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Abstract 

 

Purpose: To present a method that uses a novel free-running self-gated acquisition to achieve 

isotropic resolution in whole heart 3D Cartesian cardiac CINE MRI. 

 

Material and Methods: 3D cardiac CINE MRI using navigator gating results in long acquisition 

times. Recently, several frameworks based on self-gated non-Cartesian trajectories have been 

proposed to accelerate this acquisition. However, non-Cartesian reconstructions are 

computationally expensive due to gridding, particularly in 3D. In this work, we propose a novel 

highly efficient self-gated Cartesian approach for 3D cardiac CINE MRI. Acquisition is 

performed using CArtesian trajectory with Spiral Profile ordering and Tiny golden angle step for 

eddy current reduction (so called here CASPR-Tiger). Data is acquired continuously under free 

breathing (retrospective ECG gating, no preparation pulses interruption) for 4-5 minutes and 4D 

whole-heart volumes (3D + cardiac phases) with isotropic spatial resolution are reconstructed 

from all available data using a soft gating technique combined with temporal total variation (TV) 

constrained iterative SENSE reconstruction. 

 

Results: For data acquired on eight healthy subjects and three patients, the reconstructed images 

using proposed method had good contrast and spatio-temporal variations, correctly recovering 

diastolic and systolic cardiac phases. Non-significant differences (P > 0.05) were observed in 

cardiac functional measurements obtained with proposed 3D approach and gold standard 2D 

multi-slice breath-hold acquisition 

 

Conclusion: The proposed approach enables isotropic 3D whole heart Cartesian cardiac 

CINE MRI  in 4 to 5 minutes free breathing acquisition. 

 

 

Keywords: 3D cardiac CINE, Free Breathing, Self gating, Golden angle step 
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1. Introduction 
 

Multi slice 2D CINE MRI is accepted as a gold standard for assessing cardiac function and 

anatomy. This approach requires multiple breath-holds, rigorous scan planning of multiple 

geometries (such as short axis and ventricular outflow tracts) and usually suffers from slice-

misalignments due to different breath hold position in the multiple acquisitions that may lead to 

erroneous assessment of ventricular volumes [1]. Moreover it has been shown that more than 

30% of patients can have problems with holding their breath in a reliable and reproducible way 

[2].  A number of free breathing 2D CINE approaches [3-7]  have been recently proposed that 

acquire data under free breathing and eliminate the need for breath-holds by correcting for any 

arbitrary respiratory motion in the reconstruction. By combining motion correction with 

accelerated imaging techniques, these approaches can achieve whole heart multi-slice coverage 

in 2 to 3 minutes free breathing acquisition. However, these multi-slice 2D CINE approaches 

have anisotropic spatial resolution and can only acquire data in a specific geometry.  3D CINE 

eliminates the need for CINE imaging in different planes (such as short-axis, two-chamber and 

four-chamber view and left and/or right ventricular outflow tracts), thereby reducing the overall 

planning and scan time. Due to isotropic resolution, 3D CINE allows reconstructed volumes to 

be reformatted into any plane for visualization. There are some techniques [8, 9] that try to 

acquire the whole 3D volume in a single breath-hold, but due to slow nature of MRI scanning, 

either spatial or temporal resolution is significantly reduced. 

To overcome these problems, 3D free breathing navigator gated acquisitions have been proposed 

for cardiac imaging [10-12]. These approaches minimize respiratory motion by acquiring data 

within a small gating window at a pre-defined respiratory position (usually the end expiration). 

Respiratory gating prolongs scan time since only a fraction of the acquired data is accepted for 

reconstruction (referred to as scan efficiency) and requires a respiratory surrogate signal. 

Common respiratory surrogate signals include navigator echoes [12, 13], optical tracking [14] 

and respiratory bellows [10]. The navigator echo based  approach performs well for free-

breathing 3D coronary artery imaging where data are acquired in a short diastolic period of 

cardiac cycle. Optical tracking [14] and respiratory bellows [10] require long set up times and 

careful calibration. For these reasons, self-navigating techniques [15, 16] are preferred in 3D 
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cardiac CINE that can directly estimate the respiratory-induced cardiac motion from the acquired 

data itself.   

