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Novel genetic loci associated with
hippocampal volume
Derrek P. Hibar, Hieab H.H. Adams, Neda Jahanshad, Ganesh Chauhan, Jason L. Stein, Edith Hofer,

Miguel E. Renteria, Joshua C. Bis et al.#

The hippocampal formation is a brain structure integrally involved in episodic memory, spatial

navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal

volume and shape are found in several common neuropsychiatric disorders. To identify the

genetic underpinnings of hippocampal structure here we perform a genome-wide association

study (GWAS) of 33,536 individuals and discover six independent loci significantly associated

with hippocampal volume, four of them novel. Of the novel loci, three lie within genes

(ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal

subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized

effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic

variants associated with decreased hippocampal volume are also associated with increased

risk for Alzheimer’s disease (rg¼ �0.155). Our findings suggest novel biological pathways

through which human genetic variation influences hippocampal volume and risk for

neuropsychiatric illness.

Correspondence and requests for materials should be addressed to P.M.T. (email: pthomp@usc.edu) or to M.A.I. (email:m.a.ikram@erasmusmc.nl).
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B
rain structural abnormalities in the hippocampal formation
are found in many complex neurological and psychiatric
disorders including temporal lobe epilepsy1, vascular

dementia2, Alzheimer’s disease3, major depression4, bipolar
disorder5, schizophrenia6 and post-traumatic stress disorder7,
among others. The diverse functions of the hippocampus,
including episodic memory8, spatial navigation9, cognition10

and stress responsiveness11 are commonly impaired in a broad
range of diseases and disorders of the brain that are associated
with insults to the hippocampal structure. Further, the
cytoarchitectural subdivisions (or ‘subfields’) of the hippo-
campus are associated with distinct functions. For example, the
dentate gyrus (DG) and sectors 3 and 4 of the cornu ammonis
(CA) are involved in declarative memory acquisition12, the
subiculum and CA1 play a role in disambiguation during working
memory processes13, and the CA2 is implicated in animal models
of episodic time encoding14 and social memory15. The anterior
hippocampus, which includes the fimbria, CA subregions and
hippocampal -amygdaloid transition area (HATA), may be
involved in the mediation of cognitive processes including
imagination, recall and visual perception16 and anxiety-related
behaviours17.

Environmental factors, such as stress, affect the hippocam-
pus18, but genetic differences across individuals account for most
of the population variation in its size; the heritability of
hippocampal volume is high at around 70% (refs 19–21). High
heritability and a crucial role in healthy and diseased brain
function make the hippocampus an ideal target for genetic
analysis. We formed a large global partnership to empower the
quest for mechanistic insights into neuropsychiatric disorders
associated with hippocampal abnormalities and to chart, in depth,
the genetic underpinnings of the hippocampal structure.

Here we perform a GWAS meta-analysis of mean bilateral
hippocampal volume in 33,536 individuals scanned at 65 sites
around the world as a joint effort between the Enhancing
Neuroimaging Genetics through Meta-analysis (ENIGMA) and
the Cohorts for Heart and Aging Research in Genomic
Epidemiology (CHARGE) consortia. Our primary goal is to find
common genetic determinants of hippocampal volume with
previously unobtainable power. We make considerable efforts to
coordinate data analysis across all sites from both consortia to
maximize the comparability of both genetic and imaging data.

Standardized protocols for image analysis and genetic imputation
are freely available online (see URLs). In the most powerful
imaging study of the hippocampus to date, we shed light on the
common genetic determinants of hippocampal structure and
allow for a deepened understanding of the biological workings of
the brain’s memory centre. We confirm previously identified loci
influencing hippocampal volume, identify four novel loci and
determine genome-wide overlap with Alzheimer’s disease.

Results
Novel genome-wide markers associated with hippocampal volume.
Our combined meta-analysis (n¼ 26,814 individuals of European
ancestry) revealed six independent, genome-wide significant
loci associated with hippocampal volume (Fig. 1; Table 1). Four
are novel: with index SNPs rs11979341 (7q36.3; P¼ 1.42� 10
� 11), rs7020341 (9q33.1; P¼ 3.04� 10� 11), rs2268894 (2q24.2;
P¼ 5.89� 10� 11), and rs2289881 (5q12.3; P¼ 2.73� 10� 8).
The other two loci have been previously characterized in detail:
with index SNPs rs77956314 (12q24.22, P¼ 2.06� 10� 25),
in linkage disequilibrium (LD) (r2¼ 0.901 in European
samples from the 1000 Genomes Project, Phase 1v3) with our
previously identified variant at this locus (rs7294919) and
rs61921502 (12q14.3, P¼ 1.94� 10� 19), in LD (r2¼ 0.459)
with previous top locus rs17178006 (refs 22–24; Fig. 2a–f). In
addition to these SNPs, we identified nine independent loci
with a statistically suggestive influence on hippocampal volume
(Po1� 10� 6; Supplementary Data 4). All pathway results and
gene-based P values are summarized in Supplementary Data 6
and 7.

