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1 Introduction

The theory of inflationary cosmology has received important boosts from the first release of
data from the Planck satellite [1] — which confirmed the infrared tilt of the scalar perturba-
tion spectrum ns [2, 3] expected in slow-roll models of inflation [4–7] — and the discovery by
BICEP2 of B-mode polarization fluctuations [8] — which may be interpreted as primordial
tensor perturbations with a large ratio r relative to the scalar perturbations, as would be
generated in models with a large energy density during inflation. On the other hand, whereas
Planck and BICEP2 agree with earlier WMAP data that ns ≃ 0.96, there is tension between
the BICEP2 measurement r = 0.16+0.06

−0.05 (after dust subtraction) and the Planck upper limit
on r obtained indirectly from the temperature fluctuations at low multipoles [9]. Theoreti-
cally, this tension could be reduced by postulating large running of the scalar spectral index,
but this would require a large deviation from the hitherto successful slow-roll inflationary
paradigm. Experimentally, it is known that the temperature perturbations in the Planck
data [1] lie somewhat below the standard inflationary predictions at low multipoles, and
there is a hint of a hemispherical asymmetry, so perhaps the inflationary paradigm does
indeed require some modification [10, 11]. On the other hand, verification of the dust model
used by BICEP2 is desirable, and other possible sources of foreground contamination such
as magnetized dust associated with radio loops need to be quantified [12]. The good news is
that the experimental situation should be clarified soon, with additional data from Planck,
the Keck Array and other B-mode experiments.

In the mean time, inflationary theorists are having a field day exploring models capable
of accommodating the BICEP2 and/or Planck data. Taken at face value, the BICEP2 data
are highly consistent with the simplest possible chaoticm2φ2/2 potential [13, 14] that predicts
r ≃ 0.16, whereas the Planck data tend to favour the Starobinsky R+R2 model [15–17] that
predicts r ≃ 0.003. It seems very likely that experimental measurements of r may settle down
somewhere between these limiting cases, so it is interesting to identify models that interpolate
between them, while retaining the successful prediction ns ≃ 0.96. Desirable features of such
models would include characteristic predictions for other inflationary observables and making
connections with particle physics.

With the latter points in mind, we consider the natural framework for formulating
models of inflation to be supersymmetry [18–26], specifically local supersymmetry, i.e., su-
pergravity [27, 28]. Moreover, in order to avoid holes in the effective potential with depths
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that are O(1) in Planck units and to address the η problem [29, 30], we favour no-scale
supergravity [31–33], which has the theoretical advantage that it emerges naturally as the
low-energy effective field theory derived from compactified string theory [34]. In the past
we [35–40] and others [41–51] have shown how no-scale supergravity with a Wess-Zumino
or other superpotential [52] leads naturally to Starobinsky-like inflation, and more recently
we [40] and others [53–64] have given examples how quadratic inflation may be embedded in
no-scale supergravity.

In this paper we introduce a minimal two-field no-scale supergravity model with a
Kähler potential motivated by orbifold compactifications of string theory [65, 66]. The initial
condition for the inflaton field has a free parameter that which can be regarded as an angle
in the two-field space. Varying this angle, we can interpolate between the quadratic and
Starobinsky-like limits: 0.16 & r & 0.003,1 while ns ≃ 0.96 for most values of the interpolat-
ing parameter. We follow numerically the evolution of the inflaton in this space, including
the possibility of initial values of the inflaton fields that are larger than the minimal values
need to obtain sufficient e-folds. The key model predictions are insensitive to the mechanism
of supersymmetry breaking, as long as it occurs at some scale much less than the inflaton
mass. We illustrate this via a Polonyi example of supersymmetry breaking, and comment on
the connection to particle phenomenology in this model.

The structure of this paper is as follows. In section 2 we specify our model, and in sec-
tion 3 we provide numerical analyses of inflationary scenarios with different initial conditions
for the inflaton field, discussing its predictions for ns and r. Then, in section 4 we discuss
briefly supersymmetry breaking, and in section 5 we draw some conclusions.

