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ABSTRACT 

Background: Parkinson’s disease is a chronic neurodegenerative disorder characterized by the progressive loss of dopa-

minergic neurons. The pathophysiological mechanisms underlying Parkinson’s are still unknown. Mitochondrial dys-

function, abnormal protein aggregation, increased neuroinflammation and impairment of brain glucose metabolism are 

shared processes among insulin-resistance, diabetes and neurodegeneration and have been suggested as key mechanisms 

in development of Parkinson’s and cognitive impairment.  

Objective: To review experimental and clinical evidence of underlying Parkinson’s pathophysiology in common with 

diabetes and cognitive impairment. Anti-diabetic agents and recent patents for insulin-resistance that might be reposi-

tioned in the treatment of Parkinson’s also have been included in this review. 

Method: A narrative review using MEDLINE database. 

Results: Common antidiabetic treatments such as DPP4 inhibitors, GLP-1 agonists and metformin have shown promise 

in the treatment of Parkinson’s disease and cognitive impairment in animals and humans. Study of the pathophysiology 

of neurodegeneration common between diabetes and Parkinson’s disease has given rise to new treatment possibilities.  

Patents published in the last 5 years could be used in novel approaches to Parkinson’s treatment by targeting specific 

pathophysiology proteins, such as Nurr1, PINK1 and NrF2, while patents to improve penetration of the blood brain barrier 

could allow improved efficacy of existing treatments.  

Conclusion: Further studies using GLP-1 agonists and DPP-4 inhibitors to treat PD are warranted as they have shown 

promise.  

 

Key-words: Cognition, Diabetes, DPP-4, GLP-1, Insulin Resistance, Neurodegeneration, Parkinson’s. 

 

Short running title:  Parkinson’s, Diabetes and Cognitive Impairment.  
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Introduction 

Parkinson’s disease (PD) is the second most common neurodegenerative disease, affecting 8–18 per 100,000 people per 

year [1].  It is clinically characterised by the motor symptoms of bradykinesia, rigidity, tremor, and postural instability, 

and by non-motor symptoms such as mood disorders, cognitive impairment and autonomic dysfunction [2, 3].  It has been 

shown that cognitive impairment exists in as many as a third of newly diagnosed PD patients [4, 5], and after 5 years that 

number had increased to 50% having mild cognitive impairment (MCI) [5].  Furthermore, 26% of those with mild cog-

nitive impairment were shown to develop Parkinson’s Disease Dementia (PDD) within 5 years [5].  Mild cognitive im-

pairment in PD is associated with a worsening quality of life, with PDD having a greater impact still [6].  The cardinal 

pathological characteristic of PD is the progressive loss of dopaminergic neurons in the substantia nigra pars compacta 

[7], however, lines of evidence from in vivo molecular imaging research has demonstrated that PD pathology involves 

also non-dopaminergic systems such as the serotonergic [8-10]. Serotonergic pathology in PD has been associated with 

the development of tremor [11,12], dyskinesias [13-15] and various non-motor symptoms [16-18].   

 

Type 2 diabetes mellitus is characterised by impaired glucose metabolism and subsequent hyperglycaemia due to the 

inability of the body to mount an appropriate insulin response [19,20]. Prior to the development of hyperglycaemia, 

patients at risk of developing diabetes display a resistance to the effects of insulin, which is initially compensated for by 

increased insulin secretion from the beta-cells of the pancreas. Eventually, the ability of the pancreas to compensate for 

an increasing insulin-resistance reduces, resulting in hyperglycaemia [19]. The extent of the impaired glucose metabolism 

is assessed based on the ability of the body to normalise glucose levels after eating. Current criteria for this assessment is 

divided into diabetes, impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) (Table 1) [21].   

 

The prevalence of diabetes in PD is unclear, but a recent meta-analysis of population based cohort studies has shown a 

38% increase in the risk of developing PD in patients with diabetes [22]. Diabetes has been linked to cognitive impairment 

in both PD and Alzheimer’s disease (AD) [23, 24]. A case control study showed that PD patients with insulin-resistance 

have a two-folded increased risk of developing dementia [25]. By using positron emission tomography (PET) molecular 

imaging, it has been demonstrated that while there was a greater degree of cognitive impairment in PD patients with 

diabetes compared with PD patients without diabetes, there were no differences in nigrostriatal or cortical cholinergic 

PET markers [24]. These findings suggest that the effect of diabetes on cognitive impairment in PD is not related to the 

known neurodegenerative changes of PD and it is therefore possible that other underlying pathological processes may 

exist, causing the association between diabetes, PD and cognitive impairment.   

 



 

4 

This paper looks to expand on recent reviews summarising the growing evidence linking diabetes and neurological disease 

[26,27].  The underlying pathophysiology common between diabetes, PD and cognitive impairment is discussed, with 

additional emphasis given to the evidence for the use of anti-diabetic agents in PD and on recent patents which may be 

used in the treatment of PD. 

