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LOTTERIES, PROBABILITIES, AND 

PERMISSIONS 

Clayton LITTLEJOHN 

ABSTRACT: Thomas Kroedel argues that we can solve a version of the lottery paradox if 

we identify justified beliefs with permissible beliefs. Since permissions do not 

agglomerate, we might grant that someone could justifiably believe any ticket in a large 

and fair lottery is a loser without being permitted to believe that all the tickets will lose. 

I shall argue that Kroedel’s solution fails. While permissions do not agglomerate, we 

would have too many permissions if we characterized justified belief as sufficiently 

probable belief. If we reject the idea that justified beliefs can be characterized as 

sufficiently probably beliefs, Kroedel’s solution is otiose because the paradox can be 

dissolved at the outset. 

KEYWORDS: epistemic obligation, evidence, justification, Thomas Kroedel, lottery 

paradox, probability 

 

Thomas Kroedel1 argues that if we assume that we are permitted to believe p iff 

we are justified in believing p, we can easily solve a version of Kyburg’s2 lottery 

paradox.3 Here is the set up. You know that there is a large and fair lottery. Only 

one ticket can win and the odds of any ticket winning is the same as the odds of 

any other ticket winning. It seems to him that:  

(1-J) For each ticket, you are justified in believing that it will lose. 

The paradoxical conclusion that is supposed to follow from (1-J) is that:  

(2-J) You are justified in believing that all the tickets will lose. 

It seems that (2-J) is false. What to do?  

Kroedel suggests that (1-J) and (2-J) are equivalent to:  

(1-P) For each ticket, you are permitted to believe that it will lose. 

                                                                 
1 Thomas Kroedel, “The Lottery Paradox, Epistemic Justification, and Permissibility,” Analysis, 

72, 1 (2012): 57-60. 
2 Henry Kyburg, Probability and the Logic of Rational Belief (Middletown: Wesleyan University 

Press, 1961). 
3 For arguments in support of the view that justified beliefs are permissibly held beliefs (but not 

beliefs you're obligated to have), see Clayton Littlejohn, Justification and the Truth-

Connection (Cambridge: Cambridge University Press, 2012) and Mark Nelson, “We Have No 

Positive Epistemic Duties,” Mind 119 (473): 83-102. 
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(2-P) You are permitted to believe that all the tickets will lose. 

He says that (1-P) is ambiguous between a narrow- and wide-scope reading. On 

one reading, (1-P) is false. On one reading (1-P) is true, but it does not entail (2-P). 

Let p, q, r, etc. be propositions about particular tickets losing. Let PBp be 

the sentence “It is permissible for you to believe p.” Here is the first reading of (1-

P), a narrow-scope reading:  

(N1-P) PBp & PBq & PBr 

Kroedel says that (N1-P) is true. He is right that (N1-P) does not entail (2-P) 

because permissions do not agglomerate. If permissions agglomerate, whenever 

you are permitted to  and permitted to , you would be permitted to  and . If, 

say, we were sharing a cake and you were permitted to take one half or take the 

other half, you would thereby be permitted to take the whole thing if permissions 

agglomerated. Since you can be permitted to take part without thereby being 

permitted to take it all, permissions do not agglomerate. Having two permissions 

and using one can thereby lead you to lose the other. Likewise, being permitted to 

believe p and being permitted to believe q does not mean that you are permitted 

to believe both p and q (or believe the conjunctive proposition that p and q). 

Contrast (N1-P) reading with this wide-scope reading of (1-P):  

(W1-P) P[Bp & Bq & Br]  

While (W1-P) does entail (2-P), Kroedel argues that (W1-P) is false. He says 

that the problem with (W1-P) is that it is plausible that if you are permitted to 

hold several beliefs then you are thereby permitted to have a single belief that is 

the conjunction of those contents. It would be if this closure principle were true:  

(CP) If P[Bp & Bq & Br], then PB[p & q & r] 

It is, as he notes, highly implausible that you are permitted to believe the 

conjunctive proposition [p & (q & r)], so if the permission to believe both p and q 

(together) carries with it the permission to believe the conjunction (p & q), we 

have some reason to think that (W1-P) is false. 