2 Specification of the model

The original, minimal no-scale supergravity model has a Kähler potential of the form [31, 32]

K = −3 ln(T + T̄ ) + . . . , (2.1)

where the dots represent a possible superpotential, terms involving additional matter fields,
etc. Subsequent to its discovery, it was shown that no-scale supergravity emerges naturally
as the low-energy effective field theory in generic string compactifications [34]. In general,
these contain the complex moduli Ti : i = 1, 2, 3, and (2.1) becomes

K = −
3

∑

i=1

ln(Ti + T̄ i) + . . . . (2.2)

In the specific case of orbifold compactifications of string, matter fields φ have non-zero
modular weights and appear in a Kähler potential term of the form [65]

∆K =
|φ|2

∏3
i=1(Ti + T̄ i)

. (2.3)

For simplicity, we consider here the case where the ratios of the three orbifold moduli are
fixed at a high scale by some unspecified mechanism so that, neglecting irrelevant constants,

1One might have thought that [49] would provide a suitable framework for achieving this. However, the
Starobinsky-like limit is lost when the Kähler potential is stabilized as discussed in [40, 50, 51].
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the Kähler potential may be written in the form [66]:

K = −3 ln(T + T̄ ) +
|φ|2

(T + T̄ )3
. (2.4)

Thus we assume that the field φ has modular weight 3, and stress that the special properties
of the model we describe below depend on this choice of modular weight. More general
constructions of Minkowski and de Sitter vacua were discussed in a similar context in [67],
which focused on models where the modular weight of φ is 0.

The specification of our no-scale supergravity model of inflation is completed by speci-
fying the superpotential:

W =

√

3

4

m

a
φ(T − a) , (2.5)

and we identify T as the chiral (two-component) inflaton superfield. Although the super-
potential (2.5) is the same as in the model [52] derived in a realization of R + R2 gravity
in a SU(2, 1)/SU(2) × U(1) no-scale model, the Kähler potential (2.4) manifests only the
minimal SU(1, 1)/U(1) no-scale structure. The scalar potential is derived from the Kähler
potential (2.4) and the superpotential (2.5) through

V = eK(Kij̄DiWD̄j̄W̄ − 3|W |2) , (2.6)

where DiW ≡ ∂iW +KiW . We will work in Planck units M2
P = 8πGN = 1. The motion of

the scalar field φ is constrained by the exponential factor eK :

V ∝ e|φ|
2/(T+T̄ )3 ≃ e(2a)

−3|φ|2 . (2.7)

For a ≤ 1, it can be assumed (and we have verified) that φ is rapidly driven to zero at the
onset of inflation, and we assume that a = 1/2 so that φ has a canonical kinetic term. For
vanishing φ, the scalar potential takes the simple form

V =
3m2

4a2
|T − a|2 (2.8)

which can be shown to be equivalent to the Starobinsky model along the real direction of the
canonical field associated with T [36, 41, 52]. For other choices of the modular weight w of
φ, the potential (at φ = 0) is

V =
3m2

4a2
|T − a|2(T + T ∗)(w−3). (2.9)

It is convenient to decompose T into its real and imaginary parts defined by ρ and σ, respec-
tively, where ρ is canonical and σ is canonical at the minimum when ρ = 0:

T = a

(

e
−
√

2
3
ρ
+ i

√

2

3
σ

)

(2.10)

The scalar component of T minimizes the potential when T = a, and the resulting Lagrangian
is given by

L =
1

2
∂µρ∂

µρ+
1

2
e
2
√

2
3
ρ
∂µσ∂

µσ

− 3

2(5−w)a(3−w)
m2e

√

2
3
(3−w)ρ

(

1− e
−
√

2
3
ρ
)2

− 1

2(4−w)a(3−w)
m2e

√

2
3
(3−w)ρ

σ2. (2.11)
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In the particular case w = 3 this reduces to

L =
1

2
∂µρ∂

µρ+
1

2
e
2
√

2
3
ρ
∂µσ∂

µσ − 3

4
m2

(

1− e
−
√

2
3
ρ
)2

− 1

2
m2σ2, (2.12)

which is the starting-point for our analysis.

Although this is similar to the Lagrangian for the no-scale model of [49, 52], it differs
in an important way. In that SU(2, 1)/SU(2)×U(1) model, the mass term for σ contained a

coupling to ρ of the form e2
√

2/3ρ. In (2.12), the real and imaginary parts of T are decoupled
in the potential and only mix through their kinetic terms (we return later to the effect of
this mixing).