 

Pathophysiology 

The association between PD and diabetes could be the result of several overlapping pathways characterising neurodegen-

eration and insulin-resistance. In an animal model of insulin-resistance using rats fed on a high fat diet, increased periph-

eral insulin-resistance and oxidative stress was accompanied by a decreased dopamine release and clearance [28]. Morris 

and colleagues [28] found a correlation between higher levels of insulin-resistance and greater dopaminergic dysfunction. 

Furthermore, using T2*-weighted Magnetic Resonance Imaging (MRI) sequences, they found an increased iron deposi-

tion in the substantia nigra. This was associated with an increased expression of iron transport proteins such as transferrin 

and transferrin receptor 2 in rats fed on a high fat diet compared to those fed on chow [28]. In addition, since insulin 

crosses the blood brain barrier [29], and insulin receptors exist in the substantia nigra [30], it was suggested that the higher 

levels of insulin, resulting from a high fat diet, might alter iron transport in the substantia nigra [28].   

 

High mitochondrial iron content has been previously linked to increased oxidative damage, and it is known that impaired 

mitochondrial complex I function is associated with PD [28,31].  Mitochondrial dysfunction has also been specifically 

linked with impaired cognitive function in PD.  Gatt and colleagues found that, in post-mortem tissue samples, mitochon-

drial complex I activity was reduced in the prefrontal cortex of patients with PDD compared to PD patients without 

dementia [30].  Complex I expression, however, was unchanged.  Furthermore, no correlation was found between PD 

duration and complex I activity in either PD or PDD patients [32]. 

 

In keeping with our growing understanding of the role of mitochondria in the pathophysiology of Parkinson’s disease, 

there is a well-established link between parkin protein and PD. Parkin is an E3 ubiquitin ligase, the mutation of which 

results in autosomal recessive juvenile PD [33,34]. In sporadic PD, post-translational modification of parkin results in the 

accumulation of toxic substrates and neuronal death [33]. While not fully understood, the role of parkin is to monitor the 

quality of mitochondria and trigger mitophagy when they become dysfunctional [34,35]. This occurs in part by parkin 

regulating PGC-1α and Parkin Interacting Substrate (PARIS). PGC-1α inhibits the production of reactive oxygen species 

(ROS), as well as elevating mitochondrial respiration.  This occurs by the induction of suppressors of ROS such as su-

peroxide dismutase 1 and 2 (SOD1 and SOD2) [36], though the mechanism by which PGC-1α induces these suppressors 

is not completely known. Furthermore, it has been shown that treatment of mice lacking PGC-1α with 1-Methyl-4-phenyl-
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1,2,3,6- tetrahydropyridine (MPTP), a neurotoxin used in PD models, resulted in greatly increased neurodegeneration 

that was associated with increased oxidative damage [36].  The neuroprotective effect of PGC1-α was further demon-

strated using transgenic mice overexpressing PGC-1α.  This overexpression was found to attenuate the neurodegenerative 

effects of MPTP, with protection from the loss of dopaminergic neurons when compared to wild-type mice [37].  The 

same study also explored the effects of resveratrol (RSV), a compound that activates PGC-1α, on MPTP treated wild-

type mice.  They found that, while treatment with MPTP reduced the number of dopaminergic neurons in the substantia 

nigra by 44%, treatment with RSV increased the number of neurons to 83% that of the control group [37].  Analysis of 

gene sets involved in mitochondrial function and glucose metabolism showed that at least 10 gene sets were also associ-

ated with PD. These gene sets were also under the control of PGC-1α, further supporting a role for PGC-1α in PD [38]. 

PARIS suppresses expression of PGC-1α, and it is increased in the substantia nigra of parkin-mutation and sporadic PD, 

suggesting increased PARIS levels may cause neurodegeneration [39]. Mutation of another protein, PTEN-induced pu-

tative kinase 1 (PINK1), has also been shown to result in autosomal recessive juvenile PD. PINK1 interacts with parkin 

by recruiting parkin from the cytoplasm to the mitochondria [40]. A recent study has shown that levels of parkin were 

reduced in the substantia nigra of two diabetic mouse models: high fat diet and Leprdb/Leprdb (db/db). However, whereas 

levels of parkin were also reduced in the striatum and cortex of db/db mice, they were not reduced in the striatum or 

cortex of high fat mice [33]. This suggests that that substantia nigra is more susceptible to the effects of insulin-resistance 

than the striatum or cortex [33]. The reduction in parkin also resulted in the downregulation of PGC-1α and accumulation 

of PARIS. Indeed, the earliest sign of insulin-resistance is believed to be a reduction in the expression of PGC-1α [33,41]. 

Interestingly, in this model, metformin was able to restore levels of parkin and PGC-1α to normal and, although the 

authors were not able to suggest a mechanism by which this might take place, we can speculate that the metformin-

induced improvement of insulin-resistance might underlie this phenomenon [33]. 