Kroedel thinks that to solve the lottery paradox, we should say that beliefs 

concerning lottery propositions can be justified but there is a limit as to how many 

such beliefs we can permissibly form. He thinks that there is a reading of (1-P) 

that is true, (N1-P) and urges us to reject (2-P). Why should we accept (N1-P) or 

(1-J)? His suggestion is that the high probability of a proposition is sufficient for 

the permissibility of believing it (forthcoming: 3). What is wrong with (2-P)? The 

problem cannot be that if you were permitted to believe that all the tickets will 

lose you will thereby believe something you know is false. The lottery might not 
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have a guaranteed winner and (2-P) still seems false. Perhaps the reason that (2-P) 

is false is just that the probability that all the tickets will lose is too low. It might 

seem that Kroedel’s solution should work given the following principle linking 

justification to probability:  

(PJ) PBp iff the probability of p on your evidence is sufficiently high.  

While (PJ) would (if true) explain why (1-P) is true and (2-P) is not, I think 

Kroedel has to reject (PJ). If he does that, his solution becomes otiose. We can 

dissolve the paradox by denying (1-J) and (N1-P) rather than worrying about 

whether these false claims entail further false claims. 

To see this, notice that since Kroedel is committed to (N1-P) and denying 

(2-P), he is committed to the following claim: 

(*)  For a lottery with n tickets (assuming that n is suitably large 

number), you are not permitted to form n beliefs that represent 

tickets in the lottery as losers but for some number m such that n > m 
> 0, you are permitted to form m beliefs that represent tickets in the 

lottery as losers. 

Suppose you had a ticket for a lottery with 1,000,000 tickets. You know that this 

ticket, ticket #1, is not terribly likely to win. Let us suppose that in a lottery this 

size, you are permitted to believe that at least one ticket will lose. You decide to 

make use of this permission and believe ticket #1 will lose. You know (or should 

know!) that forming this belief does not change the probability that ticket #2 will 

lose. Since you were permitted to believe it before believing ticket #1 will lose and 

its probability remains unchanged when you add that first belief to your belief set, 

you can add the belief that ticket #2 will lose without being compelled to abandon 

your belief that ticket #1 will lose. (It is not as if adding the belief that ticket #2 

will lose to your belief set forces you to lower the probability that ticket #1 will 

lose.) Given (PJ), it seems you can permissibly believe both that ticket #1 and 

ticket #2 will lose. We can apply the same reasoning again and you can 

permissibly add the belief that ticket #3 will lose without having to abandon 

previously formed beliefs about losing tickets. Repeat. At some point, (PJ) says 

that you can add some number of beliefs about losing lottery tickets greater than 

m without impermissibly adding beliefs to your stock of beliefs. At this point, (*) 

says that you formed more beliefs than you are permitted to form. You cannot 

consistently endorse (PJ) and (*). 

If Kroedel denies (*), he has to either accept (2-P) or reject (N1-P). If he 

does that, he has to abandon his proposed solution. If instead he retains (*) and 

denies (PJ), he has to deny one of the following:  
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(High) PBp if the probability of p on your evidence is sufficiently high.  

(Low) ~PBp if the probability of p on your evidence is sufficiently low. 

If he denies (Low), it is not clear why we should reject (2-P). If he denies 

(High), it is not clear what motivation there is for (N1-P). If forced to choose, it 

seems rather obvious that he should deny (High) rather than (Low). If he rejects 

(High), he can dispense with the lottery paradox much more quickly. If it is 

possible for the probability of p to be sufficiently high on your evidence and for 

you to be obligated to refrain from believing p, I cannot see what would be wrong 

with saying that your obligation is to refrain from believing lottery propositions. 

The only thing they have going for them from the epistemic point of view is their 

high probability. 

There is a common objection to (High) and to (1-P). Many people think that 

you cannot know that a ticket in a lottery with 1,000,000 tickets will lose. Suppose 

this is so and suppose that you know that you cannot know that the ticket you 

have is a loser. If you believe that your ticket is a loser and know that you cannot 

know that your ticket is a loser, this is how you see things:  

(1)  This ticket will lose, but I do not know that it will. 

If you believed such a thing, you would be deeply irrational. While you cannot 

justifiably believe (1), the probability of (1) on your evidence, however, is quite 

high. So, (High) says that it is permissible to believe (1). So, (High) is mistaken. If 

(High) is rejected, this should take some of the sting out of denying (1-J) and (N1-

P). 

