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ABSTRACT 

Motivation: Fine mapping is a widely used approach for identifying the 

causal variant(s) at disease-associated loci. Standard methods (e.g. multiple 
regression) require individual level genotypes. Recent fine mapping 

methods using summary-level data require the pairwise correlation 

coefficients (��) of the variants. However, haplotypes rather than pairwise ��, are the true biological representation of linkage disequilibrium (LD) 
among multiple loci. In this paper, we present an empirical iterative method, 

HAPlotype Regional Association analysis Program (HAPRAP), that 
enables fine mapping using summary statistics and haplotype information 

from an individual-level reference panel.  
Results: Simulations with individual-level genotypes show that the results 
of HAPRAP and multiple regression are highly consistent. In simulation 

with summary-level data, we demonstrate that HAPRAP is less sensitive to 

poor LD estimates. In a parametric simulation using Genetic Investigation 
of ANthropometric Traits (GIANT) height data, HAPRAP performs well 

with a small training sample size (N<2000) while other methods become 

suboptimal. Moreover, HAPRAP’s performance is not affected 
substantially by SNPs with low minor allele frequencies. We applied the 

method to existing quantitative trait and binary outcome meta-analyses 

(human height, QTc interval and gallbladder disease); all previous reported 
association signals were replicated and two additional variants were 

independently associated with human height. Due to the growing 

availability of summary level data, the value of HAPRAP is likely to 
increase markedly for future analyses (e.g. functional prediction and 

identification of instruments for Mendelian randomization). 

Availability: The HAPRAP package and documentation are available 
online: http://apps.biocompute.org.uk/haprap  

1 INTRODUCTION  

                                                 
 

Genome-wide association studies (GWAS) have identified 

thousands of single nucleotide polymorphisms (SNPs) associated 

with human complex traits and diseases (Hindorff et al., 2009; 

Manolio, 2010). To increase the power to detect small genetic 

effects associated with common complex traits, meta-analysis of 

multiple GWAS studies have also been conducted including blood 

lipids (Teslovich et al., 2010), Electrocardiographic (ECG) traits 

(Arking, et al., 2006; Pfeufer, et al., 2009; Newton-Cheh et al., 

2009; Marroni et al., 2009; Gaunt et al., 2012) and human height 

(Wood, et al., 2014) amongst others.  
When a plausible hit has been identified within a GWAS, the 

challenge becomes one of determining the independent potentially 

causal SNP signals from a background of many correlated variants 

within the LD block.  A common strategy adopted is to take the top 

association signal to represent the association in a genomic region. 

However, this design does not take into account the possibility of 

multiple causal variants within a region, which will result in an 

underestimation of the total variation that could be explained at a 

locus (Yang et al., 2012).   Statistical methods are available to 

identify independent hits; however these methods either require 

access to individual level data, or rely on pairwise LD estimates 

when summary statistics are used.   

Conditional analysis is time consuming when individual level 

genotype data from several cohorts needs to be analyzed separately 

and then combined in meta-analysis (Zheng et al., 2013). Providing 

the pairwise LD structure is consistent in samples from the same 

ethnic group (Ke et al., 2004), there are two approximate 

conditional analysis methods that can effectively use GWAS 

summary data: GCTA conditional and joint effect analysis (COJO) 

(Yang et al., 2012) and SSSRAP (Zheng et al., 2013).  
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COJO is a state-of-the-art method extending the scope of multiple 

regression to summary-level meta-analysis. COJO estimates the 

approximate joint SNP effects from summary statistics in a 

meta-analysis and LD information from an appropriate reference 

sample. SSSRAP is a numerical and graphical approach that 

transforms the marginal SNP effect of a sentinel SNP to the joint 

SNP effect of a test SNP through a 2×2 SNP-haplotypes matrix.  

These existing approximate conditional analysis methods use 

pairwise correlation coefficients (r2) between SNPs to represent LD 

structure in each associated region. However, when considering 

regions with three or more causal variants, utilizing allele 

frequencies and pair-wise LD correlation may lose LD information. 

Three-locus systems may place additional constraints on the 

maximum and minimum values for the pair-wise LD terms 

(Robinson et al., 1991). Haplotypes, which represent combinations 

of co-inherited alleles within the same chromosome, are a more 

biologically correct way to represent LD among multiple loci. Fine 

mapping using haplotypes will pick up the LD information that is 

not detected using pairwise LD measures.  

To aid the ‘missing LD information’ problem, we propose an 

empirical iterative method “HAPlotype-based Regional Association 

analysis Program” (HAPRAP) to improve the accuracy of 

approximate conditional analysis using GWAS summary data. The 

important difference between HAPRAP and COJO is that the 

former estimates the joint SNP effects by using haplotypes (rather 

than pair-wise LD) estimated from a reference sample. We use both 

simulations and real-data from the British Women’s Heart Health 

Study (BWHHS) (Lawlor et al., 2003) to show that HAPRAP 

outperforms COJO on a range of performance measures. We 

applied the method to group-level QTc interval data from the 

UCLEB meta-analysis (Shah et al., 2013), with the haplotype 

information estimated from imputed genotype data from the 

BWHHS; and human height from the GIANT meta-analysis (Wood 

et al., 2014), with the haplotype information estimated from the 

Avon Longitudinal Study of Parents and Children (ALSPAC). Both 

cases suggest that HAPRAP has increased power for fine mapping 

compared to COJO. We extended HAPRAP to binary phenotypes 

and we illustrate this with an example of meta-analysis for 

gallbladder disease (GBD) SNP hits (Rodriguez et al., 2015).  

