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Abstract

This thesis presents a study on the role of internal impedance control in embodied perception.

This study gives a novel perspective on how action and perception are coupled in a shared

embodiment like a tendon in muscles used for both action and perception.

The mode of perception discussed in this thesis is the sense of touch or “haptic perception”

of both human and biologically inspired artificial systems. Firstly, this thesis explores the

internal impedance control behavior of humans in haptic exploration during manual palpation

of a soft phantom (presented by a soft silicone phantom) to detect and estimate the depth of

an abnormality (presented by a hard nodule). The muscle actuation levels of humans were

measured across human subjects to learn the pattern of such regulations. It was found that

humans perform voluntary modulation of muscle co-contraction level during haptic exploration

of a soft tissue. In addition, it was found that these regulations of muscle co-contraction can

be learned and mapped using a Markov decision matrix. This raised the question, which

became the main focus of this thesis, as to why humans perform such regulations of muscle

co-contraction levels during haptic exploration. The influence of proprioceptive information

and the muscular activity on the interpretation of the environment during haptic exploration

is not understood yet. Therefore, the objective of this thesis is to understand the role of

internal impedance and behavioral variables control during embodied sensing and haptic

exploration.

Secondly, it was found using a robotic manipulator with variable joint sti�ness that the

information-gain of the perception of its internal state can be maximized by controlling the

joint’s sti�ness (internal impedance). This leads to an enhanced accuracy in the estimation

of its internal state. It was also found that the sensing of external environment, in this case,



through haptic perception during robotic palpation could also benefit from this principle.

The information gain about the environment can be maximized through the modulation of

the internal sti�ness.

Thirdly, a Bayesian inference mechanism was used in addition to the information metrics

in the robotic palpation task to infer real-time estimates of the depth of abnormality in soft

silicone phantom based on past experience. The sti�ness control pattern found in human’s

manual palpation was implemented in the robotic probe to investigate whether controlling

the probe’s internal impedance to follow the transition patterns of human’s co-contraction

levels can enhance the nodule depth estimation accuracy. In comparison to the static sti�ness;

it was shown that this strategy of sti�ness control in the robotic probe significantly improved

the estimation accuracy of hard nodule’s depth.

Lastly, this thesis also investigated both individual and collective roles of robotic probe’s

internal sti�ness, indentation level, and probe sweeping speed in the estimation of the

nodule’s depth during haptic exploration. The results from the experiments have confirmed

the hypothesis that by allowing the probe to vary its internal sti�ness and behavioral variables,

the estimation process can enhance the accuracy in haptic perception. Using artificial system

as an abstraction of biological counterparts, this thesis has, for the first time, explained the

possible reason as to why biological systems, humans, for instance, actuate both internal

parameter (like sti�ness of the joint) and the behavioral variables during haptic exploration

of the environment.
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Chapter 1

Introduction and motivation

Abstract—Internal impedance is one of the key factors determining the quality of embodied

perception and action in biological organisms and robots. Though the role of impedance control

in robotic actuation has been well studied, its significance in the accuracy of proprioception

with embodied sensors is not well known yet. If the relationship between the entropy of

sensory information and the internal impedance as well as behavioral variable control are well

understood, a better artificial perception system, especially for haptic perception in robotic

applications, can be designed. Therefore, it is important to characterize the relationship

between the entropy of sensory information and the impedance of their physical embodiment,

through which sensors feel the internal state of the body and the environment. This thesis

explores how humans control their internal impedance in haptic exploration and investigates

how this similar behavior can be implemented in an artificial system like a robotic probes for

physical examination of soft objects.

1



Introduction and motivation

1.1 Introduction

During interaction with the external environment, biological systems, like humans, perceive

the information about the environment through biological sensory receptors and then take

some desired action based on the perception. However, it is not only action or movement that

requires muscle activation; but also so does proprioception. There is compelling biological

evidence suggesting that humans dynamically change the level of activation of muscles,

spindles, and tendons in order to condition the proprioceptive feedback during interaction

with the external environment [1]. In this thesis, this is defined as “embodied sensing” or

“embodied perception”.

Embodied sensing in a biological system such as mechanoreceptors in the hand [2], are

modulated by the physical changes of the body [3]. This in-turn influences the sensorimotor

coupling network resulting in changes in behavior [1]. In fact, many sensory receptors in

human are embedded or attached to the very muscles exploited for actuation. Therefore, the

way the sensory receptor feels any action or movement is very much influenced by how the

muscle is actuated, which leads to the change in the internal impedance (internal sti�ness) of

the body. The structural variation of embodied sensors is one of the most important features

in biological systems, which is often used to enhance the interpretation of the perceived

information of its own behavioral variables and the environment [4]. Hence, the quality

of both action and perceived information are influenced by the internal impedance of the

physical embodiment, which mediates both sensing and actuation. As signified in [5], it is the

adaptive behaviour of the embodiment that can simplify the control of dynamic interaction

with the environment. If the interplay between the proprioceptive feedback and the internal

impedance states can be well described and understood, this can be skilfully utilized to

maximize information gain in sensing to control underactuated robots.

Fig. 1.1 illustrates how perception and action are coupled when they share a common

embodiment. In biological systems, proprioceptive sensors such as spindle sensors (sense the

amount and speed of muscle contraction) and tendon sensors (sense force) are located in the

very muscles that are used to actuate joints. Therefore, the way controllers in the central

2



1.2 Motivation

Fig. 1.1 The system interacts with the environment through its embodiment. The internal
impedance required for accurate perception through its embodied sensor can di�er from that
required to take appropriate action. Likewise an action taken with appropriate impedance
could a�ect the quality of perception of the environment.

nervous system perceive the environment depends on the actuation state of the muscles and

muscle actuation in turn depends on perception [6]. The scope of this thesis lies around the

investigation of the influence of internal impedance’s regulation inside a body as well as the

behavior of the agent on the perception.

1.2 Motivation

During the interaction between an agent and the environment, it is very essential for the

agent, whether it is biological creature (human in particular) or an artificial system, to be able

to gather and derive information from sensory data during interaction with the environment.

These sensations can be classified in two di�erent classes according to the well established

Sherrington’s lectures summarized in [7], namely: “exteroceptive” and “proprioceptive”

sensation. The exteroceptive sensation encapsulates the sensory feedback obtained from the

environment, such as: olfactory, auditory, visual, and tactile perception. On the other hand,

proprioceptive sensation refers to the sensory feedback measured at musculoskeletal level

delivering the information that arises due to the activation of the agent’s own movement,

such as: the joint’s inertia, velocity, position, force, and etc.

Of all sensations available, haptic sensation (or sense of touch), although often underrated,

is one of the most important sensations in humans’ each and everyday life. Due to its

complexity, the scientific understanding of haptic perception is unfortunately limited in

3
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comparison to other “more apparent” senses, like hearing or vision. Haptic perception

involves the intergration of the information acquired from both exteroceptive (tactile) and

proprioceptive cues. In the past, the functionality of tactile perception in human has been

extensively studied. Vallbo and Johanson [2, 3] have provided extensive studies on the

properties and the role of the mechanoreceptors on the hand used for tactile perception. It

is well understood how the a�erent responses perceived through the mechanoreceptors at

glabrous skin [8], containing di�erent information, such as: force [9], shape [10], surfaces’s

texture [11, 12], and position, are processed and relayed to the central nervous system. To

be able to perceive more complex information about the environment, such as: mechanical

properties of an object, orientation of an object [13], and dynamics of continually moving

environment [14], the proprioceptive cues play a very crucial role in the haptic perception.

The proprioceptive information is perceived through the receptors located at the muscle

spindles of the hand and arm. Therefore, the way the hand is controlled during object

manipulation can influence the quality of the proprioceptive information perceived through

the muscle spindles. Unfortunately, it is not yet clear how the proprioceptive information

and the muscle actuation level during manipulation are correlated. Also, it is also not clear

whether the regulation of the muscle could influence the proprioceptive cues and hence the

haptic perception.

1.2.1 Understanding human’s active haptic exploration during manual pal-

pation

It is important to first explore the human’s behavior in regulating co-contraction (muscle

activity) during haptic exploration task. The active haptic exploration task discussed in

this thesis is the task of physical examination of soft objects. Physical examination of soft

objects to identify hidden mechanical features can be seen in a variety of areas like minimally

invasive surgery, medical physical examination, security, quality assurance in food industry,

entertainment, etc. When people are asked to explore a novel soft object to identify its

physical properties, they regulate both apparent behaviors, such as: movement speed, force,

as well as internal states like antagonistic muscle co-contraction level. It is supposed that such
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behavior tries to enhance haptic perception by regulating the function of mechanoreceptors

at di�erent depths of the fingertips and proprioceptive sensors such as tendon and spindle

sensors located in muscles. Hence, the interplay between motor control and internal mechanics

(muscles and reflexes) [15, 16] play an important role in both action and perception [17].

The notion - morphological computation - in soft robotics and biological systems views the

mechanical circuits in the embodiment as a computational resource for both perception and

action.

1.2.2 Role of variable internal impedance in soft robotic probe for soft

tissue examination

Due to the complexity of the proprioceptive sensation in haptic perception, it is not easy to

understand the relationship between the voluntary regulation of muscle (muscle spindles)

and the processed proprioceptive signal generated during the interaction with an object. It is

also not clear as to how the regulation of proprioceptive cues could maximise the information

gain perceived in active haptic exploration using a biological approach. This thesis therefore

proposes to use the robotic approach to explain this. If this could be well understood, it

could lead to a better understanding of how the proprioceptive information is correlated

and combined with other cutaneous information in haptic perception. Furthermore, this

understanding could also provide the opportunity to design, develop, and build a better

artificial system, such as: biologically-inspired sensing system for robotics system.

1.3 Aims and objectives

This thesis aims to firstly understand how humans voluntarily control their proprioceptive

perception through modulation of joint sti�ness during active haptic exploration task like in

manual palpation. The muscle co-contraction activity can be captured through the surface

electromyography (EMG), which shows the level of actuation of the muscle pair responsible

for controlling the sti�ness of the finger joint. This thesis further explores that if such
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activity can be captured, is there any control pattern in the co-contraction given di�erent

environmental variables.

In haptic perception, the role of proprioceptive cues and the regulation of the muscle spindle

and tendon, in which the proprioceptors are embedded, are not well understood. In addition,

the relationship between proprioceptive information and the muscle co-contraction activity

cannot be easily explained using conventional biological approach. This thesis addresses

this question by testing a set of hypotheses in a robotic counterpart that allows to isolate

and test di�erent phenomena. It is important to first understand the influence of internal

sti�ness of the variable sti�ness joint manipulator on the proprioceptive sensation from a very

minimalistic perspective, i.e. angular displacement of the joint. The relationship between the

internal sti�ness and proprioceptive information can be quantified using information gain

metrics. The aim here is to explore whether the information gained of minimal proprioception

can be maximised by controlling the internal sti�ness; and if so, whether the haptic perception

of the environment could also benefit from this. The thesis proposes the use of a robotic

probe as an abstracted human finger to understand how the regulation of internal impedance

a�ect the quality of haptic perception in manual palpation. This thesis also investigate

the individual and collective role of internal impedance (internal sti�ness) and the robot’s

behavioral variables control to understand their influences in enhancing haptic perception.

1.4 Contributions

The contributions of this thesis are:

• During human’s haptic exploration for the case of manual palpation presented in this

thesis, humans voluntarily modulate the sti�ness of their fingers’ metacarpophalangea

(MCP) joint by regulating the voluntary contractions of the flexor digitorum superficialis

and extensor digitorum communis muscle pair. It was found that apart from the

configuration of the finger, the regulation of this muscle pair (controlling internal

impedance) plays an important role in the e�cacy of the active haptic exploration. This

is because of that the proprioceptive sensory receptors (like tendons) are embedded in
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the very muscle responsible for controlling the sti�ness of the finger’s joint. Therefore,

the way these receptors feel the environment very much depends on the state of the

muscle pair’s contraction [18].

• The regulation of humans’ muscle co-contraction during active haptic exploration for

the case of manual palpation to estimate the depth of the nodule in a soft phantom can

be extracted and learned using Markov chains. The regulation pattern given di�erent

environments can be represented in Markov state transition probability matrix. It

was found that humans prefer to regulate the muscle co-contraction level in small

steps within the local muscle co-contraction region over the large sudden changes. The

investigation of the Eigen information of the state transition probability matrices also

suggested that on average humans usually take longer time regulating the finger’s

sti�ness (level of muscle co-contraction) during manual palpation before converging

to an absorbing state when the depth of the hard nodule inside soft silicone phantom

increases [18].

• This thesis has shown that humans regulate their internal impedance (finger’s sti�ness)

during active haptic exploration of soft tissue to locate and estimate the depth of a hard

nodule. However, this cannot provide definite explanation as to how the regulation of

internal impedance could lead to the enhancement in the exploration and interpretation

of the environment. Furthermore, it is not yet clear how the regulation of the muscular

activity which modulates the prioprioceptive information could enhance the haptic

perception [19]. This thesis proposes to exploit a robotic manipulator as an alternative

approach to conventional biological study to explain the influence of internal impedance

on the information gain in the embodied perception. It was found using the robotic

manipulator with variable joint sti�ness that the sti�ness of the joint can be tuned

in order to maximise the information gain (transfer entropy) in the estimation of the

internal state of the manipulator (joint angular displacement). The results suggest that

transfer entropy can be used as an indicator to search for optimal sti�ness of the joint

(internal impedance) in order to improve the accuracy of perception [20].
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• Since the relationship between the internal impedance and the perceptual information

can be used to enhance the estimation of internal state of the body through the

maximization of information gain, this thesis further explores whether the estimation

of the environmental variable (like the depth of hard nodule in soft silicone phantom,

similar to manual palpation) can also benefit from the regulation of the internal

impedance as well. This experiment used the robotic finger as an abstraction of a

human finger with variable joint sti�ness (representing the MCP joint) and a force

sensor at the base (representing tendon sensor). Extracted humans’ MCP joint sti�ness

control strategies in the form of Markov decision matrices were used to control the

sti�ness of the robotic finger under the active exploration in a Bayesian inferencing

framework. It was found that the internal sti�ness control plays an important role in

the haptic perception. The experimental results suggest that the variation of internal

sti�ness of the probe leads to an improvement in the estimation of the nodule’s depth

embedded inside soft silicone phantom. These results provide the scientific evidence

for the first time suggesting the reason as to why humans might be regulating the

proprioception through the sti�ness control of the muscle pair (resulting in change of

finger’s sti�ness) that carry proprioceptive sensors [18, 21].

• It was also found that apart from the sti�ness of the finger, humans also regulate

probing behavioral variables during manual palpation. While it was proved using

robotic approach that the internal sti�ness plays an important role in haptic perception;

there may also be some other behavioral factors that also contribute to the enhancement

of the interpretation of the environment as well. It was found in the final experiment that

allowing the combination of probe’s internal impedance, indentation level, and probe’s

sweeping velocity to randomly vary across explorative iteration, the estimation accuracy

of the nodule’s depth estimation increases to almost 100% [22]. This thesis provides

important explanation about the role of morphological computation in active haptic

exploration of soft object in both biological system as well as in biologically-inspired

artificial system.
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1.6 Thesis structure

The structure of this thesis is summarized in Figure 1.2

• Chapter 1 outlines the overall scope of this thesis. The motivations, objectives, and

contributions of the materials presented in this thesis are discussed.

• Chapter 2 presents state of the art and current understanding under the framework

outlined in this thesis. This includes the discussion of the embodiment and motor-sensory

coupling in biological system. It is discussed how the knowledge and understanding

of this in biological system could be employed under the context of morphological

computation for action and perception. This chapter also discusses the concept of

morphological computation under the context of both biology and artificial systems;

and how the process of outsourcing the computation to the morphological structure

occurred in nature could inspire the development of artefacts. The importance of such

concept under the context of active haptic perception is also discussed. Lastly, this

chapter discusses the possible implementation of this concept in a case study of haptic

perception in minimally invasive surgery.

• Chapter 3 presents how humans control the internal impedance (sti�ness) of the finger

during haptic perception. This chapter takes the task of soft object examination

(palpation) as the case study. This chapter observes the pattern of internal impedance

regulation of humans given di�erent environmental parameters.

• Chapter 4 presents the design and numerical model of the robotic manipulator and

robotic probe used in the experiments presented in the later chapters in this thesis.

• Chapter 5 discusses the role of internal impedance in information gain in an embodied

perception. The chapter presents the experimental results suggesting the influence

of internal impedance control on the information gain in the observation of internal

state variable. This chapter presents, for the first time, that non-linear static memory

primitives relating internal impedance, internal kinematic variables, and forces felt at
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the base of the manipulator - similar to the functionality of tendon organs of biological

counterparts - can be used to tune optimal internal impedance parameters to maximize

the accuracy of internal state estimation during external perturbations.

• Chapter 6 investigates under the information gain metrics framework, whether the

ability for the soft robotic probe to vary its internal impedance is a necessary feature

in the active exploration of the environment. Based on the directional information

transfer, the results suggest that by allowing the probe to vary its sti�ness, it can gain

information about the environment during the explorative process. The results also

signify that the soft probe is therefore preferred over the probe with rigid body.

• Chapter 7 presents a robotic probe with controllable sti�ness joint and controllable

behavioral variables as an abstraction of human finger in a palpation task. This

chapter uses the robotic probe to explain why humans regulate the internal sti�ness and

behavior during manual palpation shown in Chapter 3. The pattern of humans’ finger

sti�ness regulation extracted from Chapter 3 is implemented in the robotic probe in this

chapter. The performance of active haptic perception is assessed against the passive

haptic perception for the task of estimating the depth of an abnormality embedded

inside a soft silicone phantom.

• Chapter 8 summarizes all the findings and contributions presented in this thesis and

discuss potential applications and future works under the framework outlined in this

thesis.
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Chapter 2

Background and related work

Abstract— This chapter provides the discussion of the background and related work of the

internal impedance control to enhance the proprioceptive information perceived during the

active exploration of the environment. First, this chapter discusses the biological embodied

system, how the motor and sensory entities in biological system, particularly in human,

are coupled and share the embodiment. This is followed by the background of how internal

impedance control relates to the concept of morphological computation, and how this could

help enhance the quality of both action and perception, if it is properly tuned. The exploitation

of this concept in robotics field, especially in the area of actuation, is discussed. Lastly, this

chapter explores the possibility of the implementation of the concept of internal impedance

control for proprioception in the the active haptic exploration.
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2.1 Embodiment and motor-sensory coupling in biological

systems

For biological organisms, evolution of life depends greatly on the interaction with the

environment, and hence environmental adaptability, in which this extends further to the

individual adaptive behaviour [26, 27]. The processing of information exchange between the

world and the agent through its adaptive morphology (behavior) connected to the brain can

be understood as ’embodiment’. It is generally acceptable to classify biological organisms,

like human, to be an embodied intelligent agent [28]. The ideas of “embodiment” and for a

system “to be embedded” have expanded beyond the study of cognitive science towards the

area of artificial systems [29] and has drawn a lot of attention from various fields in the past

decade, though with various interpretations [30]. The adaptive behaviour of the embodiment,

which mediates both sensory and motor functions, allows the simplification of the control of

dynamic interaction with the environment [5]. In general, sensing and motor functions in

a biological system are combined and often co-ordinated in order to improve the quality of

action and maximize the sensory information gained [15].

The integration of sensory and motor function in human’s brain was first described

in 1870s, when John Hughling Jackson proposed that the cortex of the human’s brain

is hierarchically organized and that some cortical areas are responsible for higher-order

associative sensory-motor functions. These cortical areas are used to perform the associative

tasks and mental processes including the sensory information interpretation, association of

perceptual information with past experience, and exploration of the environment. Human’s

grasping task serves as a very good example to explain the co-ordination between sensing

and motor functions. It was shown in previous study [31] that humans can induce learning

and dexterity in object manipulation through the coordination of sensorimotor memories

with haptic sensory feedback. This influences how the information flow is organised and

structured within the sensorimotor network. It was further found that the organization of

the information flow structure also depends on the placement and the controlled state of the

body (“Morphological computation”) [1].
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In the recent decades, the concept of embodiment and how action and perception in

intelligent agents, like humans, are reciprocally coupled is widely accepted [32, 33] to have

significant contribution towards the perceptual, action, and cognitive processes in maintaining

the autonomy of an agent [34, 35]. Nonetheless, the nature of sensorimotor coupling and its

implications on the very nature of computation of action-perception arbitration in biological

motor control is not well understood yet [14]. Biological creatures perceive information about

the prevailing environmental states through embedded sensory receptors systematically scat-

tered around the body to take the appropriate actions. However, muscle activity modulation

(internal mechanism of the body) while taking actions also a�ect the functionality of sensory

receptors coupled with the muscles, and therefore the sensory information feedback. For

example, the spindle sensors (provide position and velocity feedback) and tendons (provide

force/torque feedback) are physically embedded and connected among muscle fibres. This

results in sensing entangled with action, o�ering opportunities to take control over haptic

perception by changing muscle co-contraction. For instance, as people are required to estimate

the weight of an object, they would not hold it with a sti� hand. Instead, they regulate

the internal impedance of their hand by gently bobbing the object up and down to use

proprioceptive feedback to estimate its weight.

In 1980s Vallbo et. al [2, 3] provided compelling evidence suggesting that the associative

modulation of physical properties of the body in biological systems can enhance the proprio-

ceptive feedback. This also suggests that the internal impedance state of the body, which

mediates both sensing and actuation of an agent, can influence the quality of both action

and perceived information [1]. The regulation of internal impedance state and behavior

of the body to enhance perception can be understood in general as “active sensing”. For

example, in active haptic sensing, human would modulate the internal state of the body

(muscle co-contraction) in order to regulate proprioceptive feedback [36, 37, 15]. This way,

humans can build associations between haptic information with the palpation behavioral

variables to estimate a physical property of the environment [38–40]. Recent studies [41]

show that humans use di�erent force/velocity control strategies during manual palpation to

detect abnormality inside a soft silicon phantom. These strategies are also accompanied by
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other behavioral variations like the movement of fingers in di�erent trajectories, velocities,

frequencies, and regulation of applied pressure and force at the finger tip [42].

The understanding of the sensory-motor function coordinations can be skilfully utilized

to maximize information gain in sensing to control biologically-inspired artificial systems,

like underactuated robots. As signified in recent findings in passive compliance of biological

musculoskeletal systems [5], control of dynamic interactions with the environment can be

simplified through the embodiment itself. Therefore, recent findings in the emergence of

adaptive behaviors of muscular-hydrostats like octopus due to its ability to control the

sti�ness distribution and morphology of the body [15], has caught a lot of attention among

the robotics research community [43, 44].

2.2 Morphological computation in action and perception

From the perspective on the traditional robotic and artificial intelligence study, the com-

putation, sensing, and action functions are usually facilitated by di�erent peripherals and

often viewed as separate entities. However, the implementation of such concept on a natural

agents responsible for multiple complex tasks embedded in highly unstructured environment

could lead to the instability and large performance error in the system. Though there have

been many studies exploring the possibility of exploiting multiple controllers with machine

learning algorithms to process the large flow of information; the focus of these studies were

mainly on a single function, i.e. the controller [45]. However, the morphology of a system can

also be viewed as tools that can contribute to and facilitate control burdens and cognitive

tasks, which have traditionally been attributed to the controller alone [46, 47]. When the

computational problem becomes too complex, control/computational problem is delegated

from the brain to the local level of the system like at the musculoskeletal level. This concept

encapsulates around the idea that during an interaction between a natural system (whether

it is biological organism or artefact), and the environment; the brain (or controller), body

(morphology), and the environment are coupled and influencing each other. The benefit of

exploiting the adaptability of the morphology as an additional tool in cognition and control
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has recently caught attentions across various disciplines, including but not limited to robotics

[25, 48, 49], artificial intelligence, cognitive science [50], psychology[51], and neuroscience

[52].

In general, the notion - morphological computation - refers to the ability of a natural agent

to outsource some of the computational e�ort to the morphology, which can help simplifying

the control task. Morphological computation appreciates the system’s natural dynamics,

which is usually dampen in traditional control scheme, during the interaction with the world

and exploits them as tools in the computation process [53]. The ability of the agent to control

or vary its physical structure (morphology) can facilitate the computational e�ort during the

interaction with the world [54]. These include the variation in basic physical structure of

the agent, change of the material properties of the agent, the geometrical properties of the

agent adaptation of dynamic behavior through the physical interaction with environment,

the regulation of internal mechanical properties of the body, and etc.

This thesis views the internal mechanical circuits in the embodiment as a potential

computational resource for both perception and action. The internal mechanical circuits in

the embodiment involves the regulation of body’s sti�ness and damping parameters and can

often be described as mass-spring-damper problem [55, 56]. The modelling of such parameters

and the evaluation of the sti�ness performance in multibody robotic systems were presented

and validated based on model with lumped sti�ness parameters [57]. Since the mechanical

impedance of the embodiment changes the functionality of those mechanical circuits, it is

important to explore its role in regulating perception and action functionalities. An essential

set of mathematical tools to understand the role of internal impedance in control of dynamic

systems were first laid down by Hogan in [58–60]. Hogan’s theory proposes that a body

in dynamic contact with the environment should be able to adapt its internal impedance

(sti�ness, damping, and inertia parameters) in order to maintain a stable dynamic coupling

with the environment.
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2.2.1 Internal impedance control in action

In the artificial system, it has been well established in previous studies that allowing the

compliance in the morphology of a system to shape itself to the task-specific-environment can

be viewed as an extra potential computational resource [55] and can lead to a simplification

of the complex learning and controlling tasks[61]. In passive dynamics based locomotion, the

interaction between the physical structure and the environment was viewed as a powerful

infrastructure to emerge natural-like behavior with less control e�ort and yet higher e�ciency.

Metastable passive biped walker establishes a very good example in the sense of exploiting

the dynamics interaction between the properly tuned physical structure and the environment.