 

Recently, several “free-running” 3D self-gated approaches have been proposed for different 

clinical applications including coronary, abdominal and CINE MRI. Examples of self-gated 3D 

non-Cartesian trajectories include 3D spiral phyllotaxis [17, 18], 3D Projection Reconstruction 

(PR) [19] and 3D stack of stars golden radial trajectory [20, 21]. For better signal contrast 

between blood and myocardium, especially required for coronary imaging, preparation pulses 

and fat saturation pulses are interspersed in the data acquisition [17-19]. For spiral phyllotaxis 

[17, 18] and 3D PR [19] trajectories, the respiratory self-navigation is usually obtained from a k-

space readout along the superior inferior (SI) direction, regularly interleaved in the acquired data. 

3D respiratory motion compensated images can be reconstructed with isotropic resolution that 

allows volumes to be reformatted into any plane for visualization. However, due to the 3D non-

Cartesian sampling used, the computational complexity of reconstruction framework is much 

higher than Cartesian sampling based reconstruction. This can result in long reconstruction times 

particularly for non-linear reconstruction frameworks, including compressed sensing and total 

variation regularization [22, 23], where 3D gridding needs to be performed in each iteration of 

the reconstruction. For 3D stack of stars golden radial trajectory [20, 21], radial profiles are 

acquired at a given angle for all slices before moving to the next angle. A respiratory self-

navigation signal can be obtained from 1D projection of centre k-space points of the radial 

profiles along the SI direction. This 1D respiratory signal can be used to produce respiratory 

gated images. However, this trajectory is also computationally demanding as multi slice 2D 

gridding steps are needed in each iteration of the algorithm. Also, the trajectory is generally used 

in a specific short axis orientation with anisotropic resolution and hence does not allow for 

flexible visualization of any arbitrary user defined plane within heart.  

 

Recently, 3D Cartesian trajectories including VDRad (Variable Density sampling and Radial 

view ordering) [24] and G-CASPR (Golden angle CArtesian acquisition with Spiral Profile 

ordering) [25] have been proposed for 3D abdominal MRI and coronary MRI, respectively. 

These trajectories acquire data along spiral-like interleaves on a Cartesian grid and have the 

advantage of low computational complexity. The golden angle (111.246o) between the 
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consecutive interleaves ensures retrospective adjustment of temporal resolution by combination 

of any arbitrary number of profiles. In this work, we aim to achieve self-gated whole heart 

cardiac CINE MRI with a) Cartesian acquisition and b) isotropic resolution. Based on 

modification of G-CASPR trajectory, we propose a free-running self-gated 3D Cartesian 

acquisition called here as ‘CASPR-Tiger’ (CArtesian acquisition with Spiral Profile ordering and 

Tiny golden angle step for eddy current reduction). Data is acquired continuously under free 

breathing (retrospective ECG gating, no preparation pulses interruption) using CASPR-Tiger 

trajectory. 4D volumes (3D + cardiac phases) are reconstructed from all acquired data (no 

respiratory data rejection) using a soft gating technique combined with temporal total variation 

(TV) constrained iterative SENSE reconstruction. Feasibility of proposed method is 

demonstrated in eight healthy subjects and three patients in a 4 to 5 minutes free breathing 

acquisition. Results are compared with multi-slice 2D breath-hold acquisition in terms of cardiac 

functional assessment. 

 

2. Material and Methods 
 

Trajectories with golden angle step [26] are advantageous for free-running acquisitions as these 

allow retrospective adjustment of temporal resolution by combination of any arbitrary number of 

profiles. A golden-step 3D Cartesian acquisition with spiral profile order (G-CASPR) [25] has 

been recently proposed that samples the phase encoding plane following approximate spiral-like 

interleaves on a Cartesian grid. The order of sampling along each spiral-like interleave goes from 

the centre of k-space to the periphery and then to the centre k-space again for the next interleave. 

The angular step between two consecutive spiral interleaves is 111.246o, so-called golden angle. 

