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Abstract 

 

Integrins are large heterodimeric surface receptors that, when engaged, are able to 

transduce information from the extracellular environment leading to a diverse set of 

cellular programmes including migratory responses. Despite a wealth of literature 

describing how integrins on T cells are activated such that they can bind to their ligand, 

the nature and regulation of the signal transduced via the integrin cytoplasmic tails 

once the integrin engages its counter-ligand is not yet clear. Here, we report that in 

primary human and mouse T cells, PTPN22, a cytoplasmic protein tyrosine 

phosphatase expressed only in immune cells, negatively regulates signal transduction 

downstream of LFA-1 engagement.  

Loss of PTPN22/Lyp expression enhances integrin-mediated adhesion and migration in 

vitro and in vivo, while overexpression of wild type Lyp-R620 decreased migration. The 

catalytic activity of PTPN22 was required in order to regulate T cell migration. Co-

immunoprecipitation experiments demonstrated that PTPN22 associated with Lck, 

ZAP-70, Vav and LFA-1 in migrating T blasts. In performing shear flow experiments and 

biophysical investigations, human individuals homozygous for the disease associated 

R620W mutation functionally recapitulated the phenotype of PTPN22 knockout mouse 

cells in that they were more adherent and demonstrated hyperphosphorylation of 

signalling intermediates downstream of LFA-1 engagement.  

Super resolution microscopy revealed that in non-signalling T cells, PTPN22 formed 

large clusters that appeared to de-cluster following LFA-1 engagement. Suprisingly, the 

R620W mutation did not appear to impact clustering, but instead lead to less Lyp 
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monomers being retained at the membrane outside of clusters in signalling T cells. A 

correlate between less Lyp monomers and increased LFA-1 clustering at the leading 

edge of migrating T cells is demonstrated, with an inverse relationship existing 

between number of Lyp monomers present at the plasma membrane and LFA-1 

clustering.  

These studies place PTPN22 as a novel negative regulator downstream of LFA-1 

signalling, with a disease predisposing R620W mutation lending itself to a loss-of-

function allele that might impact the development of autoimmune disease through 

dysregulation of integrin function. 
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The immune system comprises a set of cells that work in concert to protect the host 

from invading pathogens and cancers. The ability of immune cells to ward off, contain 

or destroy invaders that might compromise healthy tissue function is a central tenet of 

the system, leading to fitness and survival. On the other hand, because the immune 

system is essentially a “loaded gun”, capable of destroying both self and non-self, 

inappropriate activation, or indeed over or under activation leading to the collateral 

damage of tissues, can manifest in immunopathology or autoimmunity. How exactly 

decisions are made by an individual cell to react to a certain stimulus remains at the 

forefront of investigation, and in particular, the complex networks involving 

information transduction leading to an adaptive cellular programme are beginning to 

be uncovered. The process of information transduction in cells is often referred to as 

signalling. In this thesis, the PTPN22 locus, which encodes LYmphoid Protein tyrosine 

phosphatase (Lyp) in man and Proline Enriched Phosphatase (PEP) in mouse is 

investigated as a potential regulator of signalling downstream of a family of adhesion 

receptors called integrins on T cells.  Hereafter, I will refer to PTPN22 and Lyp 

interchangeably. 
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1.1 PTPN22: one signalling intermediate regulates many different pathways 

 

In T cells, PTPN22 has been shown to regulate signals generated in response to T cell 

receptor engagement. As a result, many studies have focused on the ability of PTPN22 

to regulate T cell receptor signalling. It is however clear that many signalling 

intermediates participate in more than one signalling pathway, leading to completely 

different cellular outcomes depending on the type of receptor engaged. PTPN22 can 

be viewed as one such intermediate, with reports of this phosphatase participating in 

many different signalling pathways, including T cell receptor (TCR) signalling, B cell 

receptor BCR Signalling, interferon signalling and Toll-Like Receptor signalling. 

(Arechiga, Habib et al. 2009, Fiorillo, Orru et al. 2010, de la Puerta, Trinidad et al. 2013, 

Spalinger, Lang et al. 2013, Spalinger, Lang et al. 2013, Wang, Shaked et al. 2013). Cells 

can therefore be viewed as exercising a certain amount of economy with respect to 

signalling intermediate biology, which makes sense from an evolutionary perspective, 

where one pathway diverges over time to form another, with subtle differences in the 

divergence of a pathway being responsible for driving new cellular programmes (Atkins 

2014). That T cell receptor signalling utilises many signalling intermediates non-

exclusively, a plausible hypothesis is that these same signalling intermediates, shared 

amongst different receptor signalling pathways, might be subject to similar 

mechanisms of regulation. In this vein, it was of interest to investigate whether 

PTPN22, a signalling intermediate traditionally thought of as a negative regulator of T 

cell receptor signalling, also participated in the negative regulation of integrins. This 

idea was borne out of the fact that integrin signalling in T cells shares many similarities 

with the T cell receptor (Fagerholm, Hilden et al. 2002, Evans, Lellouch et al. 2011, 

Cimo, Ahmed et al. 2013).  The current state of PTPN22 biology is reviewed below.  
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This review focuses on the genetic, epidemiological, biochemical and functional 

aspects of PTPN22 with particular emphasis on the regulation of T cell receptor 

signalling, because most of the knowledge about signal transduction and how it is 

regulated by PTPN22 comes from the TCR signalling literature. 
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1.2 Protein Tyrosine Phosphatases and Protein Tyrosine Kinases are immune cell 

gatekeepers 

 

Protein Tyrosine Phosphatases (PTPs) and Protein Tyrosine Kinases (PTKs) are enzymes that 

specifically catalyse the reversible addition or release of phosphate groups from tyrosine 

residues on signalling intermediates. Broadly speaking, PTKs amplify signals whilst the mode, 

tempo and duration of the signal are governed by PTPs. PTPs and PTKs are divided into 2 

groups: receptor (membrane bound-RPTP) or non-receptor (cytoplasmic-NRPTP). These 

signalling intermediates are messengers that are recruited when transducing messages from 

the extracellular environment into the cell and lead ultimately to changes in cell behaviour. 

Phosphorylation/dephosphorylation by PTKs and PTPs on inhibitory, activatory or scaffolding 

tyrosine on signalling intermediates are the equivalent of molecular switches leading to 

changes in protein behaviour that are associated with increased or decreased signalling. Post-

translational modifications of proteins by the addition or release of phosphate groups alters 

enzymatic activity or binding domain affinity which act as functional units by propagating a 

series of molecular interactions and reactions. Protein phosphorylation status can therefore be 

viewed as a fundamental, coordinated process that must be tightly controlled. This is 

particularly true in the context of an immune response, where cells must be activated under 

appropriate circumstances to fight infections and tumours, but avoid self directed responses 

that culminate in autoimmunity (Mustelin and Tasken 2003, Mustelin, Alonso et al. 2004, 

Mustelin, Vang et al. 2005).  

 

There are around 110 PTPs that have been identified in the human phosphoproteome 

(proteins that encode protein tyrosine phosphatases or kinases) and at least 57 of these are 

expressed in lymphocytes. PTPs and PTKs control the highly complex and dynamic nature of 

signal transduction pathways associated with many cellular processes as diverse as 

differentiation, migration, apoptosis, proliferation and activation of immune cells (Arimura and 
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Yagi 2010). The tonic inhibition of basal PTK activation requires PTPase activity to be several 

orders of magnitude higher than that of PTK activity. PTPs were once thought largely to play 

housekeeping functions by non-specifically binding and dephosphorylating signalling 

intermediates. It has, however, become increasingly evident that PTPs bind with exquisite 

specificity to certain signalling intermediates through protein-protein interaction domains or 

lipid binding modules and in many cases play non-redundant roles. This notion is exemplified 

in the context of the immune system by immunopathology exhibited by mouse models in 

which certain phosphatases are dysfunctional or deleted and implicates signalling 

intermediates as important messengers that are responsible for setting at least some of the 

thresholds associated with immune activation. These mutations can be naturally occurring or 

engineered and point to the importance of phosphatase function in maintaining immune 

homeostasis. 

 

For example, a loss-of-function of PTP SHP-1 mutation, which negatively regulates TCR 

signalling leads to the motheaten phenotype characterised by immunodeficiency, 

autoimmunity and lymphoproliferation (Kozlowski, Mlinaric-Rascan et al. 1993, Tsui and Tsui 

1994). A gain in function of CD45, which has been shown to be a positive regulator of TCR and 

BCR signalling, predisposes mice to an autoimmune-like syndrome (Majeti, Xu et al. 2000). 

While mouse models provide insight into the importance of phosphatase function, little is 

known about phosphatases that contribute to disease in humans. In recent years, genome 

wide association studies have repeatedly identified candidate PTPs that associate with 

autoimmune disease. These include PTPN2, PTPRC, UBASH3A, PTPN11, PTPRT and PTPN22, 

and points to dysregulation of protein tyrosine phosphorylation as a crucial facet of 

immunopathology.  
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1.3 Genetic associations between PTPN22 allelic variants and autoimmunity 

 

In recent years, human genetic studies have identified a growing number of gene candidates 

that associate with autoimmune disease. There are 3 approaches that can be utilised when 

investigating genetic variants that might contribute to the development of autoimmune 

disease states. These include candidate gene association studies, linkage analysis in multiplex 

families and genome wide association studies (GWAS). Statistical tools have been developed to 

complement each approach, but a lack of appreciation for careful case controls when 

conducting candidate gene studies and low statistical power of genetic linkage analysis has 

compromised the validity of some of these studies (Gregersen and Olsson 2009). A strong 

publication bias of candidate gene studies that report positive findings has also been 

documented (Ioannidis, Ntzani et al. 2001). Results from these studies should therefore be 

treated with caution until they have been validated unambiguously in replication studies.  

 

GWAS are currently considered the most effective way of mining for new disease associated 

gene variants since this approach is purely discovery driven, conducted by scanning whole 

genomes without any particular hypothesis in mind. GWAS can be limited by the fact that only 

relatively common gene variants are identified because of the reference genomes used and 

the relatively small sample sizes. In many cases the actual causative genetic variants cannot be 

precisely identified because of linkage disequilibrium between causal variants and the 

haplotype tagging single nucleotide polymorphisms (SNPs) employed to detect variants across 

the genome. SNPs found within specific genes in people who have been diagnosed with 

autoimmune disorders provide clues that, after fine genetic mapping at selected loci, must 

then be investigated in a biological framework to understand its contribution to disease 

development. This in turn can pave the way for exploring potential therapeutic interventions. 

Common disease variants may point to pathways that might become plausible targets for 
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therapeutic intervention. However, it should be noted that a recent study that sequenced two 

T1D associated genes in 13, 715 individuals revealed that European populations, probably as a 

result of recent accelerating population growth, harbour many rare, deleterious variants that 

may contribute significantly to disease burden in these populations, but which are not 

detected through conventional GWAS (Coventry, Bull-Otterson et al. 2010).  

 

In 2004 a seminal paper by Bottini et al reported an association between a SNP in PTPN22 and 

T1D in two distinct populations, using a candidate gene approach (Bottini, Musumeci et al. 

2004). A transitional mutation changing a cytosine to a thymine at position 1858 in the coding 

region of the PTPN22 gene resulted in a single amino acid change of an arginine to a 

tryptophan at codon 620 in exon 14. This R620W amino acid substitution is located in a 

polyproline motif, PLPXR, within the Lyp phophatase protein thought to be involved in binding 

to SH3 domains during protein-protein interactions (Cloutier and Veillette 1996). Within 1 year 

SLE and RA were reported to also associate with R620W and following a multitude of studies it 

has now become evident that this polymorphism is an allelic variant associated with 

susceptibility to a growing number of autoimmune diseases (Table 1.1). Strikingly, the 

association is highly reproducible, found in many different populations and is restricted to 

disorders that usually have an autoantibody component. A perplexing gradient frequency of 

the allele has been reported to exist. 
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Table 1.1 PTPN22 associates with autoimmune diseases. The number of studies pooled is 

indicated in brackets. Based on references 1-34. 
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The highest frequency of the allele is found in the most northerly and easterly reaches of the 

continent in Finland (15%) and the Ukraine (17%) and its neighbouring lands. Moving 

southwest, the frequency of the allele gradually decreases to around 7% in France and Spain 

and is found in only 2-3% of Italian and Sardian populations (Figure .11) (Bottini, Musumeci et 

al. 2004, Smyth, Cooper et al. 2004, Velaga, Wilson et al. 2004, Hinks, Barton et al. 2005, Ittah, 

Gottenberg et al. 2005, Orozco, Sanchez et al. 2005, Seldin, Shigeta et al. 2005, Skorka, 

Bednarczuk et al. 2005, Viken, Amundsen et al. 2005, Wesoly, van der Helm-van Mil et al. 

2005, Zhernakova, Eerligh et al. 2005, Fedetz, Matesanz et al. 2006, Gregersen, Lee et al. 2006, 

Cinek, Hradsky et al. 2007, Douroudis, Prans et al. 2008). American and Australian white 

European descendants carry the allele at a frequency of 6-9%. In Asian and African populations 

the allele is virtually absent (Begovich, Carlton et al. 2004). This observation indicates that the 

polymorphism in PTPN22 probably arose late in human evolution in a European population(s). 

It may confer a selective advantage. In support of this notion, extended haplotype 

homozygosity studies have indicated that the PTPN22 locus may be under positive selection, at 

least in populations of European ancestry (McPartland, Norris et al. 2007). There has been 

interest as to whether R620W may protect carriers from infectious disease because there have 

been reports of potential autoimmune susceptibility loci protecting individuals from 

environmental pathogens (Gomez, Anaya et al. 2005, Waisberg, Tarasenko et al. 2010). Studies 

have indicated that carriers of R620W in Europe may be protected from tuberculosis (Lopez-

Escamez 2010) but the protection from tuberculosis may be population dependent as others 

have reported an increase in susceptibility to tuberculosis in a Moroccan population carrying 

R620W (Lamsyah, Rueda et al. 2009). R620W is a risk factor in the development of invasive 

pneumococcal disease, indicating that PTPN22 is a susceptibility gene for autoimmunity and 

certain infections (Chapman, Khor et al. 2006). Other studies investigating the involvement of 

R620W in the protection from or susceptibility to Hepatitis C infection (Montes-Cano, Garcia-

Lozano et al. 2008), Trypanosoma Cruzi infection (Robledo, Gonzalez et al. 2007) and 
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brucellosis (Bravo, Colmenero et al. 2009) have demonstrated no differences between control 

groups and R620W carriers. Further association studies of R620W with infection might provide 

useful information about the frequency distribution of the allele and its possible relationship 

with an infectious agent. 
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Figure 1.1: The frequency distribution of the minor T allele across the European continent. Here, 

I constructed a heatmap based on table 1.1 showing the frequency distribution of the autoimmune 

disease associated W620-Lyp. An East to West gradient is demonstrated. Adapted from 

www.eduplace.com/ss/maps/ 
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1.4 The structure of Lyp 

 

Catalytic domains of PTPs are highly conserved and can thus be targeted using degenerate 

primers in PCR reactions that will amplify non-conserved flanking regions. The resultant PCR 

product can then be compared to known PTP sequences and validated or investigated further 

if a novel stretch of DNA is identified. Using this method, Lyp was identified in 1999 as a 

105kDa Class 1 NRPTP, belonging to the proline-, glutamic acid-, serine- and threonine-rich 

(PEST) family of phosphatases. Its mouse orthologue, proline enriched phosphatase (PEP), was 

discovered in 1992 (Matthews, Bowne et al. 1992, Cohen, Dadi et al. 1999).   

 

Structurally Lyp and PEP consist of an N-terminal catalytic domain, an interdomain and a C-

terminal binding domain that contains four polyproline-rich motifs (P1-P4) that act as potential 

binding sites for Src Homology 3 (SH3) protein domains. Lyp and PEP are the most divergent 

example of phosphatase orthologues between human and murine species (89% and 61% 

homology in their catalytic and non-catalytic domains respectively) although most of these 

differences lie within the interdomain that may be important for regulating phosphatase 

activity (Gjorloff-Wingren, Saxena et al. 1999, Liu, Stanford et al. 2009). There have been some 

hints in the literature of subtle biochemical differences between PEP and Lyp and so 

extrapolation from murine models to human biology should be undertaken with some caution. 
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Figure1.2: Structure and regulation of Lyp. The catalytic site of Lyp that confers the ability of 

dephosphorylation resides in the most N-terminal of the protein spanning around 300 amino 

acids. A loss of function R263Q SNP that negatively associates with SLE (ie may confer 

protection against SLE) has been reported. In addition, a serine at position 35 has been 

reported to be phosphorylated by protein kinase C (PKC) leading to attenuation of catalysis. 

The interdomain of Lyp consist of a further 300 amino acids whose functions remains largely 

unknown. There is one study indicating that the first 20 amino acids (300-320) may contribute 

to phosphatase regulation, although mechanistically it is unclear how this regulation occurs. 

Within the interdomain, Y536 has been shown to be phosphorylated by Lck and Csk, leading to 

negative regulation and decreased catalytic potentials. Most C-terminally, the binding domain 

of Lyp consists of around 200 amino acids. The binding domain of Lyp contains four polyproline 

binding motifs, the first of which harbours the R620W mutation. The first polyproline motif of 

the binding domain is unique as compared to the other three motifs, in that it is a high affinity 

SH3 binding domain. The R620W variant disrupts Lyp-Csk interactions.   

Lyp exists in 3 splice forms designated Lyp1-3 (Cohen, Dadi et al. 1999, Wang, Dong et al. 2010) 

(Fig1.3).  The full length protein of 807aa, Lyp1, is the most abundant of the 3 isoforms and has 
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been the subject of all functional studies to date. Lyp2 is the shortest splice variant and 

contains only the first P1 motif within the N-terminal whilst Lyp3 has a 28 amino acid deletion 

between P1 and P2. The functions of Lyp2 and Lyp3 are not known. Lyp can be membrane 

bound through interactions with other proteins, or cytosolic, but the subcellular location of the 

different isoforms has not yet been reported. The expression of Lyp is confined exclusively to 

haematopoietic cells and a clear hierarchy exists in the expression profile across immune cell 

lineages with respect to Lyp abundance (Arimura and Yagi 2010). Natural Killer cells and 

neutrophils express the highest levels of Lyp, followed by CD8+ T cells while CD4+ T cells and 

monocytes express the lowest levels of Lyp. Lyp expression in activated versus non-activated 

cells requires further investigation. 
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Figure 1.3: Lyp isoforms1-3. A schematic demonstrating the exons (vertical bars) and introns 

(horizontal lines) of Lyp1-3. Approximate sizes of exons and introns are shown. Lyp2 is a 

truncated form of Lyp1 with a bigger exon 16. Lyp3 has a 28bp deletion in exon 15. Red denotes 

a change in exon composition.  Adapted from Zang et al 2010 
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1.5 The function of Lyp in leukocytes 

 

Immune cells must cooperate to mount and maintain an appropriate response and 

dysregulation of practically any cell type could lead to immunopathology or immunodeficiency. 

Over the past 20 years much effort has been invested in understanding the various pathways 

that trigger immune cell activation, and the relative contribution of the different lineages to an 

immune response. T and B cell receptors represent some of the best studied signalling 

machinery and even though they recognise peptides through completely different antigen 

receptor structures, they share many PTKs, PTPs and adaptor molecules (Mustelin and Tasken 

2003, Smith-Garvin, Koretzky et al. 2009, Pierce and Liu 2010). The Src and Syk kinase families 

are crucial positive regulators of immune cell activation through B and T cell receptors as well 

as other immunoreceptors like Fc receptors (FcR) and Natural Killer Cell receptors termed killer 

immunoglobulin receptors. At least some of the Src and Syk kinase family are targeted and 

inactivated by Lyp as demonstrated by substrate trapping experiments (Figure 1.4). Lyp may 

therefore represent a key regulator of immunoreceptor dependent activation of many 

leukocyte functions. 

 

Although our understanding of Lyp function in T cells has broadened since the association of 

W620-Lyp with autoimmune disease there is still a lack of data describing signalling pathways 

other than that of the TCR. Further study of Lyp is required in the lymphoid compartment but 

is also merited in the context of other immune cells to generate ideas about fundamental 

biological processes that could lead to new hypotheses with respect to autoimmune diseases.  
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Figure 1.4: Lyp and Csk inactivate Lck. The Lyp-Csk interaction is mediated 

through the first polyproline motif in Lyp and the SH3 domain of Csk. PAG, 

when phosphorylated by Fyn, acts as a scaffold recruiting Csk through and 

SH2 domain that binds phosphorylated tyrosine residues. Csk phosphorylates 

pY505 creating an SH2 binding site that results in an internal fold and partial 

inactivation of Lck. For Lck to be fully inactivated, Lyp dephosphorylates Y394 

residue within the kinase domain of Lck leading to attenuation of catalytic 

activity. 
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In order to delineate signalling pathways, it is important to identify target substrates of 

signalling intermediates. To this end, Flint et al have developed a method whereby important 

PTP catalytic residues in the N-terminus are mutated and the resultant non-functional catalytic 

domain is then fused to a glutathione-S-transferase protein allowing substrates to interact 

with but not disassociate from a PTP due to the lack of catalytic activity that leads to post-

translational protein modifications and the release of modified substrate (Flint, Tiganis et al. 

1997). This method, or a variation thereof, has been widely employed as the substrate trap is 

sufficiently stable to allow subsequent isolation of PTP-substrate complexes by co-

immunoprecipitation. Substrate trapping should always be interpreted with care, especially 

when using candidate substrates purified from whole cell lysates or PTP catalytic domain-GST 

fusion proteins as they do not respect binding domain interactions or sub-cellular localisation 

of their native counterparts, both of which may be intimately linked. This is because protein 

interaction domains have been shown to be essential for subcellular location as well as protein 

binding (Uchida, Ogata et al. 2002, Saito, Williams et al. 2007). In additional, immune cells can 

display many different levels of activation that may also contribute to substrate localisation 

and recognition (Arimura and Yagi 2010). 

 

Substrate trapping experiments in the human Jurkat T cell line indicate that Lyp interacts with 

Lck, ζ-associated protein 70 (ZAP70), Vav, CD3, TCR, valosine containing protein (VCP), Grb2 

and c-Cbl (Cloutier and Veillette 1999, Hill, Zozulya et al. 2002, Wu, Katrekar et al. 2006). In 

addition to the substrates of Lyp, PEP targets FynT (Cloutier and Veillette 1999). These 

substrates are known to participate in proximal signalling events following T cell receptor (TCR) 

engagement with MHC-peptide complexes. One exception to this is VCP, which has many 

apparently unrelated functions including retrotranslocation of unfolded proteins into the 

endoplasmic reticulum, the homotypic fusion of smooth endoplasmic reticulum membranes, 
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NF-κB activation, reformation of golgi cisternae and nuclear envelope reassembly (Woodman 

2003). The significance of this finding is currently unknown. 
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1.6 Lyp regulates T cell receptor signalling 

 

Src and Syk family kinases are key activators of T cell receptor signalling and are negatively 

regulated by Lyp (Figure1.5) (Gjorloff-Wingren, Saxena et al. 2000, Wu, Katrekar et al. 

2006).The Src family kinase Lck is phosphorylated on an inhibitory tyrosine residue Y505 under 

steady state by C-terminal Src kinase (Csk) creating an internal SH2 binding domain which 

facilitates the so called “tailbite” inactive conformation of Lck (Bergman, Mustelin et al. 1992, 

Nika, Tautz et al. 2007). Csk is located in the cytoplasm but can target the plasma membrane 

through direct interactions with a high affinity SH2 binding site on a transmembrane protein 

found in lipid rafts termed Csk binding protein (CBP) or protein associated with GEMS (PAG). It 

has been proposed that Lyp may be targeted to the plasma membrane through interactions 

with Csk, although this has never been formally demonstrated. An unusually high affinity 

interaction between the P1 domain motif PLPXR on Lyp and an SH3 binding domain on Csk 

promotes the formation of the Csk/Lyp complex that may act to synergistically inhibit proximal 

TCR signalling (Gregorieff, Cloutier et al. 1998, Cloutier and Veillette 1999). Following TCR 

engagement, PAG is dephosphorylated, possibly by CD45, releasing Csk which may then form 

homodimers through its SH3 domains inhibiting its own catalytic activity (Levinson, Visperas et 

al. 2009). In addition, the disengagement of the SH2 domain of Csk from PAG leads to an 

attenuation of Csk catalytic activity (Wong, Lieser et al. 2005). The regulation of Csk via its SH2 

domain engaging PAG makes sense, because it is through this association that Csk localises to 

rafts where its activity is required to regulate Src family kinase members(Bergman, Mustelin et 

al. 1992, Amrein, Molnos et al. 1998, Davidson, Bakinowski et al. 2003, Schoenborn, Tan et al. 

2011, Tan, Manz et al. 2014). Using a human derived T cell line, the Gjorloff-Wingren group 

showed that mouse PEP localises at the cell membrane but recent studies using mouse cells 

failed to identify the phosphatase in lipid rafts (Gjorloff-Wingren, Saxena et al. 2000, 

Maksumova, Le et al. 2005). Recent studies have suggested that Lyp, following a T cell receptor 

stimulation with an anti-CD3, actually dissociates from Csk in the cytoplasm, after which it is 
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recruited into rafts where is regulates active signal. In this model, the authors propose that 

Lyp-Csk binding is inhibitory on the phosphatase (Vang, Liu et al. 2012). These studies were 

however one dimensional, with no imaging data to back this hypothesis. Clearly, much more 

work must be done to understand the context in which Lyp and Csk are interacting, and how 

Lyp is targeted to the membrane. 
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Figure 1.5. Lyp acts on multiple proximal T cell receptor signalling intermediates. Substrate trapping 

experiments indicate that Lyp can interact with Lck, ZAP-70, TCR ζ and CD3ε ITAMS, Grb2 and Vav. In 

this schematic I have shown Lyp and Csk to be associated with PAG as a complex, but little is known 

about the nature of this complex and whether it even exists. Clearly Lyp and Csk can complex, but 

whether this complex can in turn bind to PAG requires further investigation. Moreover, it is unclear 

whether the Lyp-Csk complex is able to target substrates. The regulation of signalling by Lyp and Csk 

might be very complex, with these intermediates being able to act in solo, or coupled to one another 

depending on the signalling context. Perhaps some intermediates that are shared substrates between 

Lyp and Csk, like Lck (Lyp targets pY394 and Csk targets pY505) is targeted by a Lyp-Csk complex whilst 

other intermediates that have never before been shown to interact with Csk, like ZAP-70 and Vav, are 

targeted by Lyp alone. Moreover, very little is known about when Lyp is targeting its substrates and its 

importance during the maintenance of pathway “off” states (a tonic and active off signal), its 

importance in regulating active signal or a role possibly in signal termination. 
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1.6.1 How is T cell receptor signalling initiated? 

 

The understanding of how T cell receptor signalling proceeds might help to clarify the role of 

Lyp during this process. Recent work by Weiss and colleagues suggests that one of the first 

events governing T cell activation might be the removal of tonic inhibitory signals mediated by 

Csk. The acute inhibition of Csk leads to Lck activation and a TCR signal in the absence of 

receptor ligation (Schoenborn, Tan et al. 2011, Tan, Manz et al. 2014). The release of Csk from 

PAG might therefore represent one of the first steps leading to TCR activation. CD45, a positive 

regulator of TCR signalling through its ability to antagonise the action of Csk, then 

dephosphorylates Lck at the inhibitory pY505 as the dynamic equilibrium shifts toward a more 

“on” state of signalling when Csk is removed from rafts (Majeti, Xu et al. 2000, Davidson, 

Bakinowski et al. 2003, Maksumova, Le et al. 2005, Nika, Tautz et al. 2007). Lck then 

autophosphorylates activatory tyrosine residue Y394 within the activation loop of the kinase 

domain. In fact, recent work seems to suggest that  no net changes in Lck activation are 

required to initiate a signal, and instead an “already active” pool is recruited to the TCR to 

initiate signalling (Nika, Soldani et al. 2010). Another interpretation of these results is that the 

net levels of Lck activation are very closely monitored and adjusted such that activating Lck in 

one cellular compartment might lead to its inactivation within another compartment. Lyp 

dephosphorylates Lck at this activatory site (Wu, Katrekar et al. 2006). Thus Lyp may form a 

part of the feedback loop monitoring and adjusting the basal levels of Lck pY394 or, 

alternatively, Lyp may be responsible for making sure that during a signal Lck levels do not go 

unchecked. How exactly Lyp and Csk might cooperate to negatively regulate signalling 

pathways is unknown, but studies using single knockouts of Csk and Lyp and double Csk/Lyp 

knockouts would be of use here.  

 Recent studies indicate that activated Lck may also regulate Lyp function by phosphorylating 

an inhibitory tyrosine residue, Y536, thereby inactivating Lyp (Fiorillo, Orru et al. 2010). Thus a 

situation can be envisaged where Lck and Lyp dynamically regulate one another, and allow for 
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local changes in phosphorylation that may facilitate optimal TCR responses.  The precise 

stoichiometry of the interactions that promote Lyp phosphorylation by Lck is complex and 

remains to be determined, but Csk microclusters may facilitate this interaction through SH2 

binding sites that allows the docking of Lck and subsequent phosphorylation and inactivation 

of Csk associated Lyp. Clarification of the sequence of events that govern inhibition of Lck by 

Csk and Lyp are also required, since Csk preferentially targets activated Lck that is 

phosphorylated at Y394 as demonstrated by in vitro kinase assays and phosphopeptide 

mapping, suggesting that Lyp may play a part in the targeting of Lck by Csk (Amrein, Molnos et 

al. 1998). The regulation of Lck has also been brought into question in recent years and it is 

becoming evident that acute dephosphorylation of Y505 may not be necessary for Lck 

activation and TCR signalling (Paster, Paar et al. 2009, Nika, Soldani et al. 2010). Clarification of 

why there are primed pools of Lck at steady state and the implications of these findings with 

respect to TCR signalling is important to further our understanding of the role Lyp plays during 

these events.  

 

Once activated, Lck phosphorylates immunoreceptor tyrosine-based activation motifs (ITAMS) 

on TCR, CD3, CD3 and CD3 creating high affinity binding sites for the tandem SH2 domains 

of ZAP-70, a Syk family protein tyrosine kinase that contains multiple inhibitory and activatory 

tyrosyl residues located at Y292, Y492 and Y319, Y493 respectively (Wange, Guitian et al. 1995, 

Lupher, Songyang et al. 1997). ZAP-70 is phosphorylated by Lck on residues Y319, Y493 and is 

activated following its recruitment through tandemly arranged SH2 domains to 

phosphorylated ITAM motifs located on TCR subunits. ZAP-70 then targets multiple substrates 

and is itself a substrate of Lyp through direct interactions(Wu, Katrekar et al. 2006). There is 

some speculation that Lyp might also target ZAP-70 through the E3 ubiquitin ligase c-Cbl which 

docks onto the phosphorylated inhibitory residue of ZAP-70 promoting inactivation through 
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dephosphorylation of activatory residues by Lyp. In support of this notion, Lyp has been 

reported to target c-Cbl but this relationship remains unclear (Mustelin, Alonso et al. 2004). 

 

ZAP-70 phosphorylates proximal TCR signalling intermediates and adaptors that are targeted 

and perhaps negatively regulated by Lyp including Grb2 and Vav. Grb2 positively regulates TCR 

activation in cooperation with CD28 by activating Ras/Raf/MEK/ERK pathway (Nunes, Collette 

et al. 1994, Schneider, Cai et al. 1995). It has been postulated that Grb2 might play a dual role 

by delivering Lyp to CTLA-4 (a relative of CD28 and a negative regulator of co-stimulation) 

which has SH3 and SH2 domains capable of binding adaptor molecules thereby participating in 

downregulation of TCR signalling (Brand, Gough et al. 2005, Arimura and Yagi 2010). Studies 

have shown that Lyp and CTLA-4 upregulate and co-localise following TCR activation (Cohen, 

Dadi et al. 1999).  

 

Vav, an atypical guanine exchange factor and controller of calcium fluxing involved in 

cytoskeletal rearrangements and immune synapse formation is targeted and activated by ZAP-

70 (Swat and Fujikawa 2005). Studies have yet to address the contribution of Lyp in regulating 

Vav function. Given the importance of the immune synapse in governing the outcome of APC-

lymphocyte and lymphocyte-target cell interactions, studies exploring the role of Lyp in 

regulating such processes are warranted. Interestingly, a family member of Lyp, PTP-PEST, has 

been shown to dephosphorylate cytoskeletal and focal adhesion proteins CAS, PYK2, FAK and 

paxillin that mediate integrin activation (Garton, Flint et al. 1996, Cote, Charest et al. 1998). 

PTP-HCSF is also implicated in regulating cytoskeletal dynamics (Spencer, Dowbenko et al. 

1997). Taken together, the PTP-PEST family may function as important regulators of the 

cytoskeleton and adhesion molecules in immune cells. This might be in line with our 

hypothesis that Lyp regulates integrin signalling, which clearly impacts cytoskeletal dynamics. 
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These observations imply that Lyp may play an important function in the tonic inhibition of 

TCR function, active TCR signalling and the shutting down of T cell activation after engagement 

of the TCR complex. Since Lyp is upregulated following TCR engagement, it is quite feasible 

that modulation of signalling in effector T cells is an important function of this phosphatase. 

Characterisation of the PEP deficient mouse revealed an increase in the proportion of effector 

and memory populations of T cells which would be entirely in keeping with the putative 

functions of Lyp. To date, there have been no reports that PEP deficient mice are more 

susceptible to autoimmune or lymphoproliferative disease. One group have shown, however, 

that mice deficient of PEP which also harbour a CD45 SNP encoding a constitutively active 

phosphatase that positively regulates antigen receptor signalling cooperate to break tolerance 

(Zikherman, Hermiston et al. 2009).  
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1.7 Role of Lyp in B cells 

 

Because B cells share much of their signalling machinery with T cells it is likely that Lyp may 

regulate proximal B cell receptor signalling in a similar fashion, but substrate trapping 

experiments have not been undertaken in B cells. There is some evidence that there may be 

impairment of signalling in human individuals carrying the R620W variant (as discussed below). 

The PEP deficient mouse, on the other hand, shows no alteration in signalling through the BCR 

as evidenced by normal calcium mobilisation following BCR engagement. Other labs have 

published on the role of PEP expression in B cells on disease but these studies, despite being 

very interesting, are outside of the scope of this project, but some of these studies are 

discussed in more detail later on (Menard, Saadoun et al. 2011, Dai, James et al. 2013).  
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1.8 Functional studies of disease associated Lyp R620W 

 

The R620W mutation functions in an autosomal dominant fashion with increased clinical 

penetrance in carriers who are homozygous. R620W associates with type 1 diabetes (Bottini, 

Musumeci et al. 2004), rheumatoid arthritis (Begovich, Carlton et al. 2004), systemic lupus 

erythematosus  (Kyogoku, Langefeld et al. 2004) , Hashimotos thyroiditis  (Chabchoub, Teixiera 

et al. 2009), Graves disease (Skorka, Bednarczuk et al. 2005), Addisons disease (Velaga, Wilson 

et al. 2004), myasthenia gravis (Vandiedonck, Capdevielle et al. 2006), vitiligo (Canton, Akhtar 

et al. 2005) and systemic sclerosis (Diaz-Gallo, Gourh et al. 2010).  Understanding precisely 

how and why this allelic variant contributes to disease development is of considerable interest 

from a biological and therapeutic point of view. 