 

There is growing evidence suggesting that an increase in advanced products of glycosylation (AGE) is also a key com-

ponent of the relation between diabetes and neurodegeneration. The formation of AGEs is increased in diabetes due to 

hyperglycaemia [42]. AGEs can induce protein aggregation and inflammation in the brain through the formation of (ROS) 

[43]. In AD, Amyloid β (Aβ) and tau protein, which are associated with the development of both senile plaques and 

neurofibrillary tangles (NFT), are influenced by AGEs [44]. The polymerization of Aβ, a major component of senile 

plaques, is enhanced by AGE mediated protein cross-linking. Tau protein is glycated, and able to induce oxidative stress, 

thus contributing to the formation and toxicity of NFT [44]. In PD, glycation of α-synuclein may be one of the mechanisms 

underlying the abnormal agglomeration of α-synuclein that leads to the development of Lewy bodies [44]. This phenom-

enon might also be related to the activation of the receptor for advanced products of glycosylation (RAGE), found ubiq-

uitously on neurons. They respond to a variety of different AGEs, and are upregulated in response to inflammation [45], 
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and linked to increased oxidative stress [46].  The pro-inflammatory nuclear factor kB (NFkB) pathway is also enhanced 

by RAGE-activation [45]. Furthermore, NFkB has been shown to increase expression of RAGE, further potentiating its 

inflammatory effect [46]. Inflammation of the brain has been linked to many neurodegenerative diseases, including PD 

and, although neuroinflammation is an integral part of immune response in the central nervous system, persistent and 

uncontrolled inflammation eventually results in necrosis of neurons, and therefore resulting in neurodegeneration [47].  

 

Brain-derived neurotrophic factor (BDNF) has attracted significant interest for its role in cognitive impairment in partic-

ular.  BDNF is a growth factor which induces long-term potentiation (LTP) and neuronal survival [48].  BDNF is ex-

pressed in the dopaminergic neurons of the substantia nigra, and in PD this expression is reduced [49,50].  The association 

of BDNF with PD was demonstrated further by Wang and colleagues, who showed that serum BDNF levels were de-

creased in PD, and that patients with lower serum BDNF levels had worse cognitive function [50].  A functional poly-

morphism of BDNF, known as Val66Met, has been shown to impair hippocampal cell function in humans [51].  In vitro 

studies using cultured hippocampal neurons from rats have suggested that this occurs due to impaired BDNF secretion 

[51].  Altmann and colleagues assessed the association between the BDNF Val66Met and cognitive impairment in PD 

patients.  They found that carriers of the Val66Met polymorphism had a higher frequency of cognitive impairment as 

assessed using the mini-mental state exam (MMSE).  Additionally, those who were homozygous showing a greater fre-

quency of cognitive impairment than heterozygotes. [52]. These findings suggest a significant role in BDNF dysfunction 

in neurodegeneration, and in particular cognitive impairment in PD.  

 

In patients with diabetes, brain atrophy and vascular brain lesions, particularly small vessel disease gradually increases 

over time, when compared to non-diabetes patients, suggesting that diabetes could also contribute to neurodegeneration 

by increasing vascular brain damage [47]. 

A summary of the pathophysiological processes described is shown in Figure 1.  

 

The Role of GIP, GLP-1 and DPP4 

Glucose-dependent insulinotropic polypeptide (GIP) is an endogenous hormone that belongs to the incretin family. It 

plays a role in promoting insulin release, lowering blood glucose, and has growth factor like properties. Furthermore, 

there has been evidence that GIP enhances cell survival in both β-cells of the pancreas and in neurons [53]. Glucagon-

like peptide-1 (GLP-1) is also an incretin hormone and analogues such as Lixisenatide, Liraglutide and Exenatide have 

shown neuroprotective effects in animals and humans [54-57]. Li et al provided evidence for the role of GIP in neuronal 

survival in animal models of PD [58]. They found that MPTP mice treated with a long acting GIP analogue showed 
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improved locomotor and exploratory activity. Furthermore, they demonstrated that treatment with the GIP analogue in-

creased the levels of tyrosine hydroxylase (TH), a vital enzyme in dopamine synthesis, which is reduced in PD [58, 59]. 

Moreover, GIP analogue treatment decreased the loss of striatal synapses in MPTP mice [58]. Use of the GIP analogue 

also reduced inflammation as demonstrated by a reduction in levels of activated astroglia and microglia [58].  

 

Ji and colleagues [60] have also demonstrated the protective effects of incretins using a protease resistant GLP-1/GIP 

analogue (DA-JC1) on MPTP models [60]. They found that TH levels were increased following treatment with DA-JC1 

in MPTP mice and DA-JC1 was able to increase growth factor signalling molecules such as B-cell lymphoma 2 (Bcl-2) 

and brain derived neurotrophic factor (BDNF), and decrease apoptosis signalling molecules [60]. The pathway through 

which DA-JC1 conveys neuroprotection may be partially due to the activation of Akt, a growth factor signalling kinase 

[60].  Variability in Akt has been shown to be associated with the development of PD [61].  Furthermore, Akt is a down-

stream target of the insulin signalling pathway, and has been shown to have anti-apoptotic effects [61].  However, other 

pathways are also likely to be involved as inhibition of Akt did not fully attenuate the benefits of DA-JC1 [60].   It is 

likely that GLP-1 agonists also exert a neuroprotective effect by reducing vascular risk factors. Incretin therapy has been 

shown to improve micro and macro-vascular complications of diabetes by reducing cerebral ischaemia [62]. In addition 

to being effective in PD animal models, treatments with GLP-1 analogues have also resulted in improvements in memory 

impairment by preventing synapse loss in AD animal models [63,64], with Liraglutide being shown to have reduced the 

soluble Aβ oligomer [63].  

