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ABSTRACT 

Background: Different etiological pathways may precede development of specific breast 

cancer subtypes and impact prevention or treatment strategies. We investigated the 

association between gamma-glutamyl transferase (GGT) and development of specific breast 

cancer subtypes based on oestrogen receptor (ER), progesterone receptor (PR) and HER2 

status. 

Methods: We included 231,283 cancer-free women in a Swedish cohort. Associations 

between GGT and breast cancer subtypes were investigated with nested case-control and 

case-case analyses. We used logistic regression models to assess serum GGT in relation to 

breast cancer subtype, based on individual and combined receptor status. 

Results: Positive associations were found between serum GGT and development of ER+, ER- 

and PR+ breast cancers compared to controls (OR: 1.14 (95%CI: 1.08-1.19), 1.11 (1.01-1.23) 

and 1.18 (1.12-1.24) respectively) and of  ER+/PR+ tumours. We found inverse associations 

between GGT levels and PR- breast cancers compared to PR+ (OR:0.87 (0.80-0.95)), between 

ER+/PR- tumours compared to ER+/PR+ tumours, and between ER-/PR-/HER+ compared to 

ER+/HER2 or PR+/HER2 tumours (OR: 0.55 (95% CI: 0.34-0.90) .  

Conclusion: The observed associations between pre-diagnostic serum GGT and different 

breast cancer subtypes may indicate distinct underlying pathways and require further 

investigations to tease out their clinical implications. 

Keywords: GGT, breast cancer, glucose, triglycerides, prospective study 
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Background 

Increased levels of serum GGT is a marker of oxidative stress (1), which may lead to tumour 

development, progression and metastasis (2) through modification of signalling pathways and 

DNA damage (2-4). We previously showed an association between elevated serum GGT and 

risk of breast cancer in Swedish women (5), which were supported in a large systematic 

review and meta-analysis (6). However, the association between circulating GGT and breast 

cancer subtype is unclear. Development of specific breast cancer subtypes significantly 

impacts therapeutic decisions and prognosis, but their underlying mechanisms remain elusive. 

To assess the role of oxidative stress, we now investigated the association between pre-

diagnostic GGT and breast cancer subtype in nested case-control and case-case studies in a 

large Swedish cohort.  

 

Methods 

Study Population 

The AMORIS study has been described in detail elsewhere (5,7-9). This cohort includes 

812,073 individuals undergoing laboratory examination at the Central Automation Laboratory 

in Stockholm between 1985 and 1996 (9). The study complied with the declaration of 

Helsinki and was approved by the Ethics Review Board of the Karolinska institute.  

From the AMORIS cohort we identified 231,283 cancer-free women aged 20 years or older 

with baseline measurements of serum GGT. These women were followed until they 

developed breast cancer, died, emigrated, or until the end of the study (31 December 2011), 

whichever came first. A total of 10,861 breast cancers (4.7%) were diagnosed during follow-

up. Among them, 6,934 (63.8%) had available information on oestrogen receptor (ER) status, 

7,145 (65.8%) had information on progesterone receptor (PR) status, and 2,197 (20.2%) had 
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additional information on HER2 status. A nested case control study was performed where for 

each case with information on receptor status, we used incidence density sampling to select 

10 controls among all women in the cohort who were alive and did not have breast cancer at 

the time of diagnosis of the case. Cases and controls were matched for age group (less or 

more than 50 years old) as an indicator for menopausal status (10) because menopausal status 

was only available for cases. The same sets of cases were included in the case-case analysis. 

 

Breast cancer diagnosis and subtype 

We classified breast cancer subtype based on ER and PR and their combinations. In the 

subgroup with information on HER2, we defined four tumour subtypes (ER+/HER2- or 

PR+/HER2-, ER+/HER2+ or PR+/HER2+, ER-/PR-/HER2+, and ER-/PR-/HER2- (triple 

negative)) as previously described (See Figure S1, Additional File 1) (11). These subtypes 

share similar profiles with molecular phenotypes Luminal A, Luminal B, HER2 type and 

triple negative (12,13). 