2 METHODS 

2.1 Overview of the methodology 

We aim to combine summary level statistics with the full information from 

haplotypes (rather than using the traditional pairwise LD approach) to fine 

map genetic regions. Our algorithm iteratively updates haplotype effects 

based on haplotype frequencies and observed marginal SNP effects from 

meta-analyses to estimate the approximate joint SNP effect. This approach 

allows researchers to conduct conditional analysis more accurately without 

access to individual level genotypes. 

2.1.1 Theory 

The haplotype-based approach we propose in this manuscript is closely 

related to a single regression model. In a single regression model, we treat 

the major allele as the baseline allele; and the minor allele as the effect allele. 

The marginal SNP effect refers to the effect estimate from an outcome Y 

regressed on a single SNP (i.e. the allelic effect from a simple linear 

regression model). The joint SNP effect, which we aim to estimate, refers to 

the SNP effect obtained from Y regressed on multiple SNPs within the 

region. The joint SNP effect is adjusted for the correlation with surrounding 

SNPs, whereas the marginal SNP effect is not. 

A simple extension of the single regression model to multi-locus data is to 

integrate two popular haplotype-based analysis strategies together: 1) 

dichotomise haplotypes into two groups (Lin et al., 2006); and 2) treat each 

group as a bivariate allele (Purcell S et al., 2007 A).  

Assume we obtain a SNP by haplotype matrix	�, with ��,� = 0	or	1, from 

a sample population, we split existing haplotypes into two groups to 

estimate the joint effect of SNP j: 

 

� ��� = �� ∶ 	��,� = 1�		��� = �� ∶ 	��,� = 0� 
��� is the set of haplotypes containing the effect allele of SNP j; and,	��� is 

the set of haplotypes containing the baseline allele of SNP j. For example, 

for SNP1 in Figure 2, ��� is the set of haplotypes from Haplotype 5 to 

Haplotype 8, whereas ���	is the set of haplotypes from Haplotype 1 to 

Haplotype 4. We also split the haplotype frequencies into two groups based 

on the relevant haplotypes �� and ��. 

We then define the estimated marginal SNP effect of a SNP j, U� as: 

 			U� 	= 	��,� 	−	��,�	; 	� ∈ ��� 		and		� ∈ ��� 																								(1) 
 

where ��,�  (or ��,� 	) is the average of the additive effect over the set of 

haplotypes ��� 	(or	���) . These additive haplotype effects can be 

transferred to joint SNP effects using a generalised inverse matrix approach. 

This extension is applicable to both linear and logistic regression models.  

2.1.2 HAPRAP algorithm for estimating the joint SNP effect 

As individual-level genotype data is usually not publicly available for 

GWAS meta-analysis, we cannot estimate haplotype effects by conducting a 

haplotype-based association analysis. Thus, we use an iterative method to 

estimate the haplotype effects from marginal SNP effects. The iteration 

involves four steps (Figure 1):  

Step 1: Setting initial values for joint SNP effects and haplotype effects 

transformation 

Step 2: The marginal SNP effects estimation 

Step 3: The haplotype effects adjustment 

Step 4: Convergence and the generalised inverse matrix approach 

Table 1 provides details of the notation used in describing our method.  

Table 1. Notation of HAPRAP. Column “Par.” lists the parameters used in 

HAPRAP 

Par.  Description � &	 × 	(  SNP by haplotype matrix, with ��,� = 0 or 1，with 0 being 

the baseline allele of SNP j, 1 being the effect allele of SNP j.  ��� the set of haplotypes containing the effect allele of SNP j.  ��� the set of haplotypes containing the baseline allele of SNP j.  �� the set of haplotype frequencies containing the baseline allele of SNP 

j.  �� the set of haplotype frequencies containing the baseline allele of SNP 

j.  ) (	 × 	1 vector of observed marginal SNP effects from GWAS / 
meta-analysis *(+) ,(-) (	 × 	1 vector of random initial joint SNP effects.  (	 × 	1 vector of the estimated marginal SNP effects in the ./0
iteration. 
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1(-) &	 × 	1 vector of the estimated haplotype effects of in the ./0
iteration. 2(-) 

 

the SNP with the greatest deviation between the observed marginal 

SNP effect and the estimated marginal SNP effect in the g iteration. *(-) (	 × 	1 vector of the estimated joint SNP effects in the ./0 iteration. 

Fig 1. Schematic Diagram of HAPRAP. 

 

Step 1. Setting initial values for joint SNP effects and haplotype effects 

transformation: The algorithm starts with setting up a random set of initial 

joint effects for SNPs, *(+) 
Assuming that haplotypes (and haplotype frequencies) in the reference 

panel are the same as those in the GWAS meta-analysis, we estimate the 

haplotype frequencies � and the SNP by haplotype matrix � from the 

reference panel.  