The minimum of the effective potential (2.12) in the (ρ, σ) plane is located at

ρ0 = σ0 = 0 . (2.13)

When ρ is at the minimum, the effective Lagrangian for σ is

L =
1

2
∂µσ∂

µσ − 1

2
m2σ2, (2.14)

and we recover the minimal quadratic inflationary model. Conversely, when σ is at the
minimum, the effective Lagrangian for ρ is

L =
1

2
∂µρ∂

µρ− 3

4
m2

(

1− e
−
√

2
3
ρ
)2

, (2.15)

which is of the same form as the Starobinsky model [15].

Various slices through the potential (2.12) for the canonical choice a = 1/2 are shown
in figure 1. In the upper left panel we see the characteristic Starobinsky form in the ρ
direction (2.15) and the simple quadratic form in the σ direction (2.14). In the upper right
panel we see that both the real and imaginary parts of φ are indeed stabilized at zero, the
value that was assumed in the upper left panel. The lower left panel shows that the effective
potential is well-behaved in the (σ,Reφ) plane for ρ = Imφ = 0, and the lower right panel
makes the same point for the (ρ,Reφ) plane for σ = Imφ = 0. In both cases, the effective
potential is identical when the rôles of Reφ and Imφ are reversed. The Starobinsky form of
potential is visible again in the lower right panel of figure 1.

The model described by (2.4) and (2.5) has two dynamical fields, and a correct discussion
of their behaviour during inflation requires a more sophisticated analysis than single-field
models of inflation [68–72]. We leave such a discussion for future work [73]. Instead, here
we modify the Kähler potential (2.4) so as to reduce it to a family of nearly single-field
models characterized by an angle θ in the (ReT, ImT ) plane defined in figure 2. This is
accomplished by introducing a θ-dependent stabilization term of the same general form as
introduced in [74]:

K = −3 log
(

T + T ∗ − c
(

cos θ(T+T ∗−1)− i sin θ(T−T ∗)
)4
)

+
|φ|2

(T+T ∗)3
. (2.16)

It is clear that, for a large enough coefficient c of the quartic stabilization term, the inflaton
trajectory is confined to a narrow valley in field space, much like a bobsleigh confined inside
a narrow track.

– 4 –
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Figure 1. Slices through the effective potential for the model (2.12). Upper left: the potential in the
(ρ, σ) plane for φ = 0. Upper right: the potential in the (Reφ, Imφ) plane for ρ = σ = 0. Lower left:
the potential in the (σ,Reφ) plane for ρ = Imφ = 0. Lower right: the potential in the (ρ,Reφ) plane
for σ = Imφ = 0.

3 Numerical analysis of the model

The classical motion of the inflaton field for the model (2.5), (2.16), can be numerically
calculated solving the equations

H2 =
1

3

[

Kab̄Ψ̇
a ˙̄Ψb̄ + V (Ψ)

]

= (Ṅ)2, (3.1)

Ψ̈a + 3HΨ̇a + Γa
bcΨ̇

bΨ̇c +Kab̄ ∂V

∂Ψ̄b̄
= 0 , (3.2)

where Ψ ≡ (T, φ), Kab̄ is the Kähler metric, Γa
bc ≡ Kad̄∂bKcd̄, and N is the number of e-

foldings. The figures that follow show the resulting evolution for the T and φ fields for four
different choices of initial conditions.

In order to calculate the values of the scalar tilt ns and the tensor-to-scalar ratio r
one cannot use the usual single field formulae, since isocurvature perturbations are generally
present when more than one scalar field evolves during inflation. In order to simplify the
analysis, we will calculate ns and r assuming that φ starts at zero or is driven very quickly
to the origin using the techniques in [68–71]. The scalar tilt and the tensor to scalar ratio
are then calculated from their definitions

ns = 1 +
d logPR
d log k

, r =
PT

PR
. (3.3)
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Figure 2. Inflationary directions in the (ReT, ImT ) plane, labeled by the stabilization angle θ.

where PR is the power spectrum of the adiabatic perturbations. The tensor perturbations
have the same form as in the single field case, PT = 2

π2H
2|k=aH , since at linear order the

scalar field perturbations decouple from vector and tensor perturbations [75, 76]. For the
scale k we choose a perturbation that leaves the horizon at the start of the last 50 or 60
e-foldings of inflation, assuming that its value corresponds to the Minkowski-like vacuum 10
e-foldings before the scale leaves the Hubble radius.

