-specific amplification can lead to false-

positives 
 Expensive  

 

Table 5.1: Advantages and disadvantages of immune cell quantification techniques 
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The findings of this thesis support that pro-inflammatory GPR84 is a novel marker of 

chronic pain states primarily in macrophage cells. Hence an important extension of this 

work is to verify the differences in gene expression seen in the PNL model between 

genotypes, with a particular focus on the pro-M2 phenotype in the KO sciatic nerve. As 

previously mentioned quantification of the immune cell response in the PNL and CFA 

models was limited to the examination of two commonly used immunohistochemical 

markers.  Therefore a range of alternative immune cell markers associated with M1/M2 

polarity could be examined in WT and KO mice in models of chronic pain. However, since 

immunohistochemistry bears a number of technical limitations, alternative methods such as 

genetic profiling, western blotting and flow cytometry should be considered for quantifying 

the immune cell response. As presented in Table 5.1, each method possesses advantages and 

disadvantages and so the complementary use of more than one method is likely to be more 

informative and reliable. Finally, mediators that have shown reduced induction in LPS-

stimulated KO macrophages should be verified in vivo to examine their effects on acute pain 

thresholds and to determine which ones contribute to GPR84-mediated nociceptive 

transmission.  

 

The development of transgenic technology has enabled the robust study of single targets in 

a physiological context. This has led to great progression in pain research and an increase in 

published work featuring the mouse (Mogil, 2009). However, the KO mouse is not without 

its interpretational confounds. Genes tend to act in concert with one another and so gene 

targeting can result in compensatory up- (or even down-) regulation of other genes (Wilson 

and Mogil, 2001). Consequentially the observed behavioural phenotype we report could be 

the result of a number of developmental, physiological or behavioural processes that have 

altered to compensate for the null mutation. It is therefore possible that a number of 

phenotypical changes have occurred that are not necessarily related to the function of 

GPR84. Such compensatory effects may have masked any phenotypical differences between 

WT and KO microglia and macrophages, or may even be responsible for the absence of pain-

associated behaviours rather than GPR84 itself.  

 

Behavioural phenotypes can also be related to the genetic background of the mutant. 

Transgenic mice have been historically bred onto a C57BL/6 genetic background, which is 

not the most representative strain of pain sensitivity in a typical laboratory mouse (Mogil, 

2009). Nevertheless, most gene targeting is carried out on embryonic stem cells derived 

from the 129 strain and are placed on a C57BL/6 background strain. Both of which differ 

considerably in terms of pain-related traits (Wilson and Mogil, 2001). Therefore the gene 

alleles surrounding the locus of interest will be derived from the 129 strain in the null 
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mutants and B6 strain in the WT littermates. Consequentially, any phenotypical differences 

observed between the WT and KO mice could be due to the null mutation or a false positive 

generated by differences in genetic backgrounds. However, in this case an obvious solution 

would be to use a B6 cell line for gene targeting to prevent background genotype effects, 

which has exemplified previous success (Gerlai, 2001). 

 

To avoid the contingency of compensation compromising experimental results, more 

refined transgenic technology such as the inducible KO can be utilised. This allows genes to 

be switched on or off on demand, which facilitates the comparison of pre- and post- 

induction phenotypes (Gerlai, 2001). Therefore enabling the circumvention of 

compensatory mechanisms occuring during development that can lead to long-term 

changes in gene expression. However, due to the lack of pure bred backgrounds, 

experiments using these mice are also associated with interpretational complications 

(Gerlai, 2001). In our case a conventional pharmacological approach would provide a more 

feasible way to complement our studies and consolidate that the behavioural phenotype is a 

result of GPR84 deletion. Moreover, a selective agonist or antagonist would permit further 

in vitro and in vivo studies that directly examine the contribution of GPR84 to pain 

pathways.  

 

It is worth noting that no other developmental or behavioural abnormalities were observed 

in GPR84 KO mice, which exhibited normal acute pain thresholds and locomotor ability. 

However, this does not exclude the possibility of other undetected abnormalities, especially 

since WT littermates alone are not necessarily adequate controls due to the potential 

genetic background effects. Therefore, our experimental findings could possess greater 

credibility with additional non-littermate WT control groups. Furthermore, throughout this 

thesis sham-operated or saline-treated mice have served as experimental control groups. 

Although these groups serve as adequate controls for experimental variability introduced by 

surgery, general anaesthetic and handling, the potential effects of sham surgery or 

intrathecal saline administration on experimental results are not accounted for. Hence 

additional WT and KO naïve control groups should be considered in future experiments. 

Although this means that more animals are required, this is ethically justified with regards 

to the importance of good experimental design and the capability to adequately test an 

experimental hypothesis. 

 

Poorly designed studies and a failure to report methods and results appropriately is 

damaging to the efforts of researchers and the scientific community (Rice et al., 2013). The 

Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines, developed by the 
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National Centre for the Replacement, Refinement and Reduction of Animals in Research 

(NC3Rs), advocate that published research should provide all necessary information to 

enable other researchers to critically evaluate and utilise the work. These guidelines have 

steadily been adopted by an increasing number of journals and institutions and it has been 

shown that adherence to these reporting standards reduces bias and enforces better 

experimental design. This will not only improve confidence in pre-clinical research but will 

also increase the likelihood of developing effective therapies upon translation to humans 

(Rice et al., 2013).  

 

In light of these guidelines, a number of factors related to the work in this thesis should be 

considered. Firstly, as stated in the methods sections, age and sex-matched animals were 

allocated to experimental groups via the process of random selection. According to the 

ARRIVE guidelines this method does not provide adequate randomisation as manually 

selecting animals can introduce experimental bias; however, in our case this was necessary 

due to the limitations of an in-house transgenic colony. Even so, software-generated 

allocation would provide a preferable method of randomisation that we could adopt in 

future studies (Macleod et al., 2009). Another potentially impeding factor was the use of 

mixed sex animals, which introduces a number of variables such as hormonally driven 

differences in pain behaviours. Furthermore, the use of young and genetically identical mice 

is hardly a representation of the complex human chronic pain condition that is known to 

mainly affect women and the elderly. Likewise, the nerve injury and inflammatory models 

employed do not reflect the heterogeneity of clinical presentations of pain-related 

conditions or the associated comorbidities that many patients experience. In addition, 

although the outcome measures tested bear some similarity to symptoms of allodynia and  

hyperalgesia seen in the clinic, they do not account for spontaneous pain or the overall effect 

on quality of life in these patients (Andrews et al., 2012). Therefore, we could consider using 

elderly female mice and objective assays of innate behaviour such as spontaneous 

burrowing tests, alongside the conventional reflex based tests. We could also adopt 

alternative animal models that are more representative of the human condition in our 

studies.  

 

Allocation concealment was strictly carried out in every experiment reported in this thesis 

by assigning each mouse an individual identification number. However, it must be noted 

that although the genotype and treatment group of each mouse was blinded, in some cases 

the treatment group was visibly evident during testing due to hind paw swelling, limping or 

licking behaviours. Importantly, there were no visually obvious phenotypic differences 

between GPR84 WT and KO mice and so the genotype of the animals always remained 
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unknown until blinding was broken at the end of the experiment. In the same way as the 

behavioural studies, immunohistochemical assessment was carried out blind to treatment 

and genotype. However, the analysis could be improved by implementing more objective 

criteria to determine cell positivity such as a particular IR threshold, in addition to our prior 

requirement that a cell must be co-stained with a nuclear marker. 

 

Within the limited literature available, it is apparent that GPR84 is emerging as a 

functionally important receptor in fatty acid metabolism and immunoregulation, with some 

implications in metabolic diseases. Obesity and type 2 diabetes are associated with elevated 

levels of plasma FFAs, which can cause an accumulation of lipids and insulin resistance in 

pancreatic β-cells. Chronic exposure to FFAs may impair insulin secretion and contribute to 

hyper/hypoinsulinemia, which are characteristic of type 2 diabetes (Haber et al., 2003). 

Thus FFA-sensitive GPCRs are of particular interest in the development of therapeutic 

treatments against diabetes and other related disorders. In the past decade an increasing 

number of GPCRs have been deorphanised, leading to the identification of a number of FFA-

sensitive receptors such as GPR40/FFAR1, GPR41/FFAR3, GPR42 (functional polymorph of 

GPR41), GPR43/FFAR2, GPR84, GPR119 and GPR120 (Ichimura et al., 2009), which respond 

to FFAs of particular chain lengths, as previously discussed (Chapter 4). Obesity and type 2 

diabetes are usually accompanied by chronic low-grade metabolic inflammation that is 

related to immunological changes occurring in adipose tissue, liver, brain, islets and 

vasculature tissues in addition to changes in circulating leukocytes and their 

cytokine/chemokine profiles (Donath and Shoelson, 2011; Gregor and Hotamisligil, 2011).  

 

The contribution of macrophages to low-grade metabolic inflammation is of particular 

interest as they are the most abundant leukocyte population in the periphery and the key 

effector cells in inflammation-mediated insulin resistance. Macrophages have also been 

implicated in a number of other human diseases including RA, cancer, IBS, MS and psoriasis 

(Wynn et al., 2013). Macrophages express multiple GPCRs that contribute to immunological 

and inflammatory processes, including the newly identified GPR84, which has received 

substantial interest with regards to its immunoregulatory role in obesity and diabetes. 

Recruitment of inflammatory macrophages to adipose tissues and the consequential release 

of immune mediators is believed to promote inflammation and reduce insulin sensitivity in 

localised cells. Thus highlighting a link between the immune system and the incidence of 

adiposity and diabetes. In mice subjected to a high fat diet, GPR84 mRNA was up-regulated 

in fat pad tissues as a result of TNF-α release from invading macrophages, indicating that 

GPR84 may be directly involved in exacerbating the inflammatory changes occurring to 

adipocytes (Nagasaki et al., 2012). GPR40 has also been associated with impaired glucose 
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homeostasis and is highly expressed in pancreatic β-cells, where it plays a role in FFA 

mediated augmentation of insulin secretion (Talukdar et al., 2011). Interestingly, 

supraspinal GPR40 signalling has been implicated in pain; in the formalin model, 

intracerebroventricular injection of a selective GPR40 agonist (GW9508) attenuated pain 

behaviours, indicating an endogenous anti-nociceptive role of this receptor (Nakamoto et 

al., 2012). So far, GPR40 is the latest FFA-sensing GPCR that has been linked to nociceptive 

signalling. 

 

Painful diabetic neuropathy is one of the most prevalent complications in diabetes. Given 

the contribution of GPR84 signalling in chronic pain mechanisms and insulin resistance in 

inflamed adipocytes, it would be interesting to examine the involvement of GPR84 in 

diabetes. One of the most characterised models of painful diabetic neuropathy is the STZ-

induced neuropathy model in Psammomys obesus (Fat Sand rats), which show persistent 

mechanical, but not thermal, hyperalgesia starting at 2 weeks post STZ injection (Wuarin-

Bierman et al., 1987; Malcangio and Tomlinson, 1998). It would thus be informative to 

characterise pain responses and investigate the progression of obesity-induced adipocyte 

inflammation and insulin resistance in GPR84 transgenics. As previously discussed, the use 

of clinically relevant models such as the STZ-induced neuropathy model is an important step 

towards improving translational pain research. In addition, such approaches may reveal a 

critical role for GPR84 in low-grade metabolic diseases associated with chronic pain 

pathology. These metabolic diseases pose an increasing problem in the clinic, with the 

prevalence of obesity continuing to rise at alarming rates. However, encouragingly 

therapeutic interventions that inhibit inflammatory pathways in obesity by targeting the 

immune system are found to be effective and reduce the incidence of insulin sensitivity.  

 

In conclusion, the development of effective analgesics for chronic pain states remains a 

major challenge. However, our comprehension of the underlying mechanisms that 

contribute to pain pathophysiology has improved substantially. We now appreciate that the 

immune system is an important player in chronic pain and many related diseases. 

Therefore, the identification of novel immune cell targets like GPR84 holds a promising 

future for the development of superior therapies and enhanced patient care. 
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Appendix Table 1: Raw CT values of genes screened in the sciatic nerve of GPR84 WT 
sham and PNL operated mice 7 days post surgery 

  

Table 1

Gene 1 2 3 4 1 2 3 4

Allograft inflammatory factors -1 (Iba1; AIF) 29.5 29.8 29.7 28.5 27.7 28.7 27.6 27.4

Amphiregulin (AREG) ND ND 37.6 ND ND 34.6 32.9 33.8

Arginase 1 (ARG1) 26.9 27.2 28.9 30.1 25.9 26.7 26.1 26.5

Artemin (ARTN) 30.0 31.8 31.3 31.0 29.1 30.8 28.5 29.1

Brain-derived neurotrophic factor (BDNF) 33.8 31.8 33.1 31.2 30.5 31.2 29.0 29.5

Betacellulin (BTC) 28.6 28.9 29.8 28.6 27.0 28.4 26.5 28.1

Chemokine (C-C motif) ligand 1 (CCL1) ND 34.2 35.8 34.1 ND 35.7 ND 34.0

Chemokine (C-C motif) ligand 11 (CCL11) 22.2 22.2 22.2 22.0 23.7 25.1 23.7 24.5

Chemokine (C-C motif) ligand 17 (CCL17) 31.8 33.0 34.6 31.0 ND 33.8 34.0 33.2

Chemokine (C-C motif) ligand 19 (CCL19) 28.0 27.5 28.2 27.3 29.5 30.1 28.7 29.1

Chemokine (C-C motif) ligand 2 (CCL2) 27.5 27.3 27.7 26.6 26.8 27.8 25.8 27.2

Chemokine (C-C motif) ligand 20 (CCL20) ND ND ND ND ND ND ND ND

Chemokine (C-C motif) ligand 21a,b 

(CCL21a,b) 21.8 21.8 23.3 21.5 25.0 25.0 23.9 23.1

Chemokine (C-C motif) ligand 22 (CCL22) 30.8 31.0 30.5 29.2 28.7 29.7 28.9 28.6

Chemokine (C-C motif) ligand 24 (CCL24) 27.9 28.5 28.8 27.2 30.1 30.6 30.9 30.6

Chemokine (C-C motif) ligand 25 (CCL25) 28.5 27.7 27.9 27.8 28.5 29.8 29.7 29.4

Chemokine (C-C motif) ligand 27a,b 

(CCL27a,b) 25.3 24.8 25.1 25.0 26.9 27.4 27.3 27.2

Chemokine (C-C motif) ligand 3 (CCL3) 33.0 34.0 33.9 32.9 30.5 31.2 30.7 30.2

Chemokine (C-C motif) ligand 4 (CCL4) 31.8 31.6 31.5 31.4 28.6 29.9 29.0 28.6

Chemokine (C-C motif) ligand 5 (CCL5) 30.7 29.5 30.0 28.7 27.3 28.4 27.8 27.4

Chemokine (C-C motif) ligand 6 (CCL6) 21.9 22.7 22.6 20.3 20.8 21.3 21.5 21.0

Chemokine (C-C motif) ligand 7 (CCL7) 27.5 27.0 27.3 26.3 26.6 28.6 25.2 27.0

Chemokine (C-C motif) ligand 8 (CCL8) 28.5 26.3 27.8 22.6 23.9 24.0 24.0 23.9

Chemokine (C-C motif) ligand 9 (CCL9) 23.9 25.5 25.0 22.9 23.7 24.1 24.3 24.0

T-cell surface glycoprotein CD3 delta chain 

(CD3D) 36.8 36.0 33.9 33.9 33.1 ND 34.7 31.8

Colony stimulating  factor 1 (macrophage) 

(CSF1) 24.6 24.6 25.0 24.2 25.6 26.5 25.6 25.9

Colony stimulating  factor 2 (granulocyte-

macrophage) (CSF2) ND 33.5 35.2 32.4 ND ND 34.0 33.3

Colony stimulating  factor 3 (granulocyte) 

(CSF3) ND 31.3 35.0 31.8 32.7 33.3 30.2 33.6

Colony stimulating  factor 3 (granulocyte) 

receptor (CSF3R) 29.3 29.4 29.8 27.7 26.6 27.4 26.8 26.5

Chemokine (CX3-C motif) ligand 1 (CX3CL1) 27.1 26.7 26.9 26.2 26.3 27.6 26.6 26.7

Chemokine (C-X-C motif) ligand 1 (CXCL1) 29.9 28.0 30.5 27.7 30.0 32.6 29.4 29.5

Chemokine (C-X-C motif) ligand 10 (CXCL10) 28.7 28.5 29.2 27.5 27.3 29.0 28.9 27.5

Chemokine (C-X-C motif) ligand 11 (CXCL11) 28.1 28.0 27.9 27.8 30.9 30.5 32.7 31.4

Chemokine (C-X-C motif) ligand 12 (CXCL12) 28.6 28.7 29.6 28.8 27.5 29.2 28.4 27.5

Chemokine (C-X-C motif) ligand 13 (CXCL13) 24.6 25.1 25.6 23.5 28.3 28.2 29.2 29.3

Chemokine (C-X-C motif) ligand 14 (CXCL14) 23.7 24.7 24.3 23.9 23.9 24.2 24.3 24.8

Chemokine (C-X-C motif) ligand 16 (CXCL16) 26.9 26.5 27.0 25.7 24.6 25.3 24.5 23.9

Chemokine (C-X-C motif) ligand 17 (CXCL17) 32.5 32.6 32.6 31.7 ND 33.5 ND 32.5

Chemokine (C-X-C motif) ligand 2 (CXCL2) 32.6 32.2 33.6 30.9 28.0 29.3 28.0 28.9

Chemokine (C-X-C motif) ligand 3 (CXCL3) ND ND ND ND 29.8 32.3 29.8 31.0

Chemokine (C-X-C motif) ligand 5 (CXCL5) 34.5 32.4 ND 33.3 26.2 28.3 24.9 25.8

Chemokine (C-X-C motif) ligand 9 (CXCL9) 29.5 29.2 30.3 28.9 28.0 28.2 29.0 27.7

Chemokine (C-X-C motif) receptor 3 (CXCR3) 29.0 30.1 30.5 28.8 29.3 29.7 30.1 28.1

Epstein-Barr virus induced gene 3 (EBI3) 29.6 29.8 29.5 28.3 28.8 29.3 29.6 29.1

Epiregulin (EREG) ND 33.5 ND ND 33.1 31.9 29.5 32.0

Fibroblast growth factor 7 (keratinocyte 

growth factor; FGF7) 24.7 24.7 24.6 24.9 26.3 27.8 27.0 27.0

G-protein receptor 84 (GPR84) ND ND ND 34.6 31.2 31.7 31.4 33.7

Heparin-binding EGF-like growth factor 

(HBEGF) 25.0 24.2 24.4 24.5 26.5 27.0 26.5 27.1

Interleukin 10 (IL10) 34.1 35.9 34.3 31.3 32.9 33.5 32.8 32.3

Interleukin 11 (IL11) 32.0 31.1 31.5 31.3 32.1 32.5 31.1 32.0

WT Sciatic nerve 7 days post  SHAM WT Sciatic nerve 7 days post PNL
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Table 1