 

The arginine-tryptophan substitution within the P1 domain of Lyp at position 620 and the 

resulting autoimmune risk is difficult to study because our knowledge about the biochemistry 

of native Lyp and its functional importance remain limited. The expression profile of Lyp across 

all immune cells and immune cell precursors (like thymocytes) also makes it difficult to predict 

which cell types to prioritise when investigating functional differences between R620W and 

R620. In addition to R620W, other PTPN22 variants have been reported to associate with or 

confer resistance to the development of autoimmune disease. For example an R263Q mutant 

has been shown to negatively associate with SLE and RA and is reportedly a loss-of-function 

variant (Orru, Tsai et al. 2009). There are also reports of a SNP found within the promoter 

region of PTPN22 that associates with RA and T1D in an Asian cohort (Kawasaki, Awata et al. 

2006, Huang, Qiu et al. 2010).  
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The mutation in the P1 domain of Lyp has been proposed to disrupt the binding of R620W to 

Csk (Bottini, Musumeci et al. 2004) as compared to R620. Despite these two molecules having 

opposing kinase/phosphatase activity, as described above, they both serve to inhibit T cell 

function, possibly synergistically (Cloutier and Veillette 1999). Disruption of the Csk/Lyp 

complex might then lead to altered thresholds of antigen receptor signalling affecting the 

education of T cells in the thymus or B cells in the bone marrow, activation of naive T and B 

cells and effector/memory cell populations.  

 

Functional studies investigating T cell activation thresholds in the context of R620W using 

primary cells and T cells lines by the Bottini group demonstrated reduced IL-2 production, 

decreased activity of transcription factors NFAT/AP1 and reduced calcium mobilisation in 

response to anti-CD3 and anti-CD28 stimulation as compared to cells harbouring wild type 

R620. A phosphatase assay using a peptide modelled on Lck, a physiological substrate of Lyp, 

that directly monitored the enzyme kinetics of R620W and R620 demonstrated that R620W 

was catalytically more active leading to a gain of phosphatase activity and an associated 

attenuation of TCR signalling (Mustelin, Vang et al. 2005). These results should be interpreted 

with caution because the authors used primary cells from patients with T1D and it is possible 

that other autoimmune susceptibility genes encoding functionally and/or immunologically 

related proteins may be acting independently or in cooperation with R620W leading to the 

aforementioned cellular effects. Nonetheless, reduced TCR signalling has been reported by 

two other groups in healthy individuals (to exclude the effects of disease or drug treatment) as 

well as patients with T1D and RA (Rieck, Arechiga et al. 2007, Aarnisalo, Treszl et al. 2008). 

Interestingly, these studies reported conflicting data pertaining to proliferative responses of T 

cells despite using identical protocols, possibly as a result of using paediatric vs adult patients 

or fresh vs frozen samples, with Aarnisalo reporting a reduced proliferative capacity and Rieck 

showing no difference between R620W and R620, but altered cytokine levels were in 
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agreement with decreased expression of IL-2. Rieck also reported decreased levels of IL-4 and 

IL-10. The memory T cell pool was expanded in the study by Rieck, as determined by the 

frequency of CD4+, CD45RO+ cells. In another study using primary T cells derived from 

Myasthenia Gravis sufferers, an increase in the number of cells producing IL-2 (using ELISpot) 

was shown in R620W carriers compared to non-carriers but the measurement of IL-2 levels 

was not undertaken (Lefvert, Zhao et al. 2008). The results indicate that increased numbers of 

T cells in R620W carriers respond to stimulation but the magnitude of IL-2 response by 

individual cells is decreased, since other studies have shown there are decreased overall levels 

of IL-2 production.  

 

These studies flag up two important questions. First, how does a mutation outside the catalytic 

domain lead to increased enzyme activity? Second, how could an apparent attenuation of TCR 

signalling lead to autoimmune disease? The complex regulation of PTPs through oxidation 

events that favour intramolecular formation of inhibitory disulphide bridges, 

inhibitory/activatory tyrosine, serine and threonine phosphorylation sites, internal binding 

sites and pseudophophatases makes it difficult to delineate the mechanism by which R620W 

might function as a gain-of-function mutant (Osisanya, Sehgal et al. 1990, Tonks 2006, Tsai, 

Sen et al. 2009). Recent studies have shown that Lck dependent phosphorylation of Lyp on an 

inhibitory tyrosine residue might be an important regulatory mechanism which positively 

influences TCR signalling (Fiorillo, Orru et al. 2010). The interaction between Lyp and Csk is 

proposed to facilitate the interactions between Lck and Lyp. R620W cannot bind Csk efficiently 

and so this mutant may be a gain-of-function Lyp mutant by virtue of its failure to be 

appropriately regulated by Lck in vivo, essentially leading to a constitutively active Lyp. This 

model does not explain why, in vitro, R620W has increased phosphatase activity (Bottini, 

Musumeci et al. 2004). A more recent study suggested that Lyp and Csk dissociate following 

TCR engagement leading to Lyp being recruited into rafts where it actively regulates signal. In 
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this model, the complexing of Csk and Lyp leads to Lyp inactivation, and only when dissociated 

can Lyp target and dephosphorylate substrates. The authors concluded that the binding 

domain mutation which disrupts Lyp-Csk complexing leads to a gain-of-function phenotype 

since Lyp is not properly regulated (Vang, Liu et al. 2012). In complete opposition to this, but 

perhaps more in line with my results, others have countered this observation by suggesting 

that Lyp and Csk complex following receptor engagement (de la Puerta, Trinidad et al. 2013).  

Others have reported a negative regulatory S35 site located near the catalytic domain that is 

phosphorylated by PKC (Yu, Sun et al. 2007).  Direct interaction between the interdomain and 

the catalytic domain of Lyp and PEP has also been postulated as an important regulatory 

mechanism leading to decreased phosphatase activity but the trigger and context of this 

interaction remains unknown (Gjorloff-Wingren, Saxena et al. 1999, Liu, Stanford et al. 2009).  

 

The second question pertaining to how hyporesponsive T cells might lead to autoimmunity is 

more straightforward. Studies of the SKG mouse demonstrated that attenuation of TCR 

signalling due to a loss of function ZAP-70 mutation leads to impaired ZAP-70 and dysregulated 

thymic selection. Our laboratory has also demonstrated the importance of reduced IL-2 

production in this model, as well as skewed Th cell differentiation. Thus, immunodeficiency 

manifested by defective TCR signalling can, rather counter-intuitively, lead to autoimmunity. 

The allelic series of ZAP-70 mutants described by Goodnow and colleagues has also highlighted 

how this defective state can have subtle effects on distinct thymic and peripheral T cell subsets 

within both effector and regulatory compartments (Siggs, Miosge et al. 2007). Here, it is 

important to appreciate that immunopathology is not just as a consequence of hyperactivation 

of the immune system, and that there is a balance, and this balance can be tipped by under or 

over-activation.  
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While there is accumulating evidence to suggest R620W is a gain-of-function mutant in the 

context of TCR signalling, others have countered this hypothesis by suggesting that under 

circumstances where Csk is co-expressed at comparable levels the disease associated Lyp 

variant is hypomorphic (Zikherman, Hermiston et al. 2009). In this study using both human and 

mouse PTPN22 variants the authors showed that disease associated Lyp and PEP transfected 

into Jurkat T cells in combination with Csk are not as efficient at inhibiting Erk phosphorylation 

as their wild type counterparts and an increase in calcium flux was demonstrated in Lyp and 

PEP mutant expressing cells. Further studies are needed in primary cells to test if these results 

hold true under more physiologically relevant conditions. A controversial study more recently 

by the Siminivitch lab proposed that the mutant is loss-of-function due to its propensity to be 

degraded via a calpain-mediated pathway, although these results have not been observed by 

other labs (Zhang, Zahir et al. 2011, Vang, Liu et al. 2012, Dai, James et al. 2013). 

 

In considering B cells, signalling is apparently unperturbed in PEP-/- mice (there are however 

altered B cell pools and hypergammaglobulinaemia) but signalling in human B cells harbouring 

R620W is altered (Rieck, Arechiga et al. 2007, Arechiga, Habib et al. 2009). The association of 

autoantibody production with R620W might point to intrinsic B cell anomalies or altered 

help/activation by T cells or both. Studies using B cells derived from R620W carriers 

demonstrate smaller memory pools that are hyporesponsive to stimulation through the BCR in 

terms of proliferation, display reduced basal level phosphorylation of signalling intermediates 

and tyrosine phosphorylation following stimulation. What is intriguing about B cell studies is 

that naive cells seem unaffected by R620W. These results imply that Lyp may have an 

important role in modulating B cell signalling after activation and its role therefore in tonic 

inhibition, at least in B cells, may be a minor one. In fact, studies using the PEP-/- mouse 

indicate that signalling in naȉve T cells is also normal. Taken together these results suggest that 

in terms of signalling, Lyp appears to play a more important role in the memory and effector 
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cell pools when compared to naȉve lymphocytes. The observation that expression of both Lyp 

and PEP are upregulated in activated T cells may be relevant (Arimura and Yagi 2010). 
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1.9 How does R620W contribute to disease development? 

 

Studies indicate that there are biological differences between the common Lyp R620 and the 

disease associated Lyp R620W variant. How these differences might manifest in autoimmune 

disease remains to be uncovered. There is still no clear consensus as to whether R620W is a 

gain- or loss-of-function variant and there is a possibility that in the future there may be newly 

discovered functions of the mutant phosphatase. It is not inconceivable that R620W may exert 

both gain- and loss-of-function activity in different pathways but within the same cell. Another 

possibility is that the mutant Lyp may have different effects in cells of different lineages.     

 

The most obvious subset of immune cells that are inextricably linked to autoimmunity are 

lymphocytes but the coordination of an immune response requires the participation of all 

immune cells and the origin of an adaptive autoimmune response may not necessarily be due 

to intrinsic defects in the lymphoid compartment. For example, dendritic cells express high 

levels of Lyp and are responsible for presenting antigen to and polarising Th cells. 

Inappropriate activation of T cells may therefore arise as a consequence of aberrant antigen 

presenting cell function leading to the development of autoimmune disease.  

 

One possibility by which R620W might contribute to disease is through changes in thresholds 

of thymic selection. The involvement of Lyp during positive and negative selection has not 

been reported but its high expression in thymocytes might point to an important function 

during T cell education. Interestingly, the thymus (and the prostate) is the only tissue in which 

all 3 Lyp isoforms can be detected (Wang, Dong et al. 2010). If the disease associated variant 

turns out to be gain-of-function, high affinity self-reactive TCR expressing T cells might escape 

negative selection resulting in an expanded repertoire of autoreactive T cells and an 
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augmented predisposition to autoimmune disease. Conversely, a loss-of-function R620W 

mutant may act on the very few cells that, per chance, escape negative selection, leading to 

enhanced and/or sustained T cell activation and driving T cell differentiation of effector T cells 

in the periphery, leading ultimately to an autoimmune phenotype.  

 

An alternative explanation for autoimmune disease development in individuals carrying 

R620W is its effect on T regulatory cells (Tregs). Experiments in the early 1990s by Sagakuchi 

and collegues reignited the interest in these self reactive T cells that escape negative selection 

and express high levels of CD25 on their surface (Sakaguchi, Ono et al. 2006). These naturally 

occuring self reactive T cells with immunoregulatory properties are proposed to be a main 

player in preventing the emergence of autoimmunity in the periphery. If the gain-of-function 

hypothesis is correct, Treg function may be compromised leading to deficient regulation of 

autoreactive T cells in the periphery.  

 

Finally, more work is required in the context of other immune cells as well as other receptors 

expressed on T cells. Immunoreceptor signalling is often governed by Src and Syk kinases 

which are both substrates of Lyp. Lyp potentially influences any given immunoreceptor that 

utilises the Src and Syk kinases and some of these receptors have been shown to be important 

contributors to autoimmune disease. Recognition of immune deposits through Fc receptors in 

lupus by immune cells is thought to be a major driving force of disease (Waldman and Madaio 

2005). One study has already highlighted the importance of Lyp in NK cell proliferation in vitro 

(Douroudis, Shcherbakova et al. 2010). NK cells have been demonstrated to contribute to 

autoimmunity in various ways, and an imbalance of these cells in vivo might tip the scale in 

favour of an autoimmune phenotype (Flodstrom-Tullberg, Bryceson et al. 2009).    
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1.10 The role of Lyp in integrin biology 

 

At the outset of my PhD studies it was not known whether Lyp regulates integrin signalling.  

Given the commonalities between the signalling intermediates utilised by the T cell receptor 

and integrin receptors, it seemed plausible that Lyp might regulate signalling downstream of 

integrins. I now review integrin biology in the next section, with particular emphasis on 

signalling involving Src and Syk family kinases, both of which have been shown to participate in 

integrin and T cell receptor biology, and both of which are PTPN22/Lyp substrates. 



51 

 

1.11 Integrins in immunobiology 

 

Integrins are heterodimeric, bi-directional signalling receptors (Hynes 2002). Integrins play a 

diverse role in cellular biology, influencing proliferation, differentiation, migration and 

adhesion, survival and tissue architecture. The heterodimer consists of an α and a β subunit, of 

which 18 and 8 exist, respectively. The various permutations of α and β subunits have led to 

the identification of a total of 24 heterodimers being expressed on the surface of a wide range 

of cells. Haematopoietic cells express, in addition to other integrins, the β2 subfamily of 

integrins (Tan 2012). β2 integrins are highly expressed on leukocytes, suggesting an important 

function for this integrin family specifically in immune cells. Indeed mutations in the β2 chain 

or elements associated with β2 function are deleterious, leading in some cases to death if a 

bone marrow transplant is not performed (Alon, Aker et al. 2003, Kinashi, Aker et al. 2004, 

Manevich-Mendelson, Feigelson et al. 2009, Moser, Bauer et al. 2009, Svensson, Howarth et al. 

2009, van de Vijver, Tool et al. 2014). The cause of death in susceptible individuals that do not 

have properly functioning β2 has been ascribed to the inability of blood cells to exit the 

vasculature via the endothelium and enter target tissues where they participate in host 

defence. Whilst this may in part be true, other biological functions of immune cells can also be 

compromised, such as that of cell-cell synapse formation and effector responses. Clearly, 

whilst integrins are important for cellular motility, their repertoire of functions extends far 

beyond the simple notion of being a sticky molecule on the surface of cells. The functions of 

integrins, beyond adhesion and migration, are not reviewed in any depth here, but 

nevertheless play integral roles in immune cell biology (von Andrian and Mackay 2000, Abram 

and Lowell 2007, Zhang and Wang 2012) 
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1.17 The role of adhesion and migration in T cell responses 

 

β2 integrins are implicated in at least two fundamental T cell activities involving adhesion and 

migration. LFA-1 in particular has been shown be important for the arrest and migration of T 

cells under shear flow, and for the formation of an immunological synapse when T cells make 

contact with other cell types such as professional antigen presenting cells (Springer 1993, von 

Andrian and Arfors 1993, Springer 1994, Springer 1995, von Andrian and Mackay 2000, Dustin 

2009). Here, I review what is known about integrin structure, function and regulation with 

particular emphasis on migration. 

A simple paradigm exists regarding the ability of immune cells to preserve the host. In order to 

do so, cells must be mobile, they must localise to tissues where their function is required and 

they must rendezvous with other immune cells to relay information to each other to 

coordinate a response and they must avoid destruction/collateral damage of the host. The 

correct spatial arrangement of these cells in the body is therefore an absolute prerequisite for 

optimal function of the immune system. Traditionally, T cells have been thought of as being 

born in the bone marrow and educated in the thymus, after which they exit into the periphery 

where they recirculate through the blood, tissue and lymphoid organs(Butcher 1991, Springer 

1993, von Andrian and Arfors 1993, Springer 1994, Springer 1995, von Andrian and Mackay 

2000, Cyster 2003, Evans, Patzak et al. 2009). Upon entering lymph nodes, T cells encounter 

antigen presenting cells that can enable an effector programme within a T cell if the correct 

peptide loaded MHC is encountered by a peptide specific T cell receptor (Miller, Wei et al. 

2002, Wei, Miller et al. 2002, Mempel, Henrickson et al. 2004). Already, two fundamental 

integrin functions become apparent from this simple paradigm; that of cellular mobility and 

that of cell-cell interactions (or T cell sampling of the APC/antigenic repertoire) required for 

immune cell activation.  
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1.18 What controls integrin activation? 

 

T cells mainly arrest at postcapillary venules at sites of infection or injury and on high 

endothelial venules in lymph nodes(Tanaka, Umemoto et al. 2006). The arresting process is 

initiated by conformational changes in the integrin which facilitate/greatly enhance binding to 

its counterligand. For LFA-1, crystallographic studies have identified at least 3 conformations 

that are thought to reflect different stages of activation (Luo, Carman et al. 2007). These 

different conformations can be detected through the use of specific antibodies that recognise 

cryptic epitopes that are exposed when a conformational change occurs in LFA-1; these 

epitopes are associated with bent/low, intermediate and high binding affinities of integrin 

(figure 1.6). The β2 integrins are found primarily in a bent conformation that does not favour 

ligand binding. Upon stimulation through other receptors, such as the selectins, chemokines 

and the TCR, the bent integrin conformation becomes extended allowing for ligand binding 

within 0.4 seconds of the initial activation signal (Shamri, Grabovsky et al. 2005) (von Andrian 

and Arfors 1993). During extension, the integrin transmembrane domain and cytoplasmic tails 

undergo rearrangement which may in turn allow LFA-1 conformations to be stabilised through 

interactions with scaffolding proteins, adaptors and enzymes within the cell (Kinashi 2005). 

Once extended, the integrin can bind to counterligand, after which further conformational 

changes ensue leading to high affinity and full extension of LFA-1. Although the precise 

mechanism governing this switch is unclear, it has been proposed that mechanical force may 

drive allosteric changes in integrin conformation, which in leukocytes might be provided by the 

shear force of blood flowing across the T cell membrane (Alon and Dustin 2007). An interesting 

study demonstrating this phenomenon by applying force to ligand bound αvβ3 indicated 

changes in high affinity binding that occurred in the order of nanoseconds (Puklin-Faucher, 

Gao et al. 2006). One might expect that for LFA-1, a similar mechanism might exist, but such a 
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mechanism remains to be fully evaluated in a more physiologically relevant experimental 

system. 

 

The signalling events leading up to the conformational changes of T cell integrins in response 

to the interception of extracellular cues have only emerged in recent years. Given that 

integrins exist mainly in an inactive state on circulating leukocytes, an environmental cue must 

be intercepted leading to integrin activation, a process commonly known as “inside out” 

signalling. Once activated and bound to ligand, an “outside-in” signal that is transduced 

directly through the integrin itself is initiated. This leads to integrin clustering and changes in 

cell morphology, amongst many other programmes. It should be appreciated that a 

considerable amount of overlap appears to exist between the two signalling pathways, making 

the relative endpoint contribution of each cascade difficult to interpret. 
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Figure 1.6 Conformational plasticity of LFA-1 

Integrins can change conformation at the surface of the cell when an inside-out signal is 

intercepted and when counter-ligand is engaged (discussed further later). For LFA-1, at least 3 

conformations have been reported to exist. 

A) In resting T cells, LFA-1 is in a bent conformation with the extracellular domain 

unable to engage ligand efficiently. The α and β chain are held together by a clasp.  

B) Following an inside-out signal (through chemokine or TCR for example) the 

extracellular domain of the integrin is oriented away from the membrane which 

allows for efficient binding of counter-ligand.  

C) Spatial changes within the transmembrane region of the α and β chain lead to the 

“kicking apart” of the integrin chains leading to an extended high affinity integrin 

that can bind with high efficiency to ligand through exposure of the extracellular 

domain. This conformation can be induced by ligand engagement, allowing strong 

adhesion and catch bonds to be formed. 
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1.19 Inside-out signalling leading to integrin activation 

 

The engagement of receptors at the surface of cells leading to integrin activation is termed 

inside-out signalling (Fig 1.7). Given that the most well studied inside-out signals are in the 

context of G-protein coupled receptors forming the chemokine receptor family and the 

antigen T cell receptor, the focus here will be on how these two signalling pathways are able to 

control integrin activation when engaged. 

Chemokines can be tethered to sulphated proteoglycans on the surface of cells or they can 

form a diffusible gradient in the extracellular space (Parish 2006, Schumann, Lammermann et 

al. 2010). On T cells, chemokine receptors, once engaged by their respective chemokine, 

promote changes in integrin conformation as well as changes in their ability to migrate 

directionally (Shamri, Grabovsky et al. 2005). Chemokine and antigen receptors, once engaged, 

activate guanine nucleotide exchange factors (GEFS) leading ultimately to RAP1 activation 

(Katagiri, Maeda et al. 2003, Shimonaka, Katagiri et al. 2003). Other important regulators 

participating in the inside-out pathway include talin, Kindlin-III and phosphatidylinositol-4-

phosphate-5kinase type 1γ 87, which will be discussed later in the chapter. 
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Figure 1.7 Inside-out signalling resulting in integrin activation 

The engagement of receptors other than the integrin itself, like chemokines, selectins and 

antigen receptors, results in the binding of calcium and diacylglycerol to guanine exchange 

factors like CalDAG-GEF1 or C3G which in turn acts on RAP1 by exchanging GDP for GTP in 

haematopoietic cells. RAP1 then localises at the cell membrane and associates with adapor 

protein RIAM. Talin is then recruited to and binds an NPxY motif located on the cytoplasmic 

tail of integrins, a process that appears to be greatly facilitated by kindlin-III binding, stabilising 

high affinity conformations.  

 

.          
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The control of RAP1 guanine exchange factors 

 

RAP1 activation requires the exchange of inactive GDP bound RAP1 to active GTP bound RAP1, 

and this process in T cells is thought to be controlled through at least two guanine exchange 

factors (GEFS) known as C3G (RAPGEF1) and CALDAG-GEF1 (calcium and diacylglycerol-

regulated guanine nucleotide exchange factor 1). Both of these exchange factors are activated 

in response to phospholipase C activation which generates diacylglycerol, which in turn 

directly modulates GEF activity, or through the generation of inositol triphosphate (IP3) that 

binds to IP3 receptors on the endoplasmic reticulum releasing calcium ions.  Calcium 

mobilisation can also potentiate GEF exchange activity 

Primary human T blasts where CALDAG-GEF1 is silenced displayed impaired adhesion to ICAM-

1 (Ghandour, Cullere et al. 2007). In addition, CALDAG-GEF1 deficient murine cells display 

impaired adhesion in both platelets and neutrophils, a finding that was associated with 

impaired RAP1 activation (Crittenden, Bergmeier et al. 2004, Bergmeier, Goerge et al. 2007). 

CALDAG-GEF1 knockout mice are considered a model for LAD-III patients because individuals 

who present with the disease have a mutation in CALDAG-GEF1 that disrupts the splicing of 

this gene (Pasvolsky, Feigelson et al. 2007). More recently, whole exome sequencing of 

humans identified a CALDAG-GEF1 mutation that impairs platelet spreading and adhesion, 

although the defects observed as a result of this mutation did not alter leukocyte 

biology(Canault, Ghalloussi et al. 2014). This could have been due to the mutation being 

inconsequential on the integrin function studied in leukocytes, rather than CALDAG-GEF1 not 

being important in leukocyte integrin biology. Thus, CALDAG-GEF1 represents an important 

candidate that regulates integrin conformation when chemokines engage their respective 

ligands through direct exchange activity on RAP1. 

C3G, on the other hand, is thought to be activated primarily downstream of the antigen 

receptors and forms a complex with CRKL. Silencing of either C3G or CRKL leads to impaired 
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adhesion of T cells to ICAM-1 or fibronectin following TCR stimulation (Nolz, Gomez et al. 

2006). Conversely, overexpression of C3G potentiates the binding of integrin following TCR 

stimulation, firmly establishing C3G as an important regulator of the capacity of integrin to 

bind to its counterligand following TCR engagement. Together these results strongly suggest 

that this exchange factor complex operates upstream of both β2 and β1 integrin activation. 

RAP1 activation can also be activated through protein kinase C (PKC), which responds to rises 

in intracellular Ca2+ and DAG (Han, Lim et al. 2006). At this point the kinetic of RAP1 activation 

may be relevant, in that PKC activation via the TCR leads to slower, more sustained activation 

of RAP1, which might be consistent with activation of a large subset of integrins whose role is 

then to form strong adhesive contacts between two cells, as is the case for immune synapse 

formation (Dustin, Bromley et al. 1997, Katagiri, Shimonaka et al. 2004). A paper that 

compares RAP1 activation via PKC or CALDAG-GEF1 reports a difference in kinetic of RAP1 

activation and might reflect the differential requirement of fast versus sustained activation in 

platelets (Cifuni, Wagner et al. 2008). Thus, different exchange factors may come into play 

depending on the requirement of how long integrins stay in a given conformation and the 

amount of activated integrin that can bind to counterligand, making receptor-ligand 

interactions more or less likely. There are some integrin activation modules that supposedly 

completely bypass RAP1 activation and rely instead on a PKC dependent RAP1 independent 

signalling module (Ghandour, Cullere et al. 2007). Others have reported conflicting data, 

suggesting that a RAP1 inhibitor abolishes adhesion through all integrins tested (Shimonaka, 

Katagiri et al. 2003). What then is the contribution of RAP1 to inside-out signalling? 

RAP1 as an activator of LFA-1 

 

The importance of RAP1 in LFA-1 biology is demonstrated by the following experimental 

evidence; 
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1) Expression of constitutively active RAP1 enhances the capacity of T cells to migrate and form 

conjugates with APCs (Sebzda, Bracke et al. 2002) 

2) Dominant negative forms of RAP1 display the opposite effect of a constitutively active RAP1 

which was further verified through knockdown experiments, GAP overexpression and RAP1 

inhibition(Katagiri, Hattori et al. 2000). The convergence of various receptor pathways on RAP1 

leading to integrin activation for LFA-1 at least, is clear. 

RAP1 has recently been postulated to be transported in vesicles to the plasma membrane with 

LFA-1. A C-terminal CAAL motif (cysteine-aliphatic-aliphatic-leucine) is irreversibly modified by 

a geranyl-geranyl lipid group such that the protein is targeted to membranes in both the 

intracellular lipid compartment, which might include vesicles, and the plasma membrane.  

Vesicles containing RAP1 are delivered to the plasma membrane in T cells (Bivona, Wiener et 

al. 2004, Mor, Wynne et al. 2009), although it is unclear whether this is a constitutive process 

or that governed by GPCR or TCR stimulation. These vesicles are positive for early and late 

endosomal markers, suggestive of a recycling pathway. Indeed, delivery of RAP1 can be 

antagonised by specifically blocking RAB11, presumably by inhibiting the delivery of vesicles to 

the membrane or inhibiting docking of vesicle at the plasma membrane (Katagiri, Maeda et al. 

2003, Bivona, Wiener et al. 2004, Mor, Wynne et al. 2009, Raab, Wang et al. 2010). The 

question of the status of RAP1 activation within vesicles is beginning to be addressed: Does 

RAP1 arrive at the membrane in pre-assembled signalling platforms within vesicles that do not 

require further activation or does activation of RAP1 occur at the membrane? A biosensor that 

monitors RAP1 activity showed reporter activity only in the leading membrane ruffles of TCR 

stimulated Jurkat T cells, indicating RAP1 activation is occurring dynamically at the membrane 

(Bivona, Wiener et al. 2004, Mor, Wynne et al. 2009). Primary cell experiments involving the 

use of chemokine suggested that active RAP1 is required within vesicles if LFA-1 is to be 

delivered appropriately to the leading edge membrane(Katagiri, Maeda et al. 2003). It is not 

completely unfeasible that when comparing TCR to chemokine stimulations, the signal 
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requirements of vesicular versus non-vesicular GTP-bound RAP1 is different, which might 

reconcile these two disparate findings.  

Vesicles containing RAP1 also cargo its downstream effectors, RAPL and MST1. LFA-1 delivery 

to the leading edge of the plasma membrane and to the pSMAC during synapse formation has 

been shown to be dependent on RAPL (Katagiri, Maeda et al. 2003, Kliche, Breitling et al. 

2006). The serine/threonine kinase MST1 interacts with RAPL via its coiled coil domain. The 

exact function of MST1 has yet to be identified in the context of LFA-1 containing vesicles, with 

no target phosphorylation sites on LFA-1 itself being identified. Many different versions of the 

core module, in addition to the RAP1-RAPL-MST exist, with RAP1-RIAM-SKAP55-ADAP or RAP1-

RAPL-SKAP55-ADAP also appearing to be detectable within vesicles (Kliche, Breitling et al. 

2006, Menasche, Kliche et al. 2007, Raab, Wang et al. 2010). Exactly how these proteins 

interact within vesicles and following the docking of vesicles onto the plasma membrane is the 

subject of an emerging field that is investigating integrin trafficking and signalling by a vesicular 

transport system. 

The final steps of inside-out signalling 

 

Clearly a complex set of molecular interactions occurs when inside-out signalling is initiated. 

The final steps of inside-out signalling have been hard to study because once the integrin is 

activated, and binds to its ligand, outside-in signalling is initiated.  This makes it difficult to 

disentangle the relative contribution of signalling originating from other receptors and 

signalling that originates specifically from the integrin itself. The conversion of intermediate to 

high affinity LFA-1 has been shown to be dependent PIP5K1γ87, which phosphorylates lipid 

groups allowing for the recruitment of pleckstrin homology domain containing proteins via a 

phosphotidyl inositol-4-5 bisphosphate dock. TCR and chemokine receptors have been shown 

to be upstream of phospholipase D activation which generates phosphatidic acid that 

stimulates PIP5K1γ87 activity upstream of integrin activation. The generation of phosphatidyl 
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inositol-4-5 bisphosphate has been shown to be important for talin recruitment by virtue of 

four positively charged lysine residues that interact with phosphoinositides (Martel, Racaud-

Sultan et al. 2001). Talin is a cytoskeletal adaptor that links the cytoplasmic tails of integrins to 

the actin cytoskeleton, stabilising high affinity integrin conformation (Ulmer, Calderwood et al. 

2003). The discovery of Kindlin-III as a haematopoietic cell specific integrin activator that might 

facilitate talin recruitment is also a recent development (Moser, Nieswandt et al. 2008, Moser, 

Bauer et al. 2009). This protein has been of particular interest due to mutations in humans 

causing LAD-III (Malinin, Zhang et al. 2009, Svensson, Howarth et al. 2009). T cells from LAD-III 

patients do not change integrin conformation upon chemokine stimulation or with phorbol 

esters which directly activate PKC (upstream of RAP1 activation) (Manevich-Mendelson, 

Feigelson et al. 2009). Thus, it appears that kindlin-III is an important regulator of inside-out 

signalling. 
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1.20 Outside-in signalling 

 

Once engaged, integrins signal back into the cell, the identifiable consequence of which 

appears to be adhesion strengthening and cell effector responses. In contrast to inside-out 

signalling, very little is known about outside-in signalling in T cells. It is most likely that the 

outside-in and inside-out pathways cooperate during signal transduction with some 

overlapping and some distinct features attributable to each pathway. Here I review the 

literature on outside-in signalling in platelets and immune cells. 
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Platelets as a model system for outside-in signalling  

 

The role of the Src and Syk family kinases in platelet outside-in signalling has been well studied 

(de Virgilio, Kiosses et al. 2004). Resting platelets show constitutive association of integrin 

αIIbβ3 with Src, which is in turn thought to be controlled through its association with Csk, 

maintaining Src in a closed “off” position, masking the SH2 and SH3 domains from interaction 

with other proteins. The binding of fibrinogen to αIIbβ3 leads to the dissociation of Csk from 

Src and the dephosphorylation of an inhibitory tyrosine that is located in the C-terminus of Src 

leading to autophosphorylation at the activatory loop of the kinase domain (Arias-Salgado, 

Lizano et al. 2003). Syk is then recruited to the integrin and phosphorylated by Src (Gao, Zoller 

et al. 1997). Syk is then thought to phosphorylate downstream effectors like Vav1/3 and the 

adaptor protein SLP-76 (Obergfell, Judd et al. 2001, Bezman, Lian et al. 2008). Activation of Vav 

is a key event governing cytoskeletal changes leading to platelet spreading through the 

activation of elements involved in remodelling the cytoskeleton. Deletion of Syk in platelets 

leads to the inability of platelets to spread on fibrinogen. Studies in chinese hamster ovary 

(CHO) cells suggested that Syk is directly associated with β3 in a phosphotyrosine independent 

manner, which might imply that the tandem SH2 domain is dispensible for the association of 

Syk with β integrin tails (Woodside, Obergfell et al. 2002). The requirement of the SH2 domain 

of Syk will be discussed further in the next section. 
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Outside-in signalling in immune cells 

 

Immune cells utilise Src and Syk family kinase members to signal through integrins in a similar 

way to platelets. The use of various Src family kinase members as initiators of outside-in 

signalling is clear, but the molecular events following Src activation are less clear (Ginsberg, 

Partridge et al. 2005, Giagulli, Ottoboni et al. 2006, Totani, Piccoli et al. 2006, Evangelista, 

Pamuklar et al. 2007, Evans, Lellouch et al. 2011, Cimo, Ahmed et al. 2013). Here I review the 

activation of Syk by Src in myeloid cells and neutrophils as the majority of outside-in literature 

has centred on these cells, and so at least some similarities could exist with T cell outside-in 

signalling, as discussed afterward. 

Outside-in signalling initiates Src recruitment and/or activation and subsequent Syk 

phosphorylation (fig 1.8). It was shown using retroviral reconstitution of platelets and myeloid 

cells with Syk lacking functional SH2 domains, that localisation of Syk to signalling complexes at 

the membrane was compromised as compared to wild type Syk (Abtahian, Bezman et al. 2006, 

Mocsai, Abram et al. 2006). Subsequently, adaptors containing ITAM motifs like FcRγ-chain 

receptor and DAP12 have been shown to be important for integrin signalling to proceed, by 

recruiting Syk. Deletion of these adaptors leads to integrin signalling failure (Mocsai, Abram et 

al. 2006).  

Neutrophils and macrophages signal through β2 integrins leading to adhesion strengthening, 

spreading, chemotaxis, ROS production and the release of cytokines and cytotoxic granules. 

