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Abstract 
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Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, is associated with 

tumor development in patients suffering from Chinese herbs nephropathy (now termed Aristolochic 

acid nephropathy, AAN) and may also be a cause for the development of a similar type of 

nephropathy, the Balkan endemic nephropathy (BEN). Major DNA adducts [7-(deoxyadenosin-N
6
-

yl)-aristolactam and 7-(deoxyguanosin-N
2
-yl)aristolactam] formed from AA after reductive metabolic 

activation were found in renal tissues of patients with both diseases. Understanding which human 

enzymes are involved in AA activation and/or detoxication is important in the assessment of an 

individual’s susceptibility to this plant carcinogen. This paper reviews major hepatic and renal 

enzymes responsible for AA-DNA adduct formation in humans. Phase I biotransformation enzymes 

play a crucial role in the metabolic activation of AA to species forming DNA adducts, while a role of 

phase II enzymes in this process is questionable. Most of the activation of AA in human hepatic 

microsomes is mediated by cytochrome P450 (CYP) 1A2 and, to a lower extent, by CYP1A1; 

NADPH:CYP reductase plays a minor role. In human renal microsomes NADPH:CYP reductase is 

more effective in AA activation. Prostaglandin H synthase (cyclooxygenase, COX) is another enzyme 

activating AA in human renal microsomes. Among the cytosolic reductases, NAD(P)H:quinone 

oxidoreductase (NQO1) is the most efficient in the activation of AA in human liver and kidney. 

Studies with purified enzymes confirmed the importance of CYPs, NADPH:CYP reductase, COX and 

NQO1 in the AA activation. The orientation of AA in the active sites of human CYP1A1, -1A2 and 

NQO1 was predicted from molecular modeling and explains the strong reductive potential of these 

enzymes for AA detected experimentally. We hypothesized that inter-individual variations in 

expressions and activities of enzymes activating AA may be one of the causes responsible for the 

different susceptibilities to this carcinogen reflected in the development of AA-induced nephropathies 

and associated urothelial cancer.  

 

Key words: Aristolochic acid; Aristolochic acid nephropathy; Balkan endemic nephropathy; 
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Reductive activation; DNA adducts. 
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Aristolochic acid (AA), the plant extract of Aristolochia species, is a mixture of structurally 

related nitrophenanthrene carboxylic acids, with 8-methoxy-6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-

5-carboxylic acid (AAI) and 6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAII), 

being the major components  (Fig. 1) [1,2]. Herbal drugs derived from Aristolochia species have 

been known since antiquity and were used in obstetrics and in the treatment of snake bites [1]. 

Contempory medicine has used Aristolochia plant extracts for the therapy of arthritis, gout, 

rheumatism and festering wounds [3-5]. The anti-inflammatory properties of AA encouraged the 

development of pharmaceutical preparations in Germany [6-8] until Mengs and coworkers observed 

that AA is a strong carcinogen in rats [9,10]. Moreover, AA was shown to be a genotoxic mutagen 

[11-16] and nephrotoxic to rodents [17-19]. Therefore all pharmaceutical preparations containing 

AA have been withdrawn from the market in Germany and in many other countries [20]. However, 

Aristolochia plants and their extracts have been further used in traditional medicine in some parts of 

the world [1,5,21,22].  

Recently AA was proven to be the cause of so-called Chinese herbs nephropathy (CHN), a 

unique type of rapidly progressive renal fibrosis associated with the prolonged intake of Chinese 

herbal remedies during a slimming regimen, observed for the first time in Belgium in 1991 [23,24]. 

About 100 CHN cases have been identified so far in Belgium, half of which needed renal 

replacement therapy, mostly including renal transplantation [25-27]. The observed nephrotoxicity 

has been traced to the ingestion of herbal preparation Aristolochia fangchi containing nephrotoxic 

AA inadvertently included in slimming pills [24]. CHN patients, who were exposed to Aristolochia 

species containing AA and had no relationship with the Belgian slimming clinic, have been 

identified in other European countries, in Asia and in the USA (about 170 cases) [28]. Therefore, 

this disease is now called aristolochic acid nephropathy (AAN) [29,30]. Recently, a high prevalence 

of urothelial cancer was found in the cohort of AAN patients in Belgium [31,32] and cases of 

urothelial cancer have also been described in other countries [33-35]. These findings highlight the 
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carcinogenic potential of AA to humans. Indeed, AA is among the most potent 2% of known 

carcinogens [33]. As a consequence, herbal remedies containing species of the genus Aristolochia 

were recently classified as carcinogenic to humans (Group 1) by the International Agency for 

Research on Cancer (IARC) [1]. 