This trajectory enables reconstruction of high-resolution respiratory resolved images for 

application of coronary MR angiography, where data is acquired in mid-diastole for 100-120 

msec with one spiral-like interleave per R-R interval. As data is acquired only in a mid-diastolic 

phase, the transient effects such as eddy currents originating from the golden step and periphery 

to centre k-space jump between the consecutive interleaves are expected to be diminished before 

the mid-diastolic data acquisition for the next interleave. However, for application of cardiac 

CINE where data is acquired continuously without interruption, in combination with balanced 
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SSFP sequence, the golden angle step can lead to rapidly changing eddy currents, resulting in 

strong image artefacts [27]. Recently, a new sequence of smaller irrational angles (49.75o, 

32.039o, 27.198o, 23.628o) called as tiny golden angle has been introduced for 2D golden radial 

acquisition [28]. Provided a sufficient number of k-space radial profiles are acquired, it has been 

shown that the smaller tiny golden angle of 23.628o results in k-space sampling distribution 

similar to standard golden angle of 111.246o, but with much better eddy current performance.   

 

 

 

 

2.1. Proposed Framework: 

 

Based on modification of G-CASPR trajectory, we propose a free-running self-gated 3D 

Cartesian trajectory called here ‘CASPR-Tiger’ (CArtesian acquisition with Spiral PRofile 

ordering and Tiny golden angle step for eddy current reduction). Instead of using the golden 

angle (111.246o), the trajectory acquires data continuously along spiral-like interleaves on a 

Cartesian grid, with tiny golden angle of 23.628o between the consecutive interleaves. To further 

avoid eddy current artefacts that can result from periphery to centre k-space jump between the 

consecutive interleaves, the interleaves are acquired in a paired fashion starting and finishing at 

the edges of k-space (Fig.1a). The first interleave in each pair starts at the peripheral part of k-

space and ends in the centre part of k-space. The second interleave starts in the centre k-space 

and ends in the outside part of k-space. For the purpose of self-respiratory navigation, the k-

space centre is acquired at the beginning of second interleave in each pair (Fig. 1b). Fig. 1c 

shows a comparison of one slice selected from fully sampled 3D reconstructions from data 

acquired on a phantom with free-running G-CASPR trajectory and data acquired with proposed 

CASPR-Tiger trajectory. The eddy current artefacts that are visible in G-CASPR reconstructions 

are greatly reduced by the use of tiny golden angle in CASPR-Tiger trajectory. After the 

acquisition of a number of interleaves that populate full k-space (so called one full set), an 

arbitrary shift in the initial angle for each full set is introduced to minimize overlapped samples 

in the final reconstruction. The shift in the initial angle is computed as a fraction of tiny golden 

angle and is incremented in equal steps for each full set i as (i-1/Nfull_set) x 23.628o, where 
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i=1,2,…, Nfull_set; Nfull_set denotes the total number of full sets. The respiratory signal is estimated 

from repeatedly acquired 1D projections and is used to define a reference bin at the end-

expiration. The R-wave of the ECG is logged for the purpose of retrospective cardiac 

synchronization and data from different cardiac cycles are retrospectively combined using a 

linear model to reconstruct N different cardiac phases [29]. Soft-gating [24, 30] is performed to 

weight k-space data depending on respiratory displacement from the reference bin. Furthermore, 

the k-space data was motion-corrected in the SI direction by using 1D translational motion of the 

heart. The 1D translational motion of the heart in the SI direction was estimated using a template 

matching algorithm. A 1D region of interest (ROI) was manually defined that covered the heart 

along the SI direction. Template matching was performed between each ROI profile and a 

reference ROI profile by using normalized cross-correlation as the similarity measure with the 

first ROI profile being the reference. The resulting 1D signal for each coil is further filtered in 

the frequency range of 0.1-0.5 Hz to retain the respiratory component. The filtered signal in the 

coil element with the highest peak in the respiratory frequency range was selected as the 1D 

respiratory signal for motion correction. Using displacement values in the 1D signal, a 1D 

translational motion correction is performed by applying the corresponding phase-shifts in k-

space, prior to reconstruction. Temporal total variation constrained iterative SENSE (TV-

SENSE) [22, 23] reconstruction is done on the data with TV applied along the cardiac phase 

dimension. The reconstruction process can be formulated as: 

 

         arg minx          
  +                               (1) 

 

where y is the acquired data, x is the reconstructed 4D volume (3D+cardiac phases), E is the 

encoding operator that includes the coil sensitivities, Fourier transformation and sampling, 

    represents 1D temporal gradient,    is a regularization parameter that is used to define balance 

between data consistency and TV regularization, W performs soft gating by weighing each 

readout according to its respiratory displacement from the reference bin using a scaled Gaussian 

kernel with the maximum set to 1. 

