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A B S T R A C T

This paper presents a novel feedback based Scanning Probe Microscopy method which enables quantitative
surface potential measurements without the need of the DC bias of Kelvin Probe Force Microscopy. In addi-
tion to the sinusoidal excitation signal at frequency y, a sinusoidal signal with the frequency 2y is applied
to the conductive cantilever. By modulating the amplitude of the signal at 2y, the resulting electric force
component at the frequency y can be nullified by a feedback controller. When the force and, hence, the
cantilever oscillation is zero, the required amplitude represents the quantitative surface potential. Record-
ing this amplitude while scanning over the sample allows to acquire a two dimensional map of the surface
potential. The AC-KPFM method, shown analytically and with experimental results, keeps the compensation
based principle of classical KPFM, resulting in quantitative measurements but without the need of a DC bias.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Atomic force microscopes (AFM) [1] are important tools for
topography and surface characterization on the molecular and
atomic level. Various research fields such as biology, physics or
materials science [2] are using functional imaging-modes like Kelvin
Probe Force Microscopy (KPFM) [3,4]. With KPFM as presented first
in [5], it is possible to map the sample surface potential in a quanti-
tative way with nanometer resolution. In the following this method
is referred to as classical KPFM.

Most KPFM methods are two stage processes. In a first run a
sharp conductive tip mounted on a micro-mechanical cantilever
scans over the sample in order to track and record its topography in
intermittent-contact mode. An optical deflection readout system [6]
detects the mechanically excited amplitude of the cantilever oscilla-
tion. A feedback controller keeps the deflection amplitude constant
by moving the sample in opposite direction [7]. The required com-
pensation motion equals the sample topography and is stored for the
second run.

By following this topography in a few nanometer distance h in a
second run [5] the quantitative surface potential V = V(x, y) can be
recorded. As shown in Fig. 1 a sinusoidal electrical signal with ampli-
tude a and frequency y is applied to a conductive cantilever at its
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mechanical resonance frequency. Together with an adjustable DC-
potential UDC, the voltage between tip and sample can be written as:

U(t) = V − UDC + a sin(yt). (1)

The resulting electric force acting on the cantilever is then:

F(t) =
1
2

∂C
∂h

U(t)2 (2)

where ∂C
∂h is the capacitance gradient of the entire cantilever-sample

system. Inserting Eq. (1) into Eq. (2) leads to:

F(t) =
1
2

∂C
∂h

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(V − UDC)2 + a2

2
+2a(V − UDC) sin(yt)
− a2

2 cos(2yt)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3)

It can be seen that the force component at the frequency Fy van-
ishes when V − UDC = 0, i.e., no cantilever oscillation occurs when
the DC-potential UDC equals the surface potential V [8]. In classi-
cal KPFM a feedback controller continuously adjusts UDC such that
the y-component of the force Fy (second term in curly brackets),
hence the cantilever oscillation is zero thereby providing V = UDC.
With this compensation based measurement method a quantitative
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Fig. 1. A sinusoidal excitation signal asin(yt) is applied to the conductive AFM can-
tilever. The DC voltage UDC is adjusted via the feedback controller C and compensates
the positive surface potential V indicated with + + ++.

surface potential map can be created by recording UDC(x, y) as a
function of the lateral position (x, y). However, certain semiconduc-
tors [9], sensors [10] or catalysts show a DC voltage dependence,
and biomolecules often have to be studied in water (in vitro) [3],
where a DC voltage would lead to unwanted electrochemical reac-
tions [11,12]. The required DC bias complicates, influences, or even
makes quantitative surface potential measurements impossible on
such samples.

A possibility to overcome this limitation is to utilize “open-loop”
or “Dual Harmonic” KPFM methods, which do not require DC-bias
feedback [13–16]. These methods apply a single sinusoidal excitation
potential sin(yt) to the cantilever and observe the resultant ampli-
tude of vibration at the frequency y and 2y. The surface potential is
computed by comparing these two amplitudes. The advantage is that
no DC-bias and no feedback controller is required. However, they
require correction factors for the used excitation amplitude as well
as cantilever dynamic and readout sensitivity at the frequencies y

and 2y. These factors need to be determined with control experi-
ments for calibration. Next to inevitable uncertainties and potential
non-linearities, these factors can also change due to drift or changing
environmental conditions during the measurement and could lead to
measurement errors.