Figures 3 and 4 display the numerical solution for θ = 0 and c = 1000,2 with the initial
conditions ρ0 = 0, σ0 = 5 and φ0 = 0 , corresponding to the case of quadratic inflation. The
top panel of figure 3 shows the evolution of σ, which is the inflaton field in this case. The
second panel of figure 3 displays the evolution of ρ. We note a perturbation of ρ that is due
to its coupling with σ through the kinetic term (see (2.12)). However, the value of ρ remains
small and does not affect substantially the inflationary dynamics of the inflaton field other
than allowing for more e-folds of inflation at smaller values of σ (which is not canonically
normalized when ρ 6= 0). The third panel shows that Reφ remains zero (and the same is true
for Imφ). Finally, the bottom panel of figure 3 displays the growth of the number of e-folds
for this choice of boundary conditions. We find the following values of ns and r for this case:

N = 50 : (ns, r) = (0.951, 0.088) ,

N = 60 : (ns, r) = (0.959, 0.074) . (3.4)

As already commented, small values of ρ are generated during the evolution of the inflaton
field, and figure 4 displays the joint evolution of ρ and σ, where we see a ‘circling the drain’
phenomenon towards the end of inflation. This has the effect of reducing the value of r by
a factor of 2.6, without having a significant effect on ns. A smaller reduction factor, and
hence a larger value of r ∼ 0.16, is possible with a different stabilization term in the Kähler
potential [73].

2As discussed later, we have checked that these and subsequent results are insensitive to the value of c.
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Figure 3. Numerical solution for the choice θ = 0, c = 1000, with initial conditions ρ0 = 0, σ0 = 5
and φ0 = 0: field evolution and e-folds.

Figure 5 displays the numerical solution for θ = 0 and c = 1000, with the initial
conditions ρ0 = 0, σ0 = 5 and φ0 = 0.4 + 0.4i, corresponding to a modification of the
previous case of quadratic inflation, allowing for non-trivial evolution of φ. However, we see
in the top panels of figure 5 that both Reφ and Imφ evolve rapidly to zero, as expected, and
ρ behaves similarly to the first case above (third panel). Correspondingly, the behaviour of
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Figure 4. Numerical solution for θ = 0, c = 1000, with initial conditions ρ0 = 0, σ0 = 5 and φ0 = 0:
‘circling the drain’.

the inflaton σ is also similar (fourth panel), and the number of e-folds grows in a similar way
as in the first case. We find that

N = 50 : (ns, r) = (0.943, 0.077) ,

N = 60 : (ns, r) = (0.945, 0.058) , (3.5)

results that are very similar to the first case.
As a third example, displayed in figure 6, we show the evolution of the fields and the

number of e-folds for Starobinsky-like initial conditions: ρ0 = 6, σ0 = 0, φ0 = 0, with θ = π/2
and c = 1000. The top panel of figure 6 shows that, as expected, the inflaton field (ρ in this
case) moves slowly initially, but then accelerates rapidly towards zero as it rolls down the
steepening potential, before exhibiting damped oscillations. The second, third and fourth
panels of figure 6 show that, also as expected, the other fields σ,Reφ and Imφ all remain
fixed at their minima, and the bottom panel displays the growth in the number of e-folds.
We find for this set of initial conditions that

N = 50 : (ns, r) = (0.960, 0.004) ,

N = 60 : (ns, r) = (0.967, 0.003) . (3.6)

Finally, figure 7 displays the results of including a small non-zero value of φ in the initial
conditions: ρ0 = 6, σ0 = 0, φ0 = 0.001 + 0.001i, for θ = π/2 and c = 1000. We choose
|φ0| ≪ 1 for ρ > 1 because, as seen in the lower right panel of figure 1, the effective potential
rises very steeply as a function of φ when ρ is large. We see in the top two panels that ρ and
σ evolve almost identically as before, whereas the third and fourth panels show that Reφ
and Imφ exhibit small oscillations as inflation comes to an end. However, this has negligible
effect of the growth in the number of e-folds, as seen in the bottom panel of figure 7. We
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Figure 5. Numerical solution for θ = 0, c = 1000, with initial conditions ρ0 = 0, σ0 = 5 and
φ0 = 0.4 + 0.4i.

find for this case that

N = 50 : (ns, r) = (0.961, 0.004) ,

N = 60 : (ns, r) = (0.968, 0.003) , (3.7)

results that are very similar to the previous pure Starobinsky case.
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Figure 6. Numerical solution for θ = π/2, c = 1000, with initial conditions ρ0 = 6, σ0 = 0 and
φ0 = 0.