 

Assessment of exposures and covariates 

All laboratory analyses were performed by automated techniques at CALAB laboratory, 

Stockholm, Sweden. GGT (U/L) was determined using the reference method recommended 

by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) (5,14). 

The coefficient of variation was 66.0%. Samples were prospectively measured prior to 

assignment to cases or controls. Levels of GGT were skewed and logarithmically 

transformed. We additionally categorised GGT into quartiles.  
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From the registry linkage in AMORIS (5,9), we collected information on socioeconomic 

status (SES), education level, parity, menopausal status at diagnosis, and comorbidities using 

Charlson co-morbidity index (CCI) (15,16). Serum triglycerides and glucose were measured 

enzymatically (17).  

 

Statistical analysis 

In the nested case-control analysis, we used conditional logistic regression models to assess 

any association between log-transformed and quartiles of GGT and overall and specific breast 

cancer subtypes. A test for trend was performed by using GGT quartiles as an ordinal scale. 

We estimated odds ratios (ORs) of ER and PR status individually compared to matched 

controls based on these measures of serum GGT. Subsequently we compared GGT levels of 

cases with controls based on combined ER and PR receptor subtypes. 

 

We further conducted a case-case analysis to compare different breast cancer subtypes (18). 

Binary and multinomial logistic regression models were used to assess log-transformed levels 

and quartiles of GGT in relation to breast cancer subtype, both by individual ER or PR status, 

combined ER/PR status and ER/PR/HER2 status. Since ER and PR status was available since 

follow-up started and the information of HER2 status was only available after 2006, we 

performed a sensitivity analysis only including cases with complete information on the three 

receptors. 

 

All models were adjusted for age, socioeconomic status, education and parity, and time 

interval between GGT measurement and diagnosis. We additionally controlled for 
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menopausal status in the case-case analysis. Adjustment for CCI was performed to take into 

account existing co-morbidities (1,5,19,20). We further adjusted for serum glucose and 

triglycerides to reduce potential confounding from metabolic disorders (11,21-23). All 

analyses were conducted with Statistical Analysis Systems (SAS) release 9.4 (SAS institute, 

Cary, NC). 

 

Results 

Case-control analysis 

The mean age of diagnosis was 61.68 years and most women were postmenopausal (See 

Table S1, Additional file 1). Serum GGT was slightly higher in cases than in controls. 

Overall, higher log-transformed GGT correlated with higher odds of any breast cancer (OR: 

1.13; 95% CI: 1.08-1.19). There was a positive association between continuous levels of GGT 

and development of ER+, ER-, and PR+ breast cancers (Table 1), with the strongest 

association seen for PR+ tumours (OR: 1.18; 95% CI: 1.12-1.24). Results were similar with 

GGT quartiles.   

We subsequently investigated the association between serum GGT and combined receptor 

subtypes of breast cancer based on ER/PR status. A significant positive association between 

log-transformed GGT and development of ER+/PR+ tumours was noted (OR: 1.18; 95% CI: 

1.12-1.24). Adjustment for serum levels of glucose and triglycerides did not alter these 

findings (results not shown). Association between GGT and ER- cancer was no longer seen, 

whilst others remained, in a sensitivity analysis only including cases with complete receptor 

information (results not shown). 

 



7 
 

 

Case-case analysis 

Cases were less likely to be PR- compared to PR+ with increasing log-transformed GGT (OR: 

0.87; 95% CI: 0.80-0.95). A similar trend was seen for quartiles of GGT. No association was 

found for ER- cancers, with ER+ cancers as the referent. 

We subsequently investigated any association between serum GGT and breast cancer 

subtypes based on the combination of ER/PR and ER/PR/HER2 status (Figure 1). Compared 

to ER+/PR+ tumours, increasing GGT was associated with a lower odds of ER+/PR- tumours 

(OR: 0.83; 95% CI: 0.73-0.93 for each log unit increase in GGT). A similar but weaker trend 

was seen for ER-/PR- tumours (See Table S2, Additional file 1). Associations were slightly 

weaker when limited to cases with complete information on the three receptors, e.g. OR for 

ER+/PR- tumours: 0.83 (95% CI: 0.67-1.02) for each log-unit increase in GGT. 