Passive dynamic walkers presented in [62] use solely the interaction between the walker and

the environment to emerge a metastable walking behavior with no sensing at all. This together

with some necessary actuation, the robust biped robot yet with natural-like movement can

be achieved [63]. Since the ability to exploit the morphology as additional computational

resource can simplify the control task; therefore the learning task could be simplified as well.

In addition to passive dynamic biped walkers, it was found in [64] that the proposed passive

walker can learn to adapt to the unstructured environment while executing the walking task

e�ciently.

In fact, it seems that biological evolution also solves the problem of energy e�cient

locomotion by tuning the embodiment to be able to harness energy from the environment as

shown in an experiment with a dead trout swimming against a water stream [65]. As opposed

to a fully actuated robotic fish [66]; an underactuated robotic fish that utilizes the passive

dynamics of the embodiment with single actuator and multiple passive variable sti�ness joint,

is proven to be more energy e�cient while being able to emerge more natural movements

[67].

The concept of internal impedance control could also be implemented in the context of

manipulation or contact task during tele-operation, such as impedance control in the joint

space for rigid body robotic digging in bilateral tele-operated excavation [68]. By allowing

the internal impedance between the master and slave to match, the bilateral tele-operated
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excavator can ensure the safe, e�ective, and stable operation during the contact with extreme

environmental conditions [69]. Similarly, in the object manipulation task, the implication

of internal impedance control could lead to an improvement in the stability during the

interaction between the agent and environment. While this seems obvious in biological agents,

e.g. humans usually pose little to no challenge in self-stabilization during object manipulation;

rigid robots may not able to maintain their stability during intermittent contact with the

environment. It was found in [70] that internal impedance control can be used in robot or

artificial system to maintain the self-stability during the contact with object or environment.

The implementation of the morphological computation concept in human-robot interaction

has recently attracted a lot of attention. In order for the robot to ensure safe and stable

contact with human and environment, and yet be able to perform tasks that require high

rigidity; it should be able to control its compliancy through the adaptation of internal

impedance [71]. The ability to modulate the internal impedance of the body can also enhance

the interaction quality during contact with humans in robotic massage systems [72].

In fact, the implementation of internal impedance control can be found in many disciplines.

This also includes the robot-assisted medical rehabilitation devices. With an adaptive

exoskeleton proposed in [73], patients with lower limb injury can improve their agility of

motion and enhance dynamic response. Patients su�ering from injury around the upper

limbs of the body, or debilitating illness such as stroke, could use the system proposed in

[74], of which the internal impedance can be varied depending on the degree of injury or

required training, in order to rehabilitate their movements [75]. This concept extends further

to the development of prosthetic limbs. Inspired by observing how humans regulate internal

sti�ness of their upper limb during force/movement control task, it was found that the

robotic/prosthetic arm could also benefit from the ability to regulate the internal impedance

to improve the performance in di�erent control tasks [76], as well as to enhance stability of

prosthetic devices [77].
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2.2.2 Morphological computation in perception

In the context of perception, despite the advanced development of the passively functioning

sensory devices, obtaining the reliable and precise sensory information in a highly unstructured

environment still poses a great challenge in robotic community. The ability to adapt sensor

morphology and flexible robotic morphology [78] could also be seen as a potential tool to

improve the performance of sensory acquisition. Researchers have taken a number of di�erent

approaches on the active adaptation of sensor morphology to alter or enhance the physical

stimuli retrieved from the dynamic environment to obtain reliable desired information [37]. An

agent can therefore, through an implementation of an appropriate morphological computation

strategy, maximise the sensory information gained (transfer entropy) during the exploration

of the environment. The studies of adaptation of sensor morphology include the change of

physical structure of the sensor itself, such as: size [79], sensor’s placement, dimension [80],

shape [81], orientation [82], material properties [83], and etc.

One of the very first sensory modalities that was seen as a potential perception sensation

area for the implementation of morphological computation concept was vision. Inspired by

observing how the sensory receptor cells, ommatidium, are scattered and organised inside

the compound eyes of arthropods, i.e. insects, scientists have developed the artificial sensory

system comprising of elementary motion detectors [84]. The system is allowed to adjust

the orientation between the artificial detectors automatically. The system results in a non-

homogeneous arrangements of the receptor cells distribution with higher number of receptors

facing towards the frontal part of the system [85]. This leads to the compensation in motion

parallax during the movement of the system. It is important to note here that such system

can use the adaptation of the sensory morphology, i.e. orientation and the arrangement of

the receptor cells, in order to compensate the motion parallax (similar to the flying insects)

[86], the process of which is normally attributed to the controller at computational level.

There are many examples in nature showing how the physical stimuli in somatosensory

perception during the dynamic interaction is converted and modified to the usable sensory

information. The active tactile sensing apparatus that attracts a lot of attention in the field
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of biology and artificial systems in the recent years, is the biological whiskers [87] found in

rodents and most mammals (except human). It was found that the sti�ness properties of

the whisker and the interaction dynamics with the environment play significant role in the

surface identification/classification. The mechanical properties of the whisker can be tuned

to enhance the accuracy in the perception of the environment [82, 88]. Similar approach are

used in locomotion of 4-legged robot to allow the recognition of physical properties of the

environment [89] and the observation/estimation of internal state of the body [90].

As stated earlier, the perception in biological system is usually coupled and combined with

actuation and motion. Therefore, the richer and more structured information can be obtained

through the coordination of sensory and motor (embodiment) functions [15, 91, 92]. For

example, the way humans feel the environment though sensory receptors depends on many

extrinsic and intrinsic behavioral factors, such as: interaction force, tangential velocity, finger’s

sti�ness, orientation, and etc. [39, 40, 93, 94]. This is because of that the physical stimuli

during the interaction are pre-processed internally inside the morphology given di�erent

states of the body, which allows the conversion of the physical stimuli to the useful signals

before passing to the receptors. This suggests that human’s haptic perception does not rely

solely on the tactile cues at the contact point, but also proprioceptive cues [7, 95], which

involves the sensory-motor coordination, in order to obtain more complex information [96].

Therefore, apart from the changes at the physical structure level of the sensor morphology,

the control of the internal embodied structure coupled between the action and perception

also play important role in perception [97].

While the implication of morphological computation under the modulation of internal

impedance, embodiment structure, and sensory motor coordination plays crucial role in the

biological sensory systems; the implications of the embodiment concept are mostly studied

in the context of enhancing the actuation, visual perception, or as an assistive element in

granting or enhancing stability in locomotion, than understanding its role in perception

or action-perception coupling in biological systems. They take advantage of passive body

dynamics and the interaction with environment to achieve the required goals without a rather
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high-level cognitive processes [36]. Therefore, this thesis investigates and attempts to explain

the implication of internal impedance control in an active perception.

2.3 Biological active haptic sensing

The ability of an agent to adapt its morphology and behavior to highly unstructured

environment and to simplify the computational e�ort under the context of perception, can be

recognised as “active sensing”. The concept of active perception in biological organism is not

new. In biological systems, perception is commonly recognised as an “active” process rather

than a “passive” one. This indicates that for a system to sense or perceive the environment,

sensory-motor coordination is the key feature [98]; that is one must act upon the environment

to sense it. In 1966, Gibson [91] described the perceptual information as “imposed” and

“obtained” information, where the latter refers to the information perceived through the

activities with the intention of information seeking. He further explained this concept of

information seeking in perceptual system using visual perception. Biological organism’s visual

perception of the environment begins with having a specific tasks, which guides one’s action

and the discovery of environmental properties. Therefore, “Perceiving gets wider and finer

and longer and richer and fuller as the observer explores the environment.” [99].

The activity of information seeking in the context of perceptual activity is not limited

only to vision, but also extends to other sensation modalities, such as active haptic perception.

This thesis is particularly interested in the human active touch sensation. Human active

touch has been described by Bell in 1865 in his book [100] as the intergration of cutaneous

sensations at both the contact point with the external stimuli and the internal muscular

activity (proprioceptive information) resulting from the manipulation of the sensing organs

[96, 101].

It was found in Gibson’s “Observation of active touch” that with active touch (active

motion of hand), humans can identify six di�erent objects with 95% accuracy; while this

resulted in 49% with passive touch [102]. Though, it is generally believed that the motion of

sensory receptors during active touch could enhance the perception, it is in fact the control of
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sensory system in a purposive and information-seeking manner, that enhance the stimulation

[37, 103]. Therefore, haptic perception can be viewed as comprising of a coupled system,

where the sensory unit is carried by the motor control unit. Apart form the information

processing of physical stimulation, the way the motor control is executed with the intention

to obtain and extract those stimulations also is essential in the active haptic perceptual

process [104, 105]. Hence, it is commonly recognised in biological haptic perception that both

tactile cues and proprioceptive cues play significant and integrative roles in haptic perception.

This was evidenced in many studies relating to the influence of proprioceptive stimuli on the

touch sensation, such as: in the estimation of object’s geometrical property [106, 107]. The

active sensing under proprioception involves the actuation of muscles and the activation of

embedded somatosensory receptors (for proprioception) [108].

Proprioceptive mechanoreceptors such as spindle sensors (sense the amount and speed of

muscle contraction) and tendon sensors (sense force) are located in the very muscles that are

used to actuate joints [109]. Therefore, controllers in the central nervous system perceive

the environment depending on the actuation state of the muscles and muscle actuation in

turn depends on perception [6]. It was found that during human’s active touch, humans

would modulate the internal state of the body (muscle co-contraction) in order to regulate

proprioceptive feedback [36, 37, 15]. This way, humans can build associations between

haptic information with the behavioral variables to estimate the physical property of the

environment [38–40]. The recent study [41] shows that humans use di�erent force/velocity

control strategies during manual palpation to detect abnormality inside a soft silicon phantom.

The regulation of these strategies are accompanied by behavioral variations like movement of

fingers in di�erent trajectories, velocities, frequencies, regulation of finger’s joint sti�ness,

and regulation of applied pressure and force at the finger tip [42].

Active haptic exploration is one of the most evident and frequent sensing activity performed

by humans in each and every day apart from vision. In addition to vision, haptic perception

allows the agent to perceive more complex mechanical and physical properties of the world

or manipulated object, which can be extracted only upon physical interaction. This includes

roughness, sti�ness, mass, texture, friction, elasticity and etc. One of the most interesting
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tasks in active haptic exploration is the examination of non-rigid object or environment.

Physical examination of soft objects to identify hidden mechanical features can be seen in a

variety of areas like minimally invasive surgery, medical physical examination, security, quality

assurance in food industry, entertainment, etc. Manual examination involves variation of both

behavioral and internal impedance levels of the fingers [41, 110], because the interplay between

motor control and internal mechanics (muscles and reflexes) [15, 16] play an important role

in both action and perception [17].

This poses an interesting question as to how the internal impedance of the finger are

modulated during such exploration. It is also intriguing to understand how the interplay

between motor control and internal impedance influences the proprioceptive information.

These are not fully understood under the study of biology and cognitive science. The question

as to how the interplay among muscle actuation behavior, environment, and co-contraction

of antagonistic muscles a�ect the accuracy of proprioception is not well quantified yet [1].

Although it is known that proprioceptive cues play important roles in extracting complex

physical properties from the environment, its influence and how its information is combined

with other cutaneous sensation are not yet well understood [19, 111].

2.4 Active haptic sensing in robotics application

“Active sensing” or “active perception” in robotics refers to the modulation and adaptation of

the sensor’s state and the behavior of the system, in which the sensor is embedded, according

to the environmentally suitable strategies [112]. Robotic active perception has attracted

recent attention especially in the context of vision [113]. Though active exploration for visual

cues in the external world has been widely studied for instance in recognition and exploration

of robot’s activities while interacting with environment [114, 115], active exploration in the

internal impedance domain for enhanced haptic perception, especially in proprioceptive cue

has not been studied so far.

Haptic perception in artificial autonomous agent, like robot, can provide useful information

about the environment during the interaction. Haptic perception is often seen as an additional
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perception channel to augment visual sensation [116–118] and to improve robotic dexterous

task [119]. The information provided by haptic perception can be used to recognise the

physical, geometrical, and interaction dynamic properties of the object and the world [120].

This information provides the fundamental knowledge for object recognition [121], surface

[122], and texture [123] classification. As mentioned in previous section that human’s active

haptic exploration involves motion control of the body and the co-ordination of sensory-

motor control [39]. Therefore, human’s motion control in haptic exploration is executed

to obtain the information according to the desired information about the environment’s

properties [104, 124]. The exploratory process, EP, in robotic haptic system, inspired by the

biological active haptic exploration, has been long-standing and fundamental implementation

concept. Scientists have developed haptic sensing apparatuses with the integration of di�erent

active algorithms and motion control strategies to acquire di�erent information [125]. It

was shown that through the implication of di�erent strategies, the machine can obtain

higher dimensional haptic information about the properties of the interacted environment

[114, 117, 121–123, 126].

Another equally important factor in determining the quality of haptic information obtained

from the environment, in biological active haptic exploratory process, is the control of internal

parameter of the receptor-embedded morphology. For example, it was shown under the context

of artificial tactile modality that the compliance of the sensory system and the deformation

of the sensor pad could be used to extract some useful low-level tactile information, such as:

the edge and orientation of object [127]. Given the highly complex nature of the biological

active haptic sensing process, it is interesting to study the role of the internal parameters

(internal impedance) during such exploratory process, in both biological and artificial science

perspective. Particular attention in this thesis is given to the proprioceptive cues, at which

there exists the relationship between sensory and motor functions (embodiment). Therefore,

during such motor command accompanied by the information-seeking intention, the associated

musculature, at which numbers of mechanoreceptors are embedded, are regulated to condition

the proprioceptive feedback. Though, many studies explored the role of exploratory processes

in the robotic active haptic perception, these studies only discussed the movement behaviors

25



Background and related work

rendered from the apparent behaviors observed in biological organisms. It is, however,

important to take into account the internal impedance control strategy used to actuate the

movement as well.

2.5 Haptic perception in minimally invasive surgery

One of the most interesting and challenging applications concerning the haptic perception

in robotics can be found in the exploration and determining physical properties of soft

object. Physical examination of soft objects to identify hidden mechanical features can be

seen in a variety of areas like minimally invasive surgery, medical physical examination,

security, quality assurance in food industry, entertainment, etc. Manual examination involves

variation of both behavioral and internal impedance levels of the fingers [41, 110], because

the interplay between motor control and internal mechanics (muscles and reflexes) [15, 16]

play an important role in both action and perception [17]. In this thesis, the focus is mainly

concentrating on the implementation of active haptic exploration under the proprioceptive

cues for the detection of mechanical sti� inclusion inside a sample soft tissue, similar to

medical manual palpation. One of the objectives of this thesis, apart from understanding the

relationship between the internal impedance and the proprioceptive cues during active haptic

exploration, is the exploration into the possibility of the implementation of such concept in

the soft robotic probe that could be used in robot-assisted minimally invasive surgery to

enable the surgeons the sense of touch.

In the recent years there is an increased attention towards the development of soft robots

that enable new capabilities for robotic systems. The main features can be considered as

an increased safety, better dexterity and high flexibility. Various works and projects present

the concept and latest developments on surgical flexible robots [128]. Many of the flexible

robotic systems aim for the final use in robot-assisted minimally invasive surgery (RMIS).

This procedure has various benefits for the patient, such as smaller blood loss, reduced

amount of medication and shorter recovery stage. Surgical manipulations are performed via

trocar ports with the help of miniature instruments. High resolution three-dimensional visual
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information is the main real-time source of the information about the surgical site. However,

it has been shown that the presence of tactile feedback during RMIS can also improve the

clinical outcomes [129]. Specifically, haptic sensing can be used to detect collisions between

instruments and soft tissue, measure the pressure applied during gripping or dissection, as

well as help to find hard abnormalities in soft tissue, such as tumors.

On the contrary, in the traditional open surgery, surgeons can directly investigate me-

chanical properties of soft tissue by directly palpating on the target area [130]. Palpation,

or manual examination techniques, is used to assess the physical properties of soft tissue.

Clinically defined palpation movements and strategies are specifically designed for the target

area of examination [110, 131]. In addition the common practice is to combine various

examination strategies during one single examination. For instance, global scanning of an

organ is combined with local examination techniques, such as vibration or sliding. The

e�ectiveness of palpation to detect abnormalities in soft tissues is limited both by palpation

experience and by limits of human tactile perceptive system. Previous studies [132, 41]

have indicated the importance of the applied examination strategy during probing of soft

non-homogeneous environment. Specifically, it was defined that the modulation of force

and velocity in the vicinity of non-homogeneity (hard nodule) significantly influences the

detection and localization of the nodule.

The area of haptic sensing for RMIS has been extensively studied in the recent years.

Various devices have been developed for probing or palpation of soft tissue [133]. Some of them

have been tested in-vivo. However, tactile palpation of soft tissues is not yet implemented for

real-life surgery. Variability of measurement data caused by environmental disturbances, as

well as certification and lack of testing are the main reasons for that.

Similar to the problem with rigid surgical robots, soft robotic devices developed for RMIS

have a potential need to be equipped with tactile sensing probes. However, a great majority

of the available tactile devices, including palpation probes, have rigid structures. The current

technique of using rigid tactile probes for soft robotics manipulator mainly relies on the

probing behaviors and the sensitivity of the sensor to perform an accurate identification and
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hence reduces the importance and benefits of soft robotics, as the tool is in the direct contact

with the tissue.
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Chapter 3

Human’s internal impedance control during haptic perception

Abstract— When humans are asked to palpate a soft tissue to locate a hard nodule, they

regulate the sti�ness, speed, and force of the finger during examination. If the relationship

between these behavioral variables and haptic information gain during manual probing can

be well understood, the e�cacy of proprioceptive sensation for soft tissue palpation, such as

in tumor localization in minimally invasive surgery, can be improved. This chapter explores

how human’s use the proprioceptive sensation through the regulation of finger’s sti�ness

during manual palpation to interpret the perceived information based on the prior experience.

During the experiment, the muscle co-contraction activity of the finger was recorded using

EMG sensors to investigate whether joint sti�ness control during manual palpation plays an

important role in the haptic information gain. A Markov chain was trained using muscle

co-contraction patterns of human subjects to extract generic strategy employed by human.

The experimental results revealed that during the exploration of the environment, the control

of the finger’s sti�ness in general occurs in small step. The Eigenvalues and Eigenvectors

corresponding to the state transition matrices also suggest that the duration of the exploration

depends on the physical properties of the environment.
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3.1 Introduction

Although it is evidenced in many studies that the integration of the information perceived

through both tactile and proprioceptive sensation can enhance the haptic perception, the

questions as to why human regulates the internal impedance to condition the proprioceptive

sensors and how the pattern of this regulation is organised remain unanswered [19]. It is

important to note here that the objective of this chapter alone is not to fully address these

questions; however the theme of this chapter is stemmed from these two important questions.

The theme of this chapter is to investigate the role of proprioceptive sensation during

human’s manual palpation on the interpretation of perceived information based on prior

experience. The experiments presented in this chapter begin with the observation of muscle

co-contraction strategies during human’s manual palpation to estimate the depth of a hard

nodule embedded in a soft silicone phantom. The experiment involved in total of 6 healthy

participants and 3 soft silicone phantoms with a nodule embedded at 3 di�erent depths.

Each participant was given 5 learning iterations per soft silicone phantom to explore the

di�erences between the depth levels. After a learning phase, participants were blindfolded and

asked to palpate the silicone phantom to estimate the depth of the embedded nodule. The

electromyography (EMG) signals show that participants regulated their muscle co-contraction

states during probing. Human’s antagonistic muscle co-contraction strategy was abstracted

in the form of a Markov decision process from the electromyography (EMG) signals recorded

from the human subjects.

This raises the question as to whether the humans employ di�erent muscle co-contraction

strategies to gain transfer entropy of haptic perception by recruiting finger’s sti�ness dependent

past haptic memory primitives during manual palpation. This stems from the premise that

finger sti�ness modulates the functionality of tendon and mechanoreceptors.
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3.2 Experimental setup and methodology

3.2.1 Design of the experiment

In this chapter, manual palpation task was used to derive deeper insights into possible reasons

as to why humans control finger sti�ness during soft tissue palpation by testing their strategy

in a controllable sti�ness soft robotic probe to do the same task. Here 3 soft silicone phantoms

were as the samples in the experiments, where each contains a plastic bead embedded at

2, 4, and 8 mm beneath the exposed surface of the phantom (see Figure 3.1). The silicone

phantom is made from a soft clear silicone elastomer gel RTV27905 from Techsil.

Fig. 3.1 (a) A soft silicone phantom fabricated using soft clear silicone elastomer gel with
a spherical plastic bead of size 15 mm diameter embedded inside at the depth of d =2, 4,
and 8 mm. (b) Example of the finite element simulation of soft silicone phantom with an
embedded hard nodule being palpated using a an indenting fingertip [132].

The ABS plastic bead, which hereafter in this thesis refers as “hard nodule”, was embedded

between two layers of silicone phantom - top and bottom layer. The hard nodule is sti�er

than the soft silicone phantom used in this study. Therefore the contrast between the sti�ness

of the soft silicone phantom and the hard nodule represents a good approximation of the

di�erence in the sti�ness between the malignant tumor and healthy fibroglandular breast

tissue [134]. In addition, according to the studies in human biology, the typical tumor in

soft tissue has roughly spherical shape [135] and at T1 stage can vary in size between 0.5
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to 20 mm [136]. Hence a spherical plastic bead with a diameter of 15 mm was chosen and

embedded inside each phantom at di�erent depths.

In the fabrication process of each phantom, the given chemical substances (Part A and

B) were mixed in 1:1 ratio according to fabricants specification. First, the top layer was

created by pouring the mixture into the mold until the depth reaches the desired nodule’s

depth, i.e. 2, 4, and 8 mm. This layer is allowed to rest until completely cured. The nodule

is then placed in the middle of the mold on this layer. Then the bottom layer was created by

pouring the rest of the mixture into the same mold until the total height of the phantom

reaches the height of 3 cm. The whole phantom is allowed to cure until completely solid.

The dynamic of the interaction behavior between the soft silicone phantom and hard

nodule during palpation was simulated using finite element analysis in [132]. The simulation

result is shown in Figure 3.1 (b). This illustrates the distribution of stress and strain in FEM

analysis during the contact between simulated phantom with hard nodule and the simulated

finger tip. It is shown that the interaction is dynamic and not only the nodule is being felt;

but also the combination of interaction behavior between the nodule and the tissue. This

results in the dynamic response in the human’s finger.

3.2.2 Methodology

The main focus of this experiment was to understand how the muscle co-contraction level of

the human forearm corresponding to the finger sti�ness a�ects the estimation accuracy of

depth of a hard nodule buried inside a soft silicone phantom. Here, the focus was on the

abduction and adduction activity of the finger, for which the metacarpophalangeal (MCP)

joint is mainly responsible. It was shown in previous studies [138, 139] that the MCP joint

of the index finger can be modulated by the co-contraction of the flexor and extensor muscle

in the arm. Therefore this activity can be quantified through measurement of the muscle

surface electromyography (EMG) of the major finger antagonistic muscle pair, namely: flexor

digitorum superficialis (FDS) and extensor digitorum communis (EDC) muscles [140]. The

location of this muscle pair is shown in the anatomical structure in Figure 3.2 (a). The

activity of the individual muscle is directly related to the muscle force. Since these two
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Fig. 3.2 (a) Anatomical structure of posterior and anterior compartments of superficialis
muscle layer of forearm with the indication of the EMG electrodes placement locations at the
surface level of EDC and FDS. This figure is modified from Chapter 7 of [137]. (b) Photos of
the human’s forearm with the EMG electrodes attached to EDC and FDS muscles in the
experiment. (c) Photos of human’s finger using various finger sti�ness levels and postures
during palpation.

muscles are coupled with the MCP joint, the force from each muscle antagonistically a�ects

the joint torque. Therefore, the internal impedance (sti�ness) of the finger’s joint increases

with simultaneous increase of both FDS and EDC muscles’ activity.

The experiment involved 6 healthy subjects with no hand/wrist injury, in the age group

of 20 - 43 years. This experimental protocol was approved by Kings College London

Biomedical Sciences, Medicine, Dentistry, and Natural and Mathematical Sciences research

ethics committee. The corresponding information sheet and consent form provided for human

subjects can be found in Appendix A.1. During the experiment, subject was asked to sit in a

relaxed posture with the dominant forearm resting on a lab desk. The subject’s dominant

hand was placed directly on top of the soft silicone phantom to palpate a soft tissue. A pair

of wireless Desktop Direct Transmission System (DTS) for wireless EMG electrodes from

NORAXON U.S.A, Inc. (16 bits resolution) were attached to the subject’s arm to capture

the EMG signals at 1500 Hz at FDS and EDC area as shown in Figure 3.2 (b). In order

to properly locate the location of both FDS and EDC muscles, participants were asked to
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contract the forearm so that the location of both muscles become more apparent and easier

to identify. To avoid noise and crosstalk from the EMG sensor, the skin was cleaned with

alcohol before the electrodes were attached.

During the experiment, the EMG signal can be a�ected by many factors, both extrinsic

and intrinsic. These include the placement of the electrodes, skin’s temperature and humidity

[141], subject’s individual muscle fiber composition [142], and anatomical structure of each

individual. This can lead to the high variability of the EMG signal among subjects. Therefore

the magnitude of muscle coactivation can di�er between subjects due to aforementioned

reasons. Hence, prior to conducting the experiment, each subject was asked to perform a

reference test. A reference test was conducted by asking each subject to hold and freely

manipulate a mass weighing 5 kg. The EMG signal from both FDS and EDC muscles were

recorded during maximum voluntary contraction (MVC).

Training phase

The experiments were divided into two phases for all subjects, namely: the training phase

and the nodule’s depth estimation phase. Firstly, in the training phase, subjects were asked

to palpate the soft silicone phantoms with hard nodule embedded at di�erent depths (shown

in Figure 3.2 (c)). Subjects were informed about the nodule’s depth in each palpation trial.

