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Abstract

Perception is seen as a process that utilises partial and noisy information to construct a

coherent understanding of the world. Here we argue that the experience of pain is no differ-

ent; it is based on incomplete, multimodal information, which is used to estimate potential

bodily threat. We outline a Bayesian inference model, incorporating the key components of

cue combination, causal inference, and temporal integration, which highlights the statistical

problems in everyday perception. It is from this platform that we are able to review the pain

literature, providing evidence from experimental, acute, and persistent phenomena to

demonstrate the advantages of adopting a statistical account in pain. Our probabilistic

conceptualisation suggests a principles-based view of pain, explaining a broad range of

experimental and clinical findings and making testable predictions.

Introduction

In order to survive we must perceive our environment effectively, identify threats, and act to

avoid damage to our body, or, if damage occurs, we must act rapidly to promote recovery.

Pain is the fundamental experience associated with the perception of actual or potential dam-

age to one’s self [1,2]. Despite its importance to human behaviour and to the human condition,

little is known about its computational underpinnings.

During any kind of perception, humans can only rely on previous experiences and sensory

information [3]. The information an individual can access, however, is almost always ambigu-

ous, incomplete, or noisy [4–6]. As such, the way we perceive the world is often conceptualized

in the perception literature as an act of statistically estimating the most likely properties of the

world on the basis of noisy information [7,8]. In modern cognitive science, this is often formal-

ized through statistical accounts, such as Bayesian inference [9–12], in which it is assumed that

we perceive an estimation of our sensory signals based on current information and previous

experience. This distinction between feed-forward sensory inputs and what the brain infers is

central to most current theories of perception [13].

There are strong mathematical models for the estimation of the state of the world. These

models generally assume that each piece of information is statistically independent from the

other, conditioned on the underlying variable that is estimated. For example, in the combination
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of auditory and visual information for localization (Fig 1A–1C), we may assume that each of the

cues (A,V) is observed with noise (σV and σA), a noisy measurement drawn from a Gaussian dis-

tribution relative to the true position (X):

A � NðX; sAÞ;V � NðX; sVÞ

In this case, according to Bayes rule, the optimal estimate (X̂) is a weighted combination of

the two:

X̂ ¼
1=s2

A

1=s2
V þ 1=s2

A

V þ
1=s2

V

1=s2
V þ 1=s2

A

A

Fig 1. Cue combination in nonpain and pain perception are computationally equivalent. a–c) Simple models of cue combination involve combining two

cues: in this case, the location of a visual stimulus and the location of an auditory stimulus. The influence of each cue is dependent on the noise or precision of

the cue (probability distribution). The example shows the visual stimulus (dotted line) as more precise than the auditory cue (line-dot-dot); it, therefore, has

more influence on the estimation of the object location (solid line). d–f) Combining cues related to the potential threat to one’s body promises to provide a

better estimate of the overall threat. In this case, nociceptive information (line-dot-dot) is combined with visual information (dotted line) to produce an estimate

of threat (solid line). In this example, nociceptive information is combined with a red visual cue, increasing the overall estimation of threat as compared to the

combination of nociception and a blue cue, as demonstrated by Moseley and Arntz (2007).

doi:10.1371/journal.pcbi.1005142.g001
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The model simply assumes that what we see and what we hear gets combined optimally to

form an estimate of the world that considers not only different sources of information but also

how noisy they are. The same equation can be used to model a broad range of multisensory

phenomena [12].

Pain as inference

That pain is also the result of a probability function based on incomplete or noisy information

was mooted over 20 years ago and continues to inform clinical models of pain [14,15].

Recently, however, the idea has begun to gain traction in more theoretical and basic science

fields, instigating the formalization of pain as an inferential process [16–19]. Relevant to this is

the substantial advance in the understanding of the physiology of nociception, the wide array

of contextual factors that have been shown to modulate pain and the increasingly tenuous rela-

tionship between pain and tissue damage that develops as pain persists [2].

There is now a compelling body of literature to support an inferential model of pain. During the

experience of pain, just as during other perceptual experience, the brain makes inferences based on

incomplete information. Specifically, the most common trigger of pain is a somatosensory barrage

that includes, but is not limited to, activity in high threshold primary receptors (nociceptors) and

their projections. Physiologically, nociceptive input is always accompanied by—indeed, preceded

by—a wide array of non-nociceptive input triggered by other somatosensory receptors and a multi-

sensory suite of event-related information [17]. This suite of information needs to be integrated

with prior knowledge and over time, in order to calculate the experience that would most favour-

ably serve the immediate objectives of the organism. A wealth of experimental evidence sug-

gesting that any credible indication of threat to body tissue can increase pain and any credible

indication of safety to body tissue can decrease pain [16,20–22] clearly points to the notion that

pain results when the immediate objective of the organism is bodily protection. Importantly,

even in highly controlled laboratory experiments, away from the “real world,” pain does not

show an isomorphic relationship with the state of the tissues nor with nociceptive barrage [15].