We also found an inverse trend between GGT and odds of being diagnosed with ER-/PR-

/HER2+ cancers (OR:0.55; 95%CI: 0.34-0.90 when compared to the referent group 

ER+/HER2- or PR+/HER2- breast cancers). No marked difference across GGT levels was 

observed for other subtypes. Additional adjustments for serum levels of glucose and 

triglycerides did not alter these observations (results not shown). 

 

Discussion  

Increasing serum levels of GGT corresponded to increased odds of ER+, ER- and PR+ 

tumours but not related to higher risk of PR- breast cancers. Our findings when comparing 

different subtypes also suggested associations between GGT levels and specific breast cancer 

subtypes. 
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Oxidative stress may contribute to development of ER+ breast cancers by modifying the 

structure and function of redox-sensitive oestrogen receptors on the cell surface which 

reduces expression of an oxidant-sensitive set of oestrogen-inducible genes, including genes 

involved in cell growth, invasion, and progesterone receptor expression (24). This may 

correlate with suppression of the PR gene (24,25). We found that higher levels of GGT were 

associated with relatively attenuated odds of ER- subtype. These conflicting results might 

imply more complex underlying mechanisms. The negative association found between GGT 

and ER-/PR-/HER2+ breast cancers may support previous notions that HER2-overexpressing 

tumours have lower glutathione levels and GGT activity (26,27). However, this would require 

further confirmation in larger studies it is also possible that this finding on HER2 was driven 

by the inverse association between GGT and PR- compared to PR+ breast cancers. 

 

Our results may support distinct aetiological pathways preceding breast cancer subtypes, in 

particular PR- cancers.  Previously, different associations with breast cancer subtypes have 

been reported with parity, first-time births, breastfeeding and oral contraceptive (11,28,29). 

Obesity (11,21-23) and dietary fat intake (30-32) may also affect subtype development via 

hormonal modulation, increased oxidative stress and inflammation (22). Similar roles have 

been indicated for circulating glucose (17,33,34). Therefore, increased GGT associated with 

increased risk of breast cancer may partly be acting as a marker of these metabolic disorders. 

Nonetheless, our results were unaltered when adjusted for serum glucose and triglycerides. 

 

The strength of this study is the large number of women included with complete follow-up 

information. The AMORIS population is similar to the general working population of 
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Stockholm in terms of SES and ethnicity (5). There was limited information on receptor status 

in earlier diagnoses. However, results were similar when limited to data with complete 

receptor information, i.e. diagnoses from 2007 onwards. Information on other risk factors 

such as hormone-replacement therapy, BMI and alcohol intake was not available, which 

necessitates future studies incorporating these information. With respect to alcohol, however, 

the blood samples were collected prior before the major increase in alcohol use in women. 

 

Conclusion 

Pre-diagnostic serum GGT levels are associated with specific female breast cancer subtypes. 

Given prior evidence showing increased GGT to be associated with other lifestyle-related 

disorders, it is important to consider GGT as a proxy of these factors. Understanding of this 

complex association may lead to mechanistic studies to confirm the role of oxidative stress in 

specific breast cancer subtypes, which may have clinical implications. 

 

Abbreviations 

GGT: gamma-glutamyl transferase 

ER: oestrogen receptor 

PR: progesterone receptor 

HER2: human epidermal growth factor 2 
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Additional files 

1. Additional file 1.docx 

 

Description: Supplementary tables. 

 

List of Tables 

Table 1. Conditional logistic regression model with breast cancer subtype as main outcome. 

Controls without breast cancer were the referent groups. All models were adjusted for age at 

diagnosis, socioeconomic status, education, parity, CCI, and interval between measurement 

and cancer diagnosis or control selection date. 