The positive effects of GLP-1 analogues have been also demonstrated in humans [56,57].  An open label clinical trial 

using exenatide in humans demonstrated an improvement in motor and non-motor symptoms in patients with PD, as 

assessed using the Movement Disorders Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [56].  The 

Mattis dementia rating scale-2 (Mattis DRS-2) was also used to assess symptoms of dementia.  This supported the MDS-

UPDRS assessment findings, with an improvement in cognitive function being found in patients who were given ex-

enatide.    The benefit of exenatide lasted 12 months following treatment discontinuation, suggesting that GLP-1 ana-

logues might act on the mechanisms underlying the disease [57].   In terms of adverse effects, exenatide is generally 

considered to be safe, with a low rate of hypoglycaemic episodes, and few drug interactions [65].  However, in this trial, 

an increase in L-dopa-induced dyskinesia (LID) was noted in some patients, and required a reduction in L-dopa doses.  

This was unexpected, and is something that needs to be considered in any future trials.  Furthermore, weight loss prevented 

one patient completing the trial, though this was fully reversed on cessation of exenatide. Nonetheless, the trial was 

generally well tolerated, with 19 of the 21 patients receiving exenatide completing the course of treatment [56].  
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Dipeptidyl peptidase-4 (DPP4) is an enzyme secreted by endothelial cells that catalyzes the release of an N-terminal 

dipeptide from polypeptides. It has enzymatic effects such as the degradation and inactivation of GIP and GLP-1, and 

extra-enzymatic effects including immune co-stimulation [46]. Similarly to incretins, DPP4 may play a role in promoting 

neurodegenerative processes. Furthermore, inhibition of DPP4 reduced neuroinflammation and improved cognitive func-

tion in diabetic animal models [66]. DPP4 inhibition also reduced the levels of ROS produced in the mitochondria of 

insulin resistant rats resulting in increased mitochondrial survival [66]. Additionally, treatment of high-fat fed rats with 

vildagliptin improved cognitive function compared to a control group. These effects were postulated by the authors to be 

indirectly via an increase in circulating and cerebral GLP-1 and GIP levels, as vildagliptin does not cross the blood-brain 

barrier [66]. Further studies with vildagliptin have shown an anti-parkinsonian effect on motor symptoms in rotenone rat 

models [44]. Vildagliptin suppresses cerebral inflammation and apoptosis by blocking the RAGE induced NFkB signal-

ling pathway and reducing production of Tumour Necrosis factor-α (TNF-α) [44]. Vildagliptin also activated the nuclear 

factor erythroid 2-related factor 2 (Nrf2) antioxidant signalling pathway, which attenuates NFkB mediated inflammatory 

responses [44]. In addition to this, vildagliptin had an anti-apoptotic effect by inhibition of the intrinsic and extrinsic 

pathways of apoptosis, thus preserving striatal dopamine content [44]. In vitro studies using vildagliptin have demon-

strated anti-inflammatory effects of DPP-4 inhibitors on macrophages by inhibition of lipopolysaccharide-induced acti-

vation of NF-KB, c-Jun N-terminal kinase (JNK), inducible nitric oxide synthase (iNOS) and cytokine secretion by the 

macrophages [67]. In mice with transient ischaemia-reperfusion, sitagliptin reduced neuroinflammation by decreasing 

NF-KB, TNF-α and Interleukin-6 (IL-6) downstream inflammatory cascades [68].  

 

Vildagliptin and sitagliptin both decreased brain oxidative stress and improved mitochondrial function therefore improv-

ing learning and memory behaviours in insulin-resistance animal models [69,70]. Insulin-resistance and subsequently 

object recognition in animals was improved by sitagliptin, as demonstrated by reduced plasma glucose, increased insulin 

concentrations and improved glucose tolerance [70]. Following treatment with sitagliptin, GLP-1 levels were increased 

by 60% in the plasma, and by 50% in the brain supporting the notion that DPP-4 effects are mediated via GLP-1 [70]. 

The study also showed that brain GIP concentrations were increased by 50%. An increase in GLP-1 and GIP receptor 

mRNA in the hippocampus after sitagliptin administration was also found [70]. This supports the possibility that in addi-

tion to GLP-1, GIP may also have a neuroprotective effect, though further studies are required to explore this possibility. 

The up-regulation of other proteins such as synaptophysin (SYP) and vascular endothelial growth factor (VEGF) in the 

hippocampus following administration of sitagliptin, as well an increase in antioxidants such as superoxide dismutase 2 

(SOD2) and NrF2, provide an interesting insight into the mechanisms underlying the improvement in cognition displayed 

using DPP-4 inhibitors [70]. As with GLP-1 analogues, DPP4 inhibitors have also shown promise in treatment of other 
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conditions.  Linagliptin has been shown to protect against stroke in animal models and both vildagliptin and saxagliptin 

attenuates the effects of steptozotocin induced-AD in rats [71-73].  