Understanding the generation of hugely variable pain experiences is of great importance

because pain is definitively unpleasant and disabling [23]; a poor understanding of pain will

result in erroneous decisions about the cause of pain and, therefore, about the best course of

action. Given that persistent pain is arguably one of the world’s most burdensome health con-

ditions [24,25], the pursuit of better models with which to make sense of pain is imperative.

Here we propose that a statistical account of pain as an inference process promises to lead to

computational insights into the mechanisms of pain and advance our understanding of the

huge variation in pain experiences between and within individuals.

For any phenomenon there can be a physiological interpretation and a normative interpre-

tation, which are not mutually exclusive [26]. Here we start with the notion that the experience

of pain can be modelled as a perceptual experience reflecting unconscious optimal estimates

about the state of the world, which includes the body, and our best course of action within it.

We then extend this model, in line with a Bayesian inference framework, allowing the descrip-

tion of a broad range of pain phenomena. Conventionally, the investigation into such pain

experiences has been driven by dominant stimulus–response experimental models; here we

argue that the same phenomena can be advantageously reconceptualised within a statistical

model, as a special case of a generic perceptual inference process.

Concepts

This review will consider the experience of pain from a Bayesian inference perspective, specifi-

cally drawing upon examples of experimental pain, acute pain, and persistent pain. In each
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case, the Bayesian concepts of cue combination, causal inference, and temporal inference will

be applied to demonstrate the theoretical and practical implications of describing pain as an

inference problem.

Experimental pain: A cue combination problem

In pain research, understanding the generation of hugely variable pain experiences is of great

importance, with conventional linear stimulus–response models deemed inadequate. A broad

range of experiments has now demonstrated that the same noxious stimulus produces a hugely

variable pain response, even within the same individual, within a controlled laboratory envi-

ronment [16,21,27–31]. Moseley and Arntz (2007) conducted an experiment to this effect,

considering the role of context and implicit expectation on the experience of pain. Pairing nox-

ious stimuli with visual cues that carried implicit meaning—a red light (semiotically linked

with heat and danger) [32] and a blue light (semiotically linked with cool and safety)—the

authors accounted for variable pain experiences. The principle finding of this study revealed

that a noxious stimulus is perceived as hotter and more painful when it is paired with a red

visual cue than when it is paired with a blue one—for some participants, the visual cue

accounted for a doubling of pain intensity (Fig 1D and 1E).

Furthermore, compelling evidence shows cues can evoke pain even in the absence of a nox-

ious stimulus. For example, healthy volunteers report pain during sham head stimulation

according to the level displayed on the sham stimulator’s intensity setting [33]; clinical pain

patients report pain in response to a visual stimulus, implying their painful limb has been

touched when it has, in fact, not been touched [34]; and, in those with movement-evoked pain

and swelling, the increase in both pain and swelling are exacerbated when the hand is made to

look swollen during movement, even though the movements themselves are identical [35].

Prompted by such findings, it has been proposed that the experience of pain reflects an

overall estimation relative to the amount of threat that is posed to the body in a particular envi-

ronment [36,37], an estimation that requires the integration of relevant information from mul-

tisensory sources. Such a proposal demonstrates one of the core principles of Bayesian

modelling: combining relevant cues generally provides a better estimate of the variable of

interest [28–30]. For a cue combination tutorial, see Supporting Information.

Similar to the studies conducted in pain, typical experiments on Bayesian cue combination

involve parametrically varying the reliability of two experimental variables. This could be the

visual size and the haptic size [38] of an object. Similarly, it could involve varying the disparity

between the position of a visual cue and the position of an auditory cue [39]. The literature

accounts for many combinations of cues and clearly shows that humans are very good at com-

bining information from multiple sources.

In accordance with Bayesian models of cue combination, typical pain experiments have

uncovered an intuitive finding that the experience of pain is relative to, but not an absolute

reflection of, nociceptive information [15]. This contradicts the dominant stimulus–response

models of pain experimentation because it clearly demonstrates the potential potency of

explicit and implicit cue combination.

