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Abstract 

FE1 lung epithelial cells derived from Muta™Mouse are a new model system to provide in-vitro 

mutagenicity data with the potential to predict the outcome of an in-vivo Muta™Mouse test. 3-

Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in 

diesel exhaust and urban air pollution. We investigated the mutagenicity and DNA binding of 3-

NBA and its main metabolite 3-aminobenzanthrone (3-ABA) in vitro and in vivo in the 

Muta™Mouse assay. Mice were treated with 3-NBA or 3-ABA (0, 2, or 5 mg/kg body weight/day) 

p.o. for 28 days and 28 days later lacZ mutant frequency (MF) was determined in liver, lung and 

bone marrow. For both compounds dose-related increases in MF were seen in liver and bone 

marrow, but not in lung; mutagenic activity was ∼2-fold lower for 3-ABA than for 3-NBA. With 3-

NBA highest DNA adduct levels (measured by 
32

P-postlabelling) were found in liver (∼230 

adducts/10
8
 nucleotides) with levels 20−40-fold lower in bone marrow and lung. With 3-ABA DNA 

adduct levels were again highest in the liver, but around 4-fold lower than for 3-NBA. FE1 cells 

were exposed to up to 10 µg/ml 3-NBA or 3-ABA for 6 hours with or without exogenous activation 

(S9) and harvested after 3 days. For 3-NBA there was a dose-related increase in MF both with and 

without S9 mix, which was over 10 times higher than observed in vivo. At the highest concentration 

of 3-ABA (10 µg/ml) we found only around a 2-fold increase in MF relative to controls. DNA 

adduct formation in FE1 cells was dose-dependent for both compounds, but 10−20-fold higher for 

3-NBA compared to 3-ABA. Collectively our data indicate that Muta™Mouse FE1 cells are well 

suited for cost-effective testing of suspected mutagens with different metabolic activation pathways 

as a guide for subsequent in-vivo Muta™Mouse testing. 
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INTRODUCTION 

Epidemiological studies have shown increased mortality and morbidity from respiratory and 

cardiovascular diseases associated with exposures to ambient air pollution [1,2]. A complex variety 

of genotoxins in urban air pollution has been detected [3], and high exposures are associated with 

an increased risk of cancer. Nitropolycyclic aromatic hydrocarbons (nitro-PAHs) are present on 

particulate matter from direct atmospheric emission, such as diesel and gasoline exhaust [4], or they 

can be produced from gas-phase reactions of polycyclic aromatic hydrocarbons (PAHs) with oxides 

of nitrogen and subsequently partition to the particulate phase [5]. Nitro-PAHs often have greater 

mutagenic and carcinogenic properties compared to their parent PAHs, and their persistence in the 

environment suggest that they constitute a potential hazard to humans [6-8].  

Certain nitro-PAHs exhibit high direct-acting mutagenic activity in bacterial bioassays and in 

forward mutation assays in mammalian cells [9]. A member of this class of compounds is the 

aromatic nitroketone 3-nitrobenzanthrone (3-NBA; 3-nitro-7H-benz[de]anthracen-7-one; Fig. 1) 

identified in diesel exhaust and ambient air pollution [10,11]. 3-NBA is one of the most potent 

mutagens ever detected in the Salmonella reverse mutation assay, and it is a suspected human 

carcinogen [10,12]. In Salmonella typhimurium it induces around 0.2 and 6 million revertants per 

nmol in strains TA98 and YG1024 (without S9), respectively [10]. It is a potent carcinogen after 

intratracheal instillation in rats, inducing mainly squamous cell carcinoma in lung [12]. In 

mammalian cells, it induces micronuclei [13,14], DNA strand breaks [14,15], DNA adducts [15,16] 

as well as gene mutations [13]. Recently its isomer 2-nitrobenzanthrone has been detected in urban 

air particulate matter leading to an even greater interest in assessing the potential health hazard of 

nitrobenzanthrones to humans [16-18]. The uptake of 3-NBA in humans has been demonstrated by 

the detection of 3-aminobenzanthrone (3-ABA; Fig. 1), its main metabolite, in the urine of workers 

occupationally exposed to diesel emissions [19]. The genotoxicity of 3-ABA has been demonstrated 

in several short-term assays in vitro and in vivo [15,20,21]. 

