
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1109/WCNCW.2017.7919082

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Hesham, A., Sardis, F., Wong, W. S., Mahmoodi, T., & Tatipamula, M. (2017). A Simplified Network Access
Control Design and Implementation for M2M Communication Using SDN. In IEEE Wireless Communications and
Networking Conference : M2M Communications and the Internet of Things Workshop Advance online
publication. https://doi.org/10.1109/WCNCW.2017.7919082

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 28. Dec. 2024

https://doi.org/10.1109/WCNCW.2017.7919082
https://kclpure.kcl.ac.uk/portal/en/publications/5a1e2ebc-eaca-4482-bae2-a721499cbee5
https://doi.org/10.1109/WCNCW.2017.7919082


A Simplified Network Access Control Design and
Implementation for M2M Communication Using SDN

Almulla Hesham∗ Fragkiskos Sardis∗, Stan Wong∗, Toktam Mahmoodi∗, Mallikarjun Tatipamula†
∗ Centre for Telecommunications Research, Dep. of Informatics, King’s College London, UK

† F5 Networks, San Jose, CA, USA
{almulla.hesham, fragkiskos.sardis, stan.wong, toktam.mahmoodi}@kcl.ac.uk; m.tatipamula@f5.com

Abstract—Network access control is an established security
method that only grants access to authorised devices. The 802.1X
standard defines the mechanisms for implementing network access
control in legacy networks. However, its implementation requires
hardware and software components that are not commonly found
in small deployments and also adds to the complexity of the
network and the deployment time. The Software-defined Networking
(SDN) offers an opportunity to develop new network access control
solutions, among other things, that can be used to simplify and speed
up the implementation and deployment of small, localised sensor
networks. In this paper we demonstrate how SDN can be used to
develop a basic network access control service without using 802.1X
software and hardware while also offering the ability to adjust
the available bandwidth and network access policy per device. The
proposed solution provides quick and flexible network deployments
for IoT sensor networks and other types of M2M communication.
We implement our proposed architecture using OpenDaylight and
OpenFlow switches and evaluate its performance by running tests
with multiple client devices and various policies. Our results show
that the studied approach can be a valid approach for small to
medium sized networks that requires quick and low-cost deployment
and high flexibility in terms of adding new devices.

Keywords—Software Defined Networking, SDN, Quality of Ser-
vice, QoS, Network Access Control, security, 802.1X, Machine to
Machine, M2M, Internet of Things, IoT.

I. INTRODUCTION

Network Access Control (NAC) is considered as one of the
most significant aspects in network security since it provides a
mechanism for ensuring the authenticity of devices before they
are allowed to connect to the network. NAC also provides a means
for controlling network access levels for each device or groups of
devices so that different users and devices may access different
subnets of the network while being prevented from accessing
resources outside their access rights. NAC solutions are typically
encountered in industrial networks where security and reliability
are important factors, alongside more traditional network security
solutions such as firewalls and user authentication.

The Software-Defined Networking (SDN) paradigm separates
the control plane and data plane (forwarding plane) enabling the
abstraction of the underlying infrastructure [1]. The separated
control plane resides on a centralized controller (SDN controller)
that connects to the forwarding devices (e.g. switch) via a
common set of protocols. The controller provides a programmatic
interface for business applications through northbound APIs while
the communication with network devices occurs via southbound
APIs (e.g. OpenFlow protocol). This makes the SDN controller
a candidate for consolidating NAC functionality along with other
functions such as traffic prioritisation for Quality of Service
Management [2]-[5].

OpenFlow (OF) [6], is a southbound protocol for SDN that
facilitates the configuration of forwarding rules on switches.

An OpenFlow-compliant switch maintains flow tables where the
controller can add, update and delete flow entries in each table
via the OpenFlow protocol. Each flow table contains flow entries
that describe how packets should be processed by the switch
according to values in their protocol headers. Meter tables, also
stored on the switch, contain bandwidth meter entries that define
a bandwidth threshold and an action. When a flow is assigned
to a meter, the meter checks whether the throughput of the flow
(packet/sec or bits/s) exceeds its threshold. If exceeded, the meter
will act on the flow packets either by dropping them in order to
enforce the threshold or remark their DSCP value so that other
operations can take place such as reducing or increasing the
flow priority on the network. These functions present the core
functionality of SDN and along with queuing, form the basic
mechanisms that enable fine-grained Quality of Service (QoS)
control in SDN infrastructures. This flexibility offered by SDN
allows us to build NAC systems that combine device and user
authentication with a set of network access levels and a level of
QoS. Such a solution could potentially consolidate NAC with QoS
management in industrial networks, where Machine-to-Machine
(M2M) communication plays a critical role in production[7].
The envisioned solution would enable QoS and access control
management from a single entity inside the network and would
also enable a more flexible approach at changing the applied NAC
and QoS policies per device.

