
This electronic thesis or dissertation has been 

downloaded from the King’s Research Portal at 

https://kclpure.kcl.ac.uk/portal/  

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing 

details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENCE AGREEMENT 

Unless another licence is stated on the immediately following page this work is licensed 

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ 

You are free to copy, distribute and transmit the work

Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and 

other rights are in no way affected by the above. 

The copyright of this thesis rests with the author and no quotation from it or information derived from it 

may be published without proper acknowledgement. 

Advances in String Algorithms for Information Security Applications

Aljamea, Mudhi Mohammed

Awarding institution:
King's College London

Download date: 26. Dec. 2024



Advances in String Algorithms for

Information Security Applications

Moudhi Mohammed Aljamea

Department of Informatics

King’s College London

This dissertation is submitted for the degree of

Doctor of Philosophy

King’s College September 2016



ii

Supervisors:

First Supervisor: Prof. Costas S. Iliopoulos

King’s College London.

Second Supervisor: Prof. Maxime Crochemore

King’s College London.

Examiners:

Dr. Aris T. Pagourtzis

National Technical University of Athens (NTUA)

Doc. Ing. Jan Janousek

Czech Technical University (CTU)



I would like to dedicate this thesis to my loving parents . . .

Mohammed Jasim Aljamea

Monerah Moahmmed Alsoqair

Proud Daughter

Moudhi Mohammed Aljamea



Declaration

I hereby declare that except where specific reference is made to the work of others,

the contents of this dissertation are original and have not been submitted in whole

or in part for consideration for any other degree or qualification in this, or any

other university. This dissertation is my own work and contains some work done

in collaboration with others,as specified in the text and Acknowledgements.

Moudhi Mohammed Aljamea

September 2016



Abstract

This thesis focuses on introducing novel algorithms in information security through

studying successful algorithms in bioinformatics and adapting them to solve some

open problems in information security. Although, the problems in both bioin-

formatics and information security are different, yet, they might be considered

very similar when it comes to identifying and solving them using Stringology

techniques. Different successful bioinformatics algorithms have been studied

and introduced to solve different security problems such as malware detection,

biometrics and big data. Firstly, we present a dynamic computer malware detection

model; a novel approach for detecting malware code embedded in different types

of computer files, with consistency, accuracy and in high speed without excessive

memory usages. This model was inspired by REAL; an efficient read aligner used

by next generation sequencing for processing biological data. In addition, we

introduce a novel algorithmic approach to detect malicious URLs in image secret

communications. Secondly, we also focus on biometrics, specifically fingerprint

which is considered to be one of the most reliable and used technique to identify in-

dividuals. In particular, we introduce a new fingerprint matching technique, which

matches the fingerprint information using circular approximate string matching to

solve the rotation problem overcoming the previous methods’ obstacles. Finally,

we conclude with an algorithmic approach to analyse big data readings from smart

meters to confirm some privacy issues concerns.



vi

List of Publications

Portions of the work detailed in this thesis have been presented in national and

international scholarly publications, as follows:

• Chapter 3 (first section):

– Aljamea, M., Ghanaei, V., Iliopoulos, C.S. and Overill, R.E., 2013.

Static Analysis and Clustering of Malware Applying Text Based Search.

In The International Conference on Digital Information Processing,

E-Business and Cloud Computing (DIPECC2013) (pp. 188-193). The

Society of Digital Information and Wireless Communication.

– Alatabbi, A., Al-Jamea, M. and Iliopoulos, C.S., 2013. Malware

Detection using Computational Biology Tools. International Journal

of Engineering and Technology, 5(2), p.315.

• Chapter 3 (second section):

– Aljamea, M., Iliopoulos, C.S., and Samiruzzaman, M. Detection of

URL In Image Steganography Proceedings of the 2016 ACM In-

ternational Conference on Internet of things and Cloud Computing

(ICC 2016). ACM, 2016.(Accepted to be published by ACM DL

(dl.acm.org)) and (invitation to submit the extension of the accepted

paper at a journal).



vii

• Chapter 4:

– Aljamea, M, Athar, T, Iliopoulos, C.S., Pissis, S and Rahman, MS

2015. A Novel Pattern Matching Approach For Fingerprint-Based

Authentication. in Patterns 2015. IARIA, pp. 45-49.

– Ajala, O., Aljamea, M., Alzamel. M, and Iliopoulos, C.S. Fast Finger-

print Recognition Using Circular String Pattern Matching Techniques.

in Patterns 2016. IARIA, (accepted).

• Chapter 5:

– Aljamea, M.,Brankovic, L., Gao, J. Iliopoulos, C.S., and Samiruzza-

man, M. Smart Meter Data analysis Proceedings of the 2016 ACM

International Conference on Internet of things and Cloud Computing

(ICC 2016). ACM, 2016. (Accepted to be published by ACM DL

(dl.acm.org)) and (invitation to submit the extension of the accepted

paper at a journal).

The above papers are the only conjoint work included in this thesis. The

candidate contributed at least 50% work to each paper mentioned above. The rest

of the material in this thesis is entirely the candidate’s contribution.



Acknowledgements

My experience in the Department of Informatics at King’s College London was

intellectually exciting and fun, an unforgettable journey for which I thank God for

making it part of my life. The first person I would like to thank is my supervisor,

who I consider myself very lucky to have, Professor Costas S. Iliopoulos. He has

made my PhD journey not only about knowledge and research but also about how

to enjoy it, and he helped me to be confident enough to publish my work and

present it at conferences all over the world. Something that I know for sure not

every supervisor is capable of doing.

Special thanks also go to my second supervisor, Professor Maxime Crochemore,

for his invaluable insights and advice and to Dr Solon Pissis for being a great

source of ideas and motivating discussions. I would like to express my special

appreciation to Dr Manal Mohammed for her valuable comments on my work.

Also, I’m grateful to my AB group for making me feel like part of a family, rather

than a research group, through all of the sleepless nights we worked together

before deadlines, and for all of the fun we have had in the last four years. To my

biggest support, my parents, who believed in me since I was young and encouraged

me to succeed and achieve more. They made my dream part of their dream. I

can’t express how lucky I am to have a sister who supported me while she is also

going through a tough PhD journey in London with her family. My two brothers,

Abdullah and Hamid, and Hamid’s wife, May, supported me spiritually and kept

reminding me every day how proud they are of me. I am sincerely thankful to



ix

my aunt Moudhi and every person in her family for their love, understanding and

unlimited support. To my best friend Dr Nouf Alnumair who felt my pain and

happiness and was there for me whenever I needed her with constant support and

encouragement. And thanks to all my friends who filled my life with joy and

happiness every day. Finally, I owe my gratitude to my beloved country who fully

sponsored my studies and made it easy for me to concentrate on my research.



Table of Contents

Dedication xiv

Declaration xiv

Acknowledgement xiv

Abstract xiv

Publications xiv

List of Figures xv

List of Tables xvii

1 Introduction 17

1.1 Information Security . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Bioinformatics and Information Security . . . . . . . . . . . . . . 23

1.4 Algorithms and Complexity . . . . . . . . . . . . . . . . . . . . 24

1.5 Thesis Main Contributions . . . . . . . . . . . . . . . . . . . . . 27

1.6 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 30

2 Notions and Definitions 32



Table of Contents xi

2.1 Alphabets and Strings . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Strings Similarity Measurements . . . . . . . . . . . . . . . . . . 35

2.2.1 Distances and Alignment . . . . . . . . . . . . . . . . . . 35

2.3 Searching and Sorting Algorithms . . . . . . . . . . . . . . . . . 37

2.4 Exact and Approximate string Matching Problem . . . . . . . . . 38

2.4.1 Circular String Matching . . . . . . . . . . . . . . . . . . 38

2.5 Fundamental Data Structures . . . . . . . . . . . . . . . . . . . . 40

2.5.1 Arrays and Linked Lists . . . . . . . . . . . . . . . . . . 40

2.6 DNA Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Malware Detection Techniques 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Malware Detection using Computational Biology Tools . . . . . . 51

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.4 Algorithm Preliminaries . . . . . . . . . . . . . . . . . . 62

3.3.5 Real Overview . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.6 Problem Definition . . . . . . . . . . . . . . . . . . . . . 67

3.3.7 The Experiment . . . . . . . . . . . . . . . . . . . . . . 69

3.3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Detection of URL in Image Steganography . . . . . . . . . . . . 75

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.3 The Concept of Steganography . . . . . . . . . . . . . . . 78

3.4.4 Steganography Applications . . . . . . . . . . . . . . . . 79



Table of Contents xii

3.4.5 Image Steganography . . . . . . . . . . . . . . . . . . . . 80

3.4.6 Current Image Steganography Techniques . . . . . . . . . 82

3.4.7 Stegaanalysis . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.8 The Problem . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.9 URL detection Algorithm . . . . . . . . . . . . . . . . . 90

3.4.10 Next Level Detection (Detecting and Extracting Encrypted

URL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.11 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4.12 Checking Experiment Results . . . . . . . . . . . . . . . 98

3.4.13 Discussion and Future Work . . . . . . . . . . . . . . . 99

4 Fingerprint Recognition Techniques 101

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 A Novel Pattern Matching Approach for Fingerprint-Based Au-

thentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.1 The Approach . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.2 Details of Stage 1: Orientation Identification . . . . . . . 113

4.3.3 The Algorithm in pseudo-code . . . . . . . . . . . . . . . 115

4.3.4 Details of Stage 2: Verification and Matching . . . . . . . 123

4.4 The Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4.1 The Implementation . . . . . . . . . . . . . . . . . . . . 124

4.4.2 Accuracy and Speed . . . . . . . . . . . . . . . . . . . . 130



Table of Contents xiii

4.4.3 Cross Matching . . . . . . . . . . . . . . . . . . . . . . . 131

4.5 Discussion AND Future Work . . . . . . . . . . . . . . . . . . . 135

5 Smart Meter Data Analysis Technique 136

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.1.3 Privacy Issues . . . . . . . . . . . . . . . . . . . . . . . . 140

5.1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 141

5.1.5 Functionality . . . . . . . . . . . . . . . . . . . . . . . . 142

5.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2.1 The Approach . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.3.1 The Algorithm in pseudocode . . . . . . . . . . . . . . . 147

5.3.2 Algorithm Description . . . . . . . . . . . . . . . . . . . 154

5.3.3 Algorithm Complexity . . . . . . . . . . . . . . . . . . . 155

5.4 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . 155

6 Concluding Remarks 156

References 159

Appendix Appendix 180

.1 URL Detection Algorithm . . . . . . . . . . . . . . . . . . . . . 181

.1.1 Detecting and Extracting Hidden URL . . . . . . . . . . . 181

.1.2 Detecting and Extracting Encrypted URL . . . . . . . . . 186

.1.3 URL Detection code . . . . . . . . . . . . . . . . . . . . 191



Table of Contents xiv

.2 Fingerprint Implementation code . . . . . . . . . . . . . . . . . . 194

.2.1 Main Function . . . . . . . . . . . . . . . . . . . . . . . 194

.2.2 Calling Functions . . . . . . . . . . . . . . . . . . . . . . 197



List of Figures

2.1 Array-Basic Data Structure . . . . . . . . . . . . . . . . . . . . . 41

2.2 Array-Basic Data Structure 2 . . . . . . . . . . . . . . . . . . . . 42

2.3 Linked List - Data Structure . . . . . . . . . . . . . . . . . . . . 43

2.4 Sample genetic code with complementary strands . . . . . . . . . 44

3.1 Statistics of Malware Files by Country . . . . . . . . . . . . . . . 49

3.2 Number of new, unique samples of Malware . . . . . . . . . . . . 49

3.3 Statistics of Malware using Different Types of Files . . . . . . . . 49

3.4 A classification of malware detection techniques . . . . . . . . . . 52

3.5 Classification system to distinguish between packed and non-

packed executables . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 The CodeRed signature . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Hamlet words embedded in the malware code . . . . . . . . . . . 59

3.8 Example where the mismatch can exist in the fragments . . . . . . 64

3.9 (The possible six combinations . . . . . . . . . . . . . . . . . . . 65

3.10 Example of some of the generated infected files . . . . . . . . . . 69

3.11 Detecting the infected files with high accuracy and speed A . . . . 71

3.12 Detecting the infected files with high accuracy and speed B . . . . 71

3.13 The detection performance evaluation . . . . . . . . . . . . . . . 73

3.14 Stego application Scenario . . . . . . . . . . . . . . . . . . . . . 78



List of Figures xvi

3.15 Image Steganography Embedding process . . . . . . . . . . . . . 81

3.16 Stegocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.17 Stego Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.18 URL Stego Embedding Scenario in an Image . . . . . . . . . . . 86

3.19 Extracting URL from Image . . . . . . . . . . . . . . . . . . . . 97

3.20 Hidding URL using Stego Process . . . . . . . . . . . . . . . . . 97

3.21 Image Diference between original image and stego image . . . . . 98

3.22 Histograms Analysis of the original image . . . . . . . . . . . . . 99

3.23 Histograms Analysis of the stego image . . . . . . . . . . . . . . 99

4.1 Classification of Fingerprint Patterns . . . . . . . . . . . . . . . . 104

4.2 An example of large fingerprint distortion . . . . . . . . . . . . . 106

4.3 An example of the same fingerprint using 2 different AFI scanners 107

4.4 Different orientation for the same finger print . . . . . . . . . . . 111

4.5 Before and after preforming thinning on the fingerprint images . . 114

4.6 Extracting Set of Circles with Interval Center Points . . . . . . . . 116

4.7 Fingerprint with multiple circle scans . . . . . . . . . . . . . . . 118

4.8 Intersection of a circle with the fingerprint . . . . . . . . . . . . . 119

4.9 Example of Fact 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.10 Example of Lemma 1 reference ACSMF . . . . . . . . . . . . . . 121

4.11 Illustration of the final step in ACSMF . . . . . . . . . . . . . . . 122

4.12 Call graph of the proposed solution. . . . . . . . . . . . . . . . . 126

4.13 FMR mean of IDKit SDK in [93] . . . . . . . . . . . . . . . . . . 129

5.1 Smart Meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



List of Tables

3.1 Different types of signatures that has been analysed by MRSI . . 61

3.2 The processing time for each signature in Clam-AV . . . . . . . . 62

3.3 Binary Encoding of DNA Alphabet . . . . . . . . . . . . . . . . . 66

3.4 Signature of String x= AGCTA [10] . . . . . . . . . . . . . . . . 66

3.5 The Structure of the Virus library File . . . . . . . . . . . . . . . 70

3.6 The accuracy Experiment Results . . . . . . . . . . . . . . . . . 72

3.7 List of Top-Level Domains by the ICANN - for full list please

refer to [52] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2 Scanning and Matching same Fingerprint with different rotation

with extracting 2 inner circles . . . . . . . . . . . . . . . . . . . . 130

4.3 FMR and FNMR of The Proposed Algorithm and other Approaches130



Chapter 1

Introduction

1.1 Information Security

Information security is one of today’s most interesting and challenging topics,

especially if one considers the ever-developing Internet and the increasing number

of online social platforms and services. These services are generating an enormous

amount of data every day and causing a great threat of cybercrime along with it.

For that reason, people, companies and governments are worried about privacy

and how to secure these online data. Information security is no longer just about

technology devices and anti-virus, it is now more about three factors – social,

people and technology – all coming together.

However, we are beginning to see some changes that can improve how we manage

these problems, yet, information security is still a very big aspect when it comes

to handling information.

In this era, everything revolves around information, but not just any type of infor-

mation, specifically cyber information. Everything has evolved around technology;

from an application that lets you order a cup of coffee, to more complex applica-

tions like building factories and performing surgeries.



1.1 Information Security 18

Technology has been incorporated into our lives in so many ways; it is now hard to

completely cut it out of our lives. Instead, information is moving at a fast pace all

over the web, so having your information available is a must, but aiming to ensure

the integrity and confidentiality of these information is a true challenge. Regardless

of the type of information, securing it is crucial, depending on it location, size and

accessibility.

The Internet is considered a rich platform of information where many people get

benefits from accessing it, yet, they are being attacked by computer malware and

various other threats which distract them from their normal and efficient work

flow. These types of malware; software that is harmful to both computers and

networks, are so pervasive that anti-virus software companies receive extensive

amounts of malware variants daily; therefore, there is an essential need to improve

their detection techniques, accuracy and speed in order to protect their customers.

Chapter 3 in this thesis is concerned with this type of security problem, we provide

a novel malware detection algorithm and present the implementation and experi-

ment results. Our work on this area has been published in [9] and [4].

Meanwhile, hackers techniques are changing and getting harder and more chal-

lenging for security experts to produce solutions as fast as new types of attacks

emerge by the clock. Hackers have the capability to experiment persistently and to

hit the web with new manifestations of malware, creating cyber-terrorism.

Therefore, “white hat hackers” have been on the chase to create and ramp up

the existing solutions to help mitigate or even sometimes eliminate the risks that

are being exposed. Some hacking techniques are quite old but they are being

modified to engage with the new digital era, such as the art of hiding information,

or “steganography”.

Steganographic techniques started back in ancient Greece, for example, writing

text on wax-covered tablets or shaving the head of a messenger to tattoo a message



1.1 Information Security 19

on his head, and after the hair grew back, the message would be undetected until

the head was shaved again.

However, these steganographic techniques now has been developed to hide mal-

ware in images by embedding the malware code along with the image code so

when downloading an innocent image, it will attack the victims’ computer. This

technique only started two years ago, at the end of 2013. In the second part of

Chapter 3 we study the steganography in details and introduce a new detection

technique that can prevent some of the image steganography malicious attacks, the

work on this problem has been published in [5].

Furthermore, focusing on other aspects of information security would be through

looking into problems that may arise with current solutions and try to modify and

update the ways these solutions work. Constantly, creating better, more efficient

and effective solutions to existing problems is a key, the more solutions that emerge,

the stronger and more immune the security is.

Without information security, problems like identity theft and cybercrimes would

be done more often and more easily, for instance, identification and verifications

via biometrics (fingerprint for example) is part of essential regular individuals

activities, therefore, in chapter 4 we revisit the fingerprint matching problem and

try to solve it in a novel technique using approximate circular string matching to

overcome the weaknesses in the previous methods, the corresponding achieve-

ments has been published in [8] and [7].

Moreover, industries now have changed their mind-set when it comes to informa-

tion security, since they have realised that it may only take one action to affect

the whole dynamic of that industry and cost them their reputation and business

continuity. It is not a very different case when it comes to individuals.

Having increasing amounts of identity theft and cybercrime has proved that se-

curing your information is essential. According to [133] “Cyber-crime has been



1.1 Information Security 20

estimated to cost the global economy in excess of $445 billion each year.”

One way of providing security control, is to ensure that certain organisations are

abiding by the privacy acts and making sure that the information of individuals

they collect stays confidential during use, transmission and destruction. Therefore,

the United States Privacy Act of 1974 states the following:

“The Privacy Act guarantees three primary rights:

• The right to see records about oneself, subject to Privacy Act exemptions;

• The right to request the amendment of records that are not accurate, relevant,
timely or complete; and

• The right of individuals to be protected against unwarranted invasion of
their privacy resulting from the collection, maintenance, use, and disclosure
of personal information.“

(The U.S. Department of State, Freedom of Information Act, 22-05-2015) [129].

Information security consists of many different aspects, such as the technology

aspect, as well as the human aspect. whereas the latter, has become an increasing

point of attack and always a factor to target, as it is the weakest link in a security

model. Providing sufficient human awareness may help to mitigate the problems

that may arise from social engineered attacks which consist of the most efficient

techniques in gaining classified information. Securing the human is always the

goal, whether it is physically or intellectually.

Providing a global understanding of privacy is also crucial since everything is

connected. Companies today are providing their customers with more integrated

services that will give them more access to their data and daily activities. One such

case, is electricity companies marketing the new smart meters technology as a

beneficial service to reduce electricity usage by monitoring the electricity readings

in real time. Although the users might benefit from this extra service, it will

compromise their privacy by giving the utility constant access to their electricity



1.1 Information Security 21

readings. Any kind of information can be used by numerous types of people,

however, unauthorised use of this information is an invasion of privacy and may

lead to severe consequences. In chapter 5 we define the smart meters privacy

problem in details and provide algorithmic data analysis technique to detect private

in-house activities, The corresponding work has be been published in [6].

Finally, securing information is not solely for corporate data, as it should also

consider all types of information since technology is encompassed in our day to

day activities. Creating a canopy of security for all aspects is crucial since it not

only provides confidentiality of the data, but also assures integrity of the data itself.

Information security often talks about the security triad which is the confidentiality,

integrity and availability of data.



1.2 Bioinformatics 22

1.2 Bioinformatics

Algorithms in computers and information technology are considered as a tool to

solve problems in many fields and research science areas. This is particularly

true in biological research. Bioinformatics is a relatively new research area that

addresses the need to manage and interpret the data that were generated by genomic

research in the past decade.

According to the Oxford English Dictionary bioinformatics is conceptualising

biology in terms of molecules and applying informatics techniques. In other words,

bioinformatics is a management information system for molecular biology and has

many practical applications [75].

The National Center for Biotechnology Information (NCBI)[84] defines bioin-

formatics as follows:

"Bioinformatics is the field of science in which biology, computer science, and

information technology merge into a single discipline. The ultimate goal of the

field is to enable the discovery of new biological insights as well as to create a

global perspective from which unifying principles in biology can be discerned

different types of information.”

Also, the Swiss Institute of Bioinformatics describes it as:

“Bioinformatics provides novel methods to store, analyse and visualise this

information — creating new knowledge to enhance our standard of life.”

Moreover, there are three sub-disciplines in bioinformatics. The first, focuses

on the informatics side, and concentrates on the development of new algorithms

and statistics with which to assess relationships among members of large data

sets. The second, focuses on the biology side, and concentrates on the analysis

and interpretation of various types of data including nucleotide and amino acid



1.3 Bioinformatics and Information Security 23

sequences, protein domains and protein structures. Finally, the third, is the result

of the previous two. It concentrates on the development and the implementation of

tools that enable efficient access and management of different types of information.

In general, bionformatices can be defined as well as any use of computers or

specifically algorithms for processing any biologically-derived information [15].

1.3 Bioinformatics and Information Security

In this thesis, different successful bioinformatics algorithms have been studied and

introduced to help in solving different security problems such as malware detection,

biometrics and big data, mixing more than one filed together to solve similar

problems will give the solutions strength and empower them through looking at

similar problems from different aspects. And that is a key factor in this thesis

from detecting malware using an efficient read aligner used by next generation

sequencing for processing biological data to fingerprint matching technique using

circular string matching algorithm that was used to solve human virus problem in

bioinformatics.



1.4 Algorithms and Complexity 24

1.4 Algorithms and Complexity

The task of representing information is considered fundamental in computer sci-

ence; however, the main purpose of computer programs is not only to perform

calculations, but also to store, analyse, secure and retrieve information as quickly

as possible. For this reason, the study of data structures and the algorithms that

manipulate them is at the heart of computer science [112].

According to the Oxford Dictionary of Word Origins (2 ed.) the word “algorithm”

originally meant the Arabic or decimal notation of numbers. It is a variant, in-

fluenced by the Greek arithmos for “number”, and the Middle English algorism,

which came via Old French from Mediaeval Latin algorismus, derived from the

Muhammad ibn Musa al-Khwarizmi, a 9th century Persian mathematician [3].

Furthermore, the OED defined algorithm as:

“A procedure or set of rules used in calculation and problem-solving; (in later

use spec.) a precisely defined set of mathematical or logical operations for the

performance of a particular task.”

An algorithm is a procedure to accomplish a specific task. It is a method or a

collection of finite number of steps followed to solve a problem. If the problem

is viewed as a function, then the algorithm is an implementation for the function

that transforms an input to the corresponding output. A problem can be solved by

many different algorithms. A given algorithm solves only one defined problem.

Algorithms is the core of every program, and each program will be evaluated by its

speed, accuracy and memory as these are the main factors in designing an efficient

algorithm.

In the most general sense, algorithms are involved in every person’s life, not just

computer programs, as it is the well-defined steps to use the right resources to

solve a well-defined problem. A simple example, is that preparing a meal will



1.4 Algorithms and Complexity 25

require specific steps (the recipe) using specific resources (the ingredients), and

manipulating these resources results in an output (the meal), regardless of whether

it is a desirable result or not. However, introducing some modern cooking tech-

niques might speed up the process and provide a better result.

This is the case in different life problems or situations where a person needs to

identify specific steps to solve or reach the best result. Therefore, algorithm design

won’t only solve computational problems but will as well help to solve daily life

problems. Since technology is involved in our life more and more day after day,

creating programs to manage these technologies will be absolutely essential, from

designing the right algorithm to providing the matching required output. Algo-

rithms are not limited to computer science, but can be involved in solving any

kind of problem related to any field or science (e.g. finance, marketing, security,

biology).

Furthermore, many successful companies that are worth billions of pounds started

by designing an algorithm to solve a specific problem, like an online search engine.

Designing an algorithm is done through the description of the algorithm at an

abstract level in pseudo code, and proving its correctness by solving the given

problem in all inputs.

A key factor in designing an efficient algorithm is that the problem should be

formally defined, where the given instance and question are stated clearly. There

are three required properties for a good algorithm design: it should be correct,

efficient and easy to implement [113].

Algorithm analysis is a field in computer science which concentrates primarily on

the algorithm’s performance evaluation and understanding the time complexity of

that algorithm. The “Big O” is the time complexity notation of an algorithm and it

is usually estimated by counting the number of elementary functions performed by

the algorithm in basic operations; multiplication, single addition or subtraction are



1.4 Algorithms and Complexity 26

considered to count as a unit time.

The complexity of an algorithm is a function f (n) where is n is the input size.

Generally, there are three cases to find the complexity function f (n):

• Best case: The minimum value of for any possible number of inputs n.

• Worst case: The maximum value of for any possible number of inputs n.

• Average case: The value which is in between maximum and minimum for

any possible number of inputs n.

Algorithms are compared by evaluating their performance and how they respond

in their processing time or working space requirements to different input size.

In fact, the order of growth of the running time of an algorithm gives a simple

evaluation of the algorithm’s efficiency and also allows us to compare the relative

performance of similar algorithms.

The analysis of an algorithm helps us to understand it better, and can suggest

informed improvements. However, measuring the time complexity of an algorithm

usually comes after proving the correctness of the algorithm for the given problem.



1.5 Thesis Main Contributions 27

1.5 Thesis Main Contributions

The key contributions of this thesis are as follows:

1. The first contribution in the “Malware Detection Techniques” chapter is

solving the malware detection problem using a computational biology tool

through combining the concepts of DNA mapping algorithms and mal-

ware signature-base detection problems. Therefore, this section introduced a

signature-based detection algorithm which uses approximate string matching

techniques, word-level parallelism, sorting algorithms, pigeonhole princi-

ple and other techniques to build and present an efficient linear time and

space algorithm which can be considered a promising solution for detecting

malware signatures, different to what has been done so far in the field. The

main contribution is the novelty of the new detection approach which was

designed in respect to the great threat of daily introduced malware signatures.

The experiment results proved that the proposed algorithm performed with

high accuracy, speed, and less space as required.

In fact, the presented experimental results are very promising, both in terms

of efficiency and sensitivity on the detection process, especially with respect

to the space, as it was able to complete the assignment on high speed, despite

not using a stored pre-processed index of the scanned files. This becomes

especially important considering the problem of the massive amount of

malware-signatures generated daily. The second contribution in the “Mal-

ware Detection Techniques” chapter involves developing an algorithm to

extract the hidden URL in images, and it can be considered as one of the first

tools to detect the hidden URL in images and extract it as it is. The proposed

approach used fast string matching and sorting algorithms to develop the

proposed solution. The experimental results showed very promising accu-



1.5 Thesis Main Contributions 28

rate results for this new security problem which encouraged us to take the

solution to the next level and consider detecting and extracting the encrypted

hidden URL in the images.

2. The main contribution in the “Fingerprint Recognition Techniques” chapter

is developing a new approximate pattern matching based approach for fast

and accurate recognition of fingerprints, and solving the rotation problem

through making use of the approximate circular string matching algorithms.

The proposed solution is a first attempt to address the issue of fingerprint

recognition systems through using circular string matching algorithms and

proposing a solution based on the comparison of the circular binary string

representation of fingerprints. The experiment results showed that the false

match rate (FMR) and the false non-match rate (FNMR) mean values for the

proposed solution match and sometimes outperform the current solutions

and give more accurate results in high speed of average time 4.5 seconds,

regardless of the rotation degree of the scanned fingerprint. Furthermore,

detecting the fingerprint information is usually done through storing the

information about ridge endings and bifurcations as sets of coordinates.

However, the algorithm in the proposed solution will extract and store the

ridge and furrow information in the form of circular strings, and that is the

novelty of the solution. This will help in solving the rotation problem while

keeping the high speed and accuracy of the detection process.

3. The smart meter analysis problem is a relatively new problem in security

and privacy concerns, the contribution of this chapter is through proposing

an algorithmic approach in terms of some probabilistic conditions to detect

private in-house activities. However, in order to achieve the desired level

of efficiency, the approach combined the use of fast sorting, searching and



1.5 Thesis Main Contributions 29

matching algorithms in a way that through the analysis of time and space

complexity for the overall approach proved that the proposed algorithmic

approach will achieve a very promising result in development.



1.6 Structure of the Thesis 30

1.6 Structure of the Thesis

This dissertation is divided into six chapters as follows:

Chapter 1 - Introduction:

This chapter, attempted to introduce the two major fields of interest for this thesis,

namely information security, and bioinformatics, from an algorithmic perspective.

Chapter 2 - Notions and Definitions:

Provides the basic notions required to properly follow the work and results pre-

sented in the subsequent chapters; in particular, it introduces the basic definitions

and notations on alphabet and strings, string similarity, notations and also describes

some elementary data structures and related techniques.

Chapter 3 - Malware Detection Techniques:

The first section of the third chapter describes the malware detection problem by

presenting the existing malware evasion techniques along with the latest related

work in malware detection. We propose a dynamic computer malware detection

model, using a biology tool, that can detect malwares to prevent attacks which

might cause damaging or stealing sensitive information. Then, we present the

results of implementing the proposed model.

In the second section of this chapter, we define the concept of steganography

and its applications and briefly review some of the current image steganography

techniques which is the focus of this section. Next, we introduce an algorithm

for detecting malware URLs or (any kind) of URLs in image steganography with

full analysis of the time and space complexity for each step and then we take the

solution to the next level to consider detecting and extracting encrypted URLs.

Finally, briefly concluding the section with some discussion and future proposals.

Chapter 4 - Fingerprint Recognition Using Circular String Pattern Match-

ing Techniques:



1.6 Structure of the Thesis 31

This chapter, studies the performance of the existing Automated Fingerprint Iden-

tification System (AFIS) and then proposes a novel and new pattern matching

based approach for quick and accurate recognition of fingerprints regardless of its

location and rotation on the scan surface. With the help of approximate circular

string matching algorithms. Next, we present the results after implementing the

proposed solution.

Chapter 5 - Smart Meter Data Analysis:

Provides a detailed understanding of the new "Smart Meters" technology and dis-

cusses the strength and weakness behind it. Then, propose an algorithmic approach

for the comparison and analysis of Smart Meter data readings, considering the

time and temperature factors at each second to identify the users patterns at each

house by identifying the appliances activities at each second with a with full time

and space analysis of the proposed algorithm.

Chapter 6 - Concluding Remarks:

Summarises the results of the work presented in the previous chapters, conclusions

are drawn. Moreover, the chapter discusses future work based on the presented

algorithms.



Chapter 2

Notions and Definitions

2.1 Alphabets and Strings

Strings are the main data type used in this thesis which also can be called words

or sequences. A string is an ordered sequence of characters or symbols taken from

a finite set called alphabet Σ. This definition implies that any file is composed of

finite distinct characters can be treated as a string. For example, all the biological

sequences used throughout the thesis are strings over 4 characters which is the

DNA alphabet {A,C,G,T}, another example, is the binary strings which are over

the alphabet {0,1}.

However, at the beginning of the 21st century the interest of studying strings

similarities and properties has increased dramatically and developed into a respect-

ful computer science field known as Stringology or algorithms on Strings. The

term stringology first used by Zvi Galil in 1984, denotes a science of algorithms

on strings and sequence. Algorithms mainly solves problems like exact and ap-

proximate pattern matching, searching for repetitions in various texts,..etc [124].



2.1 Alphabets and Strings 33

Stringology can be implemented in many areas that utilize its results, for exam-

ple, informations security, information retrieval, computer vision, bioinformatics,

DNA processing,..etc. And it is expected to grow even further due to the increasing

demand for efficient high speed stringology algorithms.