 

In addition to the mechanisms described above, DPP-4 inhibitors are also likely to provide benefit by reducing microvas-

cular complications associated with diabetes small-vessel disease. They are known to reduce HbA1C by 0.7-0.8%. The 

subsequent reduction in free radicals associated with hyperglycemia reduces vascular inflammation [46]. There is also 

evidence of reduced blood pressure, and improved lipid profile, which will further reduce the risk of microvascular disease 

[74]. Other studies have linked endothelial dysfunction and subsequent vascular dementia to diabetes and these effects 

have been attenuated by vildagliptin [74].  

 

Several biologically neuropeptide has been proposed as potential target of DPP-4 inhibitors in brain but the precise one 

remain unclear. Pharmacological inhibition of DPP4 prevents the enzymatic cleavage of Xaa-Pro dipeptides from several 

substrates, thus suggesting additional, multifaceted therapeutic potential [46]. The bioactive peptides peptide histidine-

methionine (PHM) and pituitary adenylate cyclase activating peptide (PACAP) have also been shown to be physiological 

DPP4 substrates in vivo. PACAP belongs to the secretin/glucagon/vasoactive intestinal polypeptide superfamily; it is 

widely distributed in the central and peripheral nervous systems and acts as a neurotransmitter, neuromodulator, and 

neurotrophic factor [46]. Other substances, such as substance P, stromal cell-derived factor 1, gastrin-releasing peptide, 

and C-X-C motif chemokine 10, are also supposed to be implicated in neuronal development/survival as well as in the 

pathophysiology of neuroinflammation, AD and/or PD. To date, however, there is no in vivo evidence to support an 

efficacy mediated relationship between DPP4 inhibition and neuroprotection by these substrates. Interestingly, recent 

literature has shown that: 1) DPP4 enzymes are able to truncate amyloid peptides in vitro thus promoting disaggregation 

of preformed fibrils, and 2) the inhibition of prolyl oligopeptidase accelerates the clearance of α-synuclein aggregates in 

in vitro and in vivo models [46]. These findings support the hypothesis that these peptides/proteins represent potential 

substrates for DPP4 enzymes. 

 

DPP-4 inhibitors benefit from having an excellent safety profile, with very few adverse effects noted, in particular a low 

rate of hypoglycaemic episodes [75]. They are also available as oral preparations compared to GLP-1 agonists, making 

them more universally accessible to patients who cannot self-inject [75].  In addition, different DPP-4 inhibitors are 

hepatically or renally metabolised, which may broaden their use in patients with co-existent liver or renal disease.  These 

properties make them an excellent candidate, though further study is needed to fully assess their impact on patients who 

are often complex and on multiple drugs. Pharmacokinetics characteristics of GLP-1 agonists and DPP4 inhibitors are 

shown in Table 2. 
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Metformin 

Metformin is one of the first-line treatments used in diabetes. It is well-tolerated and not associated with weight gain or 

high risk of hypoglycaemia. It improves hyperglycaemia by decreasing hepatic glucose production, decreasing intestinal 

glucose absorption and increasing insulin sensitivity [76]. These effects are partially mediated by activation of AMP-

activated protein kinase (AMPK). AMPK has several roles, including regulating cell survival in response to hypoxia or 

oxidative stress [77]. A recent study showed that AGEs induce the death of human neural stem cell (hNSCs) by down-

regulating AMPK and its downstream pathways. Metformin showed a protective effect on hNSCs by enhancing AMPK. 

Furthermore, AMPK induces PGC1α, which promotes mitochondrial function, and as would be expected, an increase in 

mitochondrial function was demonstrated [77]. α-synuclein overexpression and elevated extracellular levels of α-synu-

clein also downregulate AMPK activation in in vitro models, and restoring the AMPK activity reduces α-synuclein tox-

icity [78].  

 

Given the pivotal role α-synuclein in PD pathology, this provides promising evidence that metformin could attenuate 

some of the pathological effect of α-synuclein in PD patients. Metformin was shown to have an anti-oxidant effect by a 

study using mice with catalepsy induced by haloperidol [79]. Following induction of catalepsy with haloperidol, a fall in 

glutathione and catalase levels and a reduction in superoxide dismutase (SOD) activity was observed. These are all known 

to have important anti-oxidant effects. However, treatment with metformin significantly increased the levels of glutathi-

one and catalase, and improved SOD activity. There was also an improvement in catalepsy, and the authors postulated 

that this was due, at least in part, to a reduction in oxidative stress induced by the treatment [79]. The neuroprotective 

effects of Metformin were also evaluated in vivo using high fat diet fed mice [80].  In this model, improving glycemic 

control following treatment with metformin was associated with a decrease in plasma oxidative stress, complete eradica-

tion of brain oxidative stress, improvement in mitochondrial dysfunction and protection against mitochondrial swelling 

[80]. ROS are known to open the mitochondrial permeability transitional pore (mPTP) and when opened, the mPTP can 

result in mitochondrial swelling [81]. The author postulated that the reduction in ROS following metformin treatment 

prevented the opening of the mPTP, thereby reducing mitochondrial swelling and therefore providing a neuroprotective 

effect [80]. It was also demonstrated that the learning and memory impairment caused by the high fat diet was reversed 

following the treatment with metformin [80].  