It is clear from the above results that the scalar tilt and the tensor-to-scalar ratio depend
on the initial condition for the complex inflaton field T . In order to quantify this dependence
more generally, we consider general initial conditions in the (ρ, σ) plane parametrized by the
angle θ, as shown in figure 8, restricting our attention to the case φ0 = 0. For definiteness
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Figure 7. Numerical solution for θ = π/2, c = 1000, with initial conditions ρ0 = 6., σ0 = 0 and
φ0 = 0.001 + 0.001i.

we have considered initial conditions on the curve in the (ρ, σ) plane that leads to N + 10
e-foldings of inflation, for N = 50, 60. The resulting θ dependences of the inflationary observ-
ables ns and r are displayed in figures 9 and 10. We see in the upper panel of figure 9 that ns

is almost independent of θ, and always within the 68%CL range favoured by WMAP [2, 3],
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Figure 9. Upper panel: the scalar tilt as function of θ. Lower panel: the tensor-to-scalar ratio as
function of θ.

Planck [1] and BICEP2 [8], except for a region centered around θ ∼ 0.25. This can be tracked
to a sharp enhancement in the curvature power spectrum around these values of θ. In the
lower panel of figure 9 we notice that, as expected, r decreases monotonically from the large
BICEP2-friendly values r & 0.08 at θ = 0 to the much smaller Planck-friendly values at
θ = π/2. We note that the results are symmetric under reflection in the ρ axis: θ → π − θ,
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and that initial conditions 0 > θ > −π/2 (and their reflections) would give larger values of r
than quadratic inflation or simply not inflate due to the exponential nature of the potential
when ρ < 0. We complete this discussion of the θ dependence of r and θ by displaying in
figure 10 the parametric curve (ns(θ), r(θ)).

Up to now, we have fixed the value of c ≫ 1. Figure 11 shows the dependence of (ns, r)
on the constant c for ρ0 = 0. The inital condition σ0 is fixed by the requirement of a total of
N + 10 e-foldings; it is dependent on the value of c. As one can see, for small c, ns deviates
significantly from the range favoured by WMAP, Planck and BICEP2, while for c & 10, it
falls within acceptable values. The tensor-to-scalar ratio r rises monotonically and eventually
plateaus at the values (3.4) when c & 100.

So far, we have considered initial conditions for the fields with vanishing time derivatives
— a ‘standing start’ — with larger field values than the minimum needed to obtain sufficient
e-folds, as reflected in the numbers of e-folds N = O(100) in figures 2, 4, 5 and 6. In such
models, the number of e-folds sufficient to generate the observable universe effectively follow a
‘rolling start’, and the inflationary observables r and ns may take different values, in general.
We display in figure 12 the dependences of the scalar tilt (upper panel) and the tensor-to-
scalar ratio (lower panel) on the initial value of σ.3 Despite the coupling between the real
and imaginary parts of the complex field T which perturbs the field ρ, even if it is initially
stationary at its minimum ρ = 0, there is very little dependence of r, on the initial value of
σ, as seen in figure 12. The scalar tilt is also independent of σ.

4 Supersymmetry breaking

In the above analysis we have neglected the possible effects of supersymmetry breaking, which
one would expect, in general, to have little importance for m3/2 ≪ m ∼ 2× 1013GeV. There

3The dependence on the initial value of ρ is equally insignificant.
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Figure 12. Upper panel: the scalar tilt r as a function of the initial value of σ. Lower panel: the
tensor-to-scalar ratio ns as a function of the initial value of σ. Here ρ0 = 0 and c = 200.

is certainly plenty of room between this upper limit and the lower limits imposed by Big
Bang nucleosynthesis and the absence of supersymmetric particles so far at the LHC.

In principle, one could imagine that adding a constant term, W0, to the superpoten-
tial (2.5) would suffice to induce supersymmetry breaking as in [37]. However, doing so shifts
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the minimum from φ = 0, T = 1/2, very slightly to a supersymmetry preserving AdS vacuum
state [61, 77, 78] as in KKLT [79] and KL [80–82] models. Thus, some form of ‘uplifting’ is
necessary and the restoration of a Minkowski (or slightly dS) vacuum with supersymmetry
breaking is possible with simple examples of F-term uplifting [67, 83–87].