(Mocsai, Zhou et al. 2002). Neutrophils derived from human individuals and mice that lack β2 

integrins are unable to mount any of the aforementioned responses when plated on ICAM-1 

(Abram and Lowell 2007). The requirement for adaptors like FcγR-chain and DAP12 for integrin 

signalling was extended from myeloid cells to neutrophils in these studies. Thus adaptors may 

be a universal feature of integrin signalling in immune cells through the β2 family of integrins. 
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The engagement of β2 integrin leads to the recruitment of activated Src which in turn 

phosphorylates membrane associated adaptor molecules like FcγR-chain and DAP12 at two 

critical tyrosine residues within ITAM motifs. This phosphorylated motif recruits Syk by virtue 

of its SH2 domains, and Syk is then phosphorylated and activated by Src. 
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Figure 1.8 Integrin mediated outside-in signalling  

Un-engaged integrin is consitutively associated with Src which is maintained in an inactive 

conformation by Csk. Following ligation by counterligand, Csk dissociates allowing for the 

dephosphorylation of Src at an inhibitory residue (candidates include CD45 and PTP1B) at 

which point Src autophophorylates at the activatory loop within the kinase domain. Activated 

Src can then phosphorylate various proteins, involved in signal transduction, which in myeloid 

and granulocytes includes DAP12 and FcRγ chain (denoted by the adaptor). In these cells, the 

adaptor proteins have been postulated to recruit Syk via the ITAM motifs, which in turn may 

activate SLP76 and VAV. The consequence of the cellular programme that occurs following the 

engagement of integrin is not well studied, but might include cell spreading, ROS production, 

cytokine production and adhesion under flow. The signalling pathways are not clear here, and 



68 

 

will be discussed further in light of the data collected in this project in the final discussion with 

specific reference to integrin signalling in T cells. 
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Curiously, protein-protein interaction studies have failed to demonstrate a physical interaction 

between β2 and adaptor molecules like FcγR-chain receptor and DAP12, or indeed any other 

ITAM containing adaptor. Either the interaction is weak and not detectable, or these adaptors 

somehow localise proximally to integrin, possibly through remodelling of plasma membrane 

microdomains (Jakus, Fodor et al. 2007). Alternatively, Syk may be activated at the integrin and 

then is retained at the plasma membrane through the association with adaptor molecules. 

Retroviral reconstitution of neutrophils and macrophages with wild type and mutant Syk or 

DAP12 pointed to an important function of these molecules during integrin signal 

transduction, leading to cell spreading, degranulation and reactive oxygen intermediate 

production. Surprisingly, however, migration was not reported as defective in any of the first 

studies published with regard Syk and DAP12 reconstitution experiments (Mocsai, Zhou et al. 

2002, Mocsai, Zhang et al. 2003, Mocsai, Abram et al. 2006). Contrary to these reports, recent 

work has reported migratory defects in Syk knockout neutrophil cell lines and primary Syk 

knockout neutrophils (Schymeinsky, Then et al. 2005, Schymeinsky, Sindrilaru et al. 2006, 

Frommhold, Mannigel et al. 2007). In the neutrophil cell line, wild type Syk-GFP fusion proteins 

localised to the lamellapodia at the leading edge of the cell, whereas mutant Syk-GFP lacking 

the two tandem SH2 domains showed no obvious localisation.  In contrast to the wild type 

construct, the mutant Syk cells formed multiple lamellopodia impeding their ability to migrate. 

Mice in which Syk was knocked out of neutrophils demonstrated that neutrophil influx into 

inflamed tissue was compromised if Syk was not expressed (Frommhold, Mannigel et al. 2007). 

More data from different labs is required in order to reconcile these different findings. It is 

clear however, that Syk is playing some role in regulating outside-in signalling, which may be 

cell specific, or otherwise not identified. 

What then might the outside-in signalling module in T cells look like? In T cells, ZAP-70 is 

expressed instead of Syk, but the domain structure of ZAP-70 is identical to Syk. The difference 

is that ZAP-70 has many more regulatory features, which would be in keeping with its function 
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as a gatekeeper of adaptive immunity, and must therefore be highly regulatable to avoid 

inappropriate T and B cell activation (Wang, Kadlecek et al. 2010). Two Src family kinases are 

predominantly expressed in T cells, Lck and Fyn. By taking a systematic approach, the Hogg lab 

investigated the ability of Src family kinase members in primary T cells to bind to LFA-1 (Evans, 

Lellouch et al. 2011). In these studies they found that only Fyn and Lck were expressed at 

appreciable levels as compared to other Src family kinase members, and that Lck could be 

found associated with LFA-1. In this same study, it was shown that a hierarchy existed in terms 

of the activation of Lck and ZAP-70, in that Lck is responsible for ZAP-70 phosphorylation. 

Treatment of cells with the small molecule inhibitor PP2, which inhibits Lck, abolished ZAP-70 

phosphorylation; this correlated with an inability of T cells to migrate. Lck knockdown in 

primary T cells phenocopied the inhibition of Lck with PP2, where, upon ICAM-1 contact, the 

cells were rounded and did not polarise or migrate.  

Further studies using ZAP-70 inhibitors and ZAP-70 knockdown strategies demonstrated that T 

cells are unable to migrate when ZAP-70 is not functional or absent. Confocal studies 

demonstrated that ZAP-70 co-localised with high affinity integrin as detected by mab24, 

leading the authors to postulate that ZAP-70 may in some way be involved in the transition of 

intermediate affinity integrin to high affinity integrin, because knockdown and inhibition 

studies led to no differences in intermediate affinity LFA-1 but a large reduction in high affinity 

LFA-1. What is particularly interesting about these studies is that ZAP-70 phosphorylation 

preceded the association of talin with the β chain of LFA-1, suggesting that perhaps ZAP-70 

may in some way facilitating talin-integrin association. Further studies are needed to 

understand a direct causal link between ZAP-70 activation and the recruitment of talin to LFA-

1. Interestingly, a study by Garcia-Bernal in 2006 proposed that ZAP-70 can phosphorylate an 

integrin associated Vav-Talin complex, leading to its dissociation and talin binding to integrin 

stabilising the high affinity conformation (Garcia-Bernal, Parmo-Cabanas et al. 2009). The 

dissociation of the Vav-talin complex through ZAP-70 dependant phosphorylation of Vav, 

releasing talin such that it can bind integrin, was, in this study, mediated by chemokine 
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engagement, making it hard to understand the relative contributions of chemokine signalling 

and integrin engagement. These observations demonstrate cross-talk between outside-in and 

inside-out signalling, and the difficulty in studying such processes, as these two different 

receptor mediated pathways appear to utilise the same signalling intermediates, and it is 

currently unknown if the endpoint of each of these pathways converge when co-stimulated in-

vivo. 

The most recent and comprehensive study describing how signalling intermediates participate 

in integrin dependant outside-in signalling, as opposed to TCR dependant inside-out signalling, 

were performed by the Ladbury lab (Cimo, Ahmed et al. 2013). This study proposed that ZAP-

70 undertakes a scaffolding function in integrin signalling, and that the catalytic activity of ZAP-

70 is not required, as demonstrated by a lack of Y493 phosphorylation within the activation 

loop of the kinase domain. In contrast, T cell receptor signalling is absolutely dependent on the 

catalytic activity of ZAP-70. It was further demonstrated that integrin stimulations in ZAP-70 

deficient Jurkat T cells, led to Vav and LAT phosphorylation, which contrasted with TCR 

stimulations where LAT and Vav were not phosphorylated in the absence of ZAP-70. 

Furthermore, SLP-76 was phosphorylated on at least two tyrosine residues in response to 

integrin ligation, but was dispensible for Vav phosphorylation.   This is not the case for TCR 

signalling where the absence of SLP76 impairs Vav phosphorylation by inhibiting its 

recruitment and phosphorylation of LAT. In addition to these findings, it was reported that a 

non-canonical MAP kinase pathway involving a RAP1-BRAF-MEK-ERK rather than a RAS-RAF-

MEK-ERK module was utilised by integrin as seen when stimulating through the TCR. 

Furthermore, this non-canonical pathway relied only on Lck and not ZAP-70, VAV, LAT or SLP-

76 to activate ERK. This study demonstrated that whilst many signalling components are 

common to both the TCR and integrin, there appears to be differences in terms of the 

hierarchical activation signalling intermediates in response to different receptors. 



72 

 

1.21 Negative regulators of integrin signalling  

 

Integrins must be able to switch between active and inactive states in order to fulfil their 

functions. Interestingly, a mutation in mice leading to constitutively active LFA-1 phenocopies 

knocking out LFA-1, suggesting that both over activation and deficient LFA-1 T cells lack 

motility (Park, Peixoto et al. 2010). There is a distinct lack of literature describing how integrins 

inactivate, and instead most of the integrin literature has focused on activation. The few 

documented negative regulators of integrin function include: RhoH, which is thought to 

interfere with RAP1 activation (Cherry, Li et al. 2004); CDC42 which in some way interferes 

with high affinity conversion of integrin (Bolomini-Vittori, Montresor et al. 2009); CBL-B, an E3 

ubiquitin ligase that inhibits the exchange activity of C3G-CRKL on RAP1 and finally the 

protease calpain which is thought to “clip” the head domain of talin leading to destabilisation 

of conformation and subsequent release of integrin-ligand interactions (Zhang, Shao et al. 

2003). DOK proteins are also thought to be important regulators of integrin function by 

binding to phosphorylation sites on the integrin chains. These sites are phosphorylated on 

resting integrins and it is thought that the binding of DOK to these phosphorylation sites 

inhibits the recruitment of talin (Guittard, Gerard et al. 2009).  

That phosphorylation is such an important facet of integrin signalling, I hypothesise the 

existence of phosphatases antagonising the action of kinases at virtually every phase of 

integrin function. One candidate phosphatase regulating Src and Syk family kinases is PTPN22. 

Thus I hypothesise that PTPN22 may in some way regulate outside-in signalling mediated by 

Src and Syk family kinases in T cells.  
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1.22 Project Aim 

 

PTPN22/Lyp has been shown to interact with Lck, ZAP-70 and Vav, all of which form part of the 

T cell receptor signalling cascade. This project aims to understand whether or not, in addition 

to the T cell receptor, Lyp regulates Lck, ZAP-70 and Vav downstream of integrin outside-in 

signalling. I approach this question using many different experimental techniques adopting 

functional, biochemical and visual readouts. It was the intention from the outset to broaden 

the understanding of how outside-in signalling proceeds in T cells, whilst providing some 

insight into how genetic variants of Lyp leads to differences in cell behaviour with respect to 

adhesion and migration. 
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Chapter 2                                                                                                    
Materials and Methods
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2.1  Molecular biology 

2.1.1 Molecular biology reagents 

 

REAGENT WORKING 

CONCENTRATION 

SOURCE 

Electrophoresis grade 

agarose 

1-2% w/v Invitrogen UK 

Ethidium bromide 0.5µg/mL Sigma 

Restriction enzymes As indicated (or according 

to instructions) 

New England Biolabs 

DNA T4 ligase As indicated (or according 

to instructions) 

New England Biolabs 

PFU ultra II hotstart As indicated (or according 

to instructions) 

Stratagene  

LB agar 15g/L Invitrogen UK 

LB broth 25g/L Invitrogen UK 

Ampicillin  50µg/mL Sigma 

Kanamycin 40µg/mL Sigma 
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2.1.2 DNA/RNA isolation, reverse transcription, plasmid isolation and gel purification 

 

Qiagen kits were used according to the manufacturer’s protocol.  

2.1.2.1 DNA precipitation 

 

A step-wise protocol was optimised for DNA precipitation, as follows: 

1. Add 1/10 volume of sodium acetate (3 M, pH 5.2). 

2. Add 2.5–3.0 X volume (calculated after addition of sodium acetate) of at least 

95% ethanol. 

3. Incubate on ice for 15 minutes. In case of small DNA fragments or high dilutions 

overnight incubation gives best results, incubation below 0°C does not 

significantly improve efficiency. 

4. Centrifuge at > 14,000 x g for 30 minutes at room temperature or 4°C. 

5. Discard supernatant being careful not to throw out DNA pellet which may or 

may not be visible. 

6. Rinse with 70% Ethanol. 

7. Centrifuge again for 15 minutes. 

8. Discard supernatant and dissolve pellet in the desired buffer. Make sure the 

buffer comes into contact with the whole surface of the tube since a significant 

portion of DNA may be deposited on the walls of the Eppendorf instead of in 

the pellet. 
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2.1.2.2 DNA ligations 

 

The following protocol was adopted to perform DNA ligations: 

1. Gel purify amplicons from PCR reaction and cut using appropriate restriction 

enzymes, or cut insert directly from plasmid. 

2. Prepare plasmid by cutting at appropriate restriction sites. 

3. Prepare various ratios of insert to vector (1:1, 2:1, 3:1) or use the following 

equation to optimise ligations:  ng insert=ng vector X Kbp / Kbp vector. 

4. Add appropriate amount of quantified vector and insert , make up to 17µL with 

ddH2O. 

5. Add 2µL 10X ligase buffer and 1µL T4 DNA ligase. 

6. Incubate overnight at 4°C or 1h at room temperature (RT). 

7. Transform home-made super competent XL-Blue bacteria. 
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2.1.2.3 Preparation of competent cells 

 

XL-Blue super competent cells were generated using a rubidium chloride protocol, 

briefly described as follows.  

____________________________________________________________ 

TFB1                                                     Concentration                       MW                         

____________________________________________________________ 

Rubidium Chloride                                  100 mM                          120.92 

Manganese Chloride (MnCl2 H20)       50 mM                            197.91 

Potassium Acetate                                  30 mM                            98.14 

Calcium Chloride (CaCl2H2O)               10 mM                            147.02 

Glycerol                                                     15%  

____________________________________________________________ 

Adjust to pH 5.8 with dilute (0.2%; 1.0 M) acetic acid. Filter sterilise. Store at RT. Bring 

to 4°C before use 
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___________________________________________________________ 

TFB2                                                            Concentration                           MW 

____________________________________________________________ 

MOPS                                                            10 mM                                  209.3 

Rubidium Chloride                                     10 mM                                  120.92 

Calcium Chloride                                        75 mM                                  147.02 

Glycerol                                                        15% 

____________________________________________________________ 

Adjust pH to 6.5 with KOH. Filter sterilize. Store at RT. Bring to 4°C before use. 

 2X YT media 

 16 g Bacto tryptone 

 10 g Bacto yeast extract 

 5g NaCl 

Add 900 mL water and adjust to pH 7.0 with 5N NaOH. 

Bring up to 1000mL and autoclave. 
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Step 1: Bacterial Culture 

1. Plate XL-Blue onto tetracycline containing LB agar plate. 

2. Inoculate single colony into starter culture of 20 mL SOC media in 125mL 

Erlenmyer flask 

3. Incubate overnight in 30°C or in a 37°C shaker. 

4. Inoculate growth culture 1:100 with starter culture. Put in 37°C shaker. 

5. Grow until OD600 reaches 0.4-0.6 (~5h) 

6. After this point, keep everything cold. Work in cold room and pre-chill all 

supplies. 

Step 2: Priming competent bacteria using TFBI and TFBII 

1. Transfer bacteria to culture flasks and spin down. 5000 x g, 4°C, 10 mins. 

2. Pour out supernatant. 

3. Gently rinse flasks and pellet with small aliquot of TFB1 to remove all traces of 

media. 

4. Add 100 mL TFB1 per 250 mL of growth culture and resuspend using 10ml 

serological pipette. 

5. Incubate in wet ice for 5 minutes. 

6. Spin down 5000 x g, at 4°C for 5 mins. 

7. Remove all supernatant. 

8. Add 10 mL TFB2 per 250 mL growth culture and gently resuspend by pipette. 

9. Incubate on ice 15-60 mins. 
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Step 3: Snap freezing bacteria  

Dispense 50 µl into pre-chilled 1.5 mL microcentrifuge tubes and snap freeze in Liquid 

nitrogen. 

Store at -80°C  
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1.3 Site directed mutagenesis 

 

A pEF5HA-Lyp plasmid encoding wild type Lyp was kindly donated by the Bottini Lab 

(Figure 1). This plasmid was then sequenced to confirm its identity and used as a 

backbone to create Lyp mutants that had previously been reported in the literature . 

Primers were designed to complement the flanking regions of base pairs that were to 

be mutated, but the actual nucleotides that were mutated were changed within the 

primer sequence (Table 1). The middle of the primer was thus “uncomplimentary” 

containing a base pair (or base pairs) that corresponded to the mutant that was being 

generated. Following the engineering of the primers the PCR mixes were all run under 

the same programme. 

Make PCR mix: final volume 20uL 

 0.5+0.5 µL 10uM primers 

 10ng plasmid DNA 

 1uL 10mM dNTPs 

 2uL of 10X PFU buffer 

 0.5ul of Pfu (a high fidelity polymerase!) reliably clones up to 9kB plasmids 

 14.5 µL DDH20 
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PCR programme: 

 95°C for 2 mins 

 95°C 30sec 

 55°C 1 min  

 68°C 15 mins  

 25 cycles 

 Add 1µL of DPN1 and incubate for 30 mins at 37°C 

Importantly, I used a high fidelity polymerase called PFU that has the ability to 

“proofread” plasmids, copying up to 9kB of plasmid with 100% fidelity in most cases. In 

the final step, DPN1 was used to cleave any template containing methylated DNA that 

will have been bacterially replicated, rather than through amplification of DNA via a 

PCR, leaving only plasmids containing the mutated sites, which were then used to 

transform XL-BLUE competent cells generated in the laboratory. Transformed bacteria 

were then plated and single colonies were first screened by an in house PCR reaction 

to confirm transformation and the correct size amplicon within the right region. Cycle 

sequence technology (dideoxy chain termination, machine ID ABI373OXL) was used to 

confirm that the chosen plasmid contained no other mutations.  
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Figure 1: Self annotated plasmid map of the pEF5HA plasmid. The pEF5HA plasmid 

was used by the Bottini group to express Lyp. The plasmid included a zeocin 

cassette which can be used to create stably expressing Lyp transfectants. Ampicillin 

was used to select for positive colonies. Lyp was cloned into the multiple cloning 

site (XBA). The HA tag was ligated to the N terminal of Lyp in the catalytic domain.  
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Table 1: Site Directed Mutagenesis. Primers used for site directed mutagenesis 

spanned the region of interest in the plasmid sequence and contained appropriate 

changes in base pairs leading to changes in protein sequence.
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1.4 Preparation of Lyp-GFP fusion constructs 

 

Lyp-GFP fusion proteins were generated by sub-cloning the Lyp insert from the pEF5HA 

plasmid into a pCS2PGFPx (kindly donated by Dr. Marc Dionne). The GFP was tagged to 

the C-terminus of the protein. XHO1 and XBA1 were used to cut the eGFP at the 

multiple cloning site and an insert sub-cloned from the pEF5HA-Lyp containing plasmid 

was amplified using primers with XHO1 and SPE1 overhangs. Importantly, the stop 

signal from the original plasmid was deleted, allowing the sequence to be read 

through, ultimately allowing the GFP to be expressed downstream of the Lyp protein 

sequence. The Lyp amplicon was then cut with Xho1 and Spe1 and ligated into the 

Xoh1 and Xba1 sites (Spe1 can ligate into Xba1). Bacteria were then transformed, 

colonies were picked and screened by PCR, and verified by dideoxy chain termination 

sequencing. 
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Strategy 

This is the multiple cloning site from the eGFP vector. 

 

   

CGATTCGAATTCAAGGCCTCTCGAGCCTCTAGACATGGTGAGCAAGGGCGAGGAGCTG 

 

Forward sequence of PTPN22 sequence in pEF5HA vector (current vector) 

5’...ATGGGTACCTATCCTTACGACGTTCCAGACTATGCAGGATCC...3’ 

Add in a Xho1 restriction site:  

 

5'... 
   

C T C G A G 
   

... 3' 

3'... 
   

G A G C T C 
   

... 5'  

 

 

XHO-1 XBA-1 
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Forward primer: ataaatcCTCGAGATGGGTACCTATCCTTACGA 

Backward sequence of PTPN22 in pEF5HA 

3’...GACCAAGGAATCCACCACCAACTTGGAATATTTAA...5’ 

Add in Spe1 restriction site 

5'... 
   

A C T A G T 
   

... 3' 

3'... 
   

T G A T C A 
   

... 5' 

 

 

 

 
  

 

 

 

Reverse backward:  

TTAAATATTCCAAGTTGGTGGTGGATTCCTTGGTC 

 

DELETE THE STOP CODON 
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2.1.5 Restriction Fragment Length Polymorphism (RFLP) for PTPN22 genotyping 

 

2.1.5.1 Polymerase Chain Reaction (PCR) 

 

Primers specific for genotyping the PTPN22 single nucleotide polymorphism rs2476601 

(Forward; CAACTGCTCCAAGGATAGATG, Reverse; CTCAAGGCTCACACATCAGC) were 

resuspended in RNase free H20 (Sigma), and aliquots stored at -80°C minimising 

‘freeze/thaw’ cycles. Primers were firstly optimised for annealing temperature and 

MgCl2 concentration, a cofactor for the Taq polymerase enzyme A Taq PCR reaction 

was therefore performed using varied concentrations of MgCl2 on a temperature 

gradient within a PCR machine. The below PCR mix was used with either 0.8 µl, 1.2 µl 

or 1.8 µl of 25mM MgCl2 to a concentration of 1 mM, 2 mM or 3 mM and all were 

assessed in parallel with an annealing temperature gradient set on the Thermocycler 

(BioRad) between 55˚C-65˚C. PCR products 10 μL/well (3 μL of loading dye was added 

to each 15 μL PCR reaction) were the run on a 2% agarose gel (3g of agarose was 

dissolved in 150 mL Tris-Borate-EDTA (TBE)), and stained with 1 μL ethidium bromide 

which intercalates with nucleic acids. A 100 base pair ladder (New England Biolabs) 

was added to the gel in order to assess that the PCR product is the correct length. The 

voltage was then turned to 100 V and the gel left to run for ~1 hour. The gel was the 

scored following UV visualisation demonstrated that 1 μM MgCl2 55°C were optimal 

conditions for PTPN22 genotyping.   
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Optimised PCR reaction: 

 DNA (50 ng/μL) 

 0.075 μL Forward Primer (100mM) 

 0.075 μL Reverse Primer (100mM) 

 1.5 μL 10 x PCR buffer (500 mM KCl, 100 mM Tris-HCl pH 8.3) 

 0.8 μL MgCl2 (25mM) 

 0.375 μL dNTPs (8mM) 

 0.08 μL AmpliTaq Gold DNA Polymerase (Applied Biosystems) 

 H2O to make up to 15 μL 

 

Optimised Thermocycling conditions: 

  96°C for 14 minutes (initial denaturation) 

 96°C for 30 seconds (denaturation) 

 55°C for 30 seconds (annealing)                 x 35 cycles 

 72°C for 30 seconds (extension) 

 72°C  5 minutes final extension 
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2.1.5.2 DNA Genotyping 

 

Genomic DNA from donors was genotyped for SNP in rs2476601, which was achieved 

by RFLP. Genomic DNA from each donor was isolated during DNA extraction described 

above and was used to genotype for single nucleotide polymorphism rs2476601. PCR 

was performed for each genomic DNA sample in a total reaction volume of 15 µl as 

above. For the restriction digests 10 µl of PCR product were digested for 3 hours at 

37°C with XcmI restriction enzyme with 10x NEB2 enzyme buffer and H2O. Digested 

products were then electrophoresed, 10 μL/well (3 μL of loading dye was added to 

each 15 μL PCR reaction) through a 2% agarose gel. The gel was then scored following 

UV visualisation. The enzyme cuts at the T allele, when visualised uncut bands were of 

184 base pairs in length and cut bands were 141bp/43bp long. 



92 

 

2.2.  Cell culture 

 

All cells were cultured at 37°C in a 5% CO2 humidified incubator. All cell culture 

reagents were purchased from Invitrogen. 

Primary human/mouse T cell culture 

medium 

Iscove's Modified Dulbecco's Media 

(IMDM)  containing: 

10% v/v heat inactive FCS 

1X Pen/Strep 

20mM HEPES 

(for mouse culture 50uM 2-ME was 

added) 

Cell line culture Roswell Park Memorial Institute medium 

(RPMI) containing: 

10% v/v FCS 

1X Pen/Strep 

 

2.2.1 PBMC isolation and T cell culturing 

 

Blood was drawn from donors or washed from a cone (NHS blood services) and diluted 

1:2 with HBSS. Blood was then layered onto lymphoprep before being spun at 560g for 

twenty minutes brake off. An interface of PBMCs was then carefully removed and 

washed 2X in PBS. Cells were then resuspended in complete medium containing 

1µg/mL phytohaemagglutinin  (Thermofisher) for 48-72 hours before being washed 

and resuspended in 20ng/mL IL-2 (Proleukin, Novartis) after which cells were cultured 
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for a further 10 days.  T cells were used for functional and biochemical studies 

between days 10 and 14 of culture. 

2.2.2 Isolation of human T cells by negative selection 

 

T cells were negatively selected using MACS columns supplied by Miltenyi according to 

manufacturers protocol. Subsequently, T cells were stimulated with anti-CD3 clone 

OKT3 from BDBioscience to investigate Lyp expression in untouched versus stimulated 

primary human T cells. 

2.2.3 Isolation and culture of murine T cells from lymphoid organs 

 

Excised spleens and lymph nodes were passed through a 70µm nylon strainer using a 

sterile syringe plunger. The strained cells were then centrifuged at 270g for 10 mins, 

washed 2X in serum free IMDM and then resuspended at 5x106 cells/mL in 1µg/mL 

Concanavalin A (ThermoFisher). After 3 days, cells were washed in full medium and 

resuspended in 20ng/mL IL-2 (Proleukin, Novartis) and cultured for a further two days 

before being used for functional and biochemical experiments (day 7-11).  

2.2.4 Transfection of cell lines 

 

For transfections 1-2X107 cells were used per transfection. 

1. Wash cells in PBS for 1300 at RT for 5 mins. 

2. Resuspend in Optimem (37°C) 

3. Add vector DNA 

4. Make sure machine is set at exponential decay V=270 capacitance=950  

5. Transfer cells to cuvette. 

6. Pulse. 
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7. Resuspend cells in RPMI (using pipette to ensure you don’t take up dead cells). 

 

Transfection of primary T blast cells using nucleofection (AMAXA) 

1. Wash 1X107 T cells in PBS (following 2 days of stimulation) 

2. Resuspend in 100µL transfection buffer with DNA. 

3. Set programme (optimised for 2 programmes: T-023 (better viability but less 

efficient transfection) and T020 (less viability but more efficient transfection)) 

4. Transfer cell into cuvette, pulse, stand on ice for 2 mins and then carefully drop 

transfected cells into pre-equilibrated (24h in incubator) medium containing no 

IL-2 

5. Check transfection efficiencies/knockdowns by blot or FACS 24 and 48 hours 

later 
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2.3. Biochemistry 

 

2.3.1 Western Blotting 

 

Cell lysates were prepared by either directly lysing samples in 95°C reducing sample 

buffer or by using a specific lysis buffer that could subsequently be used in biochemical 

assays such as immunoprecipitation or co-immunoprecipitation.   

2.3.2 Preparing cell lysates in sample buffer 

 

Cells were washed once in ice cold HBSS containing 20mM Hepes and the lysed directly 

in boiling sample buffer (for most applications around 1 cell/1µL of sample buffer). 

Sample buffer was prepared as follows: 

2X sample buffer 

0.5 M Tris-HCl, pH 6.8 2.5 ml 

Glycerol  2 ml 

10% (w/v) SDS 4 ml 

0.1% (w/v) Bromophenol Blue  0.5 ml  

1M DTT 1 ml 
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2.3.3 Preparing cell lysates in cell lysis buffers 

 

The following cell lysis buffers were used. 

Standard lysis buffer recipe: 

20mM Tris-HCl pH6.8 

130-150mM NaCl 

5mM EDTA 

0.1-1% Triton 

1X Complete protease inhibitor cocktail (1 tablet/7mL lysis buffer) 

1X Complete phosphatase inhibitor cocktail (1 tablet/7mL lysis buffer) 

 

For raft dissociation lauryl maltoside or n-octyl-beta-glucopyranoside was added at 

between 40-60mM. In some instances 1% Triton was replaced with 0.5%-1% lauryl 

maltoside. 

 

Cells were lysed in ice cold lysis buffer following an experimental procedure (detailed 

below or above) and were placed on ice for 20mins. The lysates were then cleared by 

microcentrifugation for 20 mins @ 30,000g. These lysates were then diluted in 2X 

sample buffer, heated at 75°C for 15 mins and used for whole cell lysate analysis. 

Alternatively, the lysates were used for immunoprecipitation or co-

immunoprecipitation experiments.  
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2.3.4 Immunoprecipitation and Co-immunoprecipitation 

 

Cell lysates, prepared with lysis buffers that allow subsequent biochemical 

investigation by way of capturing and then concentrating specific proteins from a 

whole cell lysate using specific antibodies, were performed as follows. 

1. Cell lysates were prepared using an appropriate lysis buffer that was 

kept at 4°C at all times (working in cold room as necessary; particularly 

important for co-immunoprecipitation experiments). 

2. 1-2µg of specific or isotype antibody/normal serum was added to 

lysates that were at a concentration of 1µg/µL. 

3. Incubate at 4°C overnight. 

4. Add protein A or protein G magnetic beads to lysates (match Fc binding 

protein with species of antibody). 

5. Incubate 1 hour at 4°C. 

6. Wash 3-6X in ice cold PBS or lysis buffer (0.1-1% Triton) stoked with 

protease and phosphatase inhibitors. 

7. Transfer to new 1.5mL eppendorf, elute with 20-30µL of sample buffer. 

8. Proceed to Western Blot. 
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2.3.5 Signalling Experiments 

 

To investigate the biochemical consequence of integrin ligation a protocol that most 

closely resembles that of an in vivo situation was developed. That is, the migration of T 

cells on a 2D surface (endothelium), albeit without flow. This protocol facilitated the 

migration of cells on a surface coated with an integrin ligand, rather than relying on 

receptor cross-linking experiments using antibodies that can lead to abnormalities in 

the amplitude and the duration of the signal. In this system, cells polarise and visually 

resemble a cell migrating in vivo, exhibiting a clear leading and lagging edge. In 

addition, this protocol permitted the imaging of cells at high resolution and 

complementary experiments designed to define the localisation and co-localisation of 

signalling intermediates (see imaging section). 

3.5.1 Plate bound integrin signalling assay 

 

1) A 32mm round borosilicate glass coverslip was placed into a 6 well dish. 

2) 250µL of ICAM-Fc (4µg/mL) VCAM-Fc (4µg/mL) or Fibronectin (10µg/mL) was 

carefully pipetted on top of the coverslip and another coverslip was then 

placed on top to create a coverslip “sandwich”. As a control, coverslips were 

sandwiched with 0.01% poly-L-lysine. 

3) After incubating overnight at 4°C the coverslip sandwich was disassembled and 

the top coverslip was placed in the well below. These coverslips were then 

blocked with 5% BSA. 

4) Coverslips were then washed 3X in HBSS HEPES. 
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5) 2X107 cells in 1mL were then pipetted carefully onto the coverslips and placed 

into the incubator for indicated times. 

6) After removing excess unbound cells, bounds cells were then lysed on the plate 

and transferred into eppendorfs after incubation on ice for 20 mins, cleared 

and used for total lysate analysis or immunoprecipitation studies as described 

above 

2.3.6 SDS-PAGE, protein transfer and probing with antibodies 

 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) allows the 

separation of proteins by their weight and mobility. SDS coats and denatures proteins 

such that they are evenly charged and unfolded, which in most cases allows for 

separation based on protein weight alone. In some instances however, particularly 

when proteins contain post translational modifications, largescale shifts in mobility 

that do not necessarily correspond to changes in molecular weight can be observed.  

Lysates were combined with 2X reducing sample buffer and heated to 75°C to 

denature proteins. Proteins were resolved on 4-12% polyacrylamide gels at 120V for 2 

hours in MES running buffer. 5µl of Precision Plus protein ladder was run alongside 

samples to establish the molecular weights of the bands detected. 

SDS-PAGE separated proteins were then transferred to polyvinylidene fluoride (PVDF) 

membranes that were soaked in methanol and then preequilibriated in transfer buffer 

before the transfer was carried out by electroblotting at 30V. 

Following transfer of proteins onto PVDF, the membranes were blocked with 5% BSA 

TBST for one hour and then incubated overnight at 4°C with primary antibody. The 

membrane was then washed 2X in TBST and then incubated with secondary antibody 
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conjugated to horseradish peroxidase which targeted the primary antibody for 30 

minutes. Membranes were then washed 3X for 15 minutes in TBST and proteins of 

interest were visualised with enhanced chemiluminescence (ECL) solution (GE 

Healthcare, UK).  Bands of interest were detected in a BioRad ChemiDoc, allowing 

instant visualisation via chemiluminescence. 

 

2.4. IMAGING 

 

2.4.1 Cell fixation using pH shift method 

 

The pH shift/formaldehyde method was first used for fixing rat brain, in which it 

showed excellent preservation of neuronal cells and intracellular compartments 

(Berod et al., 1981). This technique applies the formaldehyde to the tissue twice: once 

at near physiological pH to halt metabolism, and then again at high pH, where the 

crosslinking action of the fixative is more effective. 

1)Wash cells and resuspend into 1x106/ml  HBSS/HEPES  

2)Add 300µl of cells on precoated coverslips (acid wash as necessary) in 24well plate 

and incubate cells for desired time. 

3)Fix cells in 3% paraformaldehyde (PFA) in 80mM kPIPES (Sigma) pH 6.8 5 mM EGTA 

2mM MgCl2 for 5 min  

4)Washed with PBS X1 

5)Fix with 3% PFA in 100mM NaB4O2 (BORAX) pH11 for 10 min  
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6)Wash with PBS X1 

7)Permeabilise with 0.1 % TritonX100 in PBS for 5 min 4C 

8)Wash PBS X1 

9)Block autofluoresence with  1 mg/ml of NaBH4 for 15 min at room temperature. 

10)Wash with PBS 

11)Block with 10 % horse serum for 30-60 min. Adjust serum depending on secondary 

used…always try and use serum derived from the species in which your secondary was 

raised in.  

12)Wash with PBS X1 

13)Incubate in primary ab in 0.1%BSA in PBS overnight/ or 30-60 min room 

temperature depending on Ab.  

14)Wash with PBS 

15)Secondary ab normally 20 min RT (in dark) 

16)Up to 8 small volume washes as necessary 

 

2.4.2 Timelapse microscopy 

 

8 well glass chambers (Ibidi) were coated with 3μg/mL ICAM-1Fc overnight at 4C, 

washed 3X in PBS after which cells were directly plated into prewarmed glass wells. 

Imaging was started 10 minutes after plating of cells. All imaging was performed in 

HBSS/HEPES at 37C, 5% CO2 in a Nikon BioStation IM-Q for 20 mins. Cell tracking was 
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performed using Image J plugin Celltracker. All plots were generated using Ibidi 

Chemotaxis tool. 

 

2.4.3 Confocal microscopy 

 

An appropriate size glass coverslip was coated overnight with 4ug/mL of ICAM-1 or 

0.01% PLL in HBSS. The coverslips were then blocked with 5% BSA PBS for 1 hour at 

room temperature and then washed 3X in HBSS 20mM HEPES of which cells were 

plated onto coverslips and brought to 37°C for 30 mins and then fixed using pH-shift 

described above. All primary antibodies were incubated overnight at 4C and then 

washed 2X followed by incubation with an appropriate secondary antibody. Confocal 

imaging was performed using a Nikon A1R+ confocal microscope. For confocal 

microscopy a Nikon A1R inverted laser scanning microscope was used together with a 

X63 1.4NA oil-immersion objective. Laser illumination was at 402, 488, 531 and 650nm 

and emission was at 421, 519, 554 and 668nm respectively. Pixel dwell time was 1.2 

ms and a line averaging of 4 was used. 