Alternatively methods like “G-Mode KPFM” or “Band excitation
KPFM” [17–19] analyze the spectral response of the cantilever vibra-
tion. Similar to the methods presented before, they compute the
surface potential by comparing the y and 2y response of the can-
tilever, acquired by a fast Fourier transform. The advantage is that
no Lock-In amplifiers and feedback controller are required. How-
ever, next to a computationally intensive fast Fourier transform and
a huge amount of data, these methods also require the same correc-
tion factors for excitation amplitude, cantilever dynamic and readout
sensitivity.

The AC-KPFM method proposed in this paper shows a novel
approach, which enables feedback based quantitative surface poten-
tial measurements without the need of a DC-bias and calibration.
After deriving the basic principle and the physical model in Section 2,
analytical investigations of the control sensitivity are performed. A
custom made experimental setup which extends commercial AFM
systems from classical KPFM to AC-KPFM is presented in Section 3,
showing experimental results in Section 4, followed by a conclusion.

2. Proposed approach: AC-KPFM

In order to avoid the unwanted DC-component (UDC) of classi-
cal KPFM, an additional sinusoidal voltage with amplitude b and
frequency 2y is applied instead of UDC:

U(t) = V + a sin(yt) − b cos(2yt). (4)

Inserting Eq. (4) into Eq. (2) yields the following force acting on
the AFM cantilever:

F =
1
2

∂C
∂h

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

V2 + a2+b2

2
+ [2Va + ab] sin (yt)
−

[
2Vb − a2

2

]
cos (2yt)

−ab sin (3yt)
+ b2

2 cos (4yt)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

Similar to classical KPFM, the force component at the frequency y

(second term in the curly brackets) can be controlled to zero. By reg-
ulating the amplitude b with a feedback controller it can be ensured
that 2V a + ab = 0. The surface potential to be determined can
then be calculated as V = − b

2 . In the following this method is called
AC-KPFMy.

As can be seen from Eq. (5), the force component at the frequency
2y can also be regulated to zero (third term in the curly brackets).
The two methods to achieve this are referred to in the following
as AC-KPFM2y,a and AC-KPFM2y,b, indicating that F2y is nullified by
adjusting either the amplitude a or the amplitude b respectively.
In both variations the surface potential is calculated with V = a2

4b .
As can be seen for AC-KPFM2y,b a singularity occurs for a surface
potential of zero, which makes this method unsuitable for feedback
operation.

In a next step the KPFM and control sensitivity of the three AC-
KPFM methods are compared with classical KPFM. First, the KPFM
sensitivity SKPFM = ∂F

∂V
is analyzed. This is performed with the feed-

back controller switched off. Inserting Eq. (3) for classical KPFM and
Eq. (5) for the AC-KPFM variations:

SKPFM =
∂Fy
∂V

=
∂C
∂h

a

SAC-KPFMy =
∂Fy
∂V

=
∂C
∂h

a

SAC-KPFM2y,a =
∂F2y

∂V
=

∂C
∂h

b

SAC-KPFM2y,b
=

∂F2y

∂V
= 0 (6)

As can be seen from Eq. (6) the KPFM sensitivity is equal for the
first three methods and depends on the capacitance gradient ∂C

∂h and
amplitude (a or b) of the applied sinusoidal excitation signal. Except
AC-KPFM2y,b where the sensitivity is zero, caused by the previously
explained singularity.

However, there is a difference in control sensitivity which is
defined by the control signal (controller output) required to compen-
sate for the surface potential. For classical KPFM the DC-potential is
used for compensation (Scont = UDC

V ). For the three proposed versions
AC-KPFMy, AC-KPFM2y,aand AC-KPFM2y,b the control sensitivity is
defined by Scont = b

V , Scont = a
V and Scont = b

V respectively. The
comparison of the control sensitivities is plotted in Fig. 2.