It is also noteworthy that AA consumption may be a cause for the development of a similar 

type of kidney fibrosis with malignant transformation of the urothelium, the Balkan endemic 

nephropathy (BEN) [36-40], which is widely found in certain areas of Romania, Croatia, Bosnia, 

Serbia and Bulgaria along the Danube river basin [36,37,41]. At least 25,000 individuals suffer 

from BEN or are suspected of having the disease, while the total number of people at risk in these 

countries may exceed 100,000. Although first described 50 years ago the etiology of BEN remains 

unclear and is a matter of debate [37,41]. For the last years evidence has accumulated that BEN is 

an environmental disease. Recent experimental data shows that AA might be one of the most 

important etiologic factors in BEN and associated urothelial cancer [38,41,42]. AA exposure is 

associated with chronic dietary uptake of seeds of Aristolochia clematitis by the population living in 

BEN regions [28,36,43]. 

Since the demonstration that AA forms covalent DNA adducts in rodents [44-46] as well as in 

AAN patients (Fig. 2A) [28,32,47-50], AA-DNA adducts have been used as biomarkers of exposure 

to AA and to investigate the mutagenic and carcinogenic potential of AA. The major AA-DNA 

adducts found in rodents exposed to AA and in patients suffering from AAN were identified as 7-

(deoxyadenosin-N
6
-yl)aristolactam I (dA-AAI), 7-(deoxyguanosin-N

2
-yl)aristolactam I (dG-AAI) 

and 7-(deoxyadenosin-N
6
-yl)aristolactam II (dA-AAII) (Figs. 1 and 2), 7-(deoxyguanosin-N

2
-

yl)aristolactam II (dG-AAII) and dA-AAII were detected as the major adducts in animals treated 

with AAII [45,46,51-55]. One of the AA-DNA adducts, dA-AAI, has also been found in two out of 

three renal tissues collected randomly from farmers with end-stage renal failure and upper urinary 

tract malignancy living in areas endemic for BEN (Fig. 2B), although these patients have not been 
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classified as clearly suffering from BEN [38]. More recently Grollman et al. [42] found dA-AAI 

and dG-AAI adducts in DNA of renal cortex of four Croatian patients with BEN. These results 

underline the importance of AA as a risk factor for BEN and BEN-associated urothelial cancer. 

Nevertheless, the specific role of AA in the development of BEN still awaits further investigation. 

 

2. Aristolochic acid-mediated carcinogenesis 

The predominant AA-DNA adduct in vivo, 7-(deoxyadenosin-N
6
-yl)aristolactam I (dA-AAI) 

(Figs. 1 and 2), which is the most persistent of the adducts in the target tissue, is a mutagenic lesion 

leading to A→T transversions [56,57]. This transversion mutation is found at high frequency in 

codon 61 of the H-ras oncogene in tumors of rodents induced by AAI, suggesting that dA-AAI 

might be the critical lesion in the carcinogenic process in rodents. DNA binding studies confirmed 

that both AAs bind to the adenines of codon 61 in the mouse H-ras gene [56,57] and preferentially 

to purines in the human p53 gene [27,28,58]. In DNA isolated from an urothelial tumor of one AAN 

patient the dA-AAI adduct and an AAG to TAG mutation in codon 139 (Lys→Stop) of exon 5 in 

the human p53 gene was detected [59]. In a recent report examining p53 mutations in urothelial tumours 

of BEN patients in Croatia (N=11) mutations at A:T pairs accounted for 89% (17/19) of all mutations, with 

the majority of these (15/17) being A→T transversions, representing 78% of all base substitutions detected 

in the p53 gene [42]. Interestingly, in two cases A→T transversions were found in human p53 (codon 209 

and 280) in immortalized cells derived from primary Hupki embryonic fibroblasts [derived from a human 

p53 knock-in (Hupki) mouse] exposed to AAI [60,61], All these findings indicate a link between 

urothelial tumours, p53 mutations and exposure to AA, as we suggested recently [62]. With respect to AA 

as a risk factor for BEN-associated urothelial tumours observed outside Croatia we predict that 

many of these tumours carry characteristic A→T transversion mutations in p53 [62].  
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3. Biotransformation of aristolochic acid 