Formally, Let Σ be a finite alphabet which consists of a set of characters (or

symbols). The cardinality of an alphabet is denoted by |Σ|. The set of all non-

empty strings over the alphabet Σ is denoted by Σ+. The empty string is the empty

sequence (of zero length) is denoted by ε; that is Σ∗ = Σ+∪ ε .

For an alphabet Σ, a string is a sequence of zero or more characters (or symbols).

A string x of length n is represented by x[0 · · ·n−1], where x[i] ∈ Σ for 0 ≤ i ≤ n.

The i-th symbol of a string x is denoted by x[i].

Example : x = aabbaba is a non-empty string over Σ = {a,b}. of length |x|= 7.

The string xy is a concatenation of two strings x and y. The concatenation of k

copies of x is denoted by xk and its called the k− th power of x.

Example: The string x = bbbb , is the 4th power of b, denoted for short as x = b4.

A substring of x, can be denoted by x[i · · · j] that starts at position i and ends

at position j. Then a string w is a substring of x if x = uwv, where u,v ∈ Σ∗.

Conversely, x is called a super-string of w.

Example: If x = abbaaba and w = baab then w can be called a 4 substring of x

starts at position 4.

Also, the substring x[1..i] is called a prefix of x,and a proper prefix of x if i < n.

Similarly, the substring x[ j..n] will be called a suffix of x and a proper suffix of x

if j > 1.

Example: If x = abbaaba, then x[1,5] = abbaa is the longest proper prefix of x.

And x[4,7] = aaba is the proper suffix of x.

A repeat in string x is a substring that occurs in x at least two times. Moreover,

the repeat can appear in the string x as discrete, consecutive or as overlapping.



2.1 Alphabets and Strings 34

Example: If x = bababab, then both strings ba and bab are repeats in x.

The substring w of x can be called period of x if x can be written as x = wkw
′
,

where k ≥ 1 and w
′
is a prefix of w. The shortest period of x is called the period

of x.

Example: If x = abcabcab, then the substrings abc, abcabc and the string x itself

are all called periods of x but only abc is the period of x.

A cover is the substring w of x such that x can be constructed by concatenations

and superpositions copies of w.

Example: If the string x = ababaaba then the substring aba and x cover x. If x has

a cover w does not equal to x then x is said to be quasi-period; otherwise x is said

to be super-primitive.

A seed is an extended cover in the sense of a cover of a super-string of x.

Example: The string x = bbabab has a proper seed bab, since bab covers a super-

string babbabab of x.



2.2 Strings Similarity Measurements 35

2.2 Strings Similarity Measurements

The string similarity is originally a bioinformatics’ term which is used to measure

how similar two aligned strings are. However, its also can be used on one string to

measure which parts of the string are alike.

Usually there are two methods to measure the similarities between two strings

or the distances between them as follows:

2.2.1 Distances and Alignment

The Edit Distance defined as the distance δE(x,y) between two strings x and y

as the minimal number of a sequence of operations that transform x into y [47].

The number of a sequence of operations is the sum of the individual operations.

The operations are a finite set of rules of the form δE(x,y) = n, where x and y

are different strings and n is a non-negative real number. Once the sequence of

operations has converted the string x into y, no further operations can be done on y.

The edit distance is symmetrical and, it holds 0 ≤ δE(x,y)≤ max(|x|, |y|).

• Insertion: δE(ε,a), i.e. inserting the letter a.

• Deletion: δE(a,ε), i.e. deleting the letter a.

• Substitution or Replacement: δE(a,b) for a ̸= b, i.e. substituting a by b.

The Hamming Distance defined as given two strings of equal length, the

hamming distance between them is the number of positions for which the corre-

sponding symbols are different. In other words, the hamming distance between two

strings of equal length is the minimum number of symbol substitutions required to

change one string into the other.

Hamming distance allows only substitutions, which cost 1. also, it is symmetric,

and finite. In this case it holds 0 ≤ δ (x,y)≤ |y| where |x|= |y|.



2.2 Strings Similarity Measurements 36

HDist(x,y) = |I|, I = {i|x[i] ̸= y[i],1 ≤ i ≤ n},

where |x|= |y|= n.

Alignment of Two Strings: In general, the alignment between two strings x,y

∈ Σ∗ whose respective lengths are n and m, is a way to visualize their similarities.

Formally, an alignment A between x and y is a string z, such that (Σ∪ ε)× (Σ∪

ε)× (ε,ε). Furthermore, there are two kinds of string alignment, global alignment

where the comparison is done between two complete strings. And, the local

alignment where the comparison is done between substrings of two strings.



2.3 Searching and Sorting Algorithms 37

2.3 Searching and Sorting Algorithms

The sorting algorithms is one of the most important operations in computer

science. In fact, sorting is usually used as a pre-step by most programmers before

they start solving any computational problem to improve the running time of the

algorithm. Radix sort for example, considered to be one of the fastest sorting

algorithms that runs in linear time.

To illustrate the Radix sort, if there were n numbers to sort, such that each number

has J digits, and each digit is in the set {1,2, ..k}, then they can be sorted in O(J(n+

k)) time [28] by distributing the numbers into temporary positions according to

the least significant digit, by repeating the grouping process with the next least

significant digit each time the numbers will get closer to their final positions. So,

as a result, the numbers will be sorted after reaching the last digit k.

As mentioned before, most of the algorithms especially searching algorithms

sort the items before preforming any further instructions. For example, if we

consider the binary search which is as well considered to be one of the fastest

algorithms for searching in a sorted array [113].

For instance, searching for the key T , the algorithm will test whether the key T

is in the array A of length n in O(logn) time by comparing T to the middle key

A[n/2] in the sorted array A. If T appears to be less than the middle key then it

will result that the key T ’s position is located in the first sorted half of the array. If

not, then it will be located in the second half of the sorted array. By repeating this

step recursively on the correct half, it will define the exact position of the key T in

a total of O(logn) comparisons.



2.4 Exact and Approximate string Matching Problem 38

2.4 Exact and Approximate string Matching Prob-

lem

String matching problem is one of the main problems in computer science. In

fact, it arises in wide range of applications [47]. The formal definition of exact

pattern matching problem is; given two strings a text t and a pattern p, to determine

whether the text t contains an exact occurrence of the pattern p [126] such that

t = wpy, while considering the speed and efficiency of the searching process.

For example: If p = bab and t = aababxbababx, then p occurs in t starting at

position 3, 7 and 9. Note that two occurrences of p may overlap, as illustrated by

the occurrences of p at locations 7 and 9 [47].

Similarly, an approximate pattern matching problem is an extension of the exact

pattern matching by allowing mismatch or edit distance [29]. It is defined as;

given two strings a text t and a pattern p, determine whether the text t contains an

approximate occurrence of the pattern p as a substring with at most k-differences

[26].

2.4.1 Circular String Matching

A circular string of length n can be viewed as a traditional linear string, which

has the left- and the right-most symbols wrapped around and stuck together in

some way [114]. Under this notion, the same circular string can be seen as

n different linear strings, which would all be considered equivalent. Given a

string x of length n, we denote by xi = x[i..n− 1]x[0..i− 1], 0 < i < n, the i-th

rotation of x and x0 = x. Consider, for instance, the string x = x0 = abababbc; this

string has the following rotations: x1 = bababbca, x2 = ababbcab, x3 = babbcaba,

x4 = abbcabab, x5 = bbcababa, x6 = bcababab, x7 = cabababb.



2.4 Exact and Approximate string Matching Problem 39

Here we consider the problem of finding occurrences of a pattern x of length m

with circular structure in a text t of length n with linear structure. In fact, This is

the problem of circular string matching.

Exact Circular String Matching

The problem of exact circular string matching has been considered in [74], where

an O(n)-time algorithm was presented. The approach presented in [74] consists of

preprocessing x by constructing a suffix automaton of the string xx, by noting that

every rotation of x is a factor of xx.

Then, by feeding t into the automaton, the lengths of the longest factors of xx

occurring in t can be found by the links followed in the automaton in time O(n).

In [41], an average-case optimal algorithm for exact circular string matching was

presented and it was also shown that the average-case lower bound for single string

matching of Ω(n logσ m/m) also holds for circular string matching.

Recently, in [21], the authors presented two fast average-case algorithms based on

word-level parallelism. The first algorithm requires average-case time O(n logσ m/w),

where w is the number of bits in the computer word. The second one is based on a

mixture of word-level parallelism and q-grams.

The authors showed that with the addition of q-grams, and by setting q =

Θ(logσ m), an average-case optimal time of O(n logσ m/m) is achieved.

Approximate Circular String Matching

The approximate circular string matching pattern problem is an extension of the

exact circular string matching by allowing mismatch or edit distance. It will be

defined in details through the approximate circular string matching via Filtering

(ACSMF) algorithm [14] where it will be used in Chapter 4.



2.5 Fundamental Data Structures 40

2.5 Fundamental Data Structures

Data structure is the most fundamental and building block concept in computer

science, It’s a key factor behind designing and developing efficient software

systems. Moreover, Creating efficient programs has little to do with “ programming

tricks ” but rather is based on good organization of information and good algorithms

[111]. Therefore, data structure is the science of structuring information to support

efficient processing and to organize data so it can be accessed quickly and usefully.

Choosing the right data structure will help in processing, retrieving data and

extracting information easily. Furthermore, it is important to know that different

kinds of data structures are needed to organize different kind of data ( text, images,

videos, relational data..etc) for different purposes.

Program efficiency will always be the most important aspect in computer

science. No matter how fast and powerful computers are getting or how the

processor’s speed and memory’s size are improving, it will never decrease the

importance of the programme efficiency. In fact, the fast growing of computer

applications will result in producing more data with more complex problems

demanding more computational solutions to store, process and secure this massive

amount of data. Therefore, there will always be a great need to develop efficient

algorithms, and with that comes the need for efficient improved data structures.

2.5.1 Arrays and Linked Lists

An array is the most common data structure that contains a collection mainly of

similar data types. Elements of data are logically stored sequentially (contiguous)

in blocks within the array. Also, the array is entirely allocated as one block in the

memory. Each element in the array gets it own space. And any element can be



2.5 Fundamental Data Structures 41

accessed directly using the index (location) of that particular element (as shown in

Figure 2.1).

Fig. 2.1 Array-Basic Data Structure

Thereafter, array is the most efficient data structure for storing and accessing

a sequence of objects in a constant time O(1). Naturally, if the starting address

(base address) is known, then, it will be easy to calculate the addresses of the

other elements. However, the main disadvantage of the array data structure is that

the size of the array is fixed since it has been created, and in the case of an array

overflow a new array should be created as solution to this problem with double the

size and all the elements should then be shifted to the new array with an extra cost

of time and memory.

Similarly, inserting a new element at the beginning of the array is potentially

expensive since it will require shifting all the existing elements over to make room

for the new one. In contrast, adding an element at the end of the array will require

constant time if the space is available. Moreover, another disadvantage of the

array data structure, is the wasted space if the allocated memory for the array was

more than the required space then the remaining memory space will be wasted ( as

shown in Figure 2.2).



2.5 Fundamental Data Structures 42

Fig. 2.2 Wasted Space in Arrays

On the other hand, linked list is also a common data structure for dynamic

list, and uses the memory more efficiently than array. For instance, in the array

overflow case (when the array grows more than it size) to add more elements a new

array will be created (double size of the previous one) even if the extra required

space is only for one element, and that is as result of the fixed arrays size, but in

the linked list, the size is not limited, whereas the blocks are created along each

time a new element is inserted, also there is no unused memory.

However, there is an extra used memory which is used to store the pointers between

the nodes. In fact, the linked list data, is stored in multiple non-contiguous blocks

of memory, each block of memory is called "node", the identity of the linked list is

the pointer to the head node (pointer to the first node), each node have two blocks

one to store the data (the value) the second block to store the pointer (the address

to the next node).

For Example, an integer element will require 4 bytes. So, the node will be a block

of 8 bytes (4 bytes to store the integer and 4 bytes for the pointer to store the

address to the next node) as shown in Figure 2.3.



2.5 Fundamental Data Structures 43

Fig. 2.3 Linked List - Data Structure

Thereafter, in an array it is a constant time O(1) to access an element by

knowing the starting address and calculating the addresses of the other elements in

the array. Whereas, in linked list we have to travel from one node to anther to find

and reach the required element in O(n) time as linked list does not allow random

access to the data.



2.6 DNA Sequencing 44

2.6 DNA Sequencing

Deoxyribose Nucleic Acid (DNA) is a molecule that encodes the genetic instruc-

tions used in the development and functioning of all living organisms and viruses;

it contains the biological instructions that make each species unique. In fact, it is

the building block of the life [86]. The DNA was well defined in 1953 by James

Watson, Francis Crick, Maurice Wilkins and Rosalind Franklin.

Furthermore, most of DNA molecules consist of double stranded helix which

contain two long biopolymers made of nucleotides. In other words, DNA molecule

is composed of four types of smaller chemical molecules (nucleotide bases): ade-

nine (A), cytosine (C), guanine (G), and thymine (T); these four letters {A,C,G,T}

are called DNA alphabet. The order of these four nucleotides within a DNA

molecule bases is called the DNA sequence, and segments of the DNA that carry

genetic information are called genes. However, each base of these four nucleotides

bases bonds with its complementary base to form a base pair. The rules are as

follows:

A always bonds to T ,

C always bonds to G.

Therefore, a single strand of DNA can be presented as a string composed of

the four letters DNA alphabet. Also, if the sequence of one strand of a DNA is

known, then the sequence of the strand that will pair with, or "complement" it can

be predicted (as shown in the Figure 2.4).

Fig. 2.4 Sample genetic code with complementary strands [15].



2.6 DNA Sequencing 45

DNA sequencing is the process of reading the nucleotide bases and determine

the exact order of these nucleotide bases within a DNA molecule. This sequencing

process was first developed by Frederick Sanger in 1975. In fact, it was named

after him (Sanger Sequencing). The accuracy of this sequencing was high up to

99.9% producing long sequences between 400-900 base pairs.

However, it was mainly a laboratory method [87] which was time consuming in

practice and very expensive [97]. Yet, Sanger Sequencing was the workhorse

technology for DNA sequencing for so many years until it was replaced slowly

with new DNA sequencing technologies that were developed in the mid to late

1990s [10].

Also, in 2006 new technologies were developed to allow rapid sequencing of large

amounts of DNA called next-generation sequencing that are much faster and less

expensive but with lower accuracy 98 - 99.9% and shorter sequences.

One example of these new next-generation sequencing technologies is the technol-

ogy that was developed by Illumina called (Genome Analyser), that generates in a

single experiment millions of very short reads ranging from 25 to 50 bp. However,

the properties that should be considered in any sequencing process are (cost, speed,

amount of data, sequence length and error rate) [94].

Consequently, the new high throughput sequencing technology methods have

redefined the previous sequencing properties and how the genome is sequenced.

By producing tens of millions of short sequences (reads) in a single experiment

with much lower cost than the previous old methods. And due to this massive

amount of the generated data, an efficient algorithms for mapping these short

sequences to a reference genome are in great demand [10]. And as mentioned

in Section 1.2, bioinformatics can be defined as the use of algorithms or more

specifically computers for processing any biologically-derived information such

as DNA sequencing.



2.6 DNA Sequencing 46

Reads: Are DNA fragments which are the outputs of the DNA sequencer

instrument, after breaking the DNA into fragments. Each nucleotide sequences is

called a “read”. The reads are used later as an inputs to reconstruct the original

sequence using a reference DNA.



Chapter 3

Malware Detection Techniques

3.1 Introduction

The Internet is considered to be a rich platform of information where many people

get benefit from it access but still they are being attacked by computer malware

and various other threats which distract their normal work flow to be carried out in

an efficient manner. New anti-malware technologies are introduced to the world

by the clock, but at the same time new malware techniques have also emerged to

misuse these technologies.

Malware is a generic term used to describe all kinds of malicious software;

viruses, worms, spyware and trojan horses are all examples of malicious software.

It is created by attackers to not only cause major threat to the security and privacy

of computer users and their sensitive information, but most of the time it is also

responsible for a significant amount of financial loss. As the complexity of modern

computing systems is growing, various vulnerabilities are unavoidable in software

systems and online services; this increases the possibility of the malware attack

that usually exploits such vulnerabilities in order to damage the systems [139].



3.1 Introduction 48

Taking " Stuxnet " malware as an example, which was a very complex threat

in 2010. This large piece of malware was developed to target Iranian Nuclear

Control Systems in order to take control of the system. Stuxnet is a programmable

logic controller rootkit, which has applied complex instruction injection, anti-virus

avoidance techniques, network infection routines, peer to peer updates, and a

command and control interface [38].

Furthermore, Dell SecureWorks Counter Threat Unit™ published on june 2015

a full analysis of the Stegoloader malware which is a Stealthy Information Stealer

and they explained that the malware authors are evolving their techniques to evade

network and host-based detection mechanisms. Stegoloader could represent an

emerging trend in malware by the use of digital image steganography to hide

malicious code. In fact, "Stegoloader has a modular design and uses digital

steganography to hide its main module’s code inside a Portable Network Graphics

(PNG) image downloaded from a legitimate website" [33].

However, further the increasing number of vulnerabilities as well as the high

number of new malware variants every day will increase the emergency need for

anti-malware systems. This is happening while every day an extensive amount of

new, unique samples of malware are appearing (based on VirusTotal [131] daily

report) Figure 3.1 and Figure 3.2 using different/new carriers to travel Figure 3.3.



3.1 Introduction 49

Fig. 3.1 Statistics of Malware Files by Country (during the last 7 days of last
access 7-2-2016 via www.virustotal.com)

Fig. 3.2 Number of new, unique samples of Malware(during the last 7 days of last
access 7-2-2016 via www.virustotal.com)

Fig. 3.3 Statistics of Malware using Different Types of Files(during the last 7 days
of last access 7-2-2016 via www.virustotal.com)



3.2 Motivation 50

3.2 Motivation

Although many studies performed towards malware detection, it is always a

constant race between malicious code writers and anti-malware researchers. In

2014, the Center for Strategic and International Studies (CSIS) estimated in their

report (Net Losses: Estimating the Global Cost of Cybercrime Economic impact

of cybercrime) that annual cybercrime cost to the global economy damage is more

than $400 billion [31] adding:

The cost of cybercrime will continue to increase as more business

functions move online and as more companies and consumers around

the world connect to the Internet.

In this chapter, using a biology tool, a dynamic computer malware detection model

has been presented that can detect the malwares to prevent attacks which might

cause damaging or stealing sensitive information. This model is inspired by REAL

[42] which is an efficient read aligner for next generation sequencing for processing

biological data. Experimental results of this study shows that the proposed system

is efficient and it is a novel way for detecting malware code embedded in different

types of computer files, using bioinformatics tools with consistency and accuracy

in detecting the malware and it was able to complete the assignment in high speed

without excessive memory usages.

Furthermore, in this chapter, a novel detection approach has been proposed that

will concentrate on detecting any kind of hidden URL (innocent or malicious) in

most types of images and extract the hidden URL from the carrier image as it is.



3.3 Malware Detection using Computational Biology Tools 51

3.3 Malware Detection using Computational Biol-

ogy Tools

3.3.1 Introduction

Considering the daily reports on the huge number of malware variants detected by

different honeypots, anti-malware companies and research labs, it is so difficult to

manually analyse each variant to understand the purpose of the malware authors.

To tackle this problem, malware analysts apply different methodologies which

mainly are grouped into three main categories: static, dynamic and a hybrid

approach which is a combination of the both static and dynamic analysis.

Static analysis of a malware, focus on the structure of the program and provide

a thorough understanding of the malicious software to the analyst without the

need to execute the malware. On the other hand, another group of researchers

apply dynamic analysis to understand the malware behaviour during the running

time. However, in the dynamic analysis the focus of the analyst is on actions

of the malware such as the system calls, the read/ write into memory, and etc.

by observing the malware behaviour. Apart from the time consuming nature of

dynamic analysis, malware authors apply different anti-analysis techniques to

obfuscate the analysis process, such as anti-debugging, anti-virtualisation, anti-

emulation techniques...etc.

Accordingly, there are many approaches for malware detections which can be

classified into two categories. First, is the anomaly-based detection approach which

uses its knowledge to monitor the program’s behaviour to decide the maliciousness

of a program under inspection. Second approach, is the signature-based which

is considered as the most popular one [119], it attempts to model the malicious

behaviour of malware and uses this model in the malware detection [53]. Both



3.3 Malware Detection using Computational Biology Tools 52

of the detection approaches can employ one of three different analysis: static,

dynamic, or hybrid. Static approach describes the structure of the malicious code

in the program that is under inspection before execution. Dynamic approach

tries to detect the malicious code during or after the program execution. Hybrid

approach is a combination of both previous approaches as shown in Figure 3.4.

Fig. 3.4 A classification of malware detection techniques

The rest of this section is structured as follows. In subsection 3.3.2, the basic

malware analysis and approaches are presented. In subsection 3.3.3, briefly review

some of the related work on string matching malware detection approach. In

subsection 3.3.4, the basic definitions that are used throughout the section are

presented. We give an overview of REAL is subsection 3.3.5. In subsection 3.3.6,

formally defining the solved problem. Subsection 3.3.7, the experiment and results

are discussed. Finally, briefly concluding the section with some future proposals

in subsection 3.3.8.



3.3 Malware Detection using Computational Biology Tools 53

3.3.2 Background

Malware writers keep improving their obfuscation techniques to make the pro-

grams harder to understand and to evade the malware detectors. Encryption is one

of the malware techniques that are used widely to evade signature-based detectors.

In this technique, an encrypted malware is typically composed of the decryptor

and encryptor.

The decryptor recovers the main body whenever the infected file is running. By

using a different key for each infection, the malware makes the encrypted part

unique, thus hiding its signature [137]. Yet, the main problem of the encryption is

that the decryptor remains constant and in such case detector will be able to detect

the malware based on the descriptor’s code pattern.

However, malware writers always create and develop new techniques in writing

malware scripts or codes in order to make it hard to detect. They have reached a

point where the virus can modify its code and appearance after each infection in

order to avoid the detective and the generic scanning. One of the techniques called

"Polymorphic Malware" is capable of changing its decryptor slightly, to avoid the

problem in the previous technique.

Another more advanced technique is the "Metamorphic Malware". It is considered

as one of the best approaches in using obfuscation techniques. It is basically

evolves its body into new generations, which changes the total look of the malware

while keeping the same functionality. It should be able to recognize, parse and

mutate its own body whenever it propagates. It is important that the metamorphic

malware never reveals its constant body in memory due to not using encryption

or packing, thus making it so difficult for the anti-malware scanners to detect this

malware [137].

Nevertheless, there are many obfuscation techniques that are specifically used by



3.3 Malware Detection using Computational Biology Tools 54

the malware writers in the polymorphic and metamorphic malware approaches for

example (Dead-Code Insertion, Register Reassignment, Subroutine Reordering,

Instruction Substitution, Code Transposition and Code Integration).

However, most of the malware writers use an old version of a malware to create a

new one by reordering the malware instructions. The majority of malwares that

appears today is a simple repacked version of an old malware [92]. Even after

changing or reordering the instructions of the malware they will still share some

behaviours. Different obfuscated versions of the same malware have to share (at

least) the malicious intent, namely the maliciousness of their semantics, even if

they might express it through different syntactic forms. Therefore, addressing

the malware detection problem from a semantic point of view can lead to a more

robust detection system [96] which will help in detecting them since the detectors

are familiar with the old malware code.

Executable packing in malwares is basically the approach of using the executable

packing technique which is popular nowadays among the malware writers to ob-

fuscate malicious code and evade detection by signature-based anti-virus software.

This later technique is the most common one. In general, it is believed that nearly

80% of malware are packed and 50% of existing malware are packed versions of

old malware [83] and that is due to the accessible effortless open-source and com-

mercial executable packers that help these writers to generate an encrypted version

of their malware. Since it has been packed, the signature-based anti-malware will

not detect the malicious code as it will not be able to match the signature with the

packed malware. As soon as the malware is executed it will be decrypted and do

the harm to the computer.

On the other hand, anti-malware providers try their best to follow up with the latest

developments in order to be able to detect and remove these new malwares and



3.3 Malware Detection using Computational Biology Tools 55

overcome their threats. For example, there have been universal unpackers that can

help in detecting and extracting encrypted code from packed executables, but these

unpackers are expensive and time consuming as it might take hours or even days

to scan large collections of executables looking for malware infections.

However, [92] has devised a new approach by applying pattern recognition tech-

niques for fast detection of packed executables. The objective behind fast detection

is to efficiently and accurately distinguish between packed and non-packed exe-

cutables, so that only executables detected as packed will be sent to a universal

unpacker, thus saving a significant amount of processing time as descried below in

Figure 3.10.

Fig. 3.5 Classification system produced by [92] to distinguish between packed and
non-packed executables

This work of classification system extracts a number of features from exe-

cutable files in PE format through static analysis, which means that they will be

able to identify the packed executables without the need of running them. Yet, this

technique will only improve the processing time of malware detecting since it will



3.3 Malware Detection using Computational Biology Tools 56

save time when it distinguish between packed and non-packed executables, and

then rely on the unpacker and signature based anti-malware software for detecting

malicious code.

Other approach of distinguishing packed from non-packed executables is based

on raw binary data which was introduced by [83]. They only used the raw binary

information to extract features that can effectively distinguish between packed and

unpacked executables without the need of decoding the instructions of the exe-

cutable. Their algorithm can quickly tell which samples are packed or encrypted

[83] and according to that, these packed executables will be sent to the unpacker

to unpack them.

Meanwhile, there are no proposed solutions or algorithms for detecting viruses

and malwares in packed files without unpacking them first. Results prove that

no algorithm can detect packed executables and computer viruses with absolute

precision, detection may still be performed with high accuracy [92].

One of the most popular malware detection techniques is the pattern matching

algorithm. There is a great demand for high speed and scalable pattern match-

ing algorithms that deal will massive size of databases [143], specifically in the

signature-based malware detection approach which we will be adopted and dis-

cussed in this section.

Malware Signature

In the malware scanner database, each malware is unique by its signature like

a fingerprint for humans; a signature is a sequence of bytes that can be used

to identify and detect specific malware by anti-malware scanners [32]. Usually,

it’s a hash value (a number derived from a string of text) and this unique value

indicates the presence of a specific malware (malicious code) and that is what the

anti-malware software is designed to detect [45]. The process of identifying and



3.3 Malware Detection using Computational Biology Tools 57

extracting this unique signature is done through malware researchers in security

labs, which first identify and analyse the new malware and then extract and create

the signature to add it to the signatures database of the anti-malware software.

Therefore, the malware signatures database should be in a constant update phase

[106].

The process of malware analysis is a reverse engineering process that will study

every new malware by security researchers to identify the threat from that malware,

through studying the malware code structure to create a signature specifically for it

so the anti-malware scanners can detect that specific malware using that signature.

There are several attributes that will help in creating the malware signature that is

used in the anti-malware database:

1. Signatures can be generated through hashing parts of the malware code,

where then scanners uses the hashing value as the signature to detect that

malware. However, since some of the malwares change their code every

time to evade malware scanners, the regular hashing technique will not work

once the text is changed, therefore, some anti-malware scanners are using

fuzzy hashing which generates signatures that will detect and identify files

even if they were modified [118].

2. The unique parts in the malware can be identified in different forms, and

these parts can help in generating the signature. For example, some malware

will have specific steps to perform and the signature corresponding to that

unique functions is generated accordingly [11]. Alternatively, there would

be a unique text embedded inside the malware, for example, the malware

will need to know if the target host was already infected “otherwise the size

of an infected file could grow without bounds through repeated infection.”

[63]. Therefore, malware typically place a signature (such as a string) at a



3.3 Malware Detection using Computational Biology Tools 58

specific location in the file for this purpose [63]. For instance, the summer

of 2001 saw the CodeRed worm which caused possibly billions in damage.

The worm ran entirely in memory with no traces of its existence in storage.

It worked by exploiting a buffer overflow vulnerability of Microsoft IIS’s

indexing tool. However, The CodeRed signature below, happen to appears

in access logs:

Fig. 3.6 The CodeRed signature

Or sometimes unique text can be found embedded in the malware such as

names of malware authors, special pop-up messages, infected IP address,

quotes . . . etc [45] since malawre authors main purpose sometime is to grab

attentions. Another example, is the Alureon, or TDSS, which was a trojan

used to intercept network traffic, and obtain sensitive user information. In

2010, it held second place as the most active botnet. Though it originally

appeared in 2007, it evolved enough by 2010 to get noticed. Authorities

arrested its authors (Russian and Estonian nationals) by 2011. Its designers

attempted to evade analysis through obfuscating and encrypting the rootkit

body. Interestingly, they also quoted Hamlet in the malware structure.

Examine a file fragment containing a Hamlet quote below (Figure 3.7):



3.3 Malware Detection using Computational Biology Tools 59

Fig. 3.7 Hamlet words embedded in the malwre code

3. In some cases, the same signature can detect more than one malware since

many malwares uses the same code of a previous once or only slightly modify

it. They may also preform similar steps as another malware, or generate the

malware with the help of virus generation kits and that increases the chances

of detecting new malwares (zero-day-malware), since the malware will end

up matching a previous malware signature in the anti-malware database [11].

For example, about 27 variants of the virus W32/Bagle have been structured

and produced from the original malware code [39].

4. Generic signatures is the wider definition of a malware signature, where

security researchers try to identify whole families of malwares instead of one

specific malware, e.g. by designing a signature for a code segment shared

by multiple pieces of malware [24].

5. According to the CA lab security research report “Every day thousands

of new malware variants emerge that rely on common types of previously

classified malicious code” [102].

6. Keeping in mind, “The security researches have to choose and create the

malware signatures carefully, so that they are not found in innocent files by

coincidence" [11].



3.3 Malware Detection using Computational Biology Tools 60

Finally, the signature-based detection technique is the most reliable and widely

used technique over the heuristic detection technique and the behavioral detection

technique [24]. The latter two will either examine the malware code after running

it or examine the malware behavior also after running the malware. Whereas, the

signature based detecting technique will detect the malware using the malware

signature before running the malware, and since these signatures are mostly unique,

the false-positives are usually rare [24]. However, the challenge in this technique is

that is it a time consuming process to extract the malware signature manually on a

daily basis. According to the security company “Symantec” Research, traditionally,

the malware signatures are created manually, which is slow. Therefore, creating

efficient malware signatures has become a major challenge for anti-malware com-

panies where they have to handle the time consuming process and the exponential

growth of unique malware signatures databases.

Additionally, some signature-based malware scanners use the “Wildcards”

technique in detecting the malware signature and some uses the “Mismatches”

technique which is adopted in the proposed solution [11] as the scope of the

solution will be dealing with the signatures after they are saved in the anti-malware

database, as will be explained in the next sections.

3.3.3 Related Work

Nowadays, the number of virus signatures and the network bandwidth are growing

significantly and constantly, thus anti-malware vendors have to work very hard to

develop solutions and algorithms that are able to deal with these growing threats.

However, researchers have produced a number of solutions to deal with this prob-

lem specifically in the pattern matching technique. Thus many pattern matching

algorithms have been proposed to solve the problem of intrusion detection system

(IDS) [143].



3.3 Malware Detection using Computational Biology Tools 61

The majority of these algorithms are "Shift based" which are fundamentally relying

on the classic single pattern matching algorithm Boyer-Moore algorithm (BM).

The core idea of (BM) is to utilize information from the pattern itself to quickly

shift the text during searching to reduce number of compares as many as possible.

(BM) introduces a bad character heuristic to effectively capture such information

[17].

For example, "Clam-AV" is one of the anti-virus pattern matching solutions

which has been used widely in UNIX platforms lately [25]. It has been imple-

mented in an extended version of BM (BMEXT) as a core pattern matching

algorithm for scanning basic signatures along with other algorithms AC [2]. The

down side of this algorithm is that its performance will decrease whenever the

number of signatures increases. Another anti-virus pattern matching solution

known as (MRSI: A Fast Pattern Matching Algorithm for Anti-virus Applications)

introduced in [143] is used to improve the previous solution, after analysing the

different types of signatures (Basic, MD5, Regular Expression) and few other

signatures types [ as shown in Table 3.1].

Table 3.1 Different types of signatures that has been analysed by MRSI

And after studying the time processing for each signature type, [143] decided

to concentrate their work on matching the (basic) signatures since it is the most

popular one and the most time consuming in order to improve the virus scanning

speed on Clam-AV. (results in Table 3.2) therefore, they managed to achieve an

80% 100% faster virus scanning speed.



3.3 Malware Detection using Computational Biology Tools 62

Table 3.2 The processing time for each signature in Clam-AV

In this section we will study the similarities between the malware detection

problem and the biological molecules sequencing providing the possibilities of

using short reads aligning algorithm REAL in the malware signatures-based detec-

tion problem.