The training phase was carried out for five trials per nodule’s depth level, where in each trial,

human subjects were given the time of maximum one minute. Subjects were allowed to rest

between each trial. The order of the phantom samples presentation in the training phase is

shown in Table 3.1.

Table 3.1 The order of presentation of phantom samples in the training phase of manual
palpation experiment

Trial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Depth [mm] 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8
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Assessment phase

In the nodule’s depth estimation stage, subjects were asked to estimate the depth of a hard

nodule during manual palpation. Subjects were blindfolded to mitigate the aid of visual

perception in the estimation of nodule’s depth. The identical set of phantoms used in training

phase were presented to the subject one at a time in a random order (with 5 repetitions

per each phantom sample) to avoid any bias learned during the first training phase. The

order of the phantom samples presentation in the estimation phase is shown in Table 3.2.

The maximum amount of time given to each human subject in each estimation trial was one

minute to estimate the depth of the nodule. At the end of each trial, subjects were asked to

estimate the depth of the buried nodule. The question was “Please estimate the depth of a

hard nodule based on your haptic perception”. The estimated depth was verbally given to

the experiment instructor at the end of each trial. The EMG signals during the estimation

were recorded to explore the strategy used by human to estimate the nodule’s depth.

Table 3.2 The order of presentation of phantom samples in the estimation phase of manual
palpation experiment

Trial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Depth [mm] 2 8 2 4 4 8 4 2 8 4 8 4 2 8 2

3.3 Results

3.3.1 Manual palpation results

The raw EMG signals from both EDC and FDS muscles captured during MVC and palpation

activity of each subject were pre-processed by applying rectification and smoothing method

with the use of Root-Mean-Square (RMS) processing, in order to remove the noise interference

and signal artifacts that may be present in the raw EMG signal. During MVC activity, the

maximum value of the processed EMG signals, smax

i

, from both FDS and EDC muscles,

where i = FD and ED respectively, were recorded for each subject. smax

i

were used as

referencing value in the normalization of the EMG signal obtained during palpation trials.
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Fig. 3.3 Sample of muscle activity quantified by the EMG signal during a human manual
palpation trial to estimate the depth of a hard nodule. The EMG signals measured, s

i

(i = FD and ED), from FDS and EDC muscle of the subject’s dominant forearm were
normalised against the respective EMG signals during MVC (a) and (b) show the normalised
EMG signal, sN

i

= s

i

s

max

i

from both FDS and EDC muscle pair respectively. The combination
of the activities contributed from both muscles can be described as the co-contraction behavior
of the muscle. The normalised co-contraction EMG signal, sN

CC

= s

CC

s

max

CC

is shown in magenta
curve in (c); whereas the red circles indicate the extracted peaks.

The pre- processed signals from both EDC and FDS muscle obtained during palpation are

represented by s
i

.

The pre-processed signals were normalized against the referencing values obtained during

MVC activity, smax

i

.

sN

i

= s
i

smax

i

, (3.1)

36



3.3 Results

where sN

i

represents the normalised EMG signal of each muscle. The example of the

normalized EMG signals from FDS and EDC from one of the subjects during a palpation

trial are shown in Figure 3.3 (a) and (b). As mentioned previously in Section 3.2.2, the

sti�ness of the MCP finger joint increases with the simultaneous increase in muscle activity

of antagonistically coupled FDS-EDC muscle pair (co-contraction). The total EMG can be

computed by the summation of the rectified EMG signal from the FDS-EDC muscle pair

[143]. This results in the co-contraction activity, which is similar to the way used to compute

the sti�ness synergy in the control of robot hand using EMG signal from FDS-EDC [144].

The EMG of co-contraction activity can therefore be represented by:

s
CC

=
ÿ

i

s
i

, (3.2)

Hence, the normalised EMG of co-contraction activity can be computed as following:

sN

CC

=
q

i

s
iq

i

smax

i

. (3.3)

The sample of normalised co-contraction signal is shown in Figure 3.3 (c). The peak

activation of the co-contraction during palpation can be directly extracted from the normalized

co-contraction to observe the strategy employed for each trial given di�erent sets of the

environment. As highlighted in the sample signals shown in Figure 3.3 (c), human modulates

co-contraction activity of the muscles during estimation of the nodule’s depth.

The average estimation accuracy for each depth level at each trial across all subjects

are shown in Figure 3.4 (a). The average estimation accuracy of nodule’s depth at d =2

mm increases from 65% to above 80% after first estimation trial; whereas the accuracy in

estimation at other depth levels reaches maximum after second estimation trial. The average

of estimation accuracy when nodule is buried at depth, d = 4 and 8 mm, reaches 65% at the

3rd estimation trial. The standard error for the nodule’s depth estimation tends to decrease

slightly across trials.

The overall accuracy from the estimation of the nodule’s depth embedded inside a soft

silicone phantom across all 6 subjects and all trials for each depth level is shown in Figure
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Fig. 3.4 (a) The mean percentage and standard percentage error of nodule’s depth estimation
accuracy across trials for the nodule embedded at d = 2, 4, and 8 mm are explicitly shown
in blue, green, and red bar. (b) The overall mean and standard error of nodule’s depth
estimation accuracy for across all trials and subjects.

3.4 (b). It is shown that on average human can correctly estimate the depth of the nodule

embedded at 2 mm in 4 out of 5 trials (shown in blue bar); while the nodule buried at 4

mm and deeper (shown in green and red bar respectively), the accuracy in nodule’s depth

estimation drops to 56.7%. These result in the overall average estimation accuracy of around

65% (shown in magenta bar). Two-way ANOVA with post hoc Bonferroni correction was

performed to examine the e�ect of variation of nodule’s depth and number of trial on the
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nodule’s depth estimation accuracy. The two-way ANOVA showed no significant influence

of the nodule’s depth level (p > 0.05), the number of trials (p > 0.05), and the interaction

between the nodule’s depth level and number of trials (p > 0.05) on the accuracy of estimation.

Since, both nodule’s depth level and the number of trials do not statistically influence the

nodule’s depth estimation accuracy, it is interesting to further explore as to which factor may

influence the estimation accuracy.

This leads to a question as to whether humans use di�erent muscle co-contraction strategies

as shown in Figure 3.3 to obtain the accurate estimation of the environment (measured

in transfer entropy of haptic perception) by recruiting finger’s internal sti�ness dependent

past haptic memories during soft tissue palpation. Therefore, it is interesting to explore

the pattern of finger’s sti�ness control strategy employed by humans during such task, and

repeat the strategy on a controllable sti�ness robotic probe to check if it can improve the

estimation accuracy of haptic perception by following the same approach.

3.3.2 Extraction of muscle co-contraction pattern

This section focuses on the extraction and derivation of the generic pattern of finger’s sti�ness

control strategy derived from the subjects to the experiments given soft phantoms with

nodule embedded at di�erent depths. The strategy employed by human can be represented in

a Markov chain which quantifies probability of moving from one level of muscle co-contraction

to another (hereafter referred as “state”). The probability of the change in co-contraction

level between the current state to the next state across all subjects during the nodule’s depth

estimation for d =2, 4, and 8 mm were normalized and presented in Figure 3.5 (a), (b), and

(c) respectively.

Therefore, if it is assumed that the initial co-contraction state S of the muscle pair is

randomly sampled in each trial t from distribution P
S,t

the probability distribution of next

co-contraction state can be computed from the Markov Decision Matrix (state transition

probability matrix), M
mk

as given by:

P
S,t+1 = M

mk

P
S,t

(3.4)
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Fig. 3.5 From the extracted peaks of the normalised co-contraction signal, sN

CC

, across all
subjects and all nodule’s depth estimation assessment trials, the strategy employed by human
to change co-contraction level from current sti�ness to next sti�ness when exploring the soft
phantom with a nodule embedded at d =2 mm (a), d =4 mm (b), and d =8 mm (c), can be
summarized in Markov decision matrices.

It was found in [145] that the probability distribution of the surface EMG signal tends to

be either super-Gaussian or Gaussian, depending on the contraction levels. Therefore for

the simplicity, in this case, the probability distribution of the state S was assumed to be

Gaussian of the form:

P
S,t

= 1
‡

S

Ô
2fi

e
(S

t

≠S̄

t

)2

2‡

2
S , (3.5)

with the expected value S̄
t=1 and a standard deviation ‡

S

. Since P
S,t+1 does not have the

same standard deviation of P
S,t

, only the expected value of P
S,t+1 was kept and the standard

deviation was set back to ‡
S

in trial t + 1 in equation (3.4) to prevent the distribution from

converging to a uniform distribution across trials.

The state transition probability shows that on average the regulation of co-contraction

transition level tend to be on a diagonal line between the current and next transition. This

suggested that the change in the level of co-contraction with respect to the current state

occurs in small steps within the local muscle co-contraction region and large sudden changes

are less likely to occur. Apart from the overall trends of the muscle co-contraction strategy

human employed, it is important to also investigate the characteristics of the strategy used

during manual palpation given di�erent nodule’s depth levels by investigating each state

transition probability matrix.
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3.3 Results

From the extracted Markov decision matrices, they can be viewed as the random walker

as shown in Figure 3.6 (a). The characteristic behavior of each matrix can be explored

through the corresponding eigeninformation. In a state transition probability matrix, the unit

eigenvalue corresponds to the absorbing eigenvector. The rest of the eigenvalues correspond

to the speed at which states converge to this absorbing vector. Since smaller eigenvalues

make corresponding vector components to converge faster to the origin, the second largest

eigenvalue dominates the overall behavior of the state transition probability matrix.

Fig. 3.6 (a) State transition probability matrix viewed random walker and (b) the convergence
of the state vector towards the absorbing state.

For example, (as shown in Figure 3.6 (b)) if current (at time t) state vector S
t

is assumed

to project onto the eigenvector v
r

corresponding to largest eigenvalue (⁄
r

= 1) and the

eigenvector v
r≠1 corresponding to second largest eigenvalue ⁄

r≠1 = 1. By observing the

second largest eigenvalue, it could be used to quantify how long it will take for the state

vector to converge to the absorbing state. This means that the projection of the state vector

S
n

on the eigenvector corresponding to second largest eigenvalue (Sv

r≠1
n

) is close to 0. So if

the current state S
t

is continuously multiplied by the Markov matrix, the geometric series of

the projection of the state vector onto the eigenvector v
r≠1 can be obtained as following:

⁄
r≠1Sv

r≠1
1 ⁄2

r≠1Sv

r≠1
1 ... ⁄n

r≠1Sv

r≠1
1 , (3.6)

where the corresponding projection on the second vector at nth step is

Sv

r≠1
n

= ⁄n

r≠1Sv

r≠1
1 . (3.7)
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Table 3.3 Eigenvalues of Markov State Transition Probability Matrix of extracted finger’s
sti�ness control strategy employed by human during the interaction with soft phantom with
nodule embedded at di�erent depth levels

Nodule’s depth, d [mm] Eigenvalues n (‘ = 0.05)
2 [-0.0006, 0.2945, 0.3936, 0.5984, 1.0000] 5.8340
4 [0.1393, 0.2772, 0.4069, 0.6628, 1.0000] 7.2839
8 [0.1958, 0.3468, 0.4270, 0.6992, 1.0000] 8.3722

It is assumed that ‘ is a very small number.

⁄n

r≠1 = ‘. (3.8)

Therefore, the expected step, n, to the absorbing state can be obtained by:

n = log |‘|
log |⁄

r≠1| . (3.9)

The eigenvalues in Table 3.3 show a growth of the eigenvalues when the depth of the

nodule increases. This indicates that regulation of sti�ness (level of muscle co-contraction)

undergoes a longer period of exploration before converging to an absorbing state when the

depth increases.

3.4 Discussion

This chapter has explored the role of internal impedance (sti�ness) control of human’s finger

in proprioception during the examination of soft object for estimating the its physical property

- in this case, the depth of a hard nodule in a soft silicone phantom. The problem statement

defined in this chapter is to investigate whether human modulates the internal sti�ness of the

finger in order to interpret the information perceived from sensory receptors and to enhance

the accuracy in estimation of the physical properties of the environment, i.e. nodule’s depth,

during manual palpation.

The experiment presented in this chapter involved in total of 6 subjects in the manual

palpation task. Each subject was asked to palpate three di�erent soft silicone phantoms
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with nodule embedded at three di�erent depth levels. Each subject was informed about

the depth of the nodule in the training phase. After the training phase, the EMG signals

from the FDS and EDC muscle pair were recorded in the estimation phase, where the

identical set of soft silicone phantom were presented to the subject in random order. In

each trial in the estimation phase, the subject was asked to verbally estimate the depth

of hard nodule. The estimation results given each depth level do not render statistically

significant di�erent estimation accuracy. Therefore, there may be some other factors during

physical interaction between human’s finger and the soft silicone phantom that influence

the proprioceptive information. It is important to also note that this experiment involves

low number of participants. It is therefore not possible to draw a statistically concrete

and generalised conclusion about the muscle co-contraction strategy that humans employed

to perform the manual palpation task. However, the fact that they regulate their finger’s

sti�ness during the exploratory process is still valid.

It is noteworthy that in human, haptic perception is the result of the integration of

both tactile and proprioceptive stimuli [146, 106]. The processing of both stimuli are always

combined during haptic sensation, regardless of whether those information are relevant in a

particular task [13]. It has been found in a previous study on the human’s haptic perception

[147] that the small number of di�erent sensory stimuli (single channel of tactile and single

channel of proprioception) is preferred over a large number of the same type of sensory stimuli

(multiple channels of tactile) alone.

Since internal impedance determines how proprioception and action are coupled in a shared

embodiment (tendon located in the very muscle used for actuation) , the internal sti�ness

control of the finger may o�er the unique opportunity for sensory information processing

system to infer the real-time proprioceptive information with the past experience to enhance

the accuracy of estimation. Hence, it is interesting to observe the pattern of finger’s sti�ness

control strategy employed by human during manual palpation. The muscle co-contraction

strategies employed by each subject was extracted from the recorded EMG signals. The

average strategy given di�erent nodule’s depth levels across subjects were presented in form of

Markov decision matrices. The eigenvalues of the Markov matrices suggest that the regulation
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Human’s internal impedance control during haptic perception

of sti�ness undergoes a longer period of exploration before converging to an absorbing state

when the nodule’s depth increases.

Up to this point, this thesis has not explained the reason behind the regulation of internal

impedance in human during exploration of the environment; however, this chapter nonetheless

provides some useful guideline and poses a very interesting theme of this thesis. As the

thesis progress, the coming chapters investigate around the possible explanation as to how

important is the active haptic exploration through the regulation of internal embodied system

in the interaction with the environment. Since, it is di�cult to understand the relationship

between the internal impedance states and the proprioceptive signals and how the regulation

of internal muscular activity, which modulates the proprioceptive cues, could enhance the

haptic perception under the study of conventional biology [148]; this thesis proposes the

robotic approach to understand this.
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Chapter 4

Design & simulation of biologically-inspired controllable

sti�ness robotic manipulators

Abstract— This chapter presents the design of the biologically-inspired controllable sti�ness

robotic manipulators used in the experiments presented in this thesis. This chapter proposes

two di�erent designs; one with manually adjustable joint sti�ness and one with automated

joint sti�ness control mechanism. The mutual characteristic of both designs is that the

sensing apparatus (force sensor) is coupled with variable sti�ness joint. This is similar to

the proprioceptive sensing system found in human’s finger or arm, where tendon and spindle

are embedded in the same musculoskeletal structure used to actuate (change the sti�ness).

The sensing information captured at the force sensor during its physical interaction with the

external environment is therefore conditioned by the level of joint’s sti�ness rating. The

simulation results predicted that the torque/force felt at the base of the manipulator can be

controlled using variable sti�ness joint. The relationship between the torque felt and the

combinations of probe’s sti�ness, indentation level, and PSV are non-linear. This o�ers unique

opportunity to implement the algorithms in stochastic machine learning and information gain

metrics to allow the enhancement of the proprioception and haptic perception.
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manipulators

4.1 Introduction

The design of the compliantly actuated joint can be categorized in four di�erent groups [149]

according to the working principle, namely: equilibrium-controlled sti�ness, antagonistic-

controlled sti�ness, structure-controlled sti�ness, and mechanically controlled sti�ness. The

concept of Equilibrium-controlled sti�ness was employed by several systems, such as: “Series

Elastic Actuator” or “SEA” [150], and “Spring Over Muscle” [151], which exploit a rather

trivial dynamic equilibrium position control of the elastic element(s), i.e. spring, to regulate the

required force to achieve the desired sti�ness. However, the limitation of such a configuration

lies in the controller’s bandwidth. Secondly, the Antagonistic-controlled sti�ness principle was

inspired by the biological muscular system of human, where two muscles coactively govern

the movement of one joint. Previous studies revealed that in order to be able to control the

sti�ness in a system exploiting such principle, non-linear elastic element is necessary [152–154].

Instead of adjusting the sti�ness of the elastic element, structure controlled sti�ness principle

exploits the benefit in changing of the structures and properties of di�erent elestic elements.

One interesting example is “Jack Spring”™[155]. Lastly and seems to be today’s most

advanced technique in designing a passive compliant actuator is Mechanically controlled

sti�ness principle. This principle fundamentally exploits mechanical system to adjust the

joint’s sti�ness by altering its state configuration [152]. One of the major challenges in

controlling of some of today’s passive-compliant actuators, such as: “Series Elastic Actuator

(SEA)”, is that some extra additional works are often required to adjust and regulate certain

parameters, the internal impedance or regulate the position, i.e. sti�ness.

The design of the manipulator discussed in this chapter involves two di�erent designs;

one with manually adjustable joint sti�ness and one with automated joint sti�ness control

mechanism. The manipulator with manually adjustable joint sti�ness will be used in the

experiments investigating the influence of variable joint sti�ness on the information gain during

the estimation of its own internal variable and exploration of the external environment. In

addition, it was shown in previous chapter that humans regulate their finger’s sti�ness during

their exploratory process. Therefore, to abstractly replicate similar sti�ness regulation during
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4.2 Two-link manipulator with variable sti�ness joint

the exploratory process, the manipulator, which will be used in the experiment as a robotic

probe, with automated sti�ness control mechanism shall be used in later experiments to verify

and investigate the influence of such behavior on the estimation of external environmental

variable.

4.2 Two-link manipulator with variable sti�ness joint

4.2.1 Design

Fig. 4.1 Three dimensional design (Top view) of the antagonistic manipulator. The design
comprises of two links and a variable sti�ness joint (VSJ) in between. The force sensor is
attached to the end of the base link. The sti�ness of the joint can be controlled by changing
the position of the anchor point and the opening angle of both lever arms.

Design of the first version of antagonistic manipulator presented in this chapter consists

of two manipulator links - a base link of length l1 = 15 cm, a tip link of length l2 = 17 cm,

and a variable sti�ness joint (VSJ) between the two links as shown in Figure 4.1. Since the

purpose of this manipulator is to be used in series of experiments investigating the e�ect and

influence of the joint’s sti�ness on perception, the design of the manipulator represents the

abstract version of human’s controllable sti�ness limb, like finger, and therefore comprises

of only a single variable sti�ness joint. The design of the VSJ in this platform is based on

the “Mechanically Controlled Sti�ness” approach [156]. The length of each lever arm in the
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controllable sti�ness joint is, d
l

= 3 cm. The spring constant of both springs used in the

experiment is k
s

= 0.7 N/m. As depicted in Figure 4.1 the sti�ness rating of the joint, K
s

can be controlled by pre-loading the springs through changing the position of the anchor

point, r
a

, and changing the opening angle of lever arms, –. Apart from ball bearings, the

whole system is designed in SolidWorks and fabricated from ABS plastic using the Dimension

SST768 3D-printer.

4.2.2 Variable joint sti�ness

From figure 4.2, the distance between the axis of the pivot joint and the anchor point of the

two springs at rest is denoted by l
d

. The resting lengths of each spring are equal and denoted

as r. The length of the lever arms connected at the two free ends of the springs are d
l

= 3

cm. The changes in the length of each spring are denoted by �r1 and �r2.

Fig. 4.2 Top view of the manipulator, focusing on the variable sti�ness element at the joint.
(a) Joint sti�ness configuration, when q = 0 and the sti�ness elements are mounted at the
origin point. (b) Joint sti�ness configuration, when q = 0 and both springs are extended by
moving the anchor point. (c) Second joint is rotated at particular angle q.

From figure 4.2 (a), the resting lengths (r1 = r2 = r) of both springs can be computed as

given by

r =
Ò

l
d

2 + d
l

2 ≠ 2d
l

l
d

cos –. (4.1)
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Hence, from figure 4.2 (b) and (c), the resulting length of both springs due to the change

of both joint angular position, q, and the position of the anchor point, r
a

, can be obtained as

following.

r + �r1 =
Ò

(l
d

+ r
a

)2 + d
l

2 ≠ 2d(l
d

+ r
a

)cos (– + q)

r + �r2 =
Ò

(l
d

+ r
a

)2 + d
l

2 ≠ 2d(l
d

+ r
a

)cos (– ≠ q) (4.2)

Given that each spring constant k
s

of the sti�ness elements are known, the force contri-

bution F
s1,2 by each spring at the pivot can be calculated based on the kinematic relations

shown in figure 4.2 (c) as given by

F
s1,2 = �r1,2k

s

. (4.3)

Hence, the torques around the pivot axis developed by both sti�ness elements can be

found by

·
s1,2 = F

s1,2 ◊ (l
d

+ r
a

) = F
s1,2‹(l

d

+ r
a

), (4.4)

where F
s1,2‹ is the force acting perpendicular to the base link at the pivot joint given by

d
l

sin(– + q)
r + �r1

= F
s1‹

F
s1

æ F
s1‹ = F

s1
d

l

sin(– + q)
r + �r1

, (4.5)

d
l

sin(– ≠ q)
r + �r2

= F
s2‹

F
s2

æ F
s2‹ = F

s2
d

l

sin(– ≠ q)
r + �r2

. (4.6)

From equations (4.4), (4.5), and (4.6), the sti�ness-element-contributed torque perceived

at the base link can then be computed as given by

·
s1 = F

s1
d

l

sin(– + q)
r1 + �r1

(l
d

+ r
a

), (4.7)

·
s2 = F

s2
d

l

sin(– ≠ q)
r2 + �r2

(l
d

+ r
a

), (4.8)

·
s

= ·
s1 + ·

s2. (4.9)
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Hence, the sti�ness rating, K
s

, can be computed from the derivatives of the torque

contributed by variable sti�ness mechanism, ·
s

, with respect to the angular displacement, q:

K
s

= ˆ·
s

ˆq
. (4.10)

The simulation was carried out by changing the pre-tension state of r
a

œ (4 : 8) cm

for – = 55¶ and 25¶ in order to ascertain the landscape of the joint torque contributed by

controllable sti�ness mechanism ·
s

as a function of relative angular displacement q of the tip

link and the pre-tension state r
a

of the sti�ness element. Figure 4.3 shows that the level of

non-linearity in this landscape tends to decrease to almost a linear one when the angular

configuration of the two lever arms – reduces.

(a) (b)

Fig. 4.3 Contour plot of the torque contributed from the variable sti�ness mechanism as r
a

varies from 4 to 8 and q = ≠90¶, .., 90¶, when (a) – = 55¶ and (b) – = 25¶

4.3 Robotic probe with controllable sti�ness joint and behav-

ioral variables

4.3.1 Design

The purpose of developing this novel biologically-inspired controllable sti�ness robotic ma-

nipulator was to be used as a robotic probe to palpate a soft object to understand the role of

internal sti�ness control on haptic perception. The design of this robotic probe was inspired

by human’s finger. It represents an abstracted version of human’s finger with the main focus
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on the variable joint sti�ness. In addition, this design also comprises of an indentation and a

velocity controller to allow the investigation of the influence of these variables on the haptic

perception as well.

The overall design of the probe discussed in this thesis is depicted in Figure 4.4 (a).

It is composed of two rigid links - tip link with length, l1 = 80 mm, and base link with

length, l2 = 70 mm - made from ABS plastics. The joint connecting between these two links

are coupled with a variable sti�ness mechanism comprising of two identical linear ENTEX

No.3552 stock springs (k
s

= 0.24 N/mm) from Advanex Europe Ltd, to represent how

antagonistic muscles control the sti�ness of biological fingers. Both springs are situated in

spring chambers inside the base link and suspended between the pivot joint (at the connecting

location, at which the relative angle to the vertical axis of the tip link is zero) and the

movable anchor ring through a micro-filament thread (see Figure 4.4 (b)). The sti�ness of

the joint can be regulated by changing the position of the anchor ring, r
a

, which is controlled

by a 50 mm-linear actuator L12-50-210-06-I (Firgelli Technologies Inc., repeatability of ±0.3

mm). A six-axis ATI Nano17 Force/Torque (F/T) transducer (SI-12-0.12, ATI Industrial

Automation, USA, resolution of 0.015 Nmm) is mounted at the top-end of the base link to

measure the torque during the interaction with soft silicon phantom. This represents how

the tendon sensor is located at the top end of a natural muscle.

The probe’s indentation level, i, is controlled by a 30mm-linear actuator L12-30-100-06-I

(Firgelli Technologies Inc., repeatability of ±0.3 mm) mounted at the top of the base link.

The total length of this mechanism when at rest is denoted by l
o

and has the initial value

of 140mm. Hence the total rest length of this probe when the angle of pivot joint, q = 0, is

290 mm. The probe structure is mounted on a flipped ANT130 XY-stage (Aerotech Inc.,

resolution of 1nm) as shown in Figure 4.4 (c), which allows the planar movement in x- and

y-direction at a constant speed.