3-NBA forms DNA adducts in vitro and in rodents in vivo after metabolic activation through 

reduction of the nitro group, which is primarily catalysed by cytosolic nitroreductase such as 

NAD(P)H:quinone oxidoreductase (NQO1) (Fig. 1) [22-27]. 3-ABA is predominantly activated by 

cytochrome P450 (CYP) enzymes, namely CYP1A1 and CYP1A2 [23,28,29]. Both 3-NBA and 3-

ABA can be further activated by N-acetyltransferases (NATs) and sulfotransferases (SULTs) 

[24,30,31]. The predominant DNA adducts detected by 
32

P-postlabelling in vivo in rodents after 

treatment with either 3-NBA or 3-ABA are 2-(2’-deoxyguanosin-N
2
-yl)-3-aminobenzanthrone (dG-

N
2
-ABA) and N-(2’-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG-C8-N-ABA) [32], and these 

are most probably responsible for the GC→TA transversion mutations induced by 3-NBA exposure 
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in vivo [33]. These DNA adducts not only represent premutagenic lesions in DNA, but may also be 

of primary importance for tumour development in target tissues [34,35].  

Transgenic rodent mutagenicity assays (e.g. Muta™Mouse, BigBlue
©

 rat/mouse) are powerful 

tools to determine genotoxicity in vivo  [36,37]. In addition, the retrievable integrated transgene 

target allows molecular analysis of induced mutations that may reveal chemical-specific mutation 

spectra. However, the high cost of  in vivo assay systems such as Muta™Mouse can be reduced 

through the use of transgenic cells cultured in vitro [38]. Although an in vitro model is not fully 

representative of the biology of the living animal, the use of a cell culture system has numerous 

experimental advantages. Recently a spontaneously immortalised lung epithelial cell line denoted 

FE1 that retains certain key endogenous metabolic pathways was derived from Muta™Mouse [38]. 

The in-vitro assay provides the opportunity to rapidly generate data that can predict the outcome of 

an in-vivo test, which, moreover, can ultimately assist in refining, reducing or replacing routine in-

vivo testing.  

This study explores and assesses the mutagenicity of 3-NBA and its metabolite 3-ABA in 

Muta™Mouse in vivo and in Muta™Mouse-derived FE1 cells in vitro. In addition, DNA adduct 

formation was investigated using 
32

P-postlabelling. 
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MATERIAL AND METHODS 

Test Compounds 

Caution: 3-NBA is a potent mutagen, rodent carcinogen and suspected human carcinogen. 3-

NBA and its derivatives should be handled with extreme care. 

3-NBA (CAS No. 17117-34-9) was obtained from the Sigma Library of Rare Chemicals 

(Sigma-Aldrich, Oakville, ON, Canada). 3-ABA (CAS No. 13456-80-9) was synthesised as 

described previously [31] and its authenticity was confirmed by UV spectroscopy, electrospray 

mass spectrometry, and high-field proton NMR spectroscopy.  

 

FE1 Cell Culture and Treatment 

FE1 is a stable epithelial cell line derived from Muta™Mouse lung [38].  FE1 cells were 

cultured in a 1:1 mixture of DMEM:F12 supplemented with 2% (v/v) FBS, 100 U/ml penicillin G, 

100 mg/ml streptomycin sulphate and 1 ng/ml murine EGF (GIBCO-Invitrogen, Burlington, ON, 

Canada). All incubations were carried out at 37
o
C, 95% humidity and 5% CO2.  2–3 ×10

5 
cells 

(passage 9-25) were seeded on 100 mm culture dishes and incubated overnight to ~10% confluence. 

The following morning, cells were exposed for 6 hours to a series of doses (0, 0.1, 1, 3, and 10 

µg/ml) of 3-NBA or 3-ABA (dissolved in DMSO; Sigma-Aldrich) in serum-free medium. For 

treatments involving the use of S9, a mixture of cofactors and Aroclor-1254-induced rat liver S9 

(Moltox, Boone, NC, USA) was added to a final concentration of 0.5% v/v in the treatment 

medium. After chemical treatment, cells were washed with PBS (pH 7.2) and incubated for 72 

hours in medium with serum for mutation expression. Following expression, genomic DNA was 

isolated as described previously [38-40]. Briefly, cells were incubated overnight at 37
o
C in lysis 

buffer (10 mM Tris, 100