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ABSTRACT  1 

Experimental aristolochic acid nephropathy (AAN) is characterized by early tubulo-2 

interstitial (TI) injury (necrosis of proximal tubular epithelial cells (PTEC) and 3 

inflammatory infiltrate). It also reproduces chronic lesions seen in humans (tubular 4 

atrophy and interstitial fibrosis). In vitro, probenecid (PBN) inhibits AA entry through 5 

organic anion transporters (OATs), reduces specific AA-DNA adduct formation and 6 

preserves cellular viability. To confirm these results in vivo, we reproduced 7 

experimental AAN in a mouse model. Plasma creatinine level (Pcr), tubulo-interstitial 8 

(TI) lesions, DNA repair processes (proliferating cell nuclear antigen tissue expression) 9 

and AA-DNA adduct formation were studied. AA induced severe TI injuries (necrosis of 10 

PTEC followed by mononuclear cells infiltration, tubular atrophy and an interstitial 11 

fibrosis) and transient acute kidney injury. Addition of PBN prevented Pcr increase, TI 12 

injuries and reduced both the extent and the severity of ultrastructural lesions induced 13 

by AA (loss of brush border, mitochondrial edema and disappearance of mitochondrial 14 

crests). Further, PCNA positive cells count and total AA-DNA adduct levels were 15 

significantly reduced in mice receiving AA+PBN compared to mice treated with AA 16 

alone. The present data demonstrate in vivo the nephroprotective effect of PBN, an OATs 17 

inhibitor, towards acute PTEC toxicity in a mouse model of AAN. 18 

 19 
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ABBREVIATIONS 1 

AA; Aristolochic acid 2 

AAN; Aristolochic acid nephropathy 3 

TI; Tubulointerstitial 4 

PTEC; Proximal tubular epithelial cell 5 

α-SMA; α-Smooth Muscle Actin 6 

Pcr; Plasma creatinine 7 

Mn/Mφ; Monocytes/Macrophages 8 

NEP; Neutral endopeptidase 9 

OA; Organic anion 10 

OAT; Organic anion transporter 11 

PBN; Probenecid 12 

PCNA; Proliferating Cell Nuclear Antigen  13 

PEG; Polyethylene glycol 14 
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INTRODUCTION 1 

Human aristolochic acid nephropathy (AAN) is a tubulointerstitial (TI) nephritis 2 

reported after intake of herbal remedies containing aristolochic acid (AA). (1, 2) It is 3 

histologically characterized by a typical corticomedullary gradient of interstitial fibrosis 4 

and the progressive atrophy of proximal tubules, resulting in the rapid deterioration of 5 

renal function to the end-stage. (3, 4) AA intoxication also leads to the formation of 6 

specific AA-DNA adducts which are premutagenic lesions involved in the development 7 

of AAN-associated urothelial cancer and their long-term presence in renal tissue is used 8 

as a biomarker of AA exposure. (5, 6)  9 

AA-induced TI nephritis was experimentally reproduced in rabbits, mice and rats 10 

(7-10). A biphasic evolution of TI lesions was identified in our Wistar rat model. (11, 12) 11 

In the early, so-called acute phase, a transient tubular necrosis located in the S3 segment 12 

(proximal tubular epithelial cells (PTECs)) and a mononuclear cell infiltration are 13 

observed; later, in the so-called chronic phase, tubular atrophy and interstitial fibrosis 14 

are clearly the prominent features. In this step-by-step model, inflammatory cells were 15 

proposed as the physiopathological link between both phases. (11) In vitro data early 16 

confirmed that PTEC were the target of AA (13), suggesting the presence of specific 17 

molecular mechanisms responsible for the accumulation of AA in PTECs. The excretion 18 

of numerous organic anions (OAs) including endogenous metabolites through PTECs is 19 

actually achieved via unidirectional transcellular transport, involving the uptake of OAs 20 

from the blood across at the basolateral membrane and their extrusion across the apical 21 

membrane into the tubular lumen. Organic anion transporters (OATs) play a key role in 22 

this process. At least eleven isoforms of OATs have been identified; a majority of them 23 

was found in the kidney. OATs are exchangers linked to two other transporters, the 24 
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sodium dicarboxylate cotransporter and the sodium-potassium ATPase. OA are taken up 1 