The metabolism of AA has been widely studied in different species including man and has 

shown that the corresponding aristolactams (Alacs) [63] are major metabolites found free or as 

conjugates in urine and faeces (Fig. 3) [64,65]. Thus, AAs are predominantly reduced to N-

hydroxy-Alacs [66], which could be either further reduced to Alacs or rearranged to 7-

hydroxyaristolactams [66] (Figs. 1 and 3). The principle metabolite of AAI was aristolactam Ia 

(AlacIa) produced by two metabolic pathways, one pathway runs via aristolactam I (AlacI) and the 

other via demethylation of AAI to aristolochic acid Ia (AAIa) (Fig. 3). This interpretation is 

supported by the results of Schmeiser et al. [67], who showed that AlacI and aristolactam II (AlacII) 

are produced in vitro under anaerobic conditions from AAI and AAII, respectively, with rat liver S9 

mix, whereas under aerobic conditions the metabolite formed from AAI is AAIa while AAII 

remains unaltered. Thus AlacIa, though the principal metabolite in vivo has not been detected in 

vitro [64,65]. In vivo the oxygen concentration of tissues may affect the relative extents of 

nitroreduction and O-dealkylation of AAI, whereas for AAII only nitroreduction might be 

influenced by oxygen concentration [68]. Minor AA metabolites in vivo are products of AA 

denitrosation [64] and decarboxylation [66]. 

The phase II-metabolism of both AAs, studied by Krumbigel et al. [64] and Chan et al. [65,66], 

indicated that large amounts of AA metabolites in the urine and faeces in rodents were present in 

conjugated form, either as glucuronides or as sulfate or acetate esters [64-66]. Recently, Chan et al. 

[65,66] identified three phase II metabolites of AAIa, namely the O-glucuronide, the O-acetate and 

the O–sulfate esters [66] and three conjugates of Alacs, the N- and O-glucuronides of AlacIa (with 

prevalence of the N-glucuronide) as well as the N-glucuronide of AlacII [65], in the urine of rats 

treated with AA (Fig. 3). 

Simple nitro reduction is the major pathway responsible for the carcinogenic potential of AAI 

and AAII because during such reactions reactive metabolites binding to DNA in vitro and in vivo 
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are generated (Fig. 1) [28,46,51,52]. While, Alacs are the final products of the reduction of the nitro 

group of both AAs, they are not the direct DNA binding species. This view is supported by Ames 

assay results demonstrating that Alacs are not mutagenic themselves, but require activation by rat 

liver S9 mix [67]. Whereas AAI and AAII were direct mutagens in the most commonly used 

Salmonella strains TA100 and TA1537 [11,69] the mutagenic potency of the corresponding Alacs 

in TA100 is about one-half of that of the parent compounds [67]. This result is consistent with the 

observation reported by Dong and co-workers [55], who found that 50 times lower amounts of dA-

AAI and dG-AAI adducts, with the highest levels in a target tissue, renal pelvis, were generated in 

Wistar rats treated with AlacI than with AAI and AAII [55]. No such DNA adducts (dA-AA and 

dG-AA adducts) were however found for AlacI and AlacII in the presence of rat liver S9 mix [44] 

or rat hepatic microsomes containing cytochrome P450 (CYP) enzymes [49]. In contrast to this 

finding, formation of dA-AA and dG-AA adducts by both Alacs was observed after in-vitro 

activation with different peroxidases [49,70] of which several, such as COX-1 and/or COX-2, are 

expressed at high levels in renal tissue [71,72].  

 

4. Enzymatic activation of aristolochic acid and DNA adduct formation 

One of the common features of AAN and BEN is that not all individuals exposed to AA (AAN 

and/or BEN patients) suffer from nephropathy and tumor development. To date only 5% of the 

patients treated with the slimming regimen in Belgium are suffering from AAN [28]. One cause for 

these different responses may be individual differences in the activities of the enzymes catalyzing 

the biotransformation (detoxication and/or activation) of AA. Many genes of enzymes metabolizing 

carcinogens are known to exist in variant forms or show polymorphisms resulting in differing 

activities of the gene products. These genetic variations appear to be important determinants of 

cancer risk [73]. Indeed, the combination of polymorphic genes with various environmental factors 

such as AA that may result in an increased risk for BEN has been proposed by Toncheva, 
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Atanasova et al. [74-78]. Thus, the identification of the enzymes principally involved in the 

metabolism (detoxication and/or activation) of AA in humans and a detailed knowledge of their 

catalytic specificities is of major importance.  