Gene 1 2 3 4 1 2 3 4

Interleukin 12 alpha (IL12a) 31.7 30.8 30.5 31.4 33.9 32.2 33.5 33.3

Interleukin 12 beta (IL12b) ND 34.9 ND 35.5 33.5 ND 33.2 32.5

Interleukin 13 (IL13) 33.4 34.0 ND 36.6 ND ND ND 34.3

Interleukin 15 (IL15) 27.2 27.1 27.5 26.8 27.9 28.9 28.4 27.9

Interleukin 16 (IL16) 22.4 21.8 22.1 22.3 24.1 24.9 25.3 24.7

Interleukin 17 alpha (IL17a) ND 35.7 ND ND ND ND ND ND

Interleukin 18 (IL18) 28.1 27.9 28.6 27.0 28.1 29.5 29.3 28.3

Interleukin 19 (IL19) 34.1 ND 34.5 ND 34.5 ND ND ND

Interleukin 1 alpha (IL1a) ND ND ND 35.3 31.3 31.1 31.1 31.1

Interleukin 1 beta (IL1b) 31.8 30.2 32.9 29.2 26.5 28.3 26.1 26.9

Interleukin 2 (IL2) 37.6 ND ND ND ND ND ND ND

Interleukin 20 (IL20) ND ND ND ND ND ND ND ND

Interleukin 21 (IL21) 35.8 34.6 34.7 ND 33.9 ND ND ND

Interleukin 22 (IL22) ND ND ND ND ND ND ND ND

Interleukin 23 alpha (IL23a) 30.1 29.7 30.4 30.9 32.0 32.9 32.1 32.6

Interleukin 24 (IL24) ND ND ND ND ND ND ND ND

Interleukin 25 (IL25) 32.1 32.7 31.2 34.8 37.9 ND 33.6 33.6

Interleukin 27 (IL27) 32.7 ND 34.5 32.6 32.9 34.2 32.3 33.8

Interleukin 28 beta (IL28b) ND ND ND ND ND ND ND ND

Interleukin 3 (IL3) ND ND ND ND 34.6 ND ND ND

Interleukin 31 (IL31) ND ND ND ND ND ND ND ND

Interleukin 33 (IL33) 23.1 23.0 23.0 23.0 24.6 25.1 24.7 24.5

Interleukin 34 (IL34) 29.0 28.3 28.7 28.8 30.5 30.9 32.3 31.8

Interleukin 4 (IL4) ND ND ND ND ND ND ND ND

Interleukin 5 (IL5) 32.3 34.3 34.5 33.0 ND 33.2 34.5 32.9

Interleukin 6 (IL6) 32.6 30.0 32.5 30.5 31.1 34.2 28.2 30.8

Interleukin 7 (IL7) 30.5 30.1 31.3 29.6 31.2 33.0 30.7 31.0

Interleukin 9 (IL9) ND ND ND ND ND ND ND ND

Integrin alpha M (ITGAM); (CD11B) 25.3 25.8 26.0 24.0 23.3 24.1 23.6 23.4

Mannose receptor, C type 1 (MRC1) 23.9 24.0 24.1 22.4 23.4 23.9 23.4 23.5

Nerve growth factor (NGF) 26.9 26.4 27.5 26.2 26.8 28.4 26.5 27.1

Nitric oxide synthase, inducible (NOS2) 30.6 30.7 29.7 29.9 28.2 29.3 28.7 29.2

Neuregulin 1 (NRG1) 29.5 29.1 29.4 29.0 29.3 31.2 28.8 29.1

Platelet factor 4 (PF4; CXCL4) 24.4 24.7 24.6 23.1 22.6 24.3 23.1 23.2

Pro-platelet basic protein (chemokine (C-X-C 

motif) ligand 7 27.0 29.1 27.2 25.3 28.0 29.3 28.2 29.1

Prostaglandin E synthase (PTGES) 26.0 25.4 25.9 25.3 26.3 27.8 26.8 26.7

Prostaglandin-endoperoxide synthase 2     

(COX-2; PTGS2) 32.4 29.8 33.0 29.9 31.2 32.1 29.6 30.9

 Signal Transducer and Activator of 

Transcription protein 4 (STAT4) 29.6 29.7 29.7 30.1 30.1 30.5 29.6 29.9

Toll-like receptor 4 (TLR4) 25.5 25.7 25.7 24.9 25.7 26.7 25.8 25.8

Tumor necrosis factor (TNF) 30.8 30.6 31.6 30.2 28.2 29.2 28.7 28.1

Alpha-taxilin (TXLNA) 24.8 24.4 24.6 24.5 25.0 25.8 24.7 25.0

Chemokine (C motif) ligand 1 (XCL1) 35.8 ND 36.2 35.9 32.8 35.3 ND 32.9

Housekeeping genes

Beta-actin (ACTB) 18.7 18.4 18.7 18.3 18.6 19.4 18.7 18.8

Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) 20.0 19.5 18.8 19.1 20.9 19.9 21.0 20.7

Hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) 25.3 25.5 25.4 25.1 25.6 26.9 25.9 25.5

18s (X18S) 13.4 13.3 13.3 13.2 13.1 13.3 13.1 13.2

WT Sciatic nerve 7 days post  SHAM WT Sciatic nerve 7 days post PNL
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Appendix Table 2: Raw CT values of genes screened in the sciatic nerve of GPR84 KO 
sham and PNL operated mice 7 days post surgery 

 

Table 2

Gene 1 2 3 4 1 2 3 4

Allograft inflammatory factors -1 (Iba1; AIF) 29.2 29.4 30.1 30.0 28.0 25.5 27.2 27.2

Amphiregulin (AREG) ND ND ND ND ND ND ND ND

Arginase 1 (ARG1) 29.5 29.9 32.0 29.9 26.7 25.4 25.9 27.9

Artemin (ARTN) 30.5 32.4 30.6 31.7 29.9 29.5 31.6 31.0

Brain-derived neurotrophic factor (BDNF) 33.1 33.0 32.6 33.1 30.3 30.4 30.5 31.4

Betacellulin (BTC) 29.0 29.6 29.2 28.8 26.4 28.0 30.5 29.6

Chemokine (C-C motif) ligand 1 (CCL1) ND ND ND ND ND 35.3 33.7 34.9

Chemokine (C-C motif) ligand 11 (CCL11) 21.7 21.6 22.3 21.8 23.6 24.4 24.2 25.4

Chemokine (C-C motif) ligand 17 (CCL17) 34.5 32.9 32.7 33.9 35.4 33.5 32.4 31.4

Chemokine (C-C motif) ligand 19 (CCL19) 27.5 28.1 27.8 27.3 29.1 30.0 28.2 29.3

Chemokine (C-C motif) ligand 2 (CCL2) 28.1 28.0 28.3 28.5 27.1 24.9 26.6 27.1

Chemokine (C-C motif) ligand 20 (CCL20) ND ND ND ND ND ND ND 35.5

Chemokine (C-C motif) ligand 21a,b 

(CCL21a,b) 21.3 22.7 22.5 23.0 23.6 24.9 22.8 23.7

Chemokine (C-C motif) ligand 22 (CCL22) 29.8 30.1 30.4 30.8 31.1 27.6 28.4 28.3

Chemokine (C-C motif) ligand 24 (CCL24) 28.4 28.1 29.0 28.4 31.1 29.4 30.3 29.7

Chemokine (C-C motif) ligand 25 (CCL25) 27.4 28.0 28.1 27.6 28.7 28.7 29.7 29.1

Chemokine (C-C motif) ligand 27a,b 

(CCL27a,b) 24.8 24.9 25.1 24.9 27.2 27.1 27.4 26.8

Chemokine (C-C motif) ligand 3 (CCL3) 33.3 33.5 34.6 33.8 30.6 28.3 29.8 29.8

Chemokine (C-C motif) ligand 4 (CCL4) 31.7 32.5 33.0 32.2 29.1 26.4 27.6 28.2

Chemokine (C-C motif) ligand 5 (CCL5) 29.4 29.5 29.9 29.9 29.0 26.1 27.3 27.4

Chemokine (C-C motif) ligand 6 (CCL6) 21.9 22.2 22.2 22.5 21.9 19.6 20.6 21.1

Chemokine (C-C motif) ligand 7 (CCL7) 28.4 28.2 28.9 28.8 27.6 24.2 26.2 26.6

Chemokine (C-C motif) ligand 8 (CCL8) 27.3 27.6 28.1 27.3 25.2 21.5 23.7 24.2

Chemokine (C-C motif) ligand 9 (CCL9) 24.4 25.0 25.2 25.2 24.6 22.1 23.6 23.4

T-cell surface glycoprotein CD3 delta chain 

(CD3D) 34.4 33.8 34.6 33.7 33.6 30.5 32.4 31.9

Colony stimulating  factor 1 (macrophage) 

(CSF1) 24.3 24.7 24.8 24.6 26.4 25.3 26.1 26.3

Colony stimulating  factor 2 (granulocyte-

macrophage) (CSF2) 34.9 33.9 ND ND 34.9 33.0 ND 33.6

Colony stimulating  factor 3 (granulocyte) 

(CSF3) 34.6 ND 35.2 ND ND 34.2 32.7 32.9

Colony stimulating  factor 3 (granulocyte) 

receptor (CSF3R) 29.1 29.8 29.2 29.4 26.9 25.2 26.0 26.4

Chemokine (CX3-C motif) ligand 1 (CX3CL1) 26.5 26.9 27.1 27.1 28.0 27.1 26.9 28.2

Chemokine (C-X-C motif) ligand 1 (CXCL1) 30.3 29.3 30.4 30.0 29.9 27.9 29.6 30.7

Chemokine (C-X-C motif) ligand 10 (CXCL10) 28.1 29.1 29.4 29.0 28.3 24.9 26.9 27.5

Chemokine (C-X-C motif) ligand 11 (CXCL11) 27.3 27.3 27.7 27.4 29.9 31.0 30.7 33.1

Chemokine (C-X-C motif) ligand 12 (CXCL12) 28.3 28.6 29.0 28.9 29.7 27.8 28.8 28.2

Chemokine (C-X-C motif) ligand 13 (CXCL13) 24.3 25.2 24.6 24.3 27.5 30.1 29.3 30.7

Chemokine (C-X-C motif) ligand 14 (CXCL14) 24.0 25.4 24.6 25.5 24.2 24.5 23.9 25.4

Chemokine (C-X-C motif) ligand 16 (CXCL16) 26.1 26.7 26.7 26.8 25.1 23.4 24.1 24.3

Chemokine (C-X-C motif) ligand 17 (CXCL17) 31.2 33.4 33.3 31.9 32.9 33.9 33.8 35.2

Chemokine (C-X-C motif) ligand 2 (CXCL2) 34.3 32.1 32.8 32.9 28.6 26.8 27.8 27.8

Chemokine (C-X-C motif) ligand 3 (CXCL3) ND ND ND 34.4 31.9 29.3 29.4 29.8

Chemokine (C-X-C motif) ligand 5 (CXCL5) ND 34.0 34.5 33.8 28.2 24.1 24.9 25.9

Chemokine (C-X-C motif) ligand 9 (CXCL9) 29.7 30.8 30.2 30.5 29.5 25.9 27.1 27.5

Chemokine (C-X-C motif) receptor 3 (CXCR3) 29.7 30.1 30.0 29.8 30.1 27.5 28.5 28.9

Epstein-Barr virus induced gene 3 (EBI3) 29.2 29.2 29.2 29.1 31.1 28.3 29.3 29.5

Epiregulin (EREG) 33.9 ND ND 33.8 32.4 30.0 30.5 33.1

Fibroblast growth factor 7 (keratinocyte 

growth factor; FGF7) 24.3 24.2 24.7 24.5 26.2 26.4 27.0 28.0

G-protein receptor 84 (GPR84) ND ND ND ND ND ND ND ND

Heparin-binding EGF-like growth factor 

(HBEGF) 24.3 24.3 24.5 24.4 26.8 26.5 27.7 28.6

Interleukin 10 (IL10) 34.1 32.9 33.1 34.1 34.0 29.4 31.7 31.6

Interleukin 11 (IL11) 31.2 31.1 31.8 32.0 32.7 32.1 33.1 33.1

KO Sciatic nerve 7 days post  SHAM KO Sciatic nerve 7 days post PNL
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Table 2

Gene 1 2 3 4 1 2 3 4

Interleukin 12 alpha (IL12a) 31.5 30.5 31.6 30.6 35.7 32.4 33.8 30.8

Interleukin 12 beta (IL12b) ND ND 34.8 35.0 33.0 31.6 33.2 31.1

Interleukin 13 (IL13) ND ND ND ND ND ND 34.9 ND

Interleukin 15 (IL15) 26.2 26.9 27.7 27.3 28.3 27.2 28.3 28.3

Interleukin 16 (IL16) 21.6 21.3 22.1 21.7 24.4 24.3 24.8 25.9

Interleukin 17 alpha (IL17a) 36.9 ND ND ND ND ND ND ND

Interleukin 18 (IL18) 27.8 28.2 28.7 28.3 28.5 26.8 28.5 28.8

Interleukin 19 (IL19) 36.6 ND ND 34.7 12.4 34.8 ND ND

Interleukin 1 alpha (IL1a) ND ND ND 35.1 30.7 30.2 32.0 32.0

Interleukin 1 beta (IL1b) 31.6 30.8 32.2 31.9 27.2 24.5 25.8 26.1

Interleukin 2 (IL2) 34.8 35.5 34.8 ND 35.0 33.9 ND ND

Interleukin 20 (IL20) 32.8 35.4 ND ND ND ND ND 35.6

Interleukin 21 (IL21) 37.0 34.6 ND ND ND ND ND 35.4

Interleukin 22 (IL22) ND ND ND ND ND ND ND ND

Interleukin 23 alpha (IL23a) 30.4 29.5 30.5 30.3 32.7 31.4 32.0 ND

Interleukin 24 (IL24) ND ND ND 35.0 ND ND ND ND

Interleukin 25 (IL25) 30.6 32.2 33.7 32.3 32.7 33.2 ND 34.4

Interleukin 27 (IL27) 32.8 34.5 ND 32.3 33.3 30.7 31.9 32.6

Interleukin 28 beta (IL28b) ND ND ND ND ND ND ND ND

Interleukin 3 (IL3) 38.0 ND ND ND ND ND ND ND

Interleukin 31 (IL31) ND ND ND ND ND ND ND ND

Interleukin 33 (IL33) 22.7 23.1 23.1 23.0 24.7 25.5 24.0 25.7

Interleukin 34 (IL34) 28.6 28.1 29.0 28.0 30.0 31.4 32.9 34.0

Interleukin 4 (IL4) ND ND ND ND ND ND ND ND

Interleukin 5 (IL5) 33.2 33.3 34.0 33.4 ND ND ND ND

Interleukin 6 (IL6) 33.4 34.6 34.4 34.3 32.4 28.4 30.4 32.0

Interleukin 7 (IL7) 29.5 30.3 30.9 30.3 31.8 30.5 32.2 31.4

Interleukin 9 (IL9) ND ND ND ND ND ND ND ND

Integrin alpha M (ITGAM); (CD11B) 25.4 25.5 25.5 25.8 24.4 22.3 23.3 23.5

Mannose receptor, C type 1 (MRC1) 23.8 24.0 24.2 24.0 24.5 21.9 23.5 23.8

Nerve growth factor (NGF) 27.3 27.3 27.7 27.9 28.2 27.5 28.0 28.2

Nitric oxide synthase, inducible (NOS2) 30.4 30.2 31.2 30.6 30.3 27.4 28.4 28.8

Neuregulin 1 (NRG1) 29.5 28.7 29.4 29.6 29.6 28.3 30.2 29.6

Platelet factor 4 (PF4; CXCL4) 24.0 24.4 24.7 24.3 24.4 21.4 22.7 23.3

Pro-platelet basic protein (chemokine (C-X-C 

motif) ligand 7 27.9 29.1 28.9 25.2 27.8 26.7 27.9 28.8

Prostaglandin E synthase (PTGES) 25.4 25.8 26.0 25.6 27.2 26.6 27.6 27.8

Prostaglandin-endoperoxide synthase 2               

(COX-2; PTGS2) 30.6 30.2 32.1 32.3 31.5 29.4 30.9 30.8

 Signal Transducer and Activator of 

Transcription protein 4 (STAT4) 29.5 29.3 30.1 29.7 30.4 27.8 29.2 29.5

Toll-like receptor 4 (TLR4) 25.4 25.8 25.6 25.4 25.7 24.3 25.8 26.1

Tumor necrosis factor (TNF) 30.2 31.3 31.5 32.2 28.7 26.7 27.8 27.2

Alpha-taxilin (TXLNA) 24.1 24.1 24.6 24.3 25.6 24.6 25.9 25.8

Chemokine (C motif) ligand 1 (XCL1) 35.8 34.7 35.4 ND 33.7 30.3 32.3 32.3

Housekeeping genes

Beta-actin (ACTB) 18.5 18.3 18.7 18.7 20.1 18.5 19.1 19.5

Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) 19.4 19.5 19.9 19.8 21.3 20.0 20.9 18.9

Hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) 25.0 25.2 25.4 25.1 25.5 24.8 26.0 26.1

18s (X18S) 13.2 13.1 13.3 13.1 13.3 13.3 13.5 13.3

KO Sciatic nerve 7 days post  SHAM KO Sciatic nerve 7 days post PNL
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Appendix Table 3: Raw CT values of genes screened in the spinal cord of GPR84 WT 
sham and PNL operated mice 7 days post surgery 

 

 

Table 3

Gene 1 2 3 4 1 2 3 4

Allograft inflammatory factors -1 (Iba1; AIF) 28.5 26.9 27.2 26.9 26.8 27.6 27.6 28.0

Amphiregulin (AREG) ND ND 33.9 ND 34.0 34.9 ND ND

Arginase 1 (ARG1) 32.9 31.3 32.1 30.7 31.8 31.9 32.3 33.0

Artemin (ARTN) 30.9 29.9 30.9 29.6 30.1 30.4 30.8 30.5

Brain-derived neurotrophic factor (BDNF) 27.6 27.4 27.7 27.0 27.3 27.1 28.0 27.6

Betacellulin (BTC) 29.3 28.4 28.0 27.3 27.7 29.0 28.9 29.1

Chemokine (C-C motif) ligand 1 (CCL1) ND ND ND ND ND ND ND ND

Chemokine (C-C motif) ligand 11 (CCL11) 27.3 26.4 25.8 26.1 25.6 25.4 27.7 27.7

Chemokine (C-C motif) ligand 17 (CCL17) ND 32.6 35.3 ND 34.0 ND ND 36.7

Chemokine (C-C motif) ligand 19 (CCL19) 28.1 25.5 26.0 26.3 26.2 27.6 27.7 27.9

Chemokine (C-C motif) ligand 2 (CCL2) 31.3 30.6 31.6 30.0 27.5 29.0 29.5 30.3

Chemokine (C-C motif) ligand 20 (CCL20) ND ND ND ND ND ND ND ND

Chemokine (C-C motif) ligand 21a,b 

(CCL21a,b) 26.0 24.7 24.1 25.4 24.6 24.5 25.7 26.0

Chemokine (C-C motif) ligand 22 (CCL22) 30.6 30.2 29.3 29.2 29.4 30.7 30.6 30.5

Chemokine (C-C motif) ligand 24 (CCL24) 31.3 31.0 31.6 31.0 31.7 31.5 31.9 32.4

Chemokine (C-C motif) ligand 25 (CCL25) 26.0 25.7 25.5 25.1 25.3 25.8 26.0 26.0

Chemokine (C-C motif) ligand 27a,b 

(CCL27a,b) 23.2 22.8 22.9 22.3 22.7 23.1 23.5 23.3

Chemokine (C-C motif) ligand 3 (CCL3) 34.6 32.6 32.3 32.8 32.7 33.7 33.6 34.1

Chemokine (C-C motif) ligand 4 (CCL4) 32.8 31.0 30.5 29.9 30.8 31.4 31.4 32.8

Chemokine (C-C motif) ligand 5 (CCL5) 30.6 28.6 29.4 28.8 28.3 29.2 29.9 30.7

Chemokine (C-C motif) ligand 6 (CCL6) 25.8 24.0 24.7 24.7 24.5 23.9 25.9 26.0

Chemokine (C-C motif) ligand 7 (CCL7) 32.2 30.9 30.9 29.8 26.4 27.1 27.8 27.6

Chemokine (C-C motif) ligand 8 (CCL8) 32.6 29.8 32.8 30.7 30.2 31.2 31.3 33.0

Chemokine (C-C motif) ligand 9 (CCL9) 27.2 25.9 26.3 26.3 25.9 25.7 26.4 27.1

T-cell surface glycoprotein CD3 delta chain 

(CD3D) 33.7 31.7 33.3 33.2 32.4 33.3 ND 33.9

Colony stimulating  factor 1 (macrophage) 