by OAT 1 and/or 3 in the basolateral membrane of the proximal tubule. This uptake is 2 

processed in parallel to the countertransport of α-ketoglutarate. The drug then crosses 3 

the cell and is excreted in the lumen of the tubule. (14, 15) The activity of OATs has been 4 

associated with proximal tubular injury due to the accumulation of toxics, such as 5 

uremic toxins, drugs and mercuric species. (14-17) In embryonic kidney cells (HEK293) 6 

as well as Xenopus laevis oocytes, three human isoforms (OAT1, OAT3 or OAT4) were 7 

reported to play a role in intracellular accumulation of AA. (18, 19) Moreover, 8 

probenecid (PBN) blocked AA entry by inhibition of human OATs, reducing the 9 

formation of AA-DNA adduct (19), and preserved cell viability. (18) 10 

We investigated this last aspect in vivo in a mouse model of AAN. We 11 

hypothetized that PBN, by reducing AA entry through OATs, could protect PTECs against 12 

lesions, preventing AA-DNA adduct formation and thus preserve cell viability.  13 

 14 

RESULTS 15 

Ninety-six mice C57BL/6 were randomly assigned to 4 groups of 24 animals each. 16 

According to group, mice were injected with AA, AA+PBN or solvent (polyethylene-17 

glycol (PEG))+PBN. Control group was injected with PEG (Figure 1). AA (5 mg/kg body 18 

weight) or PEG was injected once a day and PBN (150 mg/kg body weight) twice a day. 19 

These dosing regimens of PBN have been shown to inhibit organic anion transporter 20 

(20) 21 

Plasma creatinine level (Pcr), TI lesions, DNA repair processes (proliferating cell 22 

nuclear antigen tissue expression) and AA-DNA adduct formation were quantified in 23 

each group after 2, 4, 5 and 8 days of AA injections. 24 

 25 
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Probenecid prevents AA-induced acute kidney injury 1 

A transient acute kidney injury, as reflected by significant increase in Pcr levels was 2 

observed in mice receiving AA after 5 days of injections as compared to control animals 3 

[PCr (mg/dl), median (min-max): 0.353 (0.222-0.504) vs 0.135 (0.112-0.211); 4 

p<0.0022]. Addition of PBN prevents Pcr increase in AA animals [PCr (mg/dl), median 5 

(min-max): 0.125 (0.105-0.139) vs 0.353 (0.222-0.504); p<0.0022]. No significant 6 

change in Pcr levels was measured in PEG+PBN group as compared to controls (Figure 7 

2).  8 

 9 

Probenecid significantly reduces AA-induced TI injury 10 

As demonstrated in Figures 3-4a-d and 3-4e-h, the renal parenchyma from PEG and 11 

PEG+PBN groups remained normal in optical microscopy analyses at all studied time 12 

points of protocol. In contrast, early histological lesions were present in the AA group 13 

(Figures 3-4i-l). As early as day 2, a swelling of PTEC was found in the medullary rays 14 

(Figure 4i). In the same areas, prominent PTEC necrosis was observed at days 4 and 5 15 

(Figures 3-4j-k). After 8 days of AA treatment, tubular atrophy was clearly widespread 16 

as reflected by dilatation and flattening of PTECs as well as tubular basement membrane 17 

thickening. In the surrounding interstitial areas, mononuclear cells infiltration was 18 

observed at day 4 and progressively extended to day 8. At that time point, this 19 

inflammatory process was associated with extracellular matrix deposition. In mice 20 

receiving AA+PBN, swelling and necrosis of PTECs was limited to few tubules located in 21 

the medullary rays only at day 4 without any interstitial inflammatory cells infiltration 22 

(Figures 3-4n). Moreover, proximal tubules as well as the surrounding interstitial areas 23 

appeared normal under optical microscopy analysis at days 5 and 8 (Figure 3-4o-p). 24 
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Throughout the protocol, no abnormality was detected within the glomeruli from all 1 

groups under optical microscopy analysis. 2 

As compared with controls, the semiquantitative score of TI injury obtained in 3 

AA-treated mice revealed tubular necrosis from day 4 to 8 with an evident peak at day 5 4 

(Figure 5a), lymphocytic infiltration from day 5 (Figure 5b), marked tubular atrophy at 5 

day 5 accompanied by progressive interstitial fibrosis (Figure 5c and 5d, respectively). 6 