 

In MPTP mouse models of PD, there was improved motor function after long-term treatment with metformin [82]. Re-

duced oxidative stress, more TH-positive dopaminergic neurons and an increase in BDNF were also demonstrated and 

this was similar to the effect shown using the incretin analogue DA-JC1 [60, 82]. This suggests a possible overlap in the 

pathway by which metformin and incretins exert a neuroprotective effect. The only study in humans is a prospective 
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cohort study conducted in Taiwan that shows a 2.2-fold increases risk of PD in diabetic patients. The addition of sulpho-

nylureas increased the risk by a further 57%. However, use of metformin attenuated the increase in risk associated with 

the use of sulphonylureas.  The reason of the reduction of PD risk in diabetes treated with metformin is still unclear, 

although there are several pathological mechanisms (described above) that might be implicated with the progression of 

PD and that are affected by the treatment with metformin [83].  

 

Nonetheless, not all evidence has suggested that metformin is beneficial in neurodegenerative conditions.  A case-control 

study based in the United Kingdom suggested that metformin may be associated with an increased risk of AD in long-

term use [84], and treatment of mice with metformin has been shown to increase tau protein aggregation [85].   However, 

the same study does also show metformin to reduce tau phosphorylation, leading to the authors concluding that the ben-

efits are mitigated by negative effects, rather than metformin having an overall detrimental effect [85].     

 

Other factors which may limit the use of metformin in the future are its side effects and interactions.  Metformin is 

associated with lactic acidosis, and is renally excreted, therefore it is used with caution in patients with renal impairment 

[86]. Furthermore, anticholinergics increase the oral bioavailability of metformin by altering gastrointestinal motility.  As 

anticholinergics are commonly used in neurological disease, this may limit the use of metformin in the future.   Metformin 

is also known to reduce vitamin B12 absorption, and this may exacerbate some neurological disease [65].  However, 

metformin does not cause weight gain or loss, is not associated with hypoglycaemia and is otherwise considered to be a 

largely safe drug.   

 

Overall, the evidence suggests that metformin has a neuroprotective effect which may be of use in treating a wide range 

of neurodegenerative conditions.  The reason of the reduction of PD risk in diabetes treated with metformin is still unclear, 

although there are several pathological mechanisms (described above) that might be implicated with the progression of 

PD and that are effected by the treatment with metformin [83].   

 

Thiazolidinediones 

Thiazolidinediones are a class of oral hypoglycemic agents commonly used in treatment of diabetes. They exert their 

effect by acting on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ). Pioglitazone, the 

most commonly used thiazolidinedione, provides neuroprotective effects in MPTP mice and lipopolysaccharide models 

of PD by reducing oxidative stress and microglial activation [87]. A double-blind, randomized controlled trial of the 

effects of pioglitazone on PD patients showed that pioglitazone was not able to slow down disease progression [88]. 

However, cognitive function was not assessed in this trial. There have been several studies, using both rosiglitazone and 
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pioglitazone, which have demonstrated improvement in cognition of animal models of diabetes [89]. However, a pilot 

study examining the effects of pioglitazone on the cognition of elderly patients with mild cognitive impairment did not 

show any improvement on cognitive performance [90], suggesting that thiazolidinediones are not the best candidates to 

slow neurodegeneration in diabetes and PD. 

 

Thiazolidinediones are associated with several adverse effects which have limited their use in recent years.  They have 

been linked to an increase risk of fractures, while rosiglitazone has been shown to increase the risk of heart failure and 

myocardial infarction [86].   As the demographic of a PD patient is likely to be older and therefore at a greater cardiovas-

cular risk, and the disease by its very nature increases the likelihood of falls, these adverse effects are likely to be unac-

ceptable unless great benefit is demonstrated.  Furthermore, thiazolidinediones are hepatically metabolised [91], and 

therefore predisposed to the effects of enzyme inducers and inhibitors which may affect plasma concentrations and there-

fore increase adverse effects or reduce clinical benefit.  