 

2.2. Experiments: 
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The proposed acquisition was implemented on a 1.5T scanner (Ingenia, Philips Healthcare). 

Whole-heart free breathing CINE acquisition was performed with the proposed approach in eight 

healthy subjects (age range: 21 to 35 years) and three patients (age range: 45 to 76 years) using a 

b-SSFP sequence. The acquisition was done on healthy subjects without the use of a contrast 

agent, whereas acquisitions on patients were performed after injection of gadolinium-based 

contrast agent (Gadovist, 0.1 mmol/kg). Written informed consent was obtained from all subjects 

according to institutional guidelines and the study was approved by the institutional review 

board. Relevant scan parameters include: flip angle = 50o, TR/TE = 3.5/1.7 ms, resolution = 2 

mm isotropic, FOV = 350 x 350 x 90-120 mm3, number of  coil elements= 28, number of spiral 

interleaves = 5000-7000 depending on the number of slices covering the heart, 14 readouts per 

spiral interleave, scan time = 4-5 mins. In all scans, the SAR level was set to below 2 W/kg (the 

limit of the First Level Controlled Operating Mode according to IEC) at which medical 

supervision is not required. Coil sensitivity maps were estimated from a separate reference scan. 

A reference bin with width of 4 mm was defined at end expiration for soft-gating.  

 

From the 1D motion corrected k-space data, sixteen cardiac phases were retrospectively 

reconstructed in all volunteers and patients using soft-gated TV-SENSE reconstruction. This 

resulted in temporal resolution ranging from 31 msec to 70 msec, depending on the heart rate of 

the subject. The overall acceleration factor for the free breathing scans was in the range from 3.5 

to 4.0. The reconstructed 4D volumes were reformatted in different planes after reconstruction. 

As reference gold standard, multi slice 2D fully sampled Cartesian breath-held data were 

acquired at the end-expiration in all the volunteers. Multi slice 2D acquisition was ECG gated 

and performed in short-axis orientation. Relevant scan parameters include: flip angle = 50o, 

TR/TE = 3.5/1.8ms, in-plane resolution = 2 x 2 mm2, slice thickness = 8 mm with no gap 

between slices, FOV = 350 x 350 x 90-120 mm3, cardiac phases = 16, number of coil elements = 

28, scan time per breath-hold ~ 10 sec.  

 

For cardiac functional measurements, the reconstructed 4D volume with the proposed framework 

was reformatted into short axis plane. Left-ventricle (LV) functional measurements [31] 

including end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF) and 

stroke volume (SV) were computed and compared with those obtained from the reference multi 
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slice 2D breath-hold images. The measurements were done by two clinicians trained in cardiac 

MR (with 5 years of experience) using manual segmentation of end-diastolic and end-systolic 

myocardial boundary in each slice. Bland-Altman analysis [32] was used to assess the agreement 

between the measurements obtained with the proposed and multi slice 2D methods in all healthy 

subjects. The differences of these measurements were tested with a two-tailed paired-sample t-

test with a P value of less than 0.05 considered as statistically significant.  

 

For healthy subjects, image quality of reconstructions with the proposed method and reference 

2D BH gold-standard approach was qualitatively assessed based on the myocardial sharpness 

and residual artifact level. Two independent cardiologists trained in cardiac MR (with 5 years of 

experience) were asked to rank the sharpness of the boundary between the myocardium and 

blood pool on scale of 0 (extreme blurring) to 4 (no blurring). The residual artefact level in the 

reconstructed images was qualitatively assessed on the scale of 1 (worst) to 4 (best). 

 

 

The  TV-SENSE reconstruction was implemented in MATLAB (R2012b, The MathWorks, Inc., 

Natick, MA, USA) on a work station with a six core processor (Intel Xeon X5670, 2.93 GHz, 

and 24GB memory) using a nonlinear conjugate gradient (NLCG) reconstruction algorithm with 

backtracking line-search [33]. The optimal value of       was determined empirically by 

comparing reconstructions with different   ’s based on the   balance between blurring artefacts 

and noise-like artefacts in the reconstructions. 