In the AA+PBN group, a significant reduction of all the semiquantitative scores was 7 

found: of tubular necrosis on days 5 (p<0.0013) and 8 (p<0.0025)), of lymphocytic 8 

infiltrate (p<0.0013) and of tubular atrophy (p<0.0018) (day 8) as well as of interstitial 9 

fibrosis on days 5 (p<0.0022) and 8 (p<0.0013) (Figure 5a-d). 10 

 11 

Necrosis of positive neutral endopeptidase tubules is prevented by PBN 12 

To further assess the distribution of necrotic tubules, an immunostaining of neutral 13 

endopeptidase (NEP) was performed and evaluated. NEP is a specific marker for the 14 

brush border of S3 segment of the proximal tubule in rat. (21) As shown in Figure 6, 15 

immunostaining of NEP in control groups demonstrated that NEP positive cells were 16 

mainly located in medullary rays and in the outer stripe of outer medulla, reproducing 17 

the typical distribution of NEP positive cells in pars recta of proximal tubule observed 18 

previously in our rat model (11, 22). No disappearance of NEP immunostaining was 19 

observed in PEG or PEG+PBN groups. AA administration lead to a progressive necrosis 20 

of PTECs, especially NEP positive as suggested by the progressive disappearance of NEP 21 

staining in the medullary rays and the presence of intratubular necrotic NEP positive 22 

cells on day 5 (Figure 6c). At day 8, NEP positive cells had completely disappeared from 23 

medullary rays (Figure 6d). On the contrary, NEP immunostaining was maintained in 24 

the AA+PBN group (Figure 6e,f). 25 
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 1 

Addition of PBN leads only to a mild reduction of AA-DNA adduct formation 2 

As PBN administration was effective in significantly preventing acute kidney injury and 3 

TI lesions induced by AA, we examined possible effect of PBN on AA-DNA adduct 4 

formation in kidney cortex tissue samples. As shown in Figure 7a, the pattern of AA-DNA 5 

adducts consisted of three major adduct spots: 7-(deoxyadenosin-N6-yl)-aristolactam I 6 

(dA-AAI, spot 1), 7-(deoxyguanosin-N2-yl)-aristolactam I (dG-AAI, spot 2) and 7-7 

(deoxyadenosin-N6-yl) aristolactam II (dA-AAII, spot 3). This pattern is identical to those 8 

observed previously in our rat model and in AA-exposed patients. (6, 22) 9 

In the AA+PBN group, as compared to the AA group, there were no significant changes in 10 

AA-DNA adducts at days 2,4 and 5, while a significant reduction of the total AA-DNA 11 

adduct levels was observed at day 8 (Figure 7b). There was no correlation between the 12 

Pcr levels or the TI scores and AA-DNA adduct formation (data not shown). 13 

Previous in vivo studies showed that DNA adduct formation by AA reaches a steady-14 

state level which is likely the result of a balance between adduct formation and their loss 15 

through either DNA-repair processes or apoptosis. (22, 23) Moreover, this level seems 16 

to reached quickly, even 2 days after the first injection in a rat model. (22) This could 17 

explain the only small differences in DNA adduct levels between the two groups after 8 18 

days of treatment. Therefore, we conducted an additional experiment to investigate the 19 

early time course and kinetic of AA-DNA adduct formation. Thirty-two mice were 20 

injected with AA or AA+PBN as previously and 4 mice per group were sacrificed after 6, 21 

12, 18 and 24 hours. At these time points, differences in AA-specific DNA adduct levels 22 

between the two groups were clearly observed (Figure 7a) confirming that PBN 23 

significantly inhibits AA-DNA adduct formation. 24 

 25 
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 1 

PBN significantly reduces AA-induced DNA damage repair processes and cell 2 

proliferation attested by PCNA immunostaining 3 

PCNA is a polymerase cofactor, involved in DNA damage repair processes and in the 4 

stability of the DNA microsatellite region. (24) Only few tubular cells expressed PCNA in 5 

controls (PEG and PEG+PBN groups) (Figure 8a-h). In AA-treated mice, typical nuclear 6 

patterns of PCNA immunostaining were predominantly seen in PTECs and less 7 

frequently in interstitial cells from the corticomedullary junction as soon as day 2 and 8 

still increased until day 8 (Figure 8i-l). PBN administration resulted in a reduction of 9 