 

 

Sulphonylurea 

Sulphonylreas are amongst the most commonly used class of hypoglycemic drugs. They stimulate pancreatic β-cells to 

release insulin [75]. However, unlike other diabetic therapies, their use in cognitive impairment and neurodegenerative 

conditions has not been greatly investigated. We found only one study evaluating the association between sulphonylureas 

and PD (described above) that showed an increased the risk of PD in diabetics taking sulphonylureas [83]. However, it 

has been demonstrated that glimepiride, but not glipizide, confers a neuroprotective effect in AD [92]. It was hypothesised 

that the difference exists because glimepiride activates endogenous glycosylphosphatidylinositol-phospholipase C (GPI-

PLC) while glipizide does not. In vitro neurons were damaged by Aβ before being treated with glimeperide.  Following 

treatment, a reduction in Aβ induced synapse damage was observed [92].  Selectively inhibiting GPI-PLC reversed the 

protective effect of glimepiride, supporting the hypothesis that protective effect of glimepiride is due to activation of GPI-

PLC [92]. Other studies have shown that glimepiride may exert its neuroprotective effect by serving as an agonist of 

PPAR-γ [93]. Use of a PPAR-γ antagonist reversed the neuroprotective effect on primary cortical neurons damaged with 

Aβ in vitro.  Streptozosin-induced diabetic rats were observed to undergo sustained chronic oxidative stress in the brain 

due to hyperglycaemia. This was demonstrated by an increase in the total oxidant status (TOS), malondialdehyde (MDA) 

and oxidative stress index (OSI) [94]. Treatment with gliclazide attenuated this effect by reducing TOS and OSI levels 

[94]. 
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The future use of sulphonylureas is likely to be inhibited by their significant adverse effects and their vast interactions 

with other drugs. They have a high bioavailability, are rapidly absorbed, and are metabolised by the liver, particularly the 

enzyme cytochrome P2C9, before being renally excreted.  They are prone to liver enzyme inducing and inhibiting drugs, 

including those commonly seen such as trimethoprim and carbamazepine.  This can put the patient at risk, particularly as 

inhibition of liver metabolism can result in potentially dangerous hypoglycaemic episodes in vulnerable patients [65,75].  

Furthermore, sulphonylureas are associated with weight gain [75], which may be undesirable in a patient who is already 

struggling with mobility.  

A summary of classes’ anti-diabetic therapies and their possible mechanisms of neuroprotection in humans is shown in 

Table 3. 

 

Current and Future Developments 

The risk of PD seems to be increased in people with diabetes. Anti-diabetic treatment has shown a protective effect on 

animal models of PD and in a few clinical studies. Among them, DPP4 inhibitors seem to be the potential candidate for 

future trials aimed to slow PD progression, though a few challenges still need to be faced. DPP4 inhibitors offer lower 

penetration of the blood brain barrier compared to GLP-1 agonists. However, the effects of DPP4 inhibitors appear to be 

via increases in both GLP-1 [66,70] and GIP [70] and this could lead to an augmented neuroprotective effect as shown 

on animal models of PD [44]. DPP-4 inhibitors are orally administered and generally well tolerated, with a lower inci-

dence of hypoglycemia and no weight gain compared to GLP-1 analogues, making them popular for use in conjunction, 

or as an alternative to metformin in diabetics. In addition, some DPP-4 inhibitors are excreted by kidney, while others are 

hepatically metabolized. As a result, the potential for their use in those with either renal or liver impairment is greater, so 

that a greater range of patients could benefit from them [75]. To the best of our knowledge, there have been no ongoing 

human trials using DPP-4 inhibitors to alleviate symptoms of PD, similar to those performed using the GLP-1 analogue 

exenatide.  If a human trial does take place in the future, care must be taken with regards to the dose of L-dopa, as this 

was affected by exenatide [56], and it is possible DPP-4 inhibitors may have a similar impact.   

 

A better assessment of the neuroprotective effects of DPP-4 inhibitors is limited by its inability to pass the blood-brain-

barrier.  Recent patents have offered potential solutions to this. Development of a dual variable domain binding protein 

that binds antigens expressed on the brain vascular epithelium and thus facilitates the uptake of a composition into the 

brain may provide a solution and in doing so, allow further study of the neuroprotective effects of DPP-4 inhibitors outside 

of their action via GLP-1 and GIP [95,96].  An alternative solution to this challenge has been proposed by another patent, 

which suggests the use of intranasal administration as a method of bypassing the blood-brain-barrier.  This is achieved 
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by use of a pharmaceutically active agent-transport moiety complex which bypasses the blood-brain barrier via the in-

tranasal route [97]. 

 

The improved understanding of the pathophysiology in PD has also offered the opportunity for more novel treatment 

methods.  As discussed in this review, mitochondrial dysfunction and oxidative stress play an important role in neuro-

degeneration, and new methods acting on these pathways are under developed.  PINK1 is essential in the recruitment of 

parkin to mitochondrial cytoplasm, and its mutation results in autosomal recessive juvenile PD [40]. A recent patent 

suggested to target a molecule which modulates the activity of PINK1, acting as agonist, and thus increasing the signalling 

pathways triggered by PINK1. This offers a potential avenue for the treatment of PD, but will require experimental studies 

[98]. 

 

Reducing oxidative stress is a viable approach to the reduction of neurodegeneration given the evidence demonstrating 

the role of oxidative damage. A patent for Curcumin which can pass the blood brain barrier and offers protection from 

oxidative stress was published in 2014.  It demonstrates an ability to restore BDNF levels and up-regulate NrF2 [99].  