This paper presents a novel SDN solution aimed at providing
different access level and bandwidth rate for users and clients
based on predetermined policies through a simplified and easy to
implement Authentication and Authorisation entity that commu-
nicates with the SDN controller via its northbound interface. We
experimentally evaluate a proof-of-concept prototype and measure
the performance of the system in terms of user authentication
delay and flow instantiation delay. The rest of the paper is
structure as follows: Section II covers the related work, and
highlight the gap in the literature where our work is placed. The
system architecture is elaborated in Section III, and the details of
the implementation are included in Section IV. Section V presents
the evaluation and results’ analysis. Finally, Section VI concludes
this paper and discusses the potential for future development.

II. BACKGROUND

Network security implemented over SDN is fairly new, but
several efforts are taking place mainly focusing on firewall
implementation of the SDN controller. In this section, we look
at some of the more prominent work done in this field. The
SDN Routing Firewall Application [8] performs both routing and
firewall function on layer 3 traffic. This is achieved by creating
a network application using Python programming language to



interact with the controller to route and filter incoming packets.
The application was tested on three hosts in three different
subnets using a white list where the default permission is to
block all traffic except traffic from authenticated IP addresses.
The drawback of this application is that it does not authenticate
endpoints. Therefore, IP spoofing is possible in this case to reach
trusted subnets.

Suh et. al. [9] propose another approach where a firewall appli-
cation is developed at the switch level thus each packet’s headers
are checked against the firewall rule from highest to lowest
priority, and performs a specified action once matching fields are
found before it is delivered to the controller for further processing.
This approach is more secure than the above since the firewall rule
matching fields are more restricted. On the other hand, its still not
secure enough to prevent malicious attack (e.g. IP/MAC spoofing)
since no user authentication is enforced. FlowIdentity [10] is
a virtualized network access control function using OpenFlow
protocol. It implements 802.1X framework in SDN, combined
with an authorization method through a role-based firewall. This
solution is considered as integration between the traditional port-
base access control using an external authenticator (i.e. RADIUS)
and SDN architecture with policy enforcement through a role-
based firewall. Another similar solution is FlowNAC [11] where
a modified version of 802.1X is used to authenticate the users
and service level access control based on proactive deployment
of flows for user authorization. The difference between them is the
method followed for user authorization. Although they provide a
great level of security in terms of authentication and authorization,
many resources with specific requirements must be available in
order to implement such a solution.

The open source SDN controller ONOS consortium 1 is also
making an effort at implementing standard 802.1x on the con-
troller in order to embed AAA/RADIUS functionality for wired
and wireless networks. The application is being developed as part
of the Central Office Re-Architected as a Datacenter (CORD)
initiative which is aimed at integrating advanced functionality
commonly found in the datacenter to smaller networks such as
small and medium businesses and homes. Jung Wan Shin et
al. [13] have implemented NAC for Wireless LAN in ONOS
using traffic prioritisation policies based on the MAC addresses
of devices. In their paper they demonstrate a working prototype
based on open source applications and target their solution
towards software defined wireless networks. To a similar end,
where wireless and wired access technologies are used in tandem,
the HP VAN controller also implements similar functionality with
the Campus Security module which is aimed at campus networks
and provides NAC through the controller and allows for a more
flexible management of university networks which largely operate
on BYOD principle due to the number of students connecting to
them 2. SDN-Driven Authentication and Access Control System
[11] is an AAA (authentication, authorization and accounting)
design based on Software Defined Networks (SDN) structure.
It uses SDN features in order to protect the traditional network
infrastructure. In other words, SDN is considered as an additional
access layer where user traffic is forwarded to the controller that
registers and authenticates the switches, authenticates the hosts
and bind them to the switches (and ports), provides the authen-

1Open Network Operating System. Available at: http://onosproject.org/
2https://www.hpe.com/asia pac/en/product-catalog/networking/networking-

software/pip.hp-network-protector-sdn-application-series.6903004.html

tication of users and also manages data flows and users/hosts
mobility. However, one downside of this technique is that too
many packets can be delivered to the controller and take up a
large portion of its resources, therefore it is more efficient to
block unnecessary packets at the switch level.