Currently, human genome sequence mapping has been completed. Typical ap-

plications of bioinformatics are: searching one or a set of gene occurrence in a

gene sequence, to compare similarity relationship; or matching unknown protein

sequence according to known protein sample. As the protein and gene could be

represented as sets of strings, traditional pattern matching technology could be

used to solve such matching problems in the malware detection area [37].

3.3.4 Algorithm Preliminaries

Let Σ be a finite alphabet which consists of a set of characters (or symbols). The

cardinality of an alphabet, denoted by |Σ|. The set of all non-empty strings over

the alphabet Σ is denoted by Σ+. The empty string is the empty sequence (of zero

length) and is denoted by ε; we write Σ∗ = Σ+∪ ε . A string is a sequence of zero

or more characters (or symbols) in an alphabet Σ.

The rest of the algorithm preliminaries were defined clearly in Chapter 2.



3.3 Malware Detection using Computational Biology Tools 63

3.3.5 Real Overview

REAL is a read aligner, which addresses the problem of efficiently mapping the

reads (reads are defined in chapter 2) p1, p2, ...pr to a reference genome t with at

most k-mismatches. In order for the procedure to be efficient, they made use of

word-level parallelism by transforming each factor of length ℓ of t into a signature

(as shown, in table 3.4) by transferring the reads to its binary equivalent and then

computing the decimal value.

In addition, the idea of using the pigeonhole principle to split each read into ν

fragments is adopted. The general idea for the k-mismatches problem is that inside

any match of the pattern of length m, with at most k errors, there must be at least

m− k letters belonging to the pattern [42]. Therefore, by fragmenting the pattern

into number of fragments it will then require ν − k of the fragments (instead of all

of them) to be perfectly matched on t, the non-candidates can be filtered out very

quickly.

For example, if we split the pattern into 4 fragments and the number of allowed

mismatch is 2,

Then at least (4−2) = 2 fragments will perfectly match with the text, since

the two mismatches can exist in at most two of the fragments (at the same time) as

shown in the image next in Figure 3.8.



3.3 Malware Detection using Computational Biology Tools 64

Fig. 3.8 Example where the mismatch can exist in the fragments

By trying the six combinations of the two possible fragments as the seed,

it can catch all hits with two mismatches, for example (if the fragments 1 and

2 matches exactly, the the remaining fragments 3 and 4 will have the possible

allowed mismatches) as shown in the figure next (The possible six combinations,

Figure 3.9).



3.3 Malware Detection using Computational Biology Tools 65

Fig. 3.9 (The possible six combinations

Therefore, by combining the word-level parallelism technique to create frag-

ment signatures and then create lists for these signatures depending on the pi-

geonhole principle to help in filtering out the none candidates fragments, and then

sorting these lists according to the signature value will help in performing binary

search to find exiting values which will mean the pattern occurs in the text with

the most k-mismatch allowed. an outline of the REAL algorithm will be explained

next.



3.3 Malware Detection using Computational Biology Tools 66

An outline of the REAL algorithm is as follows:

Step 1.

The firs step is to partition the text (the reference genome) t into a set of substrings

(factors) z1,z2..znℓ+1 where zi = t[i...i+ ℓ− 1], for all 1 6 i 6 ℓ+ 1 , and then

compute the signature for each factor σ (zi) by transforming the factor to its binary

equivalent using 2-bits-per-base encoding of the DNA alphabet (as shown in Table

3.3):

A 00

C 01

G 10

T 11

Table 3.3 Binary Encoding of DNA Alphabet

And then storing its decimal value as shown below in Table 3.4 in a list the

positions.

Sting x A G C A T

Binary Form 00 10 01 00 11

Signature σ 147

Table 3.4 Signature of String x= AGCTA [10]

And then fragment the factors to compute the signature for each fragment and

store them in lists.

Step 2.

The second step is to sort the signatures list using radix-sort algorithm ( defined in

Chapter 2).

Step 3.

The third step is to compute the fragments and signatures for the patterns (reads)



3.3 Malware Detection using Computational Biology Tools 67

and then perform the binary search operation to return wither the patten occurs in

t, if the exact signature occurs then the matching can be extended to the remaining

fragments to match with at most k-mismatches.

REAL algorithm has been presented recently to the gene and DNA sequencing

area and so far it performed very well with positive results. It is worthy of trying

to use this pattern matching algorithm in signature-based pattern matching for

anti-malware and malware detection area.

Full details on how the REAL algorithm work can be found in [42].

3.3.6 Problem Definition

This work considers two areas, signature-based malware detection and bioinfor-

matics sequencing pattern matching. REAL algorithm could solve the problem

described as:

The problem of mapping tens of millions of short sequences to a reference genome

as follows:

Find whether the pattern ρi = ρi[1...ℓ], for all 1 ≤ i ≤ r, with ρi ∈ ∑
∗, ∑ =

{A,C,G,T}, occurs with at most k-mismatches in t = t[1..n], with t ∈ ∑
∗

In particular, we are interested in reporting a pattern, for all 1 ≤ i ≤ r, in a

case that occurs with the least possible number of allowed mismatches, exactly

once in t [42],[10].

The malware detection problem is defined as follows:

Problem 1. Given a set of patterns {ρ1,ρ2, ...,ρr} of length ℓ, with ρi ∈ ∑
∗, ∑ is a

bounded alphabet, and an integer threshold h > 0, find whether ρi, for all 1 6 i 6 r,

occurs in text t of length n and/or in text t̂, where t, t̂ ∈ ∑
∗ and δE(t, t̂)6 h.



3.3 Malware Detection using Computational Biology Tools 68

Similarity between two problems:

Both Problems are dealing with massive amounts of data that need to be processed

everyday with as minimum space, time and cost as possible. The DNA sequencing

technologies are improving by the clock and producing tens of millions of short

sequences (reads) in a single experiment that needs to be mapped back to reference

sequences. Likewise, according to recent security reports more than 317 million

new pieces of malware were created in 2014 only. That means around 1 million

new threats were released each day that the malware scanners have to cope with

and detect everyday (new malware signatures).



3.3 Malware Detection using Computational Biology Tools 69

3.3.7 The Experiment

The experiment was done with different types of files including Portable Executa-

bles (".exe" and ".dll"), email files, Graphics (".jpg" and ".gif"), OLE2 component

(eg: VBA script), normalized Web files ( HTML, PHP, Jave Script) and normalized

ASCII text file.

Generating signatures is out of the problems’ scope, since as mentioned before cre-

ating malwre signatures will require an intensive analysis of the malware structure

and code. In fact, the proposed solution is focusing on detecting the malwre using

signatures already saved in the database. However, in order to test the solution two

different types of signatures MD5 hash and body-based signature were generated,

either by using Sigtool, a tool for generating MD5 hash or body-based signature

which is a tool we developed as a signature generator component in Microsoft C#

programming language.

Fig. 3.10 Example of some of the generated infected files

The following steps are for generating the signatures given an infected file

Step 1: For body-based signature we started by loading the infected file content as

byte array to the memory (for larger file we only read small segments of the file

(2KB, 2048 Bytes), the selected segment could be taken arbitrary from any part

of the file. For MD5 hash we added an extra step to the process by passing the

byte array extracted from the file to the MD5 hash generator function. Note that



3.3 Malware Detection using Computational Biology Tools 70

different signatures can be created from different parts of the infected file body

by selecting different offsets, (the beginning, middle or the end of the file) finding

informative areas in the file body will improve the detection process.

Step 2: Convert the selected byte array to Hexadecimal signature and write

the output to the virus signature library file

For example to create a body-based signature for the file "program.exe" using

the CALMAV signature tool.

root@localhost : /tmp/$sigtool program.exe > test.hdb (3.1)

To create MD5 hash signature use the "–md5" option of sigtool as follow:

root@localhost : /tmp/$sigtool −−hex−dump

dumpprogram.exe > test.hdb(7.2)

The virus library contains list of the signatures stored one signature per line, as

shown in table 2 .

Table 3.5 The Structure of the Virus library File

The first line in the file contains the total number of signature in the library



3.3 Malware Detection using Computational Biology Tools 71

As a first testing stage, the viruses were distributed in one folder with 93

different files, total folder size 207MB, the scanning time was 1 second detecting

all the embedded viruses as shown in the figure below (Figure 3.11).

Fig. 3.11 Detecting the infected files with high accuracy and speed A

Then, the viruses were distributed in a larger folder with 1039 different files,

total folder size 819MB, the scanning time was 11 seconds) as shown in the figure

below (Figure 3.12).

Fig. 3.12 Detecting the infected files with high accuracy and speed B



3.3 Malware Detection using Computational Biology Tools 72

Detection Accuracy

The detection accuracy of the proposed solution according to the experiment is

very efficient and promising, in fact, after testing the solution on number and types

of different datasets with different number of allowed mismatches, the solution

was able to detect all the infected files embedded in the datasets with high accuracy,

as shown in Table 3.6.

Table 3.6 The accuracy Experiment Results

Detection Performance Evaluation

The proposed solution was tested against the previous two algorithms that were

mentioned in the related work section 3.3.3, the first algorithm is the BMEXT

which is an extended version of BM which is a fast string searching algorithm

[17], and the second algorithm is the MRSI (Multi-block Recursive Shift Indexing)

algorithm [143], both algorithms were implemented in Clam-AV [25] to evaluate

their performance. The time cost in the scanning stage was recorded then translated

to the scanning speed in Mbps (Megabits per second). Two datasets were used in

the experiment, the first dataset contain randomly generated files of 100 Mbytes

and the second dataset was a several executable files of 80 Mbytes in total.

As shown in Figure 3.13 the REAL detection tool outperform both algorithms

in both datasets.



3.3 Malware Detection using Computational Biology Tools 73

Fig. 3.13 The detection performance evaluation

3.3.8 Discussion

We have introduced a novel way for detecting malware code embedded in different

types of computer files, using bioinformatics tool, namely REAL (short read

aligner for next generation sequencing), which uses approximate string matching.

One of the benefits of this approach is that REAL is implemented in such a way that

it does not necessarily load the whole file in memory. Instead, it loads blocks of

the file depending on the physical memory of the individual machine. Concerning

the storage used for indexing, no additional hard disk space is necessary for REAL,

as it does not store an index of the file data. The presented experimental results are

very promising, in terms of efficiency and sensitivity on the detection process.

As it is shown by the results in [Table 3.6], REAL showed a consistency and

accuracy in the detection process and it was able to complete the assignment much

faster, despite not using a stored preprocessed index of the scanned files. REAL

outperform classic pattern matching such as Knuth-Morris-Pratt and Boyer-Moore



3.3 Malware Detection using Computational Biology Tools 74

[42].

The proposed future work is to focus on two parts. First of all, using some

heuristic algorithm for optimizing segmentation and selection of the signature

region, utilized very well (e.g. level 8 memories). Hence, designing additional

algorithms to further optimize the memory cost.

Second, provide support for signature based container meta-data by allowing

matching for signatures in files stored inside different container types such as

compressed and encrypted files. In Addition, Future work will focus on studying

the capability of perm-term analysis instead of segmentation, experiments with

different and larger malware collections, and a combination of this technique with

machine learning analysis of malicious code.



3.4 Detection of URL in Image Steganography 75

3.4 Detection of URL in Image Steganography

3.4.1 Introduction

The word steganography is derived from the Greek words (stegos) meaning (cover)

and (grafia) meaning (writing) [49]. However, Steganography and Cryptogra-

phy considered to be complementing each other rather than replacing each other.

Cryptography is the art of scrambling messages to make it difficult to understand,

whereas, Steganography is the art of hiding it to make it difficult to find.

Therefore, steganography is an extra layer that will support transferring secret

information in a secure way (secrete communication) whereas, cryptography in

this case is data protection. Besides, when steganography fails and the message

can be detected, it is still of no use as it is encrypted using cryptography techniques

[49].

Moreover, Steganographic techniques started ages ago back to ancient Greece.

Starting by writing text on wax-covered tablets to shaving the head of a messenger

and tattoo a message or image on the messenger’s head. And when the hair grow

back, he will be sent to the receiver where the message will be undetected until the

head is shaved again [61].

Since then, the science of steganography has developed significantly to more

sophisticated techniques far more than their ancient predecessors, allowing a user

to hide large amount of information within image, audio files and even networks.

In fact, in reality the main difference between the modern steganographic tech-

niques and the previous once is only the form of (carrier) for the secret information.

For instance, instead of using human skin and wooden tables they use media files

like images and audio.

Although, within the daily discovery of a message hidden with an existing applica-

tion, a new steganographic applications are being devised. And an old methods are



3.4 Detection of URL in Image Steganography 76

given new twists [61]. Therefore, there are so are many types of steganography

methods to hide secret data wither with new carriers, new hiding techniques or

new type of secret data.

3.4.2 Motivation

Steganography is the science of hiding data within data, either for the purpose of

secret communication or leaking sensitive confidential data, or even embedding

malicious code or malicious URL. Many different carrier file formats can be used

to hide this data (network, audio, image.. etc) but the most common steganography

carrier is through embedding secret data within images, as it is considered to be

the best and easiest way to hide all types of files (secret files) within an image

using different formats (another image, text, video, virus ,URL..etc).

To the human eye, the changes in the image appearance with the hidden data can

be imperceptible. In fact, images can be a lot more than what we see with our

eyes. Therefore, many solutions were proposed to help in detecting this hidden

data, with each solution having strong and weak points either by the limitation of

resolving one type of image along with specific hiding technique or most likely

without extracting the hidden data.

The detecting process is called “Steganalysis” and most of the current steganalysis

techniques (if the original image that was used to hide the message was unknown

to them) they can only suspect the presence of a hidden message as it is very

difficult to either detect or extract the hidden data if they don’t have the original

image to compare to.

Recently, hiding URL in images are becoming more popular because embedding

URL in an image instead of the whole secret text will occupy much less space in

the carrier [32] and that will help in hiding it, and prevent the chance of it being



3.4 Detection of URL in Image Steganography 77

corrupted by image manipulations. These URLs can belong to malware that will

harm the image’s receiver, or they can also be used for leaking secret information

or spying.

Since hiding URLs in images is a relatively new technique and an open problem in

the security and privacy field, the first part of this section proposes a first attempt

of a novel detection approach that will concentrate on detecting any kind of hidden

URL in most images and extract the hidden URL as it is from the carrier image that

used the LSB least significant bit hiding technique in a very fast and accurate way.

The novelty of this approach is that it can extract the hidden text by depending

only on the hidden technique and the message format.

The second part of this section builds on the previous approach through detecting

hidden and encrypted URL, and extracts the URL as it is, in a very accurate and

fast technique.

The rest of this section is structured as follows. In subsection 3.4.3 and subsec-

tion 3.4.4, the basic steganography concept and applications are presented. In

subsection 3.4.5 and in subsection 3.4.6, defining the image steganography and

briefly review some of the current image steganography techniques which is the

focus of this section. An overview of the steganalysis is in subsection 3.4.7. In

subsection 3.4.8, formally defining the solved problem. Subsection 3.4.9, the URL

detection algorithm overview with full analysis of the time and space complexity

for each step. Then an improvement of the solution is presented in 3.4.10 to

detect and extract encrypted ULR followed by and experiment results in 3.4.11.

Finally, briefly concluding the section with some discussion and future proposals

in subsection 3.4.13.



3.4 Detection of URL in Image Steganography 78

3.4.3 The Concept of Steganography

The concept of steganography is to embed data, which is to be hidden, however,

this process will require three files:

First, is the secret message which is the information to be hidden and as mentioned

before with the new steganography techniques almost any kind of data can be

hidden.

Second, is the cover file (carrier) that will hold the hidden information and as well,

almost any kind of files can be used as a carrier.

Finally, is the key file to find the hidden message and extract it from the cover file

(if needed), the result of these three files is a file called (Stego File) as shown in

Figure 3.14.

Fig. 3.14 Stego application Scenario

However, the most common steganography technique is embedding messages

within images as its considered to be the best carrier (Cover File) to hide all types

of files within it. For example, hiding (another image, Virus, URL, text, exe file,

audio..etc) without changing its visible properties [98].

For this reason, many companies are finding it difficult to detect the stego files

specially images even after scanning all their employees out going emails.



3.4 Detection of URL in Image Steganography 79

3.4.4 Steganography Applications

Steganography can be used for good intentions in many useful ways for example

to help in transferring secret data, copy rights control of materials and smart IDs

(identity cards) where individuals’ details are embedded in their photographs [20].

Also, it can be used in printed images where the data will be embedded before

printing, and after printing the user can scan the printed image with a smart device

and the embedded information will appear on the device, this can be useful in so

many fields especially exhibitions and as a marketing tool to display the products

information.

Nevertheless, hospitals are using Steganography also to keep their patient’s confi-

dential data such as DNA sequences in a secret safe place where the access to it is

highly restricted unlike other data.

On the other hand, like any other science, cyber-crime is believed to benefit from it

in transferring illegal data or embedding viruses and malicious URLs in carries and

other harmful actions. Therefore, due to the rapid development of steganography

methods and techniques the steganography research area has gained so much

attention during the last decade.

Besides that, nowadays any person without any technical background can do

harmful cyper-crime actions with the support of the cyper-crime ready made so-

phisticated softwares which are available online to everyone with no cost and

easy to use, for example, there are alot of steganography tools for instance, Xiao

Steganography [115] which any user can use to leak his/her company’s confidential

information with basically 3 clicks (selecting the cover image, selecting the secret

file or typing the secret message, and finally clicking on the embedding button)

and the software will do the rest.



3.4 Detection of URL in Image Steganography 80

3.4.5 Image Steganography

Using an image as a cover file is considered to be one of the most useful and

cost effective technique [79], all the image steganographic techniques to hide data

based on the structure of the most commonly used images format on the internet

(GIF-graphics interchange format), (JPEG-joint photographic expert group), (PNG-

portable network groups )and (BMP- Bit Map Picture).

The image steganography process contain three files as follows:

• Cover Image: In steganography, the original image that was chosen as a

carrier for the secret data is called a cover image.

• Stego Image: Is the result image of choosing the right cover image and

embedding the secret data inside it.

• Stego Key: The sender should have an algorithm for creating the stego image

to embed the data, and the receiver should have the matching algorithm to

extract the hidden data from that particular stego image and sometimes they

use a key to extract the secret message which is called a stego key.

To Formally Define the Image Steganography Embedding Process:

Let C be the chosen Cover Image, and C′ is the Stego Image, the Stego Key will be

denoted as K (if needed), and the hidden message as M and the hidden technique

will be denoted as (+) then:

C+M+K →C′

as shown in Figure 3.15.



3.4 Detection of URL in Image Steganography 81

Fig. 3.15 Image Steganography Embedding process [20]

However, the main challenge in image Steganography is that many image

manipulation techniques might destroy the hidden message on any image, since it

will change the feature of the (stego-image) it might as well change the feature of

the hidden message inside it, such as cropping might crop the hidden message if it

was long and located in one section of the image. Or corrupt the message, where

rotation might give the receiver difficulty in finding the hidden message, filtering

might destroy the hidden message completely and so on.



3.4 Detection of URL in Image Steganography 82

3.4.6 Current Image Steganography Techniques

There are some naive implementation of image steganography for example by

feeding windows OS command some code to embed the text file which contain

the secret message into a specific image and produce the stego-Image.

Fig. 3.16 Stegocode

However, when displaying the image structure the message reveals itself and

also will not survive any kind of image manipulation [20].

Steganography embedding techniques can be divided into two groups either

Spatial Domain also known as Image Domain which embed directly the secret

data in the intensity of the image pixels, usually in the least significant bit (LSB) in

the image, or the Transform Domain which is also known as Frequency Domain,

where images are first transformed and then the secret data is embedded in the

image [81]. However, there are more two newly introduced techniques which are

the Adaptive Method and the Vector Quantisation (VQ-based) method.

According to (A Review on current Methods and application of Digital image

Steganography 2015) which presented and studied the major steganography algo-

rithms between the year of 2010 and 2014 stated that the Spatial Domain method

is more popular and mostly used by more number of stego authors in comparison

to the Frequency Domain (as shown in Figure 3.17). Yet, there is a lot of scope

and opportunities to develop more and effective methods for steganography [79].



3.4 Detection of URL in Image Steganography 83

Fig. 3.17 Mostly used Steganography Methods

The focus of this section will be on Spatial Domain the most popular technique.

Moreover, in spatial domain, the steganographer modifies the secret data and the

cover image, which involves usually re-encoding the least significance bits (LSBs)

in the carrier image. To the human eye these changes in the image value of the

least significant bits (LSB) are imperceptible [19] the strength of the presented

detection approach is that it will preform on most types of images and will extract

the hidden URL as it is.

Least Significant Bits (LSB) Hiding Technique

Its the steganography technique of embedding data at the least significant bits

(LSB) in the cover image. It is considered to be one of the simplest techniques of

embedding data in a cover image. Yet, it's one of the most difficult techniques to

be beaten. This technique embeds the bits of the secret data directly into the least

significant bit plane of the cover image [20].

The changes will be only made on three bits, on average, only half of the bits

in an image will need to be modified to hide a secret data using the maximal cover

size. In fact, the result of these changes are too small to be recognized by the

human visual system (HVS), so the message is effectively hidden [49].



3.4 Detection of URL in Image Steganography 84

This technique will be the focus of the presented detection approach since its

widely used and on all most of images.

3.4.7 Stegaanalysis

Steganalysis is the main step in the steganography detecting technique to discover

the hidden messages. It’s the way of identifying the suspected medium, determine

whether or not they have an embedded data into it, and, if possible, recovering that

data. in other words ’Steganalysis is the science of attacking steganography in a

battle that never ends’ [20].

Steganlysis can be challenging sometimes more than cryptanalysis, to explain, the

steganalyst have first to identify the suspected cover file, then locate the hidden

message where sometimes it can be scattered into more than one place in the cover

file, finally, most likely the secret message will be encrypted as an extra level of

hiding it. Whereas, the cryptanalyst main mission usually will be to decrypt the

encrypted message if the encrypted text was provided.

Stegnalysis can be done according to different attacks:

1. If the steganography attack is known to the steganalyst: the cover file,

the hidden message and the steganography tool (algorithm) are all known

to the steganalyst, then its shouldn't be difficult to locate and identify the

hidden message.

2. Only the original file (before embedding the message) and the cover

file (after embedding the message) are known to steganalyst: then the

mission will be to compare the two files and identify the hidden message

according to the pattern differences that are detected between the two files.



3.4 Detection of URL in Image Steganography 85

3. If the secret message only is known to the steganalyst: then the mission

will be looking for a known pattern in all the files, and that might be difficult

to achieve if the hidden technique is unknown to the steganalyst.

4. Only the cover file is known to the steganalyst: similarly to the previous

point it will be challenging to identify the hidden message location since it

may be scattered to more than one place or to understand it, since it might

be encrypted.

However, image processing are usually the main technique used in building

steganalysis programs to study different image manipulations such as translating,

filtering, cropping and rotation. Also by examining the cover image structure for

first order statistics (histograms) or second order statistics (correlations between

pixels, distance, direction). JPEG double compression and the distribution of DCT

(discrete cosine transform) coefficients can give hints on the use of DCT-based

image steganography [20].

The focus of this section will be under a new kind of attacks where the type

of the hidden message is known (URL) and the used technique in hiding it is the

(LSB) the least significant bit is know as well in most types and Images.

URL in Image Steganography

Embedding data in images is not a new technique. However, improving this

method in image steganography is getting better and more sophisticated by the

day, one of these recent improvement is embedding a URL ( Uniform Resource

Locator) in the image least significant bits either to direct the receiver to a web

page that include the secret data. Or the embedded URL can belong to a virus that

will harm the image receiver either by destroying data or stealing data. The main

reason behind embedding URL in an image instead of the whole secret data is that



3.4 Detection of URL in Image Steganography 86

the URL will occupied much less space in the carrier [36] and that will help in

hiding it and prevent the chance of being corrupted by the image manipulations

(as shown in Figure 3.18).

Fig. 3.18 URL Stego Embedding Scenario

Regarding viruses, as mentioned before, Dell SecureWorks Counter Threat

Unit™ published on june 2015 a full analysis of the (Stegoloader malware) which

is a stealthy information stealer. And they explained

Malware authors are evolving their techniques to evade network and

host-based detection mechanisms. Stegoloader could represent an

emerging trend in malware by the use of digital image steganography

to hide malicious code [33].

In fact, Stegoloader has a modular design and uses digital steganography to

hide its main module’s code inside a Portable Network Graphics (PNG) image

downloaded from a legitimate website [33].

Furthermore, another analysis by the same source Dell SecureWorks on another

malware (Lurk Downloader) whereas, this malware specifically embed a URLs into

an image file by inconspicuously manipulating individual pixels , the explained:

The resulting image contains additional data that is virtually invisible

to an observer. Lurk’s primary purpose is to download and execute

secondary malware payloads [117].



3.4 Detection of URL in Image Steganography 87

Hidden URL in an image can be for the good cause of secret communication

but unfortunately most likely that is not the case in the past 2 years since viruses

started using this technique. In fact, hidden URLs now are used by malware

authors to download an extra modular as shown in the previous example where the

Lurk malware adopted the hidden URL in image technique in 2014, specifically

it uses an algorithm that can embed URLs into an image file so the stego image

contains additional data that virtually invisible to the human eye. the malwre then

downloads and execute secondary payloads using the hidden URL [117]. However,

the proposed solution in this section will be able to detect any URL regardless of

it’s intention.



3.4 Detection of URL in Image Steganography 88

3.4.8 The Problem

In this section, we are dealing with (URLs) hidden inside images. As described

previously, for example, any malicious code can be embedded using least sig-

nificant bit (LSB) technique. Modifying LSB means modifying the colour by

changing the least significant bits of an image. We have different type of colour

formats such as 8 bits, 24 bits..etc. They have both colour and grey scale.

8 bits colour means that each pixel can have any of 256 (28) colour. The same

calculation is applicable on the 8 bits grey scale or 24 bit colors. So, modifying the

least significant bit in an array of huge combination of colors does not make much

difference in human eye. This makes the use of the least significant bits (LSB)

URL attack very effective and undetectable.

For example: an url http://exampleattack.com has got 24 characters, each

character on this url takes 8 bits in ASCII format, therefore, the URL will require

192 significant bits from an image.

For the simplicity of example, lets see how first character ’h’ of our example

url http://exampleattack.com can be added by using least significant bits of an

image.

The ASCII value for ’h’ is decimal 104 and binary 01101000

Before the least significant bits (LSB) insertion lets assume that 8 consecutive

bytes of an images is below.

10000010 10100110 11110101 10110101

10110011 10010111 10000100 10110001

After inserting ’h’ (01101000) in the least significant bits the result is below.

10000010 10100111 11110101 10110100

10110011 10010110 10000100 10110000



3.4 Detection of URL in Image Steganography 89

In this way by using more least significant bit of images we can embed the rest of

the characters of the intended URL.



3.4 Detection of URL in Image Steganography 90

3.4.9 URL detection Algorithm

This subsection will present the proposed detection algorithm overview, and

detailed algorithm in pseocode to detect a hidden URL from the least significant

bits of an image, and the detailed complexity analyses are done as well.

Algorithm Overview

• Step 1:

Create a sorted list, DOMAIN[], from the static official top level domain list

web site (as shown part of it in Table 3.7).

• Step 2:

Create an array calleded BITMAP[], from an image taking each bit in array.

• Step 3:

Make a character array called, LSBCHARARRAY[] from an Intermediate

array of LSBARRAY[] by converting each 8 bits to an ASCII character.

• Step 4:

Loop through the LSBCHARARRAY[], find out possible hidden url forming

by http or https, www, domain name and top level domain (TLD).



3.4 Detection of URL in Image Steganography 91

Table 3.7 List of Top-Level Domains by the ICANN - for full list please refer to
[52]

AAA AARP ABB ABBOTT ABOGADO

AC ACADEMY ACCENTURE ACCOUNTANT ACCOUNTANTS

ACO ACTIVE ACTOR AD ADS

ADULT AE AEG AERO AF

AFL AG AGENCY AI AIG

AIRFORCE AIRTEL AL ALLFINANZ ALSACE

AM AMICA AMSTERDAM ANALYTICS ANDROID

AO APARTMENTS APP APPLE AQ

AQUARELLE AR ARAMCO ARCHI ARMY

ARPA ARTE AS ASIA ASSOCIATES

AT ATTORNEY AU AUCTION AUDI

AUDIO AUTHOR AUTO AUTOS AW

AX AXA AZ AZURE ..etc



3.4 Detection of URL in Image Steganography 92

The Algorithm in Pseudocode

The 4 steps given previously are presented in the appendix of this thesis with detail

pseudocode so that users can convert any programming language easily with little

efforts.

Space and Time Complexity analyses:

Step 1 (Create a sorted list from the static official top level domain):

Space complexity: We have a known List of the Top-Level Domains (TLD) (as

shown in Table 3.7) from [52]. So, in preprocessing stage, we create an indexed

array, DOMIAN[] considering each TLD as a string. Space complexity is linear to

the size of all characters plus the index of each string position in a sorted order.

Also, we create a separate index list with just starting position of TLDs with a

specific character. For example, if .co and .com both starts with c, so if we know

where the ’c’ starts in the whole sorted list, we just can look in the block starts

with ’c’. The overall space complexity for the sorted list is O(m)+O(t)+O(i)

where m is the total number of characters, t is the index on each TLD string which

is limited to the official static list.

Time complexity: This can be the step of computation of preprocessing, so com-

plexity is not a major issue. However, it is possible to build up sorted list by radix

sort [109] where the LSD radix sort operates in O(nk) in all cases, where n is the

number of keys, and k is the average key length.

Step 2 (Create a sorted list from the static official top level domain list):

Space complexity: O(m) where m is the number of bits.

Time complexity: O(n) where n is the number of bits. This means in just a single

iteration the array is built.



3.4 Detection of URL in Image Steganography 93

Step 3 (Make a character array by converting each 8 bits to an ASCII char-

acter):

Space complexity: The complexity is O(n) here where n = m/8 and m is the

number of bits in BitMap and only one in each 8 bits are placed in character array

by converting 8 such Least Significant bits into character. So, the complexity here

is sub linear. Although an intermediate LSBARRAY has been introduced in Step 3

for clarity purpose of the flow, it is possible to calculate the LSBCHARARRAY di-

rectly from BITMAP[] array. So LSBARRAY[] is not required in implementation.

Time complexity: This is looping through the BitMap array just once and

producing character array by taking each 8 significant bit together and converting

to ASCII. So, the time complexity is linear here with O(n) where looping n bits

just once produce the result.

Converting to ASCII and character is happened just 1 in 1/64 where 1 byte ( 8

consecutive LSB) comes from 64 bits. This operation produces time complexity

of O(n+n/64) which is linear.

Step 4 (Loop through the array, find out possible hidden url forming by http

or https, www, domain name and top level domain(TLD))

Space complexity: The space complexity holds the linearity here with O(n) where

n is the number of characters in the array.

Time complexity: This is a loop through the characters array. Finding first

3 parts of an URL (http/https and/or www, domaion name) are done in one go

in the single loop. There are nested loops used to find the position and for the

calculation purpose for http, https and www. The actual counter of characters array

is incremented in each go whether it is inner loop or outer loop. The complexity

holds linear for the operations because the whole characters array are traversed just



3.4 Detection of URL in Image Steganography 94

once. Looking up the 4th part, Top Level Domain (TLD) requires a short lookup

in a sorted array described in Step 1. For the whole character array, this lookup is

just done to complete the search in a sorted and indexed Top Level Domain array

which we called in step 1 as DOMAIN[]. In a sorted list, the binary search works

as log(n) complexity in worst case where n is the number of items in an array. But

in our case, n is narrowed down by index of each character. So, each block of

searched area is n/m where m is the number characters in the alphabet. So, the

search takes log(n/m) time complexity because we know the starting character to

lookup in DOMAIN[] array. The overall complexity stays linear for step 4.

3.4.10 Next Level Detection (Detecting and Extracting Encrypted

URL)

The previous tool can be considered as one of the first tools to detect the hidden

text in images and extract these hidden messages as it is, therefore, we considered

taking it to the next level and improve the detection algorithm to detect and extract

encrypted URLs.

Assuming that the sender encrypted the URL using the (NOT) encryption

technique (as will be explained next) which will help in encrypting and hiding the

plain text at the least significant bits (LSB) of the image.

The following proposed algorithm is a linear time algorithm so, it terms of

time and space it does not add to any more complexity of the previous algorithm.



3.4 Detection of URL in Image Steganography 95

The (NOT) Encryption Technique

This level of text encryption will not be detectable using the previous algorithm,

since it will evade the URL detection through using the binary operation NOT to

encrypt the plain text.