 

Figure Legends 

Figure 1. Multinomial logistic regression analysis for log-transformed levels of GGT with 

breast cancer subtype as outcome variable. ER+/PR+ and ER+/HER2- or PR+/HER2- 

assigned as reference values. All models were adjusted for age at diagnosis, menopausal 

status, socioeconomic status, education, parity, CCI, and interval between measurement and 

cancer diagnosis. 
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Table S1. Descriptive characteristics of study population 

 Cases Controls 

Age (years)*   

Mean (SD) 61.68(11.81) 59.79(15.64) 

Socioeconomic Status, N(%)    

White Collar (high) 4602(42.37) 38392(35.35) 

Blue Collar (low)  5392(49.65) 56337(51.87) 

Unemployed/missing 867(7.98) 13881(12.78) 

Education Level, N(%)    

Lower than high school 2961(27.26) 29868(27.50) 

High school 4482(41.27) 44932(41.37) 

Higher education 3105(28.59) 26839(24.71) 

Missing 313(2.88) 6971(6.42) 

Gamma Glutamyl Transferase (U/L)    

Quartile 1 N(%) 2407(22.16) 25674(23.64) 

Quartile 2 N(%) 2605(23.98) 26457(24.36) 

Quartile 3 N(%) 2918(26.87) 29059(26.76) 

Quartile 4 N(%) 2931(26.99) 27420(25.25) 

Menopausal status at diagnosis, N(%)   

Premenopause 1833(16.88)  

Postmenopause 6976(64.23)  

Unknown   2052(18.89)  

ER Status, N(%)    

Positive 5939(54.68)  

Negative  1295(11.92)  

Unknown  3627(33.39)  

PR Status, N(%)    

Positive  4938(45.47)  

Negative 2207(20.32)  

Unknown  3716(34.21)  

HER2 Status, N(%)   

Positive  246(2.26)  

Negative 1951(17.96)  

Unknown  8664(79.77)  
     *Age at diagnosis of cases and age at selection of controls 

 

 

 

 

 

 

 

 

 

 



17 
 

Table S2. Multinomial logistic regression analysis with breast cancer subtype as outcome 

variable. ER+/PR+ and ER+/HER2- or PR+/HER2- assigned as reference values. All models 

were adjusted for age at diagnosis, menopausal status, socioeconomic status, education, 

parity, CCI, and interval between measurement and cancer diagnosis. 

 

 Breast Cancer Subtype 

GGT U/L ER+/PR+  

(Reference) 

  ER+/PR- ER-/PR+ ER-/PR- 

 N N OR (95% CI) N OR (95% CI) N OR (95% CI) 

GGT log   0.83 (0.73-0.93)  0.95 (0.72-1.26)  0.92(0.82-1.03) 

0-0.19 1037 253 1 (ref) 30 1 (ref) 258 1 (ref) 

0.19-0.25 1129 274 0.94(0.78-1.14) 46 1.45(0.91-2.33) 256 0.89(0.74-1.01) 

0.25-0.36 1280 286 0.85(0.70-1.03) 44 1.23(0.77-1.99) 293 0.90(0.74-1.09) 

≥0.36 1329 279 0.73(0.60-0.89) 42 1.19(0.73-1.95) 304 0.87(0.72-1.05) 

Ptrend   0.0008  0.74  0.19 

GGT U/L ER+/HER2- 

or 

PR+/HER2- 

(Reference) 

ER+/HER2+ or 

PR+/HER2+ 

ER-/PR-/HER2+ ER-/PR-/HER2- 

 N N OR (95% CI) N OR (95% CI) N OR (95% CI) 

GGT log   1.20(0.91-1.59)  0.55(0.34-0.90)  0.98(0.73-1.31) 

0-0.19 415 36 1 (ref) 37 1 (ref) 39 1 (ref) 

0.19-0.25 458 39 1.01(0.63-1.63) 14 0.34(0.18-0.64) 47 1.08(0.69-1.69) 

0.25-0.36 489 41 1.04(0.65-1.67) 13 0.30(0.16-0.57) 43 0.92(0.58-1.46) 

≥0.36 414 46 1.48(0.92-2.38) 16 0.45(0.24-0.83) 40 1.02(0.64-1.64) 

Ptrend   0.11  0.002  0.88 
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Figure S1. Frequency of each breast cancer tumour subtype in the study population 
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