4.3.2 Variable joint sti�ness

The detailed view of the variable sti�ness joint is shown in Figure 4.4 (b). At rest (the

angular displacement, q = 0¶ and the position of anchor ring, r
a

= 0 mm), the rest length of
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i 
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Fig. 4.4 (a) Shaded view of two-link probe’s design. (b) Two springs located inside the spring
chambers are attached with the anchor ring and the pivot joint through a microfilament
thread. (Note that the springs shown here are for illustrative purpose only). The sti�ness of
the joint can be represented by the distance of r

a

. (c) Photo of the complete experimental
platform’s design comprising of the variable sti�ness probe mounted on XY-stage.

both springs are equal and denoted by r. Both springs can be extended from their rest by

changing the position of the anchor ring, r
a

. The change of the angular displacement of the

joint, q, due to the passive interaction with the environment, depending on the direction,

causes both springs to be compressed and extended by �r
p

, where �r
p

= qR. R is the radius

of the pivot joint at which the microfilament is attached to. Hence the change of the length

of the springs can be computed as following:

�r1 = r
a

≠ qR (4.11)

�r2 = r
a

+ qR. (4.12)
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Since both springs are identical, the force contributed from each spring to the probe’s

joint can be computed as follows:

f
s1,2 = �r1,2k

s

. (4.13)

Hence, the torque generated from both springs due to the change of joint’s angular

displacement and the position of the anchor ring is:

·
s1,2 = f

s1,2 ◊ R = f
s1,2‹R, (4.14)

where f
s1,2‹ is the force produced from each spring perpendicular to the rotational axis.

f
s1,2‹ = f

s1,2 sin (q). (4.15)

Therefore, the total torque developed due to both springs can be computed from Equation

(4.13) to (4.15) as follows:

·
s

= ·
s1 + ·

s2

= Rk
s

sin (q)(�r1 + �r2) (4.16)

and the sti�ness at the joint, K
s

, is the derivatives of torque produced with respect to the

angular displacement of the pivot joint, q, from Equation (4.16)

K
s

= ˆ·
s

ˆq
= 2r

a

Rk
s

cos (q). (4.17)

From Equation (4.16) and (4.17), the torque, ·
s

, as well as the resulting joint sti�ness,

K
s

, were simulated as the probe’s variable sti�ness joint undergoes the changes in the

angular displacement of the pivot joint, q, and the linear displacement of the anchor ring,

r
a

. The simulation results shown in Figure 4.5 are generated from the following parameters:

r
a

œ (0 : 15) mm, R = 6.8 mm, q œ (≠90 : 90)¶, and k
s

= 0.24 N/mm.
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Fig. 4.5 Torque (a) and the sti�ness (b) produced at the pivot joint due to the changes in
the displacement of the anchor ring, r

a

, and the angular displacement of the joint, q

The resulting joint torque due to the changes of both parameters, q and r
a

, is shown in

Figure 4.5 (a). The extension of both springs by increasing r
a

results in a change of the

landscape of the relationship between ·
s

and q. Taking derivatives of the simulated joint

torque with respect to the angular displacement of the pivot joint results in the sti�ness

profile of the joint shown in Figure 4.5 (b). The sti�ness of the joint becomes almost linear as

the anchor ring approaches its origin. Since r
a

can be controlled through the linear actuator,

for the rest of this chapter, the joint’s sti�ness level is represented in term of the position of

the anchor ring, r
a

[mm].

4.3.3 Dynamics of two-link manipulator

The description of variables used in the system depicted in Figure 4.6 is shown in Table 4.1.

The joint coupled between the tip and base link comprises of a variable sti�ness element,

which is represented by a variable spring-damper system. According to the derivation shown

in Equation (4.17), the variable joint’s sti�ness, K
s

(r
a

, q), is therefore a function of the

position of anchor ring, r
a

, and the angular displacement of the pivot joint, q.
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Fig. 4.6 The probe consists of two rigid manipulator links with a variable sti�ness joint. In
the experiment, ·

f

is measured at the end of base link of the probe using ATI Nano17. The
nodule embedded inside the phantom is shown in red-black spherical ball. The physical
properties of phantom is described using spring-damper system. The variables used in the
system is described in table 4.1

Equation of motion

The interaction dynamics of the system can be derived as follows:

m2a2
2q̈ + m2ga2s + K

s

q + b
s

q̇ = ·
j

, (4.18)

where ·
j

is the torque at pivot joint. The torque, · = (·
f

, ·
j

)€ can be resolved from the force

components in y- and z-direction, f = (F
y

, F
z

)€, at the probe’s tip during the interaction

with soft silicon phantom. ·
f

denotes the measured torque at the end of base link. The
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Table 4.1 System’s variables of the probe interacting with soft phantom

System Variables Descriptions
·

f

Torque measured at the end of base link
·

j

Torque at the pivot joint
q Angular displacement of pivot joint
l
o

Length of the indentation control link
l1 Total length of base link
l2 Total length of tip link
a2 Distance to center of mass of tip link

Probe m0,1,2 Mass of indent. control, base, and tip link
i Indentation
g Gravitational constant [ 9.81 ms≠2]
b

s

Damping coe�cient of variable sti�ness joint
K

s

(r
a

, q) Joint’s variable sti�ness rating
fl Distance from XY table to phantom’s surface

e
y,z

Phantom’s deformation in y- and z-direction
� fl + e

z

f
t

Translational force in probing direction
b

t

Damping coe�cient of silicon phantom
Phantom k

t

Sti�ness of silicon phantom
f

y

Restoring force from phantom in y-direction
f

z

Restoring force from phantom in z-direction

descriptions of the variables used here are explained in Table 4.1. Note that in this thesis,

the trigonometric functions are abbreviated as follow: s = sin (q) and c = cos (q).

In order to simplify the dynamic equations of the system, the restoring force of the silicon

phantom on the probe during the interaction can be modeled using a linear spring-damper

system, where the sti�ness of the silicon depending on di�erent depth levels of a hard nodule

embedded in the sample phantom can be represented by varying the system’s spring constant.

Assume that:

1. At rest (no contact between probe and sample phantom) the probe has length of

L = l
o

+ l1 + l2 + i.

2. The base of the probe is fixed directly above the sample phantom at distance fl.

3. The probe has sti�ness K
s

as a function of r
a

and q.

4. The soft silicon phantom has uncertain sti�ness k
t

with Gaussian distribution.
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5. The restoring force from the soft silicon phantom is in both y and z-direction.

6. The friction between the tip and soft phantom’s surface is negligible.

7. The deformation of soft silicon phantom has a uniform curvature [157].

When the probe comes in contact with the sample phantom, both the probe and the

phantom deform according to their relative sti�ness as shown in Figure 4.6.

The depth of phantom sample deformation in y- and z-directions are denoted by e
y

and e
z

respectively. The probe length (compressed prismatically), �, can be expressed as a function

of q as

� = l
o

+ i + l1 + l2c. (4.19)

Since the base of the probe is fixed, the constraint

|e
z

| = � ≠ fl (4.20)

is maintained. Furthermore, the deformation of the soft silicone phantom is assumed to have

a uniform curvature (the magnitude of deformation in both y- and z-directions are equal).

Therefore:

|e
y

| = |e
z

|. (4.21)

By substituting equation (4.19) in equation (4.20), these can be obtained:

|e
y

| = |e
z

| = (l
o

+ i + l1 + l2c) ≠ fl (4.22)

ė
y

= q̇l2c (4.23)

ė
z

= ≠q̇l2s. (4.24)
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The restoring force from the soft silicon phantom on the probe in both directions can be

modelled as a spring-damper system as follows:

f
y

= k
t

e
y

+ b
t

ė
y

(4.25)

f
z

= k
t

e
z

+ b
t

ė
z

. (4.26)

Substituting equation (4.22) - (4.24) in (4.25) and (4.26), the restoring force can be obtained:

f
y

= k
t

(l
o

+ i + l1 + l2c ≠ fl) + q̇l2b
t

c (4.27)

f
z

= k
t

(l
o

+ i + l1 + l2c ≠ fl) ≠ q̇l2b
t

s. (4.28)

Therefore the force component due to the interaction with soft silicon phantom at the tip is

f = (F
y

, F
z

)€, where

F
y

= f
y

≠ f
t

F
y

= f
y

≠ (m0 + m1 + m2)ÿ and (4.29)

F
z

= f
z

. (4.30)

F
y

and F
z

are net force in y- and z-direction. f
t

is the translational force in probing direction.

ÿ denotes the translational acceleration. Note that f
y

and f
z

contain variables, dependent on

the terms indicated, since it is a function of the random variable k
t

. The terms r
a

, q, q̇, and

i, can be thought of as parameters to the distribution. Adjusting any of these may have an

e�ect on the information in samples of f .

Torque measurement model

In the design of the probe shown in Figure 4.4 (a), torque, ·
f

, is measured at the end of the

base link. The Jacobian matrix, J of the system can therefore be expressed as:

J =

Q

ca
l1 + l2c l2c

≠l2s ≠l2s

R

db . (4.31)
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The equations of torque resulting from the interaction with the soft silicon phantom can be

computed as follows:

· = J€f

· =

Q

ca
·

f

·
j

R

db =

Q

ca
l1 + l2c ≠l2s

l2c ≠l2s

R

db

Q

ca
F

y

F
z

R

db . (4.32)

Hence the torque measured by the ATI Nano17 transducer mounted at the end of the base

link can be derived as:

·
f

= F
y

(l1 + l2c) ≠ F
z

l2s. (4.33)

4.3.4 Simulation: Robotic palpation on soft silicone phantom

According to equations (4.18) and (4.33), the torque response due to the interaction between

the probe and soft tissue is dependent on the soft silicon phantom’s sti�ness k
t

, probe’s

sti�ness r
a

, and indentation level i. This simulation explores how di�erent probing conditions

such as: probe’s joint sti�ness, indentation, and PSV would a�ect the distribution of torque

response at the probe’s base during interaction with di�erent phantom sti�ness levels.

Table 4.2 Simulation parameters for robotic probe

System Variables Value
l1,2 80, 70 [mm]
a1,2 40, 35 [mm]

Probe m1,2 0.2, 0.3 [kg]
b

s

0.02 [Ns/m]
i {3, 5, 7, 9, 11} [mm]

v
probe

{10, 20, 30} [mm/s]
R 6.8 [mm]

Joint Sti�ness r
a

{0, 4, 8, 12, 16} [mm]
k

s

0.24 [N/mm]
fl 290 [mm]

km

tn

{75, 85, 95, 105} [N/m]
Silicon Phantom km

to

65 [N/m]
ks

tn,to

13.2 [N/m]
b

tn,to

0.1[Ns/m]
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The expected value of the sti�ness of the phantom, km

to

, is identified to be 65 N/m with a

standard deviation of 13.2 N/m. The source of uncertainty in the simulation is limited to

that from the phantom’s sti�ness. Based on the previous studies [41, 158], the variability of

the phantom’s sti�ness can be approximated to be a Gaussian distribution, k
t

≥ N(km

t

, ks

t

2),

with expected value, km

t

, and standard deviation, ks

t

. The changes in phantom’s sti�ness,

�km

t

= km

tn

≠ km

to

= 10, 20, 30, and 40 N/m, represent the presence of a hard nodule at

di�erent depths respectively. The length of the nodule can be viewed as the contact duration

with the probe; hence the longer this is, the slower the PSV (v
probe

). In the simulation, v
probe

is classified in three levels, namely: slow (10 mm/s), medium (20 mm/s), fast (30 mm/s).

The models of tissue’s sti�ness, in which the nodule is present, are given by

km

t

=

Y
_]

_[

km

to

if 0 Æ t < t
i

and t Ø t
f

km

to

+ �km

t

sin fi(t≠t

i

)
t

f

≠t

i

if t
i

Æ t < t
f

where

t
i

= 1
2

L
t

v
probe

and t
f

= t
i

+ l
n

v
probe

. (4.34)

L
t

= 200 mm, l
n

= 15 mm, and t represent the length of the simulated phantom along the

probing path, the diameter of the simulated nodule, and the simulation time respectively. t
i

and t
f

denote the time at which the probe’s tip first contacts and leaves the nodule’s area

on the phantom’s surface respectively. The dynamic torque response, ·
f

, during interaction

between the probe and the phantom was simulated under di�erent conditions specified in table

4.2. The simulations were carried out using “ode45” in MATLAB R2013b, The Mathworks,

Inc.

The sample of torque responses, ·
f

, and the variability resulted from the variability

presented in the sti�ness of the soft silicon phantom undergoing di�erent interaction conditions

across 25 simulation trials are shown in Figure 4.7 (a-d). Figure 4.7 (a) represents the torque

responses for di�erent soft silicon phantom’s sti�ness, km

tn

= {75, 85, 95, 105} N/m; whereas

the probe’s internal sti�ness, indentation level, and PSV are fixed. This shows the monotonic

increase in torque response as the sti�ness of the phantom increases. Figure 4.7 (b) to
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Fig. 4.7 The simulated spherical hard nodule is presented at location between 100 mm to 115
mm. The simulated interaction conditions for each sub-figure are as follows: (a) The average
sti�ness of soft silicon phantom is varied with the other parameters fixed at r

a

= 8 mm, i = 4
mm, and v

probe

= 20 mm/s. (b) Average Sti�ness of the probe is varied keeping the other
variables fixed at km

tn

= 95 N/m, i = 4 mm, and v
probe

= 20 mm/s. (c) The indentation level
of the probe, i, is varied keeping the rest parameters fixed at km

tn

= 95 N/m, r
a

= 8 mm, and
v

probe

= 20 mm/s. (d) The probe sweeping velocity (PSV), v
probe

, is varied and the other
parameters are kept at km

tn

= 95 N/m, r
a

= 8 mm, and i = 4 mm. For each torque profile
measured during palpation, the maximum torque at the location of simulated hard nodule is
extracted.

(d) represent the torque responses for di�erent combinations of probe’s internal sti�ness,

indentation level, and PSV. As can be seen in Figure 4.7 (b), ·
f

increases as the internal

sti�ness of the probe (controlled by the position of anchor ring, r
a

) increases from r
a

=0

to 4 mm. After that, ·
f

tends to settle down. The increase of the probe’s indentation

level also elevates the torque responses as shown in Figure 4.7 (c). In Figure 4.7 (d), the

influence of the PSV, v
probe

, on the torque response, given the fixed values for the rest of

the simulation parameters, cannot be visually assessed. Therefore, a statistical analysis was
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Fig. 4.8 The average maximum torque felt with error bars, under di�erent combinations
of probe’s internal sti�ness, indentation, and PSV, given di�erent sti�ness of soft silicone
phantom with embedded hard nodule. (a) the probe’s sti�ness was varied, (b) the indentation
level was varied, and (c) the PSV was varied.

applied to determine this. Since the simulated torque response is normally distributed (this

was tested using Kolmogrov-Smirnov test for normality), ANOVA (Analysis of Variance)

test was implemented. The result from the test signifies no statistically significant di�erence

between these torque response distributions (p > 0.05). Therefore, the change in PSV, v
probe

does not significantly a�ect the torque response.

From each torque response profile measured during palpation, the maximum torque at

the location of simulated hard nodule was extracted as shown in ’circle’ in Figure 4.7 (a-d).

Figure 4.8 (a-c) depict the expected values and standard deviations of extracted maximum

torque response given di�erent combinations of probe’s internal sti�ness, indentation level,

and PSV across 25 trials for km

tn

= {75(red line), 85(green line), 95(blue line), and 105(purple
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line)} N/m. Figure 4.8 (a) presents the average maximum torque with standard deviation

extracted from 25 simulation trials across di�erent probe’s internal sti�ness levels presented

by r
a

. The average torque response increases as r
a

increases from 0 to 4 mm. Then the

average peak torque response settles down. Furthermore, Figure 4.8 (a) shows non-linear

elevation of the torque standard deviation as the probe’s sti�ness level increases. On the

other hand, the average peak torque and the corresponding standard deviation shown in

Figure 4.8 (b) respectively tend to have a rather linear trend. Lastly, in Figure 4.8 (c) no

statistically significant di�erence was presented in the average and standard deviation of

peak torque response resulted from the change in the PSV.

These simulation results predict that the torque felt at the base of the probe can be

controlled using probe sti�ness, indentation level and PSV during the interaction with a soft

tissue. The relationship between the torque felt and the combinations of probe’s sti�ness,

indentation level, and PSV are non-linear. Furthermore, in reality the variability present

in the system is non-deterministic and may arise from several sources such as the probing

behavior, environment, and the probe itself. These raise the question as to how these

non-linear relationships can be exploited to enhance the interpretation of the features in

the environment using proprioceptive feedback from the torque sensor mounted at the base

of the probe (representing how the tendon sensor is located in natural muscles). Since the

relationship is stochastic and non-linear, the best way to preserve the interaction information

is to present the relationship in the form of a probabilistic distribution. It provides us the

opportunity to implement an appropriate stochastic machine learning technique to understand

the role of individual factor in the interpretation of haptic perception.

4.4 Discussion

This chapter has proposed two di�erent designs of controllable sti�ness robotic manipulator.

The design of these manipulators are inspired by the way humans observe the proprioceptive

information and actively explore the environment through haptic perception. They used the

concept of embodiment, where the sensing quality is determined by the level of actuated
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manipulators

joint sti�ness. This is similar to human counterpart in the sense that in the proprioception of

humans at the finger and arm level, tendon and spindle sensors are carried within the muscle

that use to actuate the joint, governing the sti�ness of the joints of the arm and finger.

The first version of controllable sti�ness robotic manipulator discussed in this chapter

presented the design of the variable sti�ness joint with non-linear relationship between the

sti�ness rating and the angular displacement of the joint. The non-linear characteristics

o�ers unique opportunity to implement the information metrics approach to analyse the

possible exploitation in observing its own proprioceptive information as well as in the haptic

perception. This manipulator platform will be used to investigate how internal impedance can

be regulated to enhance the accuracy of proprioception. This is similar to the proprioceptive

function of tendon sensor in humans counterparts. This will be explained in Chapter 5. In

addition, this manipulator platform will be exploited as a probing device for detection of sti�

abnormalities embedded in a soft silicon phantom during palpation in Chapter 6.

The results from the simulation of the controllable sti�ness robotic probe explained in

Section 4.3 suggest that 1) the torque felt at the base of the probe can be controlled using

di�erent combinations of probe’s sti�ness, indentation level, and PSV and 2) the relationships

between the torque measured, the sti�ness of the soft silicon phantom, and the combination of

probe’s internal sti�ness, indentation level, and PSV are non-linear. While a variability in the

simulated system from the Gaussian distribution of the phantom’s sti�ness is pre-defined; the

variability in such a system in reality is non-deterministic and can arise from multiple sources.

These brought into a question as to how these non-linear relationships in the experiment can

be used to enhance the estimation of the environmental features. The automated control of

the sti�ness, indentation level, and PSV allow this robotic probe to perform the automated

active haptic exploration similar to the process observed in human during manual palpation.

The experiments involving the active haptic exploration with this robotic probe will be

discussed in Chapter 7.
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Chapter 5

Information gain via an embodiment with variable internal

impedance

Abstract— This chapter explores the role of internal impedance in the accuracy of embodied

perception. To investigate this, this chapter poses the problem of using only torque data

measured at the stationary base of a two-link controllable sti�ness joint planar manipulator,

to estimate the deflection caused by an external torque in the McKibben type pivot joint with

variable sti�ness. Based on experimental validation, this chapter presents, for the first time,

that non-linear static memory primitives relating internal impedance, internal kinematic

variables, and forces felt at the base of the manipulator - similar to the functionality of tendon

organs of biological counterparts - can be used to tune optimal internal impedance parameters

to maximize the accuracy of internal state estimation during external perturbations.
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5.1 Introduction

From embodied perception perspective, a major challenge in this study was to investigate how

body’s internal impedance can be regulated to gain the accurate perception. This chapter

focuses on the role of internal impedance modulation in the embodied perception of a simple

planar 2-links manipulator system with variable joint sti�ness. The experimental results

were used to approximate the sti�ness calibration curve for di�erent pre-tension states of the

sti�ness element. The experimental analysis section used the transfer entropy from Kullback

Leibler divergence [159] approach as an indicator to the information gain across pre-tension

state of the sti�ness element. Newton-Raphson optimization [160] and Hooke-Jeeves pattern

[161] search were compared to search for the best pre-tension state that maximizes transfer

entropy to arrive at the best estimate for angular displacement of a joint between two links

given the torque measured at the base.

This chapter is structured as follows. First the experimental platform is described,

including the joint sti�ness model’s numerical simulation, followed by the methodology

employed in the experiments. Thereafter, results and analysis are exhibited. The example

application of using the ability to vary the internal sti�ness of the body is discussed in context

of haptic perception of the environment, particularly in the task of physical examination of

soft object.

5.2 Experimental setup and methodology

5.2.1 Experimental setup

A design of the antagonistic manipulator used in the experiment consists of two manipulator

links - base link of length l1 = 15 cm, and an tip link of length l2 = 17 cm. The design of

the variable joint sti�ness (VSJ) in this platform was based on the “Mechanically Controlled

Sti�ness” approach [156]. It comprises of two linear springs with spring constant rating of

0.007 N/m. The sti�ness of the McKibben type pivot joint between these two links can be

adjusted by moving the anchor point of the two springs as shown in Figure 5.1. Further
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detail regarding the variable joint sti�ness design can be found in Section 4.2.2. The angle

– between each lever arm and the center of link 2 were pre-configured to – = 55¶; and the

springs can be pre-loaded by changing the position of the anchor point, r
a

. The system

was mounted on a table and fixed with a clamp underneath. Apart from ball bearings,

the whole system was designed in SolidWorks and fabricated from ABS plastic using the

Dimension SST768 3D-printer. This experiment focused mainly on the perception of the

angular displacement q of the tip link relative to the base link based on the torque ·
f

sensed

at the base of the manipulator around z-axis using a ATI Mini40 six axis force/torque (F/T)

transducer (SI-20-1 from ATI Industrial Automation, resolution around z-axis: 1.25e≠4 Nm)

at 100 Hz. For verification of the accuracy of estimating q, an XSENS MTx wireless motion

capturing sensor (Xsens Technologies B.V., angular resolution: 0.05¶) sampled at 100 Hz was

used as shown in Figure 5.1.

5.2.2 Methodology

The main purpose of the experiment presented in this chapter was to examine the role of body

internal impedance in an accurate embodied proprioception. In this case, the experimental

study was limited to embodied perception during slow movements, so that a static calibration

of sensors can be used in a dynamic condition as static memory primitives of embodiment

and kinematic variables. The relative angular displacement of the tip link and the torque felt

at the base in a static condition are denoted as qsta and ·
f

sta respectively, and those in a

dynamic condition are denoted as qdyn and ·
f

dyn respectively. This experiment investigated

as to how the non-linear relationship between qsta and ·
f

sta can be exploited to search for

the optimal r
a

to maximize information gained about qdyn during a dynamic movement of

the tip link (action).

Static movement

As described and illustrated in section 4.2.2, there is a non-linear characteristic presented

in the design of variable joint sti�ness. In order to identify the landscape of this nonlinear

relationship and to construct the static memory primitives for internal state estimation, ·
f

sta
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Information gain via an embodiment with variable internal impedance

Fig. 5.1 (a) a design of two-links planar manipulator with a variable sti�ness joint (VSJ).
The rotational displacement of the tip link, q, is recorded using an XSENS MTx Motion
Capturing sensor; whereas the torque experienced at the base of the manipulator during such
movement is measured by ATI Mini40 6-axis Force/Torque Transducer, (b) a photo of the
experimental platform attached on the table with a clamp.

and qsta were recorded for 10 trials for each configuration of the sti�ness element for statistic

evaluation. The static torque ·
f

sta was measured at di�erent pre-tension states, r
a

= 4 cm

to 8 cm at di�erent qsta values. Measurements were taken after leaving the system to settle

down to a steady state (ex. after the vibrations in the springs were damped out). For each

trial, the recorded data was mapped using a third order best fit polynomial function. Figure

5.2 (a) show the variability of the fitted torque data across 10 trials for each configuration of

sti�ness element, r
a

= 4 cm to r
a

= 8 cm.
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5.2 Experimental setup and methodology

Fig. 5.2 (a) The variability of torque perceived at the base across 10 trials for di�erent
pre-tension states r

a

. (b) best fit thrid order polynomials to ·
f

sta vs qsta primitives across
di�erent r

a

œ [4, · · · , 8]cm in blue, magenta, green, orange, and red lines respectively, (c) the
corresponding contours of the approximated torque profile, (d) the rotational spring constant
profile.

The average torque profile ·
f

sta, from all 10 trials is shown in 5.2 (b), from which the

corresponding contour representing the non-linear static memory primitives can be constructed.

It should be noted that the experimental results shown in Figure 5.2 (c) is comparable to

that obtained in numerical simulation shown in Figure 4.3 (a) (average probability of the

hypothesis that the columns of Figure 5.2 (c) are the same as those in Figure 4.3 (a), is

statistically significant in Mann-Whitney U test), confirming the validity of the analytical

model presented in previous Chapter 4, Section 4.2.2.
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From the relationship between the torque experienced at the base and the relative angular

displacement of the tip link, the joint sti�ness rating, K
s

(qsta), can be obtained from the

tangent of the function of torque with respect to the angular displacement at any given qsta

as given by:

K(qsta) = ˆ·
f

sta

ˆqsta

. (5.1)

The resulting rotational spring constant profile K(qsta) is shown in Figure 5.2 (d).

Dynamic movement

As stated earlier, the main objective of this experiment was to explore the influence of internal

impedance on dynamic behaviour of perception. Therefore, the dynamic torque, ·
f

dyn, and

angular displacement, qdyn were recorded at di�erent pre-tension states r
a

, during dynamic

movement. The dynamic movement trial was carried out by releasing the tip link from a

certain angle, i.e. q = 75¶. Data were recorded until the system was settled down to its

steady state where q = 0. An example of such movement is illustrated in Figure 5.3. The

measured torque versus rotational displacement trajectory was mapped using a third order

best fit polynomial function as shown in Figure 5.4 (a) for each joint sti�ness configuration,

r
a

= 4, · · · , 8 cm.