2.4.4 STORM-TIRF imaging 

 

Ibidi 8 well chambers were coated overnight with 4ug/mL of ICAM-1 or 0.01% PLL in 

HBSS. The coverslips were then blocked with 5% BSA PBS for 1 hour at room 

temperature and then washed 3X in HBSS 20mM HEPES of which cells were plated 

onto coverslips and brought to 37C for 30 mins and then fixed using pH-shift described 

above. All primary antibodies were incubated overnight at 4C and then washed 2X 
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followed by incubation with an AF647 conjugated secondary antibody. Imaging was 

performed using a standard oxygen scavenging buffer. Images were acquired with a 

Nikon STORM system. Analysis was performed using Dr D Owens cluster algorithm or 

Ripleys K function(Williamson, Owen et al. 2011). dSTORM imaging was performed on 

a Nikon N-STORM microscope using a 100X 1.46N.A. oil immersion TIRF objective. Cells 

were imaged under TIRF illumination with a 647 nm laser with photo-activation at 405 

nm. Fluorescence was collected on an Andor iXon EM-CCD camera. Acquisition time 

was between 5 and 15 minutes and an integration time of 10 ms was used. Molecular 

coordinates were calculated by Nikon NIS N-STORM software using an appropriate 

threshold (mouse anti-Lyp=3000, goat anti-Lyp=4000 and mouse anti-LFA-1=3000).   

 

 

2.4.5 STORM oxygen scavenging buffer 

 

The oxygen scavenging buffer was made up of four individual components that were mixed 

just prior to use. These components were: 1)base buffer,2) glucose oxidase,3) horseradish 

peroxidase and4)  

1) Base buffer: 100mL of base buffer was made up and stored at 4°C.  10mL of 10X PBS 

was added to 82.5mL of DDH2O. 2.5mL of HEPES (1M), 1.25mL glucose (2M) and 

3.75mL room temperature glycerol was then added to the diluted PBS giving a final 

concentration of 1X PBS, 25mM HEPES, 25mM glucose and 5% glycerol solution. The 

base buffer was then adjusted to pH 8.00 and filter sterilised (0.22µm).  



104 

 

2) Glucose oxidase: A stock solution of 10mg/mL glucose oxidase in 50nM sodium acetate 

pH 5.1 was made up and frozen immediately in aliquots of 10µl which were thawed 

just prior to use. 

3) Horseradish peroxidase: A stock solution of 10mg/ml of horseradish peroxidase was 

made up in 0.1M potassium phosphate buffer pH 6.0 and frozen immediately in 5µl 

aliquots which were thawed just prior to use. 

4)  Cysteamine: A fresh stock of 1M cysteamine was made up just prior to use. The fresh 

stock was then 0.22µm filtered.  

Just prior to imaging 500µl base buffer, 2.5µl glucose oxidase, 1.25µl horseradish peroxidase 

and 37.5µl cysteamine were added together yielding a final concentration of 50µg/ml glucose 

oxidase, 25µg/ml horseradish peroxidase and 75mM cysteamine in base buffer. This imaging 

buffer was replaced every 30mins to avoid complications arising from pH changes. 

 

2.5. Flow cytometry 

2.5.1 Staining protocol: 

1) Harvest cells 

2) Put in eppendorf and quick spin 

3) Wash cells 1X with FACS buffer (500ul) 

4) Resuspend in 70uL FACS buffer 

5) Wash 1X with FACS buffer 

6) Surface stain with primary antibodies in FACS buffer 

7) Fix in 3% PFA for 15 mins (4°C) centrifuge 

8) Wash 1X with FACS buffer 

9) Wash 1X with saponin buffer (save unstained cells for acquiring) 
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10) Add antibody+saponin buffer to cells 

11) Incubate for 30 mins at 4°C in dark 

12) Wash1X with saponin buffer 

13) Was 1X with FACs buffer 

14) Resuspend in 200µL FACS buffer 

 

2.5.2 Lyp staining: 

1) Wash cells in FACs buffer 

2) Fix in 2% PFA for 15 mins 

3) Wash with FACS buffer 

4) Wash 1X with saponin 

5) Make up Lyp polyclonal antibody 1:50 in Saponin buffer, add to cells and 

incubate for 30 mins on ice. 

6) Wash X1 with saponin 

7) Add secondary 1:100 in 200µl of saponin buffer for 10 mins, wash 1X in saponin 

buffer and then resuspend in 200µl FACS buffer 

 

2.5.3 FACS sorting 

 

Lyp-GFP fusion constructs were transfected by AMAXA into primary T blasts and then 

sorted on GFP. Live cells expressing Lyp-GFP were sorted using a FACSAria (see results). 
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2.6. Antibodies and Reagents 

 

The following primary antibodies were used in this study: goat/mouse anti-Lyp (RnD), 

mouse anti-LFA-1/mAb38 (Calbiochem), rabbit anti-Csk, mouse anti-CD3ξ,  mouse anti-

Lck, rabbit anti-ZAP-70, rabbit anti-Vav (Santa Cruz), rabbit anti-Lck, rabbit anti-pY418 

Src, mouse anti-pY505 Lck, Rabbit anti-non-pY418 Src, rabbit anti-pYERK1/2, rabbit 

anti-ERK, rabbit anti-β-actin, rabbit anti-β-tubulin, rabbit anti-pY493ZAP-70, rabbit 

anti-pY319ZAP-70 (Cell Signalling Technology, through NEB UK), anti-ZAP-70, anti-

CD11a-PE  (BD bioscience), mouse anti-Csk, rabbit anti-pY174 Vav (Abcam). Examples 

of full blots for immunoprecipitations can be found in the appendix. 

The following secondaries were used in this study: anti-mouse HRP (Amersham), anti-

goat/rabbit HRP (DAKO), anti-light chain specific mouse/rabbit (Jackson laboratory), 

anti-mouse/rabbit goat alexa fluor conjugated antibodies (Invitrogen). 
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Chapter 3                                                                                                                                                
The Lyp-Csk-PAG complex regulates Lck 

phosphorylation downstream of LFA-1 

engagement 
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3.1 Lyp is up regulated in activated T cells 

 

T cells can express proteins at different levels depending on their activation and 

differentiation status and environmental pressures. Understanding the expression of 

Lyp in resting/unstimulated versus activated T cells could provide important clues as to 

when, during the T cell life cycle, Lyp may function to regulate intracellular signalling 

pathways.  The goal of these initial experiments was to examine the expression of Lyp 

in primary human T cells before and after stimulation, using two complementary 

experimental approaches – immunoblotting and flow cytometry. 

T cells were purified by negative selection using magnetic bead separation (MACS pan 

T cell kit-II).  Staining of untouched cells passing through the MACS column with anti-

cells were of a CD3 lineage (Figure 3.1A).  Purified T cells were then stimulated either 

through the T cell receptor with plate-bound anti-CD3 together with anti-CD28 co-

stimulation, or activated by cross-linking lectin family receptors with a 

phytohaemagluttinin that binds to and clusters glycosylated sugar moieties on the 

extracellular domain of transmembrane proteins.  Cultures of activated T cells were 

propagated by the addition of IL-2 for up to 10 days.  Lyp expression was then 

determined after the indicated periods of time by western blotting and flow 

cytometry.  A fraction of the CD3+ population was lysed immediately for western blot 

analysis using anti-Lyp antibodies and anti- -actin antibodies as a loading control, or 

fixed and permeabilised, then stained with different dilutions of a goat anti-Lyp 

antibody and an anti-goat secondary antibody prior to FACS analysis. As a control, cells 

were stained with normal goat serum at equivalent dilutions to the primary antibody.   
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Representative results for immunoblotting of anti-CD3/CD28 stimulated T cells, and for 

flow cytometry of PHA stimulated T cells are shown in Figure 3.1B.  Immunoblotting 

demonstrated up -actin, and Lyp 

expression remained stable over periods of time for up to 144hr, when compared to 

pre-stimulation levels (Figure 3.1B).  Flow cytometric analysis of fixed and 

permeabilised T cells using serial dilutions of anti-Lyp antibody also confirmed up 

regulation of Lyp in PHA blasts cultured for up to 10 days (Figure 3.1C).   

These results indicated that in activated T cells or “T blasts” Lyp is up regulated when 

compared to unstimulated T cells.  Accordingly, activated T cells were used in all 

subsequent experiments. 
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Figure 3.1: Lyp is up regulated in activated T cells A) Purity of negatively selected T 

cells was confirmed with an anti-CD3 stain followed by FACS analysis; B) Purified T cells 

were stimulated with anti-CD3/28 (bead to cell ratio of 1:10) for various time points and 
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Lyp expression was evaluated by Western blotting, anti-β actin antibody was used as a 

loading control;  

C) Purified T cells were cultured in PHA (1µg/mL) for 48 hours and then in IL-2 

(Proleukin 20ng/mL) until day 10 when Lyp expression was assayed by FACS. 

Representative of at least 4 independent experiments 
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3.2 Lyp localises to the leading and lagging edge of migrating T cells. 

 

When activated T cells migrate they undergo morphological changes as well as 

subcellular reorganisation of compartments to facilitate locomotion.  As a first step 

towards evaluating the possibility that a signalling intermediate may function as a 

regulator of T cell migration it would be important to determine its subcellular location 

and its ability to associate with, or avoid, other signalling intermediates upon 

engagement of cell surface LFA-1 with its integrin ligand ICAM-1.  To this end, the 

expression and subcellular localisation of Lyp in T cell blasts was investigated by 

confocal microscopy.  Cells were stained with a goat polyclonal or mouse monoclonal 

anti-Lyp antibody following immobilisation of T cells on poly-L-lysine or ICAM-1. 

In cells plated onto poly-L-lysine different patterns of staining were observed, with 

some cells displaying membrane proximal staining only, whilst others demonstrated 

both membrane proximal and cytoplasmic staining (Figure 3.2A).  As expected, when T 

cells attach to immobilised ICAM-1, they become polarised, displaying a clear leading 

edge, in the form of a spread out structure at the front of the cell called a 

lamellopodium, and a “tail” at the back of the cell called the uropod. This asymmetric 

configuration of the cell leads to the assembly of specific cellular components within 

certain compartments in the cell, allowing for protrusive, contractive and adhesive 

force generation.   Under these conditions, Lyp clearly localises to the front of the cells.  

Some staining was also consistently observed in the uropod (Figure 3.2B). The images 

shown in Figure 3.2 are confocal images acquired at the coverslip level, because when 

stacked, the staining in the uropod became less clear. In Figure 3.2C, a stacked image 

of confocal slices clearly demonstrates leading edge localisation, with quantitation 
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indicating that the lagging edge of the cell also stained positive for Lyp.  Interestingly, 

very little Lyp could be detected within the mid-cell region. In some cells, the staining 

of Lyp appeared diffuse, suggesting that Lyp localisation may be dynamic and not 

always at the leading edge (see Figure 3.2C lower left panel). The staining patterns of 

Lyp were verified using two different antibodies derived from different host species 

(Figure 3.2D). Specificity of staining was verified using a non-specific isotype control 

antibody, which demonstrated no specific staining using exactly the same microscope 

acquisition settings as those used to acquire images with the specific Lyp antibody 

(data not shown). 

Together these results provided the very first indication that Lyp may regulate 

pathways involved in T cell migration based on the fact that Lyp polarises to the 

leading and lagging edge of migrating T cells, and that this localisation may be dynamic 

in nature. This pattern of compartmentalisation might indicate that Lyp operates at the 

front and the back of a migrating T cell. Conversely, sequestration of Lyp from the mid 

cell zone, might serve to limit the interactions of Lyp with signalling intermediates in 

the mid cell region.  
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Figure 3.2 :Lyp localises to the leading edge of migrating T cells A+B) T cells that had 

been stimulated with PHA (1µg/mL) for 48 hours and then cultured in IL-2 (Proleukin-

20ng/mL) for a further 8 days were immobilised on PLL (0.01%) (A) or were allowed to 

migrate on ICAM-1 (4µg/mL) (B) and were then pH-shift fixed and stained with an anti-

Lyp antibody followed by an AF488 secondary. C) Histogram quantification of 

fluorescent intensity in leading versus lagging edge of migrating T cells on ICAM-1 and 

stained with anti-Lyp and an AF488 secondary (X axis=length scale of cell, with leading 



115 

 

and lagging edge denoted and Y axis=fluorescent intensity units D) Migrating T blasts 

were co-stained with goat and mouse anti-Lyp and then incubated with mouse 

secondary AF488 and goat secondary AF647. All data representative of at least 5 

independent experiments. Scale bar=10µm All images were acquired using scanning 

confocal microscope 
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3.3 Lyp, Csk and PAG colocalise at the leading and lagging edge of migrating T cells 

 

Lyp is localised at the membrane of T cells and one possible explanation for this 

localisation may be the interaction with other signalling intermediates that serve to 

target Lyp to the membrane. Csk is a binding partner of Lyp, and Csk has been shown 

to localise to the plasma membrane by interacting with a highly phosphorylatable 

transmembrane scaffolding protein, Protein Associated with GEMS (PAG). 

Phosphorylated PAG retains Csk at the membrane through the interactions of an SH2 

domain of Csk and a phosphorylated tyrosine residue (pY317) on PAG. This PAG-Csk 

interaction is thought to provide tonic inhibitory activity on Src family kinases by 

phosphorylating an inhibitory tyrosine residue in the C-terminus of Src family kinase 

members such as Lck and Fyn. Interestingly, it has been reported in T cells that Fyn is 

responsible for phosphorylating PAG and is able to avoid inactivation by Csk when 

docked onto PAG. According to this model, when receptor signalling is initiated, Fyn 

dissociates from PAG, PAG is then dephosphorylated, possibly by CD45, releasing Csk, 

allowing for local membrane proximal raft associated activation of Src, which in T cells 

might include Lck and Fyn.  One hypothesis is that Lyp may localise to the membrane 

via the PAG-Csk complex.  

To test this hypothesis, activated primary human T cells were stained with specific 

antibodies directed at Lyp, Csk and PAG after immobilisation on poly-L-lysine or ICAM-

1 (Figure 3.3).  Confocal images of cells immobilised on poly-L-lysine suggested 

Lyp/Csk/PAG colocalisation at the membrane. In migrating T cells, Lyp and Csk 

polarised to the front and back of the cell, whilst the staining pattern of PAG was more 

diffuse with expression at both leading and lagging edge, where it co-localises with Csk 
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and Lyp. To control for these experiments, a series of experiments were undertaken 

where species specific secondary antibodies were used in combination with co-stains 

of the two antibodies that could not be targeted. For example, goat anti-Lyp and rabbit 

anti-Csk stains were probed with anti-mouse antibodies to check for species cross 

reactivity, or mouse anti-PAG and rabbit anti-Csk stained slides were probed with anti-

goat antibodies (Figure 3B). In this way I had more confidence that the staining 

patterns observed were unlikely to be due to cross reactivity between the secondary 

antibodies. In addition, single stains were performed to verify staining patterns, with 

secondary antibodies alone as a control (data not shown).  

These experiments indicated that Lyp, Csk and PAG appear to colocalise in non-

migrating and migrating cells, with colocalisation being much more localised to the 

leading and lagging edge in migrating cells. Interestingly, in T cells immobilised on poly-

L-lysine the level of colocalisation between Csk, Lyp and PAG appeared to be higher.  

While these data suggest that Lyp, Csk and PAG are in close proximity to one another, 

as expected, further biochemical evidence would be required to confirm whether 

these signalling intermediates are physically interacting, and the context in which 

these interactions were occurring.  
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Figure 3.3: Lyp localises to the leading edge in migrating T cells.  T cells that had been 

stimulated with PHA (1µg/mL) for 48 hours and then cultured in IL-2 (Proleukin-

20ng/mL) for a further 8-10 days were immobilised on PLL (0.01%) or were allowed to 

migrate on ICAM-1 (4µg/mL) for 30 mins, were pH-Shift fixed, stained with mouse anti-

PAG, rabbit anti-Csk and goat anti-Lyp, as indicated in top right hand corner of each 

panel, and then stained with anti-mouse AF647, anti-rabbit AF488 and anti-goat 546 

prior to imaging by scanning confocal microscopy. Representative of 3 independent 

experiments Scale bar=10µm
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3.4 Dynamics of the Lyp-Csk-PAG complex in T blasts migrating on ICAM-1 

 

To test how the interaction of Lyp, Csk and PAG might change during integrin 

signalling, co-immunoprecipitation experiments were performed on migrating cells or 

cells immobilised on poly-L-lysine.  

3.4.1 Lyp associates with Csk when T cells migrate on ICAM-1 

 

The Lyp-Csk interaction is well documented and this interaction is at least partially 

dependent on the interaction of the first polyproline motif (PLPXR) in the C terminus of 

Lyp and an SH3 domain on Csk. The functional reason for this interaction remains 

obscure, and the interaction of Lyp with Csk during a signalling event is controversial. 

Some signalling studies suggest an inducible association of these two signalling 

intermediates following receptor ligation, or indeed dissociation, following receptor 

ligation, despite a common signalling pathway being investigated (the TCR). Here I 

investigated the relative stoichiometric changes in the Lyp-Csk complex when T cells 

migrate on ICAM-1.  

Co-immunoprecipitation experiments demonstrated that Lyp and Csk clearly complex 

when T cells migrate (Figure 3.4A, B and C), as indicated by increased levels of Csk in 

Lyp immunoprecipitates from migrating versus non-migrating cells using different Lyp 

antibodies raised in different animal species (goat and mouse). It was notable that 

there was a basal level of interaction between Lyp and Csk in blasting T cells, and that 

the level of association between Lyp and Csk increased by approximately two-fold as 

demonstrated by two different antibodies (Figure 3.4C). 
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Figure 3.4: Lyp and Csk associate in migrating T blasts A) T cells that had been 

stimulated with PHA (1µg/mL) for 48 hours and then cultured in IL-2 (Proleukin-

20ng/mL) for a further 8-10 days were immobilised on PLL (0.01%) or were allowed to 

migrate on ICAM-1 (4µg/mL) for 30 mins in 6 well dishes. After 30 mins, excess cells 

were aspirated and 1mL lysis buffer containing 1% Triton X-100 was added to well 1 

where cells were lysed and then the lysis buffer was transferred to well 2 until all cells 

attached to the 6 wells in the dish had been lysed in a total of 1mL lysis buffer. The 

lysates from ICAM-1 and PLL were split (500µL/Eppendorf) and either a non-specific 

goat IgG or a goat anti-Lyp was used for the immunoprecipitation overnight at 4C. The 

following day Protein G magnetic beads were added to each Eppendorf for 30 mins at 

4C. The beads were then washed 3X in standard lysis buffer containing 1% Triton and 

the antibody was eluted from beads with 20uL of boiling sample buffer. The eluates 

Lyp IgG 
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were resolved by SDS-PAGE and transferred to PVDF where they were probed rabbit 

anti-Csk or mouse anti-Lyp. (B) Co-immunoprecipitation performed on T cells as in 

Figure 3.4A but using an anti-Lyp mouse monoclonal antibody, probed with mouse 

anti-Csk and goat anti-Lyp ; C) Densitometric quantification of blots shown in Figure 

3.4A and B, representative of 5 independent experiment (4 mouse anti-Lyp and 1 goat 

anti-Lyp). 
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To confirm these data, immunoprecipitations of Csk were performed prior to blotting 

with anti-Lyp antibodies. These experiments confirmed that Lyp and Csk do indeed 

complex in migrating cells, and in good agreement with the Lyp co-

immunoprecipitation experiments, there was a two fold increase in Csk-Lyp interaction 

(Figure 3.5). 
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Figure 3.5 Lyp and Csk associate in migrating T cells:  A) T cells that had been 

stimulated with PHA (1µg/mL) for 48 hours and then cultured in IL-2 (Proleukin-

20ng/mL) for a further 8-10 days were immobilised on PLL (0.01%) or were allowed to 

migrate on ICAM-1 (4µg/mL) for 30 mins in 6 well dishes. After 30 mins, excess cells 

were aspirated and 1mL lysis buffer containing 1% Triton X-100 was added to well 1 

where cells were lysed and then the lysis buffer was transferred to well 2 until all cells 

attached to the 6 wells in the dish had been lysed in a total of 1mL lysis buffer. The 

lysates from ICAM-1 and PLL were split (500µL/Eppendorf) and either a non-specific  

antibody (normal rabbit serum) or an rabbit anti-csk was added to the lysates and 
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incubated overnight at 4C after which Protein G coated magnetic beads were added for 

30 mins. The beads were then washed 3X in standard lysis buffer containing 1% Triton-

x100, and the antibody was eluted from the beads with boiling sample buffer, resolved 

by SDS-PAGE, transferred to PVDF and probed with goat anti-Lyp and then mouse anti-

Csk.  B) Densitometric quantification of blots shown in Figure 3.5A, representative of 3 

independent experiments. 
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3.4.2 The interaction between Lyp and Csk is completely abolished in rested T cells 

 

The assays performed so far were all undertaken using T cells starved of IL-2 and 

serum for 1 hour. To test whether Lyp and Csk truly are constitutively associated, cells 

were rested for 12 hours in 2% BSA in the absence of IL-2. Interestingly, Lyp and Csk 

completely uncoupled under these conditions, as indicated by the PLL not displaying 

any pulldown over the control lanes of IgG2b or NRS in the case of Lyp and Csk, 

respectively, suggesting that whilst there may be some basal association of Lyp and Csk 

in T cells, the default setting of these two signalling intermediates in cells that are 

metabolically quiescent is uncoupled, and that in fact a signal is required to allow 

these two signalling intermediates to interact (figure 3.6A, B). This data supports the 

hypothesis that Lyp and Csk interact when T cells migrate on ICAM-1.  
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Figure 3.6: Resting T blasts leads to Lyp-Csk dissociating A) T cells that had been 

stimulated with PHA (1µg/mL) for 48 hours and then cultured in IL-2 (Proleukin-

20ng/mL) for a further 8-10 days were immobilised on PLL (0.01%) or were allowed to 

migrate on ICAM-1 (4µg/mL) for 30 mins in 6 well dished. After 30 mins, excess cells 

were aspirated and 1mL lysis buffer containing 1% Triton X-100 was added to well 1 

where cells were lysed and then the lysis buffer was transferred to well 2 until all cells 

attached to the 6 wells in the dish had been lysed in a total of 1mL lysis buffer. The 

lysates from ICAM-1 and PLL were split (500µL/Eppendorf) and either a non-specific 
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goat IgG or a goat anti-Lyp was used for the immunoprecipitation overnight at 4C. The 

following day Protein G magnetic beads were added to each Eppendorf for 30 mins at 

4C. The beads were then washed 3X in standard lysis buffer containing 1% Triton and 

the antibody was eluted from beads with 20uL of boiling sample buffer. The eluates 

were resolved by SDS-PAGE and transferred to PVDF where they were probed rabbit 

anti-Csk or mouse anti-Lyp as indicated. B) The experiment was repeated as in (A) but 

rabbit anti-Csk was immunoprecipitated and probed with mouse anti-Csk and goat 

anti-Lyp. Representative of 2 independent experiments. 
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3.4.3  PAG and Csk dissociate when T cells migrate on ICAM-1 

 

Lyp and Csk complex when T cells migrate on ICAM-1. To understand the context of 

this interaction, the dynamics of the Csk-PAG complex was further investigated. PAG is 

a scaffolding protein that partitions into highly ordered lipid domains within the 

plasma membrane, otherwise known as “lipid rafts”. This partitioning is thought to 

target the Csk bound PAG complex to rafts where tonic, negative regulation of Src 

family kinases is thought to take place (Torgersen, Vang et al. 2001, Davidson, 

Bakinowski et al. 2003). The catalytic activity of Csk is at least partially dependent on 

PAG binding, and so dissociation of PAG and Csk leads to inhibition of tonic inhibitory 

signals and therefore activation of Src (Wong, Lieser et al. 2005). The relationship 

between PAG and Csk has not yet been studied in migrating T cells, and given that Csk 

is an important binding partner of Lyp, it was important to investigate whether or not 

Csk was participating in integrin signalling.  

To investigate the association of Csk with PAG in non-migrating versus migrating cells, 

Csk was immunoprecipitated, immunoprecipitates resolved by SDS-PAGE and blots 

probed with specific antibodies to PAG.  Due to the highly ordered microdomains that 

PAG resides in, different detergents were tested to render PAG more accessible to 

immunoprecipitation. To this end cell lysates were prepared at 4°C from cell 

suspensions using either Triton X100 alone or Triton X100 plus N-octyl-beta-

glucopyronaside (NOBGP) (Figure 3.7A). Blotting of cell lysates prepared using Triton 

X100 and NOBGP permitted detection of at least twice as much PAG, as compared to 

blots of lysates generated using Triton alone, suggesting that specific detergents that 
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can access microdomains are required to release PAG.  Modest increases in Csk (~20%) 

and Lyp (~30%) were also detected in whole cells lysates using NOBGP, although this 

difference was less striking than the differences observed for PAG (Figure 3.7A).  
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Figure 3.7: Detergent optimisation for PAG detection A) T blast cell lysates were made 

using either 1% Triton x100 or 1% Triton x 100+ 40mM NOBGP, prior to immunoblotting 

for Lyp, Csk and PAG; B) Csk was immunoprecipitated from lysates using different 

combinations of detergents prior to immunoblotting for PAG and then Csk. 

Representative of 2 independent experiments for (A) and for (B) 
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Using the same two detergent conditions for cell lysis, immunoprecipitations of Csk 

were then carried out to compare the association of Csk with PAG in non-migrating 

versus migrating cells.  In Triton x100 lysates, detectable but low levels of PAG were 

associated with Csk in immobilised cells.  In contrast however, a much stronger signal 

could be detected when NOBGP was included in the lysis buffer prior to 

immunoprecipitation, suggesting that PAG and Csk are indeed constitutively associated 

in non-migrating cells, and that this association occurred mainly within triton 

impenetrable microdomains (Figure 3.7B). In migrating cells less PAG was found to be 

associated with Csk. It was clear that PAG and Csk partially dissociated, as compared to 

immobilised cells, where a stronger PAG-Csk association was evident. Quantification by 

densitometry indicated that there was a 30% decrease in Csk-PAG association when T 

cells migrated on ICAM-1 (Figure 3.8 A and B). In addition, blots were re-probed with 

anti-Lyp and, consistent with previous results, increased Lyp-Csk association was 

observed in migrating cells (Fig 3.8C).  

Together, these data suggest that Csk and PAG undergo a change in stoichiometry 

when T cells migrate, favouring dissociation of this complex. The dissociation of Csk 

from PAG is associated with an increase in detection of Lyp-Csk complexes.   
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Figure 3.8: Csk associates with Lyp but dissociates from PAG when T blasts migrate on 

ICAM-1 A) T cells that had been stimulated with PHA (1µg/mL) for 48 hours and then 

cultured in IL-2 (Proleukin-20ng/mL) for a further 8-10 days were immobilised on PLL 

(0.01%) or were allowed to migrate on ICAM-1 (4µg/mL) for 30 mins in 6 well dishes. 

After 30 mins, excess cells were aspirated and 1mL lysis buffer containing 1% Triton X-

100 40mM NOBGP was added to well 1 where cells were lysed and then the lysis buffer 

was transferred to well 2 until all cells attached to the 6 wells in the dish had been 

lysed in a total of 1mL lysis buffer. The lysates from ICAM-1 and PLL were split 

(500µL/Eppendorf) and either a non-specific NRS or a rabbit anti-Csk was used for the 

immunoprecipitation overnight at 4C. The following day Protein G magnetic beads 

NRS Csk 
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were added to each Eppendorf for 30 mins at 4C. The beads were then washed 3X in 

standard lysis buffer containing 1% Triton and the antibody was eluted from beads with 

20uL of boiling sample buffer. The eluates were resolved by SDS-PAGE and transferred 

to PVDF where they were probed mouse anti-Csk, goat anti-Lyp or mouse anti-PAG as 

indicated. B) Densitometric analysis of PAG-Csk dissociation. Representative of 3 

independent experiments. 
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3.4.4 PAG is dephosphorylated when T cells migrate on ICAM-1 

 

PAG and Csk dissociate when T cells migrate, but the mechanism behind the 

dissociation in migrating cells was not known. Previous studies have demonstrated 

that Csk-PAG association is dependent on phosphorylation of a tyrosine residue at 

position Y317 on PAG that binds to an SH2 domain in Csk, and that this association is 

important not only for the positioning of Csk within raft platforms that act as signalling 

hubs, but also serves to potentiate the catalytic activity of Csk (Davidson, Bakinowski 

et al. 2003). The phosphorylation status of PAG might therefore govern raft associated 

Src activation by controlling the positioning and catalytic activity of Csk. The 

phosphorylation status of PAG was therefore investigated. 

PAG was immunoprecipitated and an antibody recognising phosphotyrosine (pY) 

motifs was employed to evaluate the phosphorylation status of PAG, since no specific 

antibodies that recognise pY317 on PAG are available. A 30% decrease in PAG 

phosphorylation was observed in migrating cells (Figure 3.9), in good agreement with 

the Csk-PAG data which had indicated that around 30% of Csk dissociated from PAG 

after integrin stimulation (Figure 3.8). These data indicate that PAG is 

dephosphorylated in migrating T cells, and this in turn may lead to Csk relocating from 

rafts to another cellular compartment whilst concomitantly decreasing catalytic 

potential by the disengagement of the SH2 domain. However, a read-out of Csk 

catalysis was required in order to corroborate the data, and to this end we 

investigated the phosphorylation of a Csk target on Lck located in the C-terminal of the 

protein, namely tyrosine 505. 
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Figure 3.9: PAG is dephosphorylated in migrating T blasts A) T cells that had been 

stimulated with PHA (1µg/mL) for 48 hours and then cultured in IL-2 (Proleukin-

20ng/mL) for a further 8-10 days were immobilised on PLL (0.01%) or were allowed to 

migrate on ICAM-1 (4µg/mL) for 30 mins in 6 well dishes. After 30 mins, excess cells 

were aspirated and 1mL lysis buffer containing 1% Triton X-100 40mM NOBGP was 

added to well 1 where cells were lysed and then the lysis buffer was transferred to well 
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2 until all cells attached to the 6 wells in the dish had been lysed in a total of 1mL lysis 

buffer. The lysates from ICAM-1 and PLL were split (500µL/Eppendorf) and either a 

non-specific isotype or mouse anti-PAG was used for the immunoprecipitation 

overnight at 4C. The following day Protein G magnetic beads were added to each 

Eppendorf for 30 mins at 4C. The beads were then washed 3X in standard lysis buffer 

containing 1% Triton and the antibody was eluted from beads with 20uL of boiling 

sample buffer. The eluates were resolved by SDS-PAGE and transferred to PVDF where 

they were probed mouse anti-pY or mouse anti-PAG as indicated. Representative of 2 

independent experiments. 
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3.4.5 Csk tonically phosphorylates the inhibitory residue of Lck pY505 when T cells are 

immobilised on PLL and following LFA-1 engagement this inhibitory tyrosine residue is 

dephosphorylated. 

 

The observation that Csk and PAG dissociate when T cells migrate on ICAM-1 might 

suggest a switch in the regulation of Src family kinases at the membrane, favouring 

conformations and catalytic potentials that can more readily initiate or maintain a 

signal. Given that Lck autophosphorylates, a switch favouring a conformation that 

increases binding activity might not only lead to Lck phosphorylating downstream 

targets, but also itself at the activatory residue in trans, especially in light of the 

molecule unfolding and being more readily phosphorylatable at the activatory loop 

within the kinase domain at residue Y394 (Ventimiglia and Alonso 2013).  

To test this hypothesis, the phosphorylation status of Lck was investigated in the 

context of migration to document changes in phosphorylation that might promote 

changes in conformation and catalysis. Specifically, the phosphorylation status of Lck 

was investigated using as a read out the inhibitory pY505 site, a tyrosine residue that 

has been shown to be phosphorylated by Csk leading to downregulation of Lck activity.  

As a consequence of phosphorylation of Y505, the C-terminus folds inward and the 

pY505 residue interacts with an upstream SH2 motif, essentially occluding the catalytic 

domain in conjunction with a polyproline motif that is positioned by the SH2-pY505 

interaction to interact with an SH3 domain. In addition, it was important to investigate 

the phosphorylation status of Lck at the activatory pY394 residue to monitor any net 

changes in activatory tyrosine residue phosphorylation that may occur at the same 

time.  The availability of phospho-specific antibodies greatly facilitates this approach.   
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Figure 3.10 shows the analysis of both Triton soluble and Triton insoluble (Triton plus 

NOBGP) whole cell lysate fractions derived from non-migrating and migrating primary 

human T cells. In line with the previous finding of Csk dissociating from PAG in 

migrating cells (Figures 3.7 and 3.8), Lck was dephosphorylated at the inhibitory Y505 

residue by 33% in the triton soluble fraction, and upon the addition of NOBGP a larger 

proportion of dephosphorylated Lck at Y505 could be detected, suggesting that 

detergent insoluble microdomains contain a larger proportion of dephosphorylated 

Y505 as compared to the Triton soluble domains (Figure 3.10A).  As predicted, the 

dephosphorylation of pY505 was associated with an increase in pY394 in migrating 

cells.  This was confirmed in experiments using an antibody that recognises 

unphosphorylated Y394; here there was  approximately a 40% decrease in migrating 

cells, in keeping with the 2-fold increase in Lck pY394 (Figure 3.10B and C).   

These data suggest that following LFA-1 engagement, Lck undergoes changes in 

phosphorylation that are known to favour catalytic activity and binding by allowing the 

molecule to interact with target substrates through conformational change and 

increased rates of catalysis. The dissociation of Csk from PAG and the changes in Lck 

phosphorylation might to be a general mechanism by which integrins signal, because 

when experiments were performed with other integrin ligands like fibronectin or 

VCAM, a similar change in pY505 phosphorylation was observed (Figure 3.11), 

although the PAG-Csk dissociation was not investigated in the context of these integrin 

ligands. 
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Figure 3.10: Lck undergoes changes in phosphorylation when T blasts migrate on 

ICAM-1. Total lysates were made from PHA stimulated T cells that had been cultured in 

IL-2 for 8-10 days. Cells were plated onto PLL (0.01%) or ICAM-1 (4µg/mL) and lysed 

using different detergent combinations (Titon X alone or Triton X+NOBGP for raft 

dissociation) to investigate the phosphorylation status by Western Blot of Lck using 

antibodies specific for(A) pY505, (B) pY394 and (C) non-pY394. Representative of 3 

independent experiments.