Assuming an additive linear model, the initial estimated haplotype effect 1(+) is the matrix product of � and *(+) (Figure 2): 

 �*(+) = 1(+)																																																							(2) 

Fig 2. The SNP by haplotypes matrix for HAPRAP. The iteration of 

HAPRAP is built based on a matrix summarizing the haplotypes and 

haplotype frequencies for a certain population. “0” in the matrix means the 

haplotype contains the baseline allele for the relevant SNP, whereas “1” 

means the haplotype contains the effect allele for the relevant SNP. The 

small arrow (from left to right) is the marginal SNP effects estimation step. 

The large arrow (from right to left) is the haplotype effects adjustment step. 

 

 

Step 2. Marginal SNP effects estimation:  

As mentioned in Equation (1), we define the marginal SNP effect as the 

difference between the sums of the additive effects of the two sets of 

haplotypes ��� 	and	���. 
Thus, for the g iteration, where g = {0...G}, the marginal SNP effect of SNP 

j, U�(-), is estimated by counting the difference between the two groups of 

haplotype effects, Z�,�(-)  and Z�,�(-) , and standardised by the relevant 

haplotype frequencies, �� and ��: 

 

U�(-) =	 1∑ ���∈��6 78 ��Z�,�(-)�∈��6
9−	 1∑ ���∈��6 7 8 ��Z�,�(-)�∈��6

9						(3) 
 

We tested the reliability of equation (3) by a simulation and found that 

given any set of joint SNP effects, application of equation (3) never 

generated nonzero effect estimates for SNPs that were simulated to have 

truly null effects (Text S2).    

 

Step 3. Haplotype effects adjustment: the adjusted marginal SNP effects 

for iteration g, ,(-) are compared to the observed marginal SNP effects, ). Reconciling the difference between ,(-) and ) is important because it 

equates the marginal SNP effects observed from the meta-analytic data with 

those that would arise under the distribution of haplotypes in the reference 

panel. The SNP with the greatest deviation, denoted 2(-), is adjusted for 

the next iteration g+1, the other SNP effects remain the same: 

 

U�(-:�) =				 ;U�(-) −O= 		where	� = 	 2(-)U�(-)	where	�	 A 2(-) 																									(4) 
 

Then the haplotype effect 1(-:�) will be adjusted based on the change of 

U�(-:�). For haplotype k, we get: 

Z�(-:�) = Z�(-) C U�(-)m�,� 	where	� = 2(-)																		(5) 
Step 4. Convergence and the generalised inverse matrix approach: 

After the estimated marginal SNP effects, ,(-) converge to within 10 

decimal places of the observed SNP effects, ), we stop the iteration. The 

joint SNP effects, *(-), is estimated using the generalised inverse matrix 

approach:  

 �F�1(-) = *(-)																																																													(6) 
 

2.2 Estimating standard errors of the estimated joint SNP 

effects and testing SNP significance using parametric 

bootstrap 

We estimate the standard errors (SE) of the estimated joint SNP effects 

using a bootstrap approach so that we can apply the stepwise elimination 

using the joint p-value in the next step.  

Pre-test of SNP significances: Generating bootstrap standard errors can 

use computational resources intensively. To improve computational 

efficiency, we first pre-test the significance of the candidate SNPs using the 

estimated joint SNP effects *(-) and the standard errors of the observed 

marginal SNP effects (since the uncertainty of the effect of a given SNP is 

larger in a multivariate model than that in a single SNP model). SNPs with 
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the highest p value will be step-wise eliminated from the model until all 

SNPs reach the p value threshold we set.  

If two or more SNPs remain in the model after the pre-test using SEs from 

single locus regression, we then estimate the standard errors of HAPRAP 

betas of these SNPs using a simulation based HAPRAP program 

(simHAPRAP) (Figure S1). The simHAPRAP program starts with 

simulating a population with sample size equal to the total number of 

participants in the meta-analysis. Genotypes for each individual are 

generated based on the haplotypes and haplotype frequencies. Quantitative 

phenotypes are simulated from a normal distribution with mean equal to 

zero and SE equal to the observed standard deviation of the phenotype; 

whereas binary phenotypes are simulated from a binomial distribution 

which matches the observed probability of cases. A weighted genetic risk 

factor is used as the total genetic effect on the trait (Figure S1).   

We repeat the simHAPRAP procedure 2000 times. The SE of the betas over 

the 2000 replications are used as the standard errors of the HAPRAP betas 

(defined here as simHR SE).   

Stepwise backwards elimination: t-test p values are calculated using 

HAPRAP betas and simHAPRAP SEs. We backward eliminate the SNPs 

with the highest p values until all SNPs in the model reach a pre-set p value 

cut-off.  

HAPRAP availability: The HAPRAP software and a web-based 

instruction manual (developed using HTML and CSS) are available at 

http://apps.biocompute.org.uk/haprap. 

2.3 Sample Datasets 

The real cases and simulated datasets we used for this analysis are 

explained in Text S3. 