PCNA expression induced by AA in mice as soon as day 4 (Figure 8m-p). 10 

As compared to controls, the proportion of PCNA positively stained areas per 11 

field was higher in AA-treated mice from day 5 (p<0.0043) to day 8 (p<0.0152) (Figure 12 

8q). This proportion was significantly decreased in the AA+PBN group at day 5 13 

(p<0.0043) and day 8 (p<0.0022) (Figure 8q). 14 

 15 

PBN reduces the degree of ultrastructural lesions of PTEC induced by AA 16 

Control groups (PEG and PEG+PBN) exhibited only mild mitochondrial swelling in few 17 

PTEC at day 8 (Figure 9a,b). In kidneys from AA-treated mice, considerable variation in 18 

the degree of cellular damage may occur. Normal tubules were frequently admixed with 19 

injured nephron showing extensive mitochondria disruption and altered brush borders 20 

(Figure 9c,e). PBN administration reduced both the extent and the severity of cellular 21 

damage induced by AA (Figure 9d,f). 22 

 23 

DISCUSSION 24 

Since the cluster outbreak of the so-called Chinese herbs nephropathy in 1993, 25 
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AAN is now recognized as a public health problem worldwide (25): it is identified as an 1 

environmental kidney disease in the Balkan region and probably underestimated in 2 

Asian countries where traditional Chinese medicine is widely used, as suggested by two 3 

recent studies. (26, 27) Understanding its physiopathology may lead to effective 4 

therapies preventing the progression of chronic kidney disease.  5 

In the present study, we reproduced histopathological features of human AAN 6 

(tubular necrosis, inflammatory interstitial infiltrate, tubular atrophy and interstitial 7 

fibrosis) in a short-term mouse model. Male C57BL/6 mice were injected daily with a 8 

mixture of AAI and AAII, the same as the one present in Aristolochia sp. and ingested by 9 

our patients. After 4 days of injection, a massive necrosis of PTEC from the medullary 10 

rays was observed, resulting in an acute kidney injury on day 5. This “acute” phase was 11 

followed by a prominent atrophy and fibrosis on day 8. The normalization of creatinine 12 

on day 8 is consistent with our observations of the acute phase in the AAN rat model in 13 

which a transient creatinine increase on day 5 was followed by a normalization of 14 

creatinine on day 8, contrasting with persistent histological lesions. (22) In addition, 15 

such dissociation between plasma creatinine and histology during the recovery phase 16 

has been described in other models of acute kidney injury like ischemia and reperfusion. 17 

(28)  18 

The addition of PBN prevented acute kidney injury and significantly reduced 19 

tubular necrosis, lymphocytic infiltrate, atrophy and fibrosis. Moreover, 20 

immunohistochemical study using PCNA staining confirmed the protective effect of PBN 21 

from AA. Increase in PCNA staining reflects a proliferation process of PTECs secondary 22 

to necrosis, which is in accordance with previous histological findings obtained in our 23 

rat model using Ki67 immunostaining. (12) Finally, a reduction of AA-DNA adduct 24 

formation was found in mice receiving AA+PBN as compared to mice treated with AA 25 
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alone. 1 

Recently, two in vitro studies demonstrated that PBN inhibits AA entry in human 2 

OAT-transfected HEK293 kidney cell lines (19) and in human OAT-transfected cell lines 3 

derived from the second portion of the proximal tubule. (18) Further, the former study 4 

indicated that PBN can reduce AA-DNA adduct formation and that addition of PBN to AA 5 

preserved cellular viability. The present work brings significant in vivo results 6 

confirming the protective effects of PBN against AA-induced TI lesions by blocking AA 7 

entry into PTEC via OATs. Actually, these histomorphometric data can be related to a 8 

recent pharmacological study focusing on the effects of PBN on AA liver and kidney 9 

metabolism. (29) These authors reported a significantly reduced accumulation of renal 10 

AAI in mice exposed to AA and PBN as well as an increase in AAI liver content and 11 

biliary clearance. 12 

Regarding the evident protective effect of PBN in terms of TI AA-induced lesions, 13 

it could be surprising to measure a only slight, difference of AA-DNA adduct level 14 

between AA and AA+PBN group. However, this discrepancy could be easily interpreted. 15 