140 

 

 

 

 

 

 

Figure 3.11: Lck is dephosphorylated at the inhibitory pY505 residue when T cells 

migrate on various integrin ligands (A) PHA stimulated T cells cultured in IL-2 for 8-10 

days were used to prepare total cell lysates. Cells lysates prepared from cells migrating 

over different integrin ligands – fibronectin (Fibro), VCAM-1 and ICAM-1 (or PLL) were 

probed with an antibody that recognises pY505 phosphorylation on Lck. B) 

Densitometric quantification of pY505 dephosphorylation, representative of at least 3 

independent experiments. 
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3.4.6 Csk and Lyp dissociate from PAG when T cells migrate on ICAM-1 

 

When investigating the PAG-Csk complex in immobilised and migrating cells, it was of 

note that the dissociation of this complex was not complete. Instead a pool of Csk 

evidently remains associated with PAG, even in migrating cells, but to a lesser extent 

than that of immobilised cells, suggesting that Csk may still be regulating certain 

inhibitory signals in migrating cells. Lyp and Csk immunoprecipitation experiments 

suggested that Lyp and Csk were more complexed in migrating cells. An outstanding 

question was whether or not Csk-Lyp complexes were more associated and docked 

onto PAG in migrating cells, or whether this complex was acting independently of PAG. 

PAG immunoprecipitation recapitulated the modest dissociation of Csk (Figure 3.12A 

and B) with a 30% decrease in Csk-PAG association, but demonstrated a more striking 

dissociation of Lyp, suggesting that Lyp positioning at the membrane was independent 

or only partially dependent on PAG in migrating cells, and that the Lyp-Csk complex 

that is formed when LFA-1 is engaged might be retained at the membrane by some 

other mechanism (Figure 3.12C and D). Alternatively, the Lyp-Csk complex may not be 

localised specifically at the membrane but instead may operate within the cytoplasm 

compartment.  
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Figure 3.12: Lyp and Csk dissociate from PAG when T blasts migrate on ICAM-1 A) T 

cells that had been stimulated with PHA (1µg/mL) for 48 hours and then cultured in IL-

2 (Proleukin-20ng/mL) for a further 8-10 days were immobilised on PLL (0.01%) or 

were allowed to migrate on ICAM-1 (4µg/mL) for 30 mins in 6 well dishes. After 30 

mins, excess cells were aspirated and 1mL lysis buffer containing 1% Triton X-100 

40mM NOBGP was added to well 1 where cells were lysed and then the lysis buffer was 

transferred to well 2 until all cells attached to the 6 wells in the dish had been lysed in a 
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total of 1mL lysis buffer. The lysates from ICAM-1 and PLL were split (500µL/Eppendorf) 

and either a non-specific isotype or mouse anti-PAG was used for the 

immunoprecipitation overnight at 4C. The following day Protein G magnetic beads 

were added to each Eppendorf for 30 mins at 4C. The beads were then washed 3X in 

standard lysis buffer containing 1% Triton and the antibody was eluted from beads with 

20uL of boiling sample buffer. The eluates were resolved by SDS-PAGE and transferred 

to PVDF where they were probed rabbit anti-Csk or mouse anti-PAG. B) B densitometric 

analysis of 3 experiments as in (A). C) Immunoprecipitation as in (A) only goat anti-Lyp 

was probed for followed by mouse anti-PAG D) densitometric analysis of (C). data re 

representative of 3 independent experiments for (A) and (B). 
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3.5  Summary of the dynamics of the Lyp/Csk/PAG complex 

 

Using antibodies that can be utilised in the context of two different techniques, 

immunofluorescence and immunoprecipitation/blotting, it has been demonstrated 

that Lyp can reside near or at the plasma membrane where it may co-localise with Csk 

and PAG, or in the cytoplasm where it colocalises with Csk. The Lyp/Csk/PAG complex 

was notably co-localised in cells immobilised on poly-L-lysine. In contrast, migrating 

cells appeared to show high co-localisation of Csk and Lyp, whereas PAG staining 

appeared to be more diffuse, with some co-localisation between Lyp/Csk/PAG at the 

leading and lagging edge of migrating T cells. A biochemical analysis demonstrated 

that, upon integrin signalling, PAG and Csk partially dissociate which in turn was 

correlated with a 40% decrease in the Csk target pY505 indicating conformational 

changes in Lck. Alterations in phosphorylation at the activatory tyrosine residue within 

the kinase domain could also be detected, with pY394 being at least twice as 

phosphorylated, indicating changes in catalytic potential. Moreover, the association of 

Lyp, Csk and PAG appears to change when T cells migrate on ICAM-1. At this point the 

working model is that some Lyp is associated with the PAG/Csk complex in immobilised 

cells, and following integrin ligation Csk dissociates partially from PAG and associates 

with Lyp, with the majority of Lyp in migrating cells not being PAG bound. 
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Discussion 

 

This chapter sought to answer questions pertaining to the expression of Lyp in 

untouched versus activated T cells, the localisation of Lyp in migrating T cells and the 

dynamics of the Lyp-Csk-PAG signalling complex. 

The expression of PTPN22 differs between untouched and activated T cells in both 

mouse (www.immgen.org) and man (Figure 3.1). In activated T cells, the expression of 

PTPN22 increases, which might suggest that following T cell priming, the signal 

transduction network is differentially regulated. Interestingly, Ptpn22 knockout mouse 

T cells display signalling perturbations that are confined only to the effector/memory T 

cell population, although it is of note that more recent studies using transgenic T cells 

that can discriminate between high and low affinity peptide complexed with TCR seem 

to suggest that naïve CD8+ T cells from Ptpn22 knockout mice are more readily 

activated than their Ptpn22 sufficient counterparts (Hasegawa, Martin et al. 2004, 

Salmond, Brownlie et al. 2014). This difference in the signalling threshold observed in T 

cells from Ptpn22 knockout mice is associated with an expansion of effector/memory T 

cells as mice age.  The clonality, and therefore the origin of this expansion, remains 

unclear, and could be due to differences in T cell selection, hyperactive signalling 

through the TCR in naïve T cells leading to effector/memory  generation, the 

hyperresponsive signalling in effector/memory T cells or differences in survival. 

Although it is tempting to speculate that the difference in Lyp expression between 

naïve and effector/memory T cells is important, the abundance of a protein does not 

necessarily correlate with its importance in any given biological process, and the fact 
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that it is expressed at all may be more significant than the amount of specific protein 

per cell. 

In human T cells, I show that PTPN22 is upregulated at the protein level following TCR 

engagement or polyclonal stimulation of T cells with PHA. Stimulation via the T cell 

receptor consistently led to Lyp upregulation after 48 hours of receptor stimulation, 

the point at which the cells begin to proliferate and become true effectors. This might 

suggest that the upregulation of Lyp is not important during the priming process itself 

but rather as the cells become effector T cells. The issue of Lyp upregulation requires 

further clarification, as the T cells assayed in these experiments were unmanipulated 

and of a mixed population, consisting of naïve, effector and memory cells and 

demonstrated basal levels of Lyp expression in the absence of  stimulation. Thus, 

understanding exactly which subsets of T cells Lyp is expressed in and to what level 

may be useful; further investigations would be required to validate the significance of 

expression profiles across T cell subsets in the context of specific signalling pathways.  

My initial attempts to demonstrate expression of intracellular Lyp in fixed and 

permeabilised T cells suggests that flow cytometry would be a productive way to 

explore expression in different (and rare) cell subsets. 

Given that Lyp is upregulated in T cell blasts, and that an inside-out signal is required 

to activate integrins such that they can bind their ligand, activated T cells were used 

for all subsequent assays. Immunofluorescence was used to document the localisation 

of Lyp, Csk and PAG in fixed T cells immobilised on PLL or migrating on ICAM-1. Lyp and 

Csk have been shown to interact directly, with the first poly-proline binding domain of 

Lyp, PLPXR, being important but not completely defining of this interaction (Ghose, 

Shekhtman et al. 2001). Csk is a kinase that negatively regulates Src family kinases by 
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phosphorylating an inhibitory tyrosine residue at the C-terminus of any given Src 

family kinase leading to intramolecular interactions that inhibit binding (Nika, Tautz et 

al. 2007). Thus the binding of Csk and Lyp has been viewed conventionally as a co-

operative one, leading to synergistic regulation of signalling downstream of the TCR 

(Cloutier and Veillette 1999). Staining patterns of Lyp and Csk in non-migrating versus 

migrating cells differed considerably, with non-migrating cells showing colocalisation 

of these two proteins at the plasma membrane and within the cytoplasm. In contrast, 

the Lyp-Csk staining patters in migrating cells demonstrated that Lyp and Csk were 

localised to both the leading and lagging edge of migrating T cells where they 

appeared to co-localise. The extent of colocalisation of these two signalling 

intermediates in both migrating and non-migrating cells might suggest that they were 

interacting under both conditions.   Accordingly, the extent of this interaction was 

investigated in co-immunoprecipitation experiments. In these experiments, Lyp and 

Csk were shown to interact constitutively, an interaction that was increased when T 

cells migrated. Thus, despite Lyp and Csk being highly co-localised in non-migrating 

cells, there was a two fold increase in Lyp-Csk complexing when T cells migrate. These 

results raised the interesting possibility that whilst Lyp and Csk in non-migrating cells 

are interacting, there was some mechanism in place somehow limiting this interaction, 

and following integrin engagement, these two signalling intermediates could more 

readily associate. The mechanism responsible for Csk-Lyp interaction regulation is 

discussed further in chapter 6. 

 Csk has been shown to interact with PAG, a hydrophobic protein that is palmitoylated 

and abundant in liquid ordered plasma membrane phases(Hrdinka and Horejsi 2013). 

The function of PAG is to localise Csk in rafts where it tonically negatively regulates Src 
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family kinase members(Bergman, Mustelin et al. 1992). The tonicity of this regulation 

is exemplified by Weiss and colleagues who engineered a genetically encoded, acutely 

inhibitable Csk construct that was highly susceptible to catalytic inhibition by a PP2 

analogue (Wang, Kadlecek et al. 2010, Schoenborn, Tan et al. 2011). These studies 

demonstrated that upon the acute inhibition of Csk in resting T cells, proximal 

signalling pathways involving Src and Syk family kinase members were activated, in the 

complete absence of receptor stimulation, suggesting that negative signalling is 

actively maintaining pathways in an “off” state. The regulation of Csk also differs from 

that of other Src Family Kinase members in that is has no inhibitory or activatory 

tyrosine motifs that are phosphorylated to regulate catalysis and conformation. 

Instead, the binding of an SH2 domain on Csk to pY317 on PAG affords increased 

catalysis. Thus, PAG may regulate Csk in at least two ways: by localising Csk to rafts and 

by increasing catalytic potential in a spatially confined manner (Stepanek, Draber et al. 

2014).  

Staining patterns of PAG and Csk were as expected, with high levels of co-localisation 

at the plasma membrane in non-migrating cells, completely in line with the role of this 

complex in tonically regulating Src activity levels within rafts. Under conditions of 

migration, Csk expression patterns were more asymmetric in distribution, with staining 

mainly at the front and the back of the cell. PAG, on the other hand, was much more 

diffusely localised with some focus at the front of the cell. It was also noted that PAG 

staining was punctate, indicating small islands of protein staining which presumably 

was occurring in rafts.  

Together, these results might suggest that PAG and Csk are less associated in migrating 

T cells, an observation that was confirmed by co-immunoprecipitation experiments 
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demonstrating a dissociation of PAG and Csk when T cells migrated. Curiously, only a 

small but significant decrease in PAG-Csk could be detected, with a 30% decrease in 

the association as compared to non-migrating cells. What this might suggest is that the 

pool of Csk still associated with PAG may play an active but distinct role in regulating 

active signalling emanating from the integrin when T cells migrate. The dissociation of 

Csk from PAG correlated well with changes in phosphorylation  of Lck, a Src family 

kinase known to bind directly to LFA-1 when engaged by ICAM-1. The decrease in Lck 

phosphorylation at pY505 might directly implicate a change in Lck-Csk interactions or 

the activation of a phosphatase that antagonises phosphorylation of Lck at pY505 via 

dephosphorylation favouring a productive signal transduction event. Indeed, PAG was 

found to be less phosphorylated in migrating cells, although the precise tyrosine 

residue(s) contributing to this change in phosphorylation was not investigated further.   

I speculate that residue Y317 will be implicated given its previous identification as a 

Csk binding site.  A picture started to emerge suggesting that perhaps one of the most 

proximal events occurring in LFA-1 signal transduction was the dissociation of Csk from 

PAG, allowing for local activity of Lck and the binding of activated Lck to LFA-1. The 

Csk-PAG dissociation correlated well with Lyp-Csk complexing. This lead to the idea 

that PAG and Csk were more complexed in non-migrating cells, and following integrin 

ligation this complex dissociated, and Csk then complexed with Lyp.  

Immunostaining patterns of Lyp largely recapitulated that of Csk, where in non-

signalling cells Lyp and PAG colocalised mainly at the membrane, and in migrating cells 

at the front of the cell. Co-immunoprecipitation experiments of PAG indicated that 

PAG dissociated from Lyp and Csk, further supporting the idea that the complexing of 

Lyp and Csk was, surprisingly, not occurring on PAG itself in migrating T cells. There 
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was however a residual amount of Lyp (~10% of PLL) that could be co-

immunoprecipitated with PAG in migrating cells, indicating that a pool of Lyp was still 

associated with PAG, albeit a much smaller pool than that of Csk (~70% of PLL). These 

experiments revealed that Lyp, Csk and PAG can form a heterotrimer complex, by 

interacting either directly, or indirectly, and that this trimer appears to have more 

operational significance in non-signalling cells, where Lyp and Csk are more complexed 

with PAG. However, the complexing between Lyp and Csk increases when T cells 

migrate, and this is correlated with both Lyp and Csk being released from PAG, 

suggesting that Csk and Lyp were interacting in a distinct cellular compartment 

independent of PAG. Future studies need to clarify whether Lyp is truly complexing 

with PAG via Csk. 

Taken together these results reveal a dynamic interaction between the Lyp-Csk-PAG 

complex. A situation can be envisaged where the selective interaction between these 

intermediates leads to the concerted regulation of T cell signal transduction pathways, 

both when cells are signalling and when they are not. Perhaps of more interest than 

understanding interaction versus dissociation of the Lyp-Csk-PAG complex is the switch 

in signalling intermediate behaviour that facilitates a signal that can be interpreted by 

a cell. In considering the operational changes in Lyp, Csk and PAG, and the possible 

importance of these signalling intermediates in regulating positive signals, it is 

tempting to speculate that under certain conditions these intermediates change their 

behaviour to meet the contextual requirements of a signalling pathway, independently 

of associating with one another. In other words, it is not a case of “on” or “off” but 

rather a spectrum of activity and interactions governed by spatial, temporal and post 

translational cues. To truly understand the complex dynamics, more in depth live cell 
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studies that can measure interaction between these signalling intermediates in real 

time are required.  For my project, net changes in the interaction of Lyp, Csk and PAG 

have been identified, which for the first time implicates these proteins in regulating 

integrin signalling and T cell migration. 
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Chapter 4                                                                                                    
The regulation of T cell migration by PTPN22/Lyp 
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The imaging studies and biochemical data described in Chapter 3 pointed towards a 

role for the Lyp, Csk and PAG complex in regulating LFA-1 dependent T cell migration.  

An important experimental goal was to validate this finding at a functional level by 

studying how manipulation of Lyp expression, or the expression of autoimmune 

disease associated Lyp mutants, regulated T cell migration.  A second important 

objective was to investigate how deficiency of PTPN22/Lyp perturbed integrin specific 

signal transduction, with the majority of studies focusing on signalling through the 

αLβ2 integrin LFA-1. 

 

4.1 The effects of Lyp knockdown on static T cell migration 

 

Lyp is upregulated in T cell blasts (see Figure 3.1, Chapter 3).  To study the role of Lyp 

in the migration of activated human primary T cells, knock down of Lyp was attempted 

using two pools of siRNA derived from two different suppliers targeting different 

residues within the mRNA transcript (Figure 4.1); scrambled siRNA was used as a 

negative control.  Activated T cells, generated following PHA stimulation and 

propagation with IL-2 for up to 14 days, were transfected with Lyp specific or control 

siRNA by AMAXA technology (as described in Chapter 2).  After 48 hrs cells were 

harvested and whole cell lysates prepared prior to Western blotting with anti-Lyp 

antibodies to confirm the efficiency of Lyp silencing.  

Figure 4.1A shows a representative blot of cell lysates derived from cells subjected to 

Lyp knockdown; anti-tubulin blots served as protein loading controls.  This experiment 



154 

 

indicated that, based on comparative densitometry of Lyp and tubulin specific bands, 

the siRNA pools reduced Lyp expression by between 40% and 48% respectively.  Flow 

cytometry experiments indicated that knockdown of Lyp had no effect on the 

expression of LFA-1 (Figure 4.1B).   
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Figure 4.1:  PTPN22 specific siRNA reduces Lyp expression by 40-48% in activated 

human T cells, but not LFA-1 expression. A) Primary T cells were stimulated for two 

days in PHA and then transfected with siRNA using the AMAXA system. Knockdowns 

were confirmed by western blotting. B) LFA-1 expression on Lyp knockdown cells was 

assayed by FACS using a specific cd11a antibody. Representative of 3 independent 

experiments 
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Parallel experiments using the same cells were undertaken to explore the effects of 

Lyp knockdown on migration of T cells on glass slides coated with ICAM-1Fc.  Cells 

were plated at a density of 3x105/ml and allowed to equilibrate onto glass slides at 

37°C for 10 mins. Migration of individual cells was then monitored for 20 minutes by 

time lapse microscopy.  Raw data derived from single cell tracking experiments of T 

cells transfected with control (n = 20 cell tracks) or Lyp siRNAs (n = 18) is shown in 

Figure 4.2A, and the speeds derived from analysis of multiple tracks of cells transfected 

with control or one of two Lyp siRNA pools shown in Figure 4.2B.  Lyp knockdown was 

associated with significantly faster migration speeds than T cells expressing a 

scrambled control siRNA (scrambled, 0% knockdown – 12.2µm/min; siRNA1, 40% 

knockdown – 14.69µm/min; siRNA2, 48% knockdown –17.5µm/min).  Interestingly, the 

speeds of migration correlated with the percentage knockdown, with the higher 

percentage knockdowns being associated with increased speeds of migration (Figure 

4.2B).  

To corroborate these data, PTPN22 deficient mouse T cells were assayed under similar 

conditions using mouse ICAM-1-Fc, and were compared to PTPN22 sufficient T cells. 

PTPN22 deficient mouse cells migrated faster than their wildtype counterparts (Fig 

4.2C) with speeds of migration increasing from 14µm/min for wild type T cells 

compared to 16.2µm/min for PTPN22 deficient T cells.  

Together these results provided the first indication that the protein tyrosine 

phosphatase Lyp is a negative regulator of integrin dependant migration in T cells.  
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Figure 4.2: Lyp deficiency increases LFA-1 dependent migration in human and murine 

T cells under static conditions. A) T blasts were transfected with siRNA directed at Lyp. 

Cells were plated onto ICAM-1 and videos were recorded for 20 mins, 4 frames/min, 

after which the cells were tracked using Image J cell tracker plugin and plotted in Ibidi 

migration software. B) Individual cell velocities were plotted from experiment 4.1A+B 

and experiment 4.2A and C) PTPN22 deficient mouse T cells were tracked and velocities 

calculated. Representative of 3 independent experiments with at least 60 tracks per 

experiment. 
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4.2  The catalytic activity of Lyp is required to regulate T cell migration 

 

Given that Lyp knockdown increased the speeds at which cells migrate, the 

consequence of overexpression was next investigated in order to further confirm that 

Lyp may be negatively regulating integrin signals. To do this, LypR620-GFP and 

LypW620-GFP fusion protein constructs were generated.  Two additional control 

constructs were generated.  First, a Lyp mutant was generated containing an alanine 

mutation in the catalytic domain cysteine residue, C227A.  C227 confers the ability of 

the phosphatase domain to catalyse the removal of phosphates from target proteins. 

Secondly, a GFP “empty vector” was also employed to ensure that the fluorescent 

protein itself was not responsible for any differences observed in migration.  

To confirm that similar levels of Lyp-GFP fusion protein were expressed in transfected 

T cells, cells were lysed and immunoblotted with anti-Lyp antibodies to detect both 

endogenous Lyp and Lyp-GFP. In addition, T cells expressing the R620, R620W or GFP 

alone and migrating on ICAM-1 were imaged to examine whether there were any 

differences in localisation that might account for functional differences observed 

between R620 and R620W.  The confocal images shown in Figure 4.3A indicate that 

Lyp-GFP expression patterns appear similar for Lyp-R620 and Lyp-W620 expressing 

cells.   Figure 4.3B shows that endogenous Lyp expression is comparable in T cells 

expressing GFP alone, Lyp-R620-GFP, Lyp-W620-GFP and Lyp-C227A-GFP (lower MW 

band), and that Lyp-GFP expression, seen resolving at a higher molecular weight and 

detected with the same anti-Lyp antibody, was also similar in cells overexpressing the 

R620, R620W and C227A constructs.   
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Tracking of GFP positive cells by time lapse microscopy revealed that migration of T 

cells overexpressing Lyp-R620 was dramatically reduced when compared to cells 

overexpressing GFP or the catalytically inactive Lyp-C227A mutant (Figure 4.3C).  When 

transfected with GFP alone, T blasts migrated at an average speed of 10.25µm/min, 

which was reduced to 2.7µm/min when overexpressing R620, a result which was highly 

statistically significant (P=0.0001). When transfecting T blasts with Lyp-W620, speeds 

of migration were reduced to 5.1µm/min.  Thus, Lyp-W620 T cells were migrating 

almost twice as fast as cells transfected with the wild type construct. The Lyp-W620 

construct reduced speeds of migration significantly as compared to the GFP control 

(P=0.0004), suggesting that Lyp-W620 could still influence the speed at which T cells 

migrate, but less efficiently than the wild-type construct. Importantly, there was a 

statistically significant difference between the Lyp-R620 and Lyp-W620 construct in 

terms of speeds of migration (P=0.013). The catalytically inactive phosphatase 

construct C227A behaved in a comparable manner to the GFP control, indicating that 

the phosphatase activity of Lyp is required to regulate cell migration (P=>0.05).  
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Figure 4.3: The catalytic activity of Lyp is required to regulate T cell migration in static 

conditions A) Confocal images of Lyp-GFP transfected T cells migrating on ICAM-1 

demonstrating no gross differences in Lyp localisation between the R620 and R620W 

construct when T cells migrate. Scalebar 10µm B) T blasts were transfected by AMAXA 

with Lyp constructs or GFP alone, overexpression was confirmed by Western Blot and 

C) Transfected T blasts velocities from (B) Representative of at least 3 independent 

experiments.  

Western Blot demonstrating 

overexpression of Lyp constructs 
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These experiments were then repeated using GFP positive T cells purified by cell 

sorting; GFP expression profiles are shown for each transfectant in Figure 4.4A. An 

overlay of the Lyp-R620 and Lyp-W620 is shown, demonstrating comparable 

transfection efficiencies, and no differences in expression level as determined by flow 

cytometry (Figure 4.4A and B). The median fluorescence of the cells was also then 

calculated (Figure 4.4C). The data indicated that cells transfected with Lyp constructs 

expressed Lyp and Lyp mutants at comparable levels. Cells that were mock 

transfected, transfected with GFP alone or transfected with a catalytically inactive Lyp 

migrated at comparable speeds that were not significantly different (see Figure 4.4D: 

mock=7.1µm/min; GFP alone=7.2µm/min; C227A=6.3µm/min), in keeping with 

previous results.  As in the experiments using unsorted cells, transfection with the 

catalytically active wild type Lyp-R620-GFP construct led to significantly lower speeds 

of migration of 2.2µm/min, and was significantly different from the mock, GFP alone 

and catalytically inactive mutant (P=<0.0001). The Lyp-W620 construct also slowed 

speeds of migration down significantly as compared to the controls (P=0.016) with an 

average speed of 4.9µm/min. Importantly, a statistically significant difference in the 

speeds of migration between Lyp-R620 and Lyp-W620 could be observed where 

P=0.02. These experiments, when interpreted in combination with the knockdown 

experiments, provided further support to suggest that Lyp is a negative regulator of 

LFA-1 dependent T cell migration, and that the Lyp-W620 mutant was unable to 

regulate LFA-1 dependent migration in T cells in the same way as efficiently as the wild 

type construct.  Thus, the Lyp-W620 operates as a loss-of-function variant when 

overexpressed on an R620 expressing background. 
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Figure 4.4: Lyp expressing T cells, sorted for GFP expression confirm that Lyp is a 

negative regulator of T cell migration. A) Plots demonstrating GFP positive transfected 

T cells that were sorted for static migration assays B) Histogram demonstrating 

comparable expression of both R620 and W620-GFP Lyp C) Histogram demonstrating 

comparable MFI between different constructs D) Velocity of cells transfected with GFP 

or Lyp constructs migrating on ICAM-1 
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4.6 Functional analysis of T cells from PTPN22 genotyped donors 

 

The experiments reported to this point describe the effects of manipulating Lyp 

expression on the migration of primary human T cells, where endogenous Lyp gene 

expression was targeted and knocked down, or Lyp was introduced (and 

overexpressed) by transfection of primary T cells using expression vectors encoding 

wild type Lyp.  To understand whether or not a single point mutation in the binding 

domain of Lyp might lead to a specific phenotype in PTPN22 genotyped individuals, we 

employed random migration assays, adopting the assays described above, to examine 

the speeds at which peripheral blood T cells from individuals carrying homozygous Lyp-

W620 mutations (GG) migrated, as compared to the migration of T cells from 

individuals who do not harbour the mutation (Lyp-R620 homozygous AA carriers).   We 

chose to adopt this initial approach using extreme genotypes in the belief that this 

would be more likely to uncover a reproducible phenotype than experiments using T 

cells from carriers of the heterozygous mutation. 

Peripheral blood mononuclear cells were purified from consenting donors recruited to 

the NIHR TwinsUK Bioresource.   This is a large Bioresource of more than 12,000 twin 

pairs of whom ~ 6,000 have undergone genome wide genotyping.  This permits the 

identification of rare genotypes, such as the PTPN22 W620 homozygous genotype 

(which has a frequency of < 1% in the healthy population).  The TwinsUK Bioresource 

allowed us to source 57 of these relatively rare homozygous donors.  Cells were 

stimulated with PHA for 2 days and IL-2 for 5 days prior to functional analysis.  In each 

experiment, paired samples were tested (Lyp-R620 homozygote versus Lyp-W620 
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homozygote), matched for age and gender, and subjected to migration on ICAM-1 and 

time-lapse microscopy, as described above.  

Strikingly, in 4 out of 5 experiments the migration assays demonstrated that T cells 

homozygous for the Lyp-W620 mutation migrated significantly slower than control 

cells not harbouring the W620 mutation.  Single cell tracks are shown in Figure 4.5 

(P=<0.001 for all but 1 pair of donors), and speeds shown in Figure 4.6. Interestingly, 

the results from pooled data are shown in Figure 4.7, where the analysis of single cell 

tracks from ~ 350 cells per genotype, expressed as speeds in µm/min, are presented.  

Again, the speed of migration of T cells from GG donors was on average 10.52µm/min, 

significantly slower than that of AA donors, which averaged at 7.4µm/min.  Thus, T-

cells from individuals homozygous for the R620W mutation migrated slower.  
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Figure 4.5: Static migration studies on genotyped cells. Genotyped cells were 

stimulated with PHA for 2 days, expanded in IL-2 for 5 days and used for static 

migration studies on ICAM-1 by timelapse microscopy (20 mins, 4 frames/min). Top 

panel represents R620/R620 individuals, bottom panel R620W/R620W individuals. 

Representative of at least 60 cells per genotype, total of 10 genotypes (5 R620/R620 

and 5 R620W/R620W) 
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Figure 4.6: Static migration studies on genotyped cells. Quantification of individual cell 

velocities from figure 4.5. Experiments are paired, and matched for age and gender. 
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Figure 4.7: Lyp-W620 (GG) expressing T cells migrate slower than Lyp-R620 (AA) 

expressing cells. Data from T cells of individual donors from experiments shown in Fig 

4.6 were pooled and represented as single plots.  (A) Dot plot analysis of 351 “AA” 

variant” and 344 GG variant expressing T cells, and (B) data depicted as histogram plots 

(P = 0.0001). 
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In summary the data described in this chapter demonstrate: 

1. Lyp knockdown increases speeds of migration, with LFA-1 levels remaining 

unaffected 

2. Overexpressing R620-Lyp reduces the speeds at which T blasts migrate 

3. The catalytic activity of Lyp is required to regulate T cell migration 

4. R620W-Lyp cannot regulate migration in the same way as R620-Lyp 
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Discussion 

 

Using manipulated (silencing/overexpression/knockout murine cells) and 

unmanipulated systems (genetically encoded human variants) this chapter sought to 

better understand the function of Lyp with respect to its ability to regulate signal 

transduction through LFA-1.  

The migration assays employed in these studies were performed under static 

conditions. Ideally, they should be performed in a system where mechanical force is 

applied against the cell to recapitulate more faithfully adhesion under blood flow in 

the vasculature, where LFA-1 function has been demonstrated to be non-redundant 

(Alon and Dustin 2007). These experiments are currently underway in the laboratory. It 

was clear however, under static conditions, where cells moved over a 2D surface 

coated with ICAM-1, that a migratory programme was initiated following integrin 

engagement, demonstrated by polarisation and increased speeds of migration. 

Perhaps some of the limitations of the shear flow systems are the lack of biochemical 

assays that can be used to mirror the functional responses observed. To this end, I 

performed migration under static conditions and used the exact same experimental 

conditions used for functional studies to perform a comprehensive biochemical 

dissection of integrin signalling. In this way it was possible to extrapolate the functional 

outcomes observed with my biochemical studies, as described in Chapters 3, 5 and 6.  

The manipulation of Lyp expression in T cells revealed that when Lyp gene expression 

was silenced (meaning that total Lyp expression of Lyp protein was reduced), cells 

migrated faster as compared to control cells. These studies were undertaken in an 

experimental system involving the use of transfection to transiently perturb Lyp 
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expression in primary human T blasts. Lyp silencing resulted in a modest decrease in 

protein of ~45% indicating that more than half of what is normally expressed was still 

present. Despite this, an increase in migration was observed. Using T cells derived from 

a mouse deficient for Ptpn22, the same phenotype as that observed when silencing 

Lyp in primary human T cells was noted; Ptpn22 deficient mouse T cells migrated faster 

when compared to their wild type Ptpn22 sufficient counterparts.  Thus, in the acute 

setting of Lyp silencing (human T blasts) and a more long term model for total lack of 

expression (murine T cells) the speeds at which T cells migrated were increased when 

Lyp was either partially or totally removed from the system. Given the modest 

knockdowns in human cells, and the possibility of compensatory effects by other 

phosphatases in mice during development of the organism, a system where Lyp can be 

more efficiently silenced would be interesting to study the functional effect of Lyp 

deletion in an acute setting. Such systems, including zinc-finger silencing technology 

that can target and silence a genetic locus in both an acute and permanent manner 

would be of interest.  

Overexpression studies demonstrated that increasing protein levels of wild type Lyp in 

primary T cell blasts decreases their speeds of migration. In these assays, Lyp 

constructs containing a GFP C-terminal tag downstream of the binding domain of Lyp 

were generated by PCR and cloned into a vector containing a CMV promoter. The CMV 

promoter is a powerful promoter allowing for large increases in expression of total Lyp 

protein. The GFP-Lyp fusion proteins allowed for Lyp expression to be assayed at a 

single cell level by flow cytometry, as compared to the average overexpression of Lyp 

by immunoblotting of lysates derived from a large population of cells. Static migration 

assays were performed on either FACSAria sorted cells or by tracking GFP positive cells 
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within a population of transfected cells with further confirmation of GFP positivity 

being provided by a western blot, which indicated a comparable amount of protein 

expression existed between the different constructs used. The results from both 

methods were similar, in that transfection of Lyp-R620 was able to reduce speeds of 

migration, while Lyp-W620 conferred reduced speeds of migration but not to the 

extent of R620-Lyp. Controls for these experiments included a GFP vector alone and a 

Lyp construct lacking any catalytic activity Lyp-C227A. The GFP alone and Lyp-C227A 

behaved in a comparable manner, suggesting that any effects seen as a consequence 

of overexpression of Lyp-R620 or Lyp-W620 in transfected T cells are likely to be a 

dependent either on catalytic activity or the P1 binding domain of Lyp. One notable 

difference observed between these assays was the speeds at which cells migrated; it is 

possible that the “stress” of the sorting process may have contributed to decreased 

speeds of migration, although these decreases in speeds did not influence the pattern 

of migratory responses, according to transfectant.  

By adopting an approach utilising T cells derived from individuals with genetically 

encoded mutations, it was possible to investigate the consequences of genetically 

encoded SNPs, circumventing the need to genetically manipulate cells using methods 

that could be prone to artefact.  Unexpectedly, the results from these experiments 

indicated that T cells from individuals harbouring two copies of the disease associated 

Lyp-W620 encoding SNP, migrated at slower speeds than T cells from individuals who 

were homozygous for the Lyp-R620 encoding allele.  This result  was in direct 

disagreement with the results I had obtained in transfection experiments in which 

overexpression of the Lyp-W620 mutant by transfection led to faster speeds of 
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migration.  These conflicting data may have been due to one or more reasons, 

including: 

1. The transfection itself may alter the cell in such a way that the constructs do 

not lead to functional effects that faithfully reflect the biology. 

2. The over-expression of Lyp-W620 in T cells that express normal levels of 

endogenous Lyp-R620 may not reproduce a scenario in the same way that 

transfection of Lyp-W620 into a Lyp deficient cell might.   

3. The genotyped cells activate differentially when stimulated, leading to a 

phenotype secondary to that of activation rather than perturbations occurring 

via integrin signalling leading to the phenotype.  

4. The conflicting results are in fact consistent with a model where loss of function 

of Lyp, arising from two copies of the Lyp-W620 encoding SNP, leads to 

unimpeded integrin signalling and adhesion of cells that is increased to a 

threshold that no longer permits the cells to move.  Direct comparison of the 

migratory properties of RR, RW and WW expressing T cells would go some way 

to address this.  

To conclude this chapter, I propose that in order to truly understand the functional 

effects of R620W-Lyp, a complimentary approach involving a biochemical dissection 

and super-resolution imaging of Lyp mutants and the organisation of integrins in 

mutant cells will be required in order to be able to ascertain pathway dynamics and 

protein organisation, the subject of which will be described in Chapters 5 and 6.  
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Chapter 5                                                                                             
Analysis of integrin signalling and its regulation by 

PTPN22/Lyp 
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It is now well established that integrins can signal following engagement with 

counterligand. The signalling pathways evoked in response to integrin engagement 

appear to involve Src and Syk family kinases (Jakus, Fodor et al. 2007). A division of 

labour at the most proximal points in some signalling pathways has been postulated to 

exist between these two signalling intermediates, with Lck being the effector in T cells, 

phosphorylating ZAP-70 in response to receptor ligation. In other signalling pathways, 

Lck or ZAP-70 can act independently of one another.  This chapter addresses in detail 

the dynamics of integrin signalling, focusing on the following specific aspects: 

1. The phosphorylation of Lyp substrates in response to integrin ligation 

2. The components of the Lyp signalling complex in cells following adherence to 

poly-L-lysine or ICAM-1. 