2.4 Simulation framework and empirical comparison 

Firstly, we simulated a pool of 100000 individuals (details in Text S3) and 

performed a series of simulations to test the influence of LD structure and 

sample size of reference panel. For each model explained in Text S3 and 

Table S1, we applied HAPRAP and COJO to the summary statistics and the 

genotypes of a specific reference panel. We also applied multiple regression 

using individual-level phenotypes and genotypes from the reference panel. 

For each method, the mean and standard deviation of the joint SNP effect 

were estimated 1000 times. In addition, multiple regressions on the 100000 

individuals were conducted (Text S3) and the resulting joint SNP effects 

were set as the gold standards. Mean square error (MSE) of the gold standard 

effect was used to measure the accuracy of each method. 

Secondly, we performed a parametric simulation to test the influence of the 

sample size of a meta-analysis. The GIANT height meta-analysis data were 

used as the basis of this simulation (Wood et al., 2014). We selected 20 

nearest SNPs from the ACAN region. ALSPAC pre-phased haplotypes of 

8263 unrelated children were used to build a genotype pool for 253288 

individuals. We randomly selected 100000, 50000, 10000, 5000, 2500, 1750 

and 1000 individuals from the pool, comparing the performance of HAPRAP 

and COJO using multiple regression as the gold standard. 1000 replications 

were processed to estimate the MSE and SD of the MSE.  

Thirdly, as an empirical comparison between HAPRAP and COJO, we 

explored these methods using real data from the BWHHS and the 1000 

Genomes project. Details of the performance comparisons are explained in 

Text S4.  

2.5 Case study for quantitative traits: GIANT height 

We firstly applied HAPRAP to two meta-analyses. Details of these two 

case studies are explained in Text S5. We further applied HAPRAP to 

summary-level data from the GIANT height meta-analysis (sample size 

253288). The pre-phased haplotypes of 8263 unrelated children from 

ALSPAC were used as the reference panel. Three genomic regions with 

more than one robust independent association signal were selected (Wood 

et al., 2014). All SNPs within these regions were selected (782 SNPs for 

ACAN, 1477 SNPs for ADAMTS17 and 1936 SNPs for PTCH1).  

3 RESULTS 

3.1 Simulation and empirical comparison 

Firstly, we fixed the sample size of the meta-analysis (N=100000) 

and compared the performance of HAPRAP and COJO across 

different LD structures and different sample sizes of reference 

panel using a simulation data set (details in Text S3). As shown in 

Table S2, HAPRAP outperformed COJO under a variety of LD 

structures and was less sensitive to poor LD estimation. 

Fig 3. Performance 

Comparison between 

HAPRAP and COJO 

in one of the 3-SNPs 

Model. MSE is mean 

square error of 

HAPRAP (or that of 

GCTA) compare to 

joint effect from 

multiple regression 

mode. X-axis is the 

number of individuals 

in the reference panel 

on a log scale, which 

is equivalent to 

sample size of 10000, 

5000, 1000, or 500 

respectively. In this 

simulation, SNP1 is a 

signal with a  joint 

effect of 1, SNP2 is a 

bystander SNP with 

no effect, SNP3 is a 

secondary SNP with a 

joint effect of 0.3, �� 

between SNP1 and 

SNP2 was 0.8, �� 

between SNP1 and 

SNP3 was 0.5.  

 

In the 2-SNP models with one causal SNP and one non-effect SNP, 

HAPRAP was slightly (up to 29%) more accurate than COJO 

across 16 models (Figure S2A and Table S2A). Both methods 

performed well when the sample size of the reference panel was 

larger than 5000. When the sample size of the reference panel was 

limited to 500 to 1000, HAPRAP started to outperform COJO. On 

the other hand, considering the influence of LD structure, 

HAPRAP was up to 54% more accurate than COJO when LD 

between the two SNPs was extremely high (��=0.9). 
In the 3-SNP models with two causal SNPs and one non-effect 

SNP (Figure 3 and Figure S2B), both methods performed relatively 

well when the sample size of the reference panel was larger than 

5000 (although with more errors compared to the 2-SNP models). 
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However, both methods struggled to eliminate the non-effect SNP 

when the sample size of reference panel is less than 1000 and LD 

was very high amongst three SNPs. However, in a more realistic 

LD range (�� between each pair of SNPs from 0.1 to 0.5) and with 

a small reference sample size (N=1000), HAPRAP was, on average, 

63% more accurate than COJO (Table S2B).  

We demonstrated in this simulation that, when individual-level 

data is extremely limited, HAPRAP (using summary level data and 

a reference panel with a small number of individuals) is a better 

option than applying multiple regression to the reference panel 

with limited sample size (Figure S2C and Table S2). 

Secondly, in the parametric simulation using GIANT height data, 

we assumed perfect LD estimation and only consider the influence 

of sample size of the meta-analysis. As shown in Figure 4 and 

Table S3, HAPRAP and COJO were close to optimal (Text S6 

explains the reason COJO is not perfectly optimal in this situation) 

when the sample size of the meta-analysis was large (N≥10000). 

When the training sample size was between 1750 and 5000, 

HAPRAP’s mean square error was still under 0.1 while COJO 

became suboptimal.  