A powerful tool to determine the activation of AAs is to characterize and quantify the DNA 

adducts they form, and to determine which factors either enhance or inhibit adduct formation. The 

detection of specific AA-DNA adducts by 
32

P-postlabeling [44-49,53] has allowed us to use DNA 

binding as a probe for metabolic activation of AA in in-vitro systems. The same AA-DNA adducts 

found in rodents and patients suffering from AAN, namely dA-AAI, dG-AAI, dA-AAII and dG-

AAII [44-50,53], are generated in in-vitro systems [44,49,70,79-86]. This indicates that a cyclic N-

acylnitrenium ion with a delocalized positive charge as the ultimate carcinogenic species binds 

preferentially to the exocyclic amino groups of purine nucleotides in DNA or is converted to the 

corresponding 7-hydroxyaristolactam (Fig. 1) [51,52,66]. It is known that in the activation of 

carcinogenic nitroaromatics and aromatic amines acetylation of the amino or hydroxyamino group 

plays a key role. Therefore the activation of AA is a unique example of an intra-molecular acylation 

which leads to the ultimate carcinogen.  

The first enzymatic study evaluating the activation of AAI and AAII to species forming DNA 

adducts in vitro utilized rat liver S9 mix as the enzymatic system [44]. Whereas for AAI the same 

DNA adducts were observed under aerobic and anaerobic conditions, AAII gave rise to adduct 

formation only under anaerobic conditions in these studies. Both microsomal and cytosolic 

reductases are present in S9 mix and might be responsible for AA-DNA adduct formation. 

Therefore, we evaluated the contribution of individual human microsomal and cytosolic reductases 

to AA-DNA adduct formation. Enzymes of two organs, liver and kidney, were investigated; the 

liver as a tissue rich in biotransformation enzymes and thus predominantly responsible for 

carcinogen metabolism and the kidney as the target for AA-derived nephrotoxicity and 

carcinogenesis.   
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4.1. Enzymes in human hepatic and renal microsomes activating aristolochic acid  

Human hepatic and renal microsomes were capable of reductive activation of AAs to species 

generating the same AA-DNA adducts as found in vivo [81,86]. Using extensive enzymatic studies 

we identified the enzymes, which are predominantly responsible for AAI-DNA adduct formation. 

We demonstrated that most of the activation of AAI in human hepatic microsomes is mediated by 

CYP1A2 and/or -1A1. Using microsomes from baculovirus-transfected insect cells (Supersomes
TM

) 

containing recombinantly expressed human CYPs (-1A1, -1A2, -1B1, -2A6, -2B6, -2C9, -2D6, -

2E1 or -3A4) and/or human NADPH:CYP reductase this finding was corroborated. AAI activation 

by Supersomes
TM

 containing individual CYP species and NADPH:CYP reductase showed clearly 

that human CYP1A1 and -1A2 were the most active (Fig. 4). Because of a relatively low content of 

CYP1A1 in human liver [87,88], its contribution to AAI activation in this tissue has to be much 

lower than that of CYP1A2.  

CYP1A1 and -1A2 homology modeling followed by docking of AAI to the active centers of 

CYP1A1 and -1A2 was utilized to explain the potential of these enzymes to reduce AAI. The in- 

silico docking of AAI to the active sites of CYP1A1 and -1A2 indicates that AAI binds as an axial 

ligand of the heme iron with the nitro group is in close vicinity to the heme iron of CYP1A2 in an 

orientation allowing the efficient reduction of this group observed experimentally (Fig. 5B). The 

orientation of AAI in the active centre of CYP1A1, however, leads to cause an interaction of the 

heme iron with both the nitro- and the carboxylic groups of AAI (Fig. 5A). This observation 

explains the lower reductive potential of CYP1A1 for AAI than CYP1A2, detected experimentally 

(Fig. 4).  