 

3. Results 
 

For one healthy subject, the 1D projection from centre k-space profiles and corresponding 

respiratory signal are shown in Fig.2a. Reconstructed images for diastolic and systolic phases 

reformatted into 2-chamber, 4-chamber and short axis planes are shown in Fig.2b. The proposed 

method corrected for most of the breathing artefacts, achieving good quality images in all plane 

orientations.  

 

For two healthy subjects, different slices in short axis orientation from 4D reconstructed volumes 
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are shown in Fig.3. The reconstructed images using proposed method had good contrast and 

spatio-temporal variations from apical to basal slices, correctly recovering diastolic and systolic 

cardiac phases. Fig.4 shows the 1D projection, respiratory signal and reconstructions in 2 

chamber, 4 chamber and short axis planes for a patient. Due to the use of a contrast agent, the 

contrast in the reconstructed images was better in patients than in healthy subjects.   

 

The mean and standard deviation of cardiac functional parameters measured from proposed 

method across eight healthy subjects are shown in Table 1. The LV functional parameters 

determined with the proposed method were in line with the values determined from the breath-

hold reconstructions, with slight overestimation of EDV and ESV. The differences in all LV 

parameter values were not statistically significant (P > 0.05). The differences between the 

proposed and reference methods in terms of percentage error are also given. Bland-Altman plots 

for EDV, ESV, EF and SV measured from proposed method across eight healthy subjects are 

shown in Fig.5. The Bland-Altman plots showed good agreement between proposed 3D and 

reference 2D methods (EDV average difference: 2.7 mL, 95% confidence interval: [11.2:-5.8] 

mL, ESV average difference: 3.7 mL,  95% confidence interval: [11.2:-3.8] mL, SV average 

difference: -1.0 mL, 95% confidence interval: [9.6:-11.6] mL, EF average difference: -1.9 %,  

95% confidence interval: [4.4:-8.3] %). The values of LV functional parameters for all 

volunteers are listed in Table 2.  

 

Bar plots comparing the qualitative average expert scores for proposed CASPR-Tiger framework 

and reference BH techniques in terms of average myocardial sharpness and residual artifacts are 

shown in Fig. 6. Both myocardial sharpness and residual artifact scores were significantly lower 

for the proposed CASPR-Tiger method, when compared with reference BH method. However, 

this did not have any major impact on LV functional parameters as shown in Fig. 5 and Table 1.  

 
4. Discussion 

 
The proposed framework achieves whole heart 3D Cartesian CINE from four to five minutes 

continuous acquisition under free breathing. Due to data acquisition with isotropic spatial 

resolution, the reconstructed volumes can be formatted into any user defined orientation for high 



 11 

resolution visualization. Compared to other recently proposed self-gating frameworks that use 

3D non-Cartesian trajectories, the proposed technique does not interrupt the acquisition with 

preparation pulses and it is computationally more efficient as it uses a Cartesian based 

acquisition. With a non-optimized MATLAB based implementation, the average time for 

reconstruction of 4D volume from in-vivo free breathing data was 2.5 hours. In comparison, a 

non-Cartesian trajectory based 3D free breathing CINE method [19] took around 16 hours. The 

reconstruction times with non-Cartesian trajectory based frameworks are expected to be even 

worse (multiple days), if temporal regularization is also included in the reconstruction. In our 

TV-SENSE reconstructions, we found that the value of regularization parameter  (    in the 

range from 0.03 to 0.10 was adequate across all subjects giving a fair balance between blurring 

artefacts and noise-like artefacts in the reconstructions. 

 

The proposed framework can be combined with channel compression techniques [34, 35] and 

Graphical Processing Units (GPU) based implementation [36, 37] to reduce the reconstruction 

times to clinically acceptable range of 5 minutes.  By using channel compression techniques [34], 

the size of parallel imaging data can be reduced, thereby reducing the reconstruction time 

without compromising the benefit of multiple coil elements. More specifically, a geometric 

decomposition coil compression (GCC) technique [35]  has been recently proposed that 

minimizes the number of virtual coils (hence the reconstruction time) using a spatially varying 

coil compression. Coil compression is performed separately for each location along the fully 

sampled dimensions by a singular value decomposition (SVD). Then the spatially varying 

compression matrices are carefully aligned so that the virtual coils have smooth coil sensitivities. 