Both of these have been shown to play a role in neurodegeneration in PD animal models, and BDNF dysfunction in 

particular is associated with cognitive impairment.  Therefore, it is possible that restoration of BDNF levels may not only 

improve symptoms of PD, but cognitive impairment in particular.  

 

The cardinal pathology of PD remains the loss of dopaminergic neurons, and restoration of this remains a key component 

of treatment.  A patent for a nuclear receptor subfamily 4, group A, member 2 (Nurr1) receptor agonist also shows prom-

ise. Nurr1 modulates the regulation of genes coding for TH [100], and Nurr1 agonists may restore TH activity, thus 

increasing dopaminergic function [101].   

 

 

Conclusion 

Diabetes and insulin resistance are associated with an increased risk of PD. There is increasing evidence that treatments 

established in the management of diabetes slow the neurodegenerative process and might be potential candidates for 

repositioning for the treatment of neurodegenerative disorders such as PD and AD. Given increasing evidence and their 

good safety profile, GLP-1 agonists and DPP-4 inhibitors are particularly promising for testing in novel clinical trials 

aiming to provide disease modification in PD, though before trials can proceed, more evidence needs to be collected on 

potential adverse effects and drug interactions as the target patients are often very complex.  Furthermore, the use of anti-

diabetic drugs has expanded our understanding of the pathophysiology underlying diabetes, PD and cognitive impairment.  
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This improved understanding will continue to open potential therapeutic avenues, with new patents being developed to 

exploit them.   
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Figure 1. A summary of the pathophysiological processes underlying neurodegeneration. 
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Table 1: Diagnostic criteria for diabetes, impaired glucose tolerance and impaired fasting glucosea. 

 

 Criteria 

Fasting venous plasma Glucose 2-h Venous plasma glucose* 

Diabetes ≥7.0mmol/L 11.1 mmol/L 

Impaired Glucose Tolerance  ≤7.0mmol/L ≥7.8 and <11.1 mmol/L 

Impaired Fasting Glucose 6.1-6.9 mmol/L <7.8 mmol/L 

a See text for reference.  

*Venous plasma glucose level taken 2 hours after 75g oral glucose load.  

Table 2: Pharmacokinetics characteristics of GLP-1 agonists and DPP4 inhibitors 

GLP-1 AGONISTS 

Drug Doses Half-life Excretion 

Exenatide 5-10 mcg bid Short Renal 

Liraglutide 0.6-1.8 mg once Long Metabolized by DDP4 and  

endopeptidase (no renal) 

Lixienatide Uncertain  

(probably 20 mcg/day) 

Short Renal 

Albiglutide Uncertain  

(30 mg/week) 

Very long Renal 

Dulaglutide Uncertain Long Renal 

DPP-4 INHIBITORS 

Sitagliptin 100 mg once Long Renal 

Vildagliptin 50 mg bid Short Renal (50%) and Metabo-

lized by DDP4 and endo-

peptidase (50%) 

Saxagliptin 5 mg once Short  

(but active metabolite) 

Renal 

Alogliptin 12.5–25 mg once Long Renal 

Linagliptin 5 mg once Very long Metabolized by DDP4 and  

endopeptidase (no renal) 
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Table 3: Summary of classes’ anti-diabetic therapies, their possible mechanisms of neuroprotection and available 

human data.a  

Class of drug Proposed mechanisms of 

neuroprotection 

Human clinical study data 

GLP-1 agonist Increase TH levels. 

 

Increase Bcl-2, reduce BAX. 

 

Activation of Akt.  

 

Reduction in soluble Aβ oligomer.  

 

Reducing risk of vascular disease. 

Single-blind trial with exenatide and 

PD patients.  Results showed 

improved motor function and 

cognition.  No improvement in 

depression/Quality of Life.  Benefits 

persisted 12 months post-trial.   

Adverse effects included L-dopa 

induced dyskinesia and weight loss.  

DPP-4 inhibitor Blocking the RAGE induced NFkB 

signalling pathway by reducing pro-

duction of TNF-α. 

 

Activating the Nrf2-antioxidant sig-

nalling pathway. 

 

Inhibition of lipopolysaccharide in-

duced activation of NF-KB, JNK and 

iNOS and cytokine secretion macro-

phages. 

 

Increase in SOD2 and NRf2 in hippo-

campus. 

 

Reducing risk of vascular disease. 

No 

Metformin Activating AMPK and inducing 

PGC1a. 

 

Reducing mitochondrial swelling. 

 

Increasing catalase and glutathione 

levels. 

 

Increasing activity of SOD. 

 

Increase in TH. 

Study in Taiwan showed that 

metformin reduced the risk of 

developing PD in patients with DM. 

 

Study in United Kingdom showed 

increased risk of AD.  
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Thiazilidiones Reduce oxidative stress. 

 

Reduce microglial activation. 

Double-blind randomised controlled 

trial showed no improvement in PD 

symptoms with Pioglitazone. 

 

Pilot study with elderly patients with 

mild cognitive impairment given 

pioglitazone showed no improvement 

in cognition. 

Sulphonylurea Activation of GPI-PLC by 

glimepiride. 

No 

      a See text for references. 
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