To explain, continuing on the example that was mentioned in the Problem

Definition in section 3.4.8:

The ASCII value for ’h’ is decimal 104 and binary 01101000

Before the least significant bits (LSB) insertion lets assume that 8 consecutive

bytes of an images is below.

10000010 10100110 11110101 10110101

10110011 10010111 10000100 10110001

To add the extra encryption level on the plain text before embedding it in the

image, the ’h’ binary will transform from 01101000 to 10010111

Therefore, after inserting the encrypted ’h’ (10010111) in the least significant

bits the result is below.

10000011 10100110 11110100 10110101

10110010 10010111 10000101 10110001

The strength of this technique that it will encrypt the URL, which is a very short

text embedded in a very large number of pixels, giving the sender the advantage of

hiding the text without any key for the receiver to use to extract the text, in fact,

the receiver will only need to know the hiding technique and the text location to

extract the hidden text.



3.4 Detection of URL in Image Steganography 96

3.4.11 Experiments

The solution was implemented using Visual Studio 2015 Studio, ASP.Net 4.5 and

javascript. The solution is available on http://tanvera-001-site2.htempurl.com. it

was tested using bmp, png and gif images of different sizes, colour depth, colour

palletes and compression types. furthermore, the solution has been tested using

IE11, Firefox 4 and Chrome Ver 50.0.

It uses javascript as a client side scripting language and it will work only

on browser where javascript is enabled. It also needs to access files from client

machines or folders, so if there are restrictions on accessing images files, the

browser will not be able to read the images files.

It cannot accept compressed and lossy images as there is a possibility that

the URL data will be lost or corrupted when the images are compressed and the

solution will not be able to extract the URL from the stego image [81]. Further-

more, for monochrome images, changing the least significant bits (LSB) technique

might alter the image in such a way that the changes are visible to the viewers

and raise suspicion that the image have been altered, therefore, it will be eliminated.

Extracting URL Images: The users needs to select the image using the

’Browse’ button, which will open a file selector window. Then, the user will

needs to select an image. Once the image file is selected then the user needs to

click ’Extract URL’ button. The website will then upload the image to the server,

extract the bitmap of the image and apply the algorithm. If it identifies the URL

then it will display the output on the screen as shown in Figure 3.19. However, If a

URL is not present, then an appropriate message is displayed.



3.4 Detection of URL in Image Steganography 97

Fig. 3.19 Extracting URL from Image

Hiding URL Images: The user need to select the image where they want to

hide the URL using the ’Browse’ button, which will open a file selector window.

Then, the user needs to select an image. Once the image file is selected then the

URL needs to be entered in the given textbox. After clicking on the ’Hide URL’

button, the system will first verify the URL to make sure that it is a valid URL,

otherwise it will display an error message. The website will then upload the image

to the server, extract the bitmap of the image and hide the URL inside the image.

The modified image will be then displayed on the browser as shown in Figure 3.20.

The user can right click on the image and save the image in a desired location.

Fig. 3.20 Hidding URL using Stego Process



3.4 Detection of URL in Image Steganography 98

3.4.12 Checking Experiment Results

Image Difference

We tested the generated images (Stego Images) with the original images (Cover

Images) using a free image comparison website [30]. The website found no

difference between the original and image containing the hidden URL as shown in

Figure 3.21. It compares the pixel value and colour between the images, there is a

threshold (3 points) which the pixel must exceed in order to register as a difference.

And that confirms that the statistics steganalysis techniques will not be effective in

detecting and extracting the hidden encrypted URLs since they are very short and

the changes that they do to the images are imperceptible.

Fig. 3.21 Image Difference between original image and stego image



3.4 Detection of URL in Image Steganography 99

Histograms Analysis

We have analyzed the histograms of the image and the generated stego image.

There was no difference between the histograms of both these original image 3.22

and the stego image 3.23. And that again confirm that the steganalysis depending

on the histograms wont detect the hidden URL even if the original image is known

and the Stego image is known as well.

Fig. 3.22 Histograms Analysis

Fig. 3.23 Histograms Analysis

3.4.13 Discussion and Future Work

This section described in details from the existing research how data can be hidden

in an image. Also, have dealt with hidden URL detection in images and explained

the approach as well as providing the proposed algorithm in pseodocode, which

can be implemented in a programming language of any choice with little efforts.

Furthermore, the URL detection problem in images was simplified with respect

to string matching approach which can be used in other kind of string matching

problem in an image. For example, users may be interested to search for malicious



3.4 Detection of URL in Image Steganography 100

commands or other kind of strings hidden in the image using least significant bits

(LSB) of the image. However, the proposed solution was taken to the next level

to consider detecting and extracting encrypted hidden URLs. The experiments

showed that the solution is very effective in detecting and extracting the URLs

comparing to the statistical detecting technique which it will not even realised the

differences after embedding the URL and that is due to URL short length.

Detecting and extracting URL as it is, specifically in images is a novel approach

in image Steganography analysis. However, the reason of concentrating on this

problem is a response to the introduction of the new technique of embedding

malicious URLs in images recently, and that is relatively a new technique for

hiding/spreading viruses. The approach time and space complexity are promising,

therefore, as a future work the detection tool can be improved to cover more

encrypting techniques.



Chapter 4

Fingerprint Recognition Techniques

4.1 Introduction

In Biometrics, fingerprint is still one of the most reliable and used technique to

identify individuals. Recently, the need for automatic person identification has

increased more and more in our daily activities, in general, and in the world of

business and industry specifically.

To this end, the use of biometrics has become ubiquitous [108, 128]. Biometrics

refers to metrics related to human characteristics and traits. Since biometric identi-

fiers are unique to individuals, automatic person identification systems based on

biometrics offer more reliable means of identification than the classical knowledge-

based schemes such as password and personal identification number (PIN) and

token based schemes such as magnetic card, passport and driving license.

Among all the various forms of biometrics including face, hand and finger geome-

try, eye, voice, speech and fingerprint [119], the fingerprint-based identification is

the most reliable and popular personal identification method. Fingerprints offer an

infallible means of personal identification and has been used for person authentica-

tion since long. Possibly, the earliest cataloguing of fingerprints dates back to 1891



4.1 Introduction 102

when the fingerprints of criminals were collected in Argentina [85]. Now, it is

used not only by police for law enforcement, but also in commercial applications,

such as access control and financial transactions; and in recent times in mobile

phones and computers.

In terms of applications, there are two kinds of fingerprint recognition systems,

namely, verification and identification. In the former, the input is a query fingerprint

with an identity (ID) and the system verifies whether the ID is consistent with the

fingerprint and then outputs either a positive or a negative answer depending on

the result. On the contrary, in identification, the input is only a query fingerprint

and the system computes a list of fingerprints from the database that resemble

the query fingerprint. Therefore, the output is a short (and possibly empty) list of

fingerprints.

The majority of research in recent times has focused mostly on the fingerprint

authentication, but not on the rotation of fingerprints. The lion share of the state-

of-the-art in the fingerprint literature review assumes that the fingerprint is aligned

in the same direction of the stored fingerprint images. This is an important aspect

of fingerprint matching, which various techniques have ignored, and only very

few, in the literature [1], have considered. As computers and mobile devices adopt

fingerprint recognition as a way to authenticate user, this apparent tension gains

more popularity, becoming an integral research area which must be addressed.

4.1.1 Motivation

The performance of Automated Fingerprint Identification System (AFIS) heavily

relies on how efficiently minutiae are extracted. Most, if not all, AFIS compare

minutiae information (such as ridge endings and bifurcation position) in form

of sets of coordinates for verification or identification. Surprisingly, research

on alternative minutiae extraction schemes is scarce. This section, proposes the



4.1 Introduction 103

approach and implementation of a novel approach for fingerprint recognition based

on the extraction of minutiae in form of circular strings, which are suitable for

approximate circular string matching. In addition to that, the proposed solution is

able to detect the exact location and rotation of the input fingerprint regardless of

its location on the scan surface.

The organization of the rest of this chapter is as follows. In Subsection 4.2.1,

we present some background related to fingerprints. Subsection 4.2.2 presents a

brief literature review. We present our approach in Subsection 4.3.1 after discussing

some preliminaries in Section 4.3. The experiment and the result analysis will be

presented in Section 4.4. Finally, we briefly conclude in Section 4.5.



4.2 A Novel Pattern Matching Approach for Fingerprint-Based Authentication 104

4.2 A Novel Pattern Matching Approach for Fingerprint-

Based Authentication

4.2.1 Background

Fingerprint pattern can be simply defined as the combination of ridges and grooves

on the surface of a fingertip. The inside surfaces of the fingers contain minute

ridges of skin with furrows between each ridge. The ridges and furrows run

in parallel lines and curves to each other forming complicated patterns. The

basic fingerprint (FP) patterns are whorl, loop, and arch [99]. However, the most

common and widely used classification method is based on Henry’s classification

[50] [69] which contain 8 classes: Plain Arch, Tented Arch, Left Slant Loop,

Right Slant Loop, Plain Whorl, Double-Loop Whorl Central-Pocket Whorl, and

Accidental Whorl (as shown in Figure 4.1).

Fig. 4.1 Classification of Fingerprint Patterns



4.2 A Novel Pattern Matching Approach for Fingerprint-Based Authentication 105

Each fingerprint is highly stable and unique. This uniqueness is determined

by global features like valleys and ridges, and by local features like ridge endings

and ridge bifurcations, which are called minutiae. According to recent studies,

the probability of two individuals having the same fingerprint is less than one in a

billion [107].

Fingerprinting has been used historically to identify individuals using the so-

called ink-technique [77], where the fingers are dabbed with ink to get an imprint

on paper cards which are then scanned to produce the digital image. In this off-line

fingerprint acquisition technique, the fingerprints are matched by using the scanned

images produced above. This method is still very important and popular especially

in the forensics field, where fingerprints are captured from crime scenes. However,

this type of off-line methods are not feasible for biometric systems [44]. The other

approach is to scan and match fingerprints in real time via scanners.

4.2.2 Related works

Fingerprint recognition has been the centre of studies for a long time and as a

result, many algorithms/approaches have been proposed to improve the accuracy

and performance of fingerprint recognition systems. In the fingerprint recognition

literature, a large body of work has been done based on the minutiae of fingerprints

[122, 56, 66, 121]. These works consider various issues including, but not limited

to, compensating for some of the non-linear deformations and real word distortion

in the fingerprint image. As a trade off with accuracy, the issue of memory and

processor intensive computation has also been discussed in some of these works.

The minutiae-based matching are the most popular approach due to the popular

belief that minutiae are the most discriminating and reliable features [62]. Never-

theless, this approach faces some serious challenges related to the large distortions

caused by matching fingerprints with different rotation (as shown in Figure 4.2).



4.2 A Novel Pattern Matching Approach for Fingerprint-Based Authentication 106

Fig. 4.2 An example of large distortion from FVC2004 DB1 [135]

As a result, researchers have also used other features for fingerprint matching.

For example, the algorithm in [104] works on a sequence of points in the angle-

curvature domain after transforming the fingerprint images into these points. The

actual matching is performed by computing the least-squares error of the Euclidean

distance between corresponding points of the query fingerprint and the original

stored in the database.

A filter-based algorithm using a bank of Gabor filters to capture both local and

global details in a fingerprint as a compact fixed-length finger code is presented

in [58]. The combinations of different kind of features have also been studied in

the literature [55],[18]. There exist various other works in the literature proposing

different techniques for fingerprint detection based on different feature sets of

fingerprints [57],[43],[66].

Note that, in addition to the large body of scientific literature, a number of

commercial and propitiatory systems are also in existence. In the related industry,

such systems are popularly termed as Automatic Fingerprint Identification System

(AFIS). One issue with the AFIS available in the market relates to the sensor used

to capture the fingerprint image.

In particular, the unrealistic assumption of the most biometric systems that the

fingerprint images to be compared are obtained using the same sensor, restricts

their ability to match or compare biometric data originating from different sensors



4.2 A Novel Pattern Matching Approach for Fingerprint-Based Authentication 107

[103] (as show in Figure 4.3) .

Fig. 4.3 An example from [103] of the same fingerprint using 2 diffrent AFI
scanners, the number of detected minutiae points in the corresponding images are
39 for image (a) and 14 for image (b)

Another major challenge of commercially available AFISs is to increase the

speed of the matching process without substantially compromising accuracy in the

application context of identification, especially, when the database is large [48].

This is why the quest for even better fingerprint recognition algorithms is still on

particularly in the high-performance computing context [48].



4.3 Preliminaries 108

4.2.3 Contribution

This section, will revisit the fingerprint recognition problem that is the basis of any

fingerprint based identification system. Despite a plethora of fingerprint matching

algorithms there is still room for improvement [48]. Interestingly enough, in

spite of similarities between the two domains, there has not been much work at

the intersection of algorithms on strings and the study of fingerprint recognition.

To the best of our knowledge, here we make a first attempt to employ circular

string matching techniques to solve fingerprint recognition problem efficiently

and accurately. Converting the fingerprint image into string results in a small

string. Matching these strings against other fingerprint images stored as strings

and it can be done in linear time with respect to the total length of the strings. In

this approach, we have formulated an algorithm to detect and verify a fingerprint

regardless of its position and rotation in wide scanning surface area inefficient

way.

4.3 Preliminaries

Let a string x of length n considered as an array x[0..n− 1], where every x[i],

0 ≤ i < n, is a letter drawn from some fixed alphabet Σ of size σ = |Σ|.

The empty string of length 0 is denoted by ε . A string x is a factor of a string y if

there exist two strings u and v, such that y = uxv.

The rest of the definitions that are used in the overview of the results and the

algorithm were defined clearly in chapter 2.

Furthermore, the circular string matching problem also was clearly defined

in Chapter 2, the exact and the approximate matching, however we will provide



4.3 Preliminaries 109

further explanation to the approximate circular string matching since it will be

used as part of our solution.

Approximate Circular String Matching

The Approximate Circular String Matching via Filtering (ACSMF) algorithm

[14] is used here in order to identify the orientation of the fingerprint. The

basic principle of the algorithm ACSMF is the partitioning scheme that splits the

concatenation of the circular pattern string into 2d +4 fragments, where d is the

maximum edit distance allowed. The Aho-Corasick automaton [2] is then used

to search for the fragments against the text. Once a fragment is identified, the

fragment is extended on both left and right directions to determine a valid match.

In fact, algorithm ACSMF requires average-case time O(n).



4.3 Preliminaries 110

4.3.1 The Approach

This section presents the main contribution, i.e. a novel pattern matching approach

to solve the fingerprint recognition problem. As has been discussed before, there

are two main difficulties related to the fingerprint recognition problem. First, the

lack of a fixed orientation and second, the presence of errors in the scanned image

due to various reasons (e.g. the presence of dust, oil and other impurities on the

finger and on the scanning surface).

In particular, the following issues will be addressed:

First: Placement and orientation of the input fingerprint on the capturing surface

(Rotation Problem).

Second: Consideration of the noises of the input fingerprint, i.e. error tolerant

verification.

Third: Efficiency of identification, i.e. employment of a fast accurate algorithm.

The proposed solution is a first attempt to address the issue of using circular

string matching in fingerprint recognition systems through proposing a solution

based on the comparison of circular string representation of the fingerprint images.

To explain, instead of collecting information about ridge endings and bifurcations

from each fingerprint, the proposed algorithm extracts minutiae information in the

form of circular strings using the proposed extracting algorithm (will be explained

in section 4.3.2). Then, the Approximate Circular String Matching via Filtering

(ACSMF) algorithm [14] is applied to the circular strings, in order to find all

occurrences of the rotations of a pattern of length m in a text of length n, in other

words, to match the extracted circular strings with the string representations of the

fingerprints stored in the database regardless of the different rotation. It follows

that the complexity of this approach is O(n). Therefore, we will be employing a



4.3 Preliminaries 111

two-stage algorithm. We start with a brief overview of the proposed algorithm

below.

Algorithmic Overview

The proposed solution is divided into two main stages, namely the Orientation

Identification stage and the Matching and Verification stage.

Stage 1: Orientation Identification: After extracting the circular strings from

the input fingerprint image using the extracting algorithm (section 4.3.2) the solu-

tion will identify the proper rotation for the input image using the Approximate

Circular String Matching with k-mismatches via filtering (ACSMF) algorithm;

output is the matched input fingerprint correctly reoriented, and formatted accord-

ing to the database standards.

To explain, in the fingerprint scanning process the finger can be placed on the

scanning device at different angles. It could be aligned to the left, right or upside

down (as shown in Figure 4.4).

Fig. 4.4 Different orientation for the same finger print

In fact, the position of the finger can be placed anywhere on the scanning

surface and that is one of the challenging problems in fingerprint recognition

systems. Without identifying the proper orientation, we can not properly compare

it with the fingerprint image in the database and the recognition will not be possible



4.3 Preliminaries 112

nor accurate. Therefore, the task of this stage (Stage 1) is to extract the circular

strings and use them to identify and locate the fingerprint with it correct orientation.

Stage 2: Verification and Matching: This stage will authenticate the input

fingerprint by applying standard string matching techniques to match the input

fingerprint with the fingerprint image stored in the database; output is a yes/no

answer to indicate whether the input image matches the image in the database or

not.

To explain, like all other fingerprint recognition systems a database is maintained

with fingerprint information against which the input fingerprint will be matched.

In the database, we will store a black and white image. Once the orientation of

the input fingerprint has been identified, we can easily reorient the fingerprint

impression and then the matching algorithm runs.

Since fingerprints can contain dust, smudges, etc., the scanned information may

contain errors which means that an exact match with the existing data is highly

unlikely. So, in this stage (Stage 2) we perform an error tolerant matching in an

effort to recognize the input fingerprint against the database of the system.

Stage 1 is in fact where the novel approach takes place. Whereas, Stage 2

makes use of standard techniques for verification, such as edit distance matching.

The first part of Stage 1 (the novel minutiae extraction algorithm) will produce

circular strings for the circular matching operations. This is described in depth

in the next section followed by the description of the (ACSMF) algorithm. Such

an algorithm represents the main contribution of this study, as it replaces the

traditional approach in which fingerprints are compared according to the position

of their ridges and bifurcations.



4.3 Preliminaries 113

4.3.2 Details of Stage 1: Orientation Identification

The goal of this stage is to extract the circular strings in order to find the exact

location and orientation of the input fingerprint in a new and efficient way. In other

words, the result of this stage will be the location of the fingerprint (if there was

a match), and the rotation to be applied in order to re-align the input fingerprint

image according to the matched image in the database.

This first step in this stage, is to extract sets of circular strings at regular

intervals (center points) from the scanned image using the Minutiae Extraction

Algorithm.

The second step in this stage, is that each set of strings is then matched against

the fingerprint image stored in the database using the Approximate Circular String

Matching with k-mismatches via Filtering (ACSMF) algorithm. The best matched

set of circular strings identify the location of the fingerprint which needs to be

re-oriented, by rotating the image around the found center point p.

This stage well help in finding a set of candidate matches on the scan surface

and return the minutiae (in the form of circular strings) of those matches along with

their position on the scanning surface and their best alignment, i.e. the rotation to

apply for re-alignment of the fingerprint. The target is to return as few candidate

matches as possible, so the verification in Stage 2 will only need to perform a few

steps to confirm these match results.

The Minutiae Extraction Algorithm

A preprocessing step is required to enhance the fingerprint image quality to have a

better matching process. To be more specific, the main concept of the minutiae

extraction algorithm in terms of speed and accuracy heavily depends on elimination



4.3 Preliminaries 114

of false minutiae detection [105]. Therefore, a thinning step will help in enhancing

the image quality and reduce the image noise.

For the proposed solution, different thinning techniques have been analysed,

including [116], [130], [134] and [142]. However, the latter has been implemented

in a C++ implementation of the Guo-Hall image thinning algorithm [90] (the

following figure shows an example of the thinning result, Figure 4.5).

Fig. 4.5 Before and after performing the thinning preprocessing step on the finger-
print images

After the preprocessing step, comes the first stage which starts with the Minu-

tiae Extraction Algorithm that uses a novel approach in finding unique combina-

tions of minutiae for fingerprint comparison. Most, if not all, available approaches

traditionally store information about ridge endings and bifurcations as sets of coor-

dinates. The proposed algorithm in this section stores ridge and furrow information

in the form of circular strings and binary strings. The rationale behind this novel

technique is that such an algorithm is fast in practice, and its output is suitable for

circular approximate string matching techniques.

The circular strings are extracted by drawing concentric circles over an input

image, and collecting all pixels at the intersection between each circle and the

fingerprint. Each input image is converted into a 2d matrix of pixels, for example,

a 2d char array; to find the intersection of a circle C with radius r, having center at

(cx, cy) it is sufficient to find all (x, y) coordinates which satisfy the equation of



4.3 Preliminaries 115

the circumference of a circle:

r2 = (x−cx)2 +(y˘cy)2. (4.1)

4.3.3 The Algorithm in pseudo-code

1: procedure NOVEL MINUTIAE EXTRACTION

2: Input: "image", a 2d char array representing the scan fingerprint

3: Input: "r", the radius of the current circular scan

4: Input: (cx,cy) the coordinates of the center of the current circular scan

5: Output:"Pattern", a circular binary string

6: for i From cx− r To cx+ r do

7: for j From cy− r To cy+ r do

8: if r2 = (i− x)2 +( j− y)2 then

9: pixel image[i][j] is at the intersection of the Fingerprint with

the circle

10: if x<cx then

11: Left half of scan circle

12: if pixel at image[i][j] < 125 then

13: append 0 to the left of pattern (end of the pattern)

14: else

15: append 1 to the left of pattern (end of the pattern)

16: end if

17: else

18: Right half of scan circle



4.3 Preliminaries 116

Algorithm 1 Novel Minutiae Extraction
19: if pixel at img[i][j] < 125 then

20: append 0 to the right of pattern (end of the pattern)

21: else

22: append 1 to the right of pattern (end of the pattern)

23: end if

24: end if

25: end if

26: end for

27: return pattern

28: end for

29: end procedure

To explain in detail, the proposed solution will require creating at each center point

a set of circular strings (inner circles) with different radius (as shown in the figure

below, Figure 4.6).

Fig. 4.6 Extracting Set of Circles with Interval Center Points

However, the extraction algorithm will extract only one circular string at a

time, therefore, the algorithm will be repeated S times, where S is the number of



4.3 Preliminaries 117

inner circles for each set (each center point). In fact, the maximum radius is an

input parameter which will then be used to calculate the number of inner circles

for each set (since the minimum radius and the distance between each circle at

the same center point are fixed, so, the number of inner circles can be calculated

accordingly).

Furthermore, the output of this algorithm is one circular binary string extracted

utilizing a circular template having radius r and center point (cx, cy). Note that in

this case the resulting string has alphabet Σ = {0,1}.

To explain the algorithm in detail, line 6 and 7 loop through each pixel of a

square region of 2r by 2r having center at (cx, cy); while the nested loops make it

evident that the Novel Minutiae Extraction algorithm has O(n2) processing time,

this will give the option to search only a specific region where the scan circles are

extracted, instead of searching the whole fingerprint scan. As a result, efficiency

of the algorithm is increased by orders of magnitude. To explain, for an image

of 300x300 pixels, extracting 45 circular strings with radius of 60 pixels takes on

average 0.2200 seconds for interval center points.

Then, the previous equation (equation 4.1) is applied (line 8) in order to find pixels

that belong to the circular string. In other words, all (x, y) coordinates that satisfy

the equation identify pixels that lie on the circumference of radius r.

In lines 10 to 21, the algorithm stores in the output string as 0 whenever the

selected pixel intersects with a ridge, and 1 otherwise (i.e. it intersects with a

furrow). Since the pixels are stored as integers with values between 0 and 255,

in order to know if the pixel intersects with a ridge or a furrow, it is sufficient to

check if this value is greater than 125 (lines 12 and 18).

Afterwards, the final step in the algorithm, is to add an additional condition in

order to avoid scrambling the output string chars. This is because for each iteration

of the inner loop (i.e. for each value of j) one pixel belongs to the left and one to



4.3 Preliminaries 118

the right half of the circle. This is the reason why 0s and 1s are added either at the

left hand side or right hand side of the output string (lines 10 and 16).

Example 1: Let us use fi to denote the image of the input fingerprint. Let

us assume for now that we know the appropriate center point, p of fi. We then

can convert fi to a representation consisting of multiple circular bit streams by

extracting circular segments of the image. This is achieved by constructing s

concentric circles C j of radius r j,1 ≤ j ≤ s, with center at point p [as shown in

Figure 4.7].

For each circle as mentioned previously we obtain minutiae features of the image

by storing 0 wherever the edge of a circle intersects with a ridge and a 1 if it

intersects with a furrow.

Fig. 4.7 Fingerprint with multiple circle scans

So, in this way, for the fingerprint image fi, we get s concentric circles, which

can be transformed into s circular binary strings [as shown in Figure 4.8] with p as

assumed center point.



4.3 Preliminaries 119

Fig. 4.8 Intersection of a circle with the fingerprint

Clearly this procedure can be easily applied on the fingerprint image stored in

the database. In what follows, we will use Y j,1 ≤ j ≤ S to denote the s circular

strings set obtained after applying the above procedure on a fingerprint image

stored in the database. In what follows, we may slightly abuse the notation and

say that Yj corresponds to the circle of radius r j so it can be matched against the

scanned fingerprint with the same radius.

Now, to identify the location and orientation of the input fingerprint we generalize

the above approach to extract the minutiae features and apply the approximate

circular string matching algorithm of [14] as will be described in the next section.

In fact, for the input fingerprint, we cannot assume a particular center point to

draw the concentric circle which is actually the main reason for difficulty in the

process. So instead, we take reference points at regular intervals across rows and

columns of the entire frame of the image (i.e. the input scanning area) and at each

point pℓ, concentric circles C jℓ of radius r j are constructed. Like before, s is the



4.3 Preliminaries 120

number of circles at each reference point pℓ. So from the above procedure, for

each point pℓ we get s circular strings denoted by X jℓ,1 ≤ j ≤ s.

At this point the problem comes down to identifying the best match across the

set of circles with the same radius. To do this, we make use of the Approximate

Circular String Matching via Filtering (ACSMF) algorithm, presented in [14],

which is accurate and extremely fast in practice, and will be explained in detail in

the next section.

The Approximate Circular String Matching with k-Mismatches via Filtering

Algorithm (ACSMF)

The proposed solution will make use of the (ACSMF) algorithm as a second step

in the first stage. As it is a fast average-case algorithm for approximate circular

string matching with k-mismatches, under the Hamming distance model, requiring

time O(n).

The (ACSMF) algorithm solves the following problem:

Given a pattern x of length m, a text t of length n, and an integer threshold

k < m, find all factors u of t such that u =k xi,0 6 i < m.

An outline of algorithm ACSMF for solving the previous problem is as follows:

• The first step to apply the (ACSMF) algorithm is to construct the string

x′ = x[0..m−1] x[0...m−2] of length 2m−1.

Fact 1: Any rotation of x is a factor of x′.



4.3 Preliminaries 121

To explain, any rotation of x = x[0..m− 1] is a factor of x′ = x[0..m− 1]

x[0..m−2]; and any factor of length m of x′ is a rotation of x (as shown in

the Figure 4.9 below).

Fig. 4.9 Example of Fact 1

• The pattern x′ is then partitioned in 2k + 4 fragments of length (2m −

1)/(2k+4) and (2m−1)/(2k+4) where k is the number of allowed mis-

matches.

Lemma 1: at least k+1 of the 2k+4 fragments are factors of any rotation

of x.

To explain, if we partition x′ = x[0 · · ·m−1]x[0 · · ·m−2] in 2k+4 fragments

of length (2m− 1)/(2m+ 4) and (2m− 1)/(2m+ 4), at least k+ 1 of the

2k+4 fragments are factors of any factor of length m of x′ (as shown in the

Figure 4.10 below).

Fig. 4.10 Example of Lemma 1 reference ACSMF



4.3 Preliminaries 122

• Then, it matches the 2k + 4 fragments against the text t using an Aho

Corasick automaton for exact matching [2] and constructs a list of tuples

named L to be the list of size Occ of tuples, where < px′ , ℓ, pt >∈ L is a

3-tuple such that 0 6 px′ < 2m−1 is the position where the fragment occurs

in x
′
, ℓ is the length of the corresponding fragment, and 0 6 pt < n is the

position where the fragment occurs in t.

• Finally, it simply perform letter comparisons and count the number of

mismatches that occurred. The extension to the right side and the left side

of the factor will stop right before the k+1th mismatch, as illustrated in the

figure below (Figure 4.11) and will report a non-match, or stop at the end of

the pattern and will report a match since the allowed number of mismatches

was not exceeded.

Fig. 4.11 Illustration of the final step in ACSMF

To continue the previous example (example 1), we take a particular extracted

circular string X jℓ, and construct X jℓ.X jℓ (to ensure that all conjugates of X jℓ are

considered) and apply algorithm ACSMF on X jℓ.X jℓ and Yj. In other words, we

try to match the circular string Yj (corresponding to the circle of radius r j) to all

circular strings X jℓ (corresponding to the circle of radius r j) generated at each

point pℓ. Thus we can identify the best matched circular string, i.e. the best

matched circles and thereby locate and identify the fingerprint impression with the

correct orientation. Once the orientation has been identified, we can apply standard



4.3 Preliminaries 123

techniques to reorient the image to match with the image from the database in the

next stage.

Approximate circular string matching is a rather undeveloped area. ACSMF

is the best algorithm to be applied in this stage. Full details on how the ACSMF

algorithm work can be found in [95].

4.3.4 Details of Stage 2: Verification and Matching

Once Stage 1 of the algorithm is complete, we can assume that we have two images

of the same size and orientation which we need to match and verify. We call this

a verification process since in (Stage 1) as well we have done a sort of matching

already. However, we need to be certain, and hence we proceed with the current

stage as follows. Each image can now be seen as a two dimensional matrix of

zero/one values, which can be easily converted to a (one dimensional) binary string.

Now, it simply comes down to pattern matching between two strings of the same

length. However, note that, here as well we need to consider possibilities of errors.

So, we simply compute the edit distance between the two binary strings and if the

distance is within the tolerance level, we consider the fingerprint to be recognized.

Otherwise, the authentication fails.



4.4 The Experiment 124

4.4 The Experiment

As opposed to gathering information about ridge endings and bifurcations from

each fingerprint, the proposed algorithm extracts minutiae information in form

of circular strings. Thereafter, the Approximate Circular String Matching via

Filtering (ACSMF) algorithm [95] is applied to the circular strings, to find all

occurrences of the rotations of a pattern of length m in a text of length n [14],

where n is the concatenation of all string representations of the fingerprints in the

database, and m is the string representation of the fingerprint to identify. It follows

that complexity of this approach is O(n). The solution proposed in the previous

section is divided into two main stages:

• Stage 1 – Orientation Identification

• Stage 2 – Verification and Matching

4.4.1 The Implementation

The proposed solution has been developed in ANSI C/C++ using the external

library OpenCV (freely available for academic use, under the BSD licensed, at

(http://opencv.org) for standard image processing.

Different inputs have been tested by running the function fp_auth several times

against the Fingerprint Special Database of the National Institute of Standards

(NIST) [89] which is a database containing fingerprint images scanned from the

same scanner.

"The NIST database of fingerprint images contains 2000 8-bit gray scale

fingerprint image pairs. Each image is 512-by-512 pixels with 32 rows of white

space at the bottom and classified using one of the five following classes: A=Arch,

L=Left Loop, R=Right Loop, T=Tented Arch, W=Whorl." (NIST) [89]



4.4 The Experiment 125

All external sources are open/free for academic purposes under (BSD licence).

The experiment has been tested with black and white Tiff images. These images

have been preprocessed to be thinned fingerprints using a C++ implementation

of the Guo-Hall image thinning algorithm [90]. The experiment results shows

over-enhanced images with different parameters for the maximum radius.

The steps that the proposed solution will preform in order to compare an input

fingerprint against another fingerprint stored in the database are the following:

• It will start by loading two enhanced (thinned) fingerprint images in two 2d

arrays of pixels. The first image is the input fingerprint from the scanner to

be verified, the second one is the fingerprint stored in the database (assuming

both images uses same scanner standards).

• Then it will extract 1..n circular binary string set and each set contains

s inner circular strings as a representation of both fingerprints taken at

regular intervals (center points) from a center (pxn, pyn) using the minutiae

extraction algorithm described in section 4.3.2.

• Store each set of circular strings in a 2d array.

• Then, loop through each row and column of the 2d array; for each set of

strings, apply the Approximate Circular String Matching with k-mismatches

via filtering (ACSMF) algorithm to a corresponding set of circular strings in

the database, using a specific tolerance threshold (the allowed k mismatch),

under which the input fingerprint is to be considered as a candidate match;

discard all non-matching circular scans.