Variance explained in hippocampal volume by common variants.
Common variants genotyped from across the whole-genome
explained as much as 18.76% (s.e. 1.56%) of the observed variance
in human hippocampal volume, based on LDSCORE regression25

(Supplementary Fig. 3). Common genetic variants account for
around a quarter of the overall heritability, estimated in twin
studies to be around 70% (refs 19–21). Further partitioning the
genome into functional categories using LDSCORE26 revealed
significant over-representation of regions evolutionarily conserved
in mammals (P¼ 0.0026): 2.6% of the variants accounted for 43.3%
of the 18.76% variance explained (Fig. 3).
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Figure 1 | Common genetic variants associated with hippocampal volume (N¼ 26,814 of European ancestry). A Manhattan plot displays the association

P value for each single-nucleotide polymorphism (SNP) in the genome (displayed as –log10 of the P-value). Genome-wide significance is shown for the

P¼ 5� 10�8 threshold (solid line) and also for the suggestive significance threshold of P¼ 1� 10�6 (dotted line). The most significant SNP within an

associated locus is labeled. For the significant loci and age-dependent loci (Chromosome 19) we labeled the nearest gene, which is not necessarily the gene

of action.
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Effects of top variants on hippocampal subfield volume. To test
for differential effects on individual subfields of the hippo-
campal formation, we examined the six significant variants
influencing whole hippocampal volume in a large cohort
(n¼ 5,368). We found that the top SNP from our primary
analysis, rs77956314, has a broad, nonspecific effect on
hippocampal subfield volumes with the greatest effect in the
right hippocampal tail (P¼ 1.27� 10� 8). rs61921502
showed strong lateral effects across right hippocampal subfields
with the largest effect in the right hippocampal fissure
(P¼ 6.45� 10� 9). rs7020341 showed greatest effects bila-
terally in the subiculum (left: P¼ 1.59� 10� 8; right: P¼ 1.42
� 10� 8). rs2268894 show left-lateralized effects across hippo-
campal subfields with the strongest effect in the left hippo-
campal tail (P¼ 1.76� 10� 5). The remaining two variants
(rs11979341 and rs2289881) did not show significant evidence
of association across any of the hippocampal subfields. The
full set of results from the hippocampal subfield analysis is
tabulated in Supplementary Data 8.

Genetic overlap with hippocampal volume. We used LDSCORE27

regression to quantify the degree of common genetic overlap
between variants influencing the hippocampus and those influe-
ncing Alzheimer’s disease. We found significant evidence of a
moderate, negative relationship whereby variants associated with a
decrease in hippocampal volume are associated with an increased
risk for Alzheimer’s disease (rg¼ � 0.155 (s.e. 0.0529), P¼ 0.0034;
see Methods).

Discussion
We identified six genome-wide significant, independent loci
associated with hippocampal volume in 26,814 subjects of
European ancestry. Of the six loci, four were novel:
rs11979341 (7q36.3; P¼ 1.42� 10� 11), rs7020341 (9q33.1;
P¼ 3.04� 10� 11), rs2268894 (2q24.2; P¼ 5.89� 10� 11) and
rs2289881 (5q12.3; P¼ 2.73� 10� 8). We previously discovered
two of the novel loci, rs7020341 and rs2268894 (ref. 24), but in
this higher-powered analysis they now surpassed the genome-
wide significance. In addition to the four novel loci, we replicated
two loci associated with hippocampal volume: rs7492919 and
rs17178006 (refs 23,24). Hibar et al.22 previously reported
additional support for the rs17178006 association with hippo-
campal volume.