(CSF1) 24.4 23.6 23.1 23.0 23.1 23.7 23.9 24.0

Colony stimulating  factor 2 (granulocyte-

macrophage) (CSF2) ND ND 35.1 35.1 ND ND ND ND

Colony stimulating  factor 3 (granulocyte) 

(CSF3) ND 35.1 ND ND 34.4 34.8 ND ND

Colony stimulating  factor 3 (granulocyte) 

receptor (CSF3R) 27.6 25.8 26.5 26.4 26.0 26.3 27.3 27.1

Chemokine (CX3-C motif) ligand 1 (CX3CL1) 21.2 20.8 20.9 20.0 20.5 21.1 21.6 21.2

Chemokine (C-X-C motif) ligand 1 (CXCL1) 33.2 30.4 31.8 31.4 31.2 32.1 33.7 34.6

Chemokine (C-X-C motif) ligand 10 (CXCL10) 31.3 30.4 28.3 29.0 28.8 29.2 29.0 29.7

Chemokine (C-X-C motif) ligand 11 (CXCL11) 31.7 30.2 29.4 29.1 29.4 29.9 31.0 32.0

Chemokine (C-X-C motif) ligand 12 (CXCL12) 31.3 30.5 30.7 30.5 30.8 30.8 31.4 31.4

Chemokine (C-X-C motif) ligand 13 (CXCL13) 33.7 29.2 31.9 33.7 30.5 29.3 32.6 31.3

Chemokine (C-X-C motif) ligand 14 (CXCL14) 22.1 21.2 21.4 21.1 21.3 21.9 22.4 22.0

Chemokine (C-X-C motif) ligand 16 (CXCL16) 27.4 25.2 26.0 25.5 25.9 26.5 26.5 27.5

Chemokine (C-X-C motif) ligand 17 (CXCL17) 35.0 32.4 32.9 32.2 32.9 33.8 33.5 35.0

Chemokine (C-X-C motif) ligand 2 (CXCL2) ND 35.2 35.4 35.9 33.5 ND ND ND

Chemokine (C-X-C motif) ligand 3 (CXCL3) ND 34.7 ND 34.5 34.6 34.7 ND 34.8

Chemokine (C-X-C motif) ligand 5 (CXCL5) 30.2 30.2 29.7 29.4 29.1 30.5 31.3 31.4

Chemokine (C-X-C motif) ligand 9 (CXCL9) 35.7 34.7 34.3 34.8 31.5 33.0 31.4 34.3

Chemokine (C-X-C motif) receptor 3 (CXCR3) 32.6 29.9 31.4 30.7 31.6 31.2 31.9 33.1

Epstein-Barr virus induced gene 3 (EBI3) 30.6 29.7 29.7 29.3 29.6 30.2 30.8 30.5

Epiregulin (EREG) ND ND ND 36.1 34.9 ND ND ND

Fibroblast growth factor 7 (keratinocyte 

growth factor; FGF7) 28.5 28.1 27.7 27.5 27.1 27.5 28.8 28.6

G-protein receptor 84 (GPR84) 31.7 29.4 29.4 29.8 27.8 28.5 29.3 30.2

Heparin-binding EGF-like growth factor 

(HBEGF) 26.0 25.5 25.3 24.2 24.9 25.5 26.0 26.1

Interleukin 10 (IL10) ND 36.4 ND ND ND 35.3 35.8 ND

Interleukin 11 (IL11) 31.8 32.0 31.5 31.0 31.7 32.5 33.0 33.3

WT Spinal cord 7 days post  SHAM WT Spinal cord 7 days post PNL
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Table 3

Gene 1 2 3 4 1 2 3 4

Interleukin 12 alpha (IL12a) 30.9 29.7 29.6 30.1 30.4 30.4 31.0 30.8

Interleukin 12 beta (IL12b) ND 34.1 32.7 33.8 34.9 34.3 34.1 ND

Interleukin 13 (IL13) ND 35.3 ND 34.1 ND ND ND ND

Interleukin 15 (IL15) 28.9 28.4 28.5 27.6 28.1 29.0 28.9 29.9

Interleukin 16 (IL16) 25.9 24.5 24.1 24.6 24.0 24.4 26.0 26.0

Interleukin 17 alpha (IL17a) ND ND ND ND 34.3 ND ND ND

Interleukin 18 (IL18) 25.1 24.0 23.9 23.4 23.7 24.6 25.3 24.7

Interleukin 19 (IL19) 34.0 31.5 30.7 31.6 32.6 32.4 33.0 32.6

Interleukin 1 alpha (IL1a) 31.7 30.4 31.2 30.1 29.2 30.0 30.5 30.8

Interleukin 1 beta (IL1b) 30.4 31.7 31.3 30.4 28.2 28.9 31.2 32.6

Interleukin 2 (IL2) ND ND ND ND ND ND ND ND

Interleukin 20 (IL20) ND ND 34.7 36.0 ND ND ND ND

Interleukin 21 (IL21) 31.9 32.7 31.5 32.5 33.2 32.7 33.6 33.3

Interleukin 22 (IL22) ND ND ND ND ND ND ND ND

Interleukin 23 alpha (IL23a) 30.3 29.6 29.0 28.6 29.7 29.8 30.0 29.8

Interleukin 24 (IL24) ND ND ND ND 34.5 34.2 33.6 ND

Interleukin 25 (IL25) 31.8 30.9 31.4 30.8 30.0 30.2 31.7 31.7

Interleukin 27 (IL27) ND ND 33.7 33.1 32.9 34.7 34.4 ND

Interleukin 28 beta (IL28b) ND ND ND ND ND ND ND ND

Interleukin 3 (IL3) ND ND ND ND ND ND ND ND

Interleukin 31 (IL31) 35.5 ND ND ND ND ND ND ND

Interleukin 33 (IL33) 22.8 22.3 22.2 21.2 21.8 22.6 22.8 22.7

Interleukin 34 (IL34) 30.6 28.4 29.4 28.6 29.3 29.8 30.8 30.8

Interleukin 4 (IL4) ND ND ND ND ND ND ND ND

Interleukin 5 (IL5) 32.0 31.4 31.1 32.1 31.2 31.6 33.3 32.2

Interleukin 6 (IL6) 34.4 32.4 31.6 33.0 30.8 31.8 34.4 33.1

Interleukin 7 (IL7) 30.0 29.6 30.0 29.1 29.0 29.7 30.4 30.0

Interleukin 9 (IL9) ND ND ND ND ND ND ND ND

Integrin alpha M (ITGAM; CD11B) 25.2 23.6 24.3 23.9 23.4 23.2 24.2 24.3

Mannose receptor, C type 1 (MRC1) 27.4 25.1 25.9 25.3 25.9 25.8 26.6 27.3

Nerve growth factor (NGF) 29.1 27.4 27.6 26.9 27.4 27.8 28.4 28.5

Nitric oxide synthase, inducible (NOS2) 30.1 30.0 29.1 28.3 29.2 30.0 30.2 30.1

Neuregulin 1 (NRG1) 23.0 22.2 21.9 21.7 21.8 22.6 23.2 23.0

Platelet factor 4 (PF4; CXCL4) 25.5 25.6 26.0 25.4 24.0 25.1 26.4 27.6

Pro-platelet basic protein (chemokine (C-X-C 

motif) ligand 7 25.0 25.8 25.8 25.8 23.5 24.7 25.9 27.2

Prostaglandin E synthase (PTGES) 28.1 27.0 26.9 26.6 26.6 27.7 28.2 28.3

Prostaglandin-endoperoxide synthase 2      

(COX-2; PTGS2) 31.2 29.3 31.0 30.3 28.9 30.9 31.8 31.8

 Signal Transducer and Activator of 

Transcription protein 4 (STAT4) 31.7 30.5 31.9 30.2 31.2 31.2 32.1 31.5

Toll-like receptor 4 (TLR4) 28.9 26.9 27.4 27.2 27.2 27.3 28.2 28.6

Tumor necrosis factor (TNF) 31.3 30.8 31.8 32.5 29.8 30.1 31.5 31.4

Alpha-taxilin (TXLNA) 24.2 23.5 23.5 23.0 22.9 23.7 24.3 24.0

Chemokine (C motif) ligand 1 (XCL1) ND 34.0 35.4 33.6 34.6 35.3 34.3 36.0

Housekeeping genes

Beta-actin (ACTB) 18.4 17.7 17.6 17.2 17.3 17.9 18.4 18.3

Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) 17.4 17.0 16.9 16.6 16.7 17.2 17.7 17.5

Hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) 23.2 22.5 22.4 21.8 22.1 22.9 23.4 23.2

18s (X18S) 13.3 13.2 13.2 13.2 13.1 13.2 13.3 13.2

WT Spinal cord 7 days post  SHAM WT Spinal cord 7 days post PNL
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Appendix Table 4: Raw CT values of genes screened in the spinal cord tissue of GPR84 
KO sham and PNL operated mice 7 days post surgery 

 

 

Table 4

Gene 1 2 3 4 1 2 3 4

Allograft inflammatory factors -1 (Iba1; AIF) 27.8 27.9 27.8 28.0 27.7 27.8 27.5 27.2

Amphiregulin (AREG) ND 34.9 34.4 ND ND ND 34.8 ND

Arginase 1 (ARG1) 33.3 31.9 32.6 32.2 33.2 32.6 32.5 32.0

Artemin (ARTN) 31.1 31.1 30.6 30.0 31.4 31.1 30.8 31.0

Brain-derived neurotrophic factor (BDNF) 27.3 28.0 27.8 27.2 28.2 28.2 27.7 28.0

Betacellulin (BTC) 29.1 28.5 28.6 29.2 29.1 28.6 28.2 28.7

Chemokine (C-C motif) ligand 1 (CCL1) ND ND ND ND ND ND 35.8 ND

Chemokine (C-C motif) ligand 11 (CCL11) 26.9 25.8 26.1 26.9 27.4 27.5 27.7 27.4

Chemokine (C-C motif) ligand 17 (CCL17) 35.2 35.6 35.6 ND 36.0 35.7 35.9 35.9

Chemokine (C-C motif) ligand 19 (CCL19) 26.7 27.7 26.3 27.0 28.0 27.7 27.9 27.5

Chemokine (C-C motif) ligand 2 (CCL2) 31.4 32.8 31.2 31.6 29.1 29.9 30.1 29.2

Chemokine (C-C motif) ligand 20 (CCL20) ND 35.2 ND ND ND ND ND ND

Chemokine (C-C motif) ligand 21a,b 

(CCL21a,b) 25.6 26.3 25.0 24.9 25.0 24.6 24.6 24.7

Chemokine (C-C motif) ligand 22 (CCL22) 29.8 30.7 30.2 29.8 30.9 31.7 30.4 30.4

Chemokine (C-C motif) ligand 24 (CCL24) 32.5 32.9 32.9 31.5 32.6 33.7 33.1 32.0

Chemokine (C-C motif) ligand 25 (CCL25) 25.4 25.8 25.7 25.6 26.5 26.2 25.8 25.9

Chemokine (C-C motif) ligand 27a,b 

(CCL27a,b) 22.8 23.2 22.9 22.8 23.5 23.4 23.0 23.0

Chemokine (C-C motif) ligand 3 (CCL3) 33.0 33.1 32.3 33.3 33.7 33.8 32.8 33.6

Chemokine (C-C motif) ligand 4 (CCL4) 32.0 31.3 31.0 31.7 31.9 31.7 30.7 31.8

Chemokine (C-C motif) ligand 5 (CCL5) 30.8 29.5 29.3 30.3 30.3 29.1 27.1 29.5

Chemokine (C-C motif) ligand 6 (CCL6) 25.3 25.1 25.2 25.6 25.9 25.3 24.6 25.5

Chemokine (C-C motif) ligand 7 (CCL7) 31.9 32.3 30.7 32.2 27.3 27.7 28.6 26.8

Chemokine (C-C motif) ligand 8 (CCL8) 34.7 32.7 31.9 32.2 32.2 31.4 30.5 30.7

Chemokine (C-C motif) ligand 9 (CCL9) 26.6 27.0 26.3 26.8 27.6 27.1 26.4 27.0

T-cell surface glycoprotein CD3 delta chain 

(CD3D) ND 33.7 34.5 34.8 34.4 33.5 32.3 34.0

Colony stimulating  factor 1 (macrophage) 

(CSF1) 23.7 24.0 23.7 24.0 24.2 24.0 23.7 23.8

Colony stimulating  factor 2 (granulocyte-

macrophage) (CSF2) ND ND ND ND ND ND ND ND

Colony stimulating  factor 3 (granulocyte) 

(CSF3) 33.9 34.1 ND ND ND 35.7 32.4 ND

Colony stimulating  factor 3 (granulocyte) 

receptor (CSF3R) 26.8 27.3 26.6 27.2 26.9 26.7 26.1 26.6

Chemokine (CX3-C motif) ligand 1 (CX3CL1) 20.7 21.2 21.0 20.6 21.5 21.3 21.0 21.1

Chemokine (C-X-C motif) ligand 1 (CXCL1) 33.9 32.4 31.6 32.4 ND 32.7 31.0 33.1

Chemokine (C-X-C motif) ligand 10 (CXCL10) 30.7 29.9 29.6 30.2 30.6 29.5 28.3 29.0

Chemokine (C-X-C motif) ligand 11 (CXCL11) 30.5 28.9 30.2 30.1 30.6 31.2 30.9 30.9

Chemokine (C-X-C motif) ligand 12 (CXCL12) 31.5 30.3 30.7 31.4 32.5 30.9 30.7 31.4

Chemokine (C-X-C motif) ligand 13 (CXCL13) 32.5 34.5 30.9 34.0 32.5 31.4 30.4 32.0

Chemokine (C-X-C motif) ligand 14 (CXCL14) 21.3 21.7 21.6 21.4 22.2 21.9 21.9 22.0

Chemokine (C-X-C motif) ligand 16 (CXCL16) 26.8 26.4 25.9 26.7 27.5 26.3 26.6 26.5

Chemokine (C-X-C motif) ligand 17 (CXCL17) 33.0 32.8 33.0 ND 34.2 34.4 32.1 34.1

Chemokine (C-X-C motif) ligand 2 (CXCL2) ND ND 32.6 35.6 ND ND 35.1 ND

Chemokine (C-X-C motif) ligand 3 (CXCL3) ND 35.2 ND ND ND ND ND ND

Chemokine (C-X-C motif) ligand 5 (CXCL5) 29.8 29.7 30.8 30.3 31.0 30.8 30.7 31.2

Chemokine (C-X-C motif) ligand 9 (CXCL9) 34.9 31.6 33.9 33.3 33.0 32.8 29.2 31.0

Chemokine (C-X-C motif) receptor 3 (CXCR3) 38.0 31.9 32.8 32.0 32.3 31.5 29.7 31.1

Epstein-Barr virus induced gene 3 (EBI3) 29.9 31.3 29.9 30.5 31.0 30.2 29.0 30.7

Epiregulin (EREG) ND ND ND ND ND ND 34.9 ND

Fibroblast growth factor 7 (keratinocyte 

growth factor; FGF7) 28.2 27.1 27.7 27.9 28.7 28.6 28.5 28.3

G-protein receptor 84 (GPR84) ND ND ND ND ND ND ND ND

Heparin-binding EGF-like growth factor 

(HBEGF) 25.6 25.5 25.7 25.6 26.2 25.8 25.5 25.6

Interleukin 10 (IL10) 35.9 ND ND 35.0 ND 34.8 34.9 35.5

Interleukin 11 (IL11) 32.2 32.7 32.2 32.0 33.2 33.2 32.4 32.1

KO Spinal cord 7 days post  SHAM KO Spinal cord 7 days post  PNL
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Table 4