It is noteworthy that the efficacy of microsomes from a human kidney to activate AAI was 

comparable to that of microsomes of human livers, even though the 7-ethoxyresorufin O-deethylase 

activity, a marker for CYP1A, was more than one order of magnitude lower than in liver 
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microsomes analyzed in our study [86]. CYP1A expression levels in this human kidney specimen 

were low (<0.005 pmol CYP1A1/mg protein and no CYP1A2), in agreement with CYP levels 

published for human kidney [88]. Therefore, the relevance of these CYP enzymes in AA activation 

in kidney seems to be low. In kidney microsomes NADPH:CYP reductase and COX, a peroxidase 

abundant in kidney [71,72], were found to be the principal enzymes reductively activating AAI 

[86]. Indeed, purified COX-1 was found to efficiently catalyze DNA adduct formation of AAI [80].
 

 

4.2. Enzymes in human hepatic and renal cytosol activating aristolochic acid  

In addition to human microsomes, cytosolic samples from human livers and kidney are capable 

of activating AAI leading to the same DNA adduct pattern as formed in humans exposed to AA 

[84]. In these subcellular systems formation of AAI-DNA adducts was found to be principally 

catalyzed by NAD(P)H:quinone oxidoreductase (NQO1) [84]. Using human recombinant NQO1 

the efficiency of this enzyme to activate AAI was corroborated [89]. Molecular modeling whereby 

the AAI molecule was docked to the active site of human NQO1 suggests that AAI binds in the 

same orientation as other NQO1 substrates in the X-ray structures, with the planar aromatic AAI 

rings parallel to the flavin ring (Fig. 6). This allows for an efficient electron transfer during the 

reductive activation of AAI.  

In comparison to NQO1, xanthine oxidase (XO), another cytosolic reductase in human hepatic 

and renal cytosols, had only a minor impact on the activation of AAI to form DNA adducts [84]. In 

contrast to this finding we observed that the isolated buttermilk XO was an effective activator of 

this compound [79,84], but the high enzyme levels needed are not physiological. Another reason for 

the observed discrepancies might be the different substrate specificities of human cytosolic and 

buttermilk XO. 

Besides cytosolic reductive enzymes, conjugation enzymes such as N-acetyltransferases 

(NATs) and sulfotransferases (SULTs) are involved in the metabolic activation of several nitro-
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aromatics [90,91]. Their participation in AA activation is, however, still a matter of debate. 

Recently, Meinl et al. [92] demonstrated that expression of some humans SULTs, particularly 

SULT1A1, in bacterial and mammalian target cells enhances the mutagenic activity of AA. 

Moreover, an increase in AAI-induced mutagenicity was correlated with higher AA-DNA adduct 

levels in fibroblastic V79 cells transfected with human SULT1A1 [Arlt et al. unpublished data]. 

However, neither in human hepatic and renal cytosols, to which the SULT cofactor, 3’-

phosphoadenosine-5’-phosphosulfate (PAPS) was added, nor in an in-vitro system consisting of 

human NQO1 and SULT1A1, an increase in AA-DNA adduct levels was found [Stiborová et al. 

unpublished data]. Thus, the exact role of conjugation enzymes in AA activation awaits further 

investigation.    

 

4.3. Contribution of microsomal and cytosolic enzymes to AA activation 

When comparing the efficiency of microsomal and cytosolic enzymes, NQO1 is more effective 

in reduction of AAI to form DNA adducts than CYP1A1, -1A2, NADPH:CYP reductase or COX-1. 

The concentrations of AAI required for half-maximum DNA binding was 17 µM for reductive 

activation by human NQO1 [89], while 38, 65, 126 and 153 µM AAI for its activation by human 

CYP1A2, -1A1, NADPH:CYP reductase and COX-1, respectively [80,85]. In addition, the 

comparison of AA-DNA adduct levels formed by human hepatic microsomes and cytosols revealed 

that the cytosolic enzyme systems are more efficient than microsomes. In the presence of the cofactor 

NADPH the levels of AAI-derived DNA adducts expressed as relative adduct labelings (RALs) per 

mg protein were more than 2-fold higher in cytosols than in microsomes [84,86]. Because the content 

of cytosolic protein per gram of human liver tissue is about one order of magnitude higher than that of 

microsomal protein [Stiborová et al. unpublished data], the importance of cytosolic enzymes in AAI 

activation in the intact organ will be even greater. Nevertheless, in the in-vitro experiments we could 

not evaluate exactly the significance of the phase I enzymes in microsomal and cytosolic fractions of 
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human tissues, because the effect of cytosolic conjugation enzymes on AAI-DNA adduct formation 

could not be quantified. SULT1A1 is known to be expressed in human liver and kidney [92]. To 

determine the contribution of cytosolic and microsomal nitroreductases to AA activation, we plan to 

study the in vivo situation. Mice carrying a deletion in the hepatic NADPH:CYP reductase gene 

[93,94], and thus lacking NADPH:CYP reductase and NADPH:CYP reductase-mediated CYP 

activity in hepatocytes will be used.  