Efforts are also being made by the SDN community to address
M2M communication requirements. The OpenDaylight IoT Data
Management (IoTDM) project provides an open source imple-
mentation of the OneM2M IoT Data Broker which acts as a data
collector for sensors. Embedding this functionality on the SDN
controller enables tight integration in sensor networks and reduces
the number of devices required to implement an IoT platform.
Furthermore, this integration effectively turns the SDN controller
into a single entity that can manage the network of sensors
and collect data from IoT devices. This functionality could be
extended in the future in such way that the network management
aspects will take into consideration the events registered by the
sensors so that communication can be prioritised or compromised
devices can be isolated automatically.

III. SYSTEM DESIGN

The aim of our proposal is to enforce access control in
SDN connected clients. Our work is similar to FlowNAC and
FlowIdentity, however our intention is to show how this can easily
be implemented using simpler methods that don’t rely on 802.1X
and are more suitable for smaller networks such as in small and
medium businesses or at home. Furthermore, we leverage SDN’s
capability in controlling the QoS per client and use it along
the defined access policies. Due to complexities in dealing with
QoS over wireless access networks, our proposed architecture
addresses only the wired part of the network. In the cases of
wireless sensor networks, we assume all of these functions to
take place behind the IoT gateways. In order to achieve this, our
solution must be able to:

• Authenticate clients based on their set of credentials (user-
name, password and host MAC-address) when they request
to log in.

• Authorize access to other network hosts and allocate a
bandwidth rate for the authenticated clients.

• Install the appropriate flows on the controller.
• Delete the flows on the controller when the client logs out.
Fig. 1 illustrates the high-level system design. End-users such

as IoT devices communicate with the authentication and autho-
rization service through an application that sends the users cre-
dentials. The authentication and authorisation service first checks
the user credentials and upon successful authentication, retrieves
the assigned policy for the user. It then installs the corresponding
access rules and bandwidth capacity on the SDN controller for
that user’s policy. Packets belonging to the authenticated devices
are identified through a series of fields in their headers such as
source and destination MAC/IP/Ports as well as transport protocol
ID or even physical switch ports if desired.

The User and Policy database contains the information required
for authentication and authorization. The User database stores
user and host credentials (i.e. binding user name, password and
MAC address) used by the service to authenticate the users and
pair them to a host. The Policy database stores the policies that
are enforced on authenticated users. These policies define the
access level (access to subnets and hosts) and bandwidth rate
allocated to the user. Each architecture block can reside on a



Fig. 1. Block diagram of the investigated system architecture. The architecture
implies in-band control and data planes in the SDN architecture as the clients
require access to the Authentication and Authorisation Server which resides on
the same plane as the Controller.

separate physical host and it can exchange information with other
blocks using a secure connection over the network. Transport or
application layer security can be used to secure the connection
between architecture components if they reside on different hosts.
For example, the authentication server can communicates with
the SDN controller through a secure interface to add or delete
configurations. Thereafter, the SDN controller connects to the
switch via OpenFlow protocol to add or delete the flows.
Our solution uses OpenFlow meters in order to control the
available bandwidth for each user and also measures the network
utilization reported by each meter for monitoring purposes. Those
flow entries and meters comprise certain match fields that are
required to authorize incoming packets. The match fields used
are:
– Ethernet Source and Destination Address: it defines the user
host’s MAC-address as a source on Outbound flows and as a
destination on Inbound flows.
– IPv4 Source and Destination Address: it defines the subnet
allowed for a user to access as a source on Inbound flows and as
a destination on Outbound flows.
– Ethernet In-port: it defines the switchs Ethernet-port that is
allowed for the users host to connect to.
– Band Rate: it defines the bandwidth rate allocated for a user.

