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Abstract. We study the fundamental problem of pattern matching in
the case where the string data is weighted: for every position of the string
and every letter of the alphabet a probability of occurrence for this let-
ter at this position is given. Sequences of this type are commonly used
to represent uncertain data. They are of particular interest in computa-
tional molecular biology as they can represent different kind of ambigu-
ities in DNA sequences: distributions of SNPs in genomes populations;
position frequency matrices of DNA binding profiles; or even sequencing-
related uncertainties. A weighted string may thus represent many differ-
ent strings, each with probability of occurrence equal to the product
of probabilities of its letters at subsequent positions. In this article, we
present new average-case results on pattern matching on weighted strings
and show how they are applied effectively in several biological contexts.
A free open-source implementation of our algorithms is made available.

1 Introduction

Uncertain sequences are common in many applications: (i) data measurements
such as imprecise sensor measurements; (ii) flexible modelling of DNA sequences
such as DNA binding profiles; (iii) when observations are private and thus se-
quences of observations may have artificial uncertainty introduced deliberately.
For example, in computational molecular biology an uncertain sequence can be
used to incorporate SNP distributions from a population of genomes into a ref-
erence sequence. This process can be realised by a [IUPAC-encoded sequence [13,
3] or by directly incorporating the results of SNP studies such as [11,19]. An
uncertain sequence can also be used as a flexible model of DNA sequences such
as DNA binding profiles, and is known as position frequency matriz [18].

As pattern matching is a core computational task in many real-world applica-
tions, we focus here on designing efficient on-line algorithms for pattern matching
on uncertain sequences. On-line pattern matching algorithms process the text
position-by-position, in the order that it is fed to the algorithm, without having
the entire text at hand. Hence this type of algorithms is useful when one wishes



to query for one or a few patterns in potentially many texts without having to
pre-compute and store an index over the texts.

We start with a few definitions to explain our results. An alphabet X' is a
finite non-empty set of size o, whose elements are called letters. A string on an
alphabet X is a finite, possibly empty, sequence of elements of X'. The zero-letter
sequence is called the empty string, and is denoted by . The length of a string
x is defined as the length of the sequence associated with the string z, and is
denoted by |z|. We denote by z[i], for all 0 < i < |z|, the letter at index ¢ of z.
Each index ¢, for all 0 < i < |z|, is a position in x when z # . The i-th letter of
x is the letter at position ¢ — 1 in z. We refer to any string z € X9 as a g-gram.

The concatenation of two strings x and y is the string of the letters of =
followed by the letters of y; it is denoted by xy. A string z is a factor of a string
y if there exist two strings u and v, such that y = uzv. Consider the strings
x,y,u, and v, such that y = uzv, if u = ¢ then x is a prefix of y, if v = ¢ then x
is a suffiz of y. Let x be a non-empty string and y be a string, we say that there
exists an occurrence of x in y, or more simply, that x occurs in y, when x is a
factor of y. Every occurrence of x can be characterised by a position in y; thus
we say that x occurs at the starting position i in y when y[i..i + |z| — 1] = z.

A weighted string = of length n on an alphabet X is a finite sequence of n
sets. Every «[i], for all 0 < ¢ < n, is a set of ordered pairs (s;,m;(s;)), where
s; € X and m;(s;) is the probability of having letter s; at position i. Formally,
zli] = {(sj,mi(sj))|sj # s¢ for j # £, and >, mi(s;) = 1}. A letter s; occurs at
position ¢ of a weighted string x if and only if the occurrence probability of letter
s; at position ¢, m;(s;), is greater than 0. A string u of length m is a factor of
a weighted string if and only if it occurs at starting position i with cumulative
occurrence probability H;.n:_ol i+ (u[j]) > 0. Given a cumulative weight threshold
1/z € (0,1], we say that factor u is walid, or equivalently that factor u has
a valid occurrence, if it occurs at starting position ¢ and H;”:_Ol T (ulj]) >
1/z. Similarly, we say that letter s; at position ¢ is valid if m;(s;) > 1/z. For
succinctness of presentation, if m;(s;) = 1 the set of pairs is denoted only by the
letter s;; otherwise it is denoted by [(s;,,7i(5j,))s - - (Sj, mi(S5,))]-