First of all, in AA+PBN group, AA may enter PTEC independently of OAT. Other 16 

endogenous transmembrane transporters or passive diffusion may also be involved in 17 

the uptake of AA, as suggested by a only partial blockade of AA entry by PBN in an in 18 

vitro model of human OAT-transfected HEK293 cells (19). Secondly, DNA adduct 19 

formation by AA often quickly reaches a steady-state level as seen in previous in vivo 20 

studies and our present results. In addition, our data suggest that although AA-DNA 21 

adducts are a clue biomarker of AA exposure, there is no correlation between AA- 22 

specific DNA adduct levels and nephrotoxicity. 23 

Dissociation between AA-mediated nephrotoxicity and adduct formation was 24 

first suggested by a clinical case report of AA-induced tumor development without renal 25 
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impairment. (30) This observation was followed by two rodent studies showing that AA-1 

DNA adducts were the basis for the carcinogenic effect of AA but were unrelated to 2 

nephrotoxic insult. Indeed, both AAI and AAII could cause similar types of DNA damage 3 

(i.e. bulky DNA adducts) whereas only AAI is nephrotoxic in vivo. (9, 10) In vitro studies 4 

confirmed that AAI is much more cytotoxic compared to AAII due to the presence of a 5 

methoxy group in position 8. (31, 32) On the other hand, the carboxyl group rather than 6 

the nitro group is important to facilitate AA entry into tubular cells via OATs. Finally, 7 

nitroreduction results in N-hydroxy-aristolactam formation and these metabolites bind 8 

covalently to the exocyclic amino groups of adenine or guanine forming AA-specific DNA 9 

adducts. (33, 34) On the other hand, AAI seems to directly cause renal injury by 10 

activating mitochondrial permeability transition (35), and reticulum endoplasmic stress. 11 

(36) Further, AA is responsible for increased oxidative stress-related DNA lesions due to 12 

glutathione depletions (37) and AA can block DNA replication causing cycle arrest 13 

and/or apoptosis in renal epithelial cells in vitro and in vivo. (38-40) 14 

In conclusion, we developed an in vivo model of AAN characterized by an early 15 

episode of acute kidney injury induced by daily injections of AA. Despite highly 16 

nephrotoxic effects of AA, we were able to demonstrate a sustained protective effect of 17 

PBN by blocking AA entry into PTEC and then preventing acute tubular necrosis.  18 

 19 
 20 

METHODS 21 

Experimental protocols 22 

All procedures were in accordance with the Ethical Committee for Animal Care (Faculty 23 

of Medicine, Université Libre de Bruxelles). After one week of acclimatization, 10 weeks 24 

old C57BL/6 male mice, n=96 (Elevage Janvier, Le Genest Saint-Isle, France) were 25 
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randomly assigned to 4 groups of 24 mice each and were injected ip with solvent 1 

(polyethylene glycol (PEG group)) alone; PEG+PBN (4-2 

[(dipropylamino)sulfonyl]benzoic acid) (PEG group); AA (AA group) or AA+PBN 3 

(AA+PBN group). AA (Acros Organics Co., Geel, Belgium; 40% AAI, 60% AAII,) was 4 

dissolved in PEG (Fluka Chemie, Buchs, Switzerland). PBN (Sigma-Aldrich, Bornem 5 

Belgium) was solubilized in NaOH 0.5 M at 45°C for 10 min then diluted with PBS and 6 

buffered to 7.4 with HCl. AA (5 mg/kg body weight) or equivalent volume of PEG were 7 

given once a day and PBN (150 mg/kg body weight) twice a day. AA was given once a 8 

day ip in 150 µl of solvent and PBN (150 mg/kg body weight) was injected with 150 µl of 9 

PBS twice a day for a total of 8 days maximum. After 2, 4, 5 or 8 days of injection, 6 mice 10 

per group were sacrificed. After intraperitoneal anesthesia with ketamine-HCl (Merial, 11 

Brussels, Belgium) and 2% xylazine (Bayer, Brussels, Belgium), a blood specimen was 12 

obtained by cardiac puncture and kidneys were harvested for analysis. Different 13 

samples of kidneys were fixed. One part in alcohol-formalin-acetic for optical 14 

microscopy, one in 4% buffered formaldehyde for immunohistochemistry, one in 15 

glutaraldehyde sodium cacodylate buffer for electron microscopy analysis and one 16 

frozen in liquid nitrogen and stored at −80°C for subsequent DNA adduct analysis.  17 