Fig. 5.3 ·
f

dyn and qdyn profiles during the dynamic movement for pre-tension state r
a

= 6 cm
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5.3 Results

5.3 Results

5.3.1 Perception information gain with transfer entropy

If ·
f

was considered as a random variable, its entropy for a given q depends on the pre-tension

state r
a

. Therefore, the transfer entropy defined in equation (5.2) - additional information

gained about the relationship between ·
f

and q by changing the pre-tension state r
a

- is a

good indicator to search for an optimum r
a

[159].

G = P (·
f

, r
a

, q) log P (·
f

|r
a

, q)
P (·

f

|r
a

ini, q) , (5.2)

where G Ø 0 is the non-negative information gain, P (·
f

|r
a

, q) is the probability distribution

of dynamic torque over the pre-tension state r
a

and angular displacement q constructed

using 10-trials of static torque data, and r
a

ini is an initial value of r
a

. This implies that if

information gain G = 0, the joint sti�ness has no influence on the causal relationship between

·
f

dyn and qdyn. In order to find an optimum pre-tension state r
a

, the transfer entropy of the

angle estimation based on the current torque measurement was computed given the current

state of r
a

. The estimation process then search for optimum r
a

based on the maximum

information gain (transfer entropy). The whole process is summarized in algorithm 5.1. The

processes for finding maximum information gain are discussed in the following sub-sections.

Algorithm 5.1: Algorithm to find an optimum pre-tension state.
1 Step 1: Choose a set of torque data measured during a dynamic movement of the tip

link for a randomly chosen initial pre-tension state r
a

ini.
2 Step 2: Randomly sample the angular displacement qdyn of the tip link using the

relationship corresponding to the r
a

ini, established in Figure 5.4 (a).
3 Step 3: Construct entropy profile based on ·

f

dyn retrieved from random parameters in
Step 1 and Step 2, together with the non-linear static memory primitives established in
Figure 5.2 (b), and (c).

4 Step 4: From transfer entropy profile shown in Figure 5.4 (b), search for the best r
a

that would maximize the transfer entropy G profile across r
a

using search algorithms
described in section 5.3.2 (Figure 5.5 and 5.6).

5 Step 5: Use the optimum pre-tension state r
a

best to compute the best approximation
qpred of a ’real’ qdyn given only the torque reading, ·

f

dyn using the static memory
primitives corresponding to the r

a

best, established in Figure 5.2 (b).
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(a) (b)

Fig. 5.4 (a) the best fit third order polynomial functions for the measured dynamic torque
profiles, (b) the information gain evaluation with the pre-tension state r

a

= 4 · · · 8 cm; the
randomly selected initial pre-tension state r

a

ini = 6 cm; and the angular displacement of
ende�ector, ◊2 = ≠5¶.

5.3.2 Optimization of joint sti�ness for optimum proprioception

In this section, the problem of optimizing the joint sti�ness for optimum proprioceptive

information based on the maximum information gain metrics is investigated. According to

the standardized optimization problem [162], this problem can be stated as:

max (G(r
a

, ·
f

)) (5.3)

subjected to

min (t), (5.4)

where t represents number of iterations taken for the optimization process to reach the

convergence. In this chapter, two di�erent optimization methods were compared, namely:

Newton-Raphson optimization method (requires gradient information) and the Hooke-Jeeves

pattern search method (does not require gradient information), to search for the best r
a

that

maximizes transfer entropy G to arrive at a best estimate for q given the torque measured at

the base ·
f

.
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Newton-Raphson optimization

Newton-Raphson optimization method is a technique to find an extrema in a solution space

of a function based on a local gradient [160].

Fig. 5.5 Implementation of Newton-Raphsons optimization method on a transfer entropy
profile computed at q = ≠5¶, and r

a

ini = 6 cm. The algorithm starts from three di�erent
initial points, namely: r

a1 = 4.5 cm (black circle), r
a

ini (red trapezoid), and 7.5 cm (magenta
star) respectively. The search algorithm finishes the iteration in the local minima for all three
starting points. Therefore, utilizing this approach yields r

a

best ¥ 6.

Figure 5.5 depicts this approach in finding the optimum gain when q = ≠5¶, and r
a

ini = 6

cm as an example. The search algorithm for the optimum parameter jumped around across

iteration and the solution for the r
a

best converged to the local minima of the gain profile

resulting in r
a

best = 6 cm.

Hooke-Jeeves Pattern Search

Hook-Jeeves Pattern Search is a directional search algorithm to obtain the point in the

solution space with best fitness. The algorithm was developed by Hooke and Jeeves in 1961

and can be found in Appendix B of their paper [161].
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Hooke-Jeeves Pattern Search is suitable for only unimodal search spaces. Handling a

multimodal function with this method may cause the algorithm to get stuck in local maxima.

This problem can be minimized by introducing the same dual search approach. An example

of this Hooke-Jeeves Pattern Search is shown in Figure 5.6 with the parameter of: q = ≠5¶,

and r
a

ini = 6 cm.

Fig. 5.6 Implementation of Hooke-Jeeves pattern search method on a transfer entropy profile
computed at q = ≠5¶, and r

a

ini = 6 cm. The algorithm starts from three di�erent initial
points, namely: r

a1 = 4.5 cm (black circle), r
a

ini (red trapezoid), and 7.5 cm (magenta star)
respectively. While, the algorithm with starting point, r

a

start

= 7.5, gets stuck in the local
minima; the rest algorithms converges to the optimum point, r

a

best ¥ 4.8, of which G is at
the maximum.

The algorithm converged to its maxima of the transfer entropy profile from two starting

points, namely: r
a1 = 4.5 cm (black circle), and r

a1 = rini

a

(red trapezoid); whereas the

algorithm got stuck in the local minima for the starting point, r
a1 = 7.5 cm. From this, the

optimum sti�ness configuration parameter was obtained: r
a

best ¥ 4.8 cm.

5.3.3 Results discussion

The performance of each algorithm was evaluated by the average error in approximation

of the q state. Hooke-Jeeves pattern search method outperforms the Newton-Raphsons
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optimization approach in term of the average error of approximation of q as shown in Figure

5.7 (a). Furthermore, though Hooke-Jeeves optimization required on average more iterations

to converge, its corresponding error deviation (shown in error bar) was overall smaller than

that of Newton-Raphson Optimization as shown in Figure 5.7 (b).

It is important to note that the experimental results in the optimization part of this

chapter was a non-real time simulated case. Therefore, the computational cost appearing here

was purely based on the number of iterations alone and not the real-time computational costs.

However, since the optimization problem stated in this chapter was relatively simple, which

involves the maximization of the information gained; therefore, the number of iterations can

be used to reflect the computational costs in this instance.

This chapter provides the experimental evidence as to how the nonlinear memory primitives

of embodiment and kinematic variables could be exploited to enhance the accuracy of the

estimation of the internal states of the system during the dynamic behaviours through the

modulation of the internal impedance. Transfer entropy of embodied perception of the

internal state - deflection angle of the McKibben type pivot joint in this case - was used as

an indicator in searching for an optimal level of pre-tension state for accurate perception.

Alternative approaches were compared to enable real-time search of the optimal internal

impedance level, namely: Newton-Raphsons Optimization; and Hooke-Jeeves pattern search

approach.

5.4 Application Discussion: Embodied haptic perception of

soft object

One of the applications that can exploit the benefit of having the ability to change the

internal sti�ness of the body in perception, is inspired by biological counterparts like humans

during the exploration of the environment using haptic feedback. That is embodied haptic

perception. During such activity, human performs muscle activity regulation in both muscle

and spindles to condition the proprioceptive feedback. This physical examination of soft

object using haptic feedback can be seen in variety of applications like manual palpation
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(a)

(b)

Fig. 5.7 (a) The average error of angular displacement, Á, is taken from the average error of
prediction of state, qpred, with respect to the dynamic angular displacement qdyn, ranging
from ≠10¶ to 10¶, across r

a

ini. The average error along with corresponding error bars
produced using Hooke-Jeeves and Newton-Raphsons approach are shown in blue and pink
bars respectively, (b) the average number of iterations required until the alternative algorithms
- Hooke-Jeeves pattern search (blue bars) and Newton-Raphson optimization (pink bars) -
converge with the error bars.
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of soft tissue in surgery, security, quality assurance in food industry, entertainment, and

etc. In this discussion, the focus is mainly concentrating on the detection of mechanical sti�

inclusion inside a sample soft tissue. In this section, the possible application of using the

robotic manipulator with variable sti�ness as a soft robotic probe to explore the soft object

is discussed.

The purposes of this experiment were to examine: 1) the influence of the internal

impedance control on the detection of the hard nodule embedded in soft tissue; and 2) the

dynamic torque response and its variability during the interaction with soft tissue with

sti�-inclusion given di�erent levels of probe’s sti�ness. From the results of the experiments

with the manipulator with VSJ discussed earlier in Section 5.2.2, it can be seen that there are

levels of non-linearity in the relationship between the sti�ness of the body and proprioception

(Figure 5.2) . This relationship can be used to construct the entropy for the information

transfer to maximize the information gain in the embodied perception. This in-turn allows

the regulation of the internal impedance to accurately predict the internal kinematic variable

of the body itself. Using the similar principle underlying this relationship, this section

investigates as to whether this benefit can also be used to enhance the information during

the interaction with external environment.

5.4.1 Experiments

The probe used in this experiment was taken directly from the two-link robotic manipulator

with VSJ shown in Figure 5.1. In this experiment, the platform was mounted on the ANT130

two-axis linear stage (Aerotech Inc., resolution of 1 nm) installed up side down as shown in

figure 5.8 (a). This manipulator platform was used as a probing device for detection and

localisation of sti� abnormalities embedded in a soft tissue of ex-vivo porcine kidney.

In order to examine the e�ect of the joint sti�ness on the perception during probing,

the torque ·
f

sensed at the base of the manipulator around z-axis was measured using a

ATI Mini40 six axis force/torque (F/T) (SI-20-1 from ATI Industrial Automation, resolution

around z-axis: 1.25e≠4 Nm) transducer at 100 Hz. The linear stage was programmed to

run by ensuring the stable contact between the manipulator’s end-e�ector and the probed
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(a) (b)

Fig. 5.8 (a) A photo of an experimental setup, where the manipulator is attached under the
ANT130 XY stage from AEROTECH. The torque experienced at the base of the manipulator
during the interaction with ex-vivo porcine kidney, is measured by ATI Mini40 six axis
force/torque transducer. (b) Ex-vivo porcine kidney used in the experiment. The kidney
is 140 mm long, 80 mm wide, and 35 mm thick. The spherical hard nodule made from
rubber with diameter of 12 mm is embedded at the depth of 10 mm from the surface and
approximately 5 mm from the front of the kidney, where the probing activity starts.

soft-tissue, and the constant indentation of the device during the examination in each trial.

The sti�ness of the manipulator’s joint was changed across trials to examine its e�ect on the

information of the hard-nodule detection.

The probe was allowed to slide along the sample soft tissue at constant speed of 20 mm/s,

in which the hard nodules are embedded at 10 mm depth (see figure 5.8 (b) for the dimension

of the porcine kidney and the location of the nodules used in the experiment). During the

interaction between the manipulator and the soft tissue, the torque information during the

movement was recorded for 10 trials for each sti�ness level governed by r
a

, where r
a

= 4 cm

(low sti�ness) to 8 cm (high sti�ness).

5.4.2 Preliminary results

The torque information perceived for each sti�ness level were averaged from 10 trials and

shown in the first row of Figure 5.9 (a). The focus of this discussion was on the dynamic

response of the measured torque during the interaction with unknown soft environment to
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discern the physical property under di�erent levels of internal sti�ness. First, the variability

of torque perceived across ten trials for each sti�ness configuration was extracted as shown

in second row of Figure 5.9 (a). During the interaction with the soft tissue at the location,

under which the nodule was embedded, due to the change in the overall physical property

of the environment, the torque response and the variability should be a�ected. Therefore,

the gradient (shown in the last row of Figure 5.9 (a)) was extracted from the average torque

profile, in order to find the variance change point.

The variance change point can be used to identify any changing point of variability in

the signal. Therefore, any pair of variance change points (if they exist) could be used to

determine the detection of a hard nodule. In this instance, the variance change point method

was applied to the gradient of the average torque signal for each sti�ness level. The detected

points were indicated using black dots. The average location at which the variance change

points were found is summarized in Figure 5.9 (b). It is important to note that, due to the

change in the dynamic of the interaction between the probe with di�erent joint sti�ness levels

and the tissue, the change in the torque response, which signifies the detection of a nodule,

can experience a dynamic shift. The increasing trend of the detected datapoint was observed

as the sti�ness increases from low to high sti�ness.

The average and standard deviation of peak torque response around the nodule’s location

found earlier was extracted and shown in Figure 5.9 (c). As the sti�ness increased, the

average torque response to the change of the physical property of the environment non-linearly

increased; whereas the corresponding standard deviation decreased. These extracted peak

torques from all ten trials for each sti�ness level were confirmed to be normally distributed

using Kolmogrov-Smirnov assessment for normality. The analysis of variance (ANOVA) was

applied to the whole set of extracted peak torque to determine whether the sti�ness of the

probe can a�ect the dynamic torque response during the nodule’s detection. The result from

ANOVA test (p < 0.05) reveals that the probe’s sti�ness level plays statistically significant

role in the torque response during the palpation to detect the nodule.

These preliminary results illustrate that the torque perceived at the base of the probe can

be influenced by the variation of probe’s internal sti�ness during the interaction with a soft
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tissue. The relationship between the torque felt and probe’s sti�ness level is non-linear. Since

the variability experienced in the system is non-deterministic and can arise both individually

and collectively from several sources such as the probe, the environment, and the interaction

between them. These brought into question as to how the non-linear relationship can be

exploited in order to enhance the estimation of the environment using the proprioceptive

feedback from the sensor mounted at the base of the probe.
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5.5 Discussion

This chapter discusses how a robot with controllable internal impedance can maximize

information gain in proprioception by searching for an optimal sti�ness under a nonlinear

relationship between the entropy of sensor information and the impedance of the physical

embodiment. In order to investigate this, a laboratory made two link planar manipulator

with a McKibben type pivot joint (elbow) with controllable sti�ness similar to the human

arms was used. Then, this chapter poses the problem of using only torque data measured at

the fixed base manipulator, to estimate the deflection at the McKibben type elbow caused by

an external force at the free end. There was a unimodal nonlinear relationship between the

transfer entropy of proprioception under varying sti�ness - determined by the pre-tension

state r
a

- of the McKibben type pivot joint. This chapter calls it a nonlinear internal memory

primitive that the robot can use to enhance proprioception.

The experimental evidence provided in this chapter suggests the use of the nonlinear

internal memory primitives of the embodiment and kinematic variable to enhance the

proprioception. The information gain metrics was used to indicate the optimum internal

impedance state (the pre-tension state of the variable sti�ness joint) to accurately estimate

the internal variable (angular displacement of Mckibben type pivot joint). Two di�erent

approaches were used in real-time searching for the optimum pre-tension state of variable

sti�ness joint, which corresponds to the maximum information gain. The performance of

searching algorithms were evaluated based on the average estimation error of the pivot joint

angle. It was found that Hooke-Jeeves pattern search, on average, results in lower error.

However, it requires higher number of iterations than the alternative Newton-Raphsons

approach.

Based on the results shown in this chapter, it can be speculated that biological counterparts

may also be using nonlinear memory primitives similar to the one demonstrated in this study

to tune embodied proprioception. It would be interesting to study whether embodiment

of muscle spindles (position and speed sensing) and tendons (force/torque sensing) could

benefit from some real-time internal impedance regulating strategy, and the shapes of the

82



5.5 Discussion

corresponding memory primitives; and therefore, how the regulations of these behavioral and

internal sti�ness variable would enhance the e�cacy of the information gain in perception

during the interaction with external environment. At the end of this chapter, the manipulator

was used in the preliminary experiment as a variable sti�ness probing device to detect the

abnormality inside the ex-vivo porcine kidney. The preliminary results indicate that the

torque felt at the base of the probe was subjected to the pre-tension state of the variable

sti�ness joint. Their relationship and variability hold the non-linear characteristics. In the

experiment, this could arise from the dynamic interaction between the soft tissue and the tip

of the probe, at which the dynamic torque felt is non-linearly conditioned by the state of

internal impedance. This o�ers the unique opportunity to investigate this relationship in

the transfer entropy domain to enhance the estimation of external environment. In the next

chapter, this manipulator is used as a probing device to explore the directional information

gain in a variable internal impedance probe for soft tissue abnormality identification.
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Chapter 6

Information gain in a variable internal impedance probe for

soft tissue abnormality identification

Abstract— This chapter investigates the role of internal impedance of the finger (governing

proprioceptive feedback) in the haptic perception information gain. Since, it is not easy to

explore the role of sti�ness control in biological finger using conventional biological approach,

this chapter , instead, investigates this question using a robotic probe with a controllable

sti�ness Mckibben type joint. This chapter provides the experimental evidence to show that

the probe’s variable internal impedance can emerge useful dynamic interactions with the soft

tissue to gain the information about the interacting soft silicone phantom. The results also

suggested that the robotic probe’s ability to control its internal impedance is preferred over

the rigid one. Therefore these findings provide not only a novel theoretical basis to develop a

more e�cient biomimetic probe that can self-adapt for maximum information gain in tactile

exploration of a soft tissue, but also explained as to why human counterparts regulate their

muscle co-contraction state during the haptic exploration.
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6.1 Introduction

The previous chapter discussed the role of internal impedance control for maximising the

information gain in embodied perception. The experimental evidences in Chapter 5 have

signified that a robotic manipulator with controllable internal impedance can maximise

information gain by searching for an optimal sti�ness under a non-linear relationship between

the entropy of sensory information and the impedance of physical embodiment structure.

Furthermore, the results from this work also suggest that the accuracy of estimation of an

internal kinematic variable can be enhanced by controlling its internal impedance.

This chapter presents a novel technique to exploit internal impedance control of a soft

robotic manipulator described in Section 4.2 of Chapter 4 in soft tissue probing for abnormality

identification. Unlike a sti� probe, where the detection of a hard nodule embedded in a

soft tissue depends on the applied force and the indentation depth of the probe [163], this

novel probe with a controllable joint sti�ness mechanism can enhance haptic feedback. The

development of this probe can provide the useful insight as to why biological counterparts

actively control their internal impedance, like muscle co-contraction state, during the active

haptic exploration [18]. The exploitation of such controllable sti�ness can be foreseen in

various applications, for instance, during minimally invasive surgery (MIS), where surgeon

cannot manually palpate the soft tissue before taking a surgical site selection decision. In

MIS even if the surgeon has MRI images beforehand, the tissues can move due to posture

changes of the patient. Therefore, a final verification of the location has to be made prior

to the actual surgery. Since current laparoscopic tools do not provide any haptic feedback,

the chapter investigates the possibility of enhancing information gain about the location and

depth of a hard nodule in a soft tissue using variable sti�ness embodiment such that a force

sensor mounted at the handle-end of the tool can detect the abnormality without having to

be inserted inside the body. However, it is important to note here that the current design is

not miniaturized enough to be tested in-vivo.

The purpose of the experiments presented in this chapter is to investigate how behavioral

and environmental parameters can a�ect the interaction between the probe and a soft silicon
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phantom. These parameters include probing velocity, probe’s joint sti�ness, and depth of

nodule embedded in a soft phantom. Given di�erent interaction conditions, this chapter

explore how directional information flow can be modulated using information transfer entropy

(KL-divergence) to enhance the information gain in the detection of nodules embedded in a

soft silicon phantom.

The results from this chapter suggest that in the information metrics domain, the

maximum directional information flow was observed during the transition from non-compliant

to compliant probe and within the sti�ness level of the probe; whereas little information is

gained when changing from the compliant to rigid probe. This can be interpreted and used

to explain that the ability of varying the internal impedance is necessary to gain perceptual

information about the environment in both robotic probe and human counterparts, and that

the soft variable sti�ness structure is preferred over the rigid one. The results from this

chapter indicate that di�erent exploratory strategies, including the regulation of speed and

sti�ness, can be used in nodule’s depth estimation for nodules buried at di�erent levels. It is

important to note here that the results obtained in this chapter cannot be generalised that

there is an absolute solution to which sti�ness level and probing speed velocity are suitable

to estimate the properties of di�erent environment. This agrees with the results shown in

[41], where surgeons also employ di�erent palpation strategies to locate the nodule in a soft

tissue. However, the problem as to how the probe’s behavioral variables are controlled during

the exploratory process of the environment is beyond the scope of this chapter.

6.2 Experimental setup and methodology

6.2.1 Experimental setup

In this experiment, the manipulator with variable sti�ness joint explained in Section 4.2

was used as a probing device similar to the setup shown in the preliminary experiment in

Section 5.4. The probe platform is mounted on the ANT130 two-axis linear stage (Aerotech

Inc., resolution of 1nm) installed up side down as shown in Figure 6.1. ATI Mini40 6-axis

force/torque transducer (SI-20-1 from ATI Industrial Automation, resolution around z-axis:
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Fig. 6.1 (a) A soft silicon phantom fabricated using soft clear silicon elastomer gel replicating
a soft tissue with a spherical plastic bead of size 15 mm diameter embedded inside at di�erent
depths. (b) A photo of an experimental setup, where the manipulator is attached under
the ANT130 XY stage from AEROTECH, US. The torque experienced at the base of the
manipulator during the interaction with soft silicone phantom with embedded hard nodule,
is measured by ATI Mini40 six axis force/torque transducer.

1.25e≠4 Nm) is mounted at the base of the probe capturing torque data during palpation

at frequency of 1000 Hz. The identical set of soft silicon phantoms to those presented in

Section 3.2.1 were used to replicate the soft tissue as the physical properties of the fresh

animal’s organs can change over a period of time. Silicon phantoms were made from a soft

clear silicon elastomer gel RTV27905 from Techsil. The process of fabricating the phantom is

identical to that described in Section 3.2.1. In this experiment, three silicon phantoms were

used as samples, in which the nodules were embedded at the depth of 2, 4, and 8 mm from

the exposed surface of the phantom to the top of the nodule.

6.2.2 Methodology

The purpose of this experiment is to examine and compare the influences of a non-compliant

probe and a probe with controllable sti�ness on the detection of a nodule buried in a soft
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phantom at di�erent depth. The influence was computed based on the directional information

transfer obtained from measured torque during the interaction together with the knowledge

of past experience in form of memory primitives. In the experiments, the e�ects of both

compliant and non-compliant (in this chapter, this is referred to as “locked” joint.) probe

during the “idle” and dynamic interaction with a soft silicon phantom were investigated. As

for the compliant probe, the configuration sti�ness of the joint, ›, was constrained to one

variable, r
a

(pre-tensional state), by fixing the opening angle of both lever arms to – = 55¶.

In order to examine the e�ect of varying joint sti�ness, i.e. varying r
a

, (see Figure 6.1 (b))

on the perception during palpation, torque ·
f

was measured at the base of the manipulator

around z-axis of the transducer.

During the experiment, two di�erent scenarios were examined, 1) “idle”, and 2) dynamics.

For the “idle” case (v
probe

= 0), the probe was paused on top of the nodule location to allow

the acquisition of torque signal. On the other hand, during the dynamic cases the probe

was programmed to slide along a sample phantom, i.e. the blue path in Figure 6.1 (a), at

di�erent constant speeds of, v
probe

=10, 20, and 30 mm/s, at which a nodule is embedded.

The torque data was recorded across 50 trials for di�erent joint sti�ness levels (r
a

= 4 cm, 5

cm, 6 cm, and a “locked” case), and di�erent levels of probe sweeping velocity (PSV), v
probe

,

during the interaction with soft phantoms with nodule embedded at di�erent depths. This

resulted in a total of 48 unique interaction conditions between the phantom and the probe.

The torque measurement and the control of the XY-stage movement was carried out by a

program written in LabView 2012 application, National Instrument. Corp. through a data

acquisition card PCIe-6320 (National Instrument. Corp.) and the Ensemble MP motion

controller (Aerotech Inc.) respectively. The experimental conditions are shown in table 6.1.

Table 6.1 Experimental conditions

Nodule’s depth
d [mm]

Sti�ness
r

a

[cm]
probing speed
v

probe

[mm/s]
2 {4, 5, 6, locked} {10, 20, 30, “idle”}
4 {4, 5, 6, locked} {10, 20, 30, “idle”}
8 {4, 5, 6, locked} {10, 20, 30, “idle”}
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6.3 Results

The average recorded torque information including the variability across 50 trials during the

interaction between the probe and the area of the silicon phantom’s surface, beneath which

the nodule is embedded are shown in Figure 6.2 for the dynamic cases (v
probe

> 0 mm/s)

as well as the “idle” case. The recorded data was used to construct a set of probabilistic

memory primitives given di�erent internal impedance levels and environmental variables.

These memory primitives represent the palpation experience of the probe and can be used in

the information gain metrics in order to detect the presence of a hard nodule.

The measured torque information during the experiment was processed in MATLAB

R2013b, The Mathworks, Inc. Firstly, all measured signals were filtered to remove the noise

and to discriminate the torque sensed during the interaction at the location of hard nodule

from that of normal soft silicone phantom. In this case, the discrete wavelet transform (DWT)

method with Daubechie’s mother wavelet (db10) was used to filter the raw torque signal,

because the torque sensed as the probe swept over the nodule was subjected to the sudden

changes. This is because of that DWT with Daubechie’s mother wavelet is appropriate to

detect sudden discontinuities in the signal under the time domain, in comparison with other

signal filtering techniques [164]. The decomposition of the signal was carried out for 5 levels,

as this returned the highest percentage energy of the decomposed signal (approximation).