Fig 4. Performance comparison of HAPRAP and COJO using 

parametric simulation of 20 SNPs from GIANT height 

meta-analysis. MSE is the mean square error of the method 

compare to multiple regression. X-axis is the number of 

individuals in the meta-analysis in Log scale. Horizontal line is the 

threshold line of mean square error of 0.1.  

 

Thirdly, we utilised individual-level data of ~2000 BWHHS 

individuals on a total of 115 SNPs to compare the accuracy of 

HAPRAP (haplotypes phased by both SHAPEIT (O. Delaneau, et 

al., 2012) and PLINK) and COJO using multiple regression as the 

gold standard (Table S4). The details of the comparison can be 

found in Text S4. In summary, the comparisons suggested that 

HAPRAP was comparable to multiple regression when the 

individual-level genotypes are available for the entire cohort. In 

addition, HAPRAP was on average 10.86% more accurate than 

COJO when the sample size of the reference panel was extremely 

limited (Sample size < 200). 

3.2 Case study: GIANT meta-analysis of height 

We further analysed three genomic regions reported to be associated 

with human height by the GIANT consortium. The original fine 

mapping analyses were processed using COJO, resulting in 18 

associated SNPs with P value < 5×10-8 at these 3 loci (Wood et al., 

2014). Here, we applied HAPRAP to a total of 4195 SNPs using 

8263 unrelated ALSPAC children as a reference panel. The allele 

frequencies of GIANT and the ALSPAC children were quite similar 

(Table S5). As shown in table 2, HAPRAP replicated all 18 

previously reported association signals at these 3 loci (Table 2). 

Moreover, HAPRAP identified two novel signals, rs1529889 (an 

intronic variant in ADAMST17 with joint effect of 0.019) and 

rs357564 (a missense variant in PTCH1 with joint effect of -0.034), 

independently associated with height, (Table 2). As shown in Table 

S6, these two SNPs are in low LD with independent SNPs in the 

same genomic region. 

Surprisingly, when we applied COJO to the same data using a 

different reference panel (ALSPAC instead of ARIC), only 16 SNPs 

were significantly associated with height, leaving 2 SNPs 

unselected (Table S5). 

We also conducted two cases studies of gallbladder disease and QTc 

intervals. Details of these cases studies are in Text S5.  

 

Table 2. Summary of 20 associated SNPs at 3 loci for height with P < 5×10−8 

in the HAPRAP step-wise model selection analysis using the ALSPAC 

cohort as a reference sample for LD  

SNP 

COJO-GIANT  HAPRAP 

BETA P-value BETA P-value 

rs1348002 0.020  1.5x10-10 0.018  2.8x10-09 

rs11633371 0.024  2.1x10-15 0.028  4.8x10-20 

rs16942341 -0.114  3.0x10-29 -0.122  3.4x10-34 

rs2280470 0.031  5.5x10-21 0.032  1.9x10-25 

rs3817428 0.022  2.6x10-09 0.019  1.2x10-08 

rs2238300 -0.018  1.6x10-09 -0.020  3.8x10-11 

rs2573625 0.030  3.7x10-22 0.025  2.4x10-15 

rs1529889 Unselected Unselected 0.019  6.4x10-10 

rs4246302 -0.027  1.4x10-16 -0.028  1.4x10-17 

rs4548838 0.034  9.1x10-30 0.033  1.4x10-28 

rs7170986 -0.019  1.1x10-08 -0.018  4.5x10-08 

rs8042424 -0.022  5.1x10-10 -0.022  2.2x10-10 

rs1257763 0.071  9.4x10-14 0.078  2.2x10-12 

rs12347744 -0.056  2.8x10-20 -0.039  1.7x10-19 

rs357564 Unselected Unselected -0.046  3.9x10-13 

rs4448343 -0.035  1.1x10-28 -0.035  2.0x10-17 

rs1329393 0.038  1.4x10-15 0.034  5.1x10-13 

rs817300 -0.070  2.2x10-23 -0.085  4.8x10-16 

rs10990303 0.032  1.4x10-19 0.036  5.4x10-18 

rs7870753 -0.045  1.7x10-37 -0.043  1.3x10-30 

BETA and P-value under COJO-GIANT refer to the joint SNP effect and its 

P-value presented in the GIANT height paper. BETA and P-value under 

HAPRAP are the joint SNP effect and its P-value for HAPRAP. “Unselected” 

means the SNP was not selected by COJO in the step-wise selection. The 

comparison details are presented in Table S5. 

4 DISCUSSION 

Meta-analysis summary association statistics are becoming more 

and more widely available to the scientific community 

(Bulik-Sullivan et al., 2015A). Several genetic analysis methods 

have been developed to exploit these resources (using summary 

rather than individual-level data), for example, LD score regression 

(Bulik-Sullivan et al., 2015 A & B; Finucane et al., 2015), 
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Gaussian imputation (Pasaniuc et al., 2014) and two-sample 

Mendelian randomization (Pierce and Burgess, 2013).  