3. The LFA-1 signallasome. 

4. Perturbations of integrin signalling in Ptpn22 deficient mice. 

To date, a careful dissection of the phosphorylation status of signalling intermediates 

downstream of integrin has not been performed. We thus investigated some of the 

most proximal points in the integrin signalling cascade, focusing mainly on Lck, ZAP-70 

and VAV. Lck and ZAP-70 have been shown to be directly dephosphorylated by Lyp at 

tyrosine residues pY394 and pY493 respectively. The putative tyrosine phosphorylated 

residue that Lyp dephosphorylates in Vav has not yet been mapped. We therefore 

used phospho-antibodies directed at specific residues in Lyp substrates to understand 

whether or not, during an integrin signal, target phospho-sites of Lyp are 

phosphorylated. 
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5.1 Optimising a protocol for integrin signalling 

 

Signalling experiments can be performed in many different ways, which include using 

beads coated with ligand/antibody, agonistic antibodies (or crosslinking) or 

immobilised ligand/antibody on a coverslip. Each of these approaches has its 

advantages and disadvantages. For example, using an antibody cross-linking approach 

will invariably produce a large and robust signal, but the relevance of such an approach 

might be questioned due to artificial, non-reversible clustering of receptor that would 

not occur in a physiologic setting.  In addition, small changes in signalling, that might 

occur as a result of a single base change might be missed because such a large and 

robust signal might lead to maximal responses that are not permissive to 

understanding the fine tuning of signal transduction regulation. Thus, cross-linking may 

be a viable approach in understanding signalling components involved in a given 

pathway, but does not reflect the composition or arrangement of signalling 

intermediates when a receptor is engaged by an actual ligand. 

In this project, it was possible to use actual integrin ligands, thus bypassing the need to 

use agonist antibodies or antibody cross-linking. The integrin ligands – such as ICAM-1, 

VCAM-1 or fibronectin – were immobilised onto coverslips over which T cells can 

migrate. This approach greatly facilitated a biochemical dissection of actual migrating T 

cells, and in doing so, a more realistic reflection of signalling pathways evoked in 

response to integrin ligation. In addition, small changes in signalling might also be 

readily detected, which is important if more subtle differences in integrin signals are to 

be detected when comparing the effects of Lyp-R620 and Lyp-W620. 
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5.2 Integrins signal through a common module in T cells. 

 

To investigate the phosphorylation status of Lck, ZAP-70 and Vav in migrating T cells, 

analysis of total cell lysates was performed by blotting with anti-protein as well as 

phospho-specific antibodies directed to these signalling intermediates. All of these 

candidates have been shown previously to interact either directly or indirectly with 

Lyp. By coating coverslips with different types of integrin ligands that bind to different 

integrins, it was possible to dissect whether or not there were any differences in 

signalling between two integrin subfamilies (β1 and β2 integrins). T cells were plated 

onto fibronectin (β1), VCAM-1 (β2) or ICAM-1 (β2) coated cover-slips, and after 20 

minutes excess cells were removed and the cells were directly lysed on the plate 

(Figure 5.1).  As a control, cells were plated onto poly-L-lysine (PLL).  Analysis of total 

cell lysates demonstrated that Lck is phosphorylated at residue pY394 upon integrin 

engagement, with a 2 fold increase in phosphorylation detected (Figure 5.1A and B), in 

good agreement with the data from Chapter 3 (Figure 3.10B). In addition, ZAP-70 was 

phosphorylated at residue pY493, and demonstrated a 3-4 fold increase in 

phosphorylation (Figure 5.1 C and D), while VAV was phosphorylated at pY174, with a 

4 fold increase seen in phosphorylation (Figure 5.1 E and F). Thus, in response to 

integrin ligation, Lck, ZAP-70 and VAV are phosphorylated at residues that are 

associated with protein activation. Interestingly, Lck had a high level of basal pY394 

phosphorylation, which increased modestly (~2 fold), but ZAP-70 and Vav appeared to 

undergo greater changes in inducible phosphorylation (3-5 fold).  Activation, as 

determined by inducible phosphorylation of signalling intermediates, appears to be 

similar for the different integrin ligands tested, suggesting that signalling machinery is 

shared downstream of different integrin receptors. 
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Taken together, integrin signalling in T cells leads to activation of Lck, ZAP-70 and VAV, 

as determined by inducible phosphorylation. The temporal aspects of Lck, ZAP-70 and 

VAV phosphorylation were next investigated.
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Figure 5.1: Lyp substrates are phosphorylated when integrins engage their 

counterligand.  Plates were coated with integrin ligands fibronectin (10ug/mL) VCAM 

(3.5ug/mL), ICAM (3.5ug/mL) or PLL as a control (0.01%). T blasts were then plated 

onto ligands and after 20 minutes excess cells were washed off and platebound cells 

were lysed. Lysates were resolved on SDS-PAGE gels and phospho-antibodies against 

Lck (A), ZAP-70 (B) and VAV (D) were used to investigate relative phosphorylation 

between PLL and ICAM-1 as quantified in B, C and D respectively. 
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5.3 Signalling is sustained in T cells migrating on fibronectin, VCAM and ICAM-1 

 

The temporal profile of Lyp substrate phosphorylation was next investigated by plating 

cells for different periods of time and then investigating phosphorylation by western 

blotting (Figure 5.2). Lyp substrate phosphorylation was detectable for periods of up to 

60 mins. These experiments suggested that phosphorylation of Lyp substrates was 

sustained so long as integrin was engaged with its counter-ligand.  To confirm the 

specificity of signal transduction, ICAM-1 induced phosphorylation of Lck and Vav was 

tested in the presence of an anti-ICAM-1 antibody that masks the binding site 

recognised by LFA-1 (the first globular domain within the N-terminus of ICAM-1). These 

experiments demonstrated that by blocking ICAM-1, the signal was almost completely 

abolished (Figure 5.3).  

 

Together, these experiments demonstrated that the substrates of Lyp are 

phosphorylated in response to integrin engagement, and that this phosphorylation 

was sustained over a long period of time. The sustenance of such a signal might be 

misleading, and this was probably due to employing western blotting, a technique that 

can only detect the “average” phosphorylation within a T cell population displaying a 

certain post translational modification. The signalling is predicted to be dynamic, with 

increasing or decreasing levels of tyrosine phosphorylation on signalling intermediates 

like Lck, ZAP-70 and VAV occurring in specific locales within the cell to allow for 

coordinated locomotion. In this context, Lyp may contribute to the dynamic regulation 
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of signalling intermediates. The direct association between Lyp and its target 

substrates in control and stimulated T cells was next evaluated. 
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Figure 5.2: Lyp substrates phosphorylation is sustained in migrating T blasts. The 

experiment was performed as in figure 5.1 only lysates were harvested at 20, 40 and 60 

minutes following the plating of cells onto integrin ligands or PLL. 
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Figure 5.3: Blocking ICAM-1 inhibits LFA-1 signalling. Plates were coated with PLL 

(0.01%) or ICAM-1 (3.5ug/mL) overnight at 4C, washed once and then incubated with 

5ug/mL anti-ICAM-1. Following 3 washes in PBS, cells were then plated for 30mins, 

lysed and probed for pYLck and pYVav with tubulin as a control. 

 



185 

 

 

5.4 Lyp associates with phospho-proteins when T cells migrate on ICAM-1 

 

Many enzymes require that their substrate is appropriately modified in order for 

interaction to occur (the so called “lock and key” theory). Studies investigating the 

requirement of Lyp to engage Lck and ZAP-70 clearly demonstrate that interaction is 

predicated on the phosphorylated motifs that Lyp targets (Clarke 2007). Presumably 

conformational changes and substrate topology play a role in allowing Lyp to engage 

substrate, although this has never been directly demonstrated. Given these 

requirements, an experiment to demonstrate that Lyp was associated with its 

phospho-substrates was undertaken. 

Lyp was immunoprecipitated from cells immobilised on PLL or cells migrating on ICAM-

1. The resulting immunoprecipitates were resolved by PAGE and anti-phosphotyrosine 

specific antibodies used to probe for associated phosphoproteins in immobilised 

versus migrating cells. Figure 5.4 demonstrates that when T cells migrate on ICAM-1, a 

strong and inducible signal was observed in the form of a ladder of seven 

phosphorylated proteins and three fainter bands, providing evidence to suggest that 

Lyp engages directly (or indirectly) with its substrates in migrating T cells;  only one 

single phosphoprotein of 50kDa was detected in immobilised cells. Of the bands 

detected, 4 resolved to the size of proteins known to interact with Lyp. These bands 

resolved at 50kDa, 56kDa, 70kDa and 118kDa, molecular weights very similar to those 

of Csk, Lck, ZAP-70 and Vav, respectively. Phospho-antibodies that specifically 

recognise phosphorylated Lck, ZAP-70 and VAV (no pY-Csk antibodies are currently 
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available) were then employed to confirm the results from the total-phosphotyrosine 

blots performed on Lyp immunoprecipitates.  
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Figure 5.4: Lyp engages phosphorylated proteins when T cells engage migrate on 

ICAM-1. T blasts (PHA stimulated + IL-2 for 10 days) were plated onto PLL or ICAM-1 

and after 30mins cells were lysed on the plate and Lyp was immunoprecipitated. The 

resulting immunoprecipitate was resolved using SDS-PAGE and an antibody recognising 

phosphorylated tyrosine motifs was used to detect any tyrosine phosphorylated 

proteins within the immunoprecipitate. A total anti-Lyp antibody was then used as a 

control to show equivalent amounts of Lyp had been captured. 
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5.5 Lyp targets phosphorylated Lck, ZAP-70 and VAV when T cells migrate on ICAM-1 

 

Lyp dephosphorylates proteins at their activatory tyrosine residues. In this context, 

three signalling scenarios could be envisaged where Lyp may be important. Scenario 

one might involve Lyp tonically inhibiting signal in resting cells to ensure that basal 

levels of phospho-tyrosine  are held in check in the absence of receptor engagement. 

Scenario two is that Lyp may be an important regulator of active signalling, insuring 

that active signals do not overshoot, which may lead to inappropriate responses or 

cellular pathology. Finally, Lyp may be an important regulator of signal shutdown or 

termination. Of course, none of these scenarios are mutually exclusive.   

Co-immunoprecipitation experiments of Lyp from immobilised T cells versus migrating 

T cells might give some indication of when Lyp is targeting substrates and therefore an 

indication of when, during signal transduction, its function is required. When 

comparing the interaction of Lyp with pYLck, pYZAP-70 and pYVAV in immobilised cells 

versus migrating cells, Lyp was interacting strongly with its substrates only when T cells 

were migrating on ICAM-1 (Figure 5.5). At all time points, over the course of 5 

experiments, there was a strong association of Lyp and its substrates so long as LFA-1 

was engaged, suggesting that Lyp may be actively regulating Lck, ZAP-70 and Vav when 

signals were being transduced through LFA-1. The fold change in Lyp substrate 

interaction was much higher than the fold change in phosphorylation on Lyp 

substrates in the total cell lysates, with an average fold change of 7.7, 10.8 and 9.4 for 

pY394 Lck, pY493 ZAP-70 and pY175 Vav, respectively.   
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In immobilised cells, there was detectable signal indicating basal levels of Lyp-

substrate interaction in non-signalling cells, but this was modest relative to the signals 

detected in migrating cells. Importantly, the phosphorylation status of the Lyp 

substrates appeared to be important for Lyp-substrate interaction as indicated by the 

highly phosphorylated residues on Lck (pY394), ZAP-70 (pY319 and pY493) and Vav 

(pY174).   This correlated well with total protein, which, in line with previous reports, 

might suggest that Lyp-substrate interaction can be directly correlated with substrate 

phosphorylation. These experiments provided direct evidence that the Lyp 

phosphatase interacts with its phosphorylated substrates, specifically phosphorylated 

pools of Lck, ZAP-70 and VAV in migrating cells.  
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Figure 5.5: Lyp engages Lck, ZAP-70 and Vav when T cells migrate on ICAM-1. T blasts 

(PHA stimulated + IL-2 10 days) were plated onto PLL or ICAM-1 coated plates, were 

lysed at 0, 20, 40, 60 minute timepoints and Lyp was immunoprecipitated. Phospho-

specific antobodies were then used in combination to probe for pY394 Lck, pY493 ZAP-

70 and pY174 Vav. Total Lck and ZAP-70 was then probed for, followed by an anti-Lyp 

probe to demonstrate equal loading. Quantification was undertaken by densitometry 

of specific bands and expressed as a ratio of phospho-specific protein to total Lyp 

protein for each signaling intermediate. 
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The results were confirmed by performing immunoprecipitations of Lyp substrates and 

then blotting for Lyp.  Analysis of Csk, Lck, ZAP-70 and VAV immunoprecipitates 

demonstrated increased association with Lyp when T cells migrated on ICAM-1 (Figure 

5.6). In contrast, Lyp did not associate with the TCRzeta chain  in  either non-migrating 

or migrating T cells. These experiments demonstrate that Lyp actively targets a subset 

of its substrates when T cells migrate on ICAM-1.  
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Figure 5.6: Lyp interacts with a subset of its substrates when T cells migrate on ICAM-

1. T blasts (PHA stimulated + IL-2 10 days) were plated onto ICAM-1 or PLL for 30 mins, 

cells were lysed on the plate and  and Zeta chain, Csk, Lck, ZAP-70 and Vav were then 

immunoprecipitated and resolved by SDS-PAGE. An anti-Lyp antibody was then used to 

blot (top panel). Bottom panel demonstrates equal loading of immunoprecipitated 

proteins. A small aliquot from each immunoprecipitate was run on SDS-PAGE gels and 

total protein captured was detected using anti-zeta, anti-Csk, anti-Lck, Anti-ZAP-70 and 

anti-Vav antibodies. 
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5.6 Stoichiometric changes in the LFA-1/Lck/ZAP-70/Vav complex when T cells 

migrate on ICAM-1  

 

The dynamic changes in Lyp-substrate interactions when T cells migrate prompted 

further biochemical analysis of LFA-1 and the association of this integrin with Lyp 

substrates.  Thus, LFA-1 was immunoprecipitated from immobilised and migrating T 

cells and immunoprecipitates were then subjected to immunoblotting with antibodies 

directed at Lck, ZAP-70 and VAV.  

These experiments indicated that LFA-1 appears to be constitutively associated with 

Lck, an association that showed a ~4 fold increase when T cells migrated on ICAM-1 

when compared to PLL (Figure 5.7).  In addition to the recruitment of more Lck to LFA-

1 when T cells migrate, these experiments demonstrated that ZAP-70 was also 

recruited and was heavily phosphorylated on the pY493 residue, with ~7 fold increase 

in signal over that documented for cells immobilised on PLL. Thus, it appears as though 

the association of these signalling intermediates with LFA-1 correlated with their 

phosphorylation status.  
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Figure 5.7: ZAP-70 and Lck associate with LFA-1 when T cells migrate on ICAM-1. T 

blasts (PHA stimulated +IL-2 10 days) were plated on PLL or ICAM-1 for 30 mins, lysed 

using Triton x-100, and LFA-1 was immunoprecipitated. The immunoprecipitate was 

resolved by SDS-PAGE and the membranes were probed with anti-pY493 ZAP-70 

followed by total Zap-70 and total Lck. LFA-1 was blotted for to ensure comparable 

protein capture. 
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Similar experiments were then undertaken to explore the association of Vav with LFA-

1 in migrating cells.  In contrast to Lck and ZAP-70 being recruited, Vav on the other 

hand dissociated from LFA-1, as indicated by a reduction in band intensity of 87%.  This 

suggests that active integrin signalling is associated with dissociation of Vav from the 

LFA-1 signalling complex (Figure 5.8).  Consistent with this finding were the results of 

immunoblotting with a phospho-specific antibody recognising pY174 on Vav, 

demonstrating a clear decrease in phospho-Vav signal in the LFA-1 complex when T 

cells migrate. Vav undergoes a shift in mobility from 90kDa to 118kDa when 

phosphorylated at pY174 and so it was possible to determine the total pools and the 

phosphorylated pools using the total antibody, although the total antibody was 

nowhere near as sensitive at picking up phospho-Vav when compared to the phospho-

antibody.  
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Figure 5.8: Vav dissociates from LFA-1 when T cells migrate on ICAM-1. T blasts (PHA 

stimulated+IL-2 10 days) were plated onto PLL or ICAM-1 for 30 mins, cells lysed and 

LFA-1 was immunoprecipitated. The precipitates were run on SDS-PAGE gels and 

probed with anti-pY174Vav and anti-pY319 ZAP-70 followed by total ZAP-70 and Vav 

antibodies. Finally, total LFA-1 was probed for to ensure equal protein capture. 
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These experiments revealed that whilst a small amount of unphosphorylated Vav was 

associated with LFA-1 (at levels detected only just above that of isotype control 

antibody), there were no changes in the stoichiometry between these pools and LFA-1. 

Instead, an already phosphorylated species of Vav was highly associated with LFA-1 in 

cells immobilised on PLL, and this pool appeared to dissociate when T cells migrated.  

As a control, pY319 ZAP-70 was blotted for simultaneously and the dynamics of LFA-1 

association were found to occur in the complete opposite direction. Thus, Lck and ZAP-

70 appear to associate with LFA-1 in migrating cells, and this event was found to be 

associated with the release of a phosphorylated Vav from an actively signalling LFA-1 

complex.  

 

5.7 Lyp and Csk associate with LFA-1 when T cells migrate on ICAM-1 

 

To understand whether or not Lyp and Csk formed a part of the LFA-1 signalling 

complex in migrating cells, LFA-1 immunoprecipitates were analysed for Lyp and Csk 

expression (Figure 5.9).  Under PLL conditions, there was some association of Lyp and 

Csk with LFA-1 while Lyp and Csk displayed increased association with LFA-1 in 

migrating cells, with a 2.8 and 2.5 fold increase respectively, when compared to PLL.  
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Figure 5.9: Csk and Lyp are recruited to LFA-1 when T cells migrate on ICAM-1. T blasts 

(PHA stimulated+IL-2 1o days) were plated on PLL or ICAM-1 for 30 mins, cells were 

lysed and LFA-1 was immunoprecipitated. Immunoprecipitates were resolved by SDS-

PAGE and Csk and Lyp were probed for. LFA-1 was then probed for to ensure equal 

loading of protein. 
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The recruitment of these signalling intermediates that negatively regulate the pathway 

might represent an important mechanism by which dynamic phosphorylation at the 

receptor level is regulated. Given the average phospho-intensities demonstrated on 

blots due to population dynamics, a situation where many different permutations of 

kinases and phosphatases making up a mature signalling complex can be envisaged, 

some of which are actively being negatively regulated by phosphatases, whilst other 

signalling complexes might contain mainly active kinases that propagate and maintain 

signals in a region specific manner.  

5.8 LFA-1 and Lyp co-localise in migrating T cells 

 

LFA-1 staining patterns were compared with Lyp staining patterns in migrating T cells 

by confocal microscopy. LFA-1 showed a punctate staining that was relatively 

homogenously distributed around the cell, consistent with the idea that LFA-1 is highly 

expressed, is located at the cell membrane and is regulated through conformational 

changes rather than large changes in protein redistribution. LFA-1 and Lyp co-localised 

at the leading and lagging edge of T cells. These data indicated that Lyp may be 

specifically regulating signal transduction events initiated by LFA-1 at the leading and 

lagging edge of the cell.  
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Figure 5.10: LFA-1 and Lyp co-localise in migrating T cells.  T blasts were plated onto 

ICAM-1, fixed and stained with anti-Lyp and anti-LFA-1. Images were acquired by Dr 

Lena Svensson.  
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5.9 Lyp co-localises with Csk, Lck, ZAP-70 and VAV in migrating T cells. 

 

Given that Lyp co-immunoprecipitates with Lck, ZAP-70 and Vav when T cells migrate 

on ICAM-1 it became important to understand where these interactions might be 

occurring (Figure 5.11a). Using total antibodies, Lck, ZAP-70 and Vav expression was 

found to be distributed throughout the cell with some evidence of accumulation at the 

leading and lagging edge, where co-localisation with Lyp was clearly evident, 

suggesting that their regulation by Lyp might be confined to specific regions of the cell, 

mainly at the back and the front of the cell.  

Next, phospho-antibodies were used to understand where the active pools of 

phosphorylated Lck, ZAP-70 and Vav were located in migrating cells. Interestingly, the 

phosphorylated species of these signalling intermediates were also confined to the 

leading and lagging edge of migrating T cells, where they could be found co-localised 

with Lyp (Figure 5.11B).  

 

Taken together with the biochemical data demonstrating interactions between Lyp 

and the substrates investigated by immunofluorescence here, it appeared as though 

activated pools of Lyp substrate, as demonstrated by phospho-specific antibodies, 

were localised to the leading and lagging edge of migrating T cells, in areas where Lyp 

localised, suggesting that Lyp was actively regulating the phosphorylated substrates at 

the leading and lagging edge of migrating T cells. 
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Figure 5.11 Lyp co-localises with Lck, ZAP-70 and Vav when T cells migrate on ICAM-1. 

T blasts (PHA stimulated+IL-2 10 days) were plated onto ICAM-1 and after 30 mins were 

fixed, permeabilised and stained with an anti-Lyp antibody in combination with either 

total Lck, ZAP-70 or Vav (A) or with anti-Lyp in combination with phospho-antibodies 

directed at pY419 src, pY493 ZAP-70 and pY Vav. Images were acquired by scanning 

confocal microscope. Scalebar=10µm 

 



204 

 

 

5.10 The R620W SNP leads to increased phospho-ERK1/2 activity when LFA-1 binds 

ICAM 

 

To better understand the effect of the binding mutation in Lyp on integrin signalling, 

studies were undertaken using RR620, RW620 and WW620 variants in genotyped 

individuals, which represented individuals who did not have the SNP (RR), who were 

positive for one copy (RW) or were homozygous for the SNP (WW). I chose to use ERK 

phosphorylation as a read-out for integrin signalling because I reasoned that a 

downstream readout of integrin engagement will more likely demonstrate differences 

due to the amplification cascades associated with signalling. Small upstream receptor 

proximal signalling events are measurable by western blot, but I reasoned that any 

small upstream changes might be amplified downstream of the signalling pathway. 

These experiments demonstrated that individuals who carry one or more disease 

associated allele show increased ERK phosphorylation in a dose dependent manner. 

Thus individual’s heterozygous still showed significant increases in ERK 

phosphorylation as compared to individuals who were negative for the disease 

associated allele, but homozygous individuals showed an even more significant 

increase in ERK phosphorylation (Fig 5.12 A+B). To understand the consequence of a 

loss of the PTPN22 locus, ERK phosphorylation was monitored in mouse T cells that 

were deficient for PEP and was compared to WT mouse T cells. The PEP knockout mice 

were found to exhibit increases in ERK phosphorylation, essentially phenocopying the 

human mutation (Fig 5.12 C+D). These results strongly suggested that the human SNP 

associated with autoimmune disease was loss of function. 
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Figure 5.12 ERK phosphorylation is increased in the context of the W620 mutation 

and in PEP knockout T cells following integrin engagement. A+B) Human T cells (PHA 

stimulated+IL2 5 days) from genotyped individuals were plated onto ICAM-1 or PLL for 

20 mins and ERK phosphorylation was monitored by Western Blot and C+D) WT 

(PTPn22) and PEP knockout (PTPn22-/-) mouse T cells were stimulated (ConA+IL2 5 

days) and plated onto ICAM-1 or PLL for 20 mins and ERK phosphorylation was 

monitored by Western Blot. Representative of 8 experiments (Human) and 3 

experiments (Mouse). 
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Discussion 

 

The way in which information is transduced through an integrin when counter-ligand is 

engaged is an emerging field. How integrin function is regulated via conformational 

changes when receptors on the surface of T cells are engaged remains at the forefront 

of investigation. Examples of receptors that, when engaged, lead to changes in LFA-1 

conformation on T cells include the selectins, chemokine receptors and the T cell 

antigen receptor(Hogg, Harvey et al. 1993, Dustin, Bromley et al. 1997, Shamri, 

Grabovsky et al. 2005, Luo, Carman et al. 2007). The changes in LFA-1 conformation 

expose binding sites on the integrin which in turn allow for interaction with counter-

ligands such as ICAM-1. Once counter-ligand is engaged, a signal is transduced through 

the integrin itself leading to fundamental changes in cell polarisation and the 

activation of migration machinery (Dib 2000, Evans, Lellouch et al. 2011, Hogg, Patzak 

et al. 2011, Cimo, Ahmed et al. 2013).  

The use of Src and Syk family kinase members by integrins as proximal signalling 

intermediates that bind to the integrin cytoplasmic tails has been known for some time 

(Hynes 2002). Integrins are very complex proteins that are involved in diverse cellular 

functions. Studying the diverse function of integrins has been difficult due to the 

largely redundant functions within the integrin sub-families. An important aspect of 

integrin signalling biology is that of context. No single receptor on the cell surface will 

be exclusively engaged, and in the case of integrins, the co-engagement of other 

receptors may be very important in terms of the cellular outcome.  Defining how these 

associated pathways contribute to the regulation of signalling by integrins, not only 

with respect to the physical changes in integrin conformation but also the type of 
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signal that may be transduced when integrin is co-engaged with another receptor, 

remains a formidable challenge(Munger and Sheppard 2011). Conversely, how integrin 

engagement alters cellular programming and transmits environmental cues inside the 

cell remains virtually unknown, at least in terms of the biophysical events leading up to 

integrin being able to associate with signalling intermediates. To complicate matters 

further, it is clear that the same integrin expressed by different cell types utilises 

different signalling machinery (Abram and Lowell 2007). My investigations have 

focused only on migration, but the possibility that other integrin-mediated cellular 

responses are also regulated by Lyp remains a distinct and very real possibility, and 

worthy of further investigation. 

In the studies described in this chapter I adopted a reductionist approach, using a 

more physiologically relevant experimental system to induce a signal than that of 

antibody crosslinking of integrin on the cell surface. Purified integrin ligands were 

coated to a 2D surface over which T cells could migrate. This approach facilitated an 

interrogation of signalling dynamics that might more faithfully recreate integrin 

signalling in vitro when compared to that of the more “sledge hammer” crosslinking 

approach.   

Given that Lyp had previously been shown to interact with Lck, ZAP-70 and Vav in 

substrate trap experiments (Wu, Katrekar et al. 2006), it seemed a logical first step to 

explore the phosphorylation of these signalling intermediates downstream of integrin 

ligation to see how phosphorylation of Lyp substrates are regulated in the context of 

this in vitro model of migrating human T cell blasts.  

My experiments demonstrated that Lck, ZAP-70 and Vav were phosphorylated on 

residues associated with activation. The phosphorylation of these signalling 
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intermediates was independent of the integrin ligand used and suggested that a 

common core signalling module existed for a range of different integrins tested. One 

question that arises from these findings is how, if the signalling module appears to be 

essentially identical, can cells discriminate between different integrins being engaged? 

Moreover, other receptors, including chemokine receptors, interferon receptors and 

the antigen receptor in T cells have been shown to utilise a similar core module in 

response to receptor engagement (Petricoin, Ito et al. 1997, Micouin, Wietzerbin et al. 

2000, Ticchioni, Charvet et al. 2002, Kremer, Humphreys et al. 2003, Ahmed, Beeton et 

al. 2005, Kumar, Humphreys et al. 2006, Stevens, Simeone et al. 2010). The utilisation 

of the same signalling intermediates in completely different pathways remains 

enigmatic, although not completely inexplicable, and I predict that post translational 

modifications, spatial arrangement and signal kinetics could play a key role in 

instructing the cell as to what kind of receptors are being engaged. In addition, there 

may be other, integrin-specific signalling intermediates, confined to certain signalling 

pathways, that confer specificity of cellular responses.  

One particularly interesting aspect of the integrin signalling studies was that of the 

signal kinetic observed. Western blotting analysis indicated that phosphorylation of 

Lck, ZAP-70 and VAV was sustained in migrating cells over time. Western blotting, by 

its very nature, describes biochemical changes at a population level, and does not give 

information regarding individual cells, or indeed, the signalling events in sub-cellular 

compartments within individual cells. Given the highly dynamic nature of cell 

migration, it is tempting to speculate that whilst there are net changes in 

phosphorylation of signalling intermediates, the overall signal will be dynamic, with 

increases and decreases of phosphorylation within specific regions of cells that in turn 
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govern processes like membrane protrusion or contraction in response to cytoskeletal 

rearrangement downstream of integrin engagement.  

Lyp substrates are phosphorylated in response to integrin ligands, and the specificity of 

this response was also confirmed by blocking signalling in T cells migrating on ICAM-1 

with anti-ICAM-1 antibodies (Fig 5.3). To document the physical interactions between 

Lyp and its substrates Lck, ZAP-70 and Vav, co-immunoprecipitation experiments were 

carried out. In migrating cells, Lyp could be found to be associated with its substrates 

to a much greater extent that that observed in non-migrating T cells. This finding 

indicated that Lyp was actively targeting its substrate under migratory conditions, and 

providing the physical association required to mediate regulation of migration via its 

catalytic domain (Chapter 4).  Confocal studies, shown in Figure 5.11 were certainly in 

keeping with these findings.  In non-migrating cells, very little Lyp was associated with 

Lck and ZAP-70 with almost no signal from Vav, a component of the signalling pathway 

that we predict to be downstream of Lck and/or ZAP-70. Thus, whilst we cannot 

exclude that Lyp plays an important role in tonically regulating activatory signals, the 

stoichiometric changes in Lyp-substrate interactions in migrating T cells suggested that 

Lyp was targeting and presumably dephosphorylating its substrates in migrating cells. 

This targeting of signalling intermediates during an active signal would be in keeping 

with the requirement of dynamic phosphorylation to drive coordinated cell migration. 

Finally, to understand the relationship between Lyp, its substrates and LFA-1, 

additional co-immunoprecipitation experiments were performed. These experiments 

demonstrated Lck and ZAP-70 could be found readily associated with LFA-1 when T 

cells migrate, while Vav dissociated, as compared to non-migrating T cells. The 

association of Lck and ZAP-70 with LFA-1 was, to our surprise, correlated with Lyp and 
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Csk recruitment to LFA-1. The dissociation of Vav was inversely correlated with Lyp and 

Csk recruitment to LFA-1. Thus, a pictured starts to emerge wherein Lyp and Csk may 

be actively regulating signalling activity through interaction (directly or indirectly) with 

integrin cytoplasmic tails. It was noted from analysis of LFA-1 immunoprecipitates, all 

LFA-1, regardless of conformation and signalling intermediate composition, 

immunoprecipitated. This does not mean I immunoprecipitated all LFA-1 but rather 

that the pool of LFA-1 that I pulled down from was made up of various LFA-1 

conformations. 

The actual make-up of the individual signalling platforms associated with individual 

LFA-1 molecules in a spatially defined manner was lost. Thus it is possible that some 

LFA-1 molecules may have intermediates like ZAP-70 and Lck exclusively associated 

with it. It follows that many permutations of Lck, ZAP-70, Lyp and Csk may exist at the 

cytoplasmic tails of LFA-1, but the resolution of the method employed in this 

investigation does not allow for the monitoring of individual signalling complexes.  

 

Antibodies directed at specific LFA-1 epitopes that become exposed as conformational 

changes occur could be of great value to try and understand the relationship between 

the conformations of LFA-1 and the associated signalling complexes that arise from 

conformational changes (low to intermediate to high avidity) which have been 

reported to occur in response to integrin ligation and have been postulated to drive 

signal transduction (Landis, Bennett et al. 1993, Stephens, Romer et al. 1995).  

The dissociation of Vav from LFA-1 on the other hand, might suggest that Lyp regulates 

Vav in a different cellular compartment, especially in light of the fact that Lyp is 
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targeting Vav as demonstrated by co-immunoprecipitation experiments. These results 

raise the interesting possibility that Lyp is regulating multiple nodes of the signal 

transduced via LFA-1, both at the integrin tails themselves and within another cellular 

compartment containing Vav. 

Together, these results strongly suggest that Lyp was targeting phosphorylated Lck, 

ZAP-70 and Vav in actively migrating T cells, and that Lyp could target substrates 

associated with LFA-1 or not associated with LFA-1.  

Finally, I was able to demonstrate that ERK phosphorylation was increased in human 

individuals harbouring the disease associated SNP and that this increase in ERK 

phosphorylation was mirrored in the mouse PEP knockout cells, indicating that the 

human mutation may be a loss-of-function. ERK has previously been shown to be 

activated in response to integrin ligation, and that its activation in T cells is Lck 

dependent (Cimo, Ahmed et al. 2013). In contrast, ERK activation is highly dependent 

on ZAP-70 phosphorylation when TCR is engaged. Perhaps the differential activation of 

ERK by integrin versus TCR might then lead to a specific ERK induced cell programme 

consistent with the receptor requirements. I chose to investigate ERK because I 

reasoned that because of the way signal amplification tends to work, small upstream 

changes can lead to large changes in downstream effectors. ERK has also previously 

been shown to be an important regulator of cell migration (Roskoski 2012). In healthy 

T cells, the consequence of ERK activation through integrins has not been studied, 

however, there appears to be a prominent role of ERK activation and T cell migration in 

malignancy (Naci and Aoudjit 2014). Experiments leading to the understanding of how 

ERK contributes to T cell migration in healthy cells are required but will most likely 

yield very interesting results. 
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Chapter 6                                                                                                   
Nanoscale organisation of Lyp 
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Super-resolution imaging of Lyp 

 

To date, no data exist in the literature describing the nanoscale organisation of 

intracellular protein tyrosine phosphatases. Utilising Total Internal Reflection 

Microscopy, coupled with Stochastic Optical Reconstruction Microscopy (TIRF-STORM), 

the nanoscale organisation of Lyp proximal to the cell membrane was investigated in T 

cells migrating on ICAM-1, and compared with T cells immobilised on PLL. The 

resolution of the images acquired adopting this technique far exceeds that of 

conventional microscopy (~200nm) by surpassing the diffraction limit, thus allowing 

the localisation of individual molecules within 15-25nm of one another.  