Placebo, nocebo, and causal inference

The notion that perceptual experience depends on the integration of information is a simplifi-

cation of the real world readily exposed in experimental settings. In reality, we are constantly

required to infer whether cues, from multiple sources including memories, expectations, and

beliefs, belong together or whether they should be treated as separate. The problem of inferring

whether cues belong together can be observed in the experience of pain. Being able to
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accurately differentiate between threatening and nonthreatening cues within one’s environ-

ment serves to protect on the one hand and advance on the other. Indeed, it could be argued

that the very experience of pain is fundamentally dependent on the way in which pieces of

information are either integrated or segregated.

Particularly relevant to this selective process are the diminished and enhanced pain experi-

ences, which are considered under the banners of placebo and nocebo effects, respectively

[40,41]. For example, taking a placebo pain relief tablet (Fig 2A and 2B) in association with a

noxious stimulus can result in a reduction in the overall pain experience, even though the tab-

let does not contain pharmacologically viable compounds [42]. The aversive correlate of pla-

cebo, the nocebo effect, could also be conceptualized according to inference, whereby

expectations of harm are integrated with noxious stimuli, increasing the overall threat that is

estimated and the pain experienced [16,43,44]. Indeed, pairing a noxious cold stimulus with a

red visual cue, which increases pain [21], could be labelled a nocebo effect.

The clearest experimental demonstration of Bayesian behaviour in pain perception is pre-

sented in a recent boundary-shifting study of causal inference [16], which has revealed the effi-

cacy of Bayesian models to describe varying pain experiences in relation to the weighted

integration of sensory information. Extending the work of Moseley and Arntz (2007), this

Fig 2. Causal inference in placebo and nocebo effects. The estimation of threat is determined by the relative

integration of current information and prior expectations. Placebo effects (a–b) are associated with the relative weight

of current sensory evidence, e.g., nociception (line-dot-dot), and expectations of safety, e.g., positive expectation

associated with medication prescription (dotted line), resulting in an estimation of lowered overall threat (solid line). In

contrast, nocebo effects (c–d) are associated with the relative precision (noise) of current sensory evidence (line-dot-

dot) and expectations of harm, e.g., work-place demands (dotted line), resulting in an estimation of increased threat

(solid line). The on-going estimations of relative safety and threat can be formulated as a casual inference problem, as

demonstrated by Anchisi and Zanon, 2015.

doi:10.1371/journal.pcbi.1005142.g002
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investigation expands the scope of influencing factors affecting the experience of pain. Apply-

ing a full Bayesian Decision Model to a placebo conditioning paradigm, the authors were able

to observe the intricate influence that prior expectations and current sensory evidence had on

diminishing and enhancing pain experiences. Although their findings are complimentary to

other results [31,45], their explanation differed. From a Bayesian position, the placebo effect

occurs not because it is useful in and of itself, but rather because the underlying mechanism

that determines the way in which information is combined or separated is useful for efficient,

multisensory experience. As such, the broad range of factors captured by the umbrella terms

placebo and nocebo can be considered perceptual illusions, the consequence of an optimal

computational strategy.

Experiments in the pain field that typically test this hypothesis do so by manipulating the

participant’s expectations associated with a sensory cue [31,46]. Many conditioning experi-

ments that have used painful stimuli to condition fear have demonstrated selective generaliza-

tion effects concordant with the idea of causal inference [47–49]. Anchisi and Zanon (2015)

employed a conditioning protocol that exposed the bimodal nature of pain responses in accor-

dance with a noxious cue and induced expectations [16]. However, the novel application of a

full Bayesian Decision Model in this context revealed that both expectations (prior) and infor-

mational cues (likelihood) influenced pain, opening up the possibility that pain is influenced

at different points of the inference process, up to and incorporating final decision-making.

Indeed, recent discoveries using classical conditioning paradigms show that simultaneous

pairing of benign somatosensory stimuli with noxious stimuli can quickly lead to reduced pain

threshold and amplified pain on subsequent stimuli, clearly demonstrating an influence inde-

pendent of expectation [50,51].

Applying Bayesian causal inference to the experience of pain can be seen as a natural pro-

gression from cue combination, setting out a tractable mathematical model that asserts the

importance of accounting for different influences on the experience of pain. It offers a mathe-

matical description of how different sources of information, whether sensory or nonsensory,

are weighted in relation to each other. The greater the reliability of the information, the heavier

the weight and, therefore, the more influence it has on experience [52]. This is relevant for a

broad spectrum of pain experiences from everyday variation in pain given the same noxious

input to the imprecise localization of pain that is observed in many persistent pain conditions

[53]. It provides a pragmatic complexity for extending cue combination models of pain and

deciphering the multimodal influences on the pain experience.