It has been shown that GCC based framework requires 14 times less computation than that of the 

original data, without image quality degradation. We expect our reconstruction times to be 

reduced from 2.5 hours to approximately 10 minutes using GCC techniques. Further reduction in 

reconstruction times could be achieved by using GPU accelerated computers [36] that can 

execute algorithms in a massively parallel manner. It has been shown that compressed 

sensing reconstruction times can be shortened by a factor of 27 using highly parallelizable Split 

Bregman method combined with GPU computing platform [37]. By using a combination of 

channel compression and GPU implementation of proposed framework, the reconstruction of  
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4D whole-heart volume (3D+cardiac phases) could be possible to be achieved within less than a 

minute. 

 

 
In multi-slice 2D breath-hold acquisitions, there is a time gap between subsequent acquisitions 

(every one or two slices) to allow for patient recovery and breathing instructions for the next 

scan. Taking this time into consideration, the overall duration for multi-slice 2D BH acquisition 

is in the range of 6 to 8 minutes. The acquisition with proposed 3D framework does not need to 

be performed under breath-hold and takes less amount of time than multi slice 2D acquisition. 

Furthermore, there is no need for CINE imaging in different planes (such as short-axis, 2-

chamber and 4- chamber view and left and/or right ventricular outflow tracts), hereby reducing 

the overall planning and scan time. As the 3D acquisition is undersampled by factor of 3.5 to 4.0, 

the reconstructed images with proposed framework have more residual artifact level (Fig. 6) 

when compared to the fully sampled multi slice 2D reconstructions. However, this had no 

significant impact on cardiac functional measurements. The LV cardiac functional parameters 

obtained from the proposed 3D framework were in line with those obtained from the reference 

multi slice 2D breath-hold acquisition with non-significant over estimation of EDV and ESV. 

One of the possible causes of this slight overestimation of LV EDV and LV ESV could be the 

use of temporal regularization term in TV-SENSE reconstruction that tends to smooth out the 

details and edges in the image if regularization parameters are not selected adequately. As we 

have done our studies in eight volunteers, further investigation is warranted in a larger group of 

study to establish the cause of slight non-significant overestimation.  

 
With the proposed method, the combination of spiral-like interleaves results in uniform spatio-

temporal pseudo-randomness needed for TV-SENSE reconstructions. However, in comparison 

with non-Cartesian trajectories such as 3D PR and spiral phyllotaxis, the incoherence of the 

sampling pattern is low resulting in some remaining noise-like artifacts. As Compressed Sensing 

reconstructions benefit more from variable-density random undersampling [30, 38, 39] than 

uniform random sampling, future works will focus on achieving better incoherence of sampling 

pattern by modification of CASPR-Tiger trajectory similar to VDRad trajectory [24] to acquire 

samples more densely in k-space centre than at the periphery 
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In this framework, by using tiny golden angle, we have aimed at reducing eddy current artefacts 

originating from k-space jumps between consecutive spiral interleaves. The eddy current effects 

originating from k-space jumps within each interleave are not considered here, though they may 

not be negligible. Future works will focus on designing efficient trajectories for minimization of 

eddy current artefacts originating from k-space jumps both between and within the interleaves. 

 

The proposed framework assumes 1D rigid motion of the heart along the SI direction and 

therefore uses simple 1D translational correction in k-space based on the displacement values of 

the self-gating signal. For soft gating, although the framework uses all data for reconstruction, 

due to less corresponding weight W, the data at respiratory positions distant from end expiration 

will have little to no influence on the reconstruction. For better performance, a 3D motion 

compensation framework similar to the technique proposed in [3, 7] can be used that estimates 

3D non rigid motion between different respiratory positions and performs motion corrected 

CINE reconstruction by integration of non-rigid motion directly in the reconstruction. 