Each novel locus identified has unique functions and has
previously been linked to diseases of the brain. Variant rs7020341
lies within an intron of the astrotactin 2 (ASTN2) gene (Fig. 2d)
which encodes for a protein involved in glial-mediated neuronal
migration in the developing brain28. Rare deletions overlapping
this locus near the 30 end of ASTN2 have been observed in
patients with autism spectrum disorder and attention-deficit/
hyperactivity disorder29. Common variants near this site are
associated with autism spectrum disorders29 and migraine30.
Variant rs2268894 is located in an intron of DPP4 (Fig. 2e) that
encodes dipeptidyl peptidase IV; an enzyme regulating response
to the ingestion of food31, and an established target of a treatment
for type 2 diabetes mellitus (vildagliptin)32. In addition,
rs2268894 is in strong LD (r2¼ 0.83) with a genome-wide signi-
ficant locus associated with a decreased risk for schizophrenia
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Figure 2 | Functional annotation within genome-wide significant loci. For each panel (a–f), zoomed-in Manhattan plots (±400 kb from top SNP) are

shown with gene models below (GENCODE version 19). Plots below are zoomed to highlight the genomic region that likely harbors the causal variant(s)

(r240.8 from the top SNP). Genomic annotations from the Roadmap Epigenomics Consortium53 are displayed to indicate potential functionality (see

Methods for detailed track information). Each plot was made using the LocusTrack software55 (see URLs).
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(rs2909457)33; however, the allele that increases risk for
schizophrenia also increases hippocampal volume even though
patients with schizophrenia show decreased hippocampal volume
relative to controls6. Variant rs11979341 lies in an intergenic
region (Fig. 2c) around 200 kb upstream of the sonic hedgehog
(SHH) gene, crucial for neural tube formation34. Adult brain
expression data provide some evidence that rs11979341-C
increases the expression of SHH in adult human hippo-
campus35 (P¼ 0.0089). Finally, variant rs2289881 lies within an
intron of the microtubule-associated serine/threonine kinase
family member 4 (MAST4) gene (Fig. 2f). The protein product
of MAST4 modulates the microtubule scaffolding; the gene has

been linked to susceptibility for atherosclerosis in HIV-infected
men36, and atypical frontotemporal dementia37.

Effect sizes from the full sample were almost identical to those
obtained from a subset meta-analysis (Pearson’s r240.99;
n¼ 22,761) that removed all patients diagnosed with a neurop-
sychiatric disorder. Observed effects are therefore not likely to be
driven by inclusion of patients with brain disorders. All
significant loci are tabulated in Table 1. We found little evidence
that these effects could be generalized to populations of African,
Japanese, and Mexican-American ancestry, which could be due to
the limited power from smaller non-European sample sizes
available (n¼ 6,722; Supplementary Data 5).

Functional partitioning analysis in LDSCORE
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Figure 3 | Analysis of variance explained, functional annotation, and pathway analysis. LDSCORE regression analysis for different functional

annotation26 categories (described further in Finucane et al.26). Plotted values are the proportion of h2
g explained divided by the proportion of SNPs in a

given functional category. Values are significantly over- or under-represented if they differ significantly from 1. Values are plotted with a standard error

calculated with a jackknife in LDSCORE. Evolutionarily conserved regions across mammals significantly contributed to the heritability of hippocampal

volume (indicated by **).

Table 1 | Genetic variants at six loci were significantly associated with hippocampal volume.