As a toy example, we consider an unstabilized Polonyi modulus [88] as the source of
supersymmetry breaking. Thus, we add to our previous Kähler potential (2.4) the following
terms

∆K = |Z|2 + |Y |2
(T + T̄ )n

, (4.1)

where Z is the Polonyi field and the {Y } are generic matter fields with unspecified modular
weights. We also add to our superpotential (2.5) the terms

∆W = µ(Z + ν) +W (Y ) . (4.2)

The scalar potential is minimized along the imaginary directions of T, φ and Z for

Imφ = ImZ = σ = 0 . (4.3)

Along the real directions, the minimization must be performed numerically in general, since
it depends on the value of µ. However, for µ ≪ m, the conditions

∂ReφV = ∂ReZV = ∂ρV = V = 0 (4.4)

for the minimum yield, to second order in µ/m, in Planck units,

Reφ ≃
√
3
µ

m
, ρ ≃

√
6(1−

√
3)

(

µ

m

)2

, ReZ ≃ −1 +
√
3 , ν ≃ 2−

√
3 . (4.5)

We explicitly see that the shifts in Reφ and ρ induced by the parameter µ are small when
µ ≪ m. Finally, we recall that since

DZW ≃
√
3µ , (4.6)

supersymmetry is broken with
m3/2 ≃ µ , (4.7)

and the induced masses, trilinear and bilinear terms for the matter fields {Y } correspond to

(after a constant rescaling of the superpotential W → e
√
3−2W )

m0 ≃ m3/2 , A0 ≃ (3−
√
3)m3/2 , B0 ≃ (2−

√
3)m3/2 , (4.8)

as in models of minimal supergravity [89]. The dependence of these parameters on the
modular weight n appears at higher order in (µ/m).

In order to avoid the well-known problems associated with the minimal Polonyi mod-
el [90–94], we can extend this analysis by considering stabilization [78, 87, 95–101] of the
Polonyi field via the Kähler potential

∆K = |Z|2 − |Z|4
Λ2

+
|Y |2

(T + T̄ )n
(4.9)

with the same superpotential (4.2). In this case, the scalar potential is also minimized along
the imaginary directions of T, φ and Z with Imφ = ImZ = σ = 0.
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Once again, along the real directions, the minimization must be performed numerically
since it is dependent on the values of both µ and Λ. For Λ ≪ 1 and µ ≪ m, where m is the
inflaton mass, the conditions (4.4) can now be solved approximately to give

Reφ ≃ µ

m
, ρ ≃ −2

√

2

3

(

µ

m

)2

, ReZ ≃ Λ2

√
12

, ν ≃ 1√
3

(4.10)

with higher order terms at most O( µ
mΛ2). Since

DZW ≃ µ , (4.11)

supersymmetry is broken, with

m3/2 ≃
µ√
3
, (4.12)

and the induced masses, bilinear and trilinear terms for the matter fields {Y } are

m0 ≃ m3/2 , A0 ≃ 0 , B0 ≃ −m3/2 , (4.13)

as in minimal supergravity models with vanishing A terms or models of pure gravity media-
tion [102, 103]. In this case the dependence on the modular weight n appears at O( µ

mΛ2).

5 Summary and conclusions

We have proposed in this paper a simple two-field no-scale supergravity model of inflation
whose predictions for the scalar-to-tensor perturbation ratio r interpolate between limits that
are BICEP2-friendly and Planck-friendly, Starobinsky-like: 0.09 & r & 0.003. As we have
shown, this model also yields ns ∼ 0.96 in most of field space, as indicated by WMAP, Planck
and BICEP2 data. Our model is based on the form of effective low-energy field theory derived
from orbifold compactifications of string theory, and can accommodate a Polonyi mechanism
for supersymmetry breaking that is suitable for particle phenomenology.

We await with interest confirmation of the B-mode polarization measurement made by
BICEP2, and verification that is mainly of primordial origin. In the mean time, we note
that over a region of its parameter space our no-scale model yields values of r, which may be
compatible at the 68%CL with each of the WMAP, Planck and BICEP2 measurements. In
that sense, our model may indeed ‘fit them all’.
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