In the “idle” case (v
probe

= 0), settled torque information was obtained from each trial of

decomposed torque signal perceived during interaction with soft silicone phantom with nodule

embedded at di�erent depth levels. The signals were averaged given di�erent probe sti�ness

and nodule’s depth levels. In the dynamic cases (v
probe

> 0), for each torque signal perceived

in each trial, the maximum torque was extracted at the exact location where the probe’s tip

swept on top of the nodule during interaction at di�erent PSV and probe’s sti�ness levels.

The fitted distribution of the corresponding torque information across 50 trials given

di�erent experimental conditions are shown in Figure 6.2 (a). From these distributions, the

mean and standard deviation of torque response, ·
f

, can be summarized for di�erent r
a

,

and v
probe

as shown in Figure 6.2 (b), and (c). Figure 6.2 (b) illustrates that the average
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Fig. 6.2 (a) Fitted normal distribution for 50 trials of the torque measured at nodule location
during palpation trials over silicone phantom with a nodule embedded at 2mm (green), 4mm
(orange), and 8mm (purple), for di�erent probing speeds (including “idle”), v

probe

= “idle”, 10,
20, and 30 mm/s, and di�erent sti�ness levels of compliant probe (including non-compliant
probe), r

a

= 4 cm, 5 cm, 6 cm, and ’locked’. Mean and standard deviation of ·
f

for v
probe

(x-axis) from each row in (a) are shown in (b) for di�erent r
a

. Mean and standard deviation
of ·

f

for r
a

(x-axis) from each column in (a) are shown in (c) for di�erent v
probe

.

torque profiles for di�erent depths of the nodule become less sensitive to the PSV level for

the probe’s sti�ness of r
a

= 6 cm. The analysis of variance (ANOVA) test was performed on

the measured torque given di�erent sti�ness level, r
a

, probe sweeping velocity, v
probe

, and

the depth of the nodule, d. The results from the test suggested that when r
a

< 6 cm, the

torque profiles are not statistically significantly di�erent (p < 0.05) across various probing

speed. However, when the probe is sti�, the torque profile becomes more sensitive to the

probing speed. This could potentially lead to the illusive perceptions of the nodule’s depth
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at certain probing speeds. Figure 6.2 (c) shows this nonlinear sensitivity of torque to probing

speeds, when the compliant joint of the probe is locked to make a sti� probe.

The main focus of this chapter was to investigate as to how the directional information flow

is influenced by the variation in the compliancy of the probe and how these information could

be used to predict or estimate the state of the environment. The information transfer entropy

under Kullback-Liebler divergence was used as the indication of the directional information

flow in di�erent sti�ness level transitions. Therefore, it was necessary to construct a set of

memory primitives that can be used during the interaction with unknown phantom to allow

the computation of information gain during the sti�ness level transitions.

From 50 trials of torque information for each interaction condition, 30 trials were randomly

sampled for memory primitives construction; while 20 trials were used as the test set to

assess the influence of the probe’s sti�ness transition on the information gain. The examples

of memory primitive landscapes are presented in Figure 6.3. Note that since the memory

primitives are constructed based on the probability from randomly selected trials, the shape

of the primitives may change according to the information obtained from selected learning.

6.3.1 Kullback Liebler divergence information gain metrics

Information transfer entropy or also known as relative entropy can be used to observe the

directed information exchanges between two systems/variables, which quantifies the common

influences of two coupled systems/factors [159]. In other words, mutual information between

probe sti�ness (random variable A (RV-A)) and torque sensor reading (random variable B

(RV-B)) doesn’t change with the exchange of variables, whereas, the transfer entropy from

RV-A to RV-B is di�erent from the transfer entropy from RV-B to RV-A. Kullback-Liebler

(KL) divergence quantifies this transfer entropy.

The influence of changing the interaction conditions (probe’s sti�ness) on the measured

torque was investigated based on information gain using Kullback Liebler (KL) transfer

entropy. This approach can be used to examine the influence of changing probe sti�ness

(including the compliancy) during palpation.

The information gain function is
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Fig. 6.3 Memory Primitives constructed from 30 randomly selected trials of wavelet decom-
posed base torque as a function of probe sti�ness levels during palpation at di�erent speeds
on silicon phantoms with nodules embedded at d = 2 mm, 4 mm, and 8 mm, where each
row represents the probe’s sti�ness level, r

a

and each column represents the probe sweeping
velocity, v

probe

.

G =
Mÿ

m=1
P (d|·

f

, r
a

, v
probe

) log P (d|·
f

, r
a

, v
probe

)
P (d|· ini

f

, rini

a

, v
probe

) , (6.1)

where G is the measure of information gain from M datapoints, P (d|·
f

, r
a

, v
probe

) is the

probability of d given ·
f

, r
a

, and v
probe

. ·
f

is the measured torque value from the sensor

during interaction with the phantom under di�erent probe’s sti�ness, r
a

and rini

a

.

Using KL-divergence approach, di�erent interaction conditions (probe’s sti�ness level)

were compared with di�erent initial sti�ness levels to find the directional information gain
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in each sti�ness state transition, which in this case can be used to inform the exploratory

process about the useful control behavior of the internal impedance. If ·
f

is considered as a

variable measured during interaction with an unknown soft silicone phantom (with embedded

hard nodule), its entropy for a given depth of the nodule, d, is dependent on the state of

probe’s sti�ness level r
a

. Therefore, the Kullback Liebler (KL) transfer entropy defined in

equation (6.1), which information gained, G, about the environment d, given the measured

torque signal, ·
f

, which is conditioned by the variation in probe’s sti�ness level r
a

, is a good

indicator to determine the criteria in the exploratory process and to search for the directional

information flow given di�erent sti�ness level transition [159].

6.3.2 Influence of internal impedance control for hard nodule detection

under information gain metrics

Algorithm 6.1 illustrates the process employed in this chapter to investigate the directional

information gain during the transition of probe’s sti�ness level.

Algorithm 6.1: Directional information gain computation algorithm
1 function DirectionalInfoGainComputation (·

f,tœ[1:50](ra

, v
probe

, d));
Input : ·

f,tœ[1:50](ra

, v
probe

, d)
Output : Directional information gain

2 for each trial t œ [1 : 50] do
3 Randomly select 30 trials of collected data to create memory primitives, Ï;
4 The rest 20 trials selected for test set, T;
5 for each r

a

, v
probe

, and d do
6 Create memory primitives shown in Figure 6.3;
7 for each ·

f

in T(v
probe

, d, rini

a

) do
8 Compute P (d|·

f

, rini

a

, v
probe

) from Ï.;
9 for each ·

f

in T(v
probe

, d, r
a

) do
10 Compute P (d|·

f

, r
a

, v
probe

) from Ï.;
11 Compute G from Equation 6.1.;

12 Compute average G for all d, rini

a

≠ r
a

pair, and v
probe

;

In order to obtain the average information gain, the process was repeated for 50 trials

from the construction of memory primitives to the nodule’s depth estimation stage for each

of the three levels of known depth, i.e. 2, 4, and 8 mm from the rest 20 trials of measured
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torque during palpation by the probe of di�erent sti�ness levels (including non-compliant

one) at di�erent speed (v
probe

= 10, 20, 30 mm/s, and “idle”). Figure 6.4 shows the average

directional information gain responses for each probe sti�ness transition for various palpation

speeds and di�erent levels of nodule’s depth.

Fig. 6.4 Average information gain responses and corresponding standard error for di�erent
probe sti�ness transitions for various palpation speeds (including “idle”) and di�erent level
of nodule’s depth, 2 mm (a), 4 mm (b), and 8 mm (c), where ’locked’ represents the case
when the joint is locked (non-compliant)
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As can be seen in Figure 6.4, there are little to none additional information gained for

the sti�ness transfer from any compliant level to non-compliant. However, the additional

information gain increases during the sti�ness transfer among di�erent sti�ness levels and from

non-compliant to compliant. This signifies that by moving or changing from non-compliant

to compliant probe, more information about the environmental variable can be gained.

In general, this indication is very useful in determining whether or not a system or a

process should carry on exploring the environment. From this particular case, it is clearly seen

that by transfer the compliancy state of the probe from any compliant level to non-compliant

state, little to none information is gained. This could be implied that there is no need

for a probe to further explore the environment under the non-compliant state as no new

information can be gained. On the other hand, the maximum information is gained by moving

from the non-compliant to compliant state of the probe. This means that new information

can be gained by moving from rigid state to compliant state. This chapter has provided the

experimental evidence outlining the necessity of the controllable sti�ness body during the

exploration of the environment. The experimental evidence provided in this chapter could

also help explain the reason as to why the actuation (changing muscle co-contraction state)

is essential during exploration of the environment.

6.4 Discussion

This chapter investigates the influence of internal impedance control on the embodied

perceptual information gain in tactile exploration of a soft tissue. A laboratory made two

link planar manipulator with a McKibben type pivot joint controllable sti�ness was used as

a robotic probe. The experimental evidence suggested that the information gain responses

depend on the influence from each behavioral and environmental variables and also the

interactions among them.

In this chapter, the e�ect of probe’s sti�ness transition on information gain in KL-

divergence was explored, which can be used for directing the behavior of the probe in

exploratory process to estimate the depth of an embedded nodule in a soft silicone phantom

96



6.4 Discussion

during palpation. 30 randomly selected trials from torque responses for each interaction

condition are used to construct memory primitives; whereas the rest 20 trials are used as

test conditions. Depending on the interaction conditions, the directional information transfer

can be used as a guideline in the probe’s sti�ness modulation strategy (initial r
a

, and final

r
a

) to gain the information about the environment. In order to deliver the average results,

depth estimation process were repeated for 50 trials, in which new learning and test set

were randomly selected for each trial, across di�erent interaction conditions. In general, the

average additional information gain is relatively higher for transitions from non-compliant

to compliant and among compliant levels in comparison to those from compliant to non-

compliant. This means that the exploratory process is more likely to gain information

regarding the depth of the nodule by switching from non-compliant probe to compliant one.

From the experimental results, it is fair to conclude that both detection of a nodule and

nodule’s depth estimation depend on the interaction among all behavioral conditions of the

probe, including the probe sti�ness, palpation speed, and the environmental variables such as

the sti�ness distribution of nodule. It was also shown in [41] in surgeon’s manual palpation,

that there is variability in behavioral strategies and characteristics employed to locate hard

nodule in a soft tissue. Therefore, this chapter highlights that a controllable sti�ness robotic

probe can o�er flexibility to use a wider range of strategies, similar to what surgeons use

during manual palpation to maximize the gain of palpation information by searching in the

sti�ness and probing speed space. However, development of such an autonomous strategy is

beyond the scope of this chapter.

This chapter provides important guidelines to design a variable sti�ness probe and

construction of internal memory primitives to estimate information gain of changing the

internal sti�ness. Furthermore, these findings also contribute to our understanding in the

role of embodiment in perception, which acts as a mediator between perception and action.

The next chapter explores the possibility in implementing an autonomous real-time algorithm

that can e�ciently tune the sti�ness and palpation speed of the probe by monitoring the

information gain.
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Chapter 7

Active Bayesian haptic perception of robotic probe

Abstract— The previous chapter has discussed the e�ect of the internal impedance variation

on haptic perception information gain in the task of identifying the abnormality in a soft

tissue. It was shown that information regarding the presence of a hard nodule in soft silicone

phantom can be enhanced through the regulation of the probe’s joint sti�ness. By tuning the

behavioral variables of the probe, such as the joint’s sti�ness, the information gained regarding

the environment can be maximised. This raises the question as to how these variables (probe’s

sti�ness, indentation, and PSV) should be tuned or controlled given di�erent environments

during haptic exploration. Furthermore, the experimental results in Chapter 3 indicate that

humans also regulate the sti�ness of the MCP finger joint during haptic exploration to

estimate the depth of a nodule embedded in a soft silicone phantom. The pattern from such

muscle co-contraction regulation was extracted and presented in the form of a Markov decision

matrix. This chapter uses the same haptic exploration case of estimating the depth of a

nodule embedded in a soft silicone phantom as a case study to explore whether the robotic

probe could exploit the similar human’s sti�ness control pattern to enhance the estimation.

The soft robotic experiments showed that haptic information gain and hence the accuracy of

estimating the depth of the hard nodule can be maximized by varying the internal sti�ness of

the soft probe.
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7.1 Introduction

This chapter used the task of estimating the depth of a hard nodule buried inside a soft

object, i.e. soft silicone phantom, carried out by a robotic finger with variable sti�ness

and behavioral control to investigate their individual and integrative roles in the e�cacy of

information gain in active haptic perception. It was shown in a previous study [165] that

an artificial tactile sensor can outperform the human’s capability in the passive detection

of a lump embedded inside a soft phantom. In the study, haptic perception of human was

limited to that from the passive tactile sensation perceived through mechanoreceptors at

the finger distal phalanges. However, human’s active touch behavior was not considered

in the study. It was shown in [103] that by controlling the exploration speed, orientation,

and voluntary movement, the performance of the perception can be enhanced during the

active touch. The experimental results presented in this Chapter 3 also suggest that apart

from the voluntary movement of the finger, the voluntary muscle co-contraction also shows

variability during manual palpation. Therefore it can be suspected that the regulation of

finger’s internal impedance plays an important role in human’s proprioceptive information

during active exploration.

This chapter investigates the role of internal impedance in proprioception using a soft

robotic probe with a controllable sti�ness Mckibben type joint to probe the soft silicone

phantom. While Chapter 6 has confirmed the necessity for the soft robotic probe to attain

its ability to control the sti�ness rating of the body (joint’s sti�ness) in order to gain the

information during the exploration of the environment; the results did not suggest the

optimum levels of probe’s sti�ness to achieve the maximum estimation accuracy during the

exploration of the environment. It was the transfer of joint’s sti�ness level strategy based on

the directional information transfer that plays an important role in enhancing the information

gained about the environment. The information gain during the transfer of joint’s sti�ness

could potentially be used to help in determining the appropriate probe’s sti�ness modulation

strategy during an automated active exploration.
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The soft robotic probe used in this study represents an abstracted version of the human

finger with automated joint’s sti�ness and behavioral (Probing sweeping velocity (PSV) and

indentation) control mechanisms. The soft robotic probe comprises of a controllable sti�ness

joint and a force sensor at the base, so that the proprioceptive information at the force

sensor is conditioned by the level of joint’s sti�ness and behavioral variables similar to how

the biological finger’s proprioceptive sensation functions. In the first part of experiments

presented in this chapter (Experiment 1), the influence of variable internal sti�ness on the

e�cacy in haptic perception was investigated. The sti�ness of the soft robotic probe was

controlled across trials according to the co-contraction strategy employed by human subjects.

The human’s co-contraction strategy was abstracted in the form of a Markov decision process

from the electromyography (EMG) signals recorded from the human subjects presented in

Chapter 3.

Furthermore, when people were asked to palpate a novel soft object to discern its physical

properties such as texture, elasticity, and even non-homogeneity, they not only regulated

co-contraction level of antagonistic muscles to control the mechanical impedance of fingers, but

also the probing behavior, such as indentation and palpation velocity. It is suspected that such

behavior tries to enhance haptic perception by regulating the function of mechanoreceptors

at di�erent depths of the fingertips and proprioceptive sensors such as tendon and spindle

sensors located in muscles. Therefore, the second part of the experiment (Experiment 2)

involved the regulation of the indentation level and probe sweeping velocity in addition to the

internal sti�ness. This experiment addresses the question as to whether a robotic probe with

variable impedance, indentation, and probe sweeping velocity (PSV) can achieve a better

estimation accuracy of a given environmental condition (i.e. depth of a nodule embedded

inside a silicon phantom).

From the experimental results, it was found that: 1) The controllable sti�ness soft robotic

probe improved its accuracy of estimating the depth of a hard nodule in the same soft

phantom by implementing the human’s muscle co-contraction strategy obtained in Chapter 3,

2) The internal sti�ness of the soft probe plays a statistically significant role in the accuracy

of nodule’s depth estimation, 3) A Bayesian learning framework combining the regulation of
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internal sti�ness, indentation level, and PSV can maximize the information gain and enhance

the estimation accuracy, and 4) Experimental results to show that proposed algorithm can

achieve on average 99% and 96% accuracy in estimating the nodule’s depth in both active

and passive perception respectively, when the nodule depth is one out of 3 known levels. The

results were in line with the speculation in previous work [20], where a robotic manipulator

can use transfer entropy to maximize sensory information gain of its own states by regulating

the internal sti�ness.

7.2 Experimental setup

The first objective of this chapter is to derive deeper insights into the human’s muscle

co-contraction strategy during manual palpation to estimate the depth of the hard nodule. In

this study, a variable sti�ness probe as an abstracted version of the human finger was used to

isolate and study the e�ect of joint sti�ness control on the tendon force/torque sensor located

at the base shown in Figure 7.1 (a) as opposed to force measurement at the tip of the finger.

Secondly, this chapter also investigates the influence of the variation of combinations of

probe’s internal sti�ness, indentation level, and PSV, on real-time estimation of the depth of

the hard nodule. The experiments described in this chapter exploited the variable behavioral

probe explained in Chapter 4.3 and the identical set of soft silicone phantoms with the nodule

embedded at three di�erent depth levels, d = 2, 4, and 8 mm described in Chapter 3.2.

In the first experiment, the connecting link of the probe was kept constant at l
o

= 143

mm. The total length of this probe when the angle of pivot joint, q = 0, was 293 mm. The

distance between the surface of the soft silicone phantom and the XY plate is 290 mm. This

resulted in the constant indentation, i = 3 mm. The complete course of probe’s movement

in each palpation trial is shown in Figure 7.1 (c), where the speed of the probe sweeping

movement is kept at v
probe

20 mm/s. The only controlled parameter in the first experiment

was the sti�ness rating of the probe. The sti�ness rating of the joint, K
s

, can be expressed as
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Fig. 7.1 (a) Probe’s design. It comprises of a Firgelli L12 linear actuator to control the
sti�ness of the probe. ATI Nano17 F/T transducer is mounted at the top-end of the base
link to measure the torque during the interaction with soft silicone phantom, (b) Photo
of the complete experimental platform’s design comprising of the variable sti�ness probe
mounted on XY-stage during palpation to estimate the depth of an embedded nodule. The
red translucent path graphically imposed in the photo indicates the probing path in the
experiment.

a function of rotational displacement, q, and the position of the anchor ring, r
a

, as following:

K
s

= 2r
a

Rk
s

cos (q), (7.1)
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where R = 6.8 mm is the radius of the pivot joint at which the microfilament is attached

to. The analytical sti�ness of the joint undergoing changes in the angular displacement, q,

and the position of the anchor ring, r
a

, is shown in Figure 7.2 (b). The relationship between

the sti�ness rating, K
s

, and the angular displacement of the joint, q, was governed by the

position of the anchor ring. This relationship became more linear within the probe’s angular

deflection space as the anchor ring approaches its origin at r
a

= 0 mm. By changing the

position of the anchor ring, the relationship between q and the angle-dependent sti�ness

rating of the joint can be controlled. Therefore, the joint sti�ness rating of the probe was

solely determined by the position of the anchor ring, r
a

.
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Fig. 7.2 (a) The exploded view of the Mckibben type joint mechanism with two springs
located inside the base link. Both springs are attached to the common point at the middle of
the pivot joint through a microfilament thread. The other ends of both springs were attached
to the anchor ring. The displacement of the anchor ring from the resting position, r

a

, was
used to control the sti�ness of the joint. (b) The analytical sti�ness rating of the joint as the
angular displacement of the pivot changes between -90¶ and 90¶ across the variation of the
anchor ring’s position.

In the second part of the experiments, the indentation level and the probe sweeping

velocity (PSV), were also allowed to vary, in addition to the variation of internal sti�ness of

the probe. The indentation level can be controlled by controlling the linear actuator at the

connecting link, l
o

. The PSV can be controlled by the built-in controller of the XY-stage.

The experimental conditions in the second part of the experiment can be found in Table 7.1.
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Table 7.1 Experimental Conditions

Experimental variables Sym. Values (Exp. 1) Values (Exp. 2) Units
Probe’s sti�ness
(anchor position) r

a

{0,4,8,12,16} {0,4,8,12,16} mm

Relative distance between
the tip of the probe
at rest and the surface
of phantom, i.e. inwards
the phantom (indentation)

i 3 {3,5,7,9,11} mm

Probe’s velocity v
probe

20 {10,20,30} mm/s
Nodule’s depth d {2,4,8} {2,4,8} mm
Distance between the XY
plate and surface of
soft silicone phantom

l
t

290 290 mm

In both experiments, in each probing trial, the probe was programmed to probe along

the sample in a sweeping motion in the mono direction of red solid arrow line (shown in

Figure 7.1 (c)) along the red path (shown in Figure 7.1 (b)). The position of the probe was

controlled by the XY-stage. At the end of each trial, XY-stage was programmed to move the

probe back to its origin position (“X” in Figure 7.1 (c)) through the red dotted path. The

torque, ·
f

, generated due to the interaction with soft tissue was measured at the rate of

1000 Hz around the F/T transducer’s x-axis, which was parallel to the axis of the probe’s

pivot joint. The data acquisition only took place when the probe was palpating over the soft

silicone phantom (red solid line in Figure 7.1 (c)). The measurement of ·
f

and the control of

r
a

, i, and v
probe

were carried out via a program written in LabView2012 application, National

Instrument, Corp., through data acquisition cards PCIe-6320 and NI-USB6341, respectively.

Since human subjects spent some time regulating the level of muscle co-contraction

and behavior during manual palpation, this chapter posed the hypotheses that sti�ness and

beahvioral variables regulation can exploit prior experience of proprioceptive sensors in known

environments. Here, these hypotheses were tested using a laboratory made robotic probe

that can regulate the internal sti�ness, indentation level, and PSV, to improve the accuracy

of estimating an environmental variable (the depth of a buried nodule in a soft phantom

in this case), by exploiting memory primitives constructed in multiple internal sti�ness

levels (for first part of the experiment) and in multiple combinations of internal sti�ness,
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indentation, and PSV levels (for second part of the experiment) to maximize information

gain in a Bayesian inferencing framework.

7.3 Methodology

7.3.1 Construction of probe’s memory primitives

Similar to the human experiment described earlier in this thesis in Chapter 3, the robotic

probe experiments were also divided into two parts. Firstly, the probe was allowed to explore

the environment under di�erent behavioral conditions for 25 trials. In this instance, the

probing experience during the interaction with soft phantoms with nodules embedded at

di�erent depths is presented as ’memory primitives’ in the form of a probability distribution

of the measured quantity, ·
f

, as a function of probe’s internal sti�ness, r
a

, indentation level, i,

and PSV, v
probe

and the environmental parameter, i.e. the depth of nodule, d, over multiple

learning trials. The recorded ·
f

from each trial was post-processed in MATLAB R2013b

application, MathWorks, Inc. to create the memory primitives.

Each measured torque signal recorded from the F/T transducer was first de-noised. The

purpose of filtering the raw measured torque signal obtained from the sensor was to remove

the noise as well as to discriminate the torque sensed during the interaction at the location

of hard nodule from that of normal soft silicone phantom, which was subjected to the sudden

changes in the torque signal. Therefore, discrete wavelet transform (DWT) with Daubechie’s

mother wavelet, db10, was used to decompose the raw torque signal for 5 decomposition levels.

This was because, in comparison with other technique like fast Fourier Transform (FFT),

DWT Daubechies is more appropriate to detect sudden discontinuities in the signal under

the time domain [164]. From each de-noised torque signal, the peak torque at the nodule’s

location was extracted. Figure 7.3 shows an example of a of processed torque signal with

shaded error bars representing standard deviation across di�erent probe’s sti�ness levels r
a

,

given i = 3 mm and v
probe

= 20 mm/s, from 25 trials during the interaction with phantom

with nodule embedded at 8 mm. The peak torque was extracted from the processed torque

signal around the location at which the probe went over the nodule (shown as ’o’ in the
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!

ra = 16mm 
ra = 4mm ra = 8mm ra = 0mm 

ra = 12mm 

(a) 

(b) 

Fig. 7.3 The mean and shaded error bar across 25 trials of processed torque signal perceived
during the interaction with soft silicon phantom with nodule embedded at d = 8 mm across
di�erent probe’s sti�ness levels, r

a

, when i = 3 mm and v
probe

= 20 mm/s. The peak torque
at the nodule location is captured by taking the maximum around the area at which the
nodule is embedded (shown in ’o’).

Figure 7.3). The probability distribution of torque, P (·
f

|d, r
a

, i, v
probe

), can be generated by

fitting a normal distribution to the extracted peak torque data captured from all 25 trials

given a unique combination of di�erent nodule’s depth, d, probe’s sti�ness, r
a

, indentation

level, i, and PSV, v
probe

.

For Experiment 1, the memory primitives of peak torque were constructed across 5 levels

of sti�ness rating, r
a

, during the interaction with soft phantoms with nodule embedded at

3 di�erent depth levels, d. This results in a total of 15 unique interaction conditions. For

each combination of given probe’s sti�ness and nodule’s depth level, 25 palpation trials were

repeated to construct the memory primitives of the probe. The memory primitives resulted

from the training phase of the probe are shown in Figure 7.4.
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Fig. 7.4 Sample of memory primitives computed as probability function of the de-noised torque
profiles from 25 learning trials given di�erent probe’s internal sti�ness levels, denoted by r

a

.
Each of the memory primitives represents the probability of torque during the interaction
with the probe with internal sti�ness, r

a

= 0, 4, 8, 12, and 16 mm respectively.

For Experiment 2, the memory primitives of peak torque were constructed across 5 levels

of sti�ness rating, r
a

, 5 levels of indentation, i, and 3 levels of PSV, v
probe

, during the

interaction with soft phantoms with the nodule embedded at 3 di�erent depth levels, d. This

results in a total of 225 unique interaction conditions. For each combination of given probe’s

sti�ness and nodule’s depth level, 25 palpation trials were repeated to construct the memory

primitives of the probe. Here, only 81 interaction conditions are depicted as examples of

memory primitives from the probe’s training phase as shown in Fig. 7.5 (a), (b), and (c).