RSID Chr Pos Nearest gene Allele1 Allele2 Freq Z-score N P value

rs77956314 12 117,323,367 4 kb 50 to HRK T C 0.9160 � 10.418 26,814 2.06� 10� 25

rs61921502 12 65,832,468 Intron of MSRB3 T G 0.8466 9.017 26,814 1.94� 10� 19

rs11979341 7 155,797,978 200 kb 50 to SHH C G 0.6837 � 6.755 24,484 1.42� 10� 11

rs7020341 9 119,247,974 Intron of ASTN2 C G 0.3590 6.645 26,700 3.04� 10� 11

rs2268894 2 162,856,148 Intron of DPP4 T C 0.5412 � 6.546 26,814 5.89� 10� 11

rs2289881 5 66,084,260 Intron of MAST4 T G 0.3544 � 5.558 26,814 2.73� 10�8

The allele frequency (Freq) and effect size (Z-score) are given with reference to Allele 1. Effect sizes are additive effects for each copy of Allele 1 given as a Z-score. Additional validation was attempted in
non-European ancestry generalization samples (shown in Supplementary Data 5).
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We estimated that 18.76% (s.e. 1.56%) of the variance in
hippocampal volume could be explained by genotyped common
genetic variation. This effect was only tested within populations
of European ancestry and does not necessarily reflect the level of
explained variance in other populations worldwide. This is a
substantial fraction of the overall genetic component of variance
determined by twin heritability studies, and the heritability
of hippocampal volume is relatively high at around 70%
(refs 19–21). With the same LDSCORE method, we estimated
the amount of variance explained by common gene variants
belonging to known functional cell categories26. We discovered
enrichment of genomic regions conserved across mammals,
which may have a strong evolutionary role in the hippocampal
formation, a structure much more extensively developed in
mammals than in other vertebrates38. Given that hippocampal
atrophy is a hallmark of Alzheimer’s disease pathology39, we were
motivated to examine common genetic overlap between
hippocampal volume and Alzheimer’s disease risk. We found a
significant negative relationship (rg¼ � 0.155 (s.e. 0.0529),
P¼ 0.0034), through which loci associated with decreased
hippocampal volume also increase risk for AD. This confirms a
shared etiological component between AD and hippocampal
volume whereby genetic variants influencing hippocampal
volume also modify the risk for developing AD.

As the hippocampal formation is a complex structure
comprised of diverse functional units, we sought to examine the
genetic variants identified in our analysis for focal effects on
hippocampal subfield volumes. When assessing 13 subfields of the
hippocampus (26 total, left and right) we found that two of the
top variants from our analysis (rs77956314 and rs7020341) had
largely non-specific effects: most of the subfield volumes showed
significant evidence of association (Supplementary Data 8). The
variant rs61921502 showed a lateralized effect across the body of
the right hippocampal formation, which includes the DG,
subiculum, CA1 and fissure. Volume losses are frequently
observed across the hippocampal body in AD40, major
depression41, bipolar disorder42 and temporal lobe epilepsy43.
Prior pathway analyses have implicated the rs61921502 with
MSR3B, a gene related to oxidative stress24. Genetic variation at
MSR3B may influence neurogenesis specifically within the dentate
regions of the hippocampal body, where cell proliferation is
known to continue into adulthood in healthy humans44.
However, further functional validation is required to test this
hypothesis. Finally, the variant rs2268894 was associated with
volume differences in the left hippocampal tail, a subfield that has
previously shown shape abnormalities45 and volume differences46

in schizophrenia.
Here we identified four novel loci associated with hippocampal

volume and examined each variant for localized effects in
hippocampal subfields. When partitioning the full genome-wide
association results into functionally annotated categories, we
discovered that SNPs in evolutionarily conserved regions were
significantly over-represented in their contribution to hippocam-
pal volume. Further, we found significant evidence of shared
genetic overlap between hippocampal volume and Alzheimer’s
disease. This large international effort shows that by mapping out
the genetic influences on brain structure, we may begin to derive
mechanistic hypotheses for brain regions causally implicated in
the risk for neuropsychiatric disorders.

Methods
Subjects and sites. High-resolution MRI brain scans and genome-wide
genotyping data were available for 33,536 individuals from 65 sites in two large
consortia: the ENIGMA Consortium and the CHARGE Consortium. Full details
and demographics for each participating cohort are given in Supplementary Data 1.
All participants (or their legal representatives) provided written informed consent.

The institutional review board of the University of Southern California and the
local ethics board of Erasmus MC University Medical Center approved this study.

Imaging analysis and quality control. Hippocampal volumes were estimated
using the automated and previously validated segmentation algorithms, FSL
FIRST47 from the FMRIB Software Library (FSL) and FreeSurfer48. Hippocampal
segmentations were visually examined at each site, and poorly segmented scans
were excluded. Sites also generated histogram plots to identify any volume outliers.
Individuals with a volume more than three standard deviations away from the
mean were visually inspected to verify proper segmentation. Statistical outliers were
included in analysis if they were properly segmented; otherwise, they were
removed. Average bilateral hippocampal volume was highly correlated across
automated procedures used to measure it (Pearson’s r¼ 0.74)22. A measure of head
size—intracranial volume (ICV)—was used as a covariate in these analyses to
adjust for volumetric differences due to differences in head size alone. Most sites
measured ICV for each participant using the inverse of the determinant of the
transformation matrix required to register the subject’s MRI scan to a common
template and then multiplied by the template volume (1,948,105 mm3). Full details
of image acquisition and processing performed at each site are given in
Supplementary Data 2.