Following Eq. (5) Scont for AC-KPFMy is linear and twice as high as
in classical KPFM. An even higher but non-linear control sensitivity is
obtained for small surface potentials with AC-KPFM2y,a nullifying the
F2y-component. The AC-KPFM2y,b also nullifying the F2y-component
follows a hyperbolic curve with a singularity at V = 0. Although AC-
KPFM2y,a offers a higher sensitivity than AC-KPFMy, its non-linearity
is a significant drawback for feedback operation.

From this analytical investigation it can be concluded that the AC-
KPFMy shows a twice as high linear control sensitivity which makes
it best suited for closed-loop operation. In the following section the
experimental results are shown.
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Fig. 2. AC-KPFMy (green curve) linear and twice as high control sensitivity in com-
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dependence. AC-KPFM2y,b (magenta small dotted curve) offers an hyperbolic behav-
ior with a singularity at V = 0. A negative amplitude equals a phase shift of 180◦ for
the corresponding sinusoidal signal.

3. Experimental setup

To demonstrate the proposed AC-KPFM versions an experimen-
tal setup is built based on a commercial AFM (Multimode 8, Bruker,
Santa Barbara, USA) equipped with a signal access module (SAM). In
order to show the working principles of the previously presented AC-
KPFM versions, the control sensitivity is measured individually. For
this test a dual channel function generator (Agilent 33500B, Santa
Rosa, USA) is connected via the SAM to a conductive AFM cantilever
(RFESP, f0 = 90 kHz, k = 3 N/m, Bruker, Santa Barbara, USA) pro-
viding the two required sinusoidal signals. A DC voltage source is
connected via the same SAM to a conductive flat silica sample to sim-
ulate a well known surface potential. By adjusting the amplitudes (a
or b) of the three proposed AC-KPFM versions until the correspond-
ing force (Fy or F2y) is nullified, the control sensitivity is acquired.
Fig. 3 shows the experimental results compared with simulation. It
is clearly visible that the experimental measurements are in good
accordance to simulation.

To be able to record full AC-KPFM surface potential maps with
the existing commercial AFM system, a custom made printed circuit
board (PCB) with off-the-shelf, analog electronic components is built.
Because of its linearity and simpler integration, AC-KPFMy version
is chosen to realize Eq. (5) for demonstration. The custom made PCB
containing standard operational amplifiers and analog multiplier ICs
is connected via the SAM to the Multimode AFM controller. Fig. 4
shows a block diagram of the electronic board that extends the com-
mercial AFM to an AC-KPFM imaging system. The two stage process
of KPFM including topography recording and following of this topog-
raphy is done with the built in functions of the AFM controller. Also
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Fig. 3. Experimental results of the control sensitivity for the AC-KPFM variations are
in good accordance to the derived theory.

feedback operation with the controller output UDC = b and excita-
tion signal (asin(yt)) are realized with the Multimode controller. The
voltage signals from the controller are connected to the input of the
custom made PCB. This signal is split via high and low pass filter into
DC-bias (UDC = b) and excitation signal (asin(yt)) (see Fig. 4). By
analog multiplication of the excitation signal with itself, the double
frequency signal (cos(2yt)) is generated and fed to a second mul-
tiplier. This second multiplier modulates the amplitude of the 2y
signal with the previously separated controller output signal b.

After summing the two signals with an analog summing stage a
capacitor removes the remaining DC-bias. Finally the generated AC-
KPFMy signal is applied via the SAM to the AFM cantilever. With this
setup the operator is now able to operate the Multimode AFM with
the new AC-KPFMy method in the same way as classical KPFM, which
is demonstrated in the next section.

