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ABSTRACT 

 

Muscle fibres are multinucleated cells, with each nucleus controlling the protein synthesis in 

a finite volume of cytoplasm termed the myonuclear domain (MND). What determines MND 

size remains unclear. In the present study, we aimed to test the hypothesis that the level of 

expression of the transcriptional coactivator PGC-1α and subsequent activation of the 

mitochondrial biogenesis are major contributors. Hence, we used two transgenic mouse 

models with varying expression of PGC-1α in skeletal muscles. We isolated myofibres from 

the fast twitch extensor digitorum longus (EDL) and slow twitch diaphragm muscles. We 

then membrane-permeabilised them and analysed the 3D spatial arrangements of myonuclei. 

In EDL muscles, when PGC-1α is over-expressed, MND volume decreases; whereas, when 

PGC-1α is lacking no change occurs. In the diaphragm no clear difference was noted. This 

indicates that PGC-1α and the related mitochondrial biogenesis programme are determinants 

of MND size. PGC-1α may facilitate the addition of new myonuclei in order to reach MND 

volumes that can support an increased mitochondrial density. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



INTRODUCTION 

 

Skeletal muscle is a complex but highly ordered structure composed of myofibres that can be 

many centimetres long and a hundred micrometres wide. Such long and large myofibres 

cannot be supported by only one myonucleus (Edgerton and Roy, 1991), and therefore 

individual myofibres can encompass hundreds of myonuclei, with each myonucleus 

controlling the gene products in a finite volume of cytoplasm termed the myonuclear domain 

(MND) (Hall and Ralston, 1989; Ralston and Hall, 1992). MND sizes are constant during 

growth or senescence (Gundersen and Bruusgaard, 2008). However, average MND volumes 

tend to vary between myofibres expressing distinct myosin heavy chain isoforms (Bruusgaard 

et al., 2003; Bruusgaard et al., 2006). MNDs are smaller in slow, oxidative type I myofibres 

than in fast, glycolytic type II muscle cells. Despite this clear difference, it remains unclear 

whether this phenomenon is directly related to the myosin heavy chain isoform composition 

or to other closely related parameters such as oxidative capacity and mitochondrial content 

(Tseng et al., 1994). As type I myofibres contain a much higher concentration of 

mitochondria than type II muscle cells, and as all myonuclei produce mRNA at a similar rate, 

it has been suggested that smaller MNDs might be a direct consequence of an increased 

demand for bioenergetic/mitochondrial proteins per se (Moyes and LeMoine, 2005) rather 

than different myosin heavy chain expression. In the present study, we aimed to 

experimentally confirm this theory. 

 

Mitochondrial biogenesis and production are controlled by the transcriptional coactivator, 

peroxisome-proliferator-activated receptor-γ coactivator 1-α (PGC-1α) (Arany et al., 2005; 

Lin et al., 2005). Indeed, skeletal muscle-specific PGC-1α knockout mice (MKO) exhibit 

decreased number and function of mitochondria (Perez-Schindler et al., 2013) concomitant 

with a shift from oxidative toward glycolytic myofibres (Handschin et al., 2007), but without 

any clear shift of the myosin heavy chain isoform composition at the protein level. On the 

other hand, muscle-specific PGC-1α over-expressing mice (MCK) have stimulated activation 

of mitochondrial genes, increased mitochondrial density and oxidative capacity, and again, no 

major transition in myosin heavy chain expression at the protein level (Perez-Schindler et al., 

2013). Hence, in the present study, we tested the hypothesis that PGC-1α expression is a key 

regulator of myonuclear organisation. We suggested that MND size would be increased in 

MKO mice and decreased in MCK mice. We also hypothesised that the response to either 

modulation might vary between muscle types; therefore we studied myofibres from the 



predominately fast-twitch, glycolytic extensor digitorum longus (EDL) muscle, and the 

diaphragm, which has a high proportion of slow-twitch, oxidative myofibres. 