In this paper, we introduced a novel approach for statistical fine 

mapping using meta-analysis summary statistics. The proposed 

method (HAPRAP) uses haplotypes to represent LD structure 

among multiple variants in a region. Using haplotypes has four 

significant advantages compared to existing conditional analysis 

methods that utilise pairwise correlation coefficients (r2) between 

SNPs (such as COJO (Yang et al., 2012), SSSRAP (Zheng et al., 

2013)): 

1. It considers all loci simultaneously, rather than pairwise, thus 

it is less susceptible to poor LD estimates that occur if the 

reference LD structure does not closely match the 

populations studied in the GWAS data. 

2. It is more accurate than COJO when the sample size of the 

meta-analysis is limited (e.g. N ≤ 5000).  

3. It is more accurate and powerful for regions with three or 

more independent signals. Compared to Bayesian fine 

mapping methods such as PAINTOR (Kichaev et al., 2014, 

2015), CAVIAR (Hormozdiari et al., 2014) and CAVIARBF 

(Chen et al., 2015), HAPRAP does not require the user to 

specify the number of causal variants. This can impair the 

performance of CAVIARBF for cases where there are 

multiple causal variants (Kichaev et al., 2014). We observed 

a power improvement in our case study of human height 

(e.g. with 3+ independent signals within each associated 

region). 

4. It is more accurate when analysing rare variants (i.e. MAF < 

0.01) than other methods using pair-wise LD. 

Our empirical demonstration using the 1000 Genomes Project data 

comparison is meaningful in three aspects: Firstly, high quality 

haplotypes data, which is used by HAPRAP, are now widely 

available and should have already been pre-phased within 

large-scale consortiums/cohorts such as the abovementioned 1000 

Genomes Project and ALSPAC. Secondly, for researchers without 

individual-level genotype data, our method can give researchers a 

general profile of the potentially multiple associated SNPs in the 

region(s) of interest using the public available 1000 Genome 

Project data, although the errors of using the 1000 Genomes 

Project data as a reference panel were relatively large since the 

sample size is currently small. As more open access phased 

haplotype data becomes available with the publication of projects, 

such as UK10K (UK10K consortium, 2015), HAPRAP’s accuracy 

advantage against COJO will increase. Thirdly, HAPRAP’s 

performance advantage will be more apparent for GWAS studies 

with relatively smaller sample sizes, such as association analyses 

of DNA methylation with expensive or high-dimensional 

phenotypes (eg gene expression and methylation data (Shi et al., 

2014; Gaunt et al., 2015). 

In the case study using summary statistics of GIANT data (Wood 

et al., 2014), we identified two additional variants, rs1529889 and 

rs357564, independently associated with human height. These 

findings could have been caused by the greater sample size of the 

reference panel using ALSPAC (8263) compared to ARIC (6654). 

Rs357564 is a missense variant within PTCH1 and rs1529889 is an 

intronic variant within ADAMST17. Rs357564 is predicted to be 

“functional” by the prediction tool FATHMM (Shihab et al., 2015). 

and was reported to be associated with oral clefts, basal cell 

carcinoma and ameloblastoma (Begnini et al., 2010; Carter et al., 

2010; Farias et al., 2012.).  

Rare variants are on average younger than common variants 

(Mathieson and McVean, 2014) and are more likely to be 

represented by longer haplotypes. Since HAPRAP uses haplotypes 

and COJO uses pairwise LD, we show HAPRAP may have a 

theoretical advantage over COJO in rare variant analyses. We 

performed a simulation for two SNPs with MAFs near 0.08 (Table 

S7) and HAPRAP’s accuracy was higher than COJO in all 

conditions. Moreover, we highlighted a rare variant in 

Apolipoprotein B (APOB), rs41288783, as a proof-of-concept 

using real data (Table S8). This SNP had a MAF of 0.0018 in 

BWHHS individuals. The HAPRAP estimate (beta=0.705) is very 

close to the gold standard results (beta: 0.731), whereas the COJO 

estimate is considerably different from the gold standard (beta: 

0.449).  

We recommend using pre-phased haplotypes as HAPRAP input. 

For a cohort without haplotype data, we recommend users phase 

haplotypes using tools such as SHAPEIT (O. Delaneau, et al., 

2012), BEAGLE (Browning and Browning, 2009), IMPUTE2 

(Howie et al., 2009) and MACH (Li et al., 2010) rather than 

PLINK (Purcell et al., 2007 B). PLINK haplotype phasing function 

uses an E-M algorithm, which is only accurate and fast when a 

small number of SNPs (N<10) are included (Browning and 

Browning, 2011).  

We also suggest controlling for collinearity before utilising 

HAPRAP. If SNPs with very high variance inflation factor (VIF) 

values are included, HAPRAP (and other tools) will return 

extremely large betas for a pair of SNPs. Practically, it is necessary 

to remove SNPs with VIF higher than seven before applying 

HAPRAP.  

HAPRAP requires more time than COJO to finalise the step-wise 

elimination process. There are several reasons: firstly, phasing 

haplotypes is time consuming; secondly, it is time consuming to 

determine the standard errors of the joint SNP effects using our 

bootstrap method (simHAPRAP). However, the whole process 

does not usually take more than an hour.  