4. Imaging results

As test sample a flat, featureless conductive surface is chosen, on
which a pseudo-spatial potential contrast was created by applying a
low-frequency rectangular voltage signal with an amplitude of 1 Vpp

and a duty cycle of 20% to the surface.
Fig. 5 shows the amplitude b generated by the controller in

response to the rectangular signal. As the rectangular signal is not
synchronized with the scanning-motion of the AFM, it appears as
oblique stripes in the surface potential image. It should be noted
that b appears inverted and twice as high as the applied rectangular
signal, which follows directly from the relation V = − b

2 . Although
relatively strong signal amplitudes were used for this first test,
the images clearly demonstrate that the temporal, surface potential
variations can be picked up by the AC-KPFM method.

In order to demonstrate AC-KPFMy with a real sample, a rect-
angular charge pattern on a thin film of PMMA is produced. Such a
pattern has no topography (other than the natural roughness of the
PMMA) but shows a clear potential contrast. The geometry of the lm-
sized pattern is large enough so that edge effects can be neglected.
The procedure is similar to the one used in [20]. Briefly, a PMMA thin-
film of approximately 100 nm to 200 nm thickness was spin-coated
on a thin gold film thermally evaporated onto a piece of polished
Si wafer. For charge-writing and subsequent imaging, the sample
is placed directly on the electrically grounded sample stage of the
Dimension AFM (Dimension Icon, Bruker, Santa Barbara, USA). For
writing as well as imaging the same conductive tip is used (TAP150A,
Bruker, Sb-doped Si, specific resistivity 0.01–0.025 Y cm). Charge-
writing is performed by scanning a rectangular area of 7 × 3.5 lm
in intermittent-contact mode with an oscillation amplitude of about
30 nm (128 scan lines, tip velocity 14 lm/s). Simultaneously rectan-
gular voltage pulses of 10 V, 2.5 ms pulse length, and 50 Hz pulse
frequency are applied to the cantilever. First, classical KPFM is per-
formed with a lift height of 50 nm (Fig. 6 (A) and (B)). Subsequently,
the same area is recorded with AC-KPFMy and identical scan settings
(e.g. lift height, tip velocity, controller gains).

From the topography image (A) it can be seen that the charge-
writing did not lead to any topographical modification of the surface.
It can, therefore, be concluded that any KPFM images show the true
surface potential and not a topography artifact. (B) shows the pat-
tern recorded by classical KPFM. (C) and (D) show the subsequently
recorded AC-KPFMy signals, where in (C) the AC-KPFMy amplitude
(b) is shown. To compute the surface potential (V), this image needs
to be multiplied by − 1

2 (D), according to Eq. (5). As expected the com-
parison of (B) and (D) clearly demonstrates that AC-KPFM provides
the same surface potential map as classical KPFM.

Summarizing it clearly has been shown that surface charges can
be quantitatively measured without applying a DC-voltage to the
cantilever by using the proposed AC-KPFMy method.
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Fig. 4. Block diagram of the electronic board that extends a commercial AFM to AC-KPFMy nullifying the force component at Fy by adjusting the amplitude b.
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2 ).

5. Conclusion

The presented compensation based AC-KPFM method enables
quantitative surface potential measurements without the need of a

DC bias potential. It is investigated analytically and demonstrated
with practical measurements that replacing the adjustable DC-
potential by an amplitude modulated sinusoidal signal is feasible and
offers an increased control sensitivity as compared to classical KPFM.
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Fig. 6. Comparison of classical KPFM and AC-KPFMy of a positive charge pattern on PMMA. Topography (A) and surface potential V recorded with classical KPFM (B). (C)
amplitude b and (D) surface potential V = − b

2 acquired with AC-KPFMy of the same pattern as in (B). The images (C) and (D) were recorded immediately after (A) and (B) without
disengaging the tip.
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Measurements are performed on a flat sample with a pseudo-spatial
potential contrast as well as of a positive pattern on PMMA showing
comparable results to classical KPFM. This method opens the way to
image the surface potential of various samples such as semiconduc-
tors or biological cells without the need for applying a disturbing or
interfering DC-bias and enables new applications of feedback based
KPFM technologies.
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