Experimental progression. Testing causal inference in a pain scenario in the laboratory

would require several steps. Just like tests for cue combination, we would first need a condi-

tioning phase to establish cues that are actually combined. Following the conditioning phase,

participants could be presented with two cues that are incongruent with the pairings estab-

lished in the conditioning phase. For example, a red colour cue may be presented with a tem-

perature of 41˚C, whereas a blue colour cue may be presented with a temperature of 49˚C.

At each paired stimulus presentation, the participant is required to provide a numerical

pain rating. In accordance with the principles of causal inference, increasing incongruence

between the stimuli will lead to the inference that they are associated with separate causes; one

would predict that colour will no longer influence pain if it is too dissimilar to the implied

nociception.

Persistent pain and temporal integration

Up to this point we have considered a static analysis of the experience of pain and how this

maps directly to the mathematical principles of Bayesian inference. Yet, the information about
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the level of threat posed to the body does not simply reflect prior expectations and current evi-

dence but also incorporates changing experience over time. In order to estimate the current

level of threat when the world is uncertain, we need to continually update our estimations

based on the consequences of our actions in a changing environment. The consequences of

our actions, the potential costs and benefits, vary over time and contribute to the pain we

experience.

For example, take the experience of having an arm in an immobilizing cast after sustaining

a fracture (Fig 3). Here we have access to visual information over time, but it is incomplete

because the cast prevents full, active assessment of the limb. Consequently, the reliability of the

information is reduced, and past experiences will be employed to improve the estimate of the

state of the arm. Such a reliance on previous experience over current sensory evidence risks

establishing an out-of-date analysis of the consequence of action, an elevation of the antici-

pated costs of action. If this impoverished sensory environment continues over time, then an

estimate that the body remains under threat persists, resulting in the need for a protective

action and the maintenance of pain (Fig 3B).

If we adopt the notion of temporal integration in line with statistical inference, Phantom

Limb Pain can be observed as an extreme clinical example of ultimately restricted sensorimo-

tor interaction over time [54]. In the absence of a limb, individuals are required to estimate the

threat posed to them without the ability to specifically test that estimation. As such, multiple

sources of information including, but not limited to, previous experience, current visual cues,

personal implications, and social consequences will inform the overall estimation of threat.

Without adequate safety cues, which enable the individual to alter this potentially heavily

weighted estimation of threat, the experience of pain will persist [55]. Attempting to identify

and challenge highly precise and thus heavily weighted information becomes an important fac-

tor for the investigation and treatment of all chronic pain conditions.

Investigations into the progression of pain over time typically focus on the relationship

between action and the potential threat to body tissue. The application of learning theory to

pain has highlighted the role of generalization in the manifestation of persistent pain [47,56].

The recent proposal of the Imprecision Hypothesis of persistent pain [17], grounded in classical

conditioning theory, proposes that pain emerges in the presence of overly noisy sensory infor-

mation. As such, the original pain experience becomes generalized over time to behaviours that

were previously not painful, resulting in a decrease in the repertoire of pain-free activities.

Experimental progression. Even though a large body of research has outlined the impact

that prior experiences and motivations have on pain [46,57–60], there are few studies that study

the temporal integration of this information, and none, of which the authors are aware, that

invoke a changing cost function. The main difficulty with experimentally testing the effects of

temporal integration is that over relatively short timescales, necessary for the majority of lab

experiments, adaptation effects occur. A stimulus, repeated over long time scales, may be per-

ceived as progressively less painful, an effect that can be related to prediction [61,62]. Hence, to

properly explore the effects of temporal integration in a lab setting, we need to minimize this

adaptation effect. Switching stimulus locations would be one option, which would assume that

pain locations are not static. Using pulsed noxious stimuli is another possibility.

An example design would take the following format. Let’s say we have a noxious tempera-

ture stimulator on each arm. We condition the participant by giving low pulses (e.g., every 30

seconds at 42˚C) to the left arm and high pulses (e.g., every 30 seconds at 48˚C) to the right

arm. Afterwards we give identical pulses to both arms (e.g., 45˚C). In accordance with the

principles of temporal integration, previous experiences inform current experiences. If pain is

temporally integrated across pulses, then the stimulus to the right arm should be perceived as

more painful than the identical stimulus to the left arm.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005142 January 12, 2017 7 / 13



Open Avenues

The perceptual modelling literature appears to be relevant for pain research in many ways. It

seems that approaching pain research from a computational perspective suggests a range of

new experiments, interpretations of past experiments, as well as the ability to reappraise clini-

cal pain conditions. While there are countless potential applications of ideas from Bayesian

perception research, we want to highlight one of them in the following.