 

  



MATERIALS AND METHODS 

 

Animals 

PGC-1α muscle-specific over-expressing mice (MCK) and PGC-1α muscle-specific knockout 

mice (MKO) were generated as previously described (Perez-Schindler et al., 2013). Seven-

month old MCK, MKO and wild-type (WT) mature adult mice were sacrificed by CO2 

inhalation followed by cervical dislocation (four animals per genotype). EDL and diaphragm 

(DIA) muscles were then dissected. We focused our attention on these two specific muscles 

known to be glycolytic (EDL) or oxidative and rich in mitochondria (DIA) (Schiaffino and 

Reggiani, 2011). The Animal Experimentation Ethics Committee of The University of Basel 

approved all animal procedures.  

 

Relaxing Solution 

Relaxing solution contained 4 mM Mg-ATP, 1 mM free Mg2+, 20 mM imidazole, 7 mM 

EGTA, 14.5 mM creatine phosphate, and KCl to adjust the ionic strength to 180 mM and pH 

to 7.0. The concentration of free Ca2+ was 10-9.00 M. 

 

Myofibre Permeabilisation 

Muscle samples were placed in relaxing solution at 4°C. Bundles of approximately 50 

myofibres were dissected free and then tied with surgical silk to glass capillary tubes at 

slightly stretched lengths. They were then treated with skinning solution (relaxing solution 

containing glycerol; 50:50 v/v) for 24 hours at 4°C, after which they were transferred to -

20°C (Frontera and Larsson, 1997). 

 

Myonuclear organisation of single myofibres 

On the day of experiment (within two weeks after the permeabilisation procedure), bundles 

were detached from the capillary tubes, transferred to a relaxing solution, and single 

myofibres were dissected. Arrays of approximately nine myofibres were prepared at room 

temperature (RT). For each myofibre, both ends were clamped to half-split copper meshes 

designed for electron microscopy (SPI G100 2010C-XA, width, 3 mm), which had been 

glued to cover slips (Menzel-Gläser, 22 x 50 mm, thickness 0.13-0.16 mm). Myofibres were 

mounted at a fixed sarcomere length of ≈2.20 µm. This was a prerequisite for exact 

determination of myonuclear spatial organisation as it allowed accurate comparisons between 

myofibres (Cristea et al., 2010; Qaisar et al., 2012).  



 

At RT, arrays were subsequently subjected to actin staining (1:100 Alexa Fluor Phalloidin 

488, Molecular Probes, A12379) and myonuclear staining (1:1000 DAPI, Molecular Probes, 

D3571). Images were taken using a confocal microscope (Zeiss Axiovert 200, objective x20) 

attached to a CARVII imager (BD Biosciences) and Coolsnap HQ camera (Photometrics). To 

visualise myofibres in 3D, stacks of 100 images were acquired (1 µm z increments) and 

analysed with a custom-made Matlab programme. Further staining was achieved using an 

antibody to satellite cell marker Pax7 (primary antibody: DSHB, AB 528428; secondary 

antibody: Alexa Fluor® 488, Novex, A-11001); this stain excluded the presence of satellite 

cells in skinned fibres, which might confound counts of myonuclei. 

 

Statistical analysis 

Data are presented as mean ± standard error of the mean (SEM). A total of 252 myofibres 

were isolated and tested. Because many myofibres were studied for each muscle, animal and 

genotype, a specific model was used to statistically analyse the data (Ochala et al., 2011). 

This model is based on an analysis of variance (ANOVA) including the following factors: 

“genotype”, “muscle” and “animal” (where “animal” was nested within “genotype”). The 

only interaction terms that were judged to be of importance and therefore included were that 

between “genotype” and “muscle”. JMP software (SAS Institute) was used for the generation 

of this model.  