 

5. Is the endowment with activating and/or detoxicating enzymes of AA a risk factor for AAN- 

and/or BEN-associated urothelial cancer? 

As shown, the most important human enzymes activating AA by simple nitroreduction leading 

to DNA binding species are hepatic and renal cytosolic NQO1, hepatic microsomal CYP1A2 and 

renal microsomal NADPH:CYP reductase, in addition to COX [80,86], which is highly expressed 

in urothelial tissue [71,72]. 

The levels of two forms of human COX (COX-1 and -2) appear to be induced in response to a 

number of hormonal and membrane active agents [71,72]. Their levels in individuals can, therefore, 

differ significantly. This is also true for other enzymes activating AA. Expression levels and 

activities of NQO1, CYP1A1/2 and NADPH:CYP reductase in humans are influenced by several 

factors (smoking, drugs, environmental chemicals and genetic polymorphisms) and differ 

considerably among individuals [88,95-97]. Glucocorticoid levels also influence the activity and 

levels of NADPH:CYP reductase [98].  

One of the most efficient AA activating enzymes is NQO1, ubiquitously present in all tissue 

types [99-102]. Expression levels and activities of NQO1 differ considerably among individuals 

[99,103,104]. Biochemical studies have already demonstrated that NQO1 activity is induced by a 

wide range of chemicals [99,105-107]. Two distinct regulatory elements in the 5’ flanking region of 

the NQO1 gene, the antioxidant response element (ARE) and the xenobiotic response element 
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(XRE), involving the liganded aromatic hydrocarbon (Ah) receptor, have been shown to regulate 

NQO1 expression in many cellular systems. Moreover, the antiestrogens tamoxifen and 

hydroxytamoxifen stimulate the expression of NQO1 by activating the estrogen receptor, which is 

different from the Ah locus [108,109]. ARE-mediated NQO1 gene expression is increased by a 

variety of phenolic antioxidants, tumor promoters, and hydrogen peroxide [99,105,107]. The XRE 

of NQO1 shares significant homology with the XRE of CYP1A1 [110]. Both NQO1 and CYP1A1 

genes can be induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polycyclic aromatic 

hydrocarbons, Sudan I, and β-naphthoflavone [99]. Because NQO1 activity is increased in rats 

treated with AA [111], it might also be induced in AAN and/or BEN patients.  

So far two polymorphisms in the human NQO1 gene have been found in the general 

population. One of them the 609 C to T variant, designated NQO1*2, has profound phenotypic 

consequences and has been associated with an increased risk of urothelial tumors [103], therapy-

related acute myeloid leukemia [112], cutaneous basal cell carcinoma [113] and pediatric leukemia 

[114]. The frequency of homozygous NQO1*2 mutation varies across ethnic groups and was 

reported to be approximately 5% in Caucasians [99]. 

Collectively, these data suggest that variations of NQO1 and regulatory proteins controlling 

expression of this enzyme as well as of another enzyme activating AA, CYP1A1 (Ah receptor, or its 

associated transcription factor, the Ah receptor nuclear translocator or Arnt protein) [110], might 

play a role in the risk of cancer by AAs. Therefore, AAN and BEN patients as well as healthy 

persons exposed to AA by herbal remedies or inhabitants living in BEN regions should be screened 

for genetic polymorphisms of NQO1, CYP1A1 and genes controlling their expression. The role of 

genetic polymorphisms in several genes of phase I biotransformation enzymes such as NQO1, 

CYP2D6, 3A4, 3A5 as well as in those of the conjugation enzymes NAT1, NAT2, GSTT1 and 

GSTM1, relevant for detoxication of xenobiotics has already been investigated in BEN patients 

[41,74,76-78]. Even though NQO1-polymorphism is not as strongly related to BEN as to urinary 
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tract tumours [41,76], the genotype NQO1*2/*2 predisposed BEN patients to the development of 

urothelial malignancy of the upper urinary tract (OR=13.75, 95%CI 1.17-166.21) [78]. This finding 

together with the demonstration of the importance of NQO1 in AA activation could be an 

explanation for the development of BEN or AAN and to cancer induction by AA in some patients 

suffering from either nephropathy. 