IV. IMPLEMENTATION

We developed a prototype of our architecture using Python in
order to demonstrate how the system function and to perform
some basic performance measurements in terms of how quickly
users can be authenticated and granted access to the network. For
the SDN controller, we use OpenDaylight (ODL) [10] because it
is a controller that is widely supported by a big community and is
considered stable for production. We use Pica8 P3290 OpenFlow
switches in our testbed with an in-band topology for the control
and data network.
The P3290 management interface connects to a legacy GbE
switch. The managed interfaces also bridge to the same legacy
switch which also connects directly to the university’s network.
As illustrated in Fig 2, the SDN controller and the host running
the authentication service also connect on the same switch. The
laptop plays the role of the client device and therefore runs the
client application and requests access to Kings college internal
network and resources. In the initial switch setup, we pre-install

flows that will allow the laptop to contact the authentication
service but no other hosts on the network.

The implementation setup assumes a manual network bootstrap
to enable initial communication between new clients and the au-
thentication server. However, this process can be easily automated
via the SDN controller using a script that installs a basic configu-
ration as soon as the controller starts or a new switch is added to
the topology. Furthermore, while our experimental setup makes
use of a in-band topology (merged control and data planes) to
enable communication between clients and authentication service,
this is not the mandatory deployment mode in a real setup as the
authentication server could use two independent interfaces (one
for each plane) in order to maintain the separation between control
and data planes if desired.
Two Python scripts have been created in our solution; the first
one runs on the client machines and communicates with the
authentication service through TCP/IP socket to send the user
name and password in addition to the MAC address and the host.
The second script runs on the authentication server and connects
to the user and policy databases, and SDN controller. The User
and policy databases are implemented as plain text files residing
locally on the same host machine as the authentication service
and contacts the SDN controller over the network. Upon receiving
input, the authentication service executes the following functions:
– Login: the user will be asked to provide a name and password
that is sent along with the host’s MAC-address to the server. The
server checks the user database and responded back to the client
with its logging statues (authenticated or unauthenticated). If the
authentication is successful, the servers application will instruct
the SDN controller to add the flows and allocate a bandwidth rate
to enforce the assigned policy.
– Logout: the servers application will instruct the SDN controller
to delete the assigned flows and bandwidth.

V. EXPERIMENTAL RESULTS

The prototype is implemented in the infrastructure demon-
strated in 2, where the Pica8 Switch is set up in OpenFlow
mode and managed by OpenDaylight controller running on a
separate server. We tested the prototype by firstly running the
server application to create the communication session, then
we ran the client application on the laptop where username,
password and MAC-address was sent to the server. After the user
was successfully authenticated, the policy had been successfully
enforced by adding new flows and allocating bandwidth on the
OpenDayLight controller and pushed to the switch as shown in
Fig. 3.

Authentication and authorization times are important metrics to
evaluate the performance and the access delay of this prototype.
The performance has been evaluated against 50, 100 and 1000
number of clients and policies. To obtain precise results, the
performance test was repeated 5 times for each number.

The authentication time, in micro seconds (µsec) is the time
between a request received by the server and a response sent back
to the client. Upon successful authentication, the authorization
time, in µsec, is the time the system takes to find the corre-
sponding policy within the total flow installation time. The flow
installation time, in milliseconds (msec), is defined as the time it
takes for the controller to receive the flow installation message
from the authorisation service and configure the switch. This
process is an order of magnitude slower than the authorisation



WWW

OpenFlow Switch

SDN Controller Node

Legacy Switch

NAC Node

Client Node

Fig. 2. Prototype trial network topology with in-band control and data planes.
The legacy switch provides the control plane and is also bridged to the SDN
switch’s data plane to allow authentication communication to new clients as well
as Internet access to authenticated clients.

Fig. 3. Flows installed on the switch as appearing on the switch management UI.

time and therefore poses the main delay in the second step of the
experiment.

TABLE I
AUTHENTICATION TIME (IN µSEC) FOR 50M 100 AND 1000 CLIENTS

Iteration Auth.T 50c Auth.T 100c Auth.T 1000c
1 81.06 131.85 816.11
2 102.04 143.05 969.89
3 99.90 139.00 849.01
4 109.91 134.94 872.85
5 108.96 137.09 828.98

Average 100.37 137.19 867.37

1 2 3 4 5
10

1

10
2

10
3

Test Iteration No.

A
ut

he
nt

ic
at

io
n 

T
im

e

 

 

50 user enteries
100 user enteries
1000 user enteries

Fig. 4. Authentication time (in msec) for 50, 100 and 1000 user entries in the
database over 5 testing iterations from a single client. Logarithmic scale is used
for further clarity of presentations.

The results in Table I and Fig. 4 show the authentication
delay for 50, 100 and 1000 client entries in the database. As
expected, the time increases as the number of clients increases.