 18 

Renal histopathology 19 

TI injury semiquantification was evaluated on hematoxylin/eosin and Masson’s 20 

trichrome-stained paraffin-embedded sections. Complete kidney sections were analyzed 21 

with a light microscope (Carl Zeiss, Oberkochen, Germany) using a 20× magnification 22 

lens by two investigators (AAP and TB) blind to the group origin of the mice. The scoring 23 

systems were defined as previously described (11, 12): tubular necrosis: 0, normal 24 

tubules; 1, rare single necrotic tubule; 2, several clusters of necrotic tubules; 3, 25 
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confluence of necrotic clusters; tubular atrophy: 0, normal tubules; 1, rare single 1 

atrophic tubule; 2, several clusters of atrophic tubules; 3, confluence of atrophic tubular 2 

clusters; lymphocytic infiltrate: 0, absent; 1, few scattered cells; 2, group of lymphocytes; 3 

3, widespread infiltrate; interstitial fibrosis: 0, absent; 1, minimal fibrosis; 2, moderate 4 

fibrosis; 3, severe fibrosis. If differences in grading occurred, the appropriate sections 5 

were re-examined until a consensus was obtained. 6 

 7 

Biochemical evaluation of renal function 8 

Plasma creatinine (Pcr) excretion levels were determined as previously described using 9 

an HPLC technique. (11, 12) 10 

 11 

Immunohistochemistry 12 

The FFPE sections (4 μm) were attached to poly-L-lysine pretreated slides (Sigma-13 

Aldrich, Bornem, Belgium). After air-drying the paraffin from FFPE tissue sections was 14 

removed (xylene solution). The sections were rehydrated and immersed in a retrieval 15 

solution, sodium citrate buffer (pH 6.0), the microwave oven technique was used (650 16 

W, 1×5 min). PBS was used for all washing steps. Endogenous peroxidase activity was 17 

quenched with 0.3% hydrogen peroxide in a methanol solution (30 min). Non-specific 18 

protein binding sites (background staining due to Fc receptor) were blocked with 20% 19 

normal serum (Vectastain Elite_ABC kit IgG, Vector Laboratories, Labconsult, Brussels, 20 

Belgium) then with avidin D solution and with biotin solution (Avidin/biotin blocking 21 

kit, Vector Laboratories). Subsequently, the sections were incubated overnight with 22 

rabbit anti-mouse PCNA (1/4000) monoclonal primary antibody (Abcam, ab2426) or 23 

with rat monoclonal antibody anti NEP (1/4000) (Santacruz, sc-80021) diluted in the 24 

blocking buffer. Slides were then incubated with specific biotinylated secondary 25 
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antibody (Vectastain Elite_ABC kit, Vector Laboratories, Labconsult, Brussels, Belgium). 1 

The extent of the specifically bound primary antibodies was visualized by means of the 2 

avidin-biotin peroxidase complex (ABC) method. The diaminobenzidine/hydrogen 3 

peroxide was used as the chromogene substrate producing a brown end product. 4 

Counterstaining with haematoxylin completed the processing. The specificity of 5 

antibodies used was established by the producer. Normal serum (5% solution) instead 6 

of the primary antibody (used in order to exclude non-specific staining of kit reagents) 7 

showed no staining.  8 

 9 

Quantification of PCNA immunostainings 10 

Quantifications were performed by one investigator (TB) blind to the group origin of the 11 

mice using ImageJ, a public domain Java image processing program (U.S. NIH) software 12 

(available at http://rsb.info.nih.gov/ij) as detailed in Figure 10. Thresholding conditions 13 

were set identically for all images. Finally the percentage of DAB positive surface 14 

corresponding to DAB-positive cells were counted using ImageJ analyse particle 15 

command.  16 

 17 

Ultrastructural analysis 18 

Analysis of cellular ultrastructure using transmission electron microscopy was 19 

performed in the same period. Small pieces of renal tissue were fixed in 3% 20 

glutaraldehyde in 0.1 mol/L phosphate buffer, pH 7.2, Fixation was performed with the 21 

microwave oven technique, After rinsing, samples were post-fixed in 1% osmium 22 

tetroxide in phosphate buffer 0.1 M for 1 h at 4°C, processed through a graded acetone 23 

series, embedded in Araldite (TAAB Laboratories England UK), and polymerized 24 

overnight at 60°C. Sections (50 nm) were then stained with uranyl acetate and lead 25 
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citrate and examinated with a 10-10 JEOL electron microscopy  (JEOL, Tokyo, Japan).   1 