Diffraction limited microscopy produces images of a distribution of fluorophores that 

excite and emit simultaneously. Such an approach limits the resolution of the image 

because the overlapping point spread functions of individual fluorophores make it 

impossible to accurately determine with high precision the location of molecules 

within ~200nm of each other, even when using TIRF microscopy which illuminates the 

sample in one plain (Axelrod 1981). The exact resolution in a system that relies on 

diffraction-limited imaging depends on the wavelength (λ) of light and the numerical 

aperture (NA) of the microscope lens. These are related by equation 1:   

 

For typical values of wavelength (488 nm) and NA (1.45), this gives a resolution of 205 

nm. Super-resolution techniques that break this diffraction limit can be achieved in 

several ways(Habuchi 2014). Here, single molecule imaging was achieved via STORM, a 
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technique that takes advantage of the ability to collect information pertaining to the 

positioning of individual fluorophores by temporally separating the fluorophore’s 

emission from that of its neighbours(Rust, Bates et al. 2006, Heilemann, van de Linde 

et al. 2008). The stochastic activation of a sparse subset of fluorophores allows for the 

identification of non-overlapping point spread functions.  Two-dimensional Gaussian 

fitting can then be used to find the centre of each emission, which equates to the X 

and Y coordinate of the emitting fluorophore. The stochastic emission of fluorophores 

is achieved by ensuring that at any given time most molecules cannot emit light, and 

by taking advantage of long lived, non-emitting molecular triplet states, in this case of 

alexa647. This small organic dye has chemical properties that, when imaged in the 

presence of an oxygen scavenging buffer, prolongs the triplet or “dark” state by 

forming a thiol adduct that can be unformed using the same excitation beam.  It 

follows that this fluorophore can excite and stay in the triplet state for a prolonged 

time before returning to the ground state. This cycle leads to the characteristic blinking 

of individual fluorophores over time. The X and Y coordinate list that results from 

centroiding imaged PSFs from each stochastically activated flourophore produces an 

unconventional image based on spatial point patterns rather than pixel values that 

represent the number of detected photons in any given sample region. STORM data 

can therefore best be described as a spatial point pattern dataset, and as such requires 

a different statistical analytical approach to understand the relationship between 

individual localisations, as compared to conventional microscopy. 

To analyse spatial point patterns, we collaborated with Dr Dylan Owen, who has 

tailored an already existing algorithm to analyse sets of molecular coordinates that 

lack homogeneity, a phenomenon termed “clustering”(Ripley 1977, Ripley 1979, Perry 
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2004). This was attractive and potentially highly relevant to my work since I reasoned 

that signalling molecules might operate dynamically, in spatiotemporal terms, through 

mechanisms involving clustering and de-clustering.  The algorithm, put simply, relies 

on the drawing of a fixed size perimeter around a given molecular coordinate in which 

the surrounding molecules are counted and scored. Individual molecular scores for 

molecules within a specific region can then be interpolated to represent the spatial 

heterogeneity in the form of a coloured pseudomap. Many parameters like the 

percent of molecules found in clusters, the number of molecules per cluster, cluster 

diameters and molecule counts can also be derived from the analysis to better 

understand how molecules are behaving under different conditions – in this case 

integrin-dependent migration.  In addition, Ripley’s K-function was used to plot curves 

describing the clustering of molecules over increasing areas. This analysis is less biased, 

since a preselected radius used to score molecules in the algorithm might over or 

underestimate clustering by using a fixed spatial scale during the analysis.  

 

The experiments outlined below describe for the first time the dynamics of clustering 

of PTPN22/Lyp during cell migration in response to integrin signalling in primary 

human T cell blasts. 

 

6.1 Lyp de-clusters upon engagement of LFA-1 in migrating T blasts. 

 

A biochemical dissection of Lyp as an integrin signalling intermediate, described in 

previous chapters of this thesis, suggested that when human T cells migrate, Lyp can 
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more readily target phosphorylated substrates such as Lck, ZAP-70 and Vav. It was 

therefore of particular interest to understand whether or not there were any spatial 

changes in terms of the way in which the phosphatase was organised that might 

facilitate substrate regulation. There are currently no identifiable reports of single 

molecule mapping of an intracellular protein tyrosine phosphatase. On the other hand, 

kinases have been demonstrated repeatedly to cluster upon activation through surface 

receptors that, when engaged, favour kinase post-translational modification or re-

localisation. The prediction, therefore, is that clustering is an activatory event, allowing 

signalling intermediates to interact in sub-cellular signalling hubs. My hypothesis was 

that Lyp would also cluster when actively targeting its substrates. 

Whole cell images of cells immobilised on PLL or migrating on ICAM-1 suggested that 

Lyp was highly clustered when T cells were not signalling though LFA-1 (fig 6.1). The 

clusters in the PLL condition appeared larger than those seen when T cell migrated on 

ICAM-1. Upon engagement of LFA-1 by ICAM-1, the large clusters appeared to form 

smaller clusters with Lyp localisation being much more diffuse.  It was clear that Lyp, in 

contradiction to my working hypothesis, was de-clustering at the membrane in 

response to LFA-1 engagement. 

Application of the clustering algorithm permitted more detailed, quantatitive analysis 

of clusters. Figure 6.2 illustrates representative heat maps of clustering in the front 

regions of a cell corresponding to the lamellipodium. In cells immobilised on PLL, Lyp 

was highly clustered. Upon LFA-1 engagement of ICAM-1, these large and dense 

clusters appeared to disperse into smaller clusters. Ripley’s K-function, was then 

plotted, comparing Lyp organisation under PLL conditions with ICAM-1. The analysis 

clearly demonstrated that Lyp was indeed de-clustering in response to LFA-1 
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engagement. Taken with the biochemical results, this dataset suggested that Lyp 

declusters when T cells migrate on ICAM-1 and that this de-clustering event is 

temporally associated with substrate interaction. To further explore these large 

clusters, the cluster maps generated through analysis of specific cell regions were 

examined more closely. 
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Figure 6.1: Stochastic Optical Reconstruction Imaging (STORM) reveals differences in 

the nanoscale organisation of Lyp in migrating T cells. Primary T cells were plated onto 

PLL or ICAM-1, fixed after 20 minutes, stained with mouse anti-Lyp or goat anti-Lyp and 

then incubated with an anti-mouse secondary conjugated to AF647 and imaged in an 

oxygen scavenging buffer. Images acquired by TIRF-STORM. Here, the mouse anti-Lyp 

antibody staining patterns are demonstrated. 
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Figure 6.2: Lyp appears to de-cluster when T cells migrate on ICAM-1. 

(A) Heat maps of 2X2µm regions demonstrating Lyp clustering at the leading edge of 

migrating cells (ICAM-1) or on PLL 

(B) Ripleys K Function demonstrates that Lyp is more clustered on ICAM-1. Ripleys K 

function was calculated using at least 25 regions per cell corresponding to the leading 

edge. Total of 10 cells imaged. Representative of at least 5 experiments 
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6.2 The dynamics of Lyp declustering at the membrane. 

 

One important question about the clusters observed in the PLL conditions was 

whether they were actually breaking up when T cells were signalling through LFA-1. 

This question is of particular interest because there are currently no reports of such an 

event occurring downstream of receptor engagement in the cytoplasm specifically for 

phosphatases. The possibility that the large clusters of Lyp may be vesicular in nature 

might also explain how compartmentalisation allows for efficient and rapid release of 

molecules in a given region containing substrates that require regulation without the 

need for mobilisation from one cellular compartment to another. One other 

membrane embedded phosphatase, CD45, has been reported to be negatively 

regulated through homotypic dimerisation, although others have contested through 

the crystallization of CD45 that the occlusion of the catalytic pocket via dimerisation is 

“impossible” due to the molecular arrangement when homotypic interaction 

occurs(Majeti, Bilwes et al. 1998, Majeti, Xu et al. 2000). Thus, an open question is ……. 

“do phosphatases, as opposed to kinases, de-cluster in response to receptor ligation”? 

Figure 6.3 depicts a cross-section of cluster maps at the cell membrane in which it 

appears that the de-clustering of Lyp may have been captured. The top panel shows 

typical examples of cluster maps of Lyp on PLL, demonstrating large and dense 

clusters. The bottom panel, on the other hand, shows what appear to be molecules 

dispersing out from a central point in a spreading-like fashion, despite these cells also 

being immobilised on PLL. This dispersion was rare, occurring in 3% of all PLL regions. 

Strikingly, this process of dispersion of Lyp molecules from a single cluster was not 
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obviously predictive of other surrounding clusters breaking up, suggesting that if it is 

true that the large clusters are breaking up, the regulation of this process may be 

intrinsic to the cluster. In other words, if one cluster breaks up, the surrounding cluster 

need not follow suit. 
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Figure 6.3:  Patterns of Lyp clustering and declustering in immobilised (PLL) T cells. 

(A) An anti-Lyp stain on resting T cells demonstrating what appears to be de-clustering 

in a specific region 

(B) Heatmaps of Lyp in resting cells demonstrating de-clustering 

 



223 

 

 

Such an observation might suggest that a biological process such as calcium 

mobilisation, which is known to regulate vesicular processes, may not necessarily drive 

this particular process(Wickner and Schekman 2008). The idea that Lyp may be bound 

within vesicles, and that vesicle fusion with the plasma membrane is often driven by 

calcium dependent processes, prompted an experiment where a calcium flux was 

artificially induced via ionomycin. Under conditions of calcium mobilisation, no de-

clustering was observed (Fig. 6.4).  One prediction from this result is that because Lyp 

is an intracellular phosphatase, membrane fusion may not be required, and so perhaps 

a completely novel and hitherto undiscovered mechanism , involving the intracellular 

“dumping” of membrane bound vesicles independent of the plasma membrane itself. 

An alternative explanation is that Lyp is interacting homotypically or associated with 

scaffolding proteins, and a signal leads to it exiting of Lyp molecules from the cluster.  

Three dimensional constructs of Lyp clustering at the membrane when cells are on PLL 

suggest that they are very spherical and uniform, which may perhaps indicate a 

molecule that is somehow caged. The large Lyp spheres must through some unknown 

mechanism be positioned at the membrane. Accordingly, I explored the possibility that 

the microtubule network and/or the actin cytoskeleton motor proteins were involved 

in this positioning process. 
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Figure 6.4:  Declustering of Lyp in T cells is not dependent on calcium mobilisation. T 

cells were plated onto PLL and after 20 minutes were treated with ionomycin (1µg/mL) 

for 2 minutes and were then fixed and stained with an anti-Lyp antibody to monitor 

clustering. Images were acquired by TIRF-STORM. 
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The microtubule network and motor proteins play an important role in trafficking 

cargo around the cell. Experiments using nocodazole and blebbistatin indicated that 

both the microtubule network and motor proteins associated with the actin 

cytoskeleton were responsible for positioning Lyp clusters at the membrane at steady 

state. We could detect very few, or no molecules in the TIRF zone when treating T cells 

with these inhibitors (Figure 6.5). Thus, these large clusters may be trafficked around 

the cell in a microtubule and motor protein dependent manner. These results support 

the notion that Lyp clusters are contained or that Lyp molecules are interacting with 

one another or other proteins, facilitating the concerted movement of Lyp cargo along 

the microtubule network, delivering them in close proximity to the cell membrane. 

More experiments using confocal microscopy are needed here to find out exactly 

where Lyp is preferentially localising when these inhibitors are used. In addition, other 

inhibitors that have similar effects should be investigated to corroborate these data. 

Nevertheless, these experiments might provide some insight into Lyp dynamics and 

the importance of the microtubule and actin networks in positioning Lyp at or near the 

cell membrane. 
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Figure 6.5:  Lyp clustering and localisation at the plasma membrane is dependent on 

the microtubule network and associated motor proteins. T cells were plated onto PLL, 

treated with blebbistatin or nocodazole for 30 mins, fixed, stained with anti-Lyp and 

then imaged by TIRF-STORM.  
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Finally, to investigate Lyp cluster dynamics in real-time, primary T cells were 

transfected with a Lyp-GFP construct and were then dropped onto PLL. The cells were 

then imaged using TIRF-structured illumination (TIRF-SIM). Live cell imaging of a Lyp-

GFP fusion protein demonstrated that clusters of Lyp were truly dynamic in their 

behaviour, in that they were not static. Interestingly, the large clusters appeared to 

display movement, however this movement was restricted laterally and instead it 

appeared as though the clusters were too-ing and fro-ing perpendicular to the plane of 

the membrane, as measured by the fluorescent intensity of the clusters over time 

Figure 6.6. This experiment in live cells formally demonstrated the existence of Lyp 

clusters at the membrane in T cells that were not obviously participating in signal 

transmission (or its regulation), faithfully reproducing with a fusion protein, the 

patterning of Lyp staining with antibodies. 
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Figure 6.6: Lyp clusters display little lateral movement but appear to move into and 

away from (to-ing and fro-ing) the membrane. VIDEO ATTACHED TO THESIS ON CD. 

(A) T Blasts were transfected with Lyp-GFP, rested for 24h in medium containing no IL-2 

and then plated onto PLL. Videos were acquired by structured illumination microscopy 

(B) Fluorescent tracking of single clusters reveals “To-ing and Fro-ing”. Individual 

clusters were encircled using a fixed perimeter and the fluorescent intensity of the 

cluster was tracked over time. Example of one cluster. 1 frame per second was 

collected. 
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6.3 Organisation of the disease associated Lyp mutant at the membrane of migrating 

cells. 

 

Super-resolution microscopy may be useful in understanding how single amino acid 

changes in proteins that are associated with disease might display altered localisation.  

Using blood samples from the TwinsUK cohort at King’s College London, it was feasible 

to use T cells from healthy donors homozygous for the disease associated variant 

R620W to understand how a mutation in the binding domain of Lyp alters its 

behaviour at the membrane, negating the need for overexpression studies and artefact 

arising from the genetic manipulation of T cells. Here, for the first time, super 

resolution was applied to the understanding of a single nucleotide polymorphism that 

associates with autoimmune disease. For all of the following experiments, parameters 

were fixed and all experiments were run in parallel, such that a direct and unbiased 

analysis of genetic variants of Lyp could be assessed. 

T cell blasts derived from four Lyp-W620 homozygous and four Lyp-R620 homozygous 

donors (8 donors in total) were imaged migrating on ICAM-1. Under PLL conditions T 

cells from a total of eight Lyp-W620 homozygous and eight Lyp-R620 homozygous 

donors (total of 16 donors) were imaged. Two different antibodies were employed for 

the imaging, a mouse monoclonal antibody and a goat polyclonal antibody, for 

comparative purposes. 

Figure 6.7 shows whole cell images and cluster maps from individual donors that were 

either homozygous for the disease associated Lyp-W620 or Lyp-R620.  On PLL, as 

previously demonstrated, T cells from Lyp-R620 donors displayed highly organised Lyp 

clusters at the membrane, while cells from Lyp-W620  donors appeared to display 
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similar molecular organisation at the membrane. Given that Lyp localises mainly to the 

leading edge of migrating T cells, analysis was focused on regions at the leading edge 

where co-localisation with Lck, ZAP-70 and Vav was previously shown to be most 

prominent (see Chapters 3 and 5). It was noted that very little Lyp could be detected in 

the midcell zone, with some Lyp detectable in the lagging edge of migrating cells, 

consistent with images acquired by confocal imaging. The leading edge, for the 

purposes of this study, was defined by the Lyp exclusion zone within the midcell 

region, and all regions of interest in the leading edge were taken from areas in front of 

the exclusion zone. When T cells migrated on ICAM-1, Lyp-R620 recapitulated our 

previous results in that the large clusters were no longer apparent, and instead a more 

diffuse Lyp patterning was observed, comprising smaller clusters that were not very 

dense when normalised to the rest of the molecules within the region of interest; this 

was confirmed by the cluster heatmaps.  T cells from the Lyp-W620 donor appeared to 

follow a similar pattern. However, upon closer inspection of the apparent number of 

localisations of Lyp-R620 versus the Lyp-W620, we noted a deficit of molecules in Lyp-

W620 expressing T cells. In addition, the heat maps suggested that the smaller clusters 

observed in the Lyp-W620 were more clustered, as displayed by the orange to red 

colours centred in the middle of the clusters, with the Lyp-R620 being more blue or 

less clustered. The overall organisation of the Lyp, however seemed similar, with no 

stark differences between the genotypes. To understand whether or not these maps 

translated into meaningful differences, a quantitative analysis was performed where 

the number of molecules detected, the percentage molecules clustered, the number of 

clusters, the number of molecules per cluster and cluster size in the homozygotes 

versus the wild type donors could be directly compared. In addition, clustering was 

functioned by generating curves using Ripleys K functi
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Figure 6.7:  Cluster maps for Lyp-R620 and Lyp-W620 expressing T cells in conditions 

of immobilisation (PLL) or migration (ICAM-1). T cells from genotyped individuals were 

plated onto PLL or ICAM, fixed, stained with anti-lyp and imaged by TIRF-STORM. 

Representative whole cell images, individual localisations, heatmaps, binary cluster 

maps and zoomed regions. The individual localisations, heatmaps and binary maps are 

2X2µm regions. 
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6.4 Less Lyp-W620 can be detected at the leading edge membrane in migrating T 

cells. 

 

To assess the number of localisations at the leading edge of migrating T cells, regions 

of interest were selected and the number of molecules detected in these regions was 

calculated. Despite not being able to calculate the labelling ratio of antibody:protein, 

one might assume that all areas of the cell would be labelled similarly, and so any 

differences between the regions selected will represent actual protein abundance, or a 

good relative estimate thereof.  

On PLL, no significant differences in molecule counts between Lyp-R620 and Lyp-W620 

expressing T cells could be observed (Figure 6.8). This suggested that when cells 

weren’t signalling through LFA-1, a comparable amount of Lyp was present at the 

membrane, as demonstrated by two different anti-Lyp antibodies. In contrast, when T 

cells migrated on ICAM-1, a deficit of Lyp molecules appeared to occur in the leading 

edge of T cells from Lyp-W620 donors (mouse antibody=~20% less localisations, goat 

antibody=~30% less localisations). Thus it became apparent that under conditions of 

migration, where large clusters were much less apparent, there was an inability of Lyp-

W620 to remain at, or be recruited to, the membrane.  

To ensure Lyp expression was not affected by the mutation, anti-Lyp immunoblots 

were performed. These experiments demonstrated that there was no significant 

difference in Lyp expression, nor the ability of the antibody to recognise Lyp-R620 or 

Lyp-W620 . Thus it seemed a true deficit of molecules existed at the plasma membrane 

in migrating cells, while no such deficit could be detected under PLL conditions, 
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indicating that the machinery responsible for positioning Lyp at the membrane was 

unaffected, and that the mutation within the binding domain did not compromise Lyp 

localisation in the steady state. Furthermore, the data, together with the results of my 

biochemical signalling experiments, indicated that the binding domain mutation might 

compromise Lyp function mainly during the process of active signalling.  
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Figure 6.8: Lyp-W620 does not localise efficiently to the membrane in migrating T cell 

blasts. 

R620 = homozygous for major allele 

RW620 = heterozygous 

W620 = homozygous for minor allele 

(A) Mouse anti-Lyp number of localisations detected 

(B) Goat anti-Lyp number of localisations 

(C+E) Whole cells lysates made from genotyped cells demonstrate no difference in Lyp 

expression using a mouse anti-Lyp and Goat anti-Lyp antibody 

(D) Pooled experiments from 6 experiments demonstrating no difference in Lyp 

expression between RR, RW and WW donors. 

N=at least four donors for each genotype 

6.5 Disease associated Lyp-W620 is more clustered at the plasma membrane when T 

cells migrate 
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To identify whether or not a mutation in the binding domain of Lyp influenced 

clustering of Lyp at the membrane, the percentage of molecules participating in 

clusters was investigated. Given that Lyp declusters when LFA-1 binds to ICAM-1, and 

that biochemical analysis of the Lyp-W620 mutant indicated hyperphosphorylated Vav 

and Erk when T cells migrate on ICAM-1, I wanted to test whether declustering was 

somehow perturbed. If the disease associated Lyp failed to de-cluster or if its 

localisation at the membrane was affected once exiting a cluster, the percentage of 

Lyp participating in clusters might in some way be altered.  

Under PLL conditions, no differences in the percentage of molecules participating in 

clusters could be detected using a goat and a mouse antibody (Figure 6.9). When T 

cells migrated on ICAM-1, a dramatic reduction in Lyp clustering was observed with 

~10 fold decrease in numbers of molecules participating in clusters.  Small but 

significant differences in clustering between Lyp-R620 and Lyp-W620 were observed 

when T cells migrated on ICAM-1 (mouse≈3% increase, goat≈2% increase p=0.01 and 

p=0.0024 respectively). These small but significant differences indicated that more Lyp-

W620 in the regions of interest analysed was participating in clusters when compared 

to Lyp-R620.  

The biochemical-imaging correlate of Lyp targeting substrate when it de-clusters, and 

the hyperphosphorylation of Erk in Lyp-W620 expressing T cells, could indicate that 

either Lyp was failing to de-cluster properly, or, upon Lyp de-clustering, the free 

molecules were unable to be retained at the membrane. Clearly, from these results, 

both Lyp variants were declustering, as demonstrated by a large drop in clustering 

when cells migrated on ICAM-1 as compared to the highly clustered status of Lyp in the 

PLL conditions. The differences in the percentage molecules participating in clusters 
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were very subtle in the ICAM-1 conditions between the two genotypes. This lead us to 

believe that the cluster parameters could be comparable between the genotypes when 

the T cells migrated, and that actually the percentage molecules participating in cluster 

values were in fact increased due to the lack of monomers.  This is in good agreement 

with Figure 6.8 that shows a clear deficit of molecules at the leading edge of migrating 

T cells. Thus, the parameters of individual clusters were investigated to understand 

whether or not the result was due to a true increase in clustering behaviour, or a 

deficit in free molecules. 
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Figure 6.9: Lyp-W620 is more clustered at the membrane in migrating T cells. 

(A) Mouse anti-Lyp: percentage of molecules participating in clusters 

(B) Goat anti-Lyp: percentage of molecules participating in clusters. 

N=at least four donors for each genotype 
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6.8 Lyp clustering is unperturbed by a mutation in a polyproline binding domain 

 

The parameters of the clusters identified in T cells from Lyp-R620 and Lyp-W620 

donors might indicate whether there exist differences in the ability of Lyp to cluster. 

Despite being unsure at this point about the mechanisms behind cluster formation, it 

was possible to objectively analyse individual clusters identified by the algorithm to 

understand the number of molecules participating in individual clusters and the size of 

individual clusters.  

The analysis revealed that, despite large molecule deficits observed in Figure 6.8, the 

total number of molecules participating in clusters, as well as the diameters of the 

clusters were not statistically different between genotypes (Figure 6.10 and 6.11). On 

PLL it was clear that the average size of clusters was larger than that of cells migrating 

on ICAM-1. This correlated well with molecule counts per cluster, which were 

decreased in migrating T cells. Thus, we conclude that a mutation within the binding 

domain of Lyp does not lead to perturbations in clustering behaviour, but rather 

perturbations in the way in which the monomers were behaving and failing to localise 

at the membrane. The 20-30% decrease in molecule counts observed must therefore 

be due to a loss of Lyp monomers due to it not being retained near the membrane 

zone. 
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Figure 6.10: The size and cluster composition of Lyp-R620 and Lyp-W620 are similar 

at the leading edge. 

(A) Cluster diameter as calculated using mouse (left) and goat (right) antibodies 

(B) Molecules per cluster as calculated using mouse (left) and goat (right) 

antibodies 

N=at least four donors for each genotype 

 

Finally, to understand whether there was a difference in the number of clusters 

present at the plasma membrane in PLL immobilised and migrating cells we 
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enumerated the number of clusters per region of interest. Given that there were no 

differences in the nature of clusters, as demonstrated by size and number of molecules 

participating in clusters, an increase or decrease in the number of clusters might 

indicate whether there was a deficit or accumulation of clusters at the plasma 

membrane in migrating cells. 

As expected, there were no differences between genotypes in terms of the number of 

clusters found at the plasma membrane when T cells were immobilised on PLL, in 

keeping with no changes in any of the other parameters investigated (Figure 6.11). On 

ICAM-1 there was an increase in the number of clusters in the Lyp-W620 as compared 

to Lyp-R620, but this difference did not reach statistical significance (p=0.07). In 

contrast, the goat antibody suggested that Lyp-W620 had a statistically significant 

increase in the number of clusters per region as compared to the Lyp-R620 (p=0.0004). 

The difference in these findings might be reconciled by the specificity of the two 

antibodies, and the importance of such a finding when looking more closely at the 

data. The mouse monoclonal antibody was clearly more able to pick up clusters as 

demonstrated in Figure 6.1, where on PLL ~60% of Lyp was clustered, whereas the 

goat only detected around ~10% of molecules clustered. It is therefore tempting to 

speculate that the goat antibody might not be as specific. When looking over the 

regions investigated for numbers of clusters, it was obvious that the goat antibody was 

able to detect very few clusters in T cells from both the Lyp-R620 and Lyp-W620 

donors when migrating, as compared to the mouse antibody. Over a total of 60 regions 

for the Lyp-R620 donors, only 7 regions contained clusters, amounting to a total of 12 

clusters. 28 of the 53 regions contained clusters in Lyp-W620 expressing T cells. Upon 

closer inspection, the average number of clusters per region for the mouse anti-Lyp 
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antibody was 0.2, whereas for the goat antibody 0.8 clusters per region were detected. 

Given that the mouse antibody detected no differences in number of clusters, and the 

actual small difference in the goat antibody investigations (less than 1 cluster/field of 

view for both genotypes), the statistically significant result of the goat antibody was 

questioned in terms of its biological significance. Thus, it might be concluded that 

there were no differences between the two genotypes when investigating the number 

of clusters per field of view, although we cannot completely exclude the possibility 

that, as a result of a deficit of molecules at the plasma membrane, the cell is trying to 

compensate for a lack of regulation, leading to more Lyp clusters being 

recruited/delivered to the membrane. 
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Figure 6.11: The number of clusters is slightly increased in W620-Lyp donors 

(A) Mouse anti-Lyp: number of clusters per region 

(B) Goat anti-Lyp: number of clusters per regions 

N=at least four donors for each genotype 
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6.10 Ripleys K function reveals that Lyp-W620 is more clustered than Lyp-R620 at the 

membrane in migrating T cells. 

 

Ripley’s K-function can be used to generate curves that demonstrate the level of 

clustering over different length scales. By generating these curves for T cells from each 

genotype, we could directly assess the length scale over which the clustering was 

maximal.  Another advantage to doing this analysis is the ability to discern from the 

curves, as one moves from the centre of clusters outward, how quickly the molecular 

density decreases. The analysis so far has demonstrated that there are no differences 

in the nature of the clusters between the two genotypes, with cluster size and number 

of molecules per cluster being comparable. By plotting the Ripley’s K-function, a more 

unbiased approach that does not rely on a preselected radius to analyse clustering or 

the thresholding of a pseudo-coloured map following an interpolation of molecular 

scores to visualise and quantify cluster formation, it was possible to interpret Lyp 

clustering as a function of length.  The hypothesis that Lyp was unable to localise at the 

membrane following de-clustering could be supported from The Ripley’s curves 

generated. Figure 6.12 demonstrates that R620-Lyp was less clustered than W620-Lyp. 

The peak of the curve was higher for W620-Lyp indicating that regions analysed in the 

front of the cell were more clustered in comparison to the R620-Lyp regions, where 

the peak was below that of W620-Lyp. Interestingly, the gradient of the curve was 

significantly steeper for Lyp-W620 versus Lyp-R620. An increase in the rate at which 

clustering is lost as one moves from the centre of the cluster outward might be 

interpreted in the following way, and may explain why the algorithm used views the 

Lyp-W620 as being more clustered despite the actual clusters themselves being 



244 

 

comparable in nature. The molecule deficits demonstrated at the membrane in Lyp-

W620 expressing T cells occurred only when cells were signalling, and not when 

immobilised on PLL. These molecule deficits were correlated with a large de-clustering 

event, in which less clustered Lyp could be detected at the membrane in both 

genotypes when T cells migrated on ICAM-1. If the molecules leaving the cluster were 

unable to be retained at the membrane one would expect a steeper gradient on the 

down slope when plotting Ripley’s K -function. This is because, any cluster of 

molecules surrounded by less monomers is by definition more clustered. Thus, if 

molecules were not being retained at the membrane within the TIRF zone, Lyp clusters 

in Lyp-W620 expressing T cells will be more clustered on a unit measurement scale, 

despite them actually being very similar to the wild type clusters. If this were the case, 

the gradient on the Ripley’s curve would be expected to be steeper as one moves away 

from clusters, because molecules are being lost, and so cluster values would be 

increased. This phenomenon is directly demonstrated from the generation of Ripley’s 

Curves, and points to an inability of Lyp-W620 monomer retention at the membrane 

when T cells migrate on ICAM-1. In fact, the Ripleys downslope gradient is twice as 

high for Lyp-W620 as compared to Lyp-R620.  These data might suggest that upon 

exiting a cluster, Lyp is not retained at the membrane, but the clusters themselves 

appear to be unperturbed by the same mutation.  



245 

 

 

 

 

Figure 6.12: Lyp-W620 clusters to a greater extent at the membrane than Lyp-R620 

when T cells migrate on ICAM-1. Ripleys K-function reveals that R620W-Lyp is more 

clustered than R620-Lyp donors across all experiments. The Ripleys K function was 

calculated using at least 25 leading edge regions per donor using the mouse-anti-Lyp 

antibody. Representative of at least 3 donors per genotype.  
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6.11 Modelling reveals that molecules outside of the cluster can dictate the 

downslope of Ripley K function. 

 

In generating Ripley’s curves for Lyp-R620 and Lyp-W620 clustering, a striking 

difference in the linearity of the curves was observed when T cells migrated on ICAM-

1. The curves demonstrated that Lyp-W620 had a much higher gradient as compared 

to the Lyp-R620. The difference in the Ripley’s curves was only observed under 

conditions where the cell was actively integrating signals through LFA-1, suggesting 

that it was under signalling conditions that a difference in Lyp behaviour could be 

observed. Thus, I sought to model molecular distributions of molecules by investigating 

how different datasets impacted the nature of the Ripley’s curve. This work was done 

with Sophie Minoughan, a second year physics student. 

To model how the size of a cluster made up of a fixed number of molecules changes 

the shape of the Ripley’s curve, random datasets were generated using randomly 

distributed data plots in the software package Excel. A normal distribution function 

produced points within a range of 0-3000, with the clusters centred within the middle 

of the range scale (x=1500nm, y=1500nm) with varying standard deviation (100-500 in 

increments of 100). The total number of events per region totalled 1000, with 500 of 

these events being assigned to a cluster, whilst the rest of the events were randomly 

distributed throughout the region, with the only stipulation being that they must lie 

within the range of 0-3000 in order to remain within the set region (0-3000). The 

Ripley’s curves corresponding to smaller standard deviations had a higher peak than 

plots corresponding to a higher standard deviation, as expected (Figure 6.13). The 
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standard deviation essentially dictated the density of the cluster, whilst events outside 

of the cluster remained similar, which in turn dictated the amplitude of the curve. This 

indicates a higher instance of clustering correlates to a more pronounced peak in the 

Ripley’s K function. 
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Figure 6.13: Mathematical modelling of the downslope of Ripleys K Function. A-D) 

Clusters of different sizes were generated using a normal distribution function in Excel, 

and (E) the Ripleys K function was plotted from these different size clusters. 1000 

points were used per region. Data generated with Sophie Minoughan 

L(t) 

t 
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In order to determine the effect of monomers on the Ripley’s K function, the model 

was altered to produce different amounts of monomers or events outside of the 

cluster. The cluster parameters were kept constant, with 500 molecules making up a 

cluster with a standard deviation of 100, whilst the number of background events was 

decreased from 500 to 0 in decrements of 100. A ratiometric change in number of 

events inside a cluster versus the number of events outside the cluster is indicated 

above the graphs (Figure 6.14). The results showed that the peaks of the Ripley’s K 

function became more defined when there were fewer background monomers; they 

also showed the downward slope of the curve to approach linearity as the background 

monomers decreased. These observations were further characterised using the R2 

values of the downward slopes. The R2 values are closer to 1 for the cases of fewer 

background monomers, thus indicating a linear relationship (Figure 6.15). These results 

indicate an observed linear downward slope of the Ripley’s K function that 

corresponds to a sample containing small amounts of background monomers.   Finally, 

when the background was removed from the initial cluster regions, the Ripley’s K 

functions for each of the regions showed the peak to be higher and more prominent in 

the absence of background monomers (Figure 6.16). This result could be seen 

regardless of the standard deviation of the clusters (data not shown). 
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Figure 6.14: Mathematical modelling of clustering dynamics. A) The number of 

molecules per cluster was fixed and different number of background monomers were 

used to understand the influence of points outside of clusters on the downward slope 

of Ripleys K function as depicted in (B). Data generated with Sophie Minoughan 

L (t) 

t 
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Figure 6.15: Mathematical modelling of clustering dynamics. The downward slopes 

from Fig 6.14 are plotted with the percentage molecules participating in clusters 

denoted on the graph, with the corresponding R
2
 values of each curve. Data generated 

with Sophie Minoughan 

 

t 

L (t) 
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6.12 Lyp-W620 is associated with increased LFA-1 clustering when T cells migrate on 

ICAM-1 

 

A key step in integrin biology leading to firm adhesion is the clustering of integrin 

complexes at the cell surface, termed avidity maturation. Avidity maturation occurs 

when integrins cluster and is a process that is thought to be partly driven through 

integrin signalling and mechanotransduction, although the actual steps of this process 

are only just beginning to be understood. In the following experiments, I investigated 

LFA-1 clustering in migrating T cell blasts expressing Lyp-W620. The experimental set 

up mirrored exactly that of Lyp super resolution imaging, with the exception that a 

primary antibody directed specifically at the CD11a chain of LFA-1 was used to monitor 

clustering of LFA-1 at the surface of fixed, unpermeabilised cells.  

Figure 6.17 demonstrates representative examples of T cells from genotyped donors 

migrating on ICAM-1, with heat maps demonstrating regions under higher 

magnification corresponding to the front of the cell. It was clear from the heat maps 

that LFA-1 was more clustered in T cells expressing Lyp-W620, and that this clustering 

was very striking. 
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Figure 6.17: LFA-1 cluster maps at the leading edge of migrating T cells expressing 

Lyp-R620 or Lyp-W620. T cells from genotyped individuals were plated onto ICAM-1 

and then fixed after 10 mins and stained with a mouse anti-LFA-1 antibody followed by 

incubation with an anti-mouse secondary conjugated to AF647. Images were acquired 

by TIRF-STORM. A) LFA-1 clustering in R620-Lyp donors and B) LFA-1 clustering of Lyp-

W620 
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A more detailed quantitative analysis revealed that there were no differences in the 

amount of LFA-1 present at the surface of Lyp-R620 or Lyp-W620 expressing T cells 

(Figure 6.18). Thus, despite similar levels of LFA-1 detected at the surface of cells, the 

percentage of molecules participating in clusters between the genotypes displayed 

more than a two-fold difference. The number of LFA-1 molecules participating in 

clusters increased from 19% in Lyp-R620 expressing T cells to 43% in Lyp-W620 

expressing T cells (Figure 6.19).  In addition, the sizes of the clusters were increased, 

more clusters could be detected and more molecules per cluster were clearly observed 

associated with Lyp-W620 as compared to Lyp-R620 (Figure 6.20-22). The plotting of 

Ripley’s K function demonstrated that across all donors, LFA-1 in Lyp-W620 expressing 

T cells was more clustered, and in line with our model, displayed a more linear 

downward slope suggesting that there were fewer monomers of LFA-1, because most 

of the LFA-1 was sequestered into clusters (Figure 6.23).  
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Figure 6.18: Quantitative analysis of LFA-1 molecules at the leading edge of Lyp-R620 

and Lyp-W620 expressing T cells. 