• Then, the second stage of the solution will be to confirm and verify that this

is the best match and rotation. The proposed solution will uses a simple



4.4 The Experiment 126

Levenshtein distance implementation in order to return the best alignment of

that candidate match and if the results equal or below the allowed distance

then the matching was successfully done. Figure 4.12 is the call graph of

the proposed solution.

Fig. 4.12 Call graph of the proposed solution.

The following experiment results (in Table 4.1) shows over-enhanced images

with different parameters for the maximum radius.

Table 4.1 Experiment Results



4.4 The Experiment 127

The data entries in the table are explained as follows:

Mated image: Refers to the input image whether it is related to the compared

image or not.

No. of mismatch allowed: This is the tolerance threshold under which the input

fingerprint is to be considered as candidate match corresponding to the set of

circular strings.

Max radius: The radius for the maximum circle in pixels that can be scanned per

image.

Radius distance: The interval size in pixels between each center point in the

scanned image.

Elapsed time to get scans: The time in seconds to get the total circular scans per

image according to the maximum radius and radius distance (the interval distance

between the center points of circles).

No. matches: The number of candidate matches after applying the (ACSMF)

algorithm for the circles with maximum radius.

Finally, Rotation in pixels is the rotation to be applied on the input fingerprint

image in pixels.

In particular, the table shows that the time to get scans for each image is less

than a second. To explain, since the exact center point for the scanned image is

unknown, the process of getting the scans or extracting the strings, will be through

considering multiple center points according to the (radius distance) parameter

starting from the bottom left of the scanned image and moving on (as explained

previously in the extraction section). The higher radius distance will result in

extracting less circular strings in less time.

Essentially, it shows that the increasing number of allowed mismatches, will

result in increasing the number of matched candidates returned by (ACSMF). For



4.4 The Experiment 128

instance, when mated images are scanned and compared when the number of

allowed mismatch is very low, almost equal to 10, it returns a negative result.

In contrast, when the number of mismatches allowed is very high, for example 80,

the number of returned matches is 2 even though the input image is different to the

stored image.

However, the correct match is shown when the number of mismatches is equal

to or around 30. Keeping in mind, extending the string length through having

a bigger radius with the same number of allowed mismatches will result in the

chance of decreasing the accuracy of the results, therefore, will have more results

and more matches (for example the circular string with radius 50 will give more

accurate and less number of matches than a circular string with radius 60 with

the same number of allowed mismatches 30). However, having a small radius or

bigger one will mean extracting circular strings from different positions in the

scanned image with different length. Yet, the maximum radius size will have a

great effect on the results in deciding the number of inner circles as it will be

explained in the next section.

In general, the previous results are for extracting the maximum radius and match-

ing it with the maximum radius of the stored image in the database. These results

shows clearly the effect of choosing the number of mismatches allowed, which

should not be very high to avoid false positive returns, nor very low to prevent the

false negative rate.

The main advantage of this approach is regardless of the fingerprint rotation

degree, the accuracy of the result will not be affected, whereas most of the other

fingerprint detection algorithms accuracy results are affected by the rotation degree.

Furthermore, as mentioned before, the rotation problem is still an open problem

and requires a lot of improvements "In the fingerprint there is a need of a fast and



4.4 The Experiment 129

accurate method which can withstand the challenges like rotation" [65].

Moreover, according to the Fingerprint Matching and Non-Matching Analysis

for Different Tolerance Rotation Degrees study in [93] where they evaluated three

biometric systems (Neurotechnology Verifinger 6.0 Extended, Innovatrics IDKit

SDK and Griaule Fingerprint SDK 2007) and the influence of the fingerprint rota-

tion degrees on false match rate (FMR) and on the false non-match rate (FNMR),

their results showed that these values are affected by the rotation degree as the

(FMR) values increase as rotation degrees increase too. Additionally, it was stated

that one of the factors that affect the performance of the matching algorithm is the

fingerprint rotation.

For example, the result table (table 4.13) from [93] shows the affect of the

rotation degree on the (FMR) value using the biometric system (Innovatrics IDKit

SDK) with overall (FMR) value of mean over 30%.

Fig. 4.13 FMR mean of IDKit SDK in [93]

However, this is not the case in the proposed solution, as shown in the results

next table (Table 4.2) extracting two images (with two inner circular strings) and

matching them with different rotation degree, the extracting time and matching

time was not affected with the rotation degree nor the accuracy of the results.



4.4 The Experiment 130

Table 4.2 Scanning and Matching same Fingerprint with different rotation with
extracting 2 inner circles

Image Name Rotation Degree Scanning Time Matching Time

Image -1- 90% to the R 0.80 sec 4.15 sec

Image -1- 180% 0.88 sec 4.14

Image -2- 90% to the R 0.89 2.56

Image -2- 90% to the L 0.88 2.57

The FMR and FNMR rates are the error rates that define the performance of

biometric systems, so, the final table (table 4.3 ) will compare the false match rate

(FMR) and false non-match rate (FNMR) mean values for the proposed solution

among the three solutions in in [93] and also among the solution in [65] in regrade

of different rotation degrees.

FMR FNMR

Griaule Fingerprint SDK 2007 0.02 60.46

Innovatrics IDKit SDK 32.00 13

Neurotechnology Verifinger 6.0 8.33 > 7

Khan 2015 6.80 14.20

Proposed Approach 8.60 0.00

Table 4.3 FMR and FNMR of The Proposed Algorithm and other Approaches

It’s clear that the proposed solution will give more accurate results than the

other solutions and faster, in average time 4.5 seconds.

4.4.2 Accuracy and Speed

This approach has two values that determine the accuracy and speed. In Stage 1,

the accuracy depends on the number of concentric circles (inner circles) which was



4.4 The Experiment 131

denoted by s. The larger the value of s, the higher the accuracy of pinpointing the

location with the correct orientation. However, as s increases the computational

requirement and time also increases as well.

In Stage 1 and 2, there is another value (k-mismatch) which is the tolerance level,

i.e. the edit distance allowed between the two strings. Note that, the bulk of the

computational processing in this approach is required in Stage 1, where we extract

the circular strings, then we apply the (ACSMF) algorithm to identify the best

matched circles. As has been shown in [95], on average, ACSMF works in linear

time to the size of the input and is extremely fast. The size of the circles and

hence the corresponding circular strings are very small and can be assumed to be

constant for all practical purposes.

As a result the running time of Stage 1 would be extremely fast. Again, since

the size of the fingerprint image is very small, any efficient approximate string

matching algorithm in Stage 2 would give us a very quick result.

As shown in table 4.3 the accuracy of the algorithm is high comparing to other

solutions and considering different rotation degrees.

As mentioned previously, the proposed solution concentrated on two challenges

in the fingerprint identifications systems (Image noise and Rotation degree) and

were tested several times against the Fingerprint Special Database of the National

Institute of Standards (NIST) [89].

4.4.3 Cross Matching

Furthermore, the proposed solution also overcomes the challenge that was men-

tioned in the related work (section 4.2.2) which was the restriction on ability to

match nor compare biometric data originating from different sensors or as it called

(Cross matching). Since each sensor detects different numbers of minutiae points

at different positions in the fingerprint images (figure 4.3) which will affect the



4.4 The Experiment 132

accuracy of the matching results since most, if not all, available approaches tradi-

tionally store information about detected minutiae points as sets of coordinates,

and that is not the case in the proposed solution which uses a different approach of

approximate circular string matching.

However, there is another challenge in the (cross-matching) that the proposed

solution will not overcome yet, which is the size of the Region of interest (ROI)

that is to be matched against.

As we assumed all the fingerprint images are within the same size, since we

targeted the systems that use the same scanner to store the fingerprints in the

database and to capture the input fingerprint image, so theses fingerprints from

the same sensors have the same resolution, therefore there is no need to do the

scaling. For example the employees attendees system will capture the employees

fingerprint for the first time and store them in the database, then will match it daily

using the same sensor (overcoming the challenge of the presence of dust, oil and

other impurities on the finger or on the scanning surface and the finger position on

the scanning surface). And that is the scenario in many applications, however, it

will not consider the image size differences, in fact this problem (image size) does

not exist in traditional automatic fingerprint identifications (regular-matching),

rotation and noise are the main two main considerations [101].

However, to target wider applications we have to consider the current situation

where the market is full of Automatic Fingerprint Identification devices and each

device captures the fingerprint image with different sizes. This introduces the

second challenge with the cross matching process (fingerprint image size) to be

considered.

The fingerprint image size or as it called zooming or scaling problem is an

important issue for fingerprints from different capture sensors [138]. The proposed

solution can deal with the fingerprint image captured using any device (sensor)



4.4 The Experiment 133

as long as the (ROI) is within the same size. In fact, it is still a limitation and

a challenge in most of the fingerprint verification systems, since matching two

fingerprints with two different (ROI) sizes will definitely affect the (FMR) and

(FNMR) rate in a negative way.

However, this challenge is related to the image enhancement preprocessing

stage, where the fingerprint image is firstly enhanced in different ways before

the features contained in it could be detected or extracted [12] and there are

several different image enhancement techniques that are used to improve the image

quality before the matching process [12] such as segmentation, local normalization,

filtering and binarisation/thinning.

Nevertheless, the proposed solution considered one step in the preprocessing

stage for image enhancement which was the image binarisation and thinning

step to improve the fingerprint image before applying the novel pattern matching

proposed solution. However, overcoming the scaling or (ROI) challenge can be

done through adding an extra step to the prepossessing stage for scaling or re-sizing

the fingerprint image and detecting the best (ROI) to enhance the image quality

and therefore, enhance the matching quality.

The fingerprint scaling problem refers to the adjustment of the fingerprint

images to solve the problem of sensor interoperability [100]. Different methods

were introduced to solve the scaling problem for example in [59] where they

improved the interoperability of the fingerprint recognition through using reso-

lution compensation based on sensor evaluation. They directly calculated the

scale parameter as the quotient resolution of two compared sensors which are

known (e.g. scale between URU sensor and UPEK sensor is 700dpi/508dpi) which

means the sensors values will be added manually and the method will be limited

only to the sensors included in the study. Another method [138] developed a

coarse-fine technique to estimate the optimal scale between the input fingerprint



4.4 The Experiment 134

and the template fingerprints, they calculate the global scale based on the ridge

distance map and determined by the histogram of local refined scale between all

the matchable minutiae pairs. However, this method does not perform equally

on all types of sensors (capacitive, optical, thermal). For example, the accuracy

of scaling between the same kind of sensors, optical sensors (URU vs. UPEK)

outperforms that between different kinds of sensors, optical vs. Capacitive (URU

vs. AES).

After analyzing many scaling methods some of them were limited to the sensors

type and some were limited to the fingerprint detecting methods. And since the

used technique in the proposed solution is a novel new technique using circular

strings, the best suitable scaling method to be used, is through estimating the

average inter-ridge distance of the fingerprint image. To explain, the average inter-

ridge distance is an important characteristic in the fingerprint image enhancement

process [140] and the experimental results in [100] showed that the estimation

method for the scaling parameter is appropriate, and its robustness allows the

typical fingerprint image to be re-scaled accurately. They added, "For the same

finger, average inter-ridge distance is stable correspondingly, so we could calculate

the scaling parameter through making the average inter-ridge distances of two

fingerprint images unified."

Therefore, this can be an extra step in the preprocessing stage to improve the

proposed solution to target wider applications not just in the (regular-matching)

process but in the (cross-matching) process as well.



4.5 Discussion AND Future Work 135

4.5 Discussion AND Future Work

This chapter proposes yet a new pattern matching based approach for fast and

accurate recognition of fingerprints. A notable challenge in fingerprint matching is

that the rotation of the fingerprint is assumed to be in sync with the stored image;

in this chapter we have tackled this issue. The novel element of this approach

is the process of using a series of circles to transform minutiae information into

string information consisting of 0s and 1s, and then using the approximate circular

string matching algorithm to identify the orientation. This technique has improved

the performance and accuracy of the fingerprint verification system.

Although the matching algorithm produces nearly accurate results at high speed,

However this approach have only considered the mode where the input is a query

fingerprint with an identity (ID) and the system verifies whether the ID is consistent

with the fingerprint (verification mode). As a future work we can consider the

problem of (identification mode) where the need to match the query fingerprint

against a list of fingerprints in the database and usually its a very big volume of

data with high accuracy and speed similarly to the current approach.

Furthermore, implementing extra processing layers to the database in the current

approach will improve the accuracy and speed for big volume data. For example,

as an improvement for the proposed solution we can make use of the center of

gravity of the fingerprint scan image to use it as the center point p in the image

fi for the constructed circular. An on going experiment is under development to

provide more details.



Chapter 5

Smart Meter Data Analysis

Technique

5.1 Introduction

In response to increasing demands to solve energy problems, the EU has chosen

2020 to be the target of fully implementing its 20-20-20 plan (20% increase in

energy efficiency, 20% reduction of CO2 emissions and 20% renewables). One

way of achieving that goal is revamping the way electricity usage is measured and

communicated through the invention of smart electricity meters [64].

Smart meters are an integral part of a bigger and more complicated system, which,

in addition to smart meters, encompasses communication infrastructure and control

devices [35].

As opposed to the current power grids, smart meter systems have a two-way

communication capability that allows real-time data transfer. These systems are

called Advanced Metering Infrastructure (AMI) [64].

Smart meters are currently rolled out in many countries as a plan to cover the need

of conserving energy by reducing the electricity use in houses along with increasing



5.1 Introduction 137

users’ energy literacy and improving the user’s consumption behaviours. Since the

smart meters will proved the users with real electricity readings, they will be able

to decide and identify which devices are consuming energy in that specific moment

and how much it will cost. Smart meters read and send electricity consumption

information such as the values of voltage, phase angle and the frequency in real

time to electricity companies [35].

Smart meters are designed with a bidirectional communication capability [as

shown in Figure 5.1, that allows suppliers/electricity companies to send back

consumption data and its corresponding cost to consumers utilizing in-home-

display (IHC) capability [23].

Fig. 5.1 Smart Meters

5.1.1 Motivation

Providing a global understanding of online privacy is crucial, because everything

is connected. Nowadays, companies are providing their customers with more

services that will give them more access to their data and daily activity; electricity

companies are marketing the new smart meters as a new service with great benefit



5.1 Introduction 138

to reduce the electricity usage by monitoring the electricity reading in real time.

Although the users might benefit from this extra service, it will compromise the

privacy of the users by giving others constant access to the readings. Since the

smart meters will provide the companies with real electricity readings, they will

be able to decide and identify which devices are consuming energy in that specific

moment and how much it will cost. This kind of information can be exploited by

numerous types of people. Unauthorized use of this information is an invasion of

privacy and may lead to severe consequences.

The advantages of this new technology is clearly defined and introduced to the

clients in a very attractive marking campaigns by the electricity companies, how-

ever, the downside of this technology is not yet exposed to the people clearly,

therefore providing a proof of how analysing the smart meter reading can lead

to identifying exactly the private activates at each house is important, in other

words, these data readings can act like a magnifier at each house, and this can be

considered as a major privacy breach.

This new technology has been recently the focus of many researches who

have been studying the techniques and performance of this technology. This

chapter intends to prove that gaining access to the smart meter readings will give

a clear vision of the exact in house activates through proposing an algorithmic

approach to compare and analyze smart meter data readings, considering the

time and temperature factors at each second to identify the used patterns at each

house by identifying the appliances activities at each second with time complexity

O(log(m)).

The organization of the rest of this chapter is as follows. Smart meters back-

ground is presented in Subsection 5.1.2 and some related privacy issues are pre-

sented in Subsection 5.1.3. In Subsection 5.1.4 some related work to smart meter

data analysis. Subsection 5.1.5 presents the functionally of the new smart meters



5.1 Introduction 139

and how they work. We define the problem in the Section 5.2 and present the

approach in Subsection 5.2.1 with some definitions. The Algorithm description

and complexity analysis will be presented in Subsection 5.3.3. Finally, we briefly

conclude and state the future work in Section 5.4.



5.1 Introduction 140

5.1.2 Background

The use of smart meters provides us with a lot of advantages such as eliminate the

need for manual meter reading. Also, providing real time consumption readings,

will help in managing electric loads to prevent outages and blackouts. More accu-

rate bills; avoiding to overpay, underpay, or estimating the bill amount. Promote

efficient consumption by helping consumers to reduce their electricity usage. It

will also, provide the users with the ability to schedule preventive maintenance.

Defining customer segments which will be used for achieving higher returns in

energy programs pricing and also program marketing [67]. Finally, The ability to

detect unwanted or harmful components in current, which helps in rectifying the

problem [35].

On the other hand, like any other newly introduced technology, implementing

smart meters systems bears its risks and challenges, for example, system deploy-

ment and implementation is extremely costly;according to the UK government

(Smart Metering Implementation Program ) report it will cost around £11bn [34].

Also, the lack of the adequate infrastructure would make the process of replacing

the current system to a smart one cumbersome. The method of which smart meters

work present a serious privacy and security issues, the data collected reveals what

appliances the consumers use at their premises, when they use them, their presence

or absence, and their usage habits [35].

5.1.3 Privacy Issues

Breach of privacy has been the number one problem discussed in the media

regarding smart meters. The methodology by which the smart meter system

works is actually what makes it vulnerable and compromises the privacy of its

customers. Any weakness in the Advanced Metering Infrastructure (AMI) might



5.1 Introduction 141

give the privacy hackers the chance to expose customers’ privacy through analysing

electricity consumption information. Having the ability to collect, send, and

analyse electricity usage, it would be possible to detect private in-house activities,

and identify exactly what home appliances were used and when [64].

Each electrical device has its unique method of consuming electricity. Therefore,

analysing consumption data would allow suppliers, and possible hackers, to know

what time customers watched TV, if they used the washing machine, the time they

showered and much more. As opposed to the current metering system that collects

data once a month, smart meters collect data at finer time scales that reveals private

information such as the number of people in a household as well as their sleeping

and eating patterns [16].

Despite its smart capability of data collection and transfer, analysing these data

does not require advanced technology or prior training. In fact, there are numerous

off-the-shelf statistical methods that could decipher the tremendous amounts of

consumption data. These methods can detect several activities in the household

though analysing the level of power consumption, its intermittency, and its duration

[16].

5.1.4 Related Work

Having real time readings or every 5 min, 15 min, or even 30-minutes reading

points will put the electricity supplier companies in a great challenge on how

they are going to manage and deal with the massive data collected from these

smart meters from every house. How they are going to decode these readings

into meaningful information that will help in improving the companies electricity

marketing programs after understating the user consumption behavioural.

Furthermore, data analytic will help them to introduce customized packages to

each customer for energy saving. many data analytic approaches where introduce



5.1 Introduction 142

for that purpose trying to transfer the meter reading into meaningful information

that will give an understanding of the user electricity daily usage pattern.

Smart meter data analysis is relatively new concept just like the technology it

self, therefore, the related work to this concept is not much and most of these

approaches tried to provide the users with appliance-specific consumption break

down, focusing on implementing sensors on each appliance in the house as an

identifier for that appliance when receiving the electricity reading.

However, these approaches are costly and not convenient since it requires a sensor

implementation or using smart power outlets on every home appliance. Moreover,

another rule-based approach concentrated on grouping the appliance with sillier

power usage and identifying them according to their frequency of use [78].

In 2012 [132] presented a single sensor approach which tries to link between

smart meters and smart phones (via a gateway) to produce an energy efficiency

services (such as itemized electricity bills or Targeted energy saving advice) but

even with this improvement it is still considered as costly method.

5.1.5 Functionality

By using it bidirectional communication capability, smart meters enable local and

remote execution of control demands such as monitoring home appliances and

devices. In addition, smart meters can communicate with other meters in their

reach, control heat, light, and air conditioning, keep operation schedule for home

appliances and devices, and use data collected to bill consumers accordingly [35].

The two-way communication capability, is beyond just receiving readings from

customer’s meters, but it also goes to sending commands, and get a response back.

For instance, if the electricity provider cute the power off the client due to unpaid

bills, with smart meters systems; it will only take a click to turn the power back on

the client side, whereas, with the classic meters it will take up to days where the



5.1 Introduction 143

electricity provider have to arrange for a technician to go to the client’s house to

turn the power on.

Furthermore, since the smart meter will provide a real time electricity readings on

the customer side via the smart meter monitor the electricity provider can access

the reading data every hour which will mean that they will gather 24 reading point

a day, or every 30 minutes which is 48 reading point a day, or every 15 minutes

and get 96 reading points a day and for 5 minuets they will get a 288 reading

points day, and so on, that means the more reading points they can retrieve the

more efficient their data analytic will result.

xi is the reading in kWh at the ith second of the daily reading points X =

[x1,x2...xi..x86,400]

Hourly reading : [
3,600
∑

k=1
xi...

86,400
∑

k=86,399
xi]

Daily readings : E =
86,400

∑
k=1

xi

Therefore it is a fact that smart meters will record much more detailed con-

sumption data and have more power than the classic electricity meters can ever

provide.



5.2 The Problem 144

5.2 The Problem

In each house, the electricity consumption is influenced by some factors such as

environmental factors (weather, day time, seasons, house size...etc) along with

user’s social behaviour factors and the number of residents in each house which

will definitely effect the electricity consumption.

In this chapter we developed an algorithm to analyse the energy reading in real

time points (every second). Along with some external environmental factors such

as daytime or night-time usage, and outside temperature.

5.2.1 The Approach

The dataset that are used in this approach and later in the experiment is the

(Aggregate Electrical Data) which is part of the Smart* project is to optimize home

energy consumption [127]. The dataset contain the smart meter readings for one

house every second for 4 months. by studying the changes in the power reading

at each second it will be possible to identify almost exact used appliances and

weather it was turned ON or OFF according to the appliances database.

However, if the changes in the power readings (in one second) retrieved more than

one home appliances then we will use the probability approach and identify the

higher probability between the 2 appliances. Even If there was no matches then

we will take the appliances with the higher probability at that second and then the

next higher probability and so on.

The positive change will be considered as (appliances ON) the negative change

as (appliances OFF). If there was an (appliances ON) then it can’t take another

same (appliances ON) again without the OFF action (unless it was specified in

the database), in that case, we consider the highest appliances probability at that

second along with the other factors.



5.2 The Problem 145

5.2.2 Definitions

Problem : Smart Meter on Every Second Data

Input : D[1..n] is an array of string which holds data for watt
+ second + temperature in each index of this array.
For example, D[i]=“watt, second, temperature", 1 ≤ i ≤ n

A[1..m] is an array of string which holds data for watt
+ increment + time with percentage of probability
+ temperature with percentage of probability
+ appliance name in each index of this array.
For example, A[ j]=“watt, increment,

time: the percentage of possibility,
temperature: the percentage of possibility,
appliance name", 1 ≤ j ≤ m

Note 1: The time is divided into 24 units a day, for example:
00:00:00 - 00:59:59; 01:00:00 - 01:59:59; 02:00:00 - 02:59:59;
....; 23:00:00 - 23:59:59;

Note 2: The temperature is divided into 12 units, for example:
under 0; 0-4; 5-9; 10-14; 15-19; 20-24;
25-29; 30-34; 35-39; 40-44; 45-49;
and the final unit equal or over 50 centigrade.

Output : O[1..x] is an array of string which holds data for each second
+ open appliances or nothing in each index of this array.
For example, O[y]=“second data, open appliances or nothing"



5.2 The Problem 146

5.2.3 Example

Example : Smart Meter on Every Second Data

Input : D[1] = “2500, 00 : 00 : 00, 5”
D[2] = “2500, 00 : 00 : 01, 5”
D[3] = “2740, 00 : 00 : 02, 5”
D[4] = “2740, 00 : 00 : 03, 5”
(First number “2500" means currently watt is 2500 watt)
(Middle number “00 : 00 : 00" means time is 0 o’clock)
(Last number “5" means temperature is 5 Centigrade)

A[1] = “30,10
00 : 00 : 00−0 : 59 : 59 50%,
01 : 00 : 00−01 : 59 : 59 50%,
....
23 : 00 : 00−23 : 59 : 59 90%,
under 0 90%,
0−4 90%,
5−9 90%,
....
equal or over 50 90%,
Light”

A[2] = “240,20
00 : 00 : 00−00 : 59 : 59 50%,
01 : 00 : 00−01 : 59 : 59 50%,
....
23 : 00 : 00−23 : 59 : 59 70%,
under 0 90%,
0−4 90%,
5−9 90%,
....
equal or over 50 70%,
Computer”

A[3] = “2500,100
00 : 00 : 00−00 : 59 : 59 70%,
01 : 00 : 00−01 : 59 : 59 70%,
....
23 : 00 : 00−23 : 59 : 59 70%,
under 0 90%,
0−4 90%,
5−9 90%,
....
equal or over 50 00%,
Heater”

Output : O[1] = “2500, 00 : 00 : 00, 5;Open : Heater"
O[2] = “2500, 00 : 00 : 01, 5;”
O[3] = “2740, 00 : 00 : 02, 5;Open : Computer”
O[4] = “2740, 00 : 00 : 03, 5;”



5.3 Algorithm 147

5.3 Algorithm

5.3.1 The Algorithm in pseudocode

Algorithm 2 Smart Meter Reading at Every Second Data
1: procedure Smart Meter Reading at Every Second Data

2: for integer w=1 to n on D[1..n] do do

3: newwatt = watt of D[1]

4: end for

5: if w==1 then

6: oldwatt = newwatt

7: end if

8: if (newwatt-oldwatt)>3 then

9: countwatt = countwatt+(newwatt-oldwatt);

10: remembertimes[countremembertimes+1] = w;

11: countremembertimes++;

12: end if

13: if ((newwatt-oldwatt)<-3&&countwatt!=0) then

14: ———find one device———

15: if (highestpoint[countwatt][0]==1) then

16: printf("Time: %d",remembertimes[1]);

17: printf("Increase watt: %d", countwatt);

18: printf("Open device name: ");

19: for(int i=0; i<8; i++)

20: printf("%c", devicesname[highestpoint[countwatt][1]][i]);

21: end if



5.3 Algorithm 148

22: ———find more than one device———

23: if (highestpoint[countwatt][0]>1) then

24: compare[0]=0;

25: for (int s=1; s<=(highestpoint[countwatt][0]); s++) do

26: compare[s]=(newhours[highestpoint [countwatt] [s]]

[int(remembertimes[1]/3600)] + newtemperatures[highestpoint [countwatt]

[s]] [int(AT/5)+1])/2;

27: end for

28: for (int ss=1; ss<=(highestpoint[countwatt][0]); ss++) do

29: if (compare[ss]>compare[0]) then

30: compare[0]=compare[ss];

31: end if

32: end for

33: for (int sss=1; sss<=(highestpoint[countwatt][0]); sss++) do

34: if (compare[sss]==compare[0]) then

35: printf("Time: %d",remembertimes[1]);

36: printf("Increase watt: %d", countwatt);

37: printf("Open device name: ");

38: for (int i=0; i<8; i++) do

39: printf("%c", devices-

name[highestpoint[countwatt][sss]][i]);

40: end for

41: end if

42: end for

43: end if



5.3 Algorithm 149

44: ——not find device, using greedy algorithm——

45: if (highestpoint[countwatt][0]==0) then

46: int tempremain=countwatt;

47: int tempwatt=countwatt;

48: while (tempremain!=0&&tempwatt!=0) do

49: tempwatt=tempremain;

50: while (highestpoint[tempwatt][0]==0&&(tempwatt!=0)) do

51: tempwatt=tempwatt-1;

52: end while

53: ——–greedy find one device——–

54: if (highestpoint[tempwatt][0]==1) then

55: if (savegreedy[0]==0) then

56: savegreedy[++savenum]=highestpoint[tempwatt][1];

57: savegreedy[0]=savenum;

58: printf("Time: %d",remembertimes[1]);

59: printf("Increase watt: %d", countwatt);

60: printf("Greedy algorithm find device");

61: printf("Increase watt: %d", tempwatt);

62: printf("Open device name: ");

63: for (int i=0; i<8; i++) do

64: printf("%c", devices-

name[highestpoint[tempwatt][1]][i]);

65: end for

66: end if

67: if (savenum==1) then

68: if (highestpoint[tempwatt][1]!=savegreedy[1]) then

69: savegreedy[++savenum]=highestpoint[tempwatt][1];

70: savegreedy[0]=savenum;

71: printf("Time: %d",remembertimes[1]);



5.3 Algorithm 150

72: printf("Increase watt: %d", countwatt);

73: printf("Greedy algorithm find device");

74: printf("Increase watt: %d", tempwatt);

75: printf("Open device name: ");

76: for (int i=0; i<8; i++) do

77: printf("%c", devices-

name[highestpoint[tempwatt][1]][i]);

78: end for

79: end if

80: end if

81: if (savenum>1) then

82: int j=0;

83: for (int i=1; i<=savenum; i++) do

84: if (highestpoint[tempwatt][1]!=savegreedy[i]) then

85: j++;

86: end if

87: end for

88: if (j==savenum) then

89: savegreedy[++savenum]=highestpoint[tempwatt][1];

90: savegreedy[0]=savenum;

91: printf("Time: %d",remembertimes[1]);

92: printf("Increase watt: %d", countwatt);

93: printf("Greedy algorithm find device");

94: printf("Increase watt: %d", tempwatt);

95: printf("Open device name: ");

96: for (int i=0; i<8; i++) do

97: printf("%c", devices-

name[highestpoint[tempwatt][1]][i]);

98: end for



5.3 Algorithm 151

99: end if

100: end if

101: end if

102: —greedy find more than one device—

103: if (highestpoint[tempwatt][0]>1) then

104: compare[0]=0;

105: for (int s=1; s<=(highestpoint[tempwatt][0]); s++) do

106: compare[s]=(newhours[highestpoint [tempwatt] [s]

[int(remembertimes[1]/3600)] + newtemperatures[highestpoint [tempwatt]

[s]] [int(AT/5)+1])/2;

107: end for

108: for (int ss=1; ss<=(highestpoint[tempwatt][0]); ss++) do

109: if (compare[ss]>compare[0]) then

110: compare[0]=compare[ss];

111: end if

112: end for

113: for (int sss=1; sss<=(highestpoint[tempwatt][0]); sss++)

do

114: if (compare[sss]==compare[0]) then

115: if (savegreedy[0]==0) then

116: savegreedy[++savenum] = highest-

point[tempwatt][sss];

117: savegreedy[0]=savenum;

118: printf("Time: %d",remembertimes[1]);

119: printf("Increase watt: %d", countwatt);

120: printf("Greedy algorithm find device");

121: printf("Increase watt: %d", tempwatt);

122: printf("Open device name: ");

123: for (int i=0; i<8; i++) do



5.3 Algorithm 152

124: printf("%c", devices-

name[highestpoint[tempwatt][sss]][i]);

125: end for

126: end if

127: if (savenum==1) then

128: if (highestpoint[tempwatt][sss]!=savegreedy[1])

then

129: savegreedy[++savenum]=highestpoint[tempwatt][sss];

130: savegreedy[0]=savenum;

131: printf("Time: %d",remembertimes[1]);

132: printf("Increase watt: %d", countwatt);

133: printf("Greedy algorithm find device");

134: printf("Increase watt: %d", tempwatt);

135: printf("Open device name: ");

136: for (int i=0; i<8; i++) do

137: printf("%c", devices-

name[highestpoint[tempwatt][sss]][i]);

138: end for

139: end if

140: end if

141: if (savenum>1) then

142: int j=0;

143: for (int i=1; i<=savenum; i++) do

144: if (highest-

point[tempwatt][sss]!=savegreedy[i]) then

145: j++;

146: end if

147: end for

148: if (j==savenum) then



5.3 Algorithm 153

149: savegreedy[++savenum]=highestpoint[tempwatt][sss];

150: savegreedy[0]=savenum;

151: printf("Time: %d",remembertimes[1]);

152: printf("Increase watt: %d", countwatt);

153: printf("Greedy algorithm find device");

154: printf("Increase watt: %d", tempwatt);

155: printf("Open device name: ");

156: for (int i=0; i<8; i++) do

157: printf("%c", devices-

name[highestpoint[tempwatt][sss]][i]);

158: end for

159: end if

160: end if

161: end if

162: end for

163: end if

164: tempremain=tempremain-tempwatt;

165: end while

166: savegreedy[0]=0;

167: savenum=0;

168: end if

169: countwatt=0;

170: countremembertimes=0;

171: remembertimes[0]=0;

172: end if

173: oldwatt=newwatt;

174: end procedure



5.3 Algorithm 154

5.3.2 Algorithm Description

Step 1:

Create the array D[1..n] of smart meter data for every second. Each record D[i]

consists of three values (watt value, time of the day and the temperature).

Step 2:

According to the input array A[1..m], we create several arrays for appliances

which holds the data for the appliances consumption in watt, time of the day, the

temperature, the of probability percentage of the appliance being switched ON

and the appliance name. For example, the watt array highest point[][] holds the

appearance peak watt, the first index number was indexed by the watt value and

the second is the index position which stores corresponding devices.