 2 

AA-DNA adduct analysis 3 

DNA was extracted from frozen tissues using a standard phenol-chloroform extraction 4 

method. 32P-postlabelling anaylsis (41) nuclease P1 enrichment, chromatography on 5 

polyethyleneimine-cellulose thin-layer plates (Machery and Nagel, Düren, Germany), 6 

autoradiography using a Packard Instant Imager (Canberra Co., Dowers Grove, IL, USA) 7 

and quantitation were essentially performed as described. (42) Results were expressed 8 

as DNA adducts per 108 normal nucleotides. 9 

 10 

Statistical analysis 11 

All the scores and data obtained from AA and control groups were compared for each 12 

corresponding time point with Kruskall-Wallis test followed by Mann-Whitney U-test 13 

and Bonferroni post-hoc test. 14 

 15 
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LEGENDS TO THE FIGURES 1 

 2 

Figure 1  Schematic representation of experimental protocols performed in the 3 

mouse model of aristolochic acid nephropathy (AAN). 4 

C57BL/6 male mice (n=96) were randomized in 4 groups of 24 mice each. AA (5 mg/kg 5 

body weight) was injected once a day and PBN (150 mg/kg body weight) twice a day. 6 

After 2, 4, 5 and 8 days of injection, six mice/group were sacrificed and blood sample 7 

and kidneys were harvested for further analysis. 8 

 9 

Figure 2  Evolution of plasma creatinine levels. 10 

Plasma creatinine from AA (white columns), AA+PBN (grey columns) treated mice as 11 

compared to PEG+PBN (dashed columns) and PEG (dotted columns) controls from days 12 

2 to 8. Results are presented as the mean ± SEM ; n = 6 mice/group. (**P<0.01) 13 

 14 

Figure 3  Histological analysis of tubulointerstitial injury in AA-treated mice 15 

compared to mice receiving AA+PBN.  16 

Representative photomicrographs of renal cortex longitudinal sections at studied time 17 

points in each group. No lesions were observed in controls: PEG (a-d) and PEG+PBN (e-18 

h). In AA group (i-l), tubular necrosis (arrow) was observed at days 4 and 5 in the outer 19 

stripe of outer medulla. In AA+PBN group (m-p), only sparse proximal tubules exhibited 20 

necrotic cells on day 4 (arrow) but lymphocytic infiltrate, tubular atrophy and 21 

interstitial fibrosis were absent on day 8. Original magnification x400, hematoxyllin-22 

eosin stained kidney longitudinal sections. 23 

 24 

Figure 4  Histological analysis of tubulointerstitial injury in AA-treated mice 25 
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compared to mice receiving AA+PBN.  1 

Representative photomicrographs of renal cortex longitudinal sections at studied time 2 

points in each group. No lesions were observed in controls: PEG (a-d) and PEG+PBN (e-3 

h). In AA group (i-l), swelling of PTEC was observed after 2 days of injection ($), 4 

followed by tubular necrosis at days 4 and 5 (arrow). Tubular atrophy (star) and 5 

progressive interstitial fibrosis (arrowhead) were present after 8 days of injection. In 6 

AA+PBN group (m-p), tubular atrophy and interstitial fibrosis were absent on day 8. 7 

Original magnification x400, Goldner’s trichrome stained kidney longitudinal sections. 8 

 9 

Figure 5  Semiquantitive tubulointerstitial score. 10 

In control groups (PEG or PEG+PBN), no lesions were observed (data not shown). 11 

However, a significant increase in the necrosis score was observed in AA group (white 12 

columns) as soon as day 4 and was maximal on day 5 (a) as compared to controls. 13 

Tubular necrosis phase was followed by a significant lymphocytic infiltrate (b), atrophy 14 