Gene 1 2 3 4 1 2 3 4

Interleukin 12 alpha (IL12a) 29.7 30.1 30.2 30.4 30.9 30.7 31.2 30.8

Interleukin 12 beta (IL12b) 35.8 34.9 ND 34.9 ND 34.3 34.3 ND

Interleukin 13 (IL13) 34.8 ND ND ND ND ND ND 34.6

Interleukin 15 (IL15) 29.2 29.1 28.9 29.1 29.5 29.4 28.9 28.9

Interleukin 16 (IL16) 25.3 24.5 24.4 24.9 25.4 26.1 25.7 25.1

Interleukin 17 alpha (IL17a) ND ND ND ND ND ND ND ND

Interleukin 18 (IL18) 24.3 24.6 24.6 24.5 25.0 25.0 25.0 24.8

Interleukin 19 (IL19) 31.7 31.9 31.7 33.2 37.4 32.8 33.3 32.6

Interleukin 1 alpha (IL1a) 30.9 31.5 30.9 30.9 30.6 30.2 30.9 29.4

Interleukin 1 beta (IL1b) 31.9 31.3 31.5 32.4 32.9 31.7 28.3 31.9

Interleukin 2 (IL2) ND ND ND ND ND ND ND ND

Interleukin 20 (IL20) 34.9 ND ND ND ND ND ND ND

Interleukin 21 (IL21) 31.8 31.9 31.9 32.2 33.0 31.9 32.6 32.5

Interleukin 22 (IL22) ND ND 38.0 ND ND ND ND ND

Interleukin 23 alpha (IL23a) 29.4 29.2 29.4 29.4 30.7 30.4 29.7 29.9

Interleukin 24 (IL24) ND ND ND ND 35.2 ND 34.8 34.9

Interleukin 25 (IL25) 30.6 31.2 31.3 30.1 31.0 30.8 30.7 31.2

Interleukin 27 (IL27) 35.2 ND 34.3 31.9 ND ND 32.6 35.2

Interleukin 28 beta (IL28b) ND ND ND ND ND ND ND ND

Interleukin 3 (IL3) ND ND ND ND ND ND ND ND

Interleukin 31 (IL31) ND ND ND ND ND ND ND 35.6

Interleukin 33 (IL33) 22.4 22.1 22.6 22.3 23.0 22.7 22.2 22.4

Interleukin 34 (IL34) 29.8 30.1 29.6 30.0 30.3 30.1 29.9 31.0

Interleukin 4 (IL4) ND 37.4 ND ND ND ND ND ND

Interleukin 5 (IL5) 31.3 32.1 32.5 31.4 32.4 31.8 30.6 33.3

Interleukin 6 (IL6) 32.6 33.6 33.5 33.6 33.4 32.2 32.0 31.8

Interleukin 7 (IL7) 29.6 30.0 29.5 29.9 29.9 30.2 30.0 29.6

Interleukin 9 (IL9) ND ND ND ND ND ND ND ND

Integrin alpha M (ITGAM; CD11B) 24.7 24.6 24.4 24.8 24.4 24.0 24.0 23.7

Mannose receptor, C type 1 (MRC1) 26.8 26.3 25.8 26.7 27.6 26.9 26.7 26.4

Nerve growth factor (NGF) 27.9 28.6 28.0 28.0 28.2 28.2 27.7 27.9

Nitric oxide synthase, inducible (NOS2) 29.8 29.6 30.4 29.7 30.6 30.3 28.9 29.3

Neuregulin 1 (NRG1) 22.2 22.5 22.5 22.4 22.8 22.7 22.6 22.7

Platelet factor 4 (PF4; CXCL4) 26.3 24.9 26.5 26.3 26.2 27.7 24.6 26.6

Pro-platelet basic protein (chemokine (C-X-C 

motif) ligand 7 25.9 24.0 26.9 25.6 25.3 28.3 23.3 26.3

Prostaglandin E synthase (PTGES) 27.5 27.4 27.4 27.4 28.2 28.0 27.6 27.7

Prostaglandin-endoperoxide synthase 2      

(COX-2; PTGS2) 30.8 30.8 30.4 30.6 30.8 31.1 28.5 31.3

 Signal Transducer and Activator of 

Transcription protein 4 (STAT4) 32.8 31.7 30.9 33.6 32.9 31.1 30.4 32.9

Toll-like receptor 4 (TLR4) 28.2 27.9 27.7 28.1 28.4 28.4 27.3 28.0

Tumor necrosis factor (TNF) 34.2 32.1 32.1 31.3 31.1 30.2 30.6 30.7

Alpha-taxilin (TXLNA) 23.5 23.6 23.7 23.5 24.3 23.9 23.9 23.7

Chemokine (C motif) ligand 1 (XCL1) 36.7 33.4 35.8 36.6 ND 34.7 35.3 34.9

Housekeeping genes

Beta-actin (ACTB) 17.9 17.9 18.0 17.9 18.3 18.2 17.8 17.9

Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) 16.9 17.1 17.0 17.0 17.5 17.4 17.2 17.2

Hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) 22.3 22.9 22.8 22.5 23.1 23.2 23.2 22.9

18s (X18S) 13.2 13.2 13.0 13.1 13.3 13.2 13.2 13.2

KO Spinal cord 7 days post  SHAM KO Spinal cord 7 days post  PNL
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Appendix Table 5: Raw CT values of genes screened in the sciatic nerve of GPR84 WT 
sham and PNL operated mice 21 days post surgery 

 

 

Table 5

Gene 1 2 3 4 1 2 3 4

Allograft inflammatory factors -1 (Iba1; AIF) 29.8 30.3 32.3 32.9 31.3 31.0 32.5 30.4

Amphiregulin (AREG) 37.6 36.5 ND ND ND ND ND ND

Artemin (ARTN) 32.4 32.1 33.6 31.6 32.9 35.0 32.9 31.6

Brain-derived neurotrophic factor (BDNF) ND 33.5 ND ND 32.7 32.7 32.8 ND

Betacellulin (BTC) 30.5 30.1 32.1 31.0 28.9 30.9 29.3 29.3

Chemokine (C-C motif) ligand 1 (CCL1) ND ND ND ND ND ND ND ND

Chemokine (C-C motif) ligand 11 (CCL11) 23.7 22.8 24.4 23.9 24.7 25.6 25.6 24.9

Chemokine (C-C motif) ligand 17 (CCL17) 34.8 34.8 34.3 ND ND 32.4 35.6 34.2

Chemokine (C-C motif) ligand 19 (CCL19) 30.5 29.3 31.5 30.9 31.0 33.6 31.7 31.6

Chemokine (C-C motif) ligand 2 (CCL2) 30.2 29.7 30.8 31.9 30.2 30.4 30.3 29.8

Chemokine (C-C motif) ligand 20 (CCL20) ND ND ND ND ND ND ND ND

Chemokine (C-C motif) ligand 21a,b 

(CCL21a,b) 23.6 22.8 23.6 24.6 25.6 26.0 26.9 25.6

Chemokine (C-C motif) ligand 22 (CCL22) 31.7 32.3 32.7 34.4 34.6 30.2 30.4 30.3

Chemokine (C-C motif) ligand 24 (CCL24) 29.5 29.6 30.4 30.2 32.0 33.1 32.9 31.0

Chemokine (C-C motif) ligand 25 (CCL25) 25.4 29.2 31.5 30.8 31.8 30.7 30.8 31.7

Chemokine (C-C motif) ligand 26 (CCL26) ND ND ND ND ND ND ND ND

Chemokine (C-C motif) ligand 27a,b 

(CCL27a,b) 27.0 26.0 27.4 26.9 28.8 28.4 28.7 27.9

Chemokine (C-C motif) ligand 28 (CCL28) 29.4 30.9 32.6 32.4 33.2 32.6 34.7 32.5

Chemokine (C-C motif) ligand 3 (CCL3) 36.9 36.9 ND ND 35.0 33.9 34.0 31.2

Chemokine (C-C motif) ligand 4 (CCL4) 35.7 34.9 35.2 35.2 33.5 32.5 32.9 31.0

Chemokine (C-C motif) ligand 5 (CCL5) 31.3 32.3 31.5 31.7 30.5 30.0 30.9 30.5

Chemokine (C-C motif) ligand 6 (CCL6) 24.1 23.8 24.2 24.3 24.8 24.0 25.3 23.0

Chemokine (C-C motif) ligand 7 (CCL7) 28.5 30.2 30.3 30.6 30.8 31.2 32.8 30.3

Chemokine (C-C motif) ligand 8 (CCL8) 29.1 30.1 30.5 30.3 28.8 28.2 28.3 28.7

Chemokine (C-C motif) ligand 9 (CCL9) 25.7 25.9 26.3 26.6 27.9 27.0 28.2 25.4

T-cell surface glycoprotein CD3 delta chain 

(CD3D) 33.9 ND ND ND ND ND 32.7 34.5

Colony stimulating  factor 1 (macrophage) 

(CSF1) 27.2 25.7 27.3 27.0 27.8 27.6 28.2 27.0

Colony stimulating  factor 1 (macrophage) 

receptor (CSF1R) 25.6 24.6 26.0 25.6 26.7 25.8 26.4 24.8

Colony stimulating  factor 2 (granulocyte-

macrophage) (CSF2) 27.9 36.0 ND ND ND ND 34.6 33.5

Colony stimulating  factor 3 (granulocyte) 

(CSF3) ND ND ND ND 33.6 ND ND 35.0

Chemokine (CX3-C motif) ligand 1 (CX3CL1) 29.6 28.2 30.7 29.6 30.5 30.8 30.7 29.7

Chemokine (C-X-C motif) ligand 1 (CXCL1) 33.7 35.9 33.5 34.9 31.9 33.8 34.3 34.3

Chemokine (C-X-C motif) ligand 10 (CXCL10) 28.3 28.2 32.0 31.5 30.0 30.2 29.8 29.2

Chemokine (C-X-C motif) ligand 11 (CXCL11) 29.7 29.0 31.0 30.2 33.4 31.4 32.6 30.9

Chemokine (C-X-C motif) ligand 12 (CXCL12) 32.0 30.9 31.9 31.7 33.4 33.0 33.1 30.8

Chemokine (C-X-C motif) ligand 13 (CXCL13) 26.7 26.2 26.3 26.6 27.7 29.9 32.6 29.7

Chemokine (C-X-C motif) ligand 14 (CXCL14) 25.4 25.7 27.5 26.8 25.4 27.0 27.0 25.8

Chemokine (C-X-C motif) ligand 16 (CXCL16) 28.8 27.7 29.7 29.1 28.1 27.8 28.3 26.5

Chemokine (C-X-C motif) ligand 17 (CXCL17) 35.5 32.1 34.0 34.9 35.0 33.6 35.1 ND

Chemokine (C-X-C motif) ligand 2 (CXCL2) 34.5 ND ND 34.2 ND 32.2 ND 30.2

Chemokine (C-X-C motif) ligand 3 (CXCL3) 37.6 ND ND ND ND 32.9 32.5 32.4

Chemokine (C-X-C motif) ligand 5 (CXCL5) ND 34.1 ND ND ND 31.8 32.6 29.0

Chemokine (C-X-C motif) ligand 9 (CXCL9) 31.1 29.3 30.7 30.6 30.1 30.4 30.0 30.9

Chemokine (C-X-C motif) receptor 3 (CXCR3) 31.3 31.4 32.5 31.7 30.9 31.4 30.5 30.3

Epstein-Barr virus induced gene 3 (EBI3) 31.5 30.6 33.0 31.7 32.7 31.4 32.4 30.0

Epiregulin (EREG) 35.2 ND ND ND ND 34.1 ND 33.8

Fibroblast growth factor 7 (keratinocyte 

growth factor; FGF7) 25.6 25.8 27.1 26.9 29.4 29.1 28.8 27.6

G-protein receptor 84 (GPR84) ND 36.4 ND ND ND 35.1 37.3 33.6

Histocompatibility 2, class II antigen E beta 

(H2.EB1) 25.3 24.4 26.1 25.7 26.5 26.4 26.3 25.8

WT Sciatic nerve 21 days post  SHAM WT Sciatic nerve 21 days post PNL
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Table 5

Gene 1 2 3 4 1 2 3 4

Heparin-binding EGF-like growth factor 

(HBEGF) 27.1 26.2 27.9 27.1 29.2 29.1 29.4 28.2

Interleukin 10 (IL10) 29.6 35.8 ND ND 35.3 ND ND ND

Interleukin 11 (IL11) 32.2 33.7 ND 34.2 ND 34.9 ND 36.1

Interleukin 12 alpha (IL12a) 33.7 31.3 32.8 34.0 35.5 34.0 35.5 35.3

Interleukin 12 beta (IL12b) ND ND ND ND ND 34.4 ND 35.0

Interleukin 13 (IL13) 32.3 ND ND ND ND ND ND ND

Interleukin 15 (IL15) 29.8 28.6 29.8 29.8 30.2 30.0 30.4 29.6

Interleukin 16 (IL16) 24.3 23.1 24.8 23.9 26.0 26.4 25.7 24.8

Interleukin 17 alpha (IL17a) 33.5 ND ND ND 37.3 ND ND ND

Interleukin 18 (IL18) 29.0 29.8 31.4 30.8 33.4 32.0 32.7 30.6

Interleukin 19 (IL19) ND ND ND ND 34.9 ND ND ND

Interleukin 1 alpha (IL1a) ND ND ND ND 35.6 ND 33.8 31.5

Interleukin 1 beta (IL1b) ND 34.8 35.4 ND 33.3 30.9 31.5 29.6

Interleukin 2 (IL2) 36.9 ND ND ND ND ND ND ND

Interleukin 20 (IL20) ND ND ND ND ND ND ND ND

Interleukin 21 (IL21) ND ND ND ND ND ND ND ND

Interleukin 22 (IL22) ND ND ND ND ND ND ND ND

Interleukin 23 alpha (IL23a) 31.6 32.1 32.7 33.3 33.4 34.4 ND 35.1

Interleukin 24 (IL24) ND 32.9 ND ND ND ND ND ND

Interleukin 25 (IL25) 33.6 34.2 33.3 ND ND 33.7 ND 33.4

Interleukin 27 (IL27) 35.5 ND ND ND 32.9 33.8 34.7 32.9

Interleukin 28 beta (IL28b) ND ND ND ND ND ND ND ND

Interleukin 3 (IL3) ND ND ND ND ND ND ND ND

Interleukin 31 (IL31) 26.9 ND ND ND 37.9 ND ND ND

Interleukin 33 (IL33) 25.2 24.6 25.3 24.9 27.3 27.7 28.1 26.7

Interleukin 34 (IL34) 30.6 30.1 32.8 31.7 33.4 34.0 34.0 32.2

Interleukin 4 (IL4) ND ND ND ND ND ND ND ND

Interleukin 5 (IL5) 32.9 34.3 ND 33.3 ND ND 37.9 ND

Interleukin 6 (IL6) 30.6 36.1 ND ND 34.2 35.4 ND ND

Interleukin 7 (IL7) 31.0 31.9 32.4 33.7 33.6 33.3 34.5 32.9

Interleukin 9 (IL9) ND ND ND ND ND ND ND ND

Integrin alpha M (ITGAM; CD11B) 28.0 27.3 28.9 28.4 28.8 27.5 27.8 25.4

Nerve growth factor (NGF) 27.9 28.3 29.3 29.6 28.5 29.7 31.0 29.9

Nitric oxide synthase, inducible (NOS2) 31.9 31.0 33.5 ND 32.1 31.8 32.0 31.0

Platelet factor 4 (PF4; CXCL4) 26.6 26.6 28.1 27.2 28.8 27.6 28.3 26.9

Pro-platelet basic protein (chemokine (C-X-C 

motif) ligand 7 29.9 28.9 29.3 31.4 30.3 30.9 33.3 31.3

Prostaglandin E synthase (PTGES) 27.9 26.8 29.0 28.4 29.2 30.7 29.9 28.7

Prostaglandin-endoperoxide synthase 2      

(COX-2; PTGS2) 33.6 33.0 33.4 34.1 32.6 34.3 36.7 33.8

 Signal Transducer and Activator of 

Transcription protein 4 (STAT4) 30.3 30.5 32.0 31.2 34.2 33.8 37.5 32.4

Toll-like receptor 4 (TLR4) 27.0 26.5 27.6 27.5 28.5 28.4 29.3 27.4

Tumor necrosis factor (TNF) 33.2 32.1 32.1 32.7 34.2 31.2 31.1 29.1

Alpha-taxilin (TXLNA) 27.4 26.4 28.4 27.9 28.0 27.9 28.0 27.9

Chemokine (C motif) ligand 1 (XCL1) 36.6 ND ND ND 25.3 ND 34.6 37.0

Housekeeping genes

Beta-actin (ACTB) 20.6 19.5 20.7 20.4 21.3 21.3 21.7 20.1

Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) 21.5 20.6 22.5 21.9 23.7 19.7 22.6 21.9

Hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) 27.6 26.7 28.9 28.3 26.8 28.9 29.1 28.1

18s (X18S) 15.5 14.1 18.0 16.2 15.9 15.6 14.7 15.0

WT Sciatic nerve 21 days post  SHAM WT Sciatic nerve 21 days post PNL
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Appendix Table 6: Raw CT values of genes screened in the sciatic nerve of GPR84 KO 
sham and PNL operated mice 21 days post surgery 

 

 

Table 6

Gene 1 2 3 4 1 2 3 4

Allograft inflammatory factors -1 (Iba1; AIF) 30.3 30.7 31.8 31.2 31.9 30.4 31.9 31.3

Amphiregulin (AREG) ND ND ND ND ND ND ND ND

Artemin (ARTN) 30.7 31.3 34.5 32.3 33.2 33.9 33.8 31.9

Brain-derived neurotrophic factor (BDNF) ND 34.4 ND ND 33.8 34.8 33.4 34.4

Betacellulin (BTC) 30.5 31.9 30.9 32.0 31.1 29.9 30.1 31.0

Chemokine (C-C motif) ligand 1 (CCL1) ND ND ND ND ND ND ND ND

Chemokine (C-C motif) ligand 11 (CCL11) 22.2 22.7 23.1 23.6 26.3 25.0 25.9 25.8

Chemokine (C-C motif) ligand 17 (CCL17) 32.0 33.8 33.9 ND 34.6 36.6 ND 35.1

Chemokine (C-C motif) ligand 19 (CCL19) 28.3 29.4 30.5 31.6 30.9 33.7 32.2 31.1

Chemokine (C-C motif) ligand 2 (CCL2) 28.8 30.0 30.2 30.6 30.5 31.1 31.3 29.6

Chemokine (C-C motif) ligand 20 (CCL20) ND ND ND ND ND ND ND ND

Chemokine (C-C motif) ligand 21a,b 

(CCL21a,b) 23.2 24.4 24.3 27.1 26.2 29.3 26.8 26.4

Chemokine (C-C motif) ligand 22 (CCL22) 29.9 30.9 31.3 31.8 30.7 33.4 32.9 29.6

Chemokine (C-C motif) ligand 24 (CCL24) 28.7 30.0 30.3 31.1 32.2 32.3 32.9 32.0

Chemokine (C-C motif) ligand 25 (CCL25) 29.5 29.6 30.0 30.8 32.6 32.0 32.0 32.1

Chemokine (C-C motif) ligand 26 (CCL26) 36.0 ND ND ND ND ND ND ND

Chemokine (C-C motif) ligand 27a,b 

(CCL27a,b) 25.9 25.9 26.4 26.4 29.8 28.6 28.0 28.6

Chemokine (C-C motif) ligand 28 (CCL28) 30.3 30.8 31.1 31.5 ND 34.0 33.3 35.1

Chemokine (C-C motif) ligand 3 (CCL3) 33.0 35.0 36.6 ND 36.3 35.6 35.6 33.3

Chemokine (C-C motif) ligand 4 (CCL4) 32.2 33.6 33.3 35.1 33.7 33.5 35.3 31.0

Chemokine (C-C motif) ligand 5 (CCL5) 29.5 31.2 31.2 32.8 30.9 31.0 31.8 30.4

Chemokine (C-C motif) ligand 6 (CCL6) 22.2 24.2 25.1 25.8 24.5 25.3 25.2 23.9

Chemokine (C-C motif) ligand 7 (CCL7) 28.1 29.0 29.9 29.7 31.7 32.6 33.2 30.1

Chemokine (C-C motif) ligand 8 (CCL8) 28.6 30.5 30.3 32.5 28.5 28.1 28.7 27.7

Chemokine (C-C motif) ligand 9 (CCL9) 25.0 26.9 27.5 28.0 27.9 27.8 28.7 27.1

T-cell surface glycoprotein CD3 delta chain 

(CD3D) 33.1 35.2 34.4 ND ND ND ND ND

Colony stimulating  factor 1 (macrophage) 

(CSF1) 25.5 25.8 26.4 26.9 28.6 27.7 28.7 27.5

Colony stimulating  factor 1 (macrophage) 

receptor (CSF1R) 24.0 24.6 26.2 26.0 26.3 25.9 26.5 25.6

Colony stimulating  factor 2 (granulocyte-

macrophage) (CSF2) 34.6 ND 34.9 ND ND ND ND ND

Colony stimulating  factor 3 (granulocyte) 