7.3.2 Bayesian inferencing framework

From the non-linear relationship between the measured torque at the base, ·
f

, the depth of

buried nodule, d, and the behavioral variables of the probe, (r
a

for Experiment 1, and r
a

, i,

and v
probe

for Experiment 2) presented in the memory primitives, an appropriate stochastic

machine learning technique can be implemented to understand the role of varying the probe’s

sti�ness in solving the nodule’s depth estimation problem during robotic palpation. It was

found in [166] that the machine learning algorithm that holds the closest characteristics to

that occurs in the central nervous system in the brain for solving the interpretation and the

estimation problem is “Bayesian” decision process. This involves the systematical recruitment
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Fig. 7.5 The sample of memory primitives shown here consist of those when the PSV,
v

probe

= 10, 20, and 30 mm/s, in subfigures (a), (b), and (c), for the indentation level, i, of
3, 7, and 11 mm, and the sti�ness of the joint denoted by r

a

, of 0, 8, and 16 mm.

of prior beliefs and the likelihood from the past experience. Therefore, in this chapter, for

the estimation of the nodule’s depth using the robotics probe, Bayesian Inference approach

was used to analyze the real-time captured peak torque data during the palpation over the

nodule embedded inside silicone phantom.

This chapter explores the implementation of Bayesian inferencing approach in estimation

of the nodule’s depth given the di�erent scenarios in controlling the behavioral variables,

including keeping these variables stationary across iterations. The memory primitives

constructed under the probe’s sti�ness space during the training phase were used to estimate

the depth of the nodule. The iterative equation for Bayesian inferencing algorithm was as

follows:

P
t

(d|·
f

) = P (·
f

|d, ›)P
t≠1(d)

q
m

n=1 P (·
f

|d
n

, ›)P
t≠1(d

n

) , (7.2)

where t is the current estimation iteration, n is the index of d, and m = 3 is the number of

possible nodule depths. P
t

(d|·
f

) represents the posterior probability distribution of nodule’s

depth given the measured torque, ·
f

computed from the prior distribution P
t≠1(d) and the

sampling or likelihood probability distribution of torque, P (·
f

|d, ›) given depths and di�erent

set of behavioral variables (Experiment 1: › = r
a

, and Experiment 2: › = {r
a

, i, v
probe

})

presented in the memory primitives, Ï. The posterior computed at each iteration was then
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used to update the probability distribution of the depth as a prior distribution in the next

iteration. The initial prior of the function P
t=0(d) had a flat distribution across di�erent

depths, reflecting the unbiased probability.

7.3.3 Kullback Liebler divergence

In general, the common influences of multiple coupled systems and factors can be quantified

through the directed information exchanges by measuring the information transfer entropy,

also known as relative entropy [159]. For example, the combination of internal sti�ness,

indentation level, and PSV; and the torque sensor reading can be assigned to be random

variables (RV-A) and (RV-B) respectively. While the mutual information of two coupled

variables between RV-A and RV-B does not change with the exchanges of variables; the

transfer entropy from RV-A to RV-B is not identical to that from RV-B to RV-A. Transfer

entropy can be quantified using Kullback-Liebler (KL) divergence.

In particular, KL-divergence can be used to assess whether further information regarding

the nodule’s depth estimation can be gained by taking another action (further iteration in

Bayesian nodule’s depth estimation procedure). If a set of P
t

(d|·
f

) computed at the end of

each Bayesian iteration is considered as the hypothesis of the depth estimation, its entropy

for a given torque measurement, ·
f

, is dependent on a set of probing behavioral variables, ›

(sti�ness, PSV, and etc.). KL-divergence defined in equation (7.3) represents the information

gained, G
t

, about the relationship between the hypothesis of depth estimation, P
t

(d), and ·
f

across iterations of Bayesian Inference as well as across di�erent combinations of probing

behavioral variables. Therefore, KL-divergence is a good measure to quantify the gain of

di�erent actions underlying the changes in the behavior.

G
t

= P
t

(d|·
f

) log P
t

(d|·
f

)
P

t=0(d) , (7.3)

P
t

(d|·
f

) represents the probability distribution of depth estimation which is obtained from

the Bayesian inference shown in Equation (7.2) at tth iteration, and P
t=0(d) represents the

base hypothesis about the nodule’s depth estimation.
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Kullback-Liebler transfer entropy could be implemented in addition to the Bayesian

Inference method to determine the number of measurements required to estimate the nodule’s

depth by computing the correlation distance ”, between information gain of the current

hypothesis, G
t

, and that of the prior hypothesis G
t≠1, in relation to the base prior distribution

P
t=0(d), as shown in Equation (7.4).

” = (G
t

≠ Ḡ
t

)(G
t≠1 ≠ Ḡ

t≠1)Õ
Ò

(G
t

≠ Ḡ
t

)(G
t

≠ Ḡ
t

)Õ
Ò

(G
t≠1 ≠ Ḡ

t≠1)(G
t≠1 ≠ Ḡ

t≠1)Õ
, (7.4)

where

Ḡ
t

= 1
m

ÿ

n

G
tn

. (7.5)

The palpation process stopped at the point where the correlation distance was less than

empirically specified threshold T = 0.0005, signifying that there was none to little change

in the information gained across iterations. Therefore KL-divergence can be used as an

indication as to whether the estimation process requires further iterations to obtain more

information.

7.4 Experiment 1: Bayesian haptic perception under sti�-

ness’s framework

7.4.1 Bayesian haptic perception with information gain metrics with sta-

tionary probe’s sti�ness

The first experiment involved the implementation of Bayesian inferencing algorithm together

with the Kullback-Liebler transfer entropy for nodule’s depth estimation while the probe’s

sti�ness was kept stationary. The iterative equation used in the estimation process is shown

in Equation (7.2), where › = r
a

. At the end of each iteration, the transfer entropy based on

KL-divergence, G
t

, shown in Equation (7.3) was computed to determine whether su�cient

information was gained to make the estimation. The estimated depth was computed from

the maximum likelihood found. The depth estimation procedure is shown in Algorithm 7.4.
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Algorithm 7.1: Nodule’s depth estimation algorithm using Bayesian Inference and KL
divergence
1 function DepthEstimation (·

f

(d
r

, r
a

));
Input : Real time torque reading, ·

f,t

(d
r

, r
a

)
Output : Depth estimation accuracy

2 Create memory primitives;
3 for each set of probe’s sti�ness, r

a

, and actual nodule’s depth, d
r

do
4 t = 0;
5 while ” > T , the threshold do
6 t = t + 1;
7 Retrieve and process new ·

f,t

given known probe’s sti�ness r
a

from the sensor
reading;

8 Compute P (·
f,t

|d, r
a

) from Ï;
9 Recall prior distribution of hypothesis of nodule’s depth P

t≠1(d);
10 Compute P

t

(d|·
f

) using Equation (7.2);
11 Store posterior distribution as a prior distribution for the next iteration;
12 Compute G

t

using Equation (7.3);
13 Compute correlation distance, ”, between G

t

and G
t≠1, using Equation (7.4) ;

14 Find maximum depth likelihood from P
t

(d|·
f

), which reflects the estimated depth,
d

est

= argmax
m

(P
t

(d|·
f

));

15 Compute the nodule’s depth estimation accuracy

Results

Figure 7.6 exhibits the example of the progression of the nodule’s depth estimation (expected

value and standard errors) across Bayesian inferencing iterations. As shown in these figures,

the algorithm did not make any progress towards the convergence nor any change in the

estimation as the Bayesian algorithm progressed. This may be resulting from the fact that

the Bayesian inferencing algorithm was allowed to observe only in a single memory primitives

by keeping the probe’s sti�ness stationary.

By implementing the Bayesian inference algorithm, an overall estimation accuracy of

66.7% with the accuracy of 80%, 60%, 60% for nodule embedded at d
r

=2, 4, and 8 mm,

respectively (shown in Figure 7.10, orange bars) was obtained. The result on the estimation

accuracy exhibited similar trend to that obtained in human experiment in Chapter 3, where

the depth of nodule embedded closer to the exposed surface of soft silicone phantom can be

approximated more easily. It is important to note here that though the results show that on
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Fig. 7.6 The example of mean and standard errors of the estimated nodule’s depth at each
Bayesian iteration, across which the probe’s sti�ness remains stationary. The actual depths of
the nodule assessed here include d

r

= 2, 4, and 8 mm, shown in (a), (b), and (c) respectively.
The actual depth is represented by dotted grey line.

average the robotic probe provides slightly enhanced nodule’s depth estimation accuracy in

comparison to those conducted by human (shown in Figure 7.10, green bars); it cannot be

misinterpreted that the fixed sti�ness strategy (performed by robotic probe) can outperform

the human’s finger sti�ness control strategy. The di�erences in the absolute values of accuracy

obviously came from the robot’s ability to retrieve multiple memories with perfect accuracy

and to be able to sense using an advanced sensor. The next section explores how human’s

strategy in estimating nodule’s depth obtained in previous experiment can be implemented

to increase the estimation accuracy.

7.4.2 Bayesian haptic perception with information gain metrics computed

based on human’s sti�ness control strategy

This section explores whether the variation of probe’s joint sti�ness like human can improve

the e�cacy in the estimation of the nodule’s depth. The extracted human’s co-contraction

strategy in palpation in the form of a Markov chains were implemented in the Bayesian haptic

perception with variable probe’s sti�ness across iterations for nodule’s depth estimation

algorithm. Unlike the algorithm used in previous section where the estimation procedure

was constrained by the exploration under a single memory primitive (fixed probe’s sti�ness)

across iterations; this active Bayesian algorithm allowed change in the probe’s sti�ness across

iterations. The probe’s sti�ness across each iteration was modulated based on the Markov
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Table 7.2 Probe’s sti�ness equivalent to average human’s co-contraction levels

Human’s ave. co-contraction levels 0.1 0.2 0.3 0.4 0.5
Probe’s internal sti�ness, r

a

[mm] 0 4 8 12 16

decision matrices obtained in Section 3.3.2 and current level of probe’s sti�ness. In order

to utilize the Markov decision matrices, the levels of probe’s sti�ness available in memory

primitives were corresponded with the co-contraction levels from the Markov decision matrices

as shown in Table 7.2.

This section explores whether the accuracy of nodule’s depth estimation can be enhanced

by the modulation of probe’s sti�ness based on human’s co-contraction strategy in palpation.

In order to assess this, a similar estimation procedure as shown in Algorithm 7.2 was

performed. At the end of each iteration, the probe’s sti�ness was controlled based on the

Markov chain rule. This process was repeated for 100 trials for each phantom.

Algorithm 7.2: Nodule’s depth estimation algorithm using Bayesian inference and KL
divergence with human’s co-contraction strategy
1 function DepthEstimation (·

f

(d
r

, r
a

));
Input : Real time torque reading, ·

f,t

(d
r

, r
a,t

)
Output : Depth estimation accuracy

2 Create memory primitives;
3 for each soft silicone phantom with actual nodule’s depth, d

r

do
4 t = 0;
5 while ” > T , the threshold do
6 t = t + 1;
7 Retrieve and process new ·

f,t

given known probe’s sti�ness r
a,t

from the sensor
reading;

8 Compute P (·
f,t

|d, r
a,t

) from Ï;
9 Recall prior distribution of hypothesis of nodule’s depth P

t≠1(d);
10 Compute P

t

(d|·
f

) using Equation (7.2);
11 Store posterior distribution as a prior distribution for the next iteration;
12 Compute G

t

using Equation (7.3);
13 Compute correlation distance, ”, between G

t

and G
t≠1, using Equation (7.4);

14 Compute next probe’s sti�ness level, r
a,t+1, from M

mk

(r
a,t

) using
Equation (3.4);

15 d
est

= argmax
m

(P
t

(d|·
f

));

16 Compute the nodule’s depth estimation accuracy
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The graphical representation of the nodule’s depth estimation process using Bayesian

inference and KL divergence with human’s co-contraction strategy is shown in Figure 7.7.

The example of a single assessment trial as the estimation process progress with the posterior

computation using Bayesian inference in each iteration including the computation of the

likelihood function from the memory primitives are shown in Figure 7.8. The prior assumption

at t = 1 represents the flat distribution P0, signifying unbiased distribution at the beginning

of the process. The process began in first iteration t = 1 by capturing the real-time torque,

·
f,1 during the first palpation iteration given the arbitrarily chosen probe’s sti�ness level

r
a,1. These information were then used to compute the likelihood function from memory

primitives, Ï. The posterior was computed from the prior and the likelihood function in

each iteration. At the end of each iteration the information gain, G
t

, was computed and the

correlation distance between current information gain and that from the previous iteration

was computed to determine whether the process has gained new information. The estimation

process (as shown in this example in Figure 7.8) ended at t = 5. At the end of the process,

the estimated depth d
est

was computed from the posterior distribution.

Results

Figure 7.9 depicts the average nodule’s depth estimation across 100 estimation trials at each

Bayesian inferencing iteration. Since, most of the estimation trials tend to converge within 5

Bayesian iterations or less, the converging progression of the nodule’s depth estimation are

presented up to 6th Bayesian iterations. As shown in these figures, as the Bayesian inferencing

algorithm progressed, the nodule’s depth estimation converged towards the actual nodule’s

depth, although this happened at di�erent rate. The rate of the convergence was directly

proportional to the nodule’s depth. As the nodule was buried deeper from the exposed

surface, the higher the number of iteration was required for the algorithm to converge. On

the contrary to the previous algorithm, where the probe’s sti�ness was kept stationary across

iteration (shown in Figure 7.6), this algorithm was allowed to explore in multiple memory

primitives by regulating the joint’s sti�ness based on human’s sti�ness control strategy.
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Fig. 7.7 Graphical representation of the nodule’s depth estimation process using Bayesian
inference and KL divergence with human’s co-contraction strategy.

Therefore, this allowed the depth’s estimation to converge towards the actual nodule’s depth,

d
r

.

The overall average accuracy from 100 trials of nodule’s depth estimation using Bayesian

Inference with KL-Transfer Entropy together with the sti�ness modulation based on average

human’s co-contraction strategy across iterations reaches slightly above 90% as shown in

Figure 7.10 in blue bar. The estimation accuracy from all individual actual depths were also

higher in comparison to those with stationary r
a

(with overall accuracy of approx. 67%).
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Fig. 7.8 In the first iteration of the nodule’s depth estimation process, r
a,1 was randomly

selected. Each iteration began by recording ·
f,t

for given r
a,t

. The chosen r
a,t

was used
to select an appropriate set of memory primitive. The likelihood function was computed
from the memory primitives as the probability of getting ·

f,t

given r
a,t

for di�erent d. The
posterior was then computed from the likelihood and the prior. The process stops when the
correlation distance ” of information gain G

t

is less than specified threshold T .

7.4.3 Statistical analysis of the results

In addition, the ANOVA test was performed on the estimation result to assess the influence

of the nodule’s depth level and the probe’s sti�ness level, in the case where the probe’s

sti�ness was kept stationary across iterations. The ANOVA revealed significant di�erences
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Fig. 7.9 The average of mean and standard errors of the estimated nodule’s depth at each
Bayesian iteration across 100 iterations with human’s sti�ness control strategy. The actual
depths of the nodule assessed here include d

r

= 2, 4, and 8 mm, shown in (a), (b), and (c)
respectively. The actual depth is represented by dotted grey line.
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Fig. 7.10 Overall average nodule’s depth estimation accuracy resulted from 1) average human’s
estimation across 6 subjects (shown in green), 2) the Bayesian Inference together with the
KL-Transfer Entropy with fixed probe’s sti�ness across iterations (shown in orange), and
3) the Bayesian Inference together with the KL-Transfer Entropy with extracted human’s
co-contraction strategy (shown in blue).

between di�erent nodule’s depth levels (p < 0.05) as well as between the probe’s sti�ness level

(p < 0.05). The interaction between the depth level and the probe’s sti�ness level was also
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significant (p < 0.05). Post hoc comparisons using the Bonferroni correction revealed that for

the estimation accuracy of the nodule embedded at 2 mm beneath the surface is statistically

significantly higher than the other depth levels. For the cases, where nodule is embedded

at 4 mm and below, the di�erence in the estimation accuracy was not significant. Post hoc

comparison further suggests that the probe’s sti�ness level can be statistically separated into

three groups based on the significant di�erence. The results suggest that the sti� probe (r
a

= 16 mm) can statistically obtain higher accuracy when the probe’s sti�ness is fixed.

Multiple factor ANOVA with Bonferroni correction test was also performed on the

nodule’s depth estimation accuracy given di�erent nodule’s depths and di�erent experiments

(1. human (from Chapter 3), 2. robotic probe with static sti�ness, and 3. robotic probe

with variable sti�ness generated from Markov sti�ness probability transition matrices shown

in Figure 3.3). Multiple factor ANOVA test revealed that the nodule’s depth level had

statistically significant influence on the estimation accuracy (p < 0.05), and the type of

experiments also statistically significantly influenced the depth estimation results (p < 0.05).

However, the interaction between these factors did not have statistically significant influence

on the nodule’s depth estimation (p > 0.05). Post hoc analysis reported that the estimation

accuracy did not statistically significantly di�er among the nodule’s depth level of d = 4

mm and below; whereas depth level d = 2 mm yielded the most accurate estimation. The

result from post hoc analysis also suggest that the result from the human experiment and the

robotic probe with static sti�ness did not di�er statistically. On the other hand, the robotics

probe can statistically significantly enhance the nodule’s depth estimation accuracy when

using variable sti�ness strategy generated from Markov matrices as opposed to the static

sti�ness strategy (p < 0.05).

7.5 Experiment 2: Bayesian haptic perception under multiple

behavioral variables framework

While it was evidently found in the first part of the experiments (Experiment 1) presented

in this chapter that through the regulation of internal impedance can enhance the accuracy
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during haptic perception; there may be some other behavioral factors that also contribute to

the interpretation of the environment. It was observed that when people were asked to palpate

a novel soft object to discern its physical properties, they did not only regulate co-contraction

level of antagonistic muscles to control the mechanical impedance of fingers, but also the

probing behavior, such as indentation and palpation velocity. It was suspected that such

behavior tries to enhance haptic perception by regulating the function of mechanoreceptors

at di�erent depths of the fingertips and proprioceptive sensors such as tendon and spindle

sensors located in muscles. Therefore, this experiment integrated both indentation level

and probing velocity control, in addition to probe’s sti�ness control, to form 225 unique

interaction conditions. The purpose of this experiment was to investigate whether in addition

to sti�ness control, the control of the probing exploratory strategy at multiple behavioral

levels could enhance the e�cacy of the information gain in enhancing the nodule’s depth

estimation.

7.5.1 Bayesian haptic perception with stationary behavioral variables

Table 7.1 shows di�erent interaction conditions between the robotic probe and soft silicone

phantom used to assess the performance of the Bayesian Inferencing Algorithm 7.3 to estimate

d across 5 iterations. The assessment of the nodule’s depth estimation was repeated for

10 trials in order to obtain the average accuracy of estimation. In each assessment trial,

the memory primitives given di�erent combinations of probe’s interacting conditions were

constructed from 25 randomly chosen learning trials.

Fig. 7.11 shows an example of a nodule depth estimation trial that consists of 5 iterations

of Bayesian Inference for a given combination of probe’s sti�ness, indentation, and PSV.

Each subplot shows the progression of the posterior probability of nodule’s depth estimation

starting from a flat distribution at t = 0 to a refined one at t = 5.

Result

The overall accuracy across 10 assessment trials in nodule depth estimation after each iteration

and those for di�erent nodule depth levels are shown in Fig. 7.12. On average, the overall
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Algorithm 7.3: Nodule’s depth estimation algorithm using Bayesian Inference
1 function DepthEstimation (·

f,t=1..5(d
r

, r
a

, i, v
probe

));
Input : Real time torque reading, ·

f,t=1..5(d
r

, r
a

, i, v
probe

)
Output : Depth estimation accuracy

2 Define P
t=0(d) as a flat distribution across di�erent d;

3 for each combination of {r
a

, i, v
probe

}, and actual nodule’s depth, d
r

do
4 for each iteration t = 1..5 do
5 Retrieve and process new ·

f,t

from the sensor reading, given known probing
bahavior {r

a

, i, v
probe

}.;
6 Compute P (·

f,t

|d, r
a

, i, v
probe

) from Ï;
7 Recall prior distribution of hypothesis of nodule’s depth P

t≠1(d);
8 Compute P

t

(d|·
f

) using Equation (7.2);
9 Store posterior distribution as a prior distribution for the next iteration;

10 d
est

= argmax
m

(P
t

(d|·
f

));

d
r =

 2
m

m
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Fig. 7.11 Each plot depicts the distribution of depth estimation from the initially defined flat
distribution at t = 0 to t = 5 given di�erent combinations of probe’s sti�ness, indentation,
and PSV. The real depths of nodule, d

r

, assessed here were those known values associated
with the memory primitives explained earlier.
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nodule depth estimation accuracy increased from approximately 91% with standard deviation

of 3.23% at the first iteration (t = 1) to 96% with standard deviation of 1.8% at (t = 5).

The results showed that the estimation accuracy of nodule depth decreased as the nodule

was buried deeper from the exposed surface from 99.3% at d = 2 mm to 95.2% and 94.2%

at d = 4 and 8 mm, respectively. Higher iteration numbers caused the expected values of

estimation accuracy for all depth ranges to increase and the standard deviations to decrease.

Fig. 7.12 The resulting overall nodule’s depth estimation accuracy is shown in black line.
The estimation accuracy for each actual depth, d

r

= 2, 4, and 8 mm are shown in red, green
and magenta lines respectively.

Further statistical analysis was performed to investigate the significance of r
a

, i, and

v
probe

, on the depth estimation accuracy across all assessment trials. The Kolmogrov-Smirnov

test showed that the nodule’s depth estimation was not normally distributed (p > 0.05).

Hence, the conventional Analysis of Variance (ANOVA) could not be performed. Therefore, a

non-parametric Kruskal-Wallis method was applied. The resulting p-values from the test were

0.0002, 0.4715, and 0.7394 for probe’s sti�ness, r
a

, indentation, i, and PSV, v
probe

, respectively

over the course of 10 assessment trials across di�erent combinations. Therefore, probe’s

sti�ness, r
a

, had statistically significant contribution towards the nodule’s depth estimation

accuracy (p-value < 0.05); while the variation of i and v
probe

did not have significant influence.
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The average accuracy in the estimation of nodule’s depth given di�erent probe’s sti�ness,

r
a

, indentation level ,i, and PSV, v
probe

across 10 assessment trials are shown in Table 7.3,

7.4, and 7.5, respectively. It can be seen that the average nodule’s depth estimation was

slightly less accurate for the case when the joint of the probe was both sti�est and most

relaxed; while it became most accurate when r
a

= 12 mm. This suggests that the regulation

of body’s sti�ness matters when making an estimation about the environment. Nonetheless,

it is important to notice that the e�cacy of r
a

= 12 mm varied depending on the probing

speed and the indentation used.

Table 7.3 Nodule’s depth estimation accuracy across r
a

r
a

[mm] (Probe’s sti�ness)
d

r

[mm] 0 4 8 12 16
2 96.7% 98.7% 98.7% 99.3% 98.7%
4 90.7% 97.3% 93.3% 98.7% 98%
8 95.3% 73.3% 92.7% 100% 98%

Overall 94.2% 93.1% 94.9% 99.3% 98.2%

Table 7.4 Nodule’s depth estimation accuracy across i

i [mm] (Indentation)
d

r

[mm] 3 5 7 9 11
2 94.7% 100% 100% 99.3% 98%
4 96% 94.7% 90% 98.7% 98.7%
8 79.3% 96% 90% 98.7% 95.3%

Overall 93.3% 96.9% 93.3% 98.9% 97.3%

Table 7.5 Nodule’s depth estimation accuracy across v
probe

v
probe

[mm/s] (probing vel.)
d

r

[mm] 10 20 30
2 97.6% 100% 97.6%
4 96.4% 94.4% 96%
8 88% 96% 97.6%

Overall 94% 96.8% 97.1%

Furthermore, Figure 7.11 suggests that the posterior distribution of nodule’s depth

estimation can converge at di�erent rates depending not only on the combination of r
a

, i, and
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v
probe

, but also on the noise level of real-time sensor measurements in each iteration and the

chosen memory primitives in the likelihood function. This leaded to the question as to how

the number of iteration/exploration required to make an accurate estimation of the nodule

depth can be determined. This question can be addressed by computing the information

transfer entropy in each iteration.

7.5.2 Bayesian haptic perception with information gain metrics with sta-

tionary behavioral variables

In addition to the Bayesian Inference method for estimating the depth of the nodule from

the real-time captured torque data, here Kullback Liebler divergence was implemented at

the end of each Bayesian iteration to determine whether further measurement was required

to accurately estimate the nodule’s depth. This additional process was carried out by

computing the correlation distance, ”, (using Equation (7.4)) between information gain from

the current hypothesis, G
t

, and that from the prior hypothesis, G
t≠1, in relation to the base

prior distribution, P
t=0(d). No further measurement was necessary to make an accurate

estimation when the correlation distance, ”, was less than the empirically specified threshold

of T = 0.0005. This signified that there was negligible change in the information gained

across the iterations and the distribution of the nodule’s depth estimation hypothesis has

converged. The depth estimation procedure is shown in Algorithm 7.4. Similar to the process

presented in previous section, the assessment of the nodule’s depth estimation was repeated

for 10 assessment trials to obtain the average accuracy in the estimation. In each assessment

trial, the memory primitives given di�erent combinations of probe’s interacting conditions

were constructed from 25 randomly chosen learning trials.