  



RESULTS 

 

Increase in myonuclei number and decrease in MND size when PGC-1α is over-

expressed in EDL but not in diaphragm  

We counted the number of myonuclei per fibre length and observed that, in the EDL muscle, 

the overall number of nuclei per mm fibre length was significantly greater in MCK and MKO 

than in WT (Table 1). On the contrary, in the diaphragm muscle, no significant difference 

was detected (Table 1). 

 

As previously observed (Qaisar et al., 2012), a linear correlation existed between the volume 

of MNDs and myofibre cross-sectional area (CSA) in all muscles and genotypes (Figure 1). 

Thus, instead of maintaining a constant MND volume, larger fibres are known to possess 

larger MNDs, suggesting that nuclei can be pushed to a certain capacity (physiological 

“ceiling”) before new nuclei need to be incorporated. To account for this relationship, (1) the 

MND to myofibre CSA ratio was calculated (Table 1), and (2) a scatter plot of MND vs CSA 

was created (Figure 1). Thus, in the EDL muscle, at any given CSA, MND was significantly 

smaller in MCK than in WT. In the diaphragm muscle, we did not observe any significant 

difference.  

 

The average MND provides valuable information on the average volume controlled by each 

myonucleus; however, it does not estimate the spatial arrangement of myonuclei. To 

precisely define the latter, we calculated nearest neighbour distances (NNs) using the 3D 

coordinates of individual myonuclei within each single myofibre. At any given CSA, in the 

EDL muscle, NN was significantly smaller in MCK than in WT, in agreement with the 

smaller observed MND (Table 1). In the diaphragm muscle, we did not observe any 

difference (Table 1). To evaluate the variability in the spatial arrangement of myonuclei, we 

used the standard deviation related to NNs within each single myofibre (SD-NN) (Qaisar et 

al., 2012). In the present study, SD-NN was not affected by the various genotypes (Table 1), 

which suggests that the regularity of spacing was not affected when PGC-1α levels were 

modulated. 

 



Overall, this data demonstrates that in the EDL, overexpression of PGC-1α (MCK mice) 

results in more myonuclei per volume, and smaller internuclear distances. In the diaphragm, 

however, modulation of PGC-1α resulted in few, if any differences. 

 

Change in myonuclear shape when PGC-1α is over-expressed or absent in both EDL 

and diaphragm 

We measured a number of morphological parameters of individual nuclei (Figure 1). In the 

EDL muscle, the aspect ratio was significantly smaller in MCK than in WT, indicating that 

nuclei were rounder (Table 2). In the diaphragm muscle, on the other hand, the aspect ratio 

and area were significantly greater in MKO than in WT suggesting that nuclei were bigger 

and longer (Table 2). Overall our results show that PGC-1α affects nuclear shape as well as 

organisation throughout the length of muscle fibres. 

   



DISCUSSION 

 

In the present study, we aimed to investigate whether PGC-1α directly regulates MND 

volume in myofibres. To achieve this, we studied two transgenic mouse models with varying 

skeletal muscle expression of the transcriptional coactivator PGC-1α known to be a key 

mediator of mitochondrial biogenesis and number (Handschin et al., 2007; Perez-Schindler et 

al., 2013). Our results demonstrate that a relation between these two entities exists but is 

more complex than initially hypothesised.  

 

PGC-1α regulates MND size in EDL muscle 

The most common method used to count the number of myonuclei and estimate the MND 

size is muscle cross-sections. This method is accompanied by a number of technical 

limitations which question the reliability of 2D data (Qaisar and Larsson, 2014). Here, we 

applied a 3D approach to precisely define the spatial arrangement of myonuclei.  

 

In EDL muscle where PGC-1α is over-expressed, we observed rounder nuclei (Table 2) as 

well as an increase in the number of myonuclei and subsequent decreases in MND volume 

and NN (Table 1, Figure 1). Hence, this substantiates what others have suggested without any 

experimental evidence (Moyes and LeMoine, 2005), that signalling pathways responsible for 

mitochondrial number define MND size independently of myosin heavy chain composition. 