(CSF3) ND ND ND ND ND ND ND ND

Chemokine (CX3-C motif) ligand 1 (CX3CL1) 28.8 28.7 28.6 28.6 30.3 29.5 29.4 29.8

Chemokine (C-X-C motif) ligand 1 (CXCL1) 33.9 33.3 34.9 32.2 34.5 35.4 ND 32.2

Chemokine (C-X-C motif) ligand 10 (CXCL10) 28.7 29.2 29.0 29.8 30.5 29.7 30.7 30.3

Chemokine (C-X-C motif) ligand 11 (CXCL11) 28.4 28.8 29.1 29.4 ND 32.3 32.5 32.8

Chemokine (C-X-C motif) ligand 12 (CXCL12) 29.0 31.3 31.3 32.3 32.9 32.9 32.9 31.4

Chemokine (C-X-C motif) ligand 13 (CXCL13) 24.6 26.4 27.9 28.8 32.3 31.0 30.0 30.3

Chemokine (C-X-C motif) ligand 14 (CXCL14) 24.1 26.4 28.1 27.8 25.9 25.9 26.9 27.1

Chemokine (C-X-C motif) ligand 16 (CXCL16) 26.7 27.9 28.5 29.0 28.3 28.0 28.7 27.6

Chemokine (C-X-C motif) ligand 17 (CXCL17) 32.7 ND ND ND 33.3 35.0 35.0 35.1

Chemokine (C-X-C motif) ligand 2 (CXCL2) 32.8 34.9 34.7 ND 34.1 ND 35.1 31.0

Chemokine (C-X-C motif) ligand 3 (CXCL3) ND ND ND ND 35.0 ND ND 32.5

Chemokine (C-X-C motif) ligand 5 (CXCL5) ND ND ND ND 35.2 ND 35.0 30.1

Chemokine (C-X-C motif) ligand 9 (CXCL9) 30.3 30.9 29.8 31.4 30.9 30.9 30.4 30.1

Chemokine (C-X-C motif) receptor 3 (CXCR3) 29.9 31.0 29.8 33.0 30.9 31.3 31.4 30.5

Epstein-Barr virus induced gene 3 (EBI3) 30.2 30.3 31.0 31.0 33.9 31.6 32.6 31.3

Epiregulin (EREG) ND ND ND ND ND ND ND ND

Fibroblast growth factor 7 (keratinocyte 

growth factor; FGF7) 25.4 25.4 25.4 25.9 26.4 28.6 29.2 28.9

G-protein receptor 84 (GPR84) ND ND ND ND ND ND ND ND

Histocompatibility 2, class II antigen E beta 

(H2.EB1) 24.0 24.9 25.2 25.6 26.6 26.2 26.4 26.1

KO Sciatic nerve 21 days post  SHAM KO Sciatic nerve 21 days post PNL
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Table 6

Gene 1 2 3 4 1 2 3 4

Heparin-binding EGF-like growth factor 

(HBEGF) 26.2 25.9 26.3 26.2 29.9 29.4 28.8 29.2

Interleukin 10 (IL10) ND 36.0 ND ND ND ND ND ND

Interleukin 11 (IL11) 33.2 33.0 33.9 32.7 34.7 ND 36.0 ND

Interleukin 12 alpha (IL12a) 31.6 31.6 31.4 31.9 ND 35.3 31.8 35.5

Interleukin 12 beta (IL12b) ND ND ND 34.8 ND 35.5 ND 34.4

Interleukin 13 (IL13) ND ND ND ND ND ND ND ND

Interleukin 15 (IL15) 28.7 28.8 29.1 29.7 32.2 31.3 29.4 29.8

Interleukin 16 (IL16) 22.9 23.0 23.4 23.4 27.3 26.0 26.7 26.5

Interleukin 17 alpha (IL17a) ND ND ND ND 33.9 ND ND ND

Interleukin 18 (IL18) 28.2 29.9 30.4 30.4 32.6 32.0 32.8 31.9

Interleukin 19 (IL19) ND ND ND ND ND ND ND ND

Interleukin 1 alpha (IL1a) ND ND 33.9 ND 34.5 32.8 34.5 35.8

Interleukin 1 beta (IL1b) 30.1 33.1 32.8 34.8 32.4 33.5 34.6 29.6

Interleukin 2 (IL2) ND ND ND ND ND ND ND ND

Interleukin 20 (IL20) ND ND ND ND ND ND ND ND

Interleukin 21 (IL21) ND ND ND ND ND ND ND ND

Interleukin 22 (IL22) ND ND ND ND ND ND ND ND

Interleukin 23 alpha (IL23a) 30.6 32.2 31.5 31.4 ND ND ND 33.1

Interleukin 24 (IL24) ND ND ND ND ND ND ND ND

Interleukin 25 (IL25) 34.9 33.7 34.2 ND ND ND ND ND

Interleukin 27 (IL27) 33.2 34.6 ND ND ND ND 34.6 34.7

Interleukin 28 beta (IL28b) ND ND ND ND ND ND ND ND

Interleukin 3 (IL3) 37.0 ND ND ND ND ND ND ND

Interleukin 31 (IL31) 36.4 ND 35.6 ND ND ND ND ND

Interleukin 33 (IL33) 24.2 24.8 25.0 25.4 28.8 27.7 28.8 27.8

Interleukin 34 (IL34) 30.2 30.4 31.2 30.4 28.2 32.3 35.2 33.3

Interleukin 4 (IL4) 35.8 ND ND ND ND ND ND ND

Interleukin 5 (IL5) ND 34.3 33.9 ND ND ND ND 34.7

Interleukin 6 (IL6) 32.6 33.8 34.1 35.2 ND 36.3 ND ND

Interleukin 7 (IL7) 29.2 32.9 34.0 36.1 33.9 34.2 33.8 35.2

Interleukin 9 (IL9) ND ND ND ND ND ND ND ND

Integrin alpha M (ITGAM; CD11B) 25.9 27.2 29.1 29.5 27.6 28.3 28.6 26.6

Nerve growth factor (NGF) 27.5 28.5 28.6 28.9 31.0 30.2 30.4 29.8

Nitric oxide synthase, inducible (NOS2) 31.0 32.5 31.9 30.8 33.5 31.5 31.0 31.6

Platelet factor 4 (PF4; CXCL4) 25.2 26.5 27.0 27.4 28.4 28.4 28.0 27.1

Pro-platelet basic protein (chemokine (C-X-C 

motif) ligand 7 27.3 29.8 26.3 29.1 32.1 32.3 33.4 32.2

Prostaglandin E synthase (PTGES) 26.3 26.9 27.3 27.7 31.2 29.3 30.0 29.0

Prostaglandin-endoperoxide synthase 2      

(COX-2; PTGS2) 31.5 33.5 33.5 34.0 36.8 ND 37.2 34.0

 Signal Transducer and Activator of 

Transcription protein 4 (STAT4) 30.1 30.9 29.6 33.2 35.4 34.2 34.5 32.8

Toll-like receptor 4 (TLR4) 26.1 26.9 31.0 27.9 29.6 28.7 29.5 28.0

Tumor necrosis factor (TNF) 30.4 31.1 32.1 34.3 31.8 32.1 33.3 30.4

Alpha-taxilin (TXLNA) 25.9 26.2 26.9 26.9 28.8 28.0 28.1 27.9

Chemokine (C motif) ligand 1 (XCL1) 33.6 37.5 37.5 ND ND 35.1 37.0 37.3

Housekeeping genes

Beta-actin (ACTB) 19.5 19.7 19.8 20.1 22.0 21.5 22.0 21.2

Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) 20.5 19.8 20.2 20.9 24.2 21.2 18.5 22.6

Hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) 26.3 27.3 27.7 27.8 30.3 29.4 29.4 28.7

18s (X18S) 13.9 14.1 14.4 14.2 15.2 15.2 14.5 14.5

KO Sciatic nerve 21 days post  SHAM KO Sciatic nerve 21 days post PNL
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Appendix Table 7: Raw CT values of genes screened in the spinal cord of GPR84 WT 
sham and PNL operated mice 21 days post surgery 

 

 

Table 7

Gene 1 2 3 4 1 2 3 4

Allograft inflammatory factors -1 (Iba1; AIF) 28.9 28.8 28.5 27.9 27.5 28.7 28.1 28.7

Amphiregulin (AREG) ND 36.7 34.9 ND 33.9 ND ND ND

Artemin (ARTN) 31.8 31.1 31.5 33.3 31.3 32.2 32.6 32.4

Brain-derived neurotrophic factor (BDNF) 28.7 28.4 28.7 29.1 28.8 28.6 28.4 29.3

Betacellulin (BTC) 30.0 29.9 29.7 29.1 28.9 29.8 28.9 29.7

Chemokine (C-C motif) ligand 1 (CCL1) ND ND ND 35.4 ND ND ND ND

Chemokine (C-C motif) ligand 11 (CCL11) 29.6 29.3 27.8 26.4 27.2 30.1 27.2 28.8

Chemokine (C-C motif) ligand 17 (CCL17) 37.4 33.9 34.7 ND ND 34.7 33.9 ND

Chemokine (C-C motif) ligand 19 (CCL19) 29.2 28.2 27.5 27.5 27.9 29.8 28.0 29.0

Chemokine (C-C motif) ligand 2 (CCL2) 30.9 ND 32.3 31.9 29.6 31.3 31.2 31.3

Chemokine (C-C motif) ligand 20 (CCL20) ND ND ND ND ND ND ND ND

Chemokine (C-C motif) ligand 21a,b 

(CCL21a,b) 26.9 25.9 25.8 25.3 26.3 27.4 26.2 26.2

Chemokine (C-C motif) ligand 22 (CCL22) 33.2 31.5 32.3 30.8 30.8 32.4 30.4 32.5

Chemokine (C-C motif) ligand 24 (CCL24) 34.2 35.0 32.6 34.8 30.7 33.6 32.9 34.0

Chemokine (C-C motif) ligand 25 (CCL25) 26.2 26.3 26.6 26.3 26.4 27.1 26.0 27.1

Chemokine (C-C motif) ligand 26 (CCL26) 37.0 ND ND ND ND ND ND ND

Chemokine (C-C motif) ligand 27a,b 

(CCL27a,b) 23.9 23.5 23.6 23.6 23.6 24.2 23.3 24.4

Chemokine (C-C motif) ligand 28 (CCL28) 28.9 29.0 29.1 29.0 28.9 28.9 29.1 29.9

Chemokine (C-C motif) ligand 3 (CCL3) 36.1 35.7 34.2 34.4 35.2 34.9 33.9 34.2

Chemokine (C-C motif) ligand 4 (CCL4) 32.7 34.5 32.2 31.1 31.7 32.7 30.8 32.7

Chemokine (C-C motif) ligand 5 (CCL5) 31.0 31.1 30.3 29.0 30.0 32.1 29.8 30.5

Chemokine (C-C motif) ligand 6 (CCL6) 27.6 26.8 26.3 25.9 26.1 27.4 26.2 26.8

Chemokine (C-C motif) ligand 7 (CCL7) 30.4 33.6 31.4 31.6 29.3 31.0 32.8 31.1

Chemokine (C-C motif) ligand 8 (CCL8) ND 32.3 32.5 33.5 31.7 32.7 31.6 35.0

Chemokine (C-C motif) ligand 9 (CCL9) 29.3 28.0 27.7 27.3 27.9 28.8 27.7 28.6

T-cell surface glycoprotein CD3 delta chain 

(CD3D) 34.6 ND 34.6 32.2 34.5 34.7 34.9 ND

Colony stimulating  factor 1 (macrophage) 

(CSF1) 25.9 25.4 24.9 24.7 24.2 25.8 25.1 25.2

Colony stimulating  factor 1 (macrophage) 

receptor (CSF1R) 24.3 23.7 23.6 23.2 23.0 24.0 23.5 24.1

Colony stimulating  factor 2 (granulocyte-

macrophage) (CSF2) ND ND 35.0 34.9 ND ND ND ND

Colony stimulating  factor 3 (granulocyte) 

(CSF3) 34.4 ND ND ND 29.4 ND ND ND

Chemokine (CX3-C motif) ligand 1 (CX3CL1) 22.5 21.9 22.2 22.0 22.0 22.7 21.7 22.7

Chemokine (C-X-C motif) ligand 1 (CXCL1) 32.8 34.9 ND 33.1 28.8 ND 34.8 34.7

Chemokine (C-X-C motif) ligand 10 (CXCL10) 31.9 32.2 31.0 31.3 29.4 31.6 28.5 31.0

Chemokine (C-X-C motif) ligand 11 (CXCL11) 32.2 30.3 30.4 29.6 30.5 32.2 30.7 31.1

Chemokine (C-X-C motif) ligand 12 (CXCL12) 33.8 34.0 32.0 32.6 32.7 33.3 31.8 32.4

Chemokine (C-X-C motif) ligand 13 (CXCL13) ND 35.1 ND 34.3 32.2 34.3 34.7 ND

Chemokine (C-X-C motif) ligand 14 (CXCL14) 23.7 22.7 22.8 22.2 22.5 23.3 22.5 23.1

Chemokine (C-X-C motif) ligand 16 (CXCL16) 28.1 28.0 27.5 26.9 26.3 28.3 27.3 28.6

Chemokine (C-X-C motif) ligand 17 (CXCL17) ND ND 34.9 34.4 33.9 34.8 33.4 34.9

Chemokine (C-X-C motif) ligand 2 (CXCL2) ND ND 36.1 35.1 31.2 ND ND ND

Chemokine (C-X-C motif) ligand 3 (CXCL3) ND ND ND ND ND ND ND ND

Chemokine (C-X-C motif) ligand 5 (CXCL5) 32.8 31.1 33.5 30.0 31.2 31.8 31.1 31.6

Chemokine (C-X-C motif) ligand 9 (CXCL9) 35.0 35.4 34.2 32.5 35.4 34.9 30.5 33.8

Chemokine (C-X-C motif) receptor 3 (CXCR3) 32.6 ND 33.5 32.5 31.8 33.1 31.5 32.8

Epstein-Barr virus induced gene 3 (EBI3) 32.2 31.3 31.0 32.0 30.7 31.6 31.8 32.1

Epiregulin (EREG) ND ND ND ND ND ND ND ND

Fibroblast growth factor 7 (keratinocyte 

growth factor; FGF7) 28.3 28.6 27.9 27.4 27.7 29.5 27.8 28.6

G-protein receptor 84 (GPR84) 32.0 31.3 31.3 31.2 31.1 31.6 31.0 31.3

Histocompatibility 2, class II antigen E beta 

(H2.EB1) 27.8 27.7 26.8 26.0 26.5 28.0 26.7 28.0

WT Spinal cord 21 days post  SHAM WT Spinal cord 21 days post  PNL
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Table 7

Gene 1 2 3 4 1 2 3 4

Heparin-binding EGF-like growth factor 

(HBEGF) 26.3 25.9 26.2 25.7 25.2 26.8 25.6 26.3

Interleukin 10 (IL10) 35.8 ND ND ND 35.6 ND ND 36.0

Interleukin 11 (IL11) 32.1 32.7 34.8 33.3 33.3 33.5 32.9 34.5

Interleukin 12 alpha (IL12a) 31.1 31.5 31.4 30.7 30.0 32.5 31.1 32.0

Interleukin 12 beta (IL12b) 35.5 ND ND 34.3 33.9 35.9 ND 33.9

Interleukin 13 (IL13) ND ND ND 34.0 ND ND ND ND

Interleukin 15 (IL15) 29.8 29.8 29.6 29.7 28.6 30.0 29.3 29.5

Interleukin 16 (IL16) 27.5 26.7 26.1 25.6 25.9 27.8 26.0 26.6

Interleukin 17 alpha (IL17a) ND ND ND ND ND ND ND ND

Interleukin 18 (IL18) 26.3 25.6 25.5 24.8 25.0 26.1 25.1 25.7

Interleukin 19 (IL19) 33.5 33.6 33.3 32.1 31.3 33.1 33.2 32.6

Interleukin 1 alpha (IL1a) 34.5 32.1 31.9 31.5 30.9 31.8 31.2 31.7

Interleukin 1 beta (IL1b) 32.5 31.9 32.8 31.2 31.3 34.8 32.4 33.4

Interleukin 2 (IL2) ND ND 35.0 ND ND ND ND ND

Interleukin 20 (IL20) ND ND 36.4 ND ND ND ND ND

Interleukin 21 (IL21) 33.8 33.5 33.3 32.0 33.5 33.5 32.6 33.6

Interleukin 22 (IL22) 37.9 37.7 ND 37.9 ND ND ND ND

Interleukin 23 alpha (IL23a) 32.0 31.2 31.3 30.7 30.7 31.0 30.9 31.0

Interleukin 24 (IL24) ND ND ND ND ND ND ND ND

Interleukin 25 (IL25) 32.9 32.2 32.7 34.0 32.1 32.9 31.9 32.3

Interleukin 27 (IL27) ND 34.6 34.5 ND 34.5 ND 34.6 ND

Interleukin 28 beta (IL28b) ND ND ND ND ND ND ND ND

Interleukin 3 (IL3) ND ND ND ND ND ND ND ND

Interleukin 31 (IL31) ND ND ND ND ND ND ND ND

Interleukin 33 (IL33) 23.6 23.1 23.2 22.5 22.5 23.7 22.7 23.3

Interleukin 34 (IL34) 30.8 31.3 30.9 31.0 30.9 32.2 31.1 31.8

Interleukin 4 (IL4) ND ND ND ND ND ND ND ND

Interleukin 5 (IL5) 32.7 33.9 32.7 31.9 32.1 33.2 32.1 ND

Interleukin 6 (IL6) 31.9 33.9 33.3 32.1 31.5 34.7 32.9 32.8

Interleukin 7 (IL7) 31.0 30.7 30.9 30.4 28.8 31.4 30.6 30.7

Interleukin 9 (IL9) ND ND ND ND ND ND ND ND

Integrin alpha M (ITGAM; CD11B) 26.6 26.1 26.1 25.6 25.5 26.8 25.7 26.3

Nerve growth factor (NGF) 29.6 29.7 29.7 28.6 28.7 30.6 29.3 29.6

Nitric oxide synthase, inducible (NOS2) 31.2 30.6 30.6 30.2 29.2 30.9 30.3 31.1

Platelet factor 4 (PF4; CXCL4) 29.5 28.7 28.1 25.8 26.5 28.8 27.5 27.3

Pro-platelet basic protein (chemokine (C-X-C 

motif) ligand 7 31.1 28.3 28.5 25.6 26.0 27.8 27.1 27.0

Prostaglandin E synthase (PTGES) 29.7 28.7 28.4 27.9 27.9 29.6 28.0 28.9

Prostaglandin-endoperoxide synthase 2      

(COX-2; PTGS2) 31.8 31.5 32.6 32.5 28.4 33.2 31.9 32.8

 Signal Transducer and Activator of 

Transcription protein 4 (STAT4) 33.7 32.7 32.4 31.8 33.4 34.2 32.5 34.9

Toll-like receptor 4 (TLR4) 30.4 29.0 28.9 28.7 28.2 29.7 28.9 29.6

Tumor necrosis factor (TNF) 35.1 34.8 33.3 32.1 31.5 ND 33.0 33.5

Alpha-taxilin (TXLNA) 25.7 25.1 25.1 24.5 24.5 25.5 24.5 25.2

Chemokine (C motif) ligand 1 (XCL1) 37.5 36.6 ND 35.1 ND 37.2 35.6 37.5

Housekeeping genes

Beta-actin (ACTB) 19.7 19.2 19.1 18.8 18.5 19.8 18.6 19.3

Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) 18.9 18.3 18.5 17.9 18.0 18.8 17.9 18.7

Hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) 23.5 23.3 23.3 22.8 23.1 23.8 22.9 23.7

18s (X18S) 14.9 14.6 14.8 14.9 14.8 14.8 14.7 14.8

WT Spinal cord 21 days post  SHAM WT Spinal cord 21 days post  PNL



Appendix 

 

319 

Appendix Table 8: Raw CT values of genes screened in the spinal cord of GPR84 KO 
sham and PNL operated mice 21 days post surgery 

 

 

Table 8

Gene 1 2 3 4 1 2 3 4

Allograft inflammatory factors -1 (Iba1; AIF) 27.8 28.2 27.9 28.9 28.0 29.1 27.8 27.6

Amphiregulin (AREG) 33.6 ND ND 34.9 33.8 ND 34.5 33.1

Artemin (ARTN) 31.5 31.0 31.1 31.3 31.6 32.3 30.9 31.8

Brain-derived neurotrophic factor (BDNF) 28.6 28.5 27.8 29.0 28.9 28.9 27.7 28.6

Betacellulin (BTC) 30.0 29.9 29.1 29.9 30.1 30.0 29.6 29.2

Chemokine (C-C motif) ligand 1 (CCL1) ND ND 35.8 ND ND ND ND ND

Chemokine (C-C motif) ligand 11 (CCL11) 28.0 29.7 28.2 28.9 29.3 31.5 27.9 27.8

Chemokine (C-C motif) ligand 17 (CCL17) 34.3 34.7 ND ND ND ND 35.0 35.0

Chemokine (C-C motif) ligand 19 (CCL19) 27.7 28.3 27.8 28.6 28.0 28.9 27.3 28.0

Chemokine (C-C motif) ligand 2 (CCL2) 34.7 32.5 31.0 32.0 29.6 32.2 30.9 29.8

Chemokine (C-C motif) ligand 20 (CCL20) ND ND ND ND ND ND ND ND

Chemokine (C-C motif) ligand 21a,b 

(CCL21a,b) 25.9 25.6 26.4 26.8 26.3 25.4 25.5 26.1

Chemokine (C-C motif) ligand 22 (CCL22) 30.7 30.7 30.6 31.6 32.1 32.5 30.7 30.9

Chemokine (C-C motif) ligand 24 (CCL24) 32.8 32.7 31.6 33.5 32.4 33.9 32.7 32.0

Chemokine (C-C motif) ligand 25 (CCL25) 25.9 26.0 26.1 26.9 26.4 26.7 26.2 26.3

Chemokine (C-C motif) ligand 26 (CCL26) 30.7 ND ND ND ND ND ND ND

Chemokine (C-C motif) ligand 27a,b 

(CCL27a,b) 23.4 23.6 23.4 24.0 23.9 23.8 23.1 23.5

Chemokine (C-C motif) ligand 28 (CCL28) 28.3 28.1 30.2 29.6 29.4 28.5 29.0 29.0

Chemokine (C-C motif) ligand 3 (CCL3) 35.0 34.4 34.4 36.0 35.0 35.1 34.0 34.7

Chemokine (C-C motif) ligand 4 (CCL4) 33.0 32.7 31.5 32.4 31.8 32.8 31.9 31.0

Chemokine (C-C motif) ligand 5 (CCL5) 31.3 29.8 29.5 30.9 30.5 30.7 28.7 28.8

Chemokine (C-C motif) ligand 6 (CCL6) 26.8 27.6 26.2 27.0 26.3 28.0 26.2 26.3

Chemokine (C-C motif) ligand 7 (CCL7) 33.2 32.0 30.8 32.9 29.6 31.0 29.0 28.0

Chemokine (C-C motif) ligand 8 (CCL8) 34.0 31.7 31.8 35.5 31.1 32.8 30.9 30.9

Chemokine (C-C motif) ligand 9 (CCL9) 28.1 28.7 28.3 28.6 28.0 28.9 27.8 28.2

T-cell surface glycoprotein CD3 delta chain 

(CD3D) ND 34.5 34.4 ND 35.0 35.9 33.4 ND

Colony stimulating  factor 1 (macrophage) 

(CSF1) 24.9 25.1 24.5 25.3 25.1 25.5 24.7 24.4

Colony stimulating  factor 1 (macrophage) 

receptor (CSF1R) 23.8 23.9 23.3 24.1 23.5 23.9 23.0 23.0

Colony stimulating  factor 2 (granulocyte-

macrophage) (CSF2) ND ND ND ND ND ND 34.4 ND

Colony stimulating  factor 3 (granulocyte) 

(CSF3) ND ND ND ND 34.6 ND 34.5 ND

Chemokine (CX3-C motif) ligand 1 (CX3CL1) 22.2 22.1 21.8 22.5 22.2 22.5 21.6 21.8

Chemokine (C-X-C motif) ligand 1 (CXCL1) 33.0 ND 34.3 34.2 33.0 35.2 ND 33.4

Chemokine (C-X-C motif) ligand 10 (CXCL10) 31.3 31.4 30.7 30.9 30.5 29.4 29.3 30.6

Chemokine (C-X-C motif) ligand 11 (CXCL11) 31.6 32.2 30.7 30.6 31.9 32.1 30.0 30.6

Chemokine (C-X-C motif) ligand 12 (CXCL12) 32.5 32.7 31.6 31.8 32.8 33.7 31.4 32.1

Chemokine (C-X-C motif) ligand 13 (CXCL13) ND 34.1 33.5 ND 33.5 ND 31.0 32.4

Chemokine (C-X-C motif) ligand 14 (CXCL14) 22.7 22.7 22.6 23.5 22.9 23.1 22.4 22.6

Chemokine (C-X-C motif) ligand 16 (CXCL16) 27.9 27.9 26.9 27.9 27.6 28.9 27.2 27.1

Chemokine (C-X-C motif) ligand 17 (CXCL17) 34.0 34.0 ND 34.0 33.0 33.9 34.0 34.7

Chemokine (C-X-C motif) ligand 2 (CXCL2) ND 34.9 34.0 ND ND 36.8 ND 33.4

Chemokine (C-X-C motif) ligand 3 (CXCL3) 33.2 34.2 ND ND ND 33.1 ND 33.4

Chemokine (C-X-C motif) ligand 5 (CXCL5) 30.8 31.6 30.2 32.8 31.2 31.3 30.9 31.3

Chemokine (C-X-C motif) ligand 9 (CXCL9) 34.4 31.7 33.2 ND 34.7 34.0 31.0 32.6

Chemokine (C-X-C motif) receptor 3 (CXCR3) 34.1 32.9 32.5 32.7 33.4 34.4 31.3 32.2

Epstein-Barr virus induced gene 3 (EBI3) 31.9 32.8 31.1 31.8 31.9 31.6 30.5 30.8

Epiregulin (EREG) ND ND ND 34.9 ND ND ND 34.6

Fibroblast growth factor 7 (keratinocyte 

growth factor; FGF7) 27.8 28.6 27.5 28.6 29.3 29.8 28.0 27.9

G-protein receptor 84 (GPR84) ND ND ND ND ND ND ND ND

Histocompatibility 2, class II antigen E beta 

(H2.EB1) 27.5 27.3 26.6 27.5 27.6 29.6 26.6 26.6

KO Spinal cord 21 days post  SHAM KO Spinal cord 21 days post  PNL
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Table 8

Gene 1 2 3 4 1 2 3 4

Heparin-binding EGF-like growth factor 

(HBEGF) 26.1 26.0 25.5 26.3 26.1 26.6 25.7 25.6

Interleukin 10 (IL10) ND ND ND ND ND ND ND ND

Interleukin 11 (IL11) 32.9 32.2 31.7 33.5 32.9 34.8 34.5 32.7

Interleukin 12 alpha (IL12a) 30.8 30.3 30.8 31.0 31.4 30.7 30.9 31.2

Interleukin 12 beta (IL12b) 35.0 34.2 35.0 33.6 ND ND 34.5 34.0

Interleukin 13 (IL13) ND ND ND ND 34.7 ND ND ND

Interleukin 15 (IL15) 28.8 28.8 29.0 29.9 29.2 30.1 28.7 28.8

Interleukin 16 (IL16) 26.6 27.2 26.1 26.9 27.2 28.3 25.7 25.8

Interleukin 17 alpha (IL17a) ND ND ND ND ND ND ND ND

Interleukin 18 (IL18) 25.7 25.5 25.0 26.0 25.7 25.9 25.0 25.1

Interleukin 19 (IL19) ND 32.5 33.0 ND 32.9 ND 33.2 33.1

Interleukin 1 alpha (IL1a) 31.2 32.7 31.6 32.0 30.8 32.6 31.0 31.1

Interleukin 1 beta (IL1b) 32.5 31.8 32.1 32.7 31.6 32.3 32.2 31.0

Interleukin 2 (IL2) ND ND ND ND 33.4 ND ND ND

Interleukin 20 (IL20) ND ND ND ND ND ND ND ND

Interleukin 21 (IL21) 33.5 32.7 32.6 32.3 33.6 33.0 33.7 32.3

Interleukin 22 (IL22) ND 37.3 ND ND ND ND ND ND

Interleukin 23 alpha (IL23a) 31.5 32.0 30.0 31.4 31.2 ND 30.4 30.5

Interleukin 24 (IL24) ND ND ND ND ND ND ND ND

Interleukin 25 (IL25) 31.7 31.4 32.0 33.5 33.2 32.6 31.0 31.9

Interleukin 27 (IL27) 34.6 ND ND 34.9 34.8 34.3 ND ND

Interleukin 28 beta (IL28b) ND ND ND ND ND ND ND ND

Interleukin 3 (IL3) 30.6 ND ND ND ND ND ND ND

Interleukin 31 (IL31) ND ND ND ND ND ND ND ND

Interleukin 33 (IL33) 23.0 22.9 22.8 23.6 23.1 23.5 22.4 22.6

Interleukin 34 (IL34) 30.7 30.6 30.9 32.0 31.9 31.7 30.8 30.9

Interleukin 4 (IL4) ND ND ND ND ND ND ND ND

Interleukin 5 (IL5) 31.8 32.1 32.8 ND 32.9 32.1 32.4 33.2

Interleukin 6 (IL6) 33.3 33.7 33.1 33.8 33.9 33.7 33.2 32.5

Interleukin 7 (IL7) 30.5 31.3 30.1 31.0 30.8 31.2 30.3 29.9

Interleukin 9 (IL9) ND 37.1 ND ND ND ND ND ND

Integrin alpha M (ITGAM; CD11B) 26.5 26.1 25.7 26.7 25.7 26.4 25.4 25.2

Nerve growth factor (NGF) 29.5 29.8 29.6 29.3 29.3 29.9 28.9 28.8

Nitric oxide synthase, inducible (NOS2) 30.4 30.7 29.5 31.0 30.2 31.6 30.2 30.4

Platelet factor 4 (PF4; CXCL4) 28.5 27.9 27.1 28.1 27.4 27.8 26.4 27.7

Pro-platelet basic protein (chemokine (C-X-C 

motif) ligand 7 29.0 27.4 27.7 27.7 26.7 26.5 25.4 28.1

Prostaglandin E synthase (PTGES) 28.4 28.2 28.0 28.8 28.9 29.7 28.5 28.4

Prostaglandin-endoperoxide synthase 2      

(COX-2; PTGS2) 31.4 31.8 31.3 33.4 30.2 32.6 31.8 32.6

 Signal Transducer and Activator of 

Transcription protein 4 (STAT4) 33.9 33.5 31.4 ND 34.4 33.1 32.9 33.0

Toll-like receptor 4 (TLR4) 29.1 29.3 28.3 29.2 29.3 29.8 28.4 28.7

Tumor necrosis factor (TNF) 32.1 33.2 32.1 32.1 32.7 32.2 31.5 31.5

Alpha-taxilin (TXLNA) 24.8 24.8 24.2 25.4 25.0 25.6 24.4 24.5

Chemokine (C motif) ligand 1 (XCL1) 35.9 34.6 36.5 ND 36.4 ND 35.9 35.8

Housekeeping genes

Beta-actin (ACTB) 19.1 18.9 18.6 19.5 19.0 19.0 18.4 18.6

Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) 18.2 18.3 18.0 18.6 18.3 18.5 17.9 18.2

Hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) 22.9 23.0 22.6 23.6 23.1 23.9 22.9 23.0

18s (X18S) 14.5 14.5 14.6 14.9 14.7 15.6 14.9 14.9

KO Spinal cord 21 days post  SHAM KO Spinal cord 21 days post  PNL
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Appendix Table 9: Raw CT values of genes screened in GPR84 WT B-GEPMs in control 
conditions or after 3 hours of LPS stimulation 

 

 

Table 9

Gene 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0

Allograft inflammatory factors -1 (Iba1; AIF) 24.4 26.9 24.6 24.9 25.8 25.4 25.4 25.5

Amphiregulin (AREG) 33.6 31.9 33.2 38.0 28.9 27.7 29.2 28.4

Artemin (ARTN) 33.9 32.7 33.0 31.0 28.1 27.6 27.8 27.4

Brain-derived neurotrophic factor (BDNF) 33.3 34.4 33.1 32.8 34.0 33.1 38.0 35.2

Betacellulin (BTC) 31.1 32.1 31.3 31.0 33.0 31.5 31.0 31.0

Chemokine (C-C motif) ligand 1 (CCL1) 38.0 38.0 38.0 33.8 38.0 34.1 34.8 38.0

Chemokine (C-C motif) ligand 11 (CCL11) 38.0 38.0 38.0 38.0 38.0 38.0 33.7 35.3

Chemokine (C-C motif) ligand 17 (CCL17) 34.1 38.0 38.0 34.1 30.0 29.7 26.4 28.3

Chemokine (C-C motif) ligand 19 (CCL19) 38.0 38.0 38.0 38.0 32.4 31.4 32.4 32.7

Chemokine (C-C motif) ligand 2 (CCL2) 24.9 26.4 26.2 25.9 22.3 21.0 20.5 22.1

Chemokine (C-C motif) ligand 20 (CCL20) 38.0 32.2 35.0 34.0 30.4 29.7 31.1 30.0

Chemokine (C-C motif) ligand 21a,b 

(CCL21a,b) 38.0 36.8 37.4 34.0 38.0 34.6 35.3 38.0

Chemokine (C-C motif) ligand 22 (CCL22) 32.7 33.0 31.5 33.0 22.8 22.7 20.3 21.1

Chemokine (C-C motif) ligand 24 (CCL24) 23.6 25.7 24.0 24.7 23.3 23.0 22.6 24.2

Chemokine (C-C motif) ligand 25 (CCL25) 26.7 27.6 27.3 27.5 29.9 28.9 28.9 29.2

Chemokine (C-C motif) ligand 26 (CCL26) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Chemokine (C-C motif) ligand 27a,b 

(CCL27a,b) 27.1 27.7 26.8 27.0 28.8 28.3 28.8 28.7

Chemokine (C-C motif) ligand 28 (CCL28) 30.8 31.1 31.5 34.1 33.0 34.7 32.8 33.1

Chemokine (C-C motif) ligand 3 (CCL3) 27.3 26.8 27.7 26.6 20.4 19.4 19.0 19.2

Chemokine (C-C motif) ligand 4 (CCL4) 24.9 25.9 26.0 25.0 18.1 17.0 17.3 17.1

Chemokine (C-C motif) ligand 5 (CCL5) 22.9 23.6 22.9 22.4 16.8 16.3 16.5 16.3

Chemokine (C-C motif) ligand 6 (CCL6) 16.9 17.5 17.1 17.7 18.8 18.3 17.5 18.4

Chemokine (C-C motif) ligand 7 (CCL7) 26.5 27.4 28.1 27.3 23.1 22.1 21.1 23.1

Chemokine (C-C motif) ligand 8 (CCL8) 22.1 25.6 23.4 23.6 24.9 24.2 23.8 25.8

Chemokine (C-C motif) ligand 9 (CCL9) 19.7 20.3 19.6 20.4 17.5 16.9 16.5 16.8

T-cell surface glycoprotein CD3 delta chain 

(CD3D) 33.7 38.0 38.0 38.0 38.0 38.0 33.8 34.6

Colony stimulating  factor 1 (macrophage) 

(CSF1) 23.6 22.9 24.3 23.6 22.3 21.4 21.4 21.3

Colony stimulating  factor 1 (macrophage) 

receptor (CSF1R) 17.7 17.9 17.8 17.7 19.3 18.9 19.1 18.9

Colony stimulating  factor 2 (granulocyte-

macrophage) (CSF2) 32.1 34.7 33.3 34.5 22.6 21.9 20.1 20.6

Colony stimulating  factor 3 (granulocyte) 

(CSF3) 32.4 31.8 33.3 31.9 24.2 23.2 22.8 22.9

Chemokine (CX3-C motif) ligand 1 (CX3CL1) 30.1 31.1 29.9 30.0 28.1 28.4 27.2 27.0

Chemokine (C-X-C motif) ligand 1 (CXCL1) 26.4 27.3 26.6 26.1 18.4 17.5 18.0 17.7

Chemokine (C-X-C motif) ligand 10 (CXCL10) 26.1 27.0 26.5 25.6 19.8 19.3 19.6 19.4

Chemokine (C-X-C motif) ligand 11 (CXCL11) 33.8 35.3 33.5 34.7 30.0 29.8 29.4 29.1

Chemokine (C-X-C motif) ligand 12 (CXCL12) 31.6 32.6 31.3 31.5 32.3 33.3 33.3 31.7

Chemokine (C-X-C motif) ligand 13 (CXCL13) 25.7 29.7 25.9 26.2 25.9 25.9 24.6 24.3

Chemokine (C-X-C motif) ligand 14 (CXCL14) 23.0 25.0 22.9 23.0 24.8 23.8 24.5 23.9

Chemokine (C-X-C motif) ligand 16 (CXCL16) 20.4 21.4 20.4 20.0 20.1 19.1 19.1 19.0

Chemokine (C-X-C motif) ligand 17 (CXCL17) 38.0 38.0 34.7 38.0 38.0 38.0 38.0 38.0

Chemokine (C-X-C motif) ligand 2 (CXCL2) 23.6 24.4 24.6 23.5 16.9 16.0 16.2 15.7

Chemokine (C-X-C motif) ligand 3 (CXCL3) 26.7 27.7 27.0 26.1 17.8 17.3 17.3 16.9

Chemokine (C-X-C motif) ligand 5 (CXCL5) 27.0 27.8 28.4 28.6 23.7 23.6 23.1 22.6

Chemokine (C-X-C motif) ligand 9 (CXCL9) 32.7 34.1 34.9 32.0 29.7 29.0 29.0 28.9

Chemokine (C-X-C motif) receptor 3 (CXCR3) 27.4 29.1 27.7 28.1 28.9 28.7 28.4 28.5