Result

With the implementation of KL-divergence in addition to the Bayesian Inference algorithm,

the nodule’s depth estimation process required on average of only 2.8 iterations with standard

deviation of 1.2 iterations to converge. While the number of iterations required for convergence

was kept to minimum; the nodule’s depth estimation accuracy still reached within the
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Algorithm 7.4: Nodule’s depth estimation algorithm using Bayesian Inference and KL
divergence
1 function DepthEstimationKL(·

f

(d
r

, r
a

, i, v
probe

));
Input : Real time torque reading, ·

f,t

(d
r

, r
a

, i, v
probe

)
Output : Depth estimation accuracy

2 Define P
t=0(d) as a flat distribution across di�erent d;

3 for each combination of {r
a

, i, v
probe

}, and actual nodule’s depth, d
r

do
4 ” = 1 Initialize correlation distance to 1;
5 t = 0 Initialize the number of iteration to 0;
6 G0 = 0 Initialize the information gain at t = 0 to 0;
7 while ” > T do
8 t = t + 1;
9 Follow Step 5-9 in Algorithm 7.3;

10 Compute G
t

using Equation (7.3);
11 Compute ” between G

t

and G
t≠1, using Equation (7.4);

12 d
est

= argmax
m

(P
t

(d|·
f

));

13 Compute the nodule’s depth estimation accuracy.

comparable range to that with fixed 5-iterations in the inferencing algorithm presented in

Algorithm 7.3. On average the overall depth estimation accuracy was approximately 96.2%

as shown in Fig. 7.13 (orange bars). The accuracy of nodule’s depth estimation for each

actual depth were approximately 98.4%, 95.3%, and 94% for d
r

= 2, 4, and 8 mm respectively.

These results showed that this method minimized the number of explorations needed to make

an accurate estimation about the depth of the nodule. Therefore, it can be concluded that

Bayesian Inference together with KL-divergence provides a real-time framework to estimate

the convergence to an optimal estimate of nodule depth in the sense of information gain.

7.5.3 Active Bayesian haptic perception with information gain metrics

So far, Experiment 2 involved keeping r
a

, i, and v
probe

constant given a set of probing

iterations in each estimation trial. However, biological counterparts like humans regulate the

internal impedance more like a random variable within a given probing attempt. Therefore,

further experiments was carried out to explore whether the nodule’s depth estimation accuracy

can be enhanced by allowing changes in the combination of probe’s sti�ness, indentation
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level, and PSV across trials. This allows the estimation process to explore in multiple search

spaces (memory primitives).

Algorithm 7.5: Nodule’s depth estimation algorithm using Bayesian Inference and KL
divergence
1 function DepthEstimationKLR(·

f

(d
r

, r
a

, i, v
probe

));
Input : Real time torque reading, ·

f,t

(d
r

, r
a,t

, i
t

, v
probe,t

)
Output : Depth estimation accuracy

2 Define P
t=0(d) as a flat distribution across di�erent d;

3 for each actual nodule’s depth, d
r

do
4 Follow Step 4-6 in Algorithm 7.4;
5 while ” > T do
6 t = t + 1;
7 Randomly select combination of {r

a,t

, i
t

, and v
probe,t

};
8 Follow Step 9-11 in Algorithm 7.4;
9 d

est

= argmax
m

(P
t

(d|·
f

));

10 Compute the nodule’s depth estimation accuracy.

In order to address this, a similar estimation algorithm to that shown in Algorithm 7.4

was repeated. However, instead of the static combination of probe’s sti�ness, indentation

level, and probe sweeping velocity; these variables were allowed to arbitrarily vary across

iterations in the nodule’s depth estimation process. The nodule’s depth estimation process

was repeated for 100 trials for each artificial soft silicone phantom with nodule embedded at

d
r

= 2, 4, and 8 mm. The estimation procedure is shown in Algorithm 7.5. At the beginning

of the estimation procedure, the process randomly selected the probe’s sti�ness, indentation

level, and PSV combination. In each iteration, this combination was arbitrarily varied to

allow the exploration in the other memory primitives to infer the previous posterior.

Result

The nodule’s depth estimation result from the implementation of the Bayesian Inference with

dynamic probing shown in Algorithm 7.5 are shown in blue bar in Fig. 7.13. The overall

average accuracy from 100 trials using this algorithm as the estimation hypothesis converged,

reached 99% with standard deviation of 0.5%. For each individual depth level, the average

estimation accuracy were all significantly higher; while the corresponding standard deviations
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7.6 Discussion

Fig. 7.13 1) 5-iteration Bayesian inference without KL-divergence (shown in green), 2) the
Bayesian Inference together with the KL-Transfer Entropy with fixed probe’s sti�ness ,
indentation level, and PSV (shown in orange), and 3) the Bayesian Inference together with
the KL-Transfer Entropy with random probe’s sti�ness, indentation level, and PSV (shown
in blue).

were lower compared to those from the Bayesian inference with static set of probe’s sti�ness,

indentation level, and PSV combinations. The result from this assessment also confirmed the

initial hypothesis that the average number of iterations required to perform accurate depth

estimation was kept to a minimum at approximately 3 iterations with standard deviation of

1.3 iterations.

7.6 Discussion

This chapter investigated both individual and collective role of the probe’s internal sti�ness,

indentation level, and PSV in the accuracy in interpreting and estimating an environmental

feature (depth of a nodule) by controlling a soft probe. The purposes of the experiments
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presented in this chapter were: 1) to understand the necessity for the internal impedance

regulation in biological as well as artificial active haptic perception, and 2) to investigate

the influence of multiple behavioral variable probe in active haptic perception as well as

to explore the possible implementation of such concept in the soft robotic probe. The soft

robotic probe used in both experiments presented in this chapters comprised of a variable

sti�ness joint and an indentation level control mechanism. The probe structure was mounted

under an XY-stage allowing the planar movement.

The non-linear relationship between the probe’s measured torque, its internal variables,

and the environment (depth of nodule in silicon phantom) were presented in the form of a

probabilistic distribution given di�erent combinations of probe’s internal sti�ness, indentation

level, and PSV. In this thesis, these conditional probability distributions are referred to

as ’memory primitives’. These ’memory primitives’ functioned as likelihood functions in a

Bayesian framework to estimate the depth of a nodule in the soft tissue phantom.

In Experiment 1, the robotic probe with the implementation of human’s co-contraction

strategy was compared with the case, where the robotic probe attained the stationary sti�ness

level across Bayesian iterations. The experimental results showed that the e�cacy of haptic

perception does not depend only on the configuration of the finger as reported in previous

studies [165] on passive perception, but also on the way internal impedance of the finger

was regulated. The results from the experiment with human subjects presented in Chapter

3 suggested that humans perform active exploration during manual palpation. Using the

robotic probe, it was shown that active probing allows the integration of knowledge available

so far with new evidence accompanied by active regulation of bodily parameters like the joint

sti�ness. With active sti�ness control probing strategy presented in Section 7.4.2, the robotic

probe can improve accuracy in estimation from approximately 70% to 90% through active

exploration in a Bayesian inferencing framework, when the nodule’s depth is one out of 3

known discrete depths. Active Bayesian haptic perception in a robotic probe involves sti�ness

variation following a Markov decision process identified using human muscle co-contraction

data. The increase in accuracy is mainly due to the ability of the estimation process to search

in multiple memory primitive spaces as opposed to a single one in case of the passive mode.
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7.6 Discussion

Therefore, it can be concluded that the internal impedance control plays an important role

in robotic haptic perception and in that of the biological counterparts.

However, during human’s manual palpation, the palpating behavior did not solely emerge

from the regulation of muscle co-contraction alone, but also the other behavioral variables,

like the indentation and the speed as well. This chapter posed the hypothesis that the

regulation such behaviors can also be used to enhance the haptic perception as well. In

addition to the probe’s joint sti�ness regulation, Experiment 2 also integrated the control of

indentation and probe sweeping velocity during the depth estimation process as well.

The purpose of the Experiment 2 was to investigate the question as to how the probe with

controllable sti�ness, indentation level, and PSV can exploit its past experience of palpation

to estimate the depth of a nodule embedded inside a soft tissue in real time. The experimental

results suggested that the implementation of Bayesian Inference allows the algorithm to

accurately estimate the depth of a nodule from the measured torque real-time. Furthermore,

KL-divergence was introduced to determine whether further iteration of measurement was

required to make an accurate estimation by comparing the information gained in the current

iteration to that of the previous iteration. It was shown that on average the estimation

processes using Algorithm 7.4 and 7.5 required approximately 3 iterations to converge in

order to obtain comparable and better (in the latter) estimation accuracy. Allowing the

combination of probe’s internal sti�ness, indentation level, and PSV to randomly vary

across iterations (allowing exploration in multiple memory primitives in each nodule’s depth

estimation process), resulted in a convergence to the global optimum with a minimum number

of iterations. The results showed that, this could enhance the average depth estimation

accuracy to almost 100% with higher repeatability (smaller standard deviation).

In summary, the results from both sets of experiments suggest that by allowing the

estimation process to vary the robotic probe’s behavioral variables across estimation iteration,

the estimation accuracy of an embedded nodule’s depth can be significantly enhanced in

comparison to maintaining the probe’s behavioral variables across iteration, when the nodule’s

depth is one out of 3 known depths. It is important to note that the estimation accuracy also

depends on the quality of the memory primitives constructed from the torque information
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during learning trials. In addition, the accuracy in the nodule’s depth estimation can drop if

the depth was continuous.
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Chapter 8

Conclusion

Morphological computation in biological systems, as well as in artificial systems, like robots

for instance, is not solely responsible for the actuation but also for perception. For example,

when people are asked to estimate the weight of an object on the hand, they do not hold

the object with the static hand and arm. But the weighing activity of humans involve the

movement of the arm, generally by bobbing the object up and down to estimate the weight. By

performing such activities, humans change their co-contraction level, i.e. internal impedance,

to condition the proprioception based on the co-contraction levels and the movement of the

overall structure of the arm. This process is often referred to as “active sensing”, which also

very much involves the changes or control in the properties of the sensory receptors.

The nature of sensorimotor networks in biological system has been greatly influencing

the design and approach towards the biologically-inspired artificial systems. For example, it

has been shown that the understanding of the co-ordination of motor and sensory correlation

patterns in human (often referred to as “synergy”) could well lead to an advancement and

optimization of design of artificial system like wearable device, such as glove-based “Hand

Pose Reconstruction” system [167]. Furthermore, it was shown in [140] that humans can

exploit sti�ness synergy from their muscle pair controlling the impedance of the fingers’ joints

to control stable robotics hand’s grasping.

In addition to the contribution of internal impedance control in enhancing the e�ciency

and stability in action, this thesis has explored the role of internal impedance control in
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proprioception and in an embodied haptic perception. The purposes of this thesis is to

understand the action-perception coupling in proprioceptive cue in biological system, as well

as to investigate possible approach for the artificial system like robot to benefit from such

concept during active haptic exploration of the environment. This thesis has taken the task

of soft object palpation to discern the physical property as a case study. This was to simulate

the scenario of medical manual palpation performed by surgeons to locate tumors inside

soft tissue. Medical literatures [135, 136] show that T-1 stage tumors can be modeled as

spherical shape hard nodules. Since the focus of this thesis was to highlight the importance

of the internal impedance of the probe in detecting a hard nodule in a soft tissue, the study

presented in this thesis was limited to a spherical acrylic hard nodule buried at depths up to

8mm. This scenario represents the conditions of a typical manual tumor localizing procedure

for a T-1 stage tumor.

First, this thesis introduced the study of the human’s internal impedance control during

haptic perception in the manual palpation task to estimate the depth of sti� abnormality

embedded inside soft silicone phantom in Chapter 3. It was found that human subjects

regulated their muscle co-contraction during the active exploration of soft phantom to discern

the sti�-abnormality from the soft phantom. The human’s muscle co-contraction strategy

given di�erent nodule’s depth was extracted and presented in form of Markov decision matrix.

It was found from the Markov matrices that there exists a relationship between the muscle

co-contraction strategy and the property of the environment. Though it was understood

from this study that humans regulate their muscle co-contraction governing the sti�ness of

the joint to condition the haptic feedback during the exploration, the influence of the joint

sti�ness control in haptic perceptual information gain was not fully understood. Therefore,

this thesis exploited the alternative robotic approach to understand this phenomena.

This thesis used the robotic manipulator with variable joint sti�ness and robotic probe

with multiple behavioral variable described in Chapter 4 to investigate the role of internal

impedance in the information gain in proprioception. In the experiment presented in Chapter

5, the information gain metrics was used to indicate the appropriate joint sti�ness to estimate

the angular displacement (proprioception) from the torque felt at the base alone. It was
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found that the ability of the robotic manipulator to adjust its compliancy level can lead to

accurate estimation of its own internal variables. Therefore, it was interesting to further

explore the influence of internal impedance on the perception of external environment.

Taking similar task of discerning physical properties of soft object as a case study, this

thesis used the same robotic manipulator with variable joint sti�ness as a variable sti�ness

probe. The experiment presented in Chapter 6 involved the investigation of the role of

internal sti�ness control of the robotic probe during palpation on soft silicone phantom

under the information gain metrics framework. It was found that the information gain

responses depend on the influence from the probe’s sti�ness and environmental variables and

also the interactions among them. In general, the average directional information gain was

relatively higher for transitions from non-compliant to compliant and among compliant levels

in comparison to those from compliant to non-compliant. This signifies that the exploratory

process was more likely to gain information regarding the depth of the nodule by switching

within the compliancy levels and from non-compliant probe to compliant one. These findings

led to the question as to how this phenomenon can be used in an appropriate machine learning

algorithm with di�erent probe’s sti�ness control algorithm, in order to accurately estimate

the property of the environment.

In the last set of experiments presented in this thesis in Chapter 7, the Bayesian

inferencing approach was used to allow the estimation of the depth of a hard nodule embedded

inside soft silicone phantom, similar to the experiment carried out by human subjects. The

extracted human’s muscle co-contraction strategy was implemented together with Bayesian

inferencing algorithm and compared with the stationary probe’s sti�ness algorithm. It was

found that by allowing the probe to regulate its sti�ness level corresponding to those found

in human based on Markov matrices, the accuracy of depth estimation can be statistically

significantly increased. In addition to the probe’s behavioral control at the sti�ness level,

the regulations of both indentation and probe sweeping velocity were also integrated in

this study. The experimental results suggest that by allowing the process to arbitrarily

emerge the unique combination of probe’s behavioral variables in each Bayesian iteration

during the depth estimation process, the estimation accuracy can be significantly increased
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in comparison to that with static behavior. The information gain metrics was used in the

Bayesian algorithm to determine the su�cient information gained in each iteration in order

to control exploratory iterations.

In general, this thesis exploits the robotic probe and manipulator as an abstracted version

of human’s finger. The focus was mainly on the antagonistic muscle co-contraction controlling

a single joint and the corresponding tendon, which were represented by the antagonistic

springs and the force/torque sensor respectively. However, human’s muscle co-contraction

behavior during palpation may arise from multiple sources apart from the regulation of MCP

joint sti�ness, since human’s finger is composed of multiple joints. Nonetheless, in order

to isolate and study the e�ect of joint sti�ness control on the tendon force/torque sensor

located at the base as opposed to force measurement at the tip of the finger, the design of

the robotic probe with single variable joint sti�ness used in the experiment represents an

abstracted version of human’s finger. Therefore, an exact replica of a finger with multiple

parameters cannot conclude anything clear about this particular e�ect. In addition, during

human’s manual palpation, the movement of the finger was not constrained within a single

plane. However, if the experiment with robotic probe was carried out in similar manner

(with movement trajectory), the e�ect of the variation of joint’s sti�ness in the estimation of

nodule’s depth cannot be properly assessed. Therefore, the probing direction of the robotic

probe was kept to one plane to focus on the e�ect of the joint sti�ness alone in information

gain. Once these individual e�ects are well understood, they provide a firm foundation to

design more complex robotic probing behaviors, which is beyond the scope of this thesis.

The results presented in this thesis provide additional evidences to this phenomenon

in terms of how humans might be regulating proprioception through sti�ness control of

the muscles that carry the proprioceptive sensors. It was shown in [31] that humans

employ sensorimotor memory in order to coordinate sensory feedback and motor control in

dexterous manipulation of object. It was shown in this thesis using robotic approach that

the integration of sensory feedback with past proprioceptive memory through the variation

of internal impedance can also enhance the accuracy of estimation of the environment.
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Furthermore, the results also provided important explanations about the role of morpho-

logical computation in haptic based probing of a soft object, as well as providing guidelines

to design and control variable sti�ness probes for physical examination. Certainly, the

operational implementation of this probe should be further developed depending on di�erent

applications.

In the future, if the nodule at the deeper depth is to be detected, the robotic probe with

a larger sti�ness range should be designed. However, detecting the nodule at deeper depth

is beyond the scope of this thesis. The maximum depth of the nodule detectable given the

capability of this device is 8 mm. The shape and size of the nodule was spherical with 15 mm

diameter and detecting the nodule of di�erent geometrical properties may require additional

complexities of the probe, which is beyond the scope of this thesis. The di�erence in the

sti�ness between the nodule and the soft phantom in the experiments represent an apparent

contrast of the sti�ness. If the contrast becomes less apparent, the use of the probe of higher

sensitivity may be necessary.

Nonetheless, the fact that controllable internal sti�ness helps to gain proprioception

information is still valid in such a tool. However, additional complexities arising from factors

such as variable friction and irregular surface conditions, which are not addressed in this

thesis should be further examined. Future studies can also involve temporal control of probe

sti�ness, indentation, and speed to better understand diverse probing strategies used by

di�erent classes of human participants as seen in [41]. It would also be interesting to further

investigate the activity inside the brain in processing the information during human’s manual

palpation task, in order to verify whether humans recall some sort of memory primitives by

activating the cerebral cortex, particularly prefrontal cortex in frontal lobe for processing the

short-term memory and the parietal lobe involving the sensory information integration. Such

experiments can be carried out by observing the ECG signal from di�erent parts of the brain

during the activity similar to what has been described in Chapter 3.

Additionally, while the functionalities of both tactile and proprioceptive sensations have

been extensively studied in biology [168–170], the integrative view on how the stimuli perceived

from these sensations are organized, regulated, exchanged, and processed are still not fully
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understood. Therefore, it would be interesting to further explore the sensory coordination

and how the information exchange or inference can enhance the perception and interpretation

of the environment during active exploration of an artificial system, i.e. robotic device.
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Appendix A

Ethical approval

This study was approved by King’s College London Bio medical Sciences, Medicine, Dentistry

and Natural and Mathematical Sciences research ethics committee (REC Reference number

BDM/11/12-20).

A.1 Information sheet and consent form

The information sheet and consent form provided for human participants for the experiments

described in Chapter 3 are as following:
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INFORMATION SHEET FOR PARTICIPANTS 
 
REC Reference Number: BDM/11/12-20  

 
YOU WILL BE GIVEN A COPY OF THIS INFORMATION SHEET 
 
Human’s finger muscle activity during palpation 
 
We would like to invite you to participate in this original research project if you are more than 18 years old, and do not 
suffer from any motor diseases (ex. Parkinson’s). Priority is given to visually impaired people and those who have prior 
training in fire fighting in low visibility conditions. You will be given a trial with auditory noise to decide whether to 
continue or not. You should only continue to participate if you want to; choosing not to take part will not 
disadvantage you in any way. Before you decide whether you want to take part, it is important for you to understand 
why the research is being done and what your participation will involve.  Please take time to read the following 
information carefully and discuss it with others if you wish.  Ask us if there is anything that is not clear or if you 
would like more information.  
 

The main objective of the study is to understand how humans modulate the finger’s stiffness during palpation through 
adduction and abduction controlled by the cocontraction of Flexor digitorum superficialis (FDS) and Extensor digitorum 
communis (EDC) muscle pair to detect and estimate the depth of the abnormality presented inside a soft silicon phantom 
using an index finger from the dominant hand. Each participant will be given 5 1-minute-period learning trials for each of 
three different phantom samples with a hard nodule embedded at different depths. Participant will be informed about the 
depth information of the nodule in each phantom sample. The electromyography (EMG) quantified the activity of each 
muscle will be captured. After all learning, each participant will be given a short break to prevent any muscle fatigue 
before continuing the experiment in the estimation phase. During the depth estimation phase, the participant is 
blindfolded to denial the visual perception and is presented with one from the three different phantom samples used 
during learning at a time. Participant is then asked to palpate the soft silicon phantom using the index finger from his/her 
dominant hand to estimate the depth of the hard nodule. During the whole experiment, the participant will be attached 
with the EMG sensors to capture the muscle’s activity. 

 
! The experiment will be conducted in (room number to be decided). An experiment will last for a maximum of 

1hour.  
! EMG sensors will be attached to FDS and EDC muscle pair in the anterior and posterior of the dominant forearm to 

capture their voluntary cocontraction for the whole duration throughout the experiment. Your skin will have to be 
cleaned with alcohol before attaching sensors. If your skin is allergic to alcohol, the experiment will not proceed. 
There are no known after-effects of attaching EMG sensors to the skin. 

! To minimize fatigue you will receive a 1-minute break every 5 minutes. However, you can also request for breaks 
more often if you feel any discomfort. 

! In the learning phase, the participant is asked to explore the soft silicon phantom using the index finger for 5 trials 
with maximum 1 minute per trial for each phantom. The participant can stop before 1 minute mark if they feel 
confident about the experience collected.  

! In the estimation phase, the participant is blindfolded and asked to palpate one of the three phantom samples used 
during the learning phase to estimate the depth of the nodule.  

! Please wear loose clothing so that your skin can be easily cleaned and above mentioned sensors can be easily 
attached to the skin. We will take adequate precautions to cover your clothes to prevent any stains due to alcohol. 
You will also be given the option to wear a dress made available during the experiment. 

! You have to wear laboratory suitable blindfolding mask in the 2nd phase of the experiment. 

! You can withdraw the data up to one week from completion of the study.  If you have any queries, please directly 
contact the principal investigator: Dr. Thrishantha Nanayakkara, Email: thrish.antha@kcl.ac.uk 

! We will strictly follow the provisions of the Data Protection Act 1998, whereby, we will retain only the anonymised 
data such as handedness, sex, age for official records. They will be shared only among the researchers involved in 
this study. 
 



Are you are happy to be contacted about participation in future studies? Yes   No  

 
Your participation in this study will not be affected should you choose not to be re-contacted. 
 
 
If you would like more information, please contact Dr. Thrishantha Nanayakkara 
Email: thrish.antha@kcl.ac.uk 
Telephone: 020-7848-2256,  

Postal address: Room 1.23, Strand Building 
Division of Engineering 
King’s College, University of London 
Strand 
London WC2R 2LS 
 

 



 
CONSENT FORM FOR PARTICIPANTS IN RESEARCH STUDIES 
 
Please complete this form after you have read the Information Sheet and/or listened 
to an explanation about the research. 
 
Title of Study: Human’s finger muscle activity during palpation 
 
 
King’s College Research Ethics Committee Ref: BDM/11/12-20 
 

• Thank you for considering taking part in this research. The person organising the research must 
explain the project to you before you agree to take part. 

 
• If you have any questions arising from the Information Sheet or explanation already given to you, 

please ask the researcher before you decide whether to join in. You will be given a copy of this 
Consent Form to keep and refer to at any time. 
 

• You can withdraw your data within one week from completion of the study. 
 

• I understand that if I decide at any time during the research that I no longer wish to participate in this 
project, I can notify the researchers involved and withdraw from it immediately without giving any 
reason. Yes   No  
 

• I consent to the processing of my personal information for the purposes explained to me.  I 
understand that such information will be handled in accordance with the terms of the Data 
Protection Act 1998. Yes   No  
 

• Are you are happy to be contacted about participation in future studies? Yes   No  

 
Participant’s Statement: 
 
I _____________________________________________________________________ 
 
agree that the research project named above has been explained to me to my satisfaction and I agree to 
take part in the study. I have read both the notes written above and the Information Sheet about the project, 
and understand what the research study involves. 
 
Signed      Date 
 
Are you are happy to be contacted about participation in future studies? Yes   No  

 
 
19. AUTHORISING SIGNATURES 
RESEARCHER 

I undertake to abide by accepted ethical principles and appropriate code(s) of practice in carrying out this 
study. The information supplied above is to the best of my knowledge accurate.  I have read the 
Application Guidelines and clearly understand my obligations and the rights of participants, particularly in 
so far as to obtaining valid consent.  I understand that I must not commence research with human 



participants until I have received full approval from the ethics committee. 
 
Signature            …………………                    Date…………………………. 
STUDENT PROJECTS (including PhD) – SUPERVISOR AUTHORISATION 
I confirm that I have read this application and will be acting as the student researcher’s supervisor for this 
project.  The proposal is viable and the student has appropriate skills to undertake the research.  The 
Information Sheet and recruitment procedures for obtaining informed consent are appropriate and the 
ethical issues arising from the project have been addressed in the application.  I understand that research 
with human participants must not commence without full approval from the ethics committee. 
Name of Supervisor: 

     

 
Signature ……………………………………………………………………                     Date………………………… 
MEDICAL SUPERVISION (if appropriate) 
Name of Medical Supervisor:  

     

 

Medical Supervisor’s MDU/MPS (or other insurance provider) number: 
……………………………………………………………………………………… 
Signature of Medical Supervisor: 
……………………………………………………………………………….                      Date………………………….. 
CONTACT DETAILS Give the details of the individual who should receive all correspondence concerning the application.  
Correspondence will normally be sent for the attention of the researcher.  It is the responsibility of the researcher (and contact if 
different) to forward all copies of correspondence to the appropriate parties as required.  Students should ensure that their supervisor 
is provided with copies of all correspondence.  
Name:  Thrishantha Nanayakkara   
Full postal address:   
Room 1.23, Strand Building 
Division of Engineering 
King’s College, University of London 
Strand 
London WC2R 2LS 
 

Telephone number:  Tel: 020 7 848 2256 
 

Email:  thrish.antha@kcl.ac.uk 
Please note that notification that approval is due to lapse is only sent to projects which are approved for two years or more (one year 
approvals will not be sent reminders and will need to remember to apply for an extension if a longer period of approval is required) 
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