Alternatively, a 5D motion resolved reconstruction [40] can be performed where images are 

reconstructed containing separated cardiac and respiratory dimensions. However, the motion 

compensation or motion resolved techniques remove motion artefacts at the expense of much 

increased computational complexity. 

 

Due to the inflow of unsaturated blood in 3D CINE [41, 42], the contrast between myocardium 

and blood pool is inferior to that for the multi slice 2D acquisition. Contrast between 

myocardium and blood pool can be increased by using contrast agents, as shown in our 

preliminary acquisitions in three patients. Future studies will be performed to validate the 

proposed method in clinical settings, where contrast agents are routinely used for cardiac MRI. 

 

In our experiments, all our volunteers and patients had normal heart beat. In case of arrhythmia, 

based on the length of cardiac cycle, the ectopic cardiac cycles can be detected and the 

corresponding data should be excluded from the reconstruction. This will result in increase in the 

net acceleration factor. Alternatively, for patients with high proportion of arrhythmic heart beats, 

data could be grouped for separate reconstructions from normal and ectopic cardiac cycle. 
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One of the limitations of the proposed framework compared to 3D PR or spiral phyllotaxis 

trajectory is that k-space profiles may be overlapping in combined k-space frames due to 

acquisition on a Cartesian grid. This means prolonged acquisition time as more data is needed to 

be acquired to satisfy TV-SENSE sampling requirement. In the proposed framework, this 

overlap is minimized by introducing a shift in the initial angle for each full set as a fraction of 

tiny golden angle. However, despite the overlap of samples being minimized in the combined k-

space frames, it could not be totally avoided. In future, we will investigate further to find an 

optimal shift to increase the sampling efficiency. 

 

In our experiment, we have reconstructed 16 cardiac phases resulting in temporal resolution of  

31 msec to 70 msec, depending on the heart rate of the subject. This is relatively a small number 

of cardiac phases compared to current state of art multi-slice 2D techniques, where usually 25 to 

30 cardiac phases are reconstructed. One solution could be to increase the number of 

reconstructed cardiac phases in the reconstruction and use view sharing approach as done in [43] 

with temporal width of multiple cardiac phases to remove aliasing artefacts. Further 

improvement of temporal resolution will be investigated in future works with optimized 

trajectories including variable density sampling and more sophisticated image reconstruction 

frameworks including respiratory motion compensated reconstruction [3, 7] and 5D motion 

resolved reconstruction [40]. 

   
 

 

5. Conclusion 
 

In conclusion, a novel framework based on free-running 3D Cartesian self-gating trajectory is 

proposed that is suitable to achieve 3D cardiac CINE from four to five minutes continuous free 

breathing acquisition. Feasibility of the proposed framework was demonstrated in eight healthy 

subjects and three patients. 
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Figures 
 
Figure 1: Free-running CASPR-Tiger acquisition: a) First interleave (blue) is acquired from 

outer to central k-space region, second interleave (green) is acquired in opposite direction. k-

Space centre profile is acquired at each interleave pair (red). Each interleave is at 23.62o with 

respect to previous one to ensure uniform k-space coverage and reduced eddy current artefacts. 

b) The acquisition is done continuously without any ECG triggering or respiratory navigator 

gating. c) Comparison of fully sampled reconstructions on phantom data acquired with free-

running G-CASPR trajectory and proposed CASPR-Tiger acquisition, one slice selected from the 

3D reconstruction is shown, most of the eddy current artefacts visible in G-CASPR 

reconstruction are diminished with the proposed approach. 

 

Figure 2: Self-gated 3D whole heart CINE MRI: a) 1D Superior-Inferior (SI) projection 

obtained from self-navigation in CASPR-Tiger trajectory and corresponding estimated 1D 

respiratory signal, b) From the reconstructed 4D volume, diastolic and systolic phases in two, 

four chamber and short axis orientations are shown for volunteer 1. Good quality reconstructions 

with isotropic resolution were observed in all orientations. 