Genetic imputation and quality control. Genetic data were obtained at each site
using commercially available genotyping platforms. Before imputation, genetic
homogeneity was assessed in each sample using multi-dimensional scaling (MDS).
Ancestry outliers were excluded by visual inspection of the first two components.
The primary analysis and all data presented in this main text were derived from
subjects with European ancestry. Replication attempts in subjects of additional
ancestries are presented in Supplementary Data 5. Data were further cleaned and
filtered to remove single-nucleotide polymorphisms (SNPs) with low minor allele
frequency (MAFo0.01), deviations from Hardy–Weinberg Equilibrium (HWE;
Po1� 10� 6), and poor genotyping call rate (o95%). Cleaned and filtered data-
sets were imputed to the 1000 Genomes Project reference panel (phase 1, version 3)
using freely available and validated imputation software (MaCH/minimac,
IMPUTE2, BEAGLE, GenABLE). After imputation, genetic data were further
quality checked to remove poorly imputed SNPs (estimated R2o0.5) or low MAF
(o0.5%). Details on filtering criteria, quality control, and imputation at each site
may be found in Supplementary Data 3.

Genome-wide association analysis and statistical models. GWAS were
performed at each site, as follows. Mean bilateral hippocampal volume
((leftþ right)/2) was the trait of interest, and the additive dosage value of a SNP
was the predictor of interest, while controlling for 4 MDS components, age, age2,
sex, intracranial volume and diagnosis (when applicable). For studies with data
collected from multiple centres or scanners, additional covariates were also
included in the model to adjust for any scanning site effects. Sites with family data
(NTR-Adults, BrainSCALE, QTIM, SYS, GOBS, ASPSFam, ERF, GeneSTAR,
NeuroIMAGE, OATS, RSIx) used mixed-effects models to account for familial
relationships, in addition to covariates stated previously. The primary analyses for
this paper focused on the full set of individuals, including datasets with patients, to
maximize power. We re-analysed the data excluding patients to verify that detected
effects were not due to disease alone. The regression coefficients for SNPs with
Po1� 10� 5 in the model including all patients were almost perfectly correlated
with the regression coefficients from the model including only healthy individuals
(Pearson’s r¼ 0.996). Full details for the software used at each site are given in
Supplementary Data 3.

The GWAS of mean hippocampal volume was performed at each site, and the
resulting summary statistics uploaded to a centralized site for meta-analysis. Before
meta-analysis, GWAS results from each site were checked for genomic inflation
and errors using Quantile–Quantile (QQ) plots (Supplementary Figs 1 and 2).
GWAS results from each site were combined using a fixed-effects sample size-
weighted meta-analysis framework as implemented in METAL49. Data were
meta-analysed first in the ENIGMA and CHARGE Consortia separately and then
combined into a final meta-analysed result file. After the final meta-analysis, SNPs
were excluded if the SNP was available for fewer than 5,000 individuals.

Variance explained and genetic overlap in hippocampal volume. The common
genetic overlap, total variance explained by the GWAS, and the partitioned
heritability analyses were estimated using LDSCORE25,26. Following from the
polygenic model, an association test statistic at a given locus includes signal from
all linked loci. Given a heritable polygenic trait, a SNP in high LD with, or tagging,
a large number of SNPs is on average likely to show stronger association than
a SNP that is not. The magnitude of information conveyed by each variant
(a function of the number of SNPs tagged taking into account the strength of the
tagging) is summarized as an LD score. By regressing the LD scores on the test
statistics, we estimated the proportion of variance in the trait explained by the
variants included in the analysis. As an extension, two LD score models for two
separate traits can be used to estimate the covariance (and correlation) structure to
yield an estimate of the common genetic overlap (rg) between any two trait pairs.
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Here we estimated the common genetic overlap between hippocampal volume and
Alzheimer’s disease50. Standard errors were estimated using a block jackknife.

Genomic partitioning into functional categories. As well as estimating the total
variance explained, the genomic heritability (h2

g) can be partitioned into specific
subsets of variants. The functional annotation partitioning used the pre-prepared
LDSCORE and annotation (.annot) files available online (see URLs) following the
method of Finucane et al.26. These analyses use the following 24 functional classes
not specifically unique to any cell type: coding, UTR, promoter, intron, histone
marks H3K4me1, H3K4me3, H3K9ac5 and two versions of H3K27ac, open
chromatin DNase I hypersensitivity Site (DHS) regions, combined chromHMM/
Segway predictions, regions conserved in mammals, super-enhancers and active
enhancers from the FANTOM5 panel of samples (Finucane et al., page 4)26.
Annotated coordinates are determined by a combination of all cell types from
ENCODE. As in Finucane et al.26, to avoid bias, we included the 500 bp windows
surrounding the variants included in the functional classes. The chromosome-
partitioned analyses were conducted using LDSCOREs calculated for each
chromosome. Following the method of Bulik-Sullivan et al.25, these analyses focus
on the variants within HapMap3 as these SNPs are typically well imputed across
cohorts. Enrichment of a given partition is calculated as the proportion of h2

g

explained by that partition divided by the proportion of variants in the GWAS that
fall into that partition. All LDSCORE analyses used non-genomic controlled meta-
analyses.