Fig 3. Information needs to be integrated over time. a–b) Reduction in pain over time (S1–S3). We estimate the level of threat posed to the body from

noisy information, e.g., following wrist fracture and casting (x1–x3). In such cases, information is combined from past experiences (e.g., how the facture

occurred, previous exposure to fracture), to form an optimal inference. If there is sufficient information available that reflects a decreasing level of bodily threat,

an updated estimation of low threat will result, and the experience of pain will reduce over time. c–d) Maintenance of pain over time. During casting, visual,

proprioceptive, and tactile information is restricted. In some cases, previous experiences may have greater influence on the estimation of threat as they are

attributed more precision than the current sensory information, e.g., a highly traumatic incident that resulted in the fracture. In the absence of relevant safety

cues, the estimation of threat may persist over time so that pain continues. Although an abstract example, this could be an alternative approach to

understanding Complex Regional Pain Syndrome [53].

doi:10.1371/journal.pcbi.1005142.g003
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When we look at Fig 4A [63], we see two grey areas with the right one brighter than the left.

What is remarkable is that the left and the right are actually equally bright—they are the same

shade of grey. It is just that approaching the centre, the brightness slowly ramps down, quickly

ramps up, and ramps down again to exactly the same level (4b). Somehow the brain misesti-

mates the difference in brightness.

There are a number of explanations of the Cornsweet illusion [64,65], but a particularly

simple one is that the brain assumes that brightness changes are either zero (consistent stimu-

lus) or nonzero (varying stimulus). Such a mixture model is equivalent to causal inference,

Fig 4. The Cornsweet illusion, a new hope for pain treatment? a) Two panels of equal luminance are presented;

however, they are perceived to be different. Covering up the central portion where the panels meet will reveal that it is

just in this section that the luminance ramps up and back down again, to give the illusion that the two panels are

different. b) The actual stimulus luminance over space. c) Could a similar phenomenon exist in pain? By introducing a

noxious experience that imperceptibly ramps up over time, jumps down, and then ramps back up to the original level

imperceptibly to produce the illusion that the threat has decreased, thus lowering the experienced level of pain.

doi:10.1371/journal.pcbi.1005142.g004
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such that the brain misattributes a weak gradient to no gradient [66,67]. However, at the dis-

continuity in the middle, the gradient is so large that the misperception of the weak gradient is

irrelevant. Hence, when integrating perceived luminance over space, we will make a mistake,

which produces the illusion of a luminance change, resulting in the illusion of two different

shades of grey.

Whatever the exact interpretation of the Cornsweet illusion, it provides an interesting

conceptualization for increasing or decreasing the experience of pain. If pain perception is suf-

ficiently analogous to visual perception, then conceivably, by introducing a noxious stimulus

that slowly ramps up (imperceptibly), jumps down (strong relief!) and again slowly ramps up

(again imperceptibly), it should be possible to produce the illusion of lowered pain (Fig 4C),

or, more accurately, producing the percept that reflects the reduction of perceived threat of

potential bodily damage and, therefore, lowering the experience of pain [62]. This example

is not only contingent on the similar processing of visual and pain perception, but it also

demands that the rules governing spatial perception (Cornsweet illusion) and temporal per-

ception (pain illusion) are homogenous as well. The investigation of these conditions poten-

tially provides mutual benefits for the fields of vision and pain. Yet, if we could produce the

analogue of the Cornsweet illusion in pain research, it is possible we could produce the illusion

of reducing the perceived threat of damage and the need for protection via pain. This, in turn,

could be useful clinically.

Concluding Remarks

The investigation into human experience from a perceptual inference perspective has provided

insights into the potential mechanisms underlying those experiences. The application of such

an approach to the investigation of the experience of pain could be highly interesting, as it

promises to shed light on the computational underpinnings of pain. In addition, such an

approach provides clear and testable hypotheses about the clinical progression of persistent

pain, with the potential to expose new treatment approaches for the experience of pain.

Supporting Information

S1 File. Bayes tutorial.

(PPT)

S2 File. Bayes tutorial, notes.

(DOC)

S1 Data. Example datasets for Bayes tutorial, part I. Combining information from 52 neu-

rons to decode movement.

(ZIP)

S2 Data. Example datasets for Bayes tutorial, part II. Combining two cues in order to esti-

mate the location of a target.

(ZIP)
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