 

Figure 3: Results for two healthy subjects with proposed framework. Short axis slices from 

base towards apex in diastole and systole are shown for healthy subjects 2 and 3 in (a) and (b), 

respectively. The proposed 3D framework corrected for most of the respiratory motion artefacts 

in the reconstructed images, making them suitable for cardiac functional assessment 



 19 

 

Figure 4: Results for a patient with proposed framework. a) 1D Superior-Inferior (SI) 

projection obtained from self-navigation in CASPR-Tiger trajectory and corresponding estimated 

1D respiratory signal. From the reconstructed 4D volume, diastolic and systolic phases in b) two 

chamber, c) four chamber and d) short axis orientations are shown. Improved contrast was 

achieved between myocardium and blood pool in the reconstructed images in comparison to 

healthy subjects acquisitions. 

 

Figure 5:  Bland-Altman plots for end-diastolic volume (EDV), end-systolic volume (ESV), 

stroke volume (SV) and ejection fraction (EF) for healthy subjects data. Reconstruction 

results with proposed framework are compared to reference multi-slice 2D breath-hold 

acqusition (BH). Along the plot axis, BH corresponds to reference breath-hold acquisition and 

CT corresponds to proposed framework. In each figure, mean value (middle solid line) and 2 

standard deviation (top and bottom dashed lines) are shown. The proposed framework achieved 

similar quantitative cardiac functional values as for the BH reconstruction with no significant 

difference (P-value >0.05).  

 

Figure 6: Image quality assessment of proposed 3D CASPR-Tiger method in healthy 

subjects: bar plots showing average expert scores for myocardial sharpness (0: extreme blurring 

to 4: no blurring) and residual artifact level (1: worst, 4: best) in the reconstructed images are 

shown. The associated standard deviations are also indicated. The results are compared with 

reference multi slice 2D breath-hold (BH) reconstructions. Both myocardial sharpness and 

residual artifact scores were lower for proposed CASPR-Tiger method, when compared with 

reference BH method, but this did not have any major impact on cardiac functional parameters. 
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Tables 
 
 
Table 1. Left ventricular functional parameters in eight healthy subjects. End Diastolic Volume 
(EDV), End Systolic Volume (ESV), Stroke Volume (SV) and Ejection Fraction (EF) for 
proposed 3D cardiac CINE framework and reference multi-slice 2D breath-hold reconstruction 
are given. The mean values of functional parameters are given together with the associated 
standard deviation. The P values quantifying the comparison of proposed method with reference 
fully sampled multi-slice breath hold reconstruction (BH) are also given. The differences 
between the proposed and reference methods in terms of percentage error are given. No 
significant differences were found between the values computed with the proposed method and 
those obtained from the breath-hold multi slice 2D reference. 
 

Results for healthy subjects 

Method EDV (ml) ESV (ml) EF (%) SV  (ml) 
CASPR-Tiger 126.9   17.9 52.5    8.5 58.5   4.5 74.4   13.1 

BH 124.2   19.7 48.8   9.3 60.5   6.5 75.4   16.1 
P value 

Difference 
0.7785 
3.76% 

0.4201 
8.61% 

0.4975 
6.07% 

0.8951 
6.71% 

 
 
 
Table 2. Left ventricular functional parameters in eight healthy subjects. End Diastolic Volume 
(EDV), End Systolic Volume (ESV), Stroke Volume (SV) and Ejection Fraction (EF) values for 
proposed 3D cardiac CINE framework (CASPR-Tiger) and reference multi-slice 2D breath-hold 
reconstruction (BH) are given. 
 

Results for healthy subjects 

 EDV (ml) ESV (ml) EF (%) SV (ml) 
Volunteer CASPR -Tiger BH CASPR-Tiger BH CASPR-Tiger BH CASPR-Tiger BH 

1 141.50 137.50 56.00 54.50 60.42 60.36 85.50 83.00 
2 125.00 117.50 50.00 46.50 60.00 60.42 75.00 71.00 
3 103.50 99.00 42.00 39.00 59.42 60.60 61.50 60.00 
4 106.50 104.50 42.50 34.50 60.09 66.98 64.00 70.00 
5 129.00 122.00 67.30 64.50 47.83 47.13 61.70 57.50 
6 116.00 118.00 48.50 51.50 58.19 56.36 67.50 66.50 
7 155.65 160.50 58.00 53.00 62.73 66.97 97.65 107.50 
8 138.50 135.00 55.90 47.00 59.64 65.18 82.60 88.00 
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