Although, there is a large gap between the numbers of client IDs
tested in the database, the average times are quite small (less
than 1 msec). We expect these results to vary depending on the
type of hardware, database and encryption used in a production-
ready implementation, however, we need to highlight that the
performance achieved does not present a severe bottleneck on
the network and this type of service can be also used in M2M
communication where quick response times are required.

TABLE II
AUTHORIZATION AND FLOW INSTALLATION TIME (50 POLICIES)

Iteration Authorization Time(µsec) Installation Time(msec)
1 104.10 104.02
2 117.59 117.49
3 66.62 66.49
4 88.86 86.22
5 180.15 180.05

Average 111.46 110.85

TABLE III
AUTHORIZATION AND FLOW INSTALLATION TIME (100 POLICIES)

Iteration Authorization Time(µsec) Installation Time(msec)
1 94.96 94.83
2 77.79 77.68
3 85.74 85.64
4 61.93 61.80
5 84.20 84.09

Average 80.93 80.81

TABLE IV
AUTHORIZATION AND FLOW INSTALLATION TIME (1000 POLICIES)

Iteration Authorization Time(µsec) Installation Time(msec)
1 105.96 105.51
2 93.32 92.82
3 95.71 95.21
4 77.64 77.14
5 121.12 120.64

Average 98.75 98.26

1 2 3 4 5
50

100

150

200

Test Iteration No.

F
lo

w
 In

st
al

la
tio

n 
T

im
e

 

 

50 policy enteries
100 policy enteries
1000 policy enteries

Fig. 5. Flow installation time (in msec) for 50, 100 and 1000 policy entries in
the database over 5 testing iterations from a single client.

The results for authorization and flow installation in Tables
II, III, IV and Fig. 5 show the authorization and network
configuration delay for a different number of policies. Unlike
authentication, the number of policies doesnt impact the overall
flow installation time severely due to the fact that most of the
authorization time is spent on installing the flows which means
that network configuration is the main cause of authorization



delay. Therefore, the overall flow installation time is heavily
impacted by the SDN controller itself and the OpenFlow switches
used on the network, as they are the two main components
involved in the installation of new flows on the network. It
is also worth noting that the autorization time does not scale
similarly with the authentication time as the number of entries
in the database increases. This is due to the fact that for the
authorisation, we check user names and passwords as well as
MAC addresses, whereas in the authorization, we only check for
the appropriate policy ID that belongs to the user. Therefore,
the check for the policy is quicker to perform and is a single
check as opposed to the authentication check. This is purely an
implementation-specific quality of our setup and we expect that
real world deployments could behave differently depending on
how the database is designed and implemented.

From our experimental results, we can conclude that such a
solution can provide adequate performance for small and medium
networks and given more powerful equipment it could scale
well to large networks also. Considering M2M communication in
industrial networks, the proposed architecture and authentication
scheme can enable dynamic re-allocation or network resources
and subnet access for devices that feature multiple sensors and
send their data at different intervals to collectors. An example
of such devices is LoRA 3, where narrowband sensors transmit
their data to the LoRA base station using different codes in order
to identify the application. These codes can be used to extend
the network partitioning to the wired network via the gateway so
that each sensor can send and receive data in an isolated end-to-
end connection. The presented results can be further improved by
implementing the policy and authentication database in Apache
Cassandra which is optimised for thousands of transaction per
second and could provide better scalability when introducing
multiple new devices simultaneously on the network (i.e. boot-
strapping a new subnet). From our results, we also conclude that
flow installation takes the most time and for a system that requires
fast reconfiguration, this needs to be improved by optimising
the SDN controller and switches. This is something that largely
depends on the OpenFlow implementation of the SDN controller
and the software architecture and implementation of the controller
and switches as well as the load on the controller and the control
network, therefore, it is difficult to propose ways that this could
be achieved within the scope of this paper. However, one solution
that could improve the flow installation time would be to build the
authentication and authorisation services within the controller as
controller modules which would interact directly with the flow
database of the controller to install client flows. This would
bypass the northbound interface of the controller which could
result in reduction of the total flow installation time. This solution
would sacrifice some of the flexibility and ease of development
since these modules would be specific to the SDN controller
used in the deployment and would have to use the controller’s
internal APIs which would require a developer to know the inner
workings of the controller and also restrict the developer to the
programming language used by the controller’s developers.