(c) and fibrosis (d) respectively on day 8. A significant reduction of necrosis, atrophy 15 

and fibrosis was observed in the AA+PBN group (grey columns). Results are presented 16 

as the mean ± SEM, n= 6 mice/group. Significant levels are ** P<0.01. 17 

 18 

Figure 6  Representative photomicrographs of NEP staining in different groups 19 

and time. 20 

In control groups (PEG (a-b) a NEP (neutral endopeptidase) positive staining was 21 

observed in medullary rays and in the outer stripe of outer medulla. An identical 22 

distribution was observed in PEG+PBN group (data not shown). However, in the AA 23 

group (c-d), a severe necrosis followed by a profound atrophy of PTECs was observed 24 

mainly in NEP positive area corresponding to S3 segment of proximal tubule. In the 25 
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AA+PBN group (e-f), necrosis was limited. (Original magnification: x200) 1 

 2 

Figure 7  Time course of AA-DNA adduct formation in renal tissue. Total AA-DNA 3 

adduct formation was determined by 32P-postlabeling in AA (white columns) and 4 

AA+PBN groups (grey columns) in two separate experiments from 6 to 24 hours and 5 

from day 2 to day 8. As shown in (a), the pattern of AA-DNA adducts consisted of three 6 

major adduct spots: 7-(deoxyadenosin-N6-yl)- aristolactam I (dA-AAI; spot 1); 7-7 

(deoxyguanosin-N2-yl)-aristolactam I (dG-AAI; spot 2); and 7-(deoxyadenosin-N6-yl)-8 

aristolactam II (dA-AAII; spot 3). Results (b) are presented as the mean ± SEM n= 4 9 

mice/group (6-24 hours) or n = 6 (2-8 days)/group. Significant levels are *p<0.05 and 10 

**P<0,01. 11 

 12 

Figure 8  Representative photomicrographs of PCNA staining in different groups 13 

and time points with quantification.  14 

In control groups (PEG (a-d) and PEG+PBN (e-h)) only scattered PCNA positive PTEC 15 

were observed as compared to AA group (i-l) where numerous PCNA positive PTEC 16 

were present. Coadministration of PBN and AA (m-p) resulted in a substantial reduction 17 

of PCNA-positive PTEC on day 8. (Original magnification: x400) Quantification of 18 

positive PCNA cells (q) in AA (white columns), AA+PBN (grey columns), PEG+PBN 19 

(dashed columns) and PEG groups (dotted columns). Results are presented as the mean 20 

± SEM; n= 6 mice/group. Significant levels are *P<0.05, **P<0.01. 21 

 22 

Figure 9  Representative electron photomicrographs from different groups on 23 

day 8.  24 

Kidneys from PEG (Magnification x3000) (a) and PEG+PBN (Magnification x5000) (b) 25 
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groups : proximal tubules (£) are lined by tall columnar cells with acidophilic cytoplasm 1 

rich in structures necessary for active fluid transport : densely packed microvilli forming 2 

brush border, basal ondulations, endocytic vacuoles and mitochondria, often elongated 3 

and tortuous. In the AA group (Magnification x3000) (c), PTEC exhibited severe injury 4 

with disruption of brush border and cell detachment ($). In kidneys from the AA+PBN 5 

group (Magnification x3000) (d) PTEC displayed extensive cytoplasmic vacuolization 6 

without necrotic changes (**). Kidneys from the AA group, (x 30,000) (e) normal (£) and 7 

injured tubules were frequently admixed with injured nephron showing extensive 8 

mitochondria disruption (arrow head) and altered brush borders. AA+PBN group 9 

(Magnification x30,000) (f) displayed mitochondria vacualoziation (arrow head). 10 

 11 

Figure 10 Quantitative analysis of PCNA staining.  12 

Twenty non-overlapping high power fields were photographed per section at a 400x 13 

magnification. Identical imaging conditions, including illumination intensity and camera 14 

exposure time, were applied to all photographs. A blankfield image was used to correct 15 

uneven illumination and color balance with the calculator Plus plugin. Then, brown-16 

colored images specific for DAB stain and blue-colored images specific for hematoxylin 17 

stain were extracted by color deconvolution plugin. Nuclei generated from DAB images 18 

were isolated using specific threshold ImageJ internal commands followed by 19 

conversion to a binary image. 20 

21 
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