Suppose we are given a cumulative weight threshold 1/z. Given a (weighted)
string v and a weighted string v, both of length m, we say that v and v match,
denoted by u =, v, if there exists a (valid) factor of u of length m that is also
a valid factor of v of length m. Given a string u and a weighted string v, both
of length m, and a non-negative integer k < m, we say that u and v match with
k-mismatches, denoted by u =, i v, if when at most k letters in u were replaced
to create a new string u’ then ' =, v. We consider the following three problems.

WEIGHTED TEXTMATCHING (WTM)

Input: a string x of length m, a weighted string y of length n > m, and a
cumulative weight threshold 1/z € (0, 1]

Output: all positions ¢ of y such that x =, y[i..i +m — 1]




GENERALWEIGHTEDPATTERNMATCHING (GWPM)

Input: a weighted string x of length m, a weighted string y of length n > m,
and a cumulative weight threshold 1/z € (0, 1]

Output: all positions ¢ of y such that x =, y[i..i+m — 1]

APPROXWEIGHTED TEXTMATCHING (AWTM)

Input: a string = of length m, a weighted string y of length n > m, a non-
negative integer k£ < m, and a cumulative weight threshold 1/z € (0, 1]
Output: all positions ¢ of y such that x =, 1, y[i..i +m — 1]

Our computational model. We assume word-RAM model with word size w =
2(log(nz)). We consider the log-probability model of representations of weighted
strings in which probability operations can be realised exactly in O(1) time. We
assume that o = O(1) since the most commonly studied alphabet is {A,C, G, T}.
In this case a weighted string of length n has a representation of size O(n). A
position on a weighted string is viewed as a non-empty subset of the alphabet
such that each letter of this subset has probability of occurrence greater than 0.
For the analysis, we assume all possible non-empty subsets of the alphabet are
independent and identically distributed random variables uniformly distributed.

Related results. Problem WEIGHTEDTEXTMATCHING can be solved in time
O(nlogz) [14]. Moreover, in [14], the authors showed that their solution to
WEIGHTED TEXTMATCHING can be applied to the well-known profile-matching
problem [17]. Problem GENERALWEIGHTEDPATTERNMATCHING can be solved
in time O(zn) [4]. Problem APPROXWEIGHTEDTEXTMATCHING can be solved
in time O(ny/mlogm) using FFTs [2]. All these results are worst-case complex-
ities. Problem WEIGHTEDTEXTMATCHING can be solved in average-case search

. . . . 1 1
time o(n) for weight ratio 72 < min{ 7, 5o ;gﬁoglogg)} [5].

Our contribution. We provide efficient on-line algorithms for solving these prob-
lems and provide their average-case analysis, obtaining the following results.
Note that preprocessing resources below denote worst-case complexities, 0 <
¢ < 1/2 is an absolute constant, v = 222%117 d=14(1-c¢)log,(1—c)+clog,c,

and a = 44/c(1 — ¢).

Problem |Preprocessing|Preprocessing| Search time Conditions
space time
WTM O(m) O(m) (’)(”zl%)
GWPM O(zm) O(zm) (’)(”Zl%)
nz(log m+k) 3log, m—log, a
AWTM O(Uq) O(mng) O( %n ) q Zk; - d 2Oj )
£ <e— %

We also provide extensive experimental results, using both real and synthetic
data: (i) we show that our implementations outperform state-of-the-art ap-
proaches by more than one order of magnitude; (ii) furthermore, we demonstrate
the suitability of the proposed algorithms in a number of real biological contexts.



2 Tools for Standard and Weighted Strings

Suffix trees are used as computational tools; for an introduction see [9]. The
suffix tree of a non-empty standard string y is denoted by T (y).