While the enzymes catalyzing the reductive activation of AA have already been investigated, 

those participating in its oxidation to AAIa, suggested to be mainly a detoxication pathway, have 

not been extensively studied so far. Our preliminary studies indicated that CYP enzymes can 

generate this oxidative metabolite [Stiborová et al. unpublished data]. A large-scale investigation in 

BEN patients on the role of genetic polymorphisms in genes of some phase I detoxication CYP 

enzymes [41,77,78] revealed a higher risk for BEN (OR 2.41) in individuals carrying CYP3A5*1 

allele G6989 [41,77,78]. We do not know, however, if this CYP species is involved in AA 

detoxication or activation. The evaluation of the oxidative detoxication of AA by this and other 

CYP enzymes is our next goal. 

 

6. Conclusions 

The present article summarizes our knowledge on the enzymes, which are responsible for 

metabolic activation of AA to species forming AA-DNA adducts found in patients suffering from 

AAN and BEN. While the enzymes catalyzing the reductive activation of AA have already been 

established, those participating in detoxication remain to be investigated. The most important 

human enzymes activating AA by simple nitroreduction are hepatic and renal cytosolic NQO1, 

hepatic microsomal CYP1A2 and renal microsomal NADPH:CYP reductase, besides COX, which 

is highly expressed in urothelial tissue. Expression levels and activities of these enzymes in humans 

are influenced by several factors (smoking, drugs, environmental chemicals and genetic 

polymorphisms) and differ considerably among individuals. This feature might be one of the 
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reasons for different individual susceptibilities to AA and subsequent development of urothelial 

cancer seen in both patient groups. Therefore, the evaluation of inter-individual variations in the 

enzymes involved in AA activation and detoxication, including their genetic polymorphisms, 

remains one of the challenges to explain an individual’s susceptibility to AA and to predict cancer 

risk among the AAN and BEN patients. 
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Figure Legends 

Figure 1. Metabolic activation and DNA adduct formation of AAI and AAII; 7-(deoxyadenosin-N
6
-

yl)aristolactam I or II (dA-AAI or dA-AAII), 7-(deoxyguanosin-N
2
-yl)aristolactam I or II (dG-AAI 

or dG-AAII).  

Figure 2. Autoradiographic profiles of DNA adducts obtained from renal DNA of a patient with 

aristolochic acid nephropathy (AAN) (A) and from a patient living in an area endemic for BEN area 

(B) using the nuclease P1 enrichment version of the 
32

P-postlabelling assay (adapted from reference 

[38]). Insert: Separation of the 
32

P-labeled nucleoside 3',5'-bisphosphate dA-AAI adduct from 

Figure 2B (top) and a dA-AAI standard (bottom). The dA-AAI standard was obtained from in-vitro 

incubations as described [79]. For clarity, HPLC profiles are shown in arbitrary units. 

Figure 3. Proposed pathway for biotransformation of AAI and AAII in rodents and humans 

Figure 4. DNA binding of AAI after activation with Supersomes containing different human 

recombinant CYPs (50 pmol) and NADPH:P450 reductase (light columns) or NADPH:CYP 

reductase alone (control, a dark column) (adapted from reference [86]). The nuclease P1-enrichment 

procedure was used for analysis. Values represent mean ±  S.E.M. (n = 4) of two separate 

incubations each determined by two post-labeled analyses. RAL, relative adduct labeling.  

Figure 5.  AAI is shown docked to the active sites of human CYP1A1 (A) and CYP1A2 (B) 

indicating the position of the AAI molecule to the heme prosthetic group (adapted from reference 

[85]). 

Figure 6. AAI is shown docked to the active site of human NQO1 where several key amino acid 

residues position the AAI substrate parallel to a flavin prosthetic group [(adapted from reference 

[76]).  
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Figure 3 
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Figure 5A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5B 
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Figure 6 
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