VI. CONCLUSION

The paper presents a simple and easy to implement NAC
solution that makes use of SDN technology for controlling net-

3A Technical Overview of LoRAWAN. Available at: https://www.lora-
alliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdf

work traffic based on predetermined security rules that provides
different access levels and bandwidth rates for users. We showed
how NAC can be implemented using SDN without deploying
802.11X and we envision an integrated solution for small and
medium sized networks where more security functionality can be
implemented via the controller. Our system is able to authenticate
users successfully, register their connected device and bind a
particular IP and MAC combination to a predefined level of QoS
and a subnet or host that the client may access. The preliminary
performance results show that the performance bottleneck lies
in the flow installation time, however, the authentication process
can be further optimised using alternative methods for storing and
accessing the policies. We believe that the proposed solution is
a step in the right direction and in line with the industry’s steps
towards an integrated security solution on the controller.

VII. ACKNOWLEDGEMENT

This work has been supported by the 5G-PPP VirtuWind
[14] (www.virtuwind.eu) and 5G-NORMA [15] (5gnorma.5g-
ppp.eu) projects under the European Union’s H2020 research and
innovation programme.

REFERENCES

[1] Open Networking Foundation, “Software-Defined Networking: The New
Norm for Networks”, Open Networking Foundation White Paper, April 2012.

[2] Amani, M., Mahmoodi, T., Tatipamula, M., Aghvami, H., “SDN-based Data
Offloading for 5G Mobile Networks”, ZTE Communications, no. 2, July 2014,
pp. 34-40.

[3] Amani, M., Mahmoodi, T., Tatipamula, M., Aghvami, H., “Programmable
policies for Data Offloading in LTE Network”, IEEE International Conference
on Communications, June 2014, pp. 3154-3159.

[4] Mahmoodi, T., Seetharaman, S., “Traffic Jam: Handling the Increasing
Volume of Mobile Data Traffic”, IEEE Vehicular Technology Magazine, vol.,
no. 3, September 2014, pp. 56-62.

[5] Mahmoodi, T., Seetharaman, S., “On Using a SDN-based Control Plane in 5G
Mobile Networks”, Wireless World Research Forum (WWRF), 32nd Meeting,
May 2014.

[6] Open Networking Foundation, “OpenFlow Switch Specification-v-1.3.0”,
June 2012.

[7] Condoluci, M., Araniti, G., Mahmoodi, T., Dohler, M., “Enabling the IoT
Machine Age with 5G: Machine-Type Multicast Services for Innovative Real-
Time Applications”, IEEE Access, vol. 4, May 2016, pp. 5555-5569.

[8] Kaur, K., Kaur, S., Gupta, V., “Software-Defined Networking based Routing
Firewall”, International Conference on Computational Techniques in Informa-
tion and Communication Technologies (ICCTICT), March 2016, pp. 267-269.

[9] Suh, M., Park S. H., Lee, B., Yang, S., “Building Firewall over the Software-
Defined Network Controller”, International Conference on Advanced Commu-
nication Technology, February 2014, pp. 744-748.

[10] Sadiq T. Yakasai, Chris G. Guy, “FlowIdentity: Software-Defined Network
Access Control”, IEEE Network Function Virtualization and Software Defined
Network (NFV-SDN), November 2015, pp. 115-120.

[11] Matias, J., Jacob, E., Toledo, N., Mendiola, A. and Garay, J., “FlowNAC:
Flow-based Network Access Control”, European Workshop on Software-
Defined Networks, December 2014, pp. 7984.

[12] OpenDaylight, Available at: http://opendaylight.org/ Last access: August
2016.

[13] Shin, J. W., Lee, H. Y., Lee W. J., Chung, M. Y., “Access control with ONOS
controller in the SDN based WLAN testbed”, Int’l Conference on Ubiquitous
and Future Networks (ICUFN), July 2014, pp. 656-660.

[14] Mahmoodi, T., et. al., “VirtuWind: Virtual and Programmable Industrial
Network Prototype Deployed in Operational Wind Park”, Transactions on
Emerging Telecommunications Technologies, vol. 27, no. 9, September 2016,
pp. 1281-1288.

[15] Droste, H., Rost, P., et. al., “An adaptive 5G multiservice and multitenant
radio access network architecture”, Transactions on Emerging Telecommuni-
cations Technologies, vol. 27, no. 9, September 2016, pp. 1262-1270.