Step 3:

Loop through each (second) data in D[1..n]. For each record inside D[1..n], look

for a match appliances data. Either the value in watt can be directly matched

through the appliance array of highest point[][] or there is a possibility of multiple

appliance switched ON at that particular time. Therefore, if it was a direct match

then output the appliance name and time. Otherwise, for no match go to Step 4.

Step 4:

Look for the percentage of probability of each appliance to be switched ON at

that particular time using the temperature factor and resolve this by the greedy

approach whichever matches first based on given probability.



5.4 Discussion and Future Work 155

5.3.3 Algorithm Complexity

Space complexity:

For input array D[1..n] with the every second data, the space complexity is O(n),

where n is the total number of seconds. For input array A[1..m] with appliances,

the space complexity is O(m), where each index of this array holds the data for

watt, increment, time with percentage of portabilities, temperature with percentage

of probability and appliance name, using common separated storage.

Time complexity:

This approach uses binary search in A[1..m] for each index in D[1..n], for 1 iteration

the time complexity is O(log(m)) because both Binary search and probabilistic

approach inside appliance array takes O(log(m)) time. So For n iteration the time

complexity is O(nlog(m)).

5.4 Discussion and Future Work

This chapter described an algorithmic approach in terms of probabilistic conditions

to detect private in-house activities, and identify almost exactly what home appli-

ances were used. We have defined the problem at each second dataset and solved

it in an algorithmic manner. The approach and the complexity are promising, an

on going experiment is under development to provide more details.

As an improvement to the first step in creating the array it can be an array of watt

of applications, WATT[ ][ ], from A[1..m], each index of array means the value

of watt sorted, second index of array stored corresponding application’s code and

that should increase the speed significantly. Also, as a future work the output data

can be trained to predict the exact user daily pattern in general on the long term.



Chapter 6

Concluding Remarks

In this thesis we introduced novel solutions to overcome the weakness of existing

solutions and solve new open problems in information security.

• The Malware Detection Techniques chapter discusses the malware de-

tection which is a well-known problem introduced to computer security

research a long time ago, but the rapid development of malware requires

more extended solutions since malware writers continually improving their

obfuscation techniques to makes the malicious code harder to understand

and to evade the malware detectors.

Therefore, due to the amount of malware signatures generated daily, an effi-

cient algorithm was introduced for detecting these signatures at high speed

without excessive memory use in that chapter. Nevertheless, improvements

can be made to continue to overcome the compressed malware problem.

The second part of this chapter introduced a novel solution for a relativity

new problem in information security. Recently, malware writers have started

to use image steganography to embed either the whole malicious code or a

malicious URL in the images. A hidden URL detection in an image approach

was introduced and presented in a detailed algorithmic matter in this chapter.



157

And then the algorithm was taken to the next level to consider detecting and

extracting encrypted hidden URLs. The approach analysis and experimental

results are very promising since this tool can be consider as one of the first

tools to extract the hidden URL as it is from the image, therefore improving

this algorithm as well as considering variations to detect malicious attacks

by hidden data can be considered as guidelines for future work.

• The Fingerprint Recognition Techniques chapter proposed a new finger-

print matching technique, which matches the fingerprint information through

using algorithms for approximate circular string matching. The minutiae

information is transformed into string information using a series of circles,

which intercepts the minutiae of that information into a string. This string

fingerprint information is then matched against a database using approximate

string matching techniques.

This chapter proposed a novel fingerprint pattern matching approach for

quick and accurate recognition of fingerprints. One overlooked feature in

this approach is that the rotation of the fingerprint is assumed to be in sync

with the stored image; in this chapter we tackled this issue.

Also, the novel element is the process of using a series of circles to transform

minutiae information into string information consisting of 0s and 1s, and

then using the approximate circular string matching algorithm to identify

the orientation. This technique is expected to improve the performance and

accuracy of the fingerprint verification system.

For future work we can consider the problem of identification mode where

there is a need to match the query fingerprint against a list of fingerprints



158

in a large database and improve the current solution to cope with a large

volume of data.

• In the Smart Meter Data Analysis Technique chapter a new privacy prob-

lem was introduced to the research area along with the new technology

of a smart metre. This technology will bring a great benefit to electricity

companies and will have an impact on users’ privacy due to constant access

by the electricity companies to home electricity readings in real time.

In this manner, we proposed an algorithmic approach to compare and anal-

yse smart metre data readings, considering time and temperature factors at

each second to identify usage patterns in the house by identifying appliance

activity.

The approach time and space complexity are very promising, and an experi-

ment is under development to provide more details. Also, an improvement

to the implementation of the algorithm was proposed to improve the speed

of the algorithm. Furthermore, as future work we can consider the security

aspect of smart metres by analysing the weakness of the device and the

possibility of hackers having full control of home electricity – just as the

electricity companies do – to control the home electricity through these

devices remotely.



References

[1] AGARWAL, A., SHARMA, A. K., AND KHANDELWAL, S. Study of rotation

oriented fingerprint authentication. International Journal of Emerging

Engineering Research and Technology 2, 7 (2014), 211–214.

[2] AHO, A. V., AND CORASICK, M. J. Efficient string matching: an aid to

bibliographic search. Communication ACM 18 (1975), 333–340.

[3] ALATABBI, A. Advances in Stringology and Applications. PhD thesis,

Natural and Mathematical Sciences, King’s College London, 2014.

[4] ALATABBI, A., AL-JAMEA, M., AND ILIOPOULOS, C. S. Malware

detection using computational biology tools. International Journal of

Engineering and Technology 5, 2 (2013), 315.

[5] ALJAMEA, M.AND ILIOPOULOS, C., AND SAMIRUZZAMAN, M. De-

tection of url in image steganography. In Proceedings of the 2016 ACM

International Conference on Internet of things and Cloud Computing (2016),

ACM. accepted.



References 160

[6] ALJAMEA, M.AND BRANKOVIC, L., GAO, J., ILIOPOULOS, C., AND

SAMIRUZZAMAN, M. Smart meter data analysis. In Proceedings of

the 2016 ACM International Conference on Internet of things and Cloud

Computing (2016), ACM. accepted.

[7] ALJAMEA, M., AJALA, O., ILIOPOULOS, C. S., AND M, A. Fast fin-

gerprint recognition using circular string pattern matching techniques. In

PATTERNS 2016: The Eighth International Conferences on Pervasive Pat-

terns and Applications (2016), IARIA.

[8] ALJAMEA, M., ATHAR, T., ILIOPOULOS, C. S., PISSIS, S. P., AND

RAHMAN, M. S. A novel pattern matching approach for fingerprint-based

authentication. In PATTERNS 2015: The Seventh International Conferences

on Pervasive Patterns and Applications (2015), IARIA, pp. 45–49.

[9] ALJAMEA, M., GHANAEI, V., ILIOPOULOS, C. S., AND OVERILL, R. E.

Static analysis and clustering of malware applying text based search. In The

International Conference on Digital Information Processing, E-Business

and Cloud Computing (DIPECC2013) (2013), The Society of Digital Infor-

mation and Wireless Communication, pp. 188–193.

[10] ANTONIOU, P., DAYKIN, J., ILIOPOULOS, C., KOURIE, D., MOUCHARD,

L., AND PISSIS, S. Mapping uniquely occurring short sequences derived

from high throughput technologies to a reference genome. In Informa-



References 161

tion Technology and Applications in Biomedicine, 2009. ITAB 2009. 9th

International Conference on (2009), IEEE, pp. 1–4.

[11] ASK, K. Automatic malware signature generation. PhD thesis, Master’s

thesis, KTH Royal, 2006.

[12] BABATUNDE, I. G., KAYODE, A. B., CHARLES, A. O., AND OLATUBO-

SUN, O. Fingerprint image enhancement: Segmentation to thinning.

[13] BARTON, C., ILIOPOULOS, C. S., KUNDU, R., PISSIS, S. P., RETHA,

A., AND VAYANI, F. Accurate and efficient methods to improve multiple

circular sequence alignment. In Experimental Algorithms. Springer, 2015,

pp. 247–258.

[14] BARTON, C., ILIOPOULOS, C. S., AND PISSIS, S. P. Fast algorithms for

approximate circular string matching. Algorithms for Molecular Biology 9,

9 (2014).

[15] BIOINFORMATICS ORGANIZATION. Bioinformatics. https://www.

bioinformatics.org/. [Last accessed: 10.2015].

[16] BOHLI, J.-M., SORGE, C., AND UGUS, O. A privacy model for smart

metering. In Communications Workshops (ICC), 2010 IEEE International

Conference on (2010), IEEE, pp. 1–5.

[17] BOYER, R., AND MOORE, J. A fast string searching algorithm. Communi-

cations of the ACM 20, 10 (1977), 762–772.

https://www.bioinformatics.org/
https://www.bioinformatics.org/


References 162

[18] CEGUERRA, A. V., AND KOPRINSKA, I. Integrating local and global fea-

tures in automatic fingerprint verification. In Pattern Recognition, 2002. Pro-

ceedings. 16th International Conference on (2002), vol. 3, IEEE, pp. 347–

350.

[19] CHANU, Y. J., TUITHUNG, T., AND MANGLEM SINGH, K. A short survey

on image steganography and steganalysis techniques. In Emerging Trends

and Applications in Computer Science (NCETACS), 2012 3rd National

Conference on (2012), IEEE, pp. 52–55.

[20] CHEDDAD, A., CONDELL, J., CURRAN, K., AND MC KEVITT, P. Digital

image steganography: Survey and analysis of current methods. Signal

processing 90, 3 (2010), 727–752.

[21] CHEN, K.-H., HUANG, G.-S., AND LEE, R. C.-T. Bit-Parallel Algorithms

for Exact Circular String Matching. Computer Journal (2013).

[22] CHEN, X., TIAN, J., AND YANG, X. A new algorithm for distorted

fingerprints matching based on normalized fuzzy similarity measure. Image

Processing, IEEE Transactions on 15, 3 (2006), 767–776.

[23] CHO, H. S., YAMAZAKI, T., AND HAHN, M. Determining location of

appliances from multi-hop tree structures of power strip type smart meters.

Consumer Electronics, IEEE Transactions on 55, 4 (2009), 2314–2322.

[24] CHRISTIANSEN, M. Bypassing malware defenses. SANS Institute InfoSec

Reading Room (2010), 3–4.



References 163

[25] CISCO. Clamav. http://www.clamav.net. [Last accessed: 01.2016].

[26] CLIFFORD, R., AND ILIOPOULOS, C. Approximate string matching for

music analysis. Soft Computing 8, 9 (2004), 597–603.

[27] COLORNI, A., DORIGO, M., MANIEZZO, V., ET AL. Distributed opti-

mization by ant colonies. In Proceedings of the first European conference

on artificial life (1991), vol. 142, Paris, France, pp. 134–142.

[28] CORMEN, T. H. Introduction to algorithms. MIT press, 2009.

[29] CROCHEMORE, M., HANCART, C., AND LECROQ, T. Algorithms on

strings. Cambridge University Press, 2007.

[30] CRYER, J. Image analysis and comparison, 2015.

[31] CSIS. Net losses: Estimating the global cost of cybercrime economic

impact of cybercrime. Tech. rep., The Center for Strategic and International

Studies, 2014.

[32] DAMODARAN, A., DI TROIA, F., VISAGGIO, C. A., AUSTIN, T. H.,

AND STAMP, M. A comparison of static, dynamic, and hybrid analysis for

malware detection. Journal of Computer Virology and Hacking Techniques

(2015), 1–12.

[33] DELL SECUREWORKS COUNTER THREAT UNIT™ THREAT

INTELLIGENCE. Stegoloader: A stealthy information stealer.

http://www.clamav.net


References 164

http://www.secureworks.com/cyber-threat-intelligence/threats/

stegoloader-a-stealthy-information-stealer/. [Last accessed: 11.2015].

[34] DEPARTMENT OF ENERGY AND CLIMATE CHANGE UK GOV. Smart

metering implementation programme third annual report on the roll-out of

smart meters. [Last accessed: 11.2015].

[35] DEPURU, S. S. S. R., WANG, L., AND DEVABHAKTUNI, V. Smart meters

for power grid: Challenges, issues, advantages and status. Renewable and

sustainable energy reviews 15, 6 (2011), 2736–2742.

[36] E. SATIR, O. K. A distortionless image steganography method via url.

In The 7th International Conference Information Security and Cryptology

(2014).

[37] ELLOUMI, M., HAYATI, P., ILIOPOULOS, C., PISSIS, S., AND SHAH,

A. Detection of fixed length web spambot using real (read aligner). In

Proceedings of the CUBE International Information Technology Conference

(2012), ACM, pp. 820–825.

[38] FALLIERE, N., MURCHU, L. O., AND CHIEN, E. W32. stuxnet dossier.

White paper, Symantec Corp., Security Response 5 (2011).

[39] FILIOL, E. Malware pattern scanning schemes secure against black-box

analysis. Journal in Computer Virology 2, 1 (2006), 35–50.

http://www.secureworks.com/cyber-threat-intelligence/threats/stegoloader-a-stealthy-information-stealer/
http://www.secureworks.com/cyber-threat-intelligence/threats/stegoloader-a-stealthy-information-stealer/


References 165

[40] FITZ, A., AND GREEN, R. Fingerprint classification using a hexagonal fast

Fourier transform. Pattern recognition 29, 10 (1996), 1587–1597.

[41] FREDRIKSSON, K., AND GRABOWSKI, S. Average-optimal string match-

ing. Journal of Discrete Algorithms 7, 4 (2009), 579–594.

[42] FROUSIOS, K., ILIOPOULOS, C. S., MOUCHARD, L., PISSIS, S. P.,

AND TISCHLER, G. Real: an efficient read aligner for next generation

sequencing reads. In Proceedings of the First ACM International Conference

on Bioinformatics and Computational Biology (New York, NY, USA, 2010),

BCB ’10, ACM, pp. 154–159.

[43] GIRGIS, M. R., SEWISY, A. A., AND MANSOUR, R. F. A robust method

for partial deformed fingerprints verification using genetic algorithm. Expert

Systems with Applications 36, 2 (2009), 2008–2016.

[44] GRIAULE BIOMETRICS. Online and offline acquisition. http://www.

griaulebiometrics.com/en-us/book/. [Last accessed: 01.2016].

[45] GRIFFIN, K., SCHNEIDER, S., HU, X., AND CHIUEH, T.-C. Automatic

generation of string signatures for malware detection. In Recent advances

in intrusion detection (2009), Springer, pp. 101–120.

[46] GUO, J.-M., LIU, Y.-F., CHANG, J.-Y., AND LEE, J.-D. Fingerprint

classification based on decision tree from singular points and orientation

field. Expert Systems with Applications 41, 2 (2014), 752–764.

http://www.griaulebiometrics.com/en-us/book/
http://www.griaulebiometrics.com/en-us/book/


References 166

[47] GUSFIELD, D. Algorithms on strings, trees and sequences: computer

science and computational biology. Cambridge university press, 1997.

[48] GUTIERREZ, P., LASTRA, M., HERRERA, F., AND BENITEZ, J. A high

performance fingerprint matching system for large databases based on gpu.

IEEE Transactions on Information Forensics and Security 9, 1 (2014),

62–71.

[49] HARIRI, M., KARIMI, R., AND NOSRATI, M. An introduction to steganog-

raphy methods. World Applied Programming 1, 3 (2011), 191–195.

[50] HENRY, E. R. Classification and Uses of Finger Prints. Routledge, 1900.

[51] IANCU, I., AND CONSTANTINESCU, N. Intuitionistic fuzzy system for

fingerprints authentication. Applied Soft Computing 13, 4 (2013), 2136–

2142.

[52] ICANN. List of top-level domains. https://www.icann.org/resources/pages/

tlds-2012-02-25-en. [Last accessed: 11.2015].

[53] IDIKA, N., AND MATHUR, A. A survey of malware detection techniques.

Purdue University (2007), 48.

[54] ISENOR, D., AND ZAKY, S. G. Fingerprint identification using graph

matching. Pattern Recognition 19, 2 (1986), 113–122.

https://www.icann.org/resources/pages/tlds-2012-02-25-en
https://www.icann.org/resources/pages/tlds-2012-02-25-en


References 167

[55] JAIN, A., ROSS, A., AND PRABHAKAR, S. Fingerprint matching using

minutiae and texture features. In Image Processing, 2001. Proceedings.

2001 International Conference on (2001), vol. 3, IEEE, pp. 282–285.

[56] JAIN, A. K., HONG, L., PANKANTI, S., AND BOLLE, R. An identity-

authentication system using fingerprints. Proceedings of the IEEE 85, 9

(1997), 1365–1388.

[57] JAIN, A. K., PRABHAKAR, S., AND HONG, L. A multichannel approach

to fingerprint classification. IEEE Transactions on Pattern Analysis and

Machine Intelligence 21, 4 (1999), 348–359.

[58] JAIN, A. K., PRABHAKAR, S., HONG, L., AND PANKANTI, S. Filterbank-

based fingerprint matching. Image Processing, IEEE Transactions on 9, 5

(2000), 846–859.

[59] JANG, J., ELLIOTT, S. J., AND KIM, H. On improving interoperability

of fingerprint recognition using resolution compensation based on sensor

evaluation. In International Conference on Biometrics (2007), Springer,

pp. 455–463.

[60] JIANG, X., AND YAU, W.-Y. Fingerprint minutiae matching based on the

local and global structures. In Pattern Recognition, 2000. Proceedings. 15th

International Conference on (2000), vol. 2, IEEE, pp. 1038–1041.

[61] JOHNSON, N. F., AND JAJODIA, S. Exploring steganography: Seeing the

unseen. Computer 31, 2 (1998), 26–34.



References 168

[62] KAI, C., XIN, Y., XINJIAN, C., YALI, Z., JIMIN, L., AND JIE, T. A novel

ant colony optimization algorithm for large-distorted fingerprint matching.

Pattern Recognition 45, 1 (2012), 151–161.

[63] KAK, A. Lecture notes on “computer and network security”, 2013.

[64] KALOGRIDIS, G., EFTHYMIOU, C., DENIC, S. Z., LEWIS, T., CEPEDA,

R., ET AL. Privacy for smart meters: Towards undetectable appliance load

signatures. In Smart Grid Communications (SmartGridComm), 2010 First

IEEE International Conference on (2010), IEEE, pp. 232–237.

[65] KHAN, A. I., AND WANI, M. A. Efficient and rotation invariant fingerprint

matching algorithm using adjustment factor. In 2015 IEEE 14th Interna-

tional Conference on Machine Learning and Applications (ICMLA) (2015),

IEEE, pp. 1103–1110.

[66] KOVACS-VAJNA, Z. M. A fingerprint verification system based on trian-

gular matching and dynamic time warping. Pattern Analysis and Machine

Intelligence, IEEE Transactions on 22, 11 (2000), 1266–1276.

[67] KWAC, J., TAN, C.-W., SINTOV, N., FLORA, J., AND RAJAGOPAL,

R. Utility customer segmentation based on smart meter data: Empirical

study. In Smart Grid Communications (SmartGridComm), 2013 IEEE

International Conference on (2013), IEEE, pp. 720–725.

[68] KWAC, J., TAN, C.-W., SINTOV, N., FLORA, J., AND RAJAGOPAL,

R. Utility customer segmentation based on smart meter data: Empirical



References 169

study. In Smart Grid Communications (SmartGridComm), 2013 IEEE

International Conference on (2013), IEEE, pp. 720–725.

[69] LEE, H. C., RAMOTOWSKI, R., AND GAENSSLEN, R. E., Eds. Advances

in Fingerprint Technology, Second Edition. CRC Press, 2002.

[70] LI, J., YAU, W.-Y., AND WANG, H. Combining singular points and orien-

tation image information for fingerprint classification. Pattern Recognition

41, 1 (2008), 353–366.

[71] LIN, H., JAIN, A., PANKANTI, S., AND BOLLE, R. Identity authen-

tication using fingerprints. In Audio and Video based Biometric Person

Authentication (1997), Springer, pp. 103–110.

[72] LIU, M. Fingerprint classification based on adaboost learning from singu-

larity features. Pattern Recognition 43, 3 (2010), 1062–1070.

[73] LOTHAIRE, M., Ed. Algebraic Combinatorics on Words. Cambridge

University Press, 2001.

[74] LOTHAIRE, M. Applied Combinatorics on Words. Cambridge University

Press, 2005.

[75] LUSCOMBE, N. M., GREENBAUM, D., AND GERSTEIN, M. What is bioin-

formatics? an introduction and overview. Yearbook of Medical Informatics

1 (2001), 83–99.



References 170

[76] MAIO, D., AND MALTONI, D. A structural approach to fingerprint classifi-

cation. In Pattern Recognition, 1996., Proceedings of the 13th International

Conference on (1996), vol. 3, IEEE, pp. 578–585.

[77] MALTONI, D., MAIO, D., JAIN, A. K., AND PRABHAKAR, S. Handbook

of Fingerprint Recognition. Springer-Verlag, 2009.

[78] MARCEAU, M. L., AND ZMEUREANU, R. Nonintrusive load disaggrega-

tion computer program to estimate the energy consumption of major end

uses in residential buildings. Energy Conversion and Management 41, 13

(2000), 1389–1403.

[79] MOHAPATRA, C., AND PANDEY, M. A review on current methods and

application of digital image steganography. International Journal of Multi-

disciplinary Approach & Studies 2, 2 (2015).

[80] MOLINA-MARKHAM, A., SHENOY, P., FU, K., CECCHET, E., AND

IRWIN, D. Private memoirs of a smart meter. In Proceedings of the

2nd ACM workshop on embedded sensing systems for energy-efficiency in

building (2010), ACM, pp. 61–66.

[81] MORKEL, T., ELOFF, J. H., AND OLIVIER, M. S. An overview of image

steganography. In ISSA (2005), pp. 1–11.

[82] NAGATY, K. A. Fingerprints classification using artificial neural networks:

a combined structural and statistical approach. Neural Networks 14, 9

(2001), 1293–1305.



References 171

[83] NATARAJ, L., JACOB, G., AND B.S.MANJUNATH. Detecting packed

executables based on raw binary data. Tech. rep., University of California,

Santa Barbara, Jun 2010.

[84] NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION (NCBI).

Bioinformatics. http://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/

MolBioReview/bioinformatics.html. [Accessed Feb 1, 2016].

[85] NATIONAL CRIMINAL JUSTICE REFERENCE SERVICE. The Fingerprint

Sourcebook. CreateSpace Independent Publishing Platform, 2014.

[86] NATIONAL HUMAN GENOM INSITIUTE (NHGRI). Deoxyribonucleic

acid (DNA). https://www.genome.gov/. [Last accessed: 01.2016].

[87] NATURE EDUCATION. DNA sequencing. http://www.nature.com/scitable/

content/dna-sequencing-6656663. [Last accessed: 01.2016].

[88] NAVARRO, G. A guided tour to approximate string matching. ACM Comput.

Surv. 33, 1 (2001), 31–88.

[89] NIST. Biometric special databases and software. http://www.nist.gov/itl/

iad/igspecial_dbases.cfm, 2015. [retrieved: 11.2015].

[90] OPENCV-CODE. Implementation of guo-hall thinning algorithm, 2015.

[retrieved: 11.2015].

http://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/bioinformatics.html
http://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/bioinformatics.html
https://www.genome.gov/
http://www.nature.com/scitable/content/dna-sequencing-6656663
http://www.nature.com/scitable/content/dna-sequencing-6656663
http://www.nist.gov/itl/iad/ig special_dbases.cfm
http://www.nist.gov/itl/iad/ig special_dbases.cfm


References 172

[91] PATTICHIS, M. S., PANAYI, G., BOVIK, A. C., AND HSU, S.-P. Finger-

print classification using an am-fm model. IEEE Transactions on Image

Processing 10, 6 (2001), 951–954.

[92] PERDISCI, R., LANZI, A., AND LEE, W. Classification of packed executa-

bles for accurate computer virus detection. Pattern Recognition Letters 29,

14 (2008), 1941–1946.

[93] PEREZ-DIAZ, A., AND ARRONTE-LOPEZ, I. Fingerprint matching and

non-matching analysis for different tolerance rotation degrees in commercial

matching algorithms. Journal of applied research and technology 8, 2

(2010), 186–199.

[94] PISSIS, S. Lecture notes in algorithms for computational molecular biology,

February 2016.

[95] PISSIS, S. P. Approximate string matching via filtering - implementation

code. https://github.com/solonas13/asmf/, 2015. [retrieved: 10.2015].

[96] PREDA, M., CHRISTODORESCU, M., JHA, S., AND DEBRAY, S. A

semantics-based approach to malware detection. ACM Transactions on

Programming Languages and Systems (TOPLAS) 30, 5 (2008), 25.

[97] PROBER, J. M., TRAINOR, G. L., DAM, R. J., HOBBS, F. W., ROBERT-

SON, C. W., ZAGURSKY, R. J., COCUZZA, A. J., JENSEN, M. A., AND

BAUMEISTER, K. A system for rapid dna sequencing with fluorescent

chain-terminating dideoxynucleotides. Science 238, 4825 (1987), 336–341.

https://github.com/solonas13/asmf/


References 173

[98] PROVOS, N., AND HONEYMAN, P. Hide and seek: An introduction to

steganography. Security & Privacy, IEEE 1, 3 (2003), 32–44.

[99] Q. ZHANG, K. H., AND YAN, H. Fingerprint classification based on

extraction and analysis of singularities and pseudoridges. In Fingerprint

Classification Based on Extraction and Analysis of Singularities and Pseu-

doridges (Sydney, Australia, 2001), VIP 2001, VIP.

[100] REN, C., GUO, J., QIU, D., CHANG, G., AND WU, Y. A framework

of fingerprint scaling. Indonesian Journal of Electrical Engineering and

Computer Science 11, 3 (2013), 1547–1559.

[101] REN, C.-X., YIN, Y.-L., MA, J., AND LI, H. Fingerprint scaling. In In-

ternational Conference on Intelligent Computing (2008), Springer, pp. 474–

481.

[102] RESEARCHERS, C. L. Malware detection and classification.

[103] ROSS, A., AND JAIN, A. Biometric sensor interoperability: A case study

in fingerprints. In Biometric Authentication. Springer, 2004, pp. 134–145.

[104] SALEH, A. A., AND ADHAMI, R. R. Curvature-based matching approach

for automatic fingerprint identification. In System Theory, 2001. Proceed-

ings of the 33rd Southeastern Symposium on (2001), IEEE, pp. 171–175.

[105] SALEH, A. M., ELDIN, A. M. B., AND WAHDAN, A.-M. A. A modified

thinning algorithm for fingerprint identification systems. In Computer



References 174

Engineering & Systems, 2009. ICCES 2009. International Conference on

(2009), IEEE, pp. 371–376.

[106] SATHYANARAYAN, V. S., KOHLI, P., AND BRUHADESHWAR, B. Sig-

nature generation and detection of malware families. Lecture Notes in

Computer Science 5107 (2008), 336–349.

[107] SEBASTIAN, S. Literature survey on automated person identification tech-

niques. International Journal of Computer Science and Mobile Computing

2, 5 (2013), 232–237.

[108] SEBASTIAN, S. Literature survey on automated person identification tech-

niques. International Journal of Computer Science and Mobile Computing

2, 5 (May 2013), 232–237.

[109] SEDGEWICK, R., AND WAYNE, K. Radix sorts. https://www.cs.princeton.

edu/~rs/AlgsDS07/18RadixSort.pdf, 2014. [Last accessed: 01.2016].

[110] SENIOR, A. A combination fingerprint classifier. IEEE Transactions on

Pattern Analysis and Machine Intelligence 23, 10 (2001), 1165–1174.

[111] SHAFFER, C. A. Data Structures & Algorithm Analysis in Java. Courier

Corporation, 2011.

[112] SHAFFER, C. A. Data structures and algorithm analysis. Update 3 (2012),

0–3.

https://www.cs.princeton.edu/~rs/AlgsDS07/18RadixSort.pdf
https://www.cs.princeton.edu/~rs/AlgsDS07/18RadixSort.pdf


References 175

[113] SKIENA, S. S. The algorithm design manual, vol. 2. Springer Science &

Business Media, 2008.

[114] SMYTH, B. Computing Patterns in Strings. Pearson Addison-Wesley, 2003.

[115] SOFTONIC. Xiao steganography. http://xiao-steganography.en.softonic.

com/. [Last accessed: 10.2015].

[116] SPEIR, J. A., AND HIETPAS, J. Frequency filtering to suppress background

noise in fingerprint evidence: Quantifying the fidelity of digitally enhanced

fingerprint images. Forensic science international 242 (2014), 94–102.

[117] STONE-GROS, B. Malware analysis of the lurk downloader.

http://www.secureworks.com/cyber-threat-intelligence/threats/

malware-analysis-of-the-lurk-downloader/?view=Standard, 2014.

Dell SecureWorks Counter Threat Unit, [Last accessed: 11.2015].

[118] SWEENEY, A. M. Malware analysis and antivirus signature creation.

[119] SZOR, P. The art of computer virus research and defense. Addison-Wesley

Professional, 2005.

[120] TAN, X., AND BHANU, B. Fingerprint verification using genetic algorithms.

In Sixth IEEE Workshop on Applications of Computer Vision (2002), IEEE,

pp. 79–83.

http://xiao-steganography.en.softonic.com/
http://xiao-steganography.en.softonic.com/
http://www.secureworks.com/cyber-threat-intelligence/threats/malware-analysis-of-the-lurk-downloader/?view=Standard
http://www.secureworks.com/cyber-threat-intelligence/threats/malware-analysis-of-the-lurk-downloader/?view=Standard


References 176

[121] TAN, X., AND BHANU, B. Robust fingerprint identification. In Interna-

tional Conference on Image Processing 2002 (2002), vol. 1, IEEE, pp. I–

277.

[122] TAN, X., AND BHANU, B. Fingerprint matching by genetic algorithms.

Pattern Recognition 39, 3 (2006), 465–477.

[123] TAN, X., BHANU, B., AND LIN, Y. Fingerprint classification based on

learned features. IEEE Transactions on Systems, Man, and Cybernetics,

Part C: Applications and Reviews 35, 3 (2005), 287–300.

[124] THE PRAGUE STRINGOLOGY CLUB. Introduction to stringology. http:

//www.stringology.org/, 2016. [Accessed Feb 2, 2016].

[125] THERMO FISHER SCIENTIFIC INC. appliedbiosystems. http://www.

thermofisher.com/uk/en/home/brands/applied-biosystems.html, 2016. Ac-

cessed Feb 2, 2016.

[126] UKKONEN, E. Finding approximate patterns in strings. Journal of algo-

rithms 6, 1 (1985), 132–137.

[127] UMASS TRACE REPOSITORY. Smart* data set for sustainability

project. http://traces.cs.umass.edu/index.php/Smart/Smart. [Last accessed:

01.2016].

http://www.stringology.org/
http://www.stringology.org/
http://www.thermofisher.com/uk/en/home/brands/applied-biosystems.html
http://www.thermofisher.com/uk/en/home/brands/applied-biosystems.html
http://traces.cs.umass.edu/index.php/Smart/Smart


References 177

[128] UNARA, J., SENGA, W. C., AND ABBASI, A. A review of biometric

technology along with trends and prospects. Pattern Recognition 47, 8

(August 2014), 2673––2688.

[129] USA DEPARTMENT OF STATE FREEDOM OF INFORMATION ACT (FOIA).

The privacy act. https://foia.state.gov/learn/privacyact.aspx. [Last accessed:

01.2016].

[130] UZ, T., BEBIS, G., EROL, A., AND PRABHAKAR, S. Minutiae-based

template synthesis and matching for fingerprint authentication. Computer

Vision and Image Understanding 113, 9 (2009), 979–992.

[131] VIRUSTOTAL. File statistics during last 7 days. Tech. rep., Rotarua Limited

(d.b.a. VirusTotal), 2016.

[132] WEISS, M., HELFENSTEIN, A., MATTERN, F., AND STAAKE, T. Leverag-

ing smart meter data to recognize home appliances. In Pervasive Computing

and Communications (PerCom), 2012 IEEE International Conference on

(2012), IEEE, pp. 190–197.

[133] WILLIAMS, R. Cyber crime costs global economy $445 bn annu-

ally. http://www.telegraph.co.uk/technology/internet-security/10886640/

Cyber-crime-costs-global-economy-445-bn-annually.html, 2014. The Tele-

graph , [Last accessed: 01.2016].

https://foia.state.gov/learn/privacyact.aspx
http://www.telegraph.co.uk/technology/internet-security/10886640/Cyber-crime-costs-global-economy-445-bn-annually.html
http://www.telegraph.co.uk/technology/internet-security/10886640/Cyber-crime-costs-global-economy-445-bn-annually.html


References 178

[134] WILLIS, A. J., AND MYERS, L. A cost-effective fingerprint recognition

system for use with low-quality prints and damaged fingertips. Pattern

recognition 34, 2 (2001), 255–270.