(A) Pooled data from 3 R620-Lyp donors and 3 W620-Lyp donors demonstrating 

molecule counts 

(B) Individual experiments from (A) demonstrating molecule counts for individual 

donors 

 



256 

 

 

Figure 6.19: Analysis of LFA-1 clustering at the leading edge of Lyp-R620 and Lyp-

W620 expressing T cells. 

(A) Pooled data from 3 R620-Lyp donors and 3 W620-Lyp donors demonstrating 

percentage molecules in clusters 

(B) Individual experiments from (A) demonstrating percentage molecules clustered for 

individual donors 
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Figure 6.20: Diameter of LFA-1 clusters at the leading edge of Lyp-R620 and Lyp-W620 

expressing T cells. 

(A) Pooled data from 3 R620-Lyp donors and 3 W620-Lyp donors demonstrating 

diameter of clusters 

(B) Individual experiments from (A) demonstrating diameter of clusters for individual 

donors 
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Figure 6.21: Quantitative analysis of LFA-1 clusters at the leading edge of Lyp-R620 

and Lyp-W620 expressing T cells. 

(A) Pooled data from 3 R620-Lyp donors and 3 W620-Lyp donors demonstrating 

number of clusters 

(B) Individual experiments demonstrating from (A) demonstrating number of 

clusters for individual donors 
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Figure 6.22: Quantitative analysis of LFA-1 molecules clustering at the leading edge of 

Lyp-R620 and Lyp-W620 expressing T cells. 

(A) Pooled data from 3 R620-Lyp donors and 3 W620-Lyp donors demonstrating 

molecule in clusters 

(B) Individual experiments  from (A) demonstrating molecules in clusters for individual 

donors 
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Figure 6.23:  Ripley’s curves describing cluster patterns for LFA-1 in Lyp-R620 and Lyp-

W620 T cells migrating on ICAM-1. 

A total of 25 regions per donor were used to generate Ripleys K function for R620-Lyp 

and R620W-Lyp donors. 
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These results strongly suggest that LFA-1 clustering is associated with fewer Lyp 

monomers at the plasma membrane of migrating T cells, providing further evidence 

that a mutation in the binding domain of Lyp perturbs negative regulation of integrin 

signalling manifest by increased adhesion complexes at the cell membrane, and 

increased adhesion and deregulated migratory function. 
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Discussion 

 

Super resolution imaging can provide spatial information pertaining to the 

arrangement of molecules at the cell membrane (Sherman, Barr et al. 2011, 

Williamson, Owen et al. 2011, Brown, Dobbie et al. 2012). Here, I used a mode of super 

resolution imaging called STORM (Rust, Bates et al. 2006, Folling, Bossi et al. 2008, 

Heilemann, van de Linde et al. 2008) to better understand 1) the way in which Lyp is 

arranged at the cell membrane in resting and migrating primary T cells and 2) the 

consequence of a binding domain mutation on integrin clustering. 

Investigating migration, and in particular the migration machinery that resides within 

or proximally to the membrane, is well suited to the imaging approach taken here. It is 

noteworthy, however, that Lyp organisation more than 100nm away from the cell 

membrane into the cell was not investigated due to the complications that arise from 

background. These background issues mainly centre on the illumination of the whole 

sample rather than one plane of interest, leading to interference fluorescence from 

molecules outside of the plane of interest due to the beam path of the laser.  Thus, the 

organisation of Lyp within the cytoplasm requires further investigation. 

T cells migrate at very fast speeds, with velocities of up to 40µm/min. This made live 

cell super resolution by storm imaging technically challenging, due the number of 

localisations required in order to be able to build up an image consisting of enough 

localisations for analysis. For this reason, all imaging was undertaken using fixed 

migrating cell. An alternative method to STORM is the use of structured illumination 

(SIM); a technique that can acquire images much faster (Schermelleh, Carlton et al. 

2008, Rego, Shao et al. 2012).  Using SIM, it was possible to image live cluster dynamics 
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in T cells immobilised on PLL using a Lyp-GFP constructs. These data demonstrated 

that, in line with the results obtained by immunostaining, large clusters existed at the 

cell membrane (Figure 6.6 video 1). These videos demonstrated a very interesting 

dynamic of the large clusters observed. Instead of the clusters moving laterally, there 

appeared to be movement in the Z-plane, perpendicular to the membrane and glass 

slide, indicating that the clusters were “bobbing” in and out towards the membrane.  

 

Both the live cell imaging of a GFP fusion proteins and an immuno-stain indicated that 

large clusters of Lyp existed at the plasma membrane. A cluster analysis performed on 

cells immobilised on PLL indicated that Lyp existed in large clusters that contained, in 

some cases, thousands of molecules. When migrating on ICAM-1, the large clusters 

appeared to break up into smaller clusters that were less dense and many more 

molecules could be detected outside of clusters, suggesting that perhaps a gating 

mechanism existed whereby Lyp was in some way packaged at the membrane in a 

vesicle or contained in large clusters through interactions with scaffolding proteins or 

possibly even homotypic interactions. Currently, work is underway to understand 

whether or not lipid stains colocalise with these large clusters, which might suggest 

that the clusters are indeed packed and delivered to the plasma membrane along the 

microtubule network (figure 6.5). If it turns out that Lyp is indeed within a vesicle at 

the membrane, and that the vesicle somehow is “emptied” at the membrane, a 

completely novel way in which intracellular signalling molecules are regulated could be 

revealed.  
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Given that vesicles have been demonstrated to be controlled by calcium binding to 

synaptotagmins that then catalyse the formation of trans-SNARE complexes between 

two opposing membranes leading eventually to the release of vesicular components 

by membrane fusion (Wickner and Schekman 2008), calcium fluxing experiments were 

performed to investigate whether calcium signalling played a role in Lyp de-clustering. 

Experiments using ionomycin argue against calcium signalling as a driver of Lyp de-

clustering. On the other hand, experiments revealed that an intact microtubule 

network is required in order to deliver Lyp clusters into the TIRF zone. Given the 

increasing appreciation of sub-cellular compartments, and the reaction times needed 

for signal transduction events to occur, a vesicular mode of walling off Lyp from the 

rest of the cell whilst containing it within the immediate vicinity where its action will 

be required would provide an aesthetically plausible mechanism negating the need for 

recruitment of Lyp from more distal cellular compartments. Further studies are 

required to elucidate how Lyp forms these huge and dense clusters in order to 

understand how its function is regulated. It will be interesting to dissect exactly how 

these clusters are gated, to understand how the release of Lyp from these clusters 

occurs.  

The imaging of T cells from genotyped individuals revealed that differences between 

the Lyp-R620 and Lyp-W620 only became apparent when T cells migrated on ICAM-1. 

The large clusters observed in PLL conditions seemed, to our surprise, unaffected. This 

indicated that the binding mutation within the first polyproline domain was 

dispensable for steady state clustering. To further test the requirements for Lyp 

clustering under PLL conditions, truncation mutants that can be imaged and tested for 

clustering will be of great value. When cells migrated, the large clusters appeared to 
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de-cluster for both Lyp-W620 and Lyp-W620, but in the case of Lyp-R620, this led to 

the detection of more monomers not participating in clusters.  Based on my signalling 

studies the presence of monomers is associated with a state when Lyp interacts with 

its substrates (Chapter 5). Interestingly, the clusters that were present in the migrating 

T cells displayed no significant differences in size, composition or number (Figure 6.10-

6.12). These results argue that both under PLL and ICAM-1 conditions, clustering was 

intact. Instead of clustering perturbations, it appeared as though there was an inability 

of Lyp, once released from a cluster, to localise at the membrane. This result was 

surprising, and further studies are needed to understand the positional significance of 

Lyp at or near the membrane. To this end, co-localisation studies that can correlate 

positional information with regard to Lyp and its substrates will be key in 

understanding how the cluster dynamics of Lyp may regulate its ability to target and 

interact with its substrates.  

One finding during this project was the slow speeds at which the Lyp-W620 cells 

migrated on ICAM-1 under static conditions, as compared to the Lyp-W620. This 

finding was not in line with 1) knockdown experiments demonstrating that reducing 

total Lyp protein by 50% increases speeds of migration 2) the inability of the Lyp-W620 

to decrease speeds when over-expressed in T cells 3) increased signalling in the Lyp-

W620 carriers, and 4) the increased migration of Lyp-W620 expressing T cells under 

flow.  To reconcile these differences, LFA-1 stains were performed on migrating T cells 

expressing Lyp-R620 or Lyp-W620 T cells. LFA-1 clustering is an important step in the 

maturation of LFA-1 into firm adhesion complexes (Alon, Aker et al. 2003, Kim, Carman 

et al. 2004). Clustering might therefore be thought of as a correlate of signal strength. 

If it is the case that Lyp-W620 is a loss of function variant, LFA-1 clustering at the cell 
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surface of migrating T cells would be increased. In migratory conditions, this increase 

might then lead to slower speeds of migration due to increases in adhesion not 

allowing the cell membrane to move appropriately in response to force generation by 

the cytoskeleton. This effect may have been missed due to inefficient knockdowns and 

the overexpression of Lyp-W620 on a Lyp-R620 background. Indeed, I was able to 

show that clustering of LFA-1 in T cells from Lyp-W620 individuals was over twice that 

of Lyp-R620 expressing T cells. These results might suggest that LFA-1 signalling and 

function is not regulated in T cells from Lyp-W620 donors in the same way as Lyp-

R620, and that this effect may be due to signalling differences that result from having a 

mutation within the binding domain of Lyp leading to more LFA-1 clustering. In a more 

physiologically relevant setup, taking a shear flow approach to measure the ability of 

cells to adhere to ICAM-1 under conditions that mimic blood flow, indicated that in this 

context, the Lyp-W620 donors were indeed more able to adhere to ICAM-1, 

consolidating our LFA-1 clustering results. 

The super-resolution data was therefore completely in line with our previous findings, 

suggesting that Lyp-W620 is deficient in its ability to regulate signalling through LFA-1 

because of defective positioning at the membrane, leading to functional and 

biochemical disturbances once LFA-1 is engaged. The imaging data, and particularly the 

inverse relationship that appears to exist between Lyp monomers at the membrane 

and LFA-1 clustering dynamics, point toward Lyp-W620 being a loss-of-function 

mutation. 
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Chapter 7  Concluding Discussion 
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7.1 Lyp regulates multiple signalling pathways including LFA-1 

 

Here we present evidence that Lyp in humans, and the orthologue PEP in mice, is an 

integrin signalling intermediate.  Lyp was originally identified as interacting with 

membrane proximal TCR signalling proteins and so subsequently many studies chose 

to focus on the role of this phosphatase in antigen receptor signalling.  It has, however, 

become increasingly evident in recent years, that in fact Lyp may function downstream 

of many different receptors, indicating a more universal role in immune cell signal 

transduction than previously appreciated (Zhang, Zahir et al. 2011, Spalinger, Lang et 

al. 2013, Spalinger, Lang et al. 2013, Wang, Shaked et al. 2013, Maine, Marquardt et al. 

2014).  

Functional studies of Lyp in primary T cells migrating on ICAM-1 demonstrated that 

partly silencing Lyp gene expression can lead to increased speeds of migration and 

that, conversely, overexpression of the phosphatase inhibits the speeds at which cells 

migrate. The decreases in speeds observed appeared to be dependent on the catalytic 

activity of Lyp. Furthermore, genotyped T cells carrying the autoimmune disease 

associated Lyp variant also displayed altered speeds of migration. These functional 

studies, and many more that are currently in progress, set the stage for this project, 

and pointed to Lyp being a negative regulator of integrin signalling.  
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7.2 How does Lyp, Csk and PAG regulate signalling pathways? 

 

Precisely how Lyp regulates signalling pathways, apart from its obvious ability to 

dephosphorylate very specific tyrosine residues on substrates such as Lck and ZAP-70, 

remains somewhat obscure. Another negative regulator of receptor signalling –  the 

kinase Csk – has been shown to form a complex with Lyp (Cloutier and Veillette 1999). 

The complexing of these two signalling intermediates remains enigmatic, although the 

direct association is thought to be perturbed by the Lyp-R620W variant; does the 

complex potentiate the ability of Lyp to dephosphorylate its substrates? Does the 

complex allow for more efficient substrate interactions? Is this complex inhibitory? 

Conflicting data within the literature indicates that no consensus has been reached, 

with specific respect to when Lyp and Csk complex, and what this might mean in terms 

of signal cascade regulation (Fiorillo, Orru et al. 2010, Vang, Liu et al. 2012, de la 

Puerta, Trinidad et al. 2013).  

In resting and migrating cells, Lyp, Csk and PAG were co-localised, indicating that these 

signalling intermediates are either in close opposition to one another or possibly 

physically interacting. My experiments demonstrated that despite co-localisation of 

Lyp-Csk-PAG in both resting and migrating cells, complexing of Lyp and Csk is notably 

increased after receptor stimulation, as demonstrated by co-immunoprecipitation 

(Chapter 3), indicating that in resting cells, Lyp and Csk may be less physically 

associated. The increase of Csk-Lyp complexing was also associated with the 

dissociation of both Csk and Lyp from PAG, raising the interesting possibility that the 

function of this trimeric complex may be two fold and may differentially associate 
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under specific signalling conditions. What this implies is that the Lyp-Csk-PAG complex 

probably functions in both resting and signalling cells but the way in which it regulates 

under these two conditions will be different. Rather unexpectedly, it appears as 

though during an active signal, PAG plays less of a role in recruiting Lyp to the 

membrane than in resting cells.  

Perhaps an explanation of how the Lyp-Csk-PAG complex is operating can be gleaned 

from the super resolution data (Chapter 6).  When investigating the biology of Lyp 

using super resolution techniques, the staining patterns of Lyp in fixed and live resting 

cells, where large mobile clusters were observed, was inconsistent with the staining 

patterns of Csk, which in no way resembled Lyp staining (data not shown). 

Unfortunately, it was not possible to optimise the super resolution staining’s 

sufficiently to accommodate dual color imaging such that the results for both Lyp and 

Csk were robust enough for an analysis (eg too few localisations in one channel). 

However, independent stains for Csk alone strongly suggested that this kinase is 

unlikely to exist within the large Lyp clusters at a high stoichiometry; this would be 

completely in line with the biochemical findings. Dual color Csk and Lyp imaging will 

help to clarify this issue. Furthermore, in migrating cells, the large clusters appeared to 

de-cluster. I hypothesise that it is only after Lyp is released from the large clusters, 

when T cells migrate, that Lyp and Csk can then interact to form a complex. This 

interpretation may be compromised by the imaging modality used, however, because 

TIRF microscopy records events at the membrane only, and there may be important 

interactions between Lyp and Csk deeper within the cytoplasm, away from the 

membrane; this is in contrast to co-immunoprecipitation experiments which detect 

complex dynamics from whole cell lysates without any compartmental information 
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whatsoever. It is of course possible to fractionate lysates and then immunoprecipitate 

from cellular fractions, which in the future may be an interesting approach. Live cell 

imaging is, however, the preferential modality to truly observe the signalling dynamic.  

In addition, the biochemical data pointed to Csk dissociating from PAG, which in turn 

led to increases in pY505-Lck, presumably because of exclusion of Csk from lipid rafts, 

the microdomains rich in Lck, or the attenuation of Csk catalysis. The dissociation of 

PAG from Csk was reminiscent of the TCR pathway, where it has been demonstrated 

that these two molecules dissociate following TCR engagement (Torgersen, Vang et al. 

2001, Davidson, Bakinowski et al. 2003). If Csk can no longer position at the membrane 

via PAG it would be expected that a larger proportion would be cytoplasmic in 

migrating cells, although it is currently unclear which cellular compartment Csk is 

displaced to. The complexing of Lyp and Csk appears to occur when the integrin is 

actively signalling. These findings strongly suggest that pools of Csk and Lyp at the 

membrane of resting T cells are less associated, and that association is correlated with 

the declustering of Lyp following receptor stimulation; here, Lyp becomes more 

available for association with Csk. Interestingly, the declustering of Lyp was also 

observed in the context of an anti-CD3 stimulation which faithfully recapitulated the 

de-clustering seen when stimulating through integrins, with Lyp displaying even more 

declustering (data not shown). I propose a general mechanism whereby Lyp is 

regulated through its containment in large clusters at steady state. These large clusters 

appear to localise via the microtubule network. After stimulation, Csk partially leaves 

PAG rich domains and associates with de-clustered Lyp oligomers or monomers to 

generate a complex, the action of which remains to be studied. I do not know if the 

Lyp-Csk complex potentiates the individual phosphatase and kinase action of these 
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proteins. My preliminary experiments suggest that actually ZAP-70 and Vav are not 

complexed with Csk in migrating cells, but are complexed with Lyp, suggesting that the 

Lyp-Csk complex does not target these two signalling intermediates. The biology here 

is clearly very complex.  Further studies will be required to understand the nature of 

Lyp clusters, including the possibility that Lyp may be in vesicles or held together by 

protein-protein interactions that may be hetero or homotypic, and how, after 

stimulation, the Csk/Lyp complex remains localised to the membrane proximal “TIRF” 

zone . A model describing how Csk, Lyp and PAG might regulate Lck is presented in 

figure 7.1. 
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Figure 7.1. The Lyp-Csk-PAG complex regulates integrin outside-in signalling. A)in 

resting T cells, Csk and Lyp are associated with PAG, applying tonic negative signals on 

Lck (green=on, red=off). A pool of submembrane Lyp clusters is cargoed and positioned 

at the membrane, a process that may be microtubule dependent. When LFA-1 is not 

engaged by ICAM-1, the majority of Lyp is sequestered/packaged into clusters with 

some “free Lyp” at the membrane interacting with Csk.  B) When integrins are engaged, 

PAG is dephosphorylated, leading to Csk and Lyp dissociation, allowing for local 

increases in Lck activity. Lyp is released from large clusters and regulates signalling 

independently of PAG but may be associated with Csk at the membrane which may in 

some way facilitate its localisation/substrate interaction. The way in which Lyp, Csk and 
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PAG regulate signalling in resting cells versus cells signalling through integrin is 

quantitatively and possibly qualitatively different. 
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7.3 Lyp declusters to target its substrates 

 

In support of the inhibitory function of these large Lyp clusters at the membrane of 

resting T cells, is the finding that Lyp appeared to be highly associated with signalling 

intermediates only when T cells migrate. These results, when taken together, further 

suggest that the declustering of Lyp promotes interactions with phosphorylated 

substrates. One question often arising from these findings is why would a negative 

regulator be so active during the signalling event, it is a negative regulator, surely it 

should be “off” during an active signal? The answer to this question lies in the nature 

of regulation required in any given signalling context.   Cell migration is a highly 

dynamic process, and so one might predict that signals directing such a process would 

mirror the physical process itself; thus, signals should also be dynamic. Collectively, 

protrusion, contraction and receptor engagement govern cellular locomotion 

according to an oversimplified model. In any given locale within a cell, signalling 

intermediates might require rapid cycles of turning on or off, depending on the 

requirement of that locale to protrude, or to contract, or to remain stationary. Thus, 

whilst in migrating T cells net changes in phosphorylation occur, as demonstrated by 

western blotting of whole cell lysates, kinases and phosphatase are, in reality, in a 

dynamic equilibrium under resting conditions.  This steady state then shifts under 

conditions of receptor engagement leading to spikes of phosphorylation in certain sub-

cellular compartments.  

Although I have not been able to demonstrate experimentally the extent of dynamic 

phosphorylation events occurring in our experimental systems when T cells migrate, it 
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is very unlikely that a subset of kinases turns on through phosphorylation and then this 

same subset stays on until the cells stop migrating. Instead, different pools of the same 

signalling intermediate will be activated and inactivated forming complex feedback 

loops governed in part at least by receptors, kinases and phosphatases that in turn 

control specific cellular activity (Nika, Soldani et al. 2010, Schoenborn, Tan et al. 2011).  

Based on the available data, I propose that Lyp plays an important role in regulating 

the spatio-temporal activity of kinases, leading to changes in the tempo of signal 

transduction when absent, and shifting the dynamic equilibrium to a more “on” state 

during an active signal. Extending this idea into other signal transduction pathways, 

phospho- activity at the synapse of a T cell-APC conjugate has been shown to be 

sustained for hours, perhaps even days, and so this idea of regulating active signal 

ensuring it does not go unchecked could also hold true in the context of T cell receptor 

signalling, as well as many other signalling events (Huppa, Gleimer et al. 2003). It 

should also be said that the relative contribution of Lyp regulating steady state signal 

dynamics or indeed signal shutdown was not investigated in this project and may 

represent another important function of Lyp. Acutely inhibit-able Lyp constructs would 

be of great benefit to study the importance of Lyp in non-signalling cells, or perhaps a 

biosensor allowing phosphatase activity to be monitored. It would be interesting to 

monitor phosphorylation on Lyp substrates when Lyp is acutely inhibited, in the 

absence of receptor stimulation. One caveat associated with studying steady state 

regulation of a signalling is that of the real potential to generate artefact, because in 

vivo, cells are never rested or starved, and instead are constantly intercepting 

hundreds if not thousands of signals at a time. This was much food for thought, and 

plagued me throughout my PhD. To rest or not to rest, I now realise it depends on the 

question. 
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7.4 How is signal specificity achieved through the usage of similar signalling 

intermediates by different receptors? 

 

The question of signal specificity and cellular programming emerges not only from 

these studies, but from many others that have investigated pathways utilising TCR 

signalling intermediates (Stephens, Romer et al. 1995, Petricoin, Ito et al. 1997, 

Micouin, Wietzerbin et al. 2000, Ticchioni, Charvet et al. 2002, Kremer, Humphreys et 

al. 2003, Ahmed, Beeton et al. 2005, Kumar, Humphreys et al. 2006). How are the 

same signalling intermediates utilised by different receptors, leading to what appears 

to be a completely disparate response? Why do some receptors appear to 

heterodimerise? Some have tried to explain these differences by postulating that 

certain protein functions are evoked in response to receptor engagement through 

specific post-translational modification. For example, three studies (Cimo, Ahmed et al. 

2013, Lek, Morrison et al. 2013, Jenkins, Stinchcombe et al. 2014) have recently 

demonstrated that 1) inhibition of ZAP-70 catalytic activity does not impair adhesion 

and migration or the initial stages of synapse formation and 2) the catalytic loop of 

ZAP-70 is not phosphorylated in response to integrin ligation, and instead, it appears 

as though Y319 is specifically phosphorylated, and probably plays a role in recruiting 

PLCγ. Contrary to these studies, I found that ZAP-70 was phosphorylated at tyrosine 

493 which is associated with upregulation of catalytic activity. Unpublished data from 

the Hogg lab are in good agreement with my results (personal communication with 

Rachel Evans).  

My results, and those of others, suggest that pY493 is phosphorylated, but whether or 

not this phosphorylation is necessary for integrin signal transduction was not 

examined here or in the other studies performed. Perhaps the inhibitors used in the 
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aforementioned study allowed for enough residual catalytic activity allowing the signal 

to proceed. Another explanation might be that in the absence of ZAP-70 pY493 

phosphorylation, another protein can compensate for ZAP-70 catalytic activity. The 

finding by Ladbury et al of no phosphorylation of pY493 on ZAP-70 in response to 

integrin ligation might be explained by their experimental setup in which they were 

running lysates from TCR stimulations directly next to integrin stimulations. A TCR 

stimulation might lead to a greater amount of pY493-ZAP-70 which might develop on a 

blot faster than integrin stimulations, masking any phosphorylation in the integrin 

stimulation lanes. In addition, from personal experience, these antibodies can be 

difficult to use. One easy experiment that the Ladbury group did not perform was an 

evaluation of ZAP-70 phosphorylation by immunoprecipitation to ensure that the 

pY493 ZAP-70 antibody had large amounts of protein to bind to increasing the chances 

of detection of phosphorylation. It remains to be confirmed if this activity is actually 

required, and bearing in mind that adhesion and migration are not the only processes 

governed by integrin outside-in signals, other outcomes like certain T cell effector 

functions might need to be tested to fully resolve this issue. 

In considering how outside-in signalling proceeds following integrin engagement, I 

investigated the relationship between Csk and PAG. These experiments were inspired 

by recent work by Weiss and colleagues who demonstrated that by specifically 

inhibiting Csk in an acute setting, in the absence of a receptor stimulation, a signal 

cascade is initiated that resembles that of the TCR (and integrin) 

engagement(Schoenborn, Tan et al. 2011, Tan, Manz et al. 2014). What these studies 

really hint at is the idea that signalling pathways must be actively restrained in order to 

avoid harmful, uncontrolled activity, and that some of the initial events governing 
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signal initiation might involve the removal of negative regulators rather than the 

activation of inactive pools of signalling components associated with positive signals. 

Here, I find that PAG is dephosphorylated, and that Csk partially dissociated from PAG 

when it was in its dephosphorylated state. Importantly, I never detected complete 

dephosphorylation of PAG, suggesting a that pool of Csk was PAG associated and most 

likely regulating signals albeit not in a resting cell context. FRET studies investigating 

Src-Csk interactions in migrating cells have identified Src-Csk interactions in cellular 

protrusions, indicating an active role for the complex even in migrating cells 

(Vielreicher, Harms et al. 2007). However, the decrease in Csk-PAG association is 

correlated with decreases in Lck phosphorylation at the inhibitory site targeted by the 

Csk-PAG complex, suggesting that the overall conformational requirements of Lck in 

migrating cells is different and may be an intrinsic part of the migratory programme. 

Other than ZAP-70, the targets of Lck downstream of integrin signalling have not yet 

been thoroughly investigated, although preliminary data from our lab suggest that Lck 

rather than ZAP-70 directly targets Vav, which would be in keeping with reports of Vav 

activation by Ladbury, who used both Lck and ZAP-70 deficient Jurkats to demonstrate 

that Lck and not ZAP-70 is required for Vav phosphorylation. My opinion is that in 

order to understand the differences in the way in which signalling intermediates are 

shared amongst pathways will be through systematic investigation of post translational 

modifications and imaging of signalling hubs by way of super resolution techniques, as 

it most likely will be both post translational modifications and protein localisation (and 

indeed modification on other proteins) that might dictate downstream effectors, 

leading to specific responses. The null hypothesis here would be that there are no 

differences in signalling intermediate behaviour regardless of the receptor used to 
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evoke its activation. Perhaps it is the co-ligation of other receptors in parallel that 

might lead to specific responses if this is this case. 

 

7.5 Signalling through LFA-1 

 

Co-immunoprecipitation experiments suggested that Lck and ZAP-70 were recruited to 

LFA-1 in migrating cells. One question is whether these intermediates are acting in the 

immediate vicinity of LFA-1 or are activated at LFA-1 and then move to other cellular 

compartments in order to fulfil their function. Src family kinases have been shown to 

bind to integrin via their SH3 domain, which is conserved across all Src family 

kinases(Arias-Salgado, Lizano et al. 2003). This has not formally been demonstrated in 

T cells for Lck and LFA-1, but cross checking bioinformatics resources has revealed the 

presence of conserved residues in various integrin β family subunits, making it highly 

likely that Lck and LFA-1 interact via these conserved motifs. Perhaps more puzzling is 

the recruitment of ZAP-70. No ITAM motifs exist within the integrin chains that can 

recruit ZAP-70. In myeloid cells and neutrophils it has been shown that Syk, which has 

virtually identical domain organisation to ZAP-70, binds to ITAM containing adaptor 

proteins, and deletion of these adaptor proteins leads to disruption of outside-in 

signalling. Curiously, these adaptor proteins have never been demonstrated to bind 

integrin directly.  This can be interpreted in two ways: 1) The adaptor proteins may 

have very weak association with integrin and cannot be co-immunoprecipitated; 2) Syk 

is activated at the integrin tail and then binds to adaptor proteins subsequently. The 

extent to which Syk can be co-immunoprecipitated might indicate that the adaptor-Syk 

complex is not physically associated with integrin, and that Syk binding to integrin or 
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other integrin associated proteins precedes its association with adaptors. It is hard to 

imagine why adaptor proteins that anchor ZAP-70 directly to integrin might be lost in a 

co-immunoprecipitation (even with tagged adaptor proteins and therefore good 

antibodies) whilst ZAP-70 interaction via the same adaptor to which it is bound is not. 

There must exist a hierarchy of association, where the inability to detect certain 

proteins will be predicated on the detection of another binding partner. Whether an 

ITAM containing protein in T cells recruits ZAP-70 requires clarifying. Clearly, many 

more studies are needed to understand how ZAP-70 is recruited to LFA-1 and why it is 

recruited to LFA-1. 

In migrating cells, Vav dissociated from LFA-1. This was a somewhat surprising result. 

However, others have reported a similar relationship between other integrins and vav 

(Garcia-Bernal, Parmo-Cabanas et al. 2009). One very curious finding that accompanied 

this observation was the difference in total Vav detected in Triton-x100 detergent 

when assaying migrating cells and cells on PLL. Vav clearly moved between the 

detergent soluble and the detergent insoluble fractions. This might suggest that Vav, in 

non-migrating cells, is enriched in a lipid compartment that is inaccessible to Triton, 

and that when cells migrated, much more Vav can be detected, suggesting that Triton 

was in these conditions able to solubilise Vav. This was an intriguing observation that 

might be interesting to follow up by using different detergents for biochemistry and 

imaging studies to understand how this difference in compartmentalisation might 

allow Vav to function under various signalling conditions.  

Studies have indicated that in resting cells Vav and talin form a complex(Garcia-Bernal, 

Parmo-Cabanas et al. 2009). A situation can be envisaged where Vav and talin are 

directly associated with LFA-1 in resting cells, this might position the complex such that 
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when a signal is intercepted, Vav and talin dissociate and talin, already being in close 

proximity to the integrin, can bind motifs in the cytoplasmic region stabilising the high 

affinity integrin and allow strong adhesive contacts to be made with target cells 

expressing ICAM-1 in nano- instead of microseconds, which may be particularly 

important in the vasculature. The importance of Vav in migration has been 

underscored in many studies(Fernandez-Espartero, Ramel et al. 2013, Tong, Zhao et al. 

2013). In fact, Vav plays a central role in various receptor signalling events because of 

its ability to instruct the cytoskeleton through Rho GTPases, thereby allowing 

remodelling of cytoplasmic components that are associated with signalling. The 

cytoskeleton, in addition to its appreciable role in motility and cell shape, has in more 

recent years become a topic of considerable interest for immunologists through 

studies suggesting that disruption of the cytoskeleton can elicit antigen receptor 

signalling, and conversely, stabilisation of it can inhibit signalling(Treanor, Depoil et al. 

2010, Tan, Manz et al. 2014). Understanding how Vav responds to integrin signals and 

subsequently instructs Rho and Rac GTPases associated with cytoskeletal remodelling 

will be key to understanding how cytoskeletal changes drive migration(Ridley 2011). 

Given the predication that Lyp may actively regulate the dynamic phosphorylation of 

signalling intermediates like Lck, ZAP-70 and Vav, it was perhaps not surprising to find 

Lyp more associated with integrin when T cells migrated on ICAM-1. In addition, Csk 

was also found to be more associated with LFA-1 in migrating cells. Thus, I conclude 

that negative regulation is an important facet of active signal regulation.  
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7.6 The consequences of a single nucleotide polymorphism within a binding domain 

of Lyp 

 

One achievement of this project was the use of super-resolution to try and understand 

how a single nucleotide polymorphism might alter Lyp behaviour at the membrane. 

These experiments demonstrated consistent differences in the localisation of the 

R620-Lyp versus the R620W-Lyp, which manifested only during active signalling (figure 

7.2). In addition, it was possible to image LFA-1 in genotyped donors, and I 

demonstrated greatly increased integrin clustering in individuals harbouring R620W-

Lyp. These data greatly consolidated functional and signalling experiments that 

indicated the disease associated variant is in fact loss-of-function, at least in the 

context of integrin signalling. 

Why Lyp is unable to station at the membrane correctly in migrating T cells is an open 

question. One known consequence of the W620-Lyp is the inability of this Lyp variant 

to associate with Csk. It may be that as a result of the disruption between Lyp and Csk, 

Lyp cannot localise properly at the membrane of migrating T cells. On the other hand, 

it may be through the inability of Lyp to interact with other proteins via its binding 

domain that might lead to differences in localisation at the membrane. An experiment 

that will help resolved whether or not Csk is involved in stationing Lyp at the 

membrane in migrating cells might involve the use of Csk knockout T cells to address 

this question. It would be of interest to see whether Csk knockout cells phenocopy the 

Lyp mutation. If this turns out to be the case, it would provide some evidence 

demonstrating that it is as a result of Lyp’s inability to couple with Csk that localisation 

is compromised. 
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Finally, it might be interesting to consider the consequence of Lyp participating in 

multiple pathways in the context of the Lyp mutation. T cell receptor signalling is a 

known inside-out signal for integrins leading to more intermediate affinity LFA-1 at the 

surface of T cells that can bind to integrin. If the mutation leads to augmented 

signalling through the TCR, more LFA-1 will be activated and following the binding of 

ICAM-1, the signal will be amplified as Lyp will be participating downstream of integrin 

signalling as well. Thus Lyp could be acting downstream of a series of signal 

transduction events, dysregulating multiple pathways with overlapping features that 

are initiated in a step-wise fashion. This in turn might contribute to the dysregulation 

of immune responses which may influence susceptibility to autoimmune disease.  



285 

 

 

 

 

Figure 7.2 Disease associated Lyp fails to regulate outside-in signalling through LFA-1. 

A) In resting T cells, Lyp is found in large submembranous clusters which can be 

detected in the TIRF zone. The formation of these clusters is independent of the 

binding domain mutation in Lyp that predisposes to autoimmune disease. B) In the 

absence of a mutation in the binding domain, Lyp is released from large clusters and is 

retained (half life of retainment unknown) at the membrane to regulate signalling 

intermediates recruited to LFA-1 when it is engaged, including Lck and ZAP-70. Vav on 

the other hand, is released from LFA-1 following ICAM-1 engagement and may be 
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regulated by Lyp in a different cellular compartment away, or in close proximity to LFA-

1. Following integrin engagement, ERK is phosphorylated. C) If a mutation is present in 

the binding domain of Lyp, it cannot localise properly at the membrane, leading to 

increased signalling. In this context, ERK phosphorylation is increased, as is integrin 

clustering. One reason for this inability of Lyp-W620 to station at the membrane may 

be due to its inability to complex properly with Csk. 
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Concluding remarks 

 

Here I identify Lyp as being a negative regulator LFA-1 outside-in. In addition, using T 

cells from human individuals who have been genotyped for the W620-Lyp variant, I 

show that this polymorphism differentially regulates signalling, and appears to be 

unable to regulate integrin signalling in the same way as the common variant, which 

may in part be responsible for the susceptibility to autoimmune disease displayed by 

those harbouring the W620-Lyp variant. The evidence collected in this project points 

toward the W620-Lyp variant as being loss-of-function, leading to increased signalling 

when LFA-1 is engaged, and, as a consequence, increased LFA-1 clustering.  

These studies might indicate that other LFA-1 dependent T cell functions will be 

regulated by Lyp. This could include formation of the immunological synapse and T cell 

effector functions.  
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