One reason to think that you cannot justifiably believe lottery propositions 

is that you cannot justifiably believe what you know you cannot know.4 Lottery 

propositions are known unknowns. There is a further reason to think that it 

would be better to solve the lottery paradox by denying (1-J) and (N1-P) than to 

accept these and reject (2-J). It seems you cannot have proper warrant to assert:  

(2)  Your ticket will lose. 

You might explain why it would be improper to assert (2) given only 

knowledge of the odds that the ticket will lose on the grounds that you cannot 

know (2) and cannot have warrant to assert what you do not know.5 For various 

reasons, some object to this suggestion on the grounds that there are propositions 

that the speaker does not know that the speaker does have sufficient warrant to 

                                                                 
4 Alexander Bird, “Justified Judging,” Philosophy and Phenomenological Research 74 (2007): 81-

110; Jonathan Sutton, “Stick to What You Know,” Nous 39 (2005): 359-96. 
5 Timothy Williamson, Knowledge and its Limits (Oxford: Oxford University Press, 2000). 
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assert. (Maybe you do not know that the building you see on the hillside is a barn, 

but if you do not know this just because you are in fake barn country, it is not 

obvious that you do not have sufficient warrant to assert that the building is a 

barn.) Suppose that knowledge is not necessary for warranted assertion. If 

knowledge is not necessary for warranted assertion, what is? Douven6 argues that 

reasonable belief is necessary and sufficient for warranted assertion. Given 

Douven’s account, we have to reject (N1-P) and (1-J) to explain why you do not 

have sufficient warrant to assert (2). You cannot properly assert (2) because you 

cannot justifiably believe (2). Thus, (1-J) is mistaken. Paradox dissolved.  

Someone might say that there is an alternative approach available to 

Kroedel, one on which we modify (High) as follows:  

(High*)  PBp if the probability of p on your evidence and what you 

permissibly believe is sufficiently high.  

Armed with this, he might argue that as you add more and more lottery 

beliefs to your set of beliefs, there will come a point at which the probability that 

some ticket is a loser will be too low for you to add another belief to your belief 

set. The thought seems to be that it would be impermissible to add a belief to your 

belief set because the probability that the remaining tickets will lose on your 
beliefs falls further and further the more beliefs you form. Eventually, it becomes 

impermissible to add more.  

For this move to work, we would have to say that whether one has 

sufficient propositional justification to believe a lottery proposition depends upon 

the probability of that proposition conditional on what you justifiably believe and 

on what your evidence is. The oddity of this response, however, seems to be that 

the minimally rational agent knows that the probability of each ticket turning out 

to be a loser is the same and remains invariant however many lottery beliefs the 

subject forms. Yet, (High*) suggests that the reason that you don’t have the 

permission to believe some lottery proposition is that the probability of some 

ticket turning out to be a loser has dropped below some threshold.  

Someone might instead suggest that the problem has to do with the 

agglomeration of risk. With each belief comes additional risk and with each 

additional risk taken, you get closer and closer to a level of risk taking that is 

unacceptable.  

The problem with this reformulation of the solution is that it succumbs to a 

version of the wrong kind of reasons problem. We have already established that 

                                                                 
6 Igor Douven, “Assertion, Knowledge, and Rational Credibility,” Philosophical Review 115 

(2006): 449-85. 
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the additional lottery beliefs you form are no riskier than other beliefs you have 

formed. For Kroedel’s solution to work, we have to assume that some beliefs in the 

set of lottery beliefs are permissibly held. While adding more and more beliefs 

means that the probability of the set of lottery beliefs will include a falsehood 

increases, the fact that adding a belief to a set increases the probability that the set 

contains a falsehood is not the sort of reason that counts against adding that 

particular belief to the set. Adding the preface-like belief to your belief set (e.g., 

that something you believe is mistaken) guarantees that the set of beliefs you have 

contains a falsehood, but that fact does not constitute a decisive reason to remain 

agnostic about your own fallibility or to believe that you are not in error in any of 

your beliefs.   

If (High) should be abandoned, (High*) is not a suitable alternative. If 

neither (High) nor (High*) is acceptable, it is difficult to see how a solution along 

the lines proposed by Kroedel could work. If no modification of (High) or (High*) 

is acceptable, we can reject (High) and (High*). Having done that, there is no 

problem left for us to solve.   

 