[135] XINJIAN, C., JIE, T., XIN, Y., AND YANGYANG, Z. An algorithm for dis-

torted fingerprint matching based on local triangle feature set. Information

Forensics and Security, IEEE Transactions on 1, 2 (2006), 169–177.

[136] YAO, Y., MARCIALIS, G. L., PONTIL, M., FRASCONI, P., AND ROLI,

F. Combining flat and structured representations for fingerprint classifica-

tion with recursive neural networks and support vector machines. Pattern

Recognition 36, 2 (2003), 397–406.

[137] YOU, I., AND YIM, K. Malware obfuscation techniques: A brief survey.

In Int. Conf. on Broadband, Wireless Computing, Communication and

Applications (2010), pp. 297–300.

[138] ZANG, Y., YANG, X., JIA, X., ZHANG, N., TIAN, J., AND ZHU, X. A

coarse-fine fingerprint scaling method. In 2013 International Conference

on Biometrics (ICB) (2013), IEEE, pp. 1–6.

[139] ZENG, Y., LIU, F., LUO, X., AND YANG, C. Formal description and

analysis of malware detection algorithm mom a. In International Symposium

on Computer Science and Computational Technology (2009), pp. 139–142.



References 179

[140] ZHAN, X., SUN, Z., YIN, Y., AND CHU, Y. Fingerprint ridge distance

estimation: algorithms and the performance. In International Conference

on Biometrics (2006), Springer, pp. 294–301.

[141] ZHANG, Q., AND YAN, H. Fingerprint classification based on extraction

and analysis of singularities and pseudo ridges. Pattern Recognition 37, 11

(2004), 2233–2243.

[142] ZHANG, T., AND SUEN, C. Y. A fast parallel algorithm for thinning digital

patterns. Communications of the ACM 27, 3 (1984), 236–239.

[143] ZHOU, X., XI, B., QI, Y., AND LI, J. Mrsi: A fast pattern matching

algorithm for anti-virus applications. In Networking, 2008. ICN 2008.

Seventh International Conference on (2008), IEEE, pp. 256–261.





.1 URL Detection Algorithm 181

Appendix

.1 URL Detection Algorithm

.1.1 Detecting and Extracting Hidden URL

1: procedure FindURLInImage

2: CREATE a sorted indexed array DOMAIN[] from the official top level

domain list

3: CREATE a BITMAP[] array from the image taking each bit

4: *Comment: Loop through the BITMAP[] and create an array LSBAR-

RAY[] with the least significant bits

5: Integer i, j

6: i=0

7: j=0

8: for i = 0 to BITMAP[] do

9: if (i != 0) AND (i+1) MOD 8 = 0 then

10: return LSBARRAY[j++] = BITMAP[i]

11: end if

12: end for

13: *Comment: Loop through LSBARRAY[] and convert to a LSBCHARAR-

RAY[] character array

14: i=0

15: j=0

16: String t=""



.1 URL Detection Algorithm 182

17: for i = 0 to LSBARRAY[] do t = STRING((t) + LSBARRAY[i])

18: if (i!=0) and (i+1) MOD 8 = 0 then

19: return LSBCHARARRAY[j++] = ConvertToCharacter(t)

20: t = ""

21: end if

22: end for

23: *Comment: Loop through the LSBCHARARRAY[] to detect URL by

using the DOMAIN[] array Integer temp, l,s

24: ’ Initialize i and s outside the loop

25: i=0

26: s=0

27: Boolean httpOrHttpsExists

28: Boolean wwwExists

29: Boolean urlFound

30: String URL = ""

31: String OutPutURLArray[]

32: for i=0 to LSBCHARARRAY[] do

33: ’ Initializeat start of loop

34: httpOrHttpsExists = False

35: wwwExists = False

36: urlFound = False

37: URL = ""

38: J=0

39: t=""

40: temp = 0

41: if LSBCHARARRAY[i] = ":" then

42: *Comment:Check Possibility of having an http:\\

43: t = ConvertToString(LSBCHARARRAY[i-4] to LSBCHARAR-

RAY[i+2])

44: if LowerCase(t) = "http:\\" then



.1 URL Detection Algorithm 183

45: httpOrHttpsExists = True

46: temp = i + 3

47: URL= "http:\\"

48: end if

49: t = ""

50: if httpOrHttpsExists = False then

51: *Comment:Possibility of having an https:\\

52: t = ConvertToString(LSBCHARARRAY[i-5] to LS-

BCHARARRAY[i+2])

53: if LowerCase(t) = "https:

54: " then

55: httpOrHttpsExists = True

56: temp = i + 3

57: URL= "https:\\"

58: end if

59: end if

60: t = ""

61: t = ConvertToString(LSBCHARARRAY[i+3] to LSBCHARAR-

RAY[i+6])

62: if LowerCase(t) = "www." then

63: temp = temp+ i + 5

64: wwwExists = True

65: URL= Concat(URL,"www.")

66: end if

67: end if

68: if (httpOrHttpsExists = False Or wwwExists = False) AND LS-

BCHARARRAY[i] = "." then

69: *Comment: Check for . to find www because at this point we

know that http or www trap inside the condition for ":" failed.



.1 URL Detection Algorithm 184

70: t = ""

71: t = ConvertToString(LSBCHARARRAY[i-3] to LSBCHARAR-

RAY[i])

72: if LowerCase(t) = "www." then

73: *Comment: jump the i to the new position and save in a tem-

morary variable

74: temp = i + 5

75: wwwExists = True

76: URL= "www."

77: end if

78: end if

79: if httpOrHttpsExists = True Or wwwExists = True then

80: *Comment: Assign the position of i to find the URL

81: i = temp

82: t = ""

83: ’At this point the existence of http of www is found. Now look for

the rest of the url

84: for j = i to LSBCHARARRAY[] do

85: if LSBCHARARRAY[j] = "." then

86: URL = Concat(URL, ConvertToString(LSBCHARARRAY[j-

i+1] to LSBCHARARRAY[j]))

87: i = j + 1

88: urlFound = True

89: Exit FOR

90: end if

91: end for

92: if urlFound then

93: urlFound = False



.1 URL Detection Algorithm 185

Algorithm 3 Procedure FindURLInImage
94: for j = i to LSBCHARARRAY[] do

95: t = Concat(t,LSBCHARARRAY[j])

96: *Comment: Now check t in sorted top level domain list

DOMAIN

97: if t EXISTS in DOMAIN[] then

98: URL = Concat(URL,

ConvertToString(LSBCHARARRAY[j-i+1] to LSBCHARARRAY[j]))

99: urlFound = True

100: *Comment: Reinitialize the value of i for the next

iteration

101: i = j + 1

102: EXIT FOR

103: end if

104: end for

105: end if

106: end if

107: if urlFound then

108: *Comment: It is possible to have multiple URL in different posi-

tion

109: OutPutURLArray[s] = URL

110: s = s + 1

111: end if

112: end for

113: if s > 0 THEN then

114: *Comment: URL has been found and OutPutURLArray[] contains

the urls

115: return OutPutURLArray[]

116: end if

117: end procedure



.1 URL Detection Algorithm 186

.1.2 Detecting and Extracting Encrypted URL

1: procedure FindURLInImage

2: CREATE a sorted indexed array DOMAIN[] from the official top level

domain list

3: CREATE a BITMAP[] array from the image taking each bit

4: *Comment: Loop through the BITMAP[] and create an array LSBAR-

RAY[] with the Inverted least significant bits

5: Integer i, j

6: i=0

7: j=0

8: for i = 0 to BITMAP[] do

9: if (i != 0) AND (i+1) MOD 8 = 0 then

10: return LSBARRAY[j++] = BIT WISE NOT BITMAP[i]

11: end if

12: end for

13: *Comment: Loop through LSBARRAY[] and convert to a LSBCHARAR-

RAY[] character array

14: i=0

15: j=0

16: String t=""

17: for i = 0 to LSBARRAY[] do t = STRING((t) + LSBARRAY[i])

18: if (i!=0) and (i+1) MOD 8 = 0 then

19: return LSBCHARARRAY[j++] = ConvertToCharacter(t)

20: t = ""

21: end if

22: end for



.1 URL Detection Algorithm 187

23: *Comment: Loop through the LSBCHARARRAY[] to detect URL by

using the DOMAIN[] array Integer temp, l,s

24: ’ Initialize i and s outrside the loop

25: i=0

26: s=0

27: Boolean httpOrHttpsExists

28: Boolean wwwExists

29: Boolean urlFound

30: String URL = ""

31: String OutPutURLArray[]

32: for i=0 to LSBCHARARRAY[] do

33: ’ Initializeat start of loop

34: httpOrHttpsExists = False

35: wwwExists = False

36: urlFound = False

37: URL = ""

38: J=0

39: t=""

40: temp = 0

41: if LSBCHARARRAY[i] = ":" then

42: *Comment:Check Possibility of having an http:\\

43: t = ConvertToString(LSBCHARARRAY[i-4] to LSBCHARAR-

RAY[i+2])

44: if LowerCase(t) = "http:\\" then

45: httpOrHttpsExists = True

46: temp = i + 3

47: URL= "http:\\"

48: end if



.1 URL Detection Algorithm 188

49: t = ""

50: if httpOrHttpsExists = False then

51: *Comment:Possibility of having an https:\\

52: t = ConvertToString(LSBCHARARRAY[i-5] to LS-

BCHARARRAY[i+2])

53: if LowerCase(t) = "https:

54: " then

55: httpOrHttpsExists = True

56: temp = i + 3

57: URL= "https:\\"

58: end if

59: end if

60: t = ""

61: t = ConvertToString(LSBCHARARRAY[i+3] to LSBCHARAR-

RAY[i+6])

62: if LowerCase(t) = "www." then

63: temp = temp+ i + 5

64: wwwExists = True

65: URL= Concat(URL,"www.")

66: end if

67: end if

68: if httpOrHttpsExists = False Or wwwExists = False) AND LS-

BCHARARRAY[i] = "." then

69: *Comment: Check for . to find www because at this point we

know that http or www trap inside the condition for ":" failed.



.1 URL Detection Algorithm 189

70: t = ""

71: t = ConvertToString(LSBCHARARRAY[i-3] to LSBCHARAR-

RAY[i])

72: if LowerCase(t) = "www." then

73: *Comment: jump the i to the new position and save in a tem-

morary variable

74: temp = i + 5

75: wwwExists = True

76: URL= "www."

77: end if

78: end if

79: if httpOrHttpsExists = True Or wwwExists = True then

80: *Comment: Assign the position of i to find the URL

81: i = temp

82: t = ""

83: ’At his point the existence of http of www is found. Now look for

the rest of the url

84: for j = i to LSBCHARARRAY[] do

85: if LSBCHARARRAY[j] = "." then

86: URL = Concat(URL, ConvertToString(LSBCHARARRAY[j-

i+1] to LSBCHARARRAY[j]))

87: i = j + 1

88: urlFound = True

89: Exit FOR

90: end if

91: end for

92: if urlFound then

93: urlFound = False

94: for j = i to LSBCHARARRAY[] do

95: t = Concat(t,LSBCHARARRAY[j])



.1 URL Detection Algorithm 190

Algorithm 4 Procedure FindURLInImage
96: *Comment: Now check t in sorted top level domain list

DOMAIN

97: if t EXISTS in DOMAIN[] then

98: URL = Concat(URL,

ConvertToString(LSBCHARARRAY[j-i+1] to LSBCHARARRAY[j]))

99: urlFound = True

100: *Comment: Reinitialize the value of i for the next

iteration

101: i = j + 1

102: EXIT FOR

103: end if

104: end for

105: end if

106: end if

107: if urlFound then

108: *Comment: It is possible to have multiple URL in different posi-

tion

109: OutPutURLArray[s] = URL

110: s = s + 1

111: end if

112: end for

113: if s > 0 THEN then

114: *Comment: URL has been found and OutPutURLArray[] contains

the urls

115: return OutPutURLArray[]

116: end if

117: end procedure



.1 URL Detection Algorithm 191

.1.3 URL Detection code

The first solution is on the following link:

http://tanvera-001-site1.htempurl.com/

u s i n g System ;

u s i n g System . C o l l e c t i o n s . G e n e r i c ;

u s i n g System . Linq ;

u s i n g System . Web ;

u s i n g System . Web . UI ;

u s i n g System . Web . UI . WebControls ;

u s i n g System . IO ;

u s i n g System . Drawing ;

u s i n g S t e g a n o g r a p h y ;

p u b l i c p a r t i a l c l a s s _ D e f a u l t : Page

{

p r i v a t e s t r i n g e x t r a c t e d T e x t = s t r i n g . Empty ;

p r o t e c t e d vo id Page_Load ( o b j e c t s ende r , EventArgs e )

{

}

p r i v a t e boo l I s V a l i d F i l e ( s t r i n g f i l e P a t h )

{

boo l i s V a l i d = f a l s e ;

s t r i n g [ ] f i l e E x t e n s i o n s = { " . bmp " , " . png " , " .BMP" , " . PNG" , " . g i f " , " . GIF " } ;

f o r ( i n t i = 0 ; i < f i l e E x t e n s i o n s . Length ; i ++)

{

i f ( f i l e P a t h . C o n t a i n s ( f i l e E x t e n s i o n s [ i ] ) )

{

i s V a l i d = t r u e ;

}

}

r e t u r n i s V a l i d ;

}

p r o t e c t e d vo id Ex t rac tURL_Cl i ck ( o b j e c t s ende r , EventArgs e )

{

Bitmap bmp = n u l l ;

E x t r a c t e d T e x t . Text = " " ;

E r r o r T x t . Text = " " ;

Image1 . ImageUrl = " " ;

/ / s t r i n g f u l l P a t h = ImageF i l eUp load . H t t p P o s t e d F i l e . FileName ;

http://tanvera-001-site1.htempurl.com/


.1 URL Detection Algorithm 192

t r y

{

i f ( ImageF i l eUp l oad . H a s F i l e )

{

i f ( I s V a l i d F i l e ( Conve r t . T o S t r i n g ( ImageF i l eUp load . P o s t e d F i l e . FileName ) ) )

{

s t r i n g d i r U r l = " u p l o a d s " + t h i s . Page . User . I d e n t i t y . Name ;

s t r i n g d i r P a t h = S e r v e r . MapPath ( d i r U r l ) ;

s t r i n g f i l e U r l = d i r U r l + " / " + Pa th . GetFi leName ( I mageF i l eUp load . P o s t e d F i l e . FileName ) ;

i f ( F i l e . E x i s t s ( S e r v e r . MapPath ( f i l e U r l ) ) )

{

F i l e . D e l e t e ( S e r v e r . MapPath ( f i l e U r l ) ) ;

}

ImageF i l e Up load . P o s t e d F i l e . SaveAs ( S e r v e r . MapPath ( f i l e U r l ) ) ;

Image1 . ImageUrl = f i l e U r l ;

u s i n g ( bmp = new Bitmap ( S e r v e r . MapPath ( f i l e U r l ) . T o S t r i n g ( ) ) )

{

s t r i n g e x t r a c t e d T e x t = SteganographyURL . ex t rac tURL ( bmp ) ;

i f ( e x t r a c t e d T e x t . E qu a l s ( " " ) )

{

E r r o r T x t . Text = "No URL Found " ;

}

e l s e

{

E x t r a c t e d T e x t . Text = e x t r a c t e d T e x t ;

}

}

}

e l s e

{

E r r o r T x t . Text = " t h i s f i l e t y p e i s n o t s u p p o r t e d " ;

}

}

e l s e

{

E r r o r T x t . Text = " S e l e c t a bmp or png or g i f iamge " ;

}

}

c a t c h ( E x c e p t i o n Exc )

{

E r r o r T x t . Text = Exc . Message ;

i f ( bmp != n u l l ) bmp . Di spose ( ) ;

bmp = n u l l ;

}

bmp = n u l l ;

}

p r i v a t e s t a t i c b y t e [ ] Bi tmapToBytes ( Bitmap img )

{

u s i n g ( MemoryStream s t r e a m = new MemoryStream ( ) )

{

img . Save ( s t r eam , System . Drawing . Imaging . ImageFormat . Png ) ;



.1 URL Detection Algorithm 193

r e t u r n s t r e a m . ToArray ( ) ;

}

}

p r o t e c t e d vo id HideURL_Click ( o b j e c t s ende r , EventArgs e )

{

Bitmap bmp = n u l l ;

Random rnd = new Random ( ) ;

s t r i n g r n d S t r i n g = rnd . Next ( ) . T o S t r i n g ( ) ;

E x t r a c t e d T e x t . Text = " " ;

E r r o r T x t . Text = " " ;

Image1 . ImageUrl = " " ;

t r y

{

i f ( URLText . Text == " " )

{

E r r o r T x t . Text = "URL Text c a n n o t be b l a n k " ;

}

e l s e

i f ( ImageF i l eUp l oad . H a s F i l e )

{

i f ( SteganographyURL . ValidURL ( URLText . Tex t ) )

{

Image1 . ImageUrl = " " ;

i f ( I s V a l i d F i l e ( Conve r t . T o S t r i n g ( ImageF i l eU p load . P o s t e d F i l e . FileName ) ) )

{

i f ( Image1 . ImageUrl == " " )

{

s t r i n g d i r U r l = " u p l o a d s " + t h i s . Page . User . I d e n t i t y . Name ;

s t r i n g d i r P a t h = S e r v e r . MapPath ( d i r U r l ) ;

s t r i n g f i l e U r l = d i r U r l + " / " + Pa th . GetFi leName ( Im ageF i l eUp load . P o s t e d F i l e . FileName ) ;

f i l e U r l = f i l e U r l . Rep lace ( " . " , r n d S t r i n g + " _ . " ) ;

i f ( F i l e . E x i s t s ( S e r v e r . MapPath ( f i l e U r l ) ) )

{

F i l e . D e l e t e ( S e r v e r . MapPath ( f i l e U r l ) ) ;

}

ImageF i l eUp load . P o s t e d F i l e . SaveAs ( S e r v e r . MapPath ( f i l e U r l ) ) ;

Image1 . ImageUrl = f i l e U r l ;

u s i n g ( bmp = new Bitmap ( S e r v e r . MapPath ( f i l e U r l ) . T o S t r i n g ( ) ) )

{

i f ( bmp . P i x e l F o r m a t . T o S t r i n g ( ) == " Format1bppIndexed " )

{

E r r o r T x t . Text = " Th i s image f o r m a t i s n o t s u p p o r t e d , t h e

image f i l e must have a t l e a s t 8 b i t s p e r p i x e l " ;

bmp = n u l l ;

}

e l s e

i f ( bmp != n u l l )

{

bmp = SteganographyURL . embedText ( URLText . Text , bmp ) ;

b y t e [ ] b y t e s =BitmapToBytes ( bmp ) ;



.2 Fingerprint Implementation code 194

s t r i n g b a s e 6 4 S t r i n g = Conve r t . T o B a s e 6 4 S t r i n g ( b y t e s , 0 , b y t e s . Length ) ;

Image1 . ImageUrl= " d a t a : image / png ; base64 , " + b a s e 6 4 S t r i n g ;

E r r o r T x t . Text = "URL has been h idd en i n t h e image " ;

E x t r a c t e d T e x t . Text = " " ;

}

e l s e

{

E r r o r T x t . Text = " E r r o r s a v i n g image " ;

}

}

}

}

e l s e

{

E r r o r T x t . Text = " Th i s image f o r m a t i s n o t s u p p o r t e d " ;

}

}

e l s e

{

E r r o r T x t . Text = " The Text i s n o t a v a l i d URL" ;

}

}

}

c a t c h ( E x c e p t i o n ex )

{

i f ( ex . Message == " S e t P i x e l i s n o t s u p p o r t e d f o r images wi th i n d e x e d p i x e l f o r m a t s . " )

{

E r r o r T x t . Text = " Th i s image does n o t s u p p o r t URL h i d d i n g " ;

}

e l s e

{

E r r o r T x t . Text = " E r r o r Sav ing f i l e " + ex . Message + " " + ex . Data . T o S t r i n g ( ) ;

}

bmp = n u l l ;

i f ( bmp != n u l l ) bmp . Di spose ( ) ;

}

bmp = n u l l ;

}

}

.2 Fingerprint Implementation code

.2.1 Main Function

/ * *

* f p _ a u t h . cc : n o v e l f i n g e r p r i n t a u t h i m p l e m e n t a t i o n



.2 Fingerprint Implementation code 195

*

* /

# i n c l u d e " f p _ a u t h . h "

# i n c l u d e " opencv2 / imgproc / imgproc . hpp "

# i n c l u d e " opencv2 / h i g h g u i / h i g h g u i . hpp "

# i n c l u d e < v e c t o r >

/ / r e a d i n p u t img and to_match img

/ / g e t s can c i r c l e s from to_match_img

/ / g e t s can c i r c l e s a t r e g u l a r i n t e r v a l s from img

/ / match each c i r c l e wi th to_match_img

/ / check f o r b e s t match

i n t main ( i n t a rgc , c h a r ** a rgv ) {

i n t m a t c h _ r e s u l t =0 , match =0;

i n t m=0 , n =0;

i n t i n n e r _ c i r c l e s ;

i n t MIN_RADIUS , RAD_DIST ;

cv : : Mat im = imread ( " / home / k1505471 / Downloads / s r c / db /104 _ 7 _ t h i n . t i f " , 0 ) ;

/ / i n p u t image , ex . " img_bw /104 _7_ t_ . t i f "

/ / Image pre−p r o c e s s i n g

/ / r e s i z e ( im , im , im . s i z e ( ) , 1 5 0 , 1 5 0 , INTER_LINEAR ) ;

/ / cv : : c v t C o l o r ( im , im , CV_BGR2GRAY ) ;

/ / cv : : a d a p t i v e T h r e s h o l d ( im , im , 2 5 5 ,ADAPTIVE_THRESH_GAUSSIAN_C , THRESH_BINARY, 1 5 , −1 1 ) ;

t h i n n i n g ( im ) ;

/ / C o n v e r t i n g t o b l a c k and w h i t e

/ / cv : : t h r e s h o l d ( im , im , 0 ,255 ,THRESH_BINARY_INV ) ;

/ / l o a d image t o match

cv : : Mat im_match = imread ( " / home / k1505471 / Downloads / s r c / db /104 _ 7 _ t h i n . t i f " , 0 ) ;

/ / image i n DB t o be matched a g a i n s t

/ / Image pre−p r o c e s s i n g

/ / cv : : r e s i z e ( im_match , im_match , im_match . s i z e ( ) , 1 5 0 , 1 5 0 , INTER_LINEAR ) ;

/ / cv : : c v t C o l o r ( im_match , im_match , CV_BGR2GRAY ) ;

/ / cv : : a d a p t i v e T h r e s h o l d ( im_match , im_match , 2 5 5 ,ADAPTIVE_THRESH_GAUSSIAN_C , THRESH_BINARY, 1 5 , −1 1 ) ;

/ / F i n g e r p r i n t T h i n n i n g

t h i n n i n g ( im_match ) ;

/ / C o n v e r t i n g t o b l a c k and w h i t e

/ / cv : : t h r e s h o l d ( im_match , im_match , 0 ,255 ,THRESH_BINARY_INV ) ;

/ * / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / * /



.2 Fingerprint Implementation code 196

cout <<" E n t e r t h e Min Radui s " ;

c in >>MIN_RADIUS ;

cout <<" E n t e r t h e Radu i s D i s t " ;

c in >>RAD_DIST ;

cout <<" E n t e r t h e number o f i n n e r c i r l c e s " ;

c in >> i n n e r _ c i r c l e s ;

/ / g e t one c i r c l e p e r p i x e l i n a f i x e d r a d u i s f o r t h e i n p u t image

v e c t o r < v e c t o r < v e c t o r < s t r i n g > > > s c a n s = g e t _ s c a n s ( im , MIN_RADIUS , 1 , 1 ) ;

/ / 2d a r r a y o f scan c i r c l e s

v e c t o r < v e c t o r < v e c t o r < s t r i n g > > > scans_ma tch = g e t _ s c a n s ( im_match , MIN_RADIUS , 1 , 1 ) ;

s t d : : v e c t o r < v e c t o r < v e c t o r < i n t > > > x _ y _ a x i s ;

x _ y _ a x i s . r e s i z e ( s c a n s . s i z e ( ) ) ;

f o r ( i n t i =0 ; i < s c a n s . s i z e ( ) ; i ++){

x _ y _ a x i s [ i ] . r e s i z e ( s c a n s . s i z e ( ) ) ;

}

f o r ( i n t i =0 ; i < s c a n s . s i z e ( ) ; i ++){

f o r ( i n t j =0 ; j < s c a n s . s i z e ( ) ; j ++){

x _ y _ a x i s [ i ] [ j ] . r e s i z e ( 2 ) ;

}

}

/ * f o r ( i n t i =0 ; i < s c a n s . s i z e ( ) ; i ++){

f o r ( i n t j =0 ; j < s c a n s [ i ] . s i z e ( ) ; j ++){

cout << i ; cou t <<" " ; cou t << j ;

cou t << e n d l ;

cou t << x _ y _ a x i s [ i ] [ j ] [ 0 ] ;

cou t << x _ y _ a x i s [ i ] [ j ] [ 1 ] ;

cou t << e n d l ;

}

} * /

/ * f o r ( i n t i =0 ; i < s c a n s . s i z e ( ) ; i ++){

f o r ( i n t j =0 ; j < s c a n s . s i z e ( ) ; j ++){

cout << s c a n s [ i ] [ j ] [ 0 ] ;

cou t << e n d l ;

}

} * /

s t r i n g l e x s t r i n g = l e x ( scans_ma tch [ s c a n s . s i z e ( ) / 2 ] [ s c a n s . s i z e ( ) / 2 ] [ 0 ] ) ;

s t r i n g l e x s t r i n g 1 ;

f o r ( i n t i =0 ; i < s c a n s . s i z e ( ) ; i ++){

f o r ( i n t j =0 ; j < s c a n s . s i z e ( ) ; j ++){



.2 Fingerprint Implementation code 197

l e x s t r i n g 1 = l e x ( s c a n s [ i ] [ j ] [ 0 ] ) ;

m a t c h _ r e s u l t =needlemanWunschMatching ( l e x s t r i n g 1 , l e x s t r i n g , l e x s t r i n g . l e n g t h ( ) ) ;

i f ( m a t c h _ r e s u l t >=50){

cout << m a t c h _ r e s u l t ;

cou t << e n d l ; } } }

/ / match ++;

/ / x _ y _ a x i s [m] [ n ] [ 0 ] = i ;

/ / x _ y _ a x i s [m] [ n ] [ 1 ] = j ;

/ / cou t <<" match " ;

/ / cou t << m a t c h _ r e s u l t ;

/ / cou t << e n d l ;

/ / n ++;}

/ / }

/ / i f ( m a t c h _ r e s u l t >=10)

/ /m++;

/ / }

/ / cou t <<match ; cout << e n d l ;

/ / cou t <<m;

/ / cou t <<" " ;

/ / cou t <<n ;

/ / cou t <<m; cout <<" " ; cou t <<n ; * /

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ * i f ( m a t c h _ r e s u l t >=80){

v e c t o r < v e c t o r < v e c t o r < s t r i n g > > > e x t e n d _ s c a n s ;

v e c t o r < v e c t o r < v e c t o r < s t r i n g > > > e x t e n d _ s c a n s _ m a t c h ;

f o r ( i n t i =0 ; i < s c a n s . s i z e ( ) ; i ++){

f o r ( i n t j =0 ; j < s c a n s . s i z e ( ) ; j ++){

n o v e l _ m i n u t i a e _ e x t r a c t i o n ( im , e x t e n d _ s c a n s [ i ] [ j ] , MIN_RADIUS , x _ a x i s [ i ] ,

y _ a x i s [ j ] , i n n e r _ c i r c l e s ) ;

}

}

} * /

r e t u r n EXIT_SUCCESS ;

}

.2.2 Calling Functions

/ * *

* f p _ f u n c . c : n o v e l f i n g e r p r i n t a u t h f u n c t i o n s

*

* /

# i n c l u d e " f p _ f u n c . h "

# i n c l u d e " i o s t r e a m "

# i n c l u d e " s t r i n g "

do ub l e g e t t i m e ( vo id )

{

s t r u c t t i m e v a l t t i m e ;

g e t t i m e o f d a y ( &t t i m e , 0 ) ;



.2 Fingerprint Implementation code 198

r e t u r n t t i m e . t v _ s e c + t t i m e . t v _ u s e c * 0 . 0 0 0 0 0 1 ;

}

/ *

* Novel M i n u t i a e E x t r a c t i o n p r o c e d u r e .

*

* Th i s f u n c t i o n r e t u r n s a s e t o f c i r c u l a r s t r i n g s h av ing c e n t e r a t ( cx , cy ) a s a 2d s t r i n g v e c t o r .

* For now i t r e t u r n s on ly t h e o u t e r c i r c l e a s a p o i n t e r , however

* a t l e a s t 5 o r 7 s h o u l d be r e t u r n e d f o r b e t t e r compar i son .

* In a d d i t i o n t h e l e n g t h o f t h e c i r c u l a r s t r i n g o b t a i n e d i s r e t u r n e d as w e l l .