Gene annotation and pathway analysis. Gene annotation, gene-based test sta-
tistics, and pathway analysis were performed using the KGG2.5 software package51

(Supplementary Data 6 and 7). LD was calculated based on RSID numbers using
the 1000 Genomes Project European samples as a reference (see URLs). For
annotation, SNPs were considered ‘within’ a gene, if they fell within 5 kb of the
30/50 UTR based on human genome (hg19) coordinates. Gene-based tests were
performed using the GATES test51 without weighting P values by predicted
functional relevance. Pathway analysis was performed using the HYST test
of association52. For all gene-based tests and pathway analyses, results were
considered significant if they exceeded a Bonferroni correction threshold
accounting for the number of pathways in the REACTOME database tested such
that Pthresh¼ 0.05/(671 pathways)¼ 7.45� 10� 5.

Annotation of SNPs with epigenetic factors. In Fig. 2, all tracks were taken from
the UCSC Genome Browser Human hg19 assembly. SNPs (top 5%) shows the top
5% associated SNPs within the locus and are coloured by their correlation to the
top SNP. Genes shows the gene models from GENCODE version 19. Hippocampus
gives the predicted chromatin states based on computational integration of
ChIP-seq data for 18 chromatin marks in human hippocampal tissue derived from
the Roadmap Epigenomics Consortium53. The 18 chromatin states from the
hippocampus track are as follows: TssA (Active TSS), TssFlnk (Flanking Active
TSS), TssFlnkU (Flanking TSS Upstream), TssFlnkD (Flanking TSS Downstream),
Tx (Strong transcription), TxWk (Weak transcription), EnhG1 (Genic Enhancers
1), EnhG2 (Genic Enhancers 2), EnhA1 (Active Enhancers 1), EnhA2 (Active
Enhancers 2), EnhWk (Weak Enhancers), ZNF/Rpts (ZNF genes & repeats), Het
(Heterochromatin), TssBiv (Bivalent/Poised TSS), EnhBiv (Bivalent Enhancer),
ReprPC (Repressed PolyComb), ReprPCWk (Weak Repressed PolyComb), Quies
(Quiescent/Low). Additional information about the 18 state chromatin model is
detailed elsewhere53. Conservation is the basewise conservation score over 100
vertebrates estimated by PhyloP from the UCSC Genome Browser Human hg19
assembly.

Analysis of hippocampal subfields. We segmented the hippocampal formation
into 13 subfield regions: CA1, CA3, CA4, fimbria, Granule LayerþMolecular
LayerþDentate Gyrus Boundary (GC_ML_DG), hippocampal-amygdaloid
transition area (HATA), hippocampal tail, hippocampal fissure, molecular layer
(HP), parasubiculum, presubiculum and subiculum using a freely available,
validated algorithm distributed with the FreeSurfer image analysis package54.
We measured the hippocampal subfield volumes within the Rotterdam
(n¼ 4,491) and HUNT (n¼ 877) cohorts. Volumes from the 26 subfield regions
(13 in each hemisphere) were the phenotypes of interest and individually
assessed for significance with the top variants from our primary analysis while
correcting for the following nuisance variables: 4 MDS components, age, age2,
sex, intracranial volume. Association statistics from each of the tests in the
Rotterdam and HUNT cohorts were meta-analysed using a fixed-effects inverse
variance-weighted model yielding the final results. We declare an individual test
significant if the P value is less than a Bonferroni-corrected P value threshold
accounting for the total number of tests: Pthresh¼ 0.05/(26 subfields� 6
SNPs)¼ 3.21� 10� 4.

Data availability. The genome-wide summary statistics that support the findings
of this study are available upon request from the corresponding authors MAI and
PMT (see URLs). The data are not publicly available due to them containing
information that could compromise research participant privacy/consent.

URLs
https://github.com/bulik/ldsc
http://enigma.usc.edu/protocols/genetics-protocols/
http://gump.qimr.edu.au/general/gabrieC/LocusTrack/
http://enigma.ini.usc.edu/download-enigma-gwas-results/
http://www.internationalgenome.org/data
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