Fact 1 ([10]) Given a non-empty string y of length n, T (y) can be constructed
in time and space O(n). Checking whether a string x of length m occurs in y
can be performed in time O(m) using T (y).

We next define some primitive operations on weighted strings. Suppose we are
given a cumulative weight threshold 1/z. Let u be a string of length m and v
be a weighted string of length m. We define operation VER1(u, v, 2): it returns
true if u =, v and false otherwise. Let u be a weighted string of length m and v
be a weighted string of length m. We define operation VER2(u, v, z): it returns
true if u =, v and false otherwise. For a weighted string v, by H(v) we denote
a string obtained from v by choosing at each position the heaviest letter, that
is, the letter with the maximum probability (breaking ties arbitrarily). We call
H(v) the heavy string of v. Let u be a string of length m and v be a weighted
string of length m. Given a non-negative integer k < m, we can check whether
u = v using Function VER3. An implementation of VER3 is provided below.
Intuitively, we replace at most k letters of u with the heaviest letter in v based
on how much these letter replacements contribute to the cumulative probability.

Function VER3(u,v, z, k)
v <+ H(v);
A < EMPTYLIST();
foreach i such that uli] # v'[i] do
if m;(u[i]) = 0 then
uli] < v'[i];
k< k—1;
if £ <0 then
return false;
else
o =y (v'[i]) /i (wli]);
A « INSERT(< i, >);
Find the kth largest element in A with respect to «;
Add the k largest elements of A with respect to « to set Ay;
foreach < i,a >€ A; do
uli] < v'[i];
if 17" 75 (ulj]) > 1/ then
return f{rue;

return false;




Lemma 1. VERI, VER2, and VER3 can be implemented to work in time O(m),
O(mz), and O(m), respectively.

Proof. For VER1 we can check whether u =, v in time O(m) by checking
H?ZOI mj(ulj]) > 1/z. For VER2 we can check whether v =, v in time O(mz)
using the algorithm of [4].

Let us denote by E = {ei1,...,eg}, |[E| < k, the set of positions of the
input string u, which we replace in VER3 by the heaviest letter of v. We denote
the resulting string by u’. Towards contradiction, assume we can guess a set
F={f1,..., fir/}, |F| < k, of positions over u resulting in another string v such
that P = [T720" mi(u”[]) > Pu = 1720 mi(w/[i]) > Pu = TT75" mj(uli])- Tt
must hold that

Py _ mpWAD - g (W lfim]) | Pu _ me (Wen]). . e (W)
Py 7rf1<u[f1])"‘Wf\F|(u[f\F|]) P, 71—61(“[61})"'WE\E\(U[elE\D .

In case F = F, this implies that there exist letters heavier than the corresponding
heaviest letters, a contradiction. In case F # F', given that there exists no letter
heavier than the heaviest letter at each position, this implies that there exists
an element < i, >, i € F, in list A which is the rth largest, r < k, with respect
to a, and it is larger than the rth element picked by VER3, a contradiction. All
operations in VER3 can be trivially done in time O(m) except for finding the
kth largest element in a list of size O(m), which can be done in time O(m) using
the introselect algorithm [16]. O

We say that u is a (right-)mazimal factor of a weighted string = at position ¢ if
u is a valid factor of x starting at position ¢ and no string v’ = ua, for a € X,
is a valid factor of = at this position.

Fact 2 ([1]) A weighted string has at most z different mazimal factors starting
at a given position.

3 Algorithms

Let us start with a few auxiliary definitions. An indeterminate string x of length
m on an alphabet X' is a finite sequence of m sets, such that z[i] C X, z[i] # 0,
for all 0 < ¢ < m. Naturally, we refer to any indeterminate string of length ¢
as indeterminate q-gram. We say that two indeterminate strings « and y match,
denoted by = & y, if |z| = |y| and for each i = 0,. .., |z|—1, we have z[i]Ny[i] # 0.
Intuitively, we view a weighted string as an indeterminate string in order to
conduct the average-case analysis of the algorithms according to our model.