Interestingly, the incorporation of new myonuclei, to reach MND volumes that would 

optimise the supply of gene products destined for mitochondria, was not associated with any 

significant myonuclear disorganisation (SD-NN, Table 1). This probably means that inter-

nuclear communication and coordination of bioenergetic and contractile protein expression is 

not deteriorated (Table 2). Even though we believe that all the above changes are directly 

related to mitochondrial density, it is not totally excluded that PGC-1α has a direct effect on 

the nuclei themselves, rather than acting through the medium of mitochondrial number. 

 

EDL and diaphragm muscles respond differently to varying levels of PGC-1α  

In diaphragm muscle, on the other hand, PGC-1α over-expression did not lead to any 

noticeable changes in MND (Table 1, Figure 1). The reasons are unclear. One potential 

explanation lies in the design of the transgenic line overexpressing PGC-1α. This was driven 

by the creatine kinase promoter, which is more potent in glycolytic (e.g. EDL) compared to 



oxidative (e.g. diaphragm) muscles (Arnold et al., 2014; Lin et al., 2002). Another potential 

explanation could originate from the fact that EDL and diaphragm have distinct 

morphological, metabolic and contractile properties. Indeed, because of various functional 

demands (Schiaffino and Reggiani, 2011), respiratory myofibres have a greater overall 

mitochondrial volume density (Gamboa and Andrade, 2010) and smaller average MND size 

(Verheul et al., 2004) when compared with limb muscle fibres. Since the oxidative diaphragm 

muscle requires more mitochondria, it may depend more heavily on PGC-1α expression for 

its normal functioning, compared to the glycolytic EDL muscle; this may explain the varying 

responses to overexpression and knock out of this gene, in different muscle types.  

 

In addition, Redshaw and co-workers have shown that satellite cell proliferation and fusion 

rates differ between diaphragm and limb muscles of mammals (Redshaw et al., 2010). 

Satellite cells originating from the diaphragm proliferate less but differentiate more (Redshaw 

et al., 2010). This may allow an increased incorporation of new myonuclei into adult 

respiratory muscle. The volume of MNDs may then already be optimal to meet the high 

demands of the contractile and bioenergetic properties of this muscle. Increasing PGC-1α 

content in the diaphragm of MCK mice may not have the ability to further reduce MND size, 

since the MND sizes are already much lower in these oxidative muscles.  

 

Conclusions 

We propose that PGC-1α and mitochondrial levels contribute to the regulation of MND size 

in glycolytic limb muscles. Across species, PGC-1α content and mitochondrial biogenesis has 

been shown to decrease in response to the ageing process or to various disease states in e.g. 

skeletal and cardiac muscle. Over-expressing PGC-1α confers therapeutic benefits by notably 

improving mitochondrial biogenesis and number in various tissues and in cells. Therefore, 

others have hypothesised that currently available pharmacological up-regulators of PGC-1α 

could provide significant benefits in terms of muscle function (Dillon et al., 2012). However, 

according to our current findings, such positive effects could be limited to glycolytic limb 

muscles and be less marked in oxidative respiratory muscles, which are also known to be 

heavily affected during biological ageing and muscle disorders such as muscular dystrophies 

and congenital myopathies (Lindqvist et al., 2013).  
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FIGURES 

 

Figure 1: Typical myonuclei and isolated myofibres 

Single myofibres were isolated from age-matched MCK (PGC-1α muscle-specific over-

expression), MKO (PGC-1α muscle-specific knockout) and WT (wild-type) rodents. These 

were then stained for actin (Alexa Fluor Phalloidin 488, green) and myonuclei (DAPI, blue). 

Scatterplots of MND volume versus myofibre CSA for cells isolated from MCK (red, PGC-

1α muscle-specific over-expression), MKO (green, PGC-1α muscle-specific knockout) and 

WT (blue, wild-type) rodents. All regression lines demonstrated a statistically significant 

correlation (p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