Epstein-Barr virus induced gene 3 (EBI3) 22.9 22.7 22.9 22.9 23.0 22.3 22.0 22.1

Epiregulin (EREG) 30.2 28.7 29.6 29.4 25.9 25.2 25.9 25.0

Fibroblast growth factor 7 (keratinocyte 

growth factor; FGF7) 32.7 32.4 31.9 32.5 33.4 33.3 34.3 34.5

G-protein receptor 84 (GPR84) 25.5 25.8 25.8 24.5 21.7 20.7 20.8 20.1

Histocompatibility 2, class II antigen E beta 

(H2.EB1) 21.6 22.1 20.7 21.0 21.5 21.2 20.9 21.5

WT control WT LPS
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Table 9

Gene 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0

Heparin-binding EGF-like growth factor 

(HBEGF) 27.7 27.1 27.6 27.7 27.0 26.4 25.2 26.2

Interleukin 10 (IL10) 31.9 35.7 31.8 33.7 27.4 26.5 25.4 26.2

Interleukin 11 (IL11) 34.1 34.3 33.8 33.1 34.5 32.8 34.4 34.1

Interleukin 12 alpha (IL12a) 30.7 30.6 31.3 30.2 21.7 20.9 20.7 20.4

Interleukin 12 beta (IL12b) 28.7 29.1 29.5 28.2 19.2 18.6 18.5 18.9

Interleukin 13 (IL13) 38.0 38.0 38.0 38.0 36.2 33.0 38.0 34.5

Interleukin 15 (IL15) 24.7 25.8 25.1 25.3 22.5 21.8 22.0 22.1

Interleukin 16 (IL16) 23.4 24.0 23.5 23.9 27.1 26.6 26.2 26.0

Interleukin 17 alpha (IL17a) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Interleukin 18 (IL18) 25.3 25.9 25.6 25.4 24.7 23.9 23.4 23.7

Interleukin 19 (IL19) 33.6 34.8 38.0 38.0 28.9 28.5 28.4 29.0

Interleukin 1 alpha (IL1a) 24.8 24.6 25.8 24.8 18.0 17.4 16.5 16.9

Interleukin 1 beta (IL1b) 25.7 25.8 25.1 24.6 17.0 16.3 15.6 15.6

Interleukin 2 (IL2) 38.0 38.0 38.0 38.0 38.0 38.0 33.9 35.7

Interleukin 20 (IL20) 38.0 38.0 38.0 38.0 35.0 33.0 35.9 34.7

Interleukin 21 (IL21) 32.4 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Interleukin 22 (IL22) 38.0 38.0 38.0 38.0 38.0 38.0 35.4 38.0

Interleukin 23 alpha (IL23a) 33.4 31.4 32.3 31.3 23.4 22.2 21.5 21.6

Interleukin 24 (IL24) 33.3 38.0 38.0 38.0 38.0 38.0 38.0 34.1

Interleukin 25 (IL25) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Interleukin 27 (IL27) 28.3 29.0 28.9 28.3 20.7 19.8 20.1 19.7

Interleukin 28 beta (IL28b) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Interleukin 3 (IL3) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Interleukin 31 (IL31) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Interleukin 33 (IL33) 30.6 31.1 31.6 32.2 29.4 29.5 28.5 27.9

Interleukin 34 (IL34) 38.0 35.7 35.1 34.7 38.0 35.5 38.0 34.6

Interleukin 4 (IL4) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Interleukin 5 (IL5) 33.0 38.0 34.2 34.4 38.0 38.0 34.9 38.0

Interleukin 6 (IL6) 29.5 30.0 30.4 29.1 19.9 19.4 19.0 19.0

Interleukin 7 (IL7) 29.6 29.8 29.4 29.5 28.9 28.5 28.7 28.3

Interleukin 9 (IL9) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Integrin alpha M (ITGAM; CD11B) 18.1 18.8 18.2 18.4 19.9 18.8 19.3 19.1

Nerve growth factor (NGF) 28.3 26.8 29.2 28.3 29.2 27.5 27.3 27.0

Nitric oxide synthase, inducible (NOS2) 31.0 31.7 33.0 31.2 25.7 25.1 24.2 25.3

Platelet factor 4 (PF4; CXCL4) 19.1 22.5 19.4 19.5 20.2 19.6 19.8 20.3

Pro-platelet basic protein (chemokine (C-X-C 

motif) ligand 7 28.5 30.3 27.8 28.6 28.8 28.7 28.3 29.0

Prostaglandin E synthase (PTGES) 23.8 24.1 24.9 24.5 20.9 19.9 19.6 18.7

Prostaglandin-endoperoxide synthase 2      

(COX-2; PTGS2) 29.8 27.0 29.1 28.8 19.4 19.0 18.6 18.6

 Signal Transducer and Activator of 

Transcription protein 4 (STAT4) 28.7 29.7 28.4 28.4 28.8 28.3 28.1 27.9

Toll-like receptor 4 (TLR4) 22.0 23.0 22.3 22.2 23.6 22.9 22.3 22.5

Tumor necrosis factor (TNF) 22.6 22.0 23.1 21.5 16.1 15.5 15.4 15.4

Alpha-taxilin (TXLNA) 23.0 23.8 23.3 23.2 24.9 23.9 24.1 23.9

Chemokine (C motif) ligand 1 (XCL1) 33.1 37.1 35.3 34.3 35.7 34.5 33.9 34.5

Housekeeping genes

Beta-actin (ACTB) 15.9 16.2 16.0 16.1 15.8 15.7 15.7 15.9

Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) 17.6 17.8 18.1 18.0 18.7 18.2 18.6 18.4

Hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) 21.5 22.8 22.0 21.7 22.7 22.3 22.7 22.8

18s (X18S) 13.2 13.5 13.1 13.3 15.8 13.0 13.1 13.1

WT control WT LPS
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Appendix Table 10: Raw CT values of genes screened in GPR84 KO B-GEPMs in control 
conditions or after 3 hours of LPS stimulation 

 

 

Table 10

Gene 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0

Allograft inflammatory factors -1 (Iba1; AIF) 24.5 23.3 25.0 24.9 25.1 27.1 26.8 26.1

Amphiregulin (AREG) 33.4 31.4 34.6 38.0 27.0 30.9 30.5 29.4

Artemin (ARTN) 32.9 32.3 35.0 32.9 28.1 29.5 29.0 27.7

Brain-derived neurotrophic factor (BDNF) 33.7 35.0 34.4 33.7 32.8 38.0 32.6 35.1

Betacellulin (BTC) 33.0 31.0 31.0 30.6 33.6 31.5 29.4 31.3

Chemokine (C-C motif) ligand 1 (CCL1) 38.0 38.0 38.0 34.1 38.0 38.0 38.0 35.3

Chemokine (C-C motif) ligand 11 (CCL11) 38.0 38.0 38.0 38.0 38.0 33.4 34.8 34.7

Chemokine (C-C motif) ligand 17 (CCL17) 38.0 38.0 38.0 35.1 31.9 30.2 30.1 28.1

Chemokine (C-C motif) ligand 19 (CCL19) 38.0 38.0 38.0 38.0 38.0 38.0 35.0 38.0

Chemokine (C-C motif) ligand 2 (CCL2) 24.9 25.6 26.4 25.7 22.1 22.9 22.3 22.5

Chemokine (C-C motif) ligand 20 (CCL20) 32.1 34.9 38.0 38.0 28.8 32.9 30.4 29.5

Chemokine (C-C motif) ligand 21a,b 

(CCL21a,b) 38.0 34.1 38.0 33.2 38.0 38.0 38.0 35.2

Chemokine (C-C motif) ligand 22 (CCL22) 30.0 31.7 32.4 31.8 25.4 22.5 22.1 20.2

Chemokine (C-C motif) ligand 24 (CCL24) 24.5 22.7 24.6 24.7 23.4 24.0 23.7 24.2

Chemokine (C-C motif) ligand 25 (CCL25) 27.3 26.2 27.6 27.7 28.3 29.8 29.9 29.0

Chemokine (C-C motif) ligand 26 (CCL26) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Chemokine (C-C motif) ligand 27a,b 

(CCL27a,b) 27.4 26.8 27.1 27.3 28.7 29.6 29.3 28.6

Chemokine (C-C motif) ligand 28 (CCL28) 38.0 31.6 31.8 31.8 32.9 34.0 33.1 35.3

Chemokine (C-C motif) ligand 3 (CCL3) 26.5 26.0 27.4 26.9 19.6 20.8 20.0 19.7

Chemokine (C-C motif) ligand 4 (CCL4) 25.5 24.5 26.4 26.4 16.8 19.1 18.6 18.0

Chemokine (C-C motif) ligand 5 (CCL5) 22.0 22.1 24.0 23.6 16.8 18.0 17.7 16.8

Chemokine (C-C motif) ligand 6 (CCL6) 16.6 16.5 17.5 17.3 17.8 18.8 18.8 18.4

Chemokine (C-C motif) ligand 7 (CCL7) 25.4 28.1 27.8 27.0 24.0 23.2 22.8 23.6

Chemokine (C-C motif) ligand 8 (CCL8) 23.9 21.8 23.4 23.0 23.0 25.3 24.5 24.1

Chemokine (C-C motif) ligand 9 (CCL9) 19.3 19.5 20.0 20.1 17.1 17.7 17.2 17.0

T-cell surface glycoprotein CD3 delta chain 

(CD3D) 34.3 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Colony stimulating  factor 1 (macrophage) 

(CSF1) 24.5 23.8 24.4 24.0 22.5 22.7 22.2 21.1

Colony stimulating  factor 1 (macrophage) 

receptor (CSF1R) 18.1 17.3 18.1 18.2 18.5 20.0 20.0 19.0

Colony stimulating  factor 2 (granulocyte-

macrophage) (CSF2) 31.2 33.7 38.0 38.0 24.6 22.7 21.9 21.0

Colony stimulating  factor 3 (granulocyte) 

(CSF3) 30.8 32.7 33.7 33.4 24.7 24.6 24.1 23.8

Chemokine (CX3-C motif) ligand 1 (CX3CL1) 32.8 29.9 29.9 30.0 28.9 28.9 28.0 27.0

Chemokine (C-X-C motif) ligand 1 (CXCL1) 26.6 26.5 28.1 27.8 18.3 20.7 20.0 18.0

Chemokine (C-X-C motif) ligand 10 (CXCL10) 25.3 25.2 26.8 26.2 18.8 19.8 19.6 19.0

Chemokine (C-X-C motif) ligand 11 (CXCL11) 38.0 34.5 38.0 38.0 31.0 29.6 29.6 29.0

Chemokine (C-X-C motif) ligand 12 (CXCL12) 33.8 31.5 31.1 31.0 31.6 34.0 32.8 33.3

Chemokine (C-X-C motif) ligand 13 (CXCL13) 27.0 26.3 26.6 25.6 27.3 26.8 25.8 27.1

Chemokine (C-X-C motif) ligand 14 (CXCL14) 23.9 22.5 22.9 23.4 22.8 24.8 24.9 24.3

Chemokine (C-X-C motif) ligand 16 (CXCL16) 21.4 20.0 21.3 21.0 19.2 20.8 20.2 19.3

Chemokine (C-X-C motif) ligand 17 (CXCL17) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Chemokine (C-X-C motif) ligand 2 (CXCL2) 24.5 23.2 25.0 25.4 16.1 18.3 17.8 16.6

Chemokine (C-X-C motif) ligand 3 (CXCL3) 25.5 25.8 28.0 28.3 17.4 19.5 19.2 17.6

Chemokine (C-X-C motif) ligand 5 (CXCL5) 25.5 28.5 28.5 27.0 23.7 24.8 24.4 22.7

Chemokine (C-X-C motif) ligand 9 (CXCL9) 31.8 32.0 33.6 30.8 29.5 29.9 29.1 28.4

Chemokine (C-X-C motif) receptor 3 (CXCR3) 27.6 27.3 27.8 27.7 27.8 29.7 29.7 29.1

Epstein-Barr virus induced gene 3 (EBI3) 22.7 22.4 23.8 23.7 23.1 23.9 23.6 21.8

Epiregulin (EREG) 29.9 30.0 30.6 29.8 24.3 26.7 26.5 25.1

Fibroblast growth factor 7 (keratinocyte 

growth factor; FGF7) 32.6 31.4 34.0 33.8 37.6 38.0 38.0 35.6

G-protein receptor 84 (GPR84) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Histocompatibility 2, class II antigen E beta 

(H2.EB1) 20.3 20.8 21.5 21.2 21.3 22.4 22.6 21.6

KO control KO LPS
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Table 10

Gene 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0

Heparin-binding EGF-like growth factor 

(HBEGF) 28.4 28.1 28.4 28.2 27.4 28.0 27.1 27.1

Interleukin 10 (IL10) 30.1 32.5 32.2 32.3 26.6 27.2 27.8 26.9

Interleukin 11 (IL11) 36.5 33.6 33.5 34.0 33.7 38.0 38.0 34.0

Interleukin 12 alpha (IL12a) 29.1 30.1 32.1 31.8 21.7 22.2 21.9 20.6

Interleukin 12 beta (IL12b) 28.8 27.5 30.2 30.1 19.0 19.9 19.7 19.0

Interleukin 13 (IL13) 38.0 38.0 38.0 38.0 34.8 38.0 38.0 38.0

Interleukin 15 (IL15) 24.7 24.5 25.9 25.6 22.5 23.0 22.9 22.2

Interleukin 16 (IL16) 23.8 22.7 23.9 23.8 27.0 27.8 27.7 26.6

Interleukin 17 alpha (IL17a) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Interleukin 18 (IL18) 25.1 24.6 25.8 25.9 24.8 25.5 24.9 23.6

Interleukin 19 (IL19) 35.0 33.6 38.0 34.8 28.4 29.4 30.4 29.5

Interleukin 1 alpha (IL1a) 24.8 24.8 25.6 25.9 18.0 18.1 17.8 17.2

Interleukin 1 beta (IL1b) 25.8 24.9 26.9 26.8 16.9 17.9 17.4 16.2

Interleukin 2 (IL2) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Interleukin 20 (IL20) 38.0 38.0 38.0 38.0 34.6 34.8 38.0 35.8

Interleukin 21 (IL21) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Interleukin 22 (IL22) 38.0 38.0 38.0 38.0 38.0 36.9 38.0 35.3

Interleukin 23 alpha (IL23a) 38.0 32.1 32.0 33.3 23.2 24.4 23.9 22.0

Interleukin 24 (IL24) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Interleukin 25 (IL25) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Interleukin 27 (IL27) 28.8 28.0 29.6 29.2 20.3 21.5 21.2 20.0

Interleukin 28 beta (IL28b) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Interleukin 3 (IL3) 38.0 38.0 38.0 38.0 37.9 38.0 38.0 38.0

Interleukin 31 (IL31) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 36.5

Interleukin 33 (IL33) 30.6 32.3 32.2 30.8 28.5 29.5 28.9 27.8

Interleukin 34 (IL34) 38.0 33.5 36.0 38.0 38.0 38.0 36.1 35.9

Interleukin 4 (IL4) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Interleukin 5 (IL5) 34.7 33.8 38.0 33.3 38.0 38.0 38.0 38.0

Interleukin 6 (IL6) 28.7 29.2 31.4 30.9 19.9 21.3 20.9 19.1

Interleukin 7 (IL7) 29.5 29.2 29.7 29.7 29.3 29.7 30.2 28.5

Interleukin 9 (IL9) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0

Integrin alpha M (ITGAM; CD11B) 18.5 17.8 18.5 19.1 18.2 20.1 20.3 19.3

Nerve growth factor (NGF) 27.8 29.2 28.9 28.7 28.6 28.8 27.9 27.0

Nitric oxide synthase, inducible (NOS2) 31.0 31.5 32.5 32.0 26.0 24.3 24.4 24.5

Platelet factor 4 (PF4; CXCL4) 19.3 18.5 19.6 19.7 19.3 21.4 21.3 20.6

Pro-platelet basic protein (chemokine (C-X-C 

motif) ligand 7 27.4 28.3 28.8 28.7 28.3 28.9 29.8 28.9

Prostaglandin E synthase (PTGES) 25.5 24.0 25.9 25.8 20.1 21.7 21.4 19.5

Prostaglandin-endoperoxide synthase 2      

(COX-2; PTGS2) 28.0 28.9 29.6 29.9 19.5 20.1 19.5 18.9

 Signal Transducer and Activator of 

Transcription protein 4 (STAT4) 28.5 28.1 29.5 29.0 28.2 28.3 28.7 28.0

Toll-like receptor 4 (TLR4) 22.2 21.8 22.7 22.6 23.3 24.2 23.7 22.9

Tumor necrosis factor (TNF) 23.4 21.9 23.3 23.5 15.3 16.2 15.9 15.5

Alpha-taxilin (TXLNA) 23.3 22.3 23.5 23.7 24.0 25.5 25.1 24.3

Chemokine (C motif) ligand 1 (XCL1) 37.1 33.7 37.2 34.0 35.3 36.9 35.1 34.3

Housekeeping genes

Beta-actin (ACTB) 16.1 15.5 16.2 16.3 15.8 16.5 16.4 16.0

Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) 17.5 17.2 18.2 18.3 18.1 19.1 19.2 18.8

Hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) 22.3 20.8 22.5 22.3 22.0 24.5 24.2 23.5

18s (X18S) 13.1 13.4 13.1 13.0 13.2 13.7 13.4 13.1

KO control KO LPS
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Appendix Table 11: FC values of genes profiled in the sciatic nerve and spinal cord at 
7 and 21 days post PNL and in B-GEPMs 3 hours post LPS stimulation in GPR84 WT 
mice 

 

 

Macrophages

Gene

7 days post 

PNL

21 days post 

PNL 

7 days post 

PNL

21 days post 

PNL 

3 hours post 

LPS

Allograft inflammatory factors -1 (Iba1; AIF) 4.3** 1.2 1.1 1.2 1.0
Amphiregulin (AREG) 12.2 ND ND -1.1 64.0*

Arginase-1 (ARG-1) 5.7 X -1.2 X X
Artemin (ARTN) 4.5* -1.3 1.1 -1.2 38.5**

Brain-derived neurotrophic factor (BDNF) 7.9* 8.3 1.1 -1.1 -2.5
Betacellulin (BTC) 4.1* 2.8 -1.1 1.3 1.1

Chemokine (C-C motif) ligand 1 (CCL1) -1.3 ND ND ND ND
Chemokine (C-C motif) ligand 11 (CCL11) -3.0* -2.4 1.0 1.0 4.3
Chemokine (C-C motif) ligand 17 (CCL17) -3.0 1.5 -1.4 -1.1 224.2**
Chemokine (C-C motif) ligand 19 (CCL19) -2.1* -2.3 -1.6 -1.5 71.0***

Chemokine (C-C motif) ligand 2 (CCL2) 1.9 1.6 4.2 5.4 27.2***
Chemokine (C-C motif) ligand 20 (CCL20) ND ND ND ND 28.7

Chemokine (C-C motif) ligand 21a,b 

(CCL21a,b) -2.9* -4.5 1.0 -1.5 1.4
Chemokine (C-C motif) ligand 22 (CCL22) 3.8* 3.1 -1.2 1.4 2360.1***
Chemokine (C-C motif) ligand 24 (CCL24) -3.6* -4.2 -1.3 2.5 3.0*
Chemokine (C-C motif) ligand 25 (CCL25) -1.8* -3.5 1.0 -1.3 -3.0***
Chemokine (C-C motif) ligand 26 (CCL26) X ND X ND ND