HAPRAP was originally designed for regional fine mapping, so it 

is more suitable for moderately small numbers of markers and 

computationally very fast when the number of SNPs in each test is 

10 or fewer. To fit the HAPRAP framework to fine map the whole 

genome, we recommend splitting regions with large numbers of 

SNPs into smaller chunks (up to 20 SNPs in each chunk) before 

running HAPRAP. In the GIANT height example, we split the 

genomic regions based on recombination hotspots, since LD 

patterns are directly related to the underlying recombination 

process, which is a more reasonable option compared to the 

physical distance used by COJO. This can help reduce the run time 

of HAPRAP substantially.  

Algorithms are often used effectively where the biological model is 

well understood, but the statistical model is too complex to 

generalize to all scenarios. For instance, a recent fine mapping 

method, probability identification of causal SNPs (PICS), used an 

empirical constant in its core algorithm to estimate the expected 

mean of the association signal at a SNP (Farh et al., 2015). 

HAPRAP interprets a complex biological concept, haplotype 

effects, using a simple idea stemming from allelic association 

analyses and extending it to the haplotype model. The side effect is 

that an asymptotic analysis of convergence may not be possible, 
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thus we cannot exclude the possibility that HAPRAP will not 

converge in some situations. However, in the hundreds of 

thousands of simulations and real case examples we have tested, 

we did not find any situation where HAPRAP did not converge.  

In a recent review paper (Spain et al., 2014), fine mapping methods 

were classified into two groups: 1) methods for triaging variants 

based on p-values or LD with the lead SNP, which includes classic 

conditional analysis and approximate methods such as COJO and 

HAPRAP; 2) Bayesian methods that assign posterior probabilities 

of membership in causal models to each SNP, such as PAINTOR, 

CAVIAR, CAVIARBF and the most recent software, FINEMAP 

(Benner et al., 2016). Compared to CAVIARBF, FINEMAP used a 

new search algorithm and so is much faster and overcomes the 

limitation of situations where there are more than three causal 

variants in a genomic region. In addition, for the above Bayesian 

methods (with the exception of FINEMAP), a parameter must be set 

for the number of causal SNPs (Spain et al., 2014). It has been 

shown that specifying this value to one can impair performance in 

cases where there are two or more causal variants (Kichaev et al., 

2014). Based on this we consider HAPRAP and these Bayesian 

methods as complementary. It would be interesting to explore the 

potential of integrating the HAPRAP methods with these Bayesian 

algorithms to develop more powerful fine mapping methods in the 

future. 
In conclusion, with increasing numbers of publicly available 

meta-analysis summary statistics, the value of HAPRAP is likely to 

be demonstrated in four ways: 1) for fine mapping both common 

and rare variants and identifying additional variants independently 

associated with complex traits; 2) it can be used as a variable 

selection method for two-sample Mendelian randomization; 3) to 

build genome-wide allelic scores of biological intermediates for 

mining the phenome (Evans et al., 2013); 4) to provide a solid 

platform for the functional annotation of casual variants using 

prediction tools such as FATHMM (Text S7).  

ACKNOWLEDGEMENTS 

We thank Frank Dudbridge for helpful advice on the manuscript, Funding: 

The funding information is listed in Text S1 

REFERENCES 

Begnini A et al. (2010). PTCH1 gene haplotype association with basal cell carcinoma 

after transplantation. Br J Dermatol. 163(2):364-70.  

Benner C et al., (2016). FINEMAP: Efficient variable selection using summary data 

from genome-wide association studies. Bioinformatics. 2016 Jan 14. pii: btw018. 

Browning, B.L., and Browning, S.R. (2009). A unified approach to genotype 

imputation and haplotype-phase inference for large data sets of trios and unrelated 

individuals. Am. J. Hum. Genet. 84, 210–223. 

Browning, S.R., and Browning, B.L. (2011). Haplotype phasing: existing methods and 

new developments. Nat. Rev. Genet. 12, 703–714. 

Bulik-Sullivan B et al., (2015A) An atlas of genetic correlations across human 

diseases and traits. Nat Genet. doi: 10.1038/ng.3406 

Bulik-Sullivan BK et al., (2015B) LD Score regression distinguishes confounding 

from polygenicity in genome-wide association studies. Nat Genet. 47(3):291-5. 

Carter TC et al. (2010). Testing reported associations of genetic risk factors for oral 

clefts in a large Irish study population. Birth Defects Res A Clin Mol Teratol. 

88(2):84-93.  

Chen, W. et al. (2015) Fine mapping causal variants with an approximate Bayesian 

method using marginal test statistics, Genetics, 200, 719-736.  

Delaneau, O., et al. (2013). Improved whole-chromosome phasing for disease and 

population genetic studies. Nat. Methods 10, 5–6. 

Farias LC et al. (2012). Loss of heterozygosity of the PTCH gene in ameloblastoma. 

Hum Pathol. 43(8):1229-33. 

Evans, D.M., et al. (2013). Mining the human phenome using allelic scores that index 

biological intermediates. PLoS Genet. Oct;9(10):e1003919. 

Farh, K.K., et al. (2015). Genetic and epigenetic fine mapping of causal autoimmune 

disease variants. Nature. 2015 Feb 19;518(7539):337-43.  

Finucane H.K., et al., (2015). Partitioning heritability by functional annotation using 

genome-wide association summary statistics. Nat Genet. 2015 

Nov;47(11):1228-35. 

Gaunt, T.R., et al. (2012). Integration of genetics into a systems model of 

electrocardiographic traits using HumanCVD BeadChip. Circ. Cardiovasc. Genet. 

5, 630–638. 

Gaunt, T.R., et al. (2015). Systematic identification of methylation quantitative trait 

loci across the human life course. Genome Research. Under revision.  

GTEx Consortium. (2015). Human genomics. The Genotype-Tissue Expression 

(GTEx) pilot analysis: multitissue gene regulation in humans. Science. 

348(6235):648-60. 

Hindorff, L.A., et al. (2009). Potential etiologic and functional implications of 

genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. 

U. S. A. 106, 9362–9367. 

Hormozdiari, F. et al. (2014) Identifying causal variants at loci with multiple signals 

of association, Genetics, 198, 497-508.  

International HapMap 3 Consortium, et al. (2010). Integrating common and rare 

genetic variation in diverse human populations. Nature 467, 52–58. 

Ke, X., et al. (2004). Efficiency and consistency of haplotype tagging of dense SNP 

maps in multiple samples. Hum. Mol. Genet. 13, 2557–2565. 

Kichaev, G. et al. (2014) Integrating functional data to prioritize causal variants in 

statistical fine mapping studies, PLoS Genet, 10, e1004722.  

Kichaev, G. and Pasaniuc, B. (2015) Leveraging functional-annotation data in 

trans-ethnic fine-mapping studies, Am. J. Hum. Genet., 97, 260-271.  

Li, Y., et al. (2010). MaCH: using sequence and genotype data to estimate haplotypes 

and unobserved genotypes. Genet. Epidemiol. 34, 816–834. 

Lin DY, Zeng D. (2006). Likelihood-based inference on haplotype effects in genetic 

association studies. J Am Stat Assoc. 101:89–104. 

Manolio, T.A. (2010). Genomewide association studies and assessment of the risk of 

disease. N. Engl. J. Med. 363, 166–176. 

Mathieson, I., and McVean, G. (2014). Demography and the age of rare variants. 

PLoS Genet. 2014 Aug 7;10(8):e1004528. 

Newton-Cheh, C., et al. (2009). Common variants at ten loci influence QT interval 

duration in the QTGEN Study. Nat. Genet. 41, 399–406. 

O. Delaneau, et al., (2012) A linear complexity phasing method for thousands of 

genomes. Nat Methods. 9(2):179-81.  

Pasaniuc B et al., (2014). Fast and accurate imputation of summary statistics enhances 

evidence of functional enrichment. Bioinformatics. 30(20):2906-14. 

Pierce BL, Burgess S. (2013). Efficient design for Mendelian randomization studies: 

subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 

178(7):1177-84. 

Purcell. S., et al., (2007 A). WHAP: haplotype-based association analysis. 

Bioinformatics. 15;23(2):255-6. 

Purcell, S., et al. (2007 B). PLINK: a tool set for whole-genome association and 

population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575. 

Robinson, W.P., et al. (1991). Three-locus systems impose additional constraints on 

pairwise disequilibria. Genetics 129, 925–930. 

Rodriguez, S., et al. (2015). Lipids, obesity and gallbladder disease in women: insights 

from genetic studies using the cardiovascular gene-centric 50K SNP array. EJHG, 

Eur J Hum Genet. 2015 Apr 29..  

Shah, T., et al. (2013). Population genomics of cardiometabolic traits: design of the 

University College London-London School of Hygiene and Tropical 

Medicine-Edinburgh-Bristol (UCLEB) Consortium. PloS One 8, e71345. 

Shi, J., et al. (2014). Characterizing the genetic basis of methylome diversity in 

histologically normal human lung tissue. Nat Commun. 2014 Feb 27;5:3365 

Shihab, H.A., et al. (2015). An integrative approach to predicting the functional effects 

of non-coding and coding sequence variation. Bioinformatics. pii: btv009. 

Spain, S. and Barrett, J. (2015) Strategies for fine mapping complex traits, Hum. Mol. 

Genet., 42, 1001-1006.  

The 1000 Genomes Project Consortium, et al. (2010). A map of human genome 

variation from population-scale sequencing. Nature 467, 1061–1073. 

UK10K consortium. (2015) The UK10K project identifies rare variants in health and 

disease. Nature. 526 (7571):82-90. 

Wood AR et al. (2014). Defining the role of common variation in the genomic and 

biological architecture of adult human height. Nat Genet. 46 (11):1173-86. 

Yang, J., et al. (2012). Conditional and joint multiple-SNP analysis of GWAS 

summary statistics identifies additional variants influencing complex traits. Nat. 

Genet. 44, 369–375, S1–3. 

Zheng, J., et al. (2013). Sequential sentinel SNP Regional Association Plots 

(SSSRAP): an approach for testing independence of SNP association signals using 

meta-analysis data. Ann. Hum. Genet. 77, 67–79. 