* /

i n t n o v e l _ m i n u t i a e _ e x t r a c t i o n ( Mat im , v e c t o r < s t r i n g > &scans , do ub l e r , do ub l e cx , do ub l e cy , i n t i n n e r _ c i r c l e s )

{

s t r i n g s t r _ l = " " ; / / l e f t p a r t o f c i r c u l a r s t r i n g

s t r i n g s t r _ r = " " ; / / r i g h t p a r t o f c i r c u l a r s t r i n g

s t r i n g c i r c u l a r _ s t r = " " ;

i n t c i r c _ s t r _ l e n = 0 ;

s c a n s . r e s i z e ( i n n e r _ c i r c l e s ) ;

/ / f o r each r a d i u s

f o r ( i n t i = 0 ; i < i n n e r _ c i r c l e s ; ++ i , r += RAD_DELTA)

{

f o r ( s i z e _ t x = cx − r ; x <= cx + r ; x++ )

{

f o r ( s i z e _ t y = cy − r ; y <= cy + r ; y++ )

{

/ / a l l p i x e l s i n t h e c i r c l e o f r a d i u s r

/ / ha v in g c e n t e r i n ( cx , cy ) s a t i s f y t h e f o r m u l a :

/ / r ^2 = ( x − cx )^2 + ( y − cy )^2

do ub l e a = ( x − cx ) ;

do ub l e b = ( y − cy ) ;

do ub l e d = a * a + b * b ;

/ / 1 more p i x e l and 1 l e s s p i x e l a l l o w e d

i f ( d < r * ( r + 1) && d > r * ( r − 1 ) )

{

i n t p i x e l = ( i n t ) im . a t < uchar >( x , y ) ;

i f ( y < cy ) {

/ / l e f t emi−c i c l e

s t r _ l = ( p i x e l < 180 ? "0" : " 1 " ) + s t r _ l ;

}

e l s e {

/ / r i g h t emi−c i c l e

s t r _ r = s t r _ r + ( p i x e l < 180 ? "0" : " 1 " ) ;

}

c i r c _ s t r _ l e n ++;

}

}



.2 Fingerprint Implementation code 199

}

s c a n s [ i ] = s t r _ l + s t r _ r ;

s t r _ l = " " ;

s t r _ r = " " ;

}

r e t u r n c i r c _ s t r _ l e n ;

}

/ * g e t _ s c a n s e x t r a c t s c i r c u l a r s t r i n g r e p r e s e n t a t i o n s from an i n p u t f i n g e r p r i n t * /

v e c t o r < v e c t o r < v e c t o r < s t r i n g > > > g e t _ s c a n s ( Mat im , i n t MIN_RADIUS , i n t RAD_DIST , i n t i n n e r _ c i r c l e s )

{

/ * s t a r t c e n t e r o f i n p u t image * /

d oub l e r = MIN_RADIUS ; / / − 2 ; / / r a d i u s

/ / c a l c n . s c a n s p e r row

i n t n _ s c a n s = 0 ;

f o r ( s i z e _ t x = MIN_RADIUS ; x <= im . rows − MIN_RADIUS ; x += RAD_DIST ) n _ s c a n s ++;

v e c t o r < v e c t o r < v e c t o r < s t r i n g > > > s c a n s ; / / 2d v e c t o r o f v e c t o r s can c i r c l e s , i . e . 3d v e c t o r

s c a n s . r e s i z e ( n _ s c a n s ) ;

/ * g e t s can c i r c l e s a t r e g u l a r i n t e r v a l s * /

f o r ( s i z e _ t x = MIN_RADIUS , i = 0 ; x <= im . rows − MIN_RADIUS ; x += RAD_DIST , i ++ )

{

s c a n s [ i ] . r e s i z e ( n _ s c a n s ) ;

f o r ( s i z e _ t y = MIN_RADIUS , j = 0 ; y <= im . c o l s − MIN_RADIUS ; y += RAD_DIST , j ++ )

{

n o v e l _ m i n u t i a e _ e x t r a c t i o n ( im , s c a n s [ i ] [ j ] , r , x , y , i n n e r _ c i r c l e s ) ;

}

}

r e t u r n s c a n s ;

}

i n t l e v e n s h t e i n ( c h a r * s1 , c h a r * s2 )

{

u n s i g n e d i n t s 1 l e n , s 2 l e n , x , y , l a s t d i a g , o l d d i a g ;

s 1 l e n = s t r l e n ( s1 ) ;

s 2 l e n = s t r l e n ( s2 ) ;

u n s i g n e d i n t column [ s 1 l e n + 1 ] ;

f o r ( y = 1 ; y <= s 1 l e n ; y ++)

column [ y ] = y ;

f o r ( x = 1 ; x <= s 2 l e n ; x ++) {



.2 Fingerprint Implementation code 200

column [ 0 ] = x ;

f o r ( y = 1 , l a s t d i a g = x−1; y <= s 1 l e n ; y ++) {

o l d d i a g = column [ y ] ;

column [ y ] = MIN3( column [ y ] + 1 , column [ y−1] + 1 , l a s t d i a g + ( s1 [ y−1] == s2 [ x−1] ? 0 : 1 ) ) ;

l a s t d i a g = o l d d i a g ;

}

}

r e t u r n ( column [ s 1 l e n ] ) ;

}

i n t g e t _ d i s t a n c e ( s t r i n g scans , s t r i n g scans_ma tch )

{

c h a r * c _ t e x t = new c h a r [ s cans_ma tch . l e n g t h ( ) + 1 ] ;

s t r c p y ( c _ t e x t , s cans_ma tch . c _ s t r ( ) ) ;

c h a r * c _ p t r n = new c h a r [ s c a n s . l e n g t h ( ) + 1 ] ;

s t r c p y ( c _ p t r n , s c a n s . c _ s t r ( ) ) ;

i n t d i s t = l e v e n s h t e i n ( c _ p t r n , c _ t e x t ) ; / / match i t a t a b o u t t h e c e n t e r o f t h e image t o match

r e t u r n d i s t ;

}

i n t b e s t _ a l i g n m e n t ( s t r i n g scans , s t r i n g scans_ma tch )

{

i n t d i s t = 0 ;

i n t min = 0 ;

i n t r o t a t i o n _ p o s = 0 ;

s t r i n g b e s t _ a l i g n m e n t = " " ;

b e s t _ a l i g n m e n t = s c a n s ;

min = g e t _ d i s t a n c e ( scans , s cans_ma tch ) ;

f o r ( i n t i = 0 ; i < s c a n s . s i z e ( ) ; i ++)

{

r o t a t e ( s c a n s . b e g i n ( ) , s c a n s . b e g i n ( ) + 1 , s c a n s . end ( ) ) ;

d i s t = g e t _ d i s t a n c e ( scans , s cans_ma tch ) ;

i f ( d i s t < min )

{

min = d i s t ;

b e s t _ a l i g n m e n t = s c a n s ;

r o t a t i o n _ p o s = i ;

}

}

c o u t << " b e s t _ a l i g n m e n t : " << b e s t _ a l i g n m e n t << e n d l ;

c o u t << " Min d i s t a n c e : " << min << " , r o t a t i o n _ p o s : " << r o t a t i o n _ p o s << e n d l ;

r e t u r n d i s t ;

}

/ * *

* Per fo rm one t h i n n i n g i t e r a t i o n .

* Normal ly you wouldn ’ t c a l l t h i s f u n c t i o n d i r e c t l y from your code .

*

* @param im Bi na r y image wi th r a n g e = 0−1

* @param i t e r 0= even , 1=odd

* /



.2 Fingerprint Implementation code 201

vo id t h i n n i n g G u o H a l l I t e r a t i o n ( cv : : Mat& im , i n t i t e r )

{

cv : : Mat marker = cv : : Mat : : z e r o s ( im . s i z e ( ) , CV_8UC1 ) ;

f o r ( i n t i = 1 ; i < im . rows ; i ++)

{

f o r ( i n t j = 1 ; j < im . c o l s ; j ++)

{

u c h a r p2 = im . a t < uchar >( i −1, j ) ;

u c h a r p3 = im . a t < uchar >( i −1, j + 1 ) ;

u c h a r p4 = im . a t < uchar >( i , j + 1 ) ;

u c h a r p5 = im . a t < uchar >( i +1 , j + 1 ) ;

u c h a r p6 = im . a t < uchar >( i +1 , j ) ;

u c h a r p7 = im . a t < uchar >( i +1 , j −1);

u c h a r p8 = im . a t < uchar >( i , j −1);

u c h a r p9 = im . a t < uchar >( i −1, j −1);

i n t C = ( ! p2 & ( p3 | p4 ) ) + ( ! p4 & ( p5 | p6 ) ) +

( ! p6 & ( p7 | p8 ) ) + ( ! p8 & ( p9 | p2 ) ) ;

i n t N1 = ( p9 | p2 ) + ( p3 | p4 ) + ( p5 | p6 ) + ( p7 | p8 ) ;

i n t N2 = ( p2 | p3 ) + ( p4 | p5 ) + ( p6 | p7 ) + ( p8 | p9 ) ;

i n t N = N1 < N2 ? N1 : N2 ;

i n t m = i t e r == 0 ? ( ( p6 | p7 | ! p9 ) & p8 ) : ( ( p2 | p3 | ! p5 ) & p4 ) ;

i f (C == 1 && (N >= 2 && N <= 3) & m == 0)

marker . a t < uchar >( i , j ) = 1 ;

}

}

im &= ~ marker ;

}

/ * *

* F u n c t i o n f o r t h i n n i n g t h e g i v e n b i n a r y image

*

* @param im Bi na r y image wi th r a n g e = 0−255

* /

vo id t h i n n i n g G u o H a l l ( cv : : Mat& im )

{

im /= 255 ;

cv : : Mat p rev = cv : : Mat : : z e r o s ( im . s i z e ( ) , CV_8UC1 ) ;

cv : : Mat d i f f ;

do {

t h i n n i n g G u o H a l l I t e r a t i o n ( im , 0 ) ;

t h i n n i n g G u o H a l l I t e r a t i o n ( im , 1 ) ;

cv : : a b s d i f f ( im , prev , d i f f ) ;

im . copyTo ( p rev ) ;

}

w h i l e ( cv : : countNonZero ( d i f f ) > 0 ) ;

im *= 255 ;

}



.2 Fingerprint Implementation code 202

/ * *

* Code f o r t h i n n i n g a b i n a r y image u s i n g Zhang−Suen a l g o r i t h m .

/ * *

* Per fo rm one t h i n n i n g i t e r a t i o n .

* Normal ly you wouldn ’ t c a l l t h i s f u n c t i o n d i r e c t l y from your code .

*

* @param im Bi na r y image wi th r a n g e = 0−1

* @param i t e r 0= even , 1=odd

* /

vo id t h i n n i n g I t e r a t i o n ( cv : : Mat& im , i n t i t e r )

{

cv : : Mat marker = cv : : Mat : : z e r o s ( im . s i z e ( ) , CV_8UC1 ) ;

f o r ( i n t i = 1 ; i < im . rows −1; i ++)

{

f o r ( i n t j = 1 ; j < im . c o l s −1; j ++)

{

u c h a r p2 = im . a t < uchar >( i −1, j ) ;

u c h a r p3 = im . a t < uchar >( i −1, j + 1 ) ;

u c h a r p4 = im . a t < uchar >( i , j + 1 ) ;

u c h a r p5 = im . a t < uchar >( i +1 , j + 1 ) ;

u c h a r p6 = im . a t < uchar >( i +1 , j ) ;

u c h a r p7 = im . a t < uchar >( i +1 , j −1);

u c h a r p8 = im . a t < uchar >( i , j −1);

u c h a r p9 = im . a t < uchar >( i −1, j −1);

i n t A = ( p2 == 0 && p3 == 1) + ( p3 == 0 && p4 == 1) +

( p4 == 0 && p5 == 1) + ( p5 == 0 && p6 == 1) +

( p6 == 0 && p7 == 1) + ( p7 == 0 && p8 == 1) +

( p8 == 0 && p9 == 1) + ( p9 == 0 && p2 == 1 ) ;

i n t B = p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 ;

i n t m1 = i t e r == 0 ? ( p2 * p4 * p6 ) : ( p2 * p4 * p8 ) ;

i n t m2 = i t e r == 0 ? ( p4 * p6 * p8 ) : ( p2 * p6 * p8 ) ;

i f (A == 1 && (B >= 2 && B <= 6) && m1 == 0 && m2 == 0)

marker . a t < uchar >( i , j ) = 5 ;

}

}

im &= ~ marker ;

}

/ * *

* F u n c t i o n f o r t h i n n i n g t h e g i v e n b i n a r y image

*

* @param im Bi na r y image wi th r a n g e = 0−255

* /

vo id t h i n n i n g ( cv : : Mat& im )

{

im /= 255 ;

cv : : Mat p rev = cv : : Mat : : z e r o s ( im . s i z e ( ) , CV_8UC1 ) ;

cv : : Mat d i f f ;



.2 Fingerprint Implementation code 203

do {

t h i n n i n g I t e r a t i o n ( im , 0 ) ;

t h i n n i n g I t e r a t i o n ( im , 1 ) ;

cv : : a b s d i f f ( im , prev , d i f f ) ;

im . copyTo ( p rev ) ;

}

w h i l e ( cv : : countNonZero ( d i f f ) > 0 ) ;

im *= 255 ;

}

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ / F u n c t i o n t o u p d a t e t h e D i r e c t i o n s t r i n g f o r t h e D i r e c t i o n t a b l e

s t r i n g t a b l e U p d a t e F u n c D i r e c ( i n t a , i n t b , i n t c )

{

i f ( a == b && a == c )

{

s t r i n g r e s u l t = " 1 2 3 " ;

r e t u r n r e s u l t ;

}

e l s e i f ( a==b && a > c )

{

s t r i n g r e s u l t = " 1 2 " ;

r e t u r n r e s u l t ;

}

e l s e i f ( a==c && a > b )

{

s t r i n g r e s u l t = " 1 3 " ;

r e t u r n r e s u l t ;

}

e l s e i f ( b==c && b > a )

{

s t r i n g r e s u l t = " 2 3 " ;

r e t u r n r e s u l t ;

}

e l s e

{

i n t f = max ( a , b ) ;

f = max ( f , c ) ;

s t r i n g r e s u l t ;

i f ( f ==a )

{

r e s u l t = " 1 " ;

}

e l s e i f ( f ==b )

{

r e s u l t = " 2 " ;

}

e l s e

{

r e s u l t = " 3 " ;

}

r e t u r n r e s u l t ;



.2 Fingerprint Implementation code 204

}

}

i n t t ab l eUpda teFuncMain ( i n t a , i n t b , i n t c )

{

i n t f = max ( a , b ) ;

f = max ( f , c ) ;

r e t u r n f ;

}

/ / F u n c t i o n t o match t h e s e q u e n c e when u p d a t i n g t h e MainTable

i n t match ingFunc ( i n t x , i n t y )

{

i f ( x == y )

r e t u r n 1 ;

e l s e r e t u r n −1;

}

/ / f u n c t i o n t o i n t e r p r e t t h e d i r e c t i o n mapping when t r a c i n g t h e p a t h

/ / 1 −−> d i a g o n a l ( t o p l e f t )

/ / 2 −−> l e f t

/ / 3 −−> t o p

/ / x = d i r e c t i o n , ( y , z ) = p r e s e n t p o s i t i o n

I n t Ve c t r a c e C o o r d ( c h a r x , i n t y , i n t z )

{

I n t Ve c nex tCoord ;

i f ( x == ’ 1 ’ )

{

nex tCoord . c l e a r ( ) ;

nex tCoord . push_back ( y−1);

nex tCoord . push_back ( z −1);

r e t u r n nex tCoord ;

}

e l s e i f ( x == ’ 2 ’ )

{

nex tCoord . c l e a r ( ) ;

nex tCoord . push_back ( y ) ;

nex tCoord . push_back ( z −1);

r e t u r n nex tCoord ;

}

e l s e

{

nex tCoord . c l e a r ( ) ;

nex tCoord . push_back ( y−1);

nex tCoord . push_back ( z ) ;

r e t u r n nex tCoord ;

}

}

i n t needlemanWunschMatching ( s t r i n g t , s t r i n g u , i n t SeqLength ) {

/ / v a r i a b l e d e c l a r a t i o n

/ / i n t SeqLength ;

i n t R ;

s t r i n g s ;



.2 Fingerprint Implementation code 205

/ / Ob t a i n l e n g t h o f b i n a r y s e q u e n c e

/ / cou t <<" E n t e r t h e l e n g t h o f s e q u e n c e "<< e n d l ;

/ / c in >> SeqLength ;

i n t Sequence1 [ SeqLength ] ;

i n t Sequence2 [ SeqLength ] ;

/ / Ob ta i n t h e f i r s t b i n a r y s e q u e n c e

/ / cou t <<" E n t e r t h e b i n a r y s e q u e n c e 1"<< e n d l ;

/ / c in >> t ;

f o r ( u n s i g n e d uv = 0 ; uv < t . l e n g t h ( ) ; uv ++){

i n t conv = ( i n t ) t [ uv ] − 4 8 ;

Sequence1 [ uv ] = conv ;

}

/ / Ob ta i n t h e second b i n a r y s e q u e n c e

/ / cou t <<" E n t e r t h e b i n a r y s e q u e n c e 2"<< e n d l ;

/ / c i n >> u ;

f o r ( u n s i g n e d uv = 0 ; uv < u . l e n g t h ( ) ; uv ++){

i n t conv = ( i n t ) u [ uv ] − 4 8 ;

Sequence2 [ uv ] = conv ;

}

i n t n = SeqLength + 2 ;

i n t rowcount1 , co lumncount1 ;

/ / MainTable h o l d s t h e comple t ed t a b l e a c c o r d i n g t o t h e Needleman Wunsch ’ s a l g o r i t h m u s i n g t h e f o l l o w i n g s c o r e sys tem :

/ / +1 f o r match

/ / −1 f o r no match

/ / −1 f o r i n d e l

/ / D i r e c t i o n T a b l e h o l d s t h e d i r e c t i o n s computed a c c o r d i n g t o t h e f o l l o w i n g r e p r e s e n t a t i o n

/ / 1 −−> d i a g o n a l ( t o p l e f t )

/ / 2 −−> l e f t

/ / 3 −−> t o p

i n t MainTable [ n ] [ n ] ;

s t r i n g D i r e c t i o n T a b l e [ n−2][n−2];

/ / i n i t i a l i s e M a i n t a b l e

MainTable [ 0 ] [ 0 ] = 0 ;

MainTable [ 0 ] [ 1 ] = 0 ;

MainTable [ 1 ] [ 0 ] = 0 ;

MainTable [ 1 ] [ 1 ] = 0 ;

/ / E n t e r s e q u e n c e 1

f o r ( co lumncount1 = 2 ; co lumncount1 < n ; co lumncount1 ++){

MainTable [ 0 ] [ co lumncount1 ] = Sequence1 [ co lumncount1 − 2 ] ;

}

/ / E n t e r s e q u e n c e 2

f o r ( rowcount1 = 2 ; rowcount1 < n ; rowcount1 ++){

MainTable [ rowcount1 ] [ 0 ] = Sequence2 [ rowcount1 − 2 ] ;

}



.2 Fingerprint Implementation code 206

/ / Upda t ing t h e t a b l e by match ing wi th t h e ’ gap ’ wi th s e q u e n c e 1

f o r ( co lumncount1 = 2 ; co lumncount1 < n ; co lumncount1 ++){

MainTable [ 1 ] [ co lumncount1 ] = MainTable [ 1 ] [ co lumncount1 − 1] − 1 ;

}

/ / Upda t ing t h e t a b l e by match ing wi th t h e ’ gap ’ wi th s e q u e n c e 2

f o r ( rowcount1 = 2 ; rowcount1 < n ; rowcount1 ++){

MainTable [ rowcount1 ] [ 1 ] = MainTable [ rowcount1 − 1 ] [ 1 ] − 1 ;

}

/ / Complete bo th t a b l e s u p d a t e s

/ / number mapping

f o r ( rowcount1 = 2 ; rowcount1 < n ; rowcount1 ++){

f o r ( co lumncount1 = 2 ; co lumncount1 < n ; co lumncount1 ++){

/ / MainTable u p d a t e

MainTable [ rowcount1 ] [ co lumncount1 ] = tab l eUpda teFuncMain ( match ingFunc ( Sequence1 [ co lumncount1 − 2 ] ,

Sequence2 [ rowcount1 − 2 ] ) +

MainTable [ rowcount1 − 1 ] [ co lumncount1 − 1 ] ,

MainTable [ rowcount1 ] [ co lumncount1 − 1]

− 1 , MainTable [ rowcount1 − 1 ] [ co lumncount1 ] − 1 ) ;

/ / D i r e c t i o n Tab le u p d a t e

D i r e c t i o n T a b l e [ rowcount1 − 2 ] [ co lumncount1 − 2] = t a b l e U p d a t e F u n c D i r e c ( match ingFunc ( Sequence1 [ co lumncount1 − 2 ] ,

Sequence2 [ rowcount1 − 2 ] ) +

MainTable [ rowcount1 − 1 ] [ co lumncount1 − 1 ] ,

MainTable [ rowcount1 ] [ co lumncount1 − 1]

− 1 , MainTable [ rowcount1 − 1 ] [ co lumncount1 ] − 1 ) ;

}

}

/ / o b t a i n t h e c o o r d i n a t e s f o r one o f t h e b e s t a l i g n m e n t s

v e c t o r < In tVec > Al ign1 ;

Al ign1 . c l e a r ( ) ;

i n t pp , qq ;

I n t Ve c F i l l ;

F i l l . c l e a r ( ) ;

F i l l . push_back ( SeqLength −1);

F i l l . push_back ( SeqLength −1);

i n t j j = SeqLength −1;

i n t kk = SeqLength −1;

Al ign1 . push_back ( F i l l ) ;

/ / randomly o b t a i n a p a t h a c c o r d i n g t o t h e a l g o r i t h m

do {

s r a n d ( t ime (NULL ) ) ;

i n t r a n = rand ( ) % D i r e c t i o n T a b l e [ j j ] [ kk ] . l e n g t h ( ) ;

pp = t r a c e C o o r d ( D i r e c t i o n T a b l e [ j j ] [ kk ] [ r a n ] , j j , kk ) [ 0 ] ;

qq = t r a c e C o o r d ( D i r e c t i o n T a b l e [ j j ] [ kk ] [ r a n ] , j j , kk ) [ 1 ] ;

j j = pp ;

kk = qq ;

I n t Ve c F i ;

F i . c l e a r ( ) ;

F i . push_back ( pp ) ;



.2 Fingerprint Implementation code 207

Fi . push_back ( qq ) ;

Al ign1 . push_back ( F i ) ;

} w h i l e ( pp >=0 && qq > = 0 ) ;

i f ( pp <0 && qq < 0){

Al ign1 . e r a s e ( Al ign1 . b e g i n ( ) + ( Al ign1 . s i z e ( ) −1 ) ) ;

}

I n t Ve c sq1 ;

I n t Ve c sq2 ;

i n t MatchScore= 0 ;

do ub l e P e r c e n t M a t c h ;

/ / o u t p u t t h e o b t a i n e d match / a l i g n m e n t and p e r c e n t a g e match

i n t yyy = 0 ;

i n t xxx = 0 ;

i n t sma r t 1 = 100 ;

i n t sma r t 2 = 100 ;

f o r ( i n t f c o u n t = Al ign1 . s i z e ( ) ; f c o u n t > 0 ; f c o u n t −−){

i f ( Al ign1 [ f c o u n t −1] [1 ] < 0){

/ / cou t < <"−";

sq1 . push_back ( 2 ) ;

}

e l s e i f ( Al ign1 [ f c o u n t −1] [1 ] == sm ar t1 ) {

/ / cou t < <"−";

sq1 . push_back ( 2 ) ;

}

e l s e {

/ / cou t <<Sequence1 [ xxx ] ;

sq1 . push_back ( Sequence1 [ xxx ] ) ;

xxx ++;

}

sm ar t1 = Al ign1 [ f c o u n t −1 ] [ 1 ] ;

}

f o r ( i n t f c o u n t = Al ign1 . s i z e ( ) ; f c o u n t > 0 ; f c o u n t −−){

i f ( Al ign1 [ f c o u n t −1] [0 ] < 0){

/ / cou t < <"−";

sq2 . push_back ( 2 ) ;

}

e l s e i f ( Al ign1 [ f c o u n t −1] [0 ] == sm ar t2 ) {

/ / cou t < <"−";

sq2 . push_back ( 2 ) ;

}

e l s e {

/ / cou t <<Sequence2 [ yyy ] ;

sq2 . push_back ( Sequence2 [ yyy ] ) ;

yyy ++;



.2 Fingerprint Implementation code 208

}

sm ar t2 = Al ign1 [ f c o u n t −1 ] [ 0 ] ;

}

/ / Computing and P r i n t i n g t h e P e r c e n t a g e Match c a l c u l a t e d as :

/ / T o t a l match s c o r e

/ / P e r c e n t a g e Match = −−−−−−−−−−−−−−−−−−−−− * 100

/ / Length o f s e q u e n c e

/ /

f o r ( u n s i g n e d s c o r e = 0 ; s c o r e < sq1 . s i z e ( ) ; s c o r e ++){

i f ( sq1 [ s c o r e ] == 2 | | sq2 [ s c o r e ] == 2){

MatchScore −−;

}

e l s e i f ( sq1 [ s c o r e ] != sq2 [ s c o r e ] ) {

MatchScore −−;

}

e l s e {

MatchScore ++;

}

}

i f ( MatchScore >= 0){

P e r c e n t M a t c h = ( ( do ub l e ) MatchScore / ( do ub l e ) SeqLength ) *100 ;

}

e l s e {

P e r c e n t M a t c h = 0 ;

}

r e t u r n P e r c e n t M a t c h ;

}

i n t z e r o D i s t a n c e ( i n t c , map< i n t , i n t > d )

{

i n t x ;

i n t y = 0 ;

map< i n t , i n t > : : i t e r a t o r i t ;

i t = d . f i n d ( c ) ;

i f ( i t == d . end ( ) ) r e t u r n −1;

e l s e i f ( ( * i t ) . second != 0) r e t u r n −1;

e l s e

{

f o r ( map< i n t , i n t > : : i t e r a t o r i t x = i t ; i t x != d . end ( ) ; i t x ++){

i f ( i t x −> f i r s t != i t −> f i r s t )

{

y ++;

i f ( i t x −>second == 1) b r e a k ;

}

x = −1;

}

i f ( x == −1 ) r e t u r n x ;

e l s e r e t u r n y ;

}



.2 Fingerprint Implementation code 209

}

long z e r o D i s t ( i n t c , v e c t o r < i n t > d )

{

i n t f = 0 ;

v e c t o r < i n t > nn ;

f o r ( u n s i g n e d u = c ; u < d . s i z e ( ) ; u ++){

i f ( d [ u ] == 1) f =1;

i f ( f == 1) nn . push_back ( d [ u ] ) ;

}

f o r ( i n t u = 0 ; u < c ; u ++){

nn . push_back ( d [ u ] ) ;

}

s t d : : o s t r i n g s t r e a m o s s ;

f o r ( u n s i g n e d u = 0 ; u < nn . s i z e ( ) ; u ++){

oss <<nn [ u ] ;

}

s t r i n g num = o s s . s t r ( ) ;

l ong number = a t o l ( num . c _ s t r ( ) ) ;

r e t u r n number ;

}

s t r i n g l e x ( s t r i n g i n p u t _ d a t a ) {

v e c t o r < i n t > i n p u t , i n p u t x , s t r o u t ;

f o r ( u n s i g n e d p =0; p< i n p u t _ d a t a . l e n g t h ( ) ; p ++){

i n p u t . push_back ( ( i n t ) i n p u t _ d a t a [ p ] − 4 8 ) ;

}

map< i n t , i n t > l a b s t r g ;

map< i n t , i n t > : : i t e r a t o r i t 1 , i t 2 ;

f o r ( u n s i g n e d p =0; p< i n p u t _ d a t a . l e n g t h ( ) ; p ++){

l a b s t r g [ p ] = i n p u t [ p ] ;

i n p u t x . push_back ( p ) ;

}

i n t i t e r a t i o n s = 0 ;

f o r ( i n t i =1 ; i < i n p u t _ d a t a . l e n g t h ( ) ; i ++){

i f ( u n s i g n e d ( pow ( 2 . 0 , i ) ) >= i n p u t _ d a t a . l e n g t h ( ) )

{

i t e r a t i o n s = i ;

b r e a k ;

}

}

f o r ( i n t v =0; v< i t e r a t i o n s ; v ++){

v e c t o r < i n t > s t g r e s ;

i n t t t t = ( i n t ) ( i n p u t x . s i z e ( ) / 2 ) ;

/ / cou t << t t t < < " , " ;

f o r ( i n t t =0 ; t < ( i n t ) ( i n p u t x . s i z e ( ) / 2 ) ; t ++){

i t 1 = l a b s t r g . f i n d ( i n p u t x [2 * t ] ) ;

i t 2 = l a b s t r g . f i n d ( i n p u t x [ ( 2 * t ) + 1 ] ) ;

i f ( ( * i t 1 ) . second != (* i t 2 ) . second )

{

/ / d i f f e r e n t v a l u e s ; so s e l e c t t h e s m a l l e r one

i f ( ( * i t 1 ) . second < (* i t 2 ) . second ) s t g r e s . push_back ( ( * i t 1 ) . f i r s t ) ;

e l s e s t g r e s . push_back ( ( * i t 2 ) . f i r s t ) ;



.2 Fingerprint Implementation code 210

}

e l s e i f ( ( * i t 1 ) . second == 1)

{

/ / Both v a l u e s a r e 1

i f ( ( * i t 1 ) . f i r s t < (* i t 2 ) . f i r s t ) s t g r e s . push_back ( ( * i t 1 ) . f i r s t ) ;

e l s e s t g r e s . push_back ( ( * i t 2 ) . f i r s t ) ;

}

e l s e

{

/ / Both v a l u e s a r e z e r o

i f ( v == 0)

{

s t g r e s . push_back ( ( * i t 1 ) . f i r s t ) ;

}

e l s e

{

i f ( z e r o D i s t ( ( * i t 1 ) . f i r s t , i n p u t ) < z e r o D i s t ( ( * i t 2 ) . f i r s t , i n p u t ) ) s t g r e s . push_back ( ( * i t 1 ) . f i r s t ) ;

e l s e i f ( z e r o D i s t ( ( * i t 1 ) . f i r s t , i n p u t ) > z e r o D i s t ( ( * i t 2 ) . f i r s t , i n p u t ) ) s t g r e s . push_back ( ( * i t 2 ) . f i r s t ) ;

e l s e s t g r e s . push_back ( ( * i t 1 ) . f i r s t ) ;

}

}

}

i f ( i n p u t x . s i z e ( ) % 2 > 0)

{

s t g r e s . push_back ( i n p u t x [ i n p u t x . s i z e ( ) − 1 ] ) ;

}

i n p u t x . c l e a r ( ) ;

f o r ( u n s i g n e d u = 0 ; u < s t g r e s . s i z e ( ) ; u ++){

i n p u t x . push_back ( s t g r e s [ u ] ) ;

/ / cou t << s t g r e s [ u ] < <" , " ;

}

cout << e n d l ;

}

i n t r e s u l t = i n p u t x [ 0 ] ;

/ / cou t <<" Th i s d i g i t s e l e c t e d as t h e l e a s t l e x i c o g r a p h i c a l r o t a t i o n o f t h e s t r i n g i s :" < < e n d l ;

/ / cou t << r e s u l t << e n d l ;

/ / C o r r e c t s t r i n g o u t p u t r o t a t i o n i s

f o r ( u n s i g n e d u = r e s u l t ; u < i n p u t . s i z e ( ) ; u ++){

s t r o u t . push_back ( i n p u t [ u ] ) ;

}

f o r ( i n t u = 0 ; u < r e s u l t ; u ++){

s t r o u t . push_back ( i n p u t [ u ] ) ;

}

s t r i n g s t r e a m s s ;

s t r i n g s t r 1 ;

/ / cou t <<"The s t a r t i n g p o i n t o f s t r i n g i n f o r m a t i o n t o be used f o r ma tch ing w i t h i n t h e d a t a b a s e i s : "<< e n d l ;

f o r ( u n s i g n e d u = 0 ; u < s t r o u t . s i z e ( ) ; u ++){

/ / cou t << s t r o u t [ u ] ;

/ / cou t << e n d l ;

ss << s t r o u t [ u ] ;

s t r 1 = s s . s t r ( ) ;



.2 Fingerprint Implementation code 211

}

/ / cou t << s t r ;

/ / cou t << e n d l ;

/ / cou t << s t r . l e n g t h ( ) ;

/ / cou t << e n d l ;

/ / cou t << s t r o u t . s i z e ( ) ;

r e t u r n s t r 1 ;

}


	Table of Contents
	Dedication
	Declaration
	Acknowledgement
	Abstract
	Publications
	List of Figures
	List of Tables
	1 Introduction
	1.1 Information Security
	1.2 Bioinformatics
	1.3 Bioinformatics and Information Security
	1.4 Algorithms and Complexity
	1.5 Thesis Main Contributions
	1.6 Structure of the Thesis

	2 Notions and Definitions
	2.1 Alphabets and Strings
	2.2 Strings Similarity Measurements
	2.2.1 Distances and Alignment

	2.3 Searching and Sorting Algorithms
	2.4 Exact and Approximate string Matching Problem
	2.4.1 Circular String Matching

	2.5 Fundamental Data Structures
	2.5.1 Arrays and Linked Lists

	2.6 DNA Sequencing

	3 Malware Detection Techniques
	3.1 Introduction
	3.2 Motivation
	3.3 Malware Detection using Computational Biology Tools
	3.3.1 Introduction
	3.3.2 Background
	3.3.3 Related Work
	3.3.4 Algorithm Preliminaries
	3.3.5 Real Overview
	3.3.6 Problem Definition
	3.3.7 The Experiment 
	3.3.8 Discussion

	3.4 Detection of URL in Image Steganography
	3.4.1 Introduction
	3.4.2 Motivation
	3.4.3 The Concept of Steganography
	3.4.4 Steganography Applications
	3.4.5 Image Steganography
	3.4.6 Current Image Steganography Techniques
	3.4.7 Stegaanalysis
	3.4.8 The Problem
	3.4.9 URL detection Algorithm
	3.4.10  Next Level Detection (Detecting and Extracting Encrypted URL) 
	3.4.11 Experiments
	3.4.12 Checking Experiment Results
	3.4.13  Discussion and Future Work 


	4 Fingerprint Recognition Techniques
	4.1 Introduction
	4.1.1 Motivation

	4.2 A Novel Pattern Matching Approach for Fingerprint-Based Authentication
	4.2.1 Background
	4.2.2 Related works
	4.2.3 Contribution

	4.3 Preliminaries
	4.3.1 The Approach
	4.3.2 Details of Stage 1: Orientation Identification
	4.3.3 The Algorithm in pseudo-code
	4.3.4 Details of Stage 2: Verification and Matching

	4.4 The Experiment
	4.4.1 The Implementation
	4.4.2 Accuracy and Speed
	4.4.3 Cross Matching

	4.5 Discussion AND Future Work

	5 Smart Meter Data Analysis Technique
	5.1 Introduction
	5.1.1 Motivation
	5.1.2 Background
	5.1.3 Privacy Issues
	5.1.4 Related Work
	5.1.5 Functionality

	5.2 The Problem
	5.2.1 The Approach
	5.2.2 Definitions
	5.2.3 Example

	5.3 Algorithm
	5.3.1 The Algorithm in pseudocode
	5.3.2 Algorithm Description
	5.3.3 Algorithm Complexity

	5.4 Discussion and Future Work

	6 Concluding Remarks
	References
	Appendix Appendix
	.1 URL Detection Algorithm
	.1.1 Detecting and Extracting Hidden URL
	.1.2 Detecting and Extracting Encrypted URL
	.1.3 URL Detection code

	.2 Fingerprint Implementation code
	.2.1 Main Function
	.2.2 Calling Functions