Chemokine (C-C motif) ligand 27a,b 

(CCL27a,b) -3.0** -2.6 -1.1 -1.2 -2.1**
Chemokine (C-C motif) ligand 28 (CCL28) X -3.2 X -1.1 -2.2

Chemokine (C-C motif) ligand 3 (CCL3) 10.2** 17.8 -1.2 1.5 249.5***
Chemokine (C-C motif) ligand 4 (CCL4) 8.3** 8.0 -1.2 1.6 341.3***
Chemokine (C-C motif) ligand 5 (CCL5) 5.8* 2.8 1.0 -1.2 114.4***
Chemokine (C-C motif) ligand 6 (CCL6) 2.4 1.0 1.0 -1.0 -1.5
Chemokine (C-C motif) ligand 7 (CCL7) 1.6 -2.2 15.8* 1.6 41.4***
Chemokine (C-C motif) ligand 8 (CCL8) 7.6 3.3 1.2 2.4 -1.5
Chemokine (C-C motif) ligand 9 (CCL9) 1.8 -1.7 1.3 -1.1 10.7***

T-cell surface glycoprotein CD3 delta chain 

(CD3D) 2.5 2.6 -2.3 -1.6 ND
Colony stimulating  factor 1 (macrophage) 

(CSF1) -1.7* -1.5 1.0 1.1 5.1**
Colony stimulating  factor 1 (macrophage) 

receptor (CSF1R) X -1.2 X 1.0 -1.9**
Colony stimulating  factor 2 (granulocyte-

macrophage) (CSF2) -1.4 -1.8 ND ND 6884.0***
Colony stimulating  factor 3 (granulocyte) 

(CSF3) 4.4 ND ND ND 689.8***
Colony stimulating  factor 3 (granulocyte) 

receptor (CSF3R) 6.9* X 1.1 X X
Chemokine (CX3-C motif) ligand 1 (CX3CL1) 1.4 -1.6 -1.1 -1.1 7.8**
Chemokine (C-X-C motif) ligand 1 (CXCL1) -1.7 2.2 -1.9 1.5 517.8***

Chemokine (C-X-C motif) ligand 10 (CXCL10) 1.8 1.3 1.7 2.7 140.6***

Chemokine (C-X-C motif) ligand 11 (CXCL11) -7.4* -3.7 -1.2 -1.4 35.1***

Chemokine (C-X-C motif) ligand 12 (CXCL12) 2.5 -1.6 -1.1 1.4 -1.5

Chemokine (C-X-C motif) ligand 13 (CXCL13) -11.7** -9.9 2.7 2.9 4.2

Chemokine (C-X-C motif) ligand 14 (CXCL14) 1.3 1.2 -1.2 1.0 -1.4

Chemokine (C-X-C motif) ligand 16 (CXCL16) 5.5** 2.6 -1.3 1.0 3.0

Chemokine (C-X-C motif) ligand 17 (CXCL17) -6.2 -2.1 -1.4 4.2 ND
Chemokine (C-X-C motif) ligand 2 (CXCL2) 20.0** 3.5 -1.4 1.4 289.9***

Table 11 Sciatic nerve Spinal cord

WT
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Macrophages

Gene

7 days post 

PNL

21 days post 

PNL 

7 days post 

PNL

21 days post 

PNL 

3 hours post 

LPS

Chemokine (C-X-C motif) ligand 3 (CXCL3) 226.2** 18.1 2.0 ND 959.8***
Chemokine (C-X-C motif) ligand 5 (CXCL5) 445.9** 21.2 -1.4 1.3 33.7***
Chemokine (C-X-C motif) ligand 9 (CXCL9) 3.5* 1.3 6.0 1.5 25.4**

Chemokine (C-X-C motif) receptor 3 (CXCR3) 1.7 2.3 -1.5 3.5 -1.1
Epstein-Barr virus induced gene 3 (EBI3) 1.5 1.2 -1.1 1.0 1.8

Epiregulin (EREG) 55.3* 2.9 ND ND 19.7**
Fibroblast growth factor 7 (keratinocyte 

growth factor; FGF7) -3.5** -4.5 1.1 -1.3 -2.2
G-protein receptor 84 (GPR84) 51.3** 3.6 2.6 1.1 30.8***

Histocompatibility 2, class II antigen E beta 

(H2.EB1) X -1.6 X -1.2 1.4
Heparin-binding EGF-like growth factor 

(HBEGF) -3.3** -3.2* -1.1 1.0 3.2*
Interleukin 10 (IL10) 3.0 -3.4 2.1 1.5 153.2**
Interleukin 11 (IL11) 1.1 -4.0 -1.7 -1.2 1.2

Interleukin 12 alpha (IL12a) -3.0* -3.7 -1.2 -1.2 1121.8***
Interleukin 12 beta (IL12b) 7.1 ND -1.4 2.0 1399.8***

Interleukin 13 (IL13) -2.1 ND -2.7 ND 7.7
Interleukin 15 (IL15) -1.6* -1.3 -1.3 1.3 11.1***
Interleukin 16 (IL16) -4.1** -2.8 -1.1 -1.1 -5.4***

Interleukin 17 alpha (IL17a) ND ND ND ND ND
Interleukin 18 (IL18) -1.3 -3.2 -1.2 1.1 4.0**
Interleukin 19 (IL19) ND ND -1.4 1.4 219.6*

Interleukin 1 alpha (IL1a) 103.3** 11.5 2.0 2.1 288.4***
Interleukin 1 beta (IL1b) 24.9* 42.8 1.9 -1.8 749.5***

Interleukin 2 (IL2) ND ND ND ND ND
Interleukin 20 (IL20) ND ND -2.1 ND 13.1*
Interleukin 21 (IL21) -1.6 ND -1.8 -1.1 ND
Interleukin 22 (IL22) ND ND ND -1.1 ND

Interleukin 23 alpha (IL23a) -3.0* -6.0 -1.1 1.3 1227.4***
Interleukin 24 (IL24) ND ND 9.0 ND ND
Interleukin 25 (IL25) -5.7 -1.7 1.5 1.6 ND
Interleukin 27 (IL27) 3.2 16.4 1.9 1.0 475.3***

Interleukin 28 beta (IL28b) ND ND ND ND ND
Interleukin 3 (IL3) ND ND ND ND ND

Interleukin 31 (IL31) ND ND ND ND ND
Interleukin 33 (IL33) 2.3** -4.7 -1.1 1.0 7.5**
Interleukin 34 (IL34) 4.5* -3.6 -1.6 -1.5 -1.2

Interleukin 4 (IL4) ND ND ND ND ND
Interleukin 5 (IL5) -1.5 -8.7 -1.1 -2.1 -3.9
Interleukin 6 (IL6) 1.8 -1.4 1.5 -1.1 1785.4***
Interleukin 7 (IL7) -1.5 -2.1 1.1 1.3 2.6**
Interleukin 9 (IL9) ND ND ND ND ND

Integrin alpha M (ITGAM; CD11B) 4.6* 2.0 1.6 1.0 -1.4
Mannose receptor, C type 1 (MRC1) 1.5 X -1.2 X X

Nerve growth factor (NGF) 1.0 -1.8 1.0 -1.1 1.7
Nitric oxide synthase, inducible (NOS2) 3.8** 4.3 -1.2 1.2 130.0***

Neuregulin 1 (NRG1) 1.1 X -1.2 X X
Platelet factor 4 (PF4; CXCL4) 2.7* -1.5 1.1 1.4 1.4

Pro-platelet basic protein (chemokine (C-X-C 

motif) ligand 7 -1.9 -2.6 1.4 2.6 1.4
Prostaglandin E synthase (PTGES) 1.6 -2.6 -1.2 1.0 30.1***

Prostaglandin-endoperoxide synthase 2 (COX-

2; PTGS2) 1.8 -1.5 -1.1 1.4 1120.5**
 Signal Transducer and Activator of 

Transcription protein 4 (STAT4) 1.2 -9.4 -1.1 -2.2 1.8
Toll-like receptor 4 (TLR4) -1.0 -2.0 -1.0 1.1 -1.1

Table 11

WT

Sciatic nerve Spinal cord
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Macrophages

Gene

7 days post 

PNL

21 days post 

PNL 

7 days post 

PNL

21 days post 

PNL 

3 hours post 

LPS

Tumor necrosis factor (TNF) 6.8** 2.6 2.2 -1.1 134.6***
Alpha-taxilin (TXLNA) 1.0 -1.1 1.0 1.1 -1.4**

Chemokine (C motif) ligand 1 (XCL1) 4.7 17.2 1.3 -1.2 1.5

Table 11

WT

Sciatic nerve Spinal cord
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Appendix Table 12: FC values of genes profiled in the sciatic nerve and spinal cord at 
7 and 21 days post PNL and in B-GEPMs 3 hours post LPS stimulation in GPR84 KO 
mice 

 

 

Macrophages

Gene

7 days post 

PNL

21 days post 

PNL 

7 days post 

PNL

21 days post 

PNL 

3 hours post 

LPS

Allograft inflammatory factors -1 (Iba1; AIF) 9.2** 2.3 1.5* 1.1 -2.2*
Amphiregulin (AREG) ND ND -1.6 2.6 49.0*

Arginase-1 (ARG-1) 20.7** X 1.1 X X
Artemin (ARTN) 2.4 1.4 -1.1 -1.3 43.2***

Brain-derived neurotrophic factor (BDNF) 7.0** 23.0 -1.2 1.0 1.2
Betacellulin (BTC) 2.0 5.0* 1.3 1.0 1.6

Chemokine (C-C motif) ligand 1 (CCL1) 8.0 ND ND ND ND
Chemokine (C-C motif) ligand 11 (CCL11) -4.1 -2.5 -1.8 -1.3 11.3
Chemokine (C-C motif) ligand 17 (CCL17) 1.8 -1.1 1.4 -1.1 243.7**
Chemokine (C-C motif) ligand 19 (CCL19) -2.0 -1.5 -1.5 1.1 ND

Chemokine (C-C motif) ligand 2 (CCL2) 4.9* 1.7 5.4* 4.0 15.6***
Chemokine (C-C motif) ligand 20 (CCL20) ND ND ND ND 66.6*

Chemokine (C-C motif) ligand 21a,b 

(CCL21a,b) -1.9 -1.9 1.9 1.3 ND
Chemokine (C-C motif) ligand 22 (CCL22) 3.9 1.8 -1.4 -1.4 798.4**
Chemokine (C-C motif) ligand 24 (CCL24) -2.2* -1.7 -1.1 1.0 2.1
Chemokine (C-C motif) ligand 25 (CCL25) -1.8 -1.6 -1.2 1.0 -2.5**
Chemokine (C-C motif) ligand 26 (CCL26) X ND X ND ND

Chemokine (C-C motif) ligand 27a,b 

(CCL27a,b) -3.3* -2.1** -1.0 1.1 -2.3**
Chemokine (C-C motif) ligand 28 (CCL28) X -6.4 X 1.1 1.2

Chemokine (C-C motif) ligand 3 (CCL3) 25.7*** 4.0 -1.2 1.2 165.1***
Chemokine (C-C motif) ligand 4 (CCL4) 32.0** 3.3 1.2 1.5 307.5***
Chemokine (C-C motif) ligand 5 (CCL5) 6.5* 3.2 2.3 1.7 82.2**
Chemokine (C-C motif) ligand 6 (CCL6) 3.8* 2.2 1.2 1.2 -1.6*
Chemokine (C-C motif) ligand 7 (CCL7) 7.6* -2.4 21.5* 7.5 21.3**
Chemokine (C-C motif) ligand 8 (CCL8) 21.0* 13.4 3.8 3.7 -1.4
Chemokine (C-C motif) ligand 9 (CCL9) 4.2* 1.4 -1.1 1.2 9.3***

T-cell surface glycoprotein CD3 delta chain 

(CD3D) 5.9* -2.5 3.9 1.7 ND
Colony stimulating  factor 1 (macrophage) 

(CSF1) -1.9* -1.4 1.1 1.1 6.9**
Colony stimulating  factor 1 (macrophage) 

receptor (CSF1R) X 1.6 X 1.4 -1.6**
Colony stimulating  factor 2 (granulocyte-

macrophage) (CSF2) 3.5 -1.1 ND ND 11030**
Colony stimulating  factor 3 (granulocyte) 

(CSF3) 5.7 ND 1.2 ND 531.1***
Colony stimulating  factor 3 (granulocyte) 

receptor (CSF3R) 13.6*** X 1.6 X X
Chemokine (CX3-C motif) ligand 1 (CX3CL1) -1.1 1.3 1.0 1.1 9.0*
Chemokine (C-X-C motif) ligand 1 (CXCL1) 1.9 1.0 -1.8 1.1 428.9***

Chemokine (C-X-C motif) ligand 10 (CXCL10) 5.5* 1.3 2.0 2.2 158.4***

Chemokine (C-X-C motif) ligand 11 (CXCL11) -9.6* -11.1 -1.7 1.2 268.9***

Chemokine (C-X-C motif) ligand 12 (CXCL12) 1.5 1.0 -1.1 -1.2 -1.3

Chemokine (C-X-C motif) ligand 13 (CXCL13) -20.1* -5.5 3.1 4.7 1.3

Chemokine (C-X-C motif) ligand 14 (CXCL14) 1.9 3.2 -1.2 1.1 -1.2

Chemokine (C-X-C motif) ligand 16 (CXCL16) 7.3** 2.6 1.0 1.0 3.5**

Chemokine (C-X-C motif) ligand 17 (CXCL17) -1.9 12.1 1.7 2.2 ND
Chemokine (C-X-C motif) ligand 2 (CXCL2) 55.9** 4.3 -2.0 -1.2 261.1***

Table 12

KO

Sciatic nerve Spinal cord
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Macrophages

Gene

7 days post 

PNL

21 days post 

PNL 

7 days post 

PNL

21 days post 

PNL 

3 hours post 

LPS

Chemokine (C-X-C motif) ligand 3 (CXCL3) 184.4** 12.4 ND 1.2 597.2***
Chemokine (C-X-C motif) ligand 5 (CXCL5) 882.3** 31.2 -1.5 1.2 18.5*
Chemokine (C-X-C motif) ligand 9 (CXCL9) 9.8* 2.9 4.5 2.5 11.8**

Chemokine (C-X-C motif) receptor 3 (CXCR3) 3.1* 2.7 7.0 1.2 -1.7
Epstein-Barr virus induced gene 3 (EBI3) 1.1 -1.2 1.4 1.7 1.7

Epiregulin (EREG) 30.5* ND ND ND 35.6***
Fibroblast growth factor 7 (keratinocyte 

growth factor; FGF7) -3.8* -2.4 -1.5 -1.5 -12.1**
G-protein receptor 84 (GPR84) ND ND ND ND ND

Histocompatibility 2, class II antigen E beta 

(H2.EB1) X 1.1 X -1.3 -1.2
Heparin-binding EGF-like growth factor 

(HBEGF) -5.7* -3.1** 1.1 1.0 3.1*
Interleukin 10 (IL10) 5.2 ND 2.2 ND 42.2**
Interleukin 11 (IL11) -1.7* -3.9 -1.1 -2.1 -1.7

Interleukin 12 alpha (IL12a) -3.0 -3.9 -1.5 -1.2 959.5***
Interleukin 12 beta (IL12b) 26.2* 4.7 1.0 -3.1 1385.0***

Interleukin 13 (IL13) ND ND ND ND ND
Interleukin 15 (IL15) -1.4 1.0 1.1 1.0 9.5***
Interleukin 16 (IL16) -6.3* -3.7 -1.5 1.0 -8.0***

Interleukin 17 alpha (IL17a) ND ND ND ND ND
Interleukin 18 (IL18) 1.5 -2.1 -1.1 1.1 2.6
Interleukin 19 (IL19) ND ND -3.1 2.2 100.0**

Interleukin 1 alpha (IL1a) 91.0** 17.3 2.1 1.5 302.5***
Interleukin 1 beta (IL1b) 79.9*** 3.2 1.8 1.4 823.4***

Interleukin 2 (IL2) 1.0 ND ND ND ND
Interleukin 20 (IL20) ND ND ND ND 7.6*
Interleukin 21 (IL21) ND ND -1.2 -1.2 ND
Interleukin 22 (IL22) ND ND ND ND ND

Interleukin 23 alpha (IL23a) -7.3 -14.3 -1.5 -2.3 2374.0**
Interleukin 24 (IL24) ND ND 5.7 ND ND
Interleukin 25 (IL25) -3.7 -2.4 1.1 1.1 ND
Interleukin 27 (IL27) 6.8 2.2 -1.8 1.1 470.0***

Interleukin 28 beta (IL28b) ND ND ND ND ND
Interleukin 3 (IL3) ND ND ND ND ND

Interleukin 31 (IL31) ND 1.4 ND ND ND
Interleukin 33 (IL33) -2.8 -3.7 1.0 1.2 11.5**
Interleukin 34 (IL34) -8.7 -1.1 -1.1 -1.2 ND

Interleukin 4 (IL4) ND ND ND ND ND
Interleukin 5 (IL5) -16.2*** 1.3 1.0 2.1 -5.0
Interleukin 6 (IL6) 14.3* -4.4 2.4 1.2 1438.0***
Interleukin 7 (IL7) -1.6 1.2 1.1 1.2 1.8
Interleukin 9 (IL9) ND ND ND ND ND

Integrin alpha M (ITGAM; CD11B) 6.4** 3.2 1.8* 1.6 -1.2
Mannose receptor, C type 1 (MRC1) 2.2 X -1.2 X X

Nerve growth factor (NGF) 1.1 -1.4 1.3 1.3 2.5
Nitric oxide synthase, inducible (NOS2) 5.3* 2.2 1.3 -1.1 204.2**

Neuregulin 1 (NRG1) 1.3 X 1.0 X X
Platelet factor 4 (PF4; CXCL4) 3.7 1.1 1.0 1.6 -1.5

Pro-platelet basic protein (chemokine (C-X-C 

motif) ligand 7 1.4 -7.1 1.0 2.5 1.0
Prostaglandin E synthase (PTGES) -2.2 -2.5 -1.1 -1.4 41.1***

Prostaglandin-endoperoxide synthase 2 (COX-

2; PTGS2) 2.2 -3.7 1.4 1.2 1292.0***
 Signal Transducer and Activator of 

Transcription protein 4 (STAT4) 1.9 -3.4 1.6 1.9 2.3*
Toll-like receptor 4 (TLR4) 1.5 1.4 1.2 1.0 -1.4

Table 12

KO

Sciatic nerve Spinal cord
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Macrophages

Gene

7 days post 

PNL

21 days post 

PNL 

7 days post 

PNL

21 days post 

PNL 

3 hours post 

LPS

Tumor necrosis factor (TNF) 18.3** 3.0 4.1 1.4 266.6***
Alpha-taxilin (TXLNA) -1.6* -1.2 -1.1 1.0 -1.7*

Chemokine (C motif) ligand 1 (XCL1) 19.8* 2.5 1.1 -1.1 1.8

Table 12

KO

Sciatic nerve Spinal cord
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