3.1 Weighted Text Matching

In this section we present a remarkably simple and efficient algorithm to solve
problem WEIGHTED TEXTMATCHING. We start by providing a lemma on the
probability that a random indeterminate g-gram and a standard g-gram match.



Lemma 2. Let u be a standard g-gram and v be a uniformly mndom indeter-
mmate q-gram. The probability that u ~ v is no more than (2(, 1)‘1, which tends

to 27 as o increases.

Proof. There are less than 29 non-empty subsets of an alphabet of size o. Let
a € X, then 277! of these subsets include a. Clearly then the probability that
two positions of u and v match is no more than . Therefore the probability

of them matching at every position is no more than (2:_11)‘1. O

Algorithm WTM(x, m,y,n, z,q)
Construct T (z);
1 0;
while i <n —m +1 do
jei+m—gq
Let A denote the set of all valid ¢g-grams starting at position j in y;
foreach s € A do
Check if s occurs in z using 7 (z);
if no s € A occurs in x or A= () then
14 j+1;
else
if VERI(z,yli..i+m — 1],2) = true then
output i;

i1+ 1

Theorem 3. Algorithm WTM solves problem WEIGHTED TEXTMATCHING in
average-case search time O(M%) if we set q > 3logzu% m, which tends to
20—

3logy m as o increases. The worst-case preprocessing time and space is O(m).

Proof. By Fact 1 the time and space required for constructing 7 (z) is O(m).
We consider a sliding window of size m of y and read g-grams backwards from
the end of this window and check if they occur anywhere within x. By Fact 1
this check can be done in time O(q) per g-gram. If a ¢g-gram occurs anywhere
in x then we verify the entire window, otherwise we shift the window m — ¢+ 1
positions to the right. Clearly none of the skipped positions can be the starting
position of any occurrence of x as if this was the case, the g-gram must occur
in z; so the algorithm is correct. Verifying (all starting positions of) the window
takes time O(m?) by Lemma 1 and the probability that a ¢g-gram matches within
a pattern of length m > ¢ is no more than m(QU T )q by Lemma 2. We note that
reading the g-grams takes time O(zq) per position by Fact 2, so to achieve the
claimed runtime we must pick a value for ¢ such that the expected cost per
window is O(zq). This is achieved when O(m (za 11)‘1) = O(zq). Tt is always




true when ¢ > 310g2°’—11 m, which tends to 3log, m as o increases. There are
20—

O(+=) non-overlapping windows of length m and this proves the theorem. a

3.2 General Weighted Pattern Matching

In this section we present an algorithm, denoted by GWPM, to solve prob-
lem GENERALWEIGHTEDPATTERNMATCHING. Algorithm GWPM largely fol-
lows algorithm WTM.

Lemma 3. Let u and v be uniformly random indeterminate q-grams. The prob-
o—1

ability that u = v is no more than (1—(1—(2—=)2)?)4, which tends to (1—(2)7)4

as o increases.

29 -1

Proof. There are less than 29 non-empty subsets of an alphabet of size o. Let
a € X, then 277! of these subsets include a. Clearly then the probability that
a occurs at both positions is no more than (22::11)2 It then follows that the
probability that the two sets have a non-empty intersection is no more than

1-—(1- (22::11)2)" Therefore the probability that all positions have a non-
)2)7)e. O

9o—1
29 -1

empty intersection is no more than (1 — (1 — (

Algorithm GWPM(z,m,y,n,z,q, %)
Let F = {x1,...,z5} denote the set of all valid factors of length m of x;
if 7 =0 then
return;
Construct string X = z1$... 3z, where $ ¢ X;
Construct 7 (X);
i< 0;
while i <n—m+1do
Jit+tm—g
Let A denote the set of all valid ¢g-grams starting at position j in y;
foreach s € A do
Check if s occurs in X using 7 (X);
if no s € A occurs in X or A= () then
1+—J+1
else
if VER2(z,yli..i+m — 1], z) = true then
output i;

i i+ 1

Theorem 4. Algorithm GWPM solves problem GENERALWEIGHTED PATTERN-
MATCHING in average-case search time O(m) if we set ¢ > 3log, m, where



u = (2071)207((2:2;1,)12;,22072)0, which tends to 310g1/(17(%)0)m as o increases.

The worst-case preprocessing time and space is O(zm).

Proof. Let x1,x2,...,x¢ denote all f valid factors of length m of . We construct
string X = x13228 ... %2, where $ ¢ X. By Facts 1 and 2 the time and space re-
quired for constructing 7 (X) is O(zm). Plugging Lemmas 1 and 3 to the proof of

Theorem 3 yields the result. This is achieved when O(m3z(1—(1—( 22::11 )2)9)4) =
O(zq). It is always true when g > 3log,, m, where u = (20_1)20_((2(02;1_)5;_2%72)6,

which tends to 310g1/(1,(%)0) m as o increases. O

3.3 Approximate Weighted Text Matching

In this section we present an algorithm to solve problem APPROXWEIGHTED-
TEXTMATCHING. The algorithm, denoted by AWTM, is split into two distinct
stages: preprocessing the pattern x and searching the weighted text y.

Preprocessing. We build a g-gram index in a similar way as that proposed by
Chang and Marr in [8]. Intuitively, we wish to determine the minimum possible
Hamming distance (mismatches) between every g-gram on X' and any g-gram of
z. An index like this allows us to lower bound the Hamming distance between a
window of y and x without computing the Hamming distance between them. To
build this index, we generate every string of length ¢ on X, and find the minimum
Hamming distance between it and all factors of length ¢ of x. This information
can easily be stored by generating a numerical representation of the g-gram and
storing the minimum Hamming distance in an array at this location. If we know
the numerical representation, we can then look up any entry in constant time.
This index has size O(c?) and can be trivially constructed in worst-case time
O(mqo?) and space O(a?).

Lemma 4. Let u be a standard q-gram and v be a uniformly random indetermi-

nate g-gram. The probability that u and v match with cqg-mismatches is at most

(22::1)(1(1 - c)_(l_“)qc_cqﬁ, where 0 < ¢ < 1/2.

Proof. Without loss of generality assume that cq is an integer. By Lemma 2, the
probability the g-grams match with ezactly i mismatches is

<(z]> (2?::11 ) E

Therefore, by Lemma 3.8.2 in [15] on the sum of binomial coefficients, the prob-
ability that v and v match with cg-mismatches is

cq o—1 o—1 °q o—1
; (3) (220 - 1>q - (220 - 1)(1; <Z]> = (220 - 1>q(1_c)7(176)qcicq4 c(lc 1)’

This decreases exponentially in ¢ when (1 — c)’(lfc)c’c > 0 which holds for
0 <c<1/2. Tt tends to 279(1 — ¢)~ (199~ —L_ a5 5 increases. O

44/c(c—1)




Searching. We wish to read backwards enough indeterminate g-grams from
a window of size m such that the probability that we must verify the window
is small and the amount we can shift the window by is sufficiently large. By
Lemma 4, we know that the probability of a random indeterminate g-gram oc-

curring in a string of length m with cg-mismatches is no more than m ( 22: :11 ) ? (1—

—(1-¢)qp—cq___1 ; ; _ _
c) c Wz For the rest of the discussion let a = 44/¢(1 —¢) .

In the case when we read k/(cq) indeterminate g-grams, we know that with

probability at most (k/(cq))m@::)q(l — ¢)~(1=94¢=41 /g we have found at
most k mismatches. This does not permit us to discard the window if all ¢g-grams
occur with at most cg mismatches. To fix this, we instead read ¢ = 1 + k/(cq)
g-grams. If any indeterminate g-gram occurs with less than cg mismatches, we
will need to verify the window; but if they all occur with at least ¢qg mismatches,
we must exceed the threshold k& and can shift the window. When shifting the
window we have the case that we shift after verifying the window and the case
that the mismatches exceed k so we do not verify the window. If we have verified
the window, we can shift past the last position we checked for an occurrence:
we can shift by m positions. If we have not verified the window, as we read
a fixed number of indeterminate g-grams, we know the minimum-length shift
we can make is one position past this point. The length of this shift is at least
m — (¢ + k/c) positions. This means we will have at most S = O(%)
windows. The previous statement is only true assuming m > ¢ + k/c, as then
the denominator is positive. From there we see that we also have the condition
that ¢ + k/c can be at most em, where € < 1, so the denominator will be O(m).

This puts the condition on ¢, that is, ¢ > Therefore, for each window, we

k
em—q’
o—1\94
verify with probability at most (1 + k/(cq))m(%) (1 —¢)~(1=949¢=41/a. So
the probability that a verification is triggered is

o—1

(1+ k/(cq))m(zi — 1)q(l —¢)~(1=9)a¢meay Jq,

By Lemma 1 verification takes time O(m?); per window the expected cost is

o—1

O(m?)(1 + k/(cq))m(jjfl)q(l — )" (m9aemeay /g =

<<q + kym® ()"0 - c><lc>qccq>

qa

O

We wish to ensure that the probability of verifying a window is small enough
that the average work done is no more than the work we must do if we skip
a window without verification. When we do not verify a window, we read ¢ =
1+ k/(cq) indeterminate g-grams and shift the window. This means that we
process q + k/c = O(q + k) positions. So a sufficient condition is the following;:

(¢ + k)m3(22::11)‘1(1 _ C)—(I—C)qc—cq

qa

=O0(q+ k).



3log, m—log, a—log, ¢

For sufficiently large m, this holds if we set ¢ >

(’7 .
v = 22(,—_1, which tends to 7

3log, m—log, a—log, q

(=) Tog, (1 —o)Felogyc &S O Increases.

T+(1—c) log, (1—c)+clog, ¢’

where

Algorithm AWTM(z,m,y,n, z,k,q,¢, %)
D[0..|X|? — 1] « 0;
foreach s € X7 do

factor of x, and set D[s] « e;
i+ 0;
while i <n —m +1 do
d <+ 0;
foreach ¢ € [1,4] do
j—i+m—1tXxgq;

in y;
if A=0 then
break;
else
dmin < q;
foreach s € A do
dmin < min{dmin, D[s]};
d < d + dmin;
if d > k or A= () then
17+ 1
else
if VER3(z,yli..i+m —1],2,k) = true then
output i;

i1+ 1;

Compute the minimal Hamming distance e between s and any

Let A denote the set of all valid ¢g-grams starting at position j

For this analysis to hold we must be able to read the required number of in-
determinate g-grams. Note that the above probability is the probability that at
least one of g-grams matches with less than cg mismatches. To ensure we have
enough unread random g-grams for the above analysis to hold, the window must
be of size m > 2q + 2k/c. Consider the case where 2¢ + 2k/c > m > 2q + k/c.
If we have verified a window then we have enough new random ¢-grams, and
if we have just shifted, then we know that all the g-grams we previously read
matched with at least cq mismatches and we have at least one new ¢-gram. The
probability that one of these matches with less than cg mismatches is less than
the one used above so the analysis holds in both cases. Note that this technique

can work for any ratio which satisfies k/m < ¢ — 2%.



Now recall that in fact we are processing a weighted text, not an indeterminate
one. By the aforementioned analysis, we can choose a suitable value for ¢ and
q, to obtain the following result, noting also that it takes time O(z(¢ + k)), by
Fact 2, to obtain the valid g-grams of O(q + k) positions of the weighted text.

Theorem 5. Algorithm AWTM solves problem APPROXWEIGHTED TEXTMATCH-
ING in average-case search time O(%) if k/m < c— % and we set

3log, m—log, a _279-1 —

q> =0 log, (T—0) reTog ¢ where v = 55=1, a = 4y/c(1 —¢) and 0 < c < 1/2,
- 3log, m—log, a

which tends to T i=0) 10%2(176)1610& C

ing time and space is O(mgqo?) and O(c?), respectively.

as o increases. The worst-case preprocess-

4 Experimental Results

Algorithms WTM and GWPM were implemented as a program to perform exact
weighted string matching, and algorithm AWTM was implemented as a program
to perform approximate weighted string matching. The programs were imple-
mented in the C++ programming language and developed under the GNU /Linux
operating system. The input parameters for WTM and GWPM are a pattern
(weighted string for GWPM), a weighted text, and a cumulative weight threshold.
The output of this program is the starting positions of all valid occurrences. The
input parameters for AWTM are a pattern, a weighted text, a cumulative weight
threshold, and an integer k for mismatches. The output of this program is the
starting positions of all valid occurrences. These implementations are distributed
under the GNU General Public License (GPL). The implementation for WTM
and GWPM is available at https://github.com/YagaoLiu/GWSM, and the im-
plementation for AWTM is available at https://github.com/YagaoLiu/HDwtm.
The experiments were conducted on a Desktop PC using one core of Intel Core
i5-4690 CPU at 3.50GHz under GNU/Linux. All programs were compiled with
g++ version 4.8.4 at optimisation level 3 (-O3).

WTM wvs. State of the art. We first compared the time performance of WTM
against two other state-of-the-art algorithms: the worst-case O(n log z)-time al-
gorithm of [14], denoted by KPR; and the average-case o(n)-time algorithm of [5],
denoted by BLP. For this experiment we used synthetic DNA data generated by a
randomised script. The length of the input weighted texts was 32MB. Four texts
with four different uncertain positions percentages, denoted by §, were used:
2.5%, 5%, 7.5%, and 10%. The length of the input patterns ranged between 16
and 256. The cumulative weight threshold 1/z was set according to § to make
sure that all patterns could potentially have valid occurrences. Specifically we
set: z = 256 when § = 2.5%; z = 16,384 when 6 = 5%; z = 1,048,576 when
0 = 7.5%; and z = 67,108,864 when 6 = 10%. The length of ¢-grams was set
to ¢ = 8. The results plotted in Fig. 1 show that WTM was between one and
three orders of magnitude faster than the state-of-the-art approaches with these
datasets. In addition, our theoretical findings in Theorem 3 are confirmed: for
increasing m and constant n and z, the elapsed time of WTM decreases.
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Fig. 1: Elapsed time of KPR, BLP, and WTM for on-line pattern matching using
synthetic weighted texts of length 32MB over the DNA alphabet (o = 4)

Application I. DnaA proteins are the universal initiators of replication from
the chromosomal replication origin (oriC) in bacteria. The DnaA protein recog-
nises and binds specifically to the IUPAC-encoded sequence TTWITNCACA, named
DnaA box, which is present in all studied bacterial chromosomal replication
origins [7]. We transformed sequence TTWINCACA into the weighted sequence
TT[(A,0.5),(T,0.5)]T[(4,0.25),(T,0.25), (G,0.25),(T,0.25)]CACA; and then we searched
for this sequence in a dozen of bacterial genomes obtain from the NCBI genome
database. The length of g-gram was set to ¢ = 4 and the cumulative weight
threshold to 1/z = 1/8 to ensure all factors of length 9 are valid. We compared
the time performance of algorithm GWPM against the worst-case O(nz?log z)-
time algorithm of [6], denoted by WPT, for this assignment. The bacteria used,
the number of occurrences found, and the elapsed times are shown in Table 1.
The results show that GWPM is one order of magnitude faster than WPT.

Application II. Mutations in 14 known genes on human chromosome 21 have
been identified as the causes of monogenic disorders. These include one form
of Alzheimer’s disease, amyotrophic lateral sclerosis, autoimmune polyglandu-



Number of Elapsed Time (s)

Bacteria DNA Length Occurrences GWPM WPT
Bacillus subtilis 4,215,606 321 1.19 9.83
Escherichia coli 4,641,652 165 1.27 10.45
Haemophilus influenzae 1,830,138 177 0.56 4.83
Helicobacter pylori 1,667,867 172 0.48 3.96
Mycobacterium tuberculosis 4,411,532 21 1.14 9.54
Proteus mirabilis 4,063,606 294 1.16 9.23
Pseudomonas aeruginosa 6,264,404 66 1.60 14.66
Pseudomonas putida 6,181,873 141 1.62 13.55
Salmonella enterica 4,857,432 190 1.31 12.03
Staphylococcus aureus 2,821,361 202 0.80 7.75
Streptomyces lividans 8,345,283 18 2.08 18.42
Yersinia pestis 4,653,728 190 1.29 10.72

Table 1: Elapsed time of GWPM and WPT for searching for the DnaA box
TTWTNCACA in 12 bacterial genomes

lar disease, homocystinuria, and progressive myoclonus epilepsy; in addition, a
locus for predisposition to leukaemia has been mapped to chromosome 21 [12].
To this end, we evaluated the time performance of AWTM for pattern match-
ing in a genomes population. Pattern matching is useful for evaluating whether
SNPs occur in experimentally derived transcription factor binding sites [11, 18].
As input text we used the human chromosome 21 augmented with a set of ge-
nomic variants obtained from the 1000 Genomes Project. The SNPs present in
the population were incorporated to transform the chromosome sequence into a
weighted text. The length of human chromosome 21 is 48,129,895 base pairs.
The input patterns were selected randomly from the text; their length ranged
between 16 and 256. In this real scenario, § was found to be 0.7%; we therefore
set the cumulative weight threshold to the constant value of 1/z = 1/1, 024. For
a pattern of length m, the maximum allowed number of mismatches k& was set
to 2.5% x m, 5% x m, 7.5% x m, and 10% x m. The length of g-grams was set to
q = log, m and the number of g-grams read backwards was set to £ = Loz—kxq +1].
The exact values for ¢, k, and ¢ are presented in Table 2. The results plotted in
Fig. 2 demonstrate the effectiveness of AWTM: all pattern occurrences can be
found within a few seconds, even for error rates of 10%. In addition, our theo-
retical findings in Theorem 5 are confirmed: for increasing m and constant n, k,
and z, the preprocessing time of AWTM increases but the search time decreases.

5 Final Remarks

In this article, we provided efficient on-line average-case algorithms for solv-
ing various weighted pattern matching problems. We also provided extensive
experimental results, using both real and synthetic data, showing that our im-
plementations outperform state-of-the-art approaches by more than one order
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Fig. 2: Elapsed time of AWTM for on-line approximate pattern matching in hu-
man chromosome 21 augmented with SNPs from the 1000 Genomes Project

m q 2.5% 5.0% 7.5% 10%

k L k l k l k l
16 4 1 2 1 2 2 3 2 3
32 5 1 2 2 3 3 4 4 5
64 6 2 2 4 4 5 5 7 6
128 7 4 3 7 6 10 8 13 10
256 8 7 5 13 9 20 13 26 17

Table 2: Pattern length m, g-grams length ¢, number k& of maximum allowed
mismatches, and number ¢ of g-grams read backwards for different error rates

of magnitude. Furthermore, we demonstrated the suitability of the proposed al-
gorithms in a number of real biological contexts. We would like to stress though
that the applicability of these algorithms is not exclusive to molecular biology.
Our immediate target is to investigate other ways to measure approximation
in weighted pattern matching. Another direction is to study pattern matching
on the following generalised notion of weighted strings. A generalised weighted



string x of length n on an alphabet X' is a finite sequence of n sets. Every z[i],
for all 0 < i < n, is a set of ordered pairs (s;,m;(s;)), where s; is a possibly
empty string on X' and m;(s;) is the probability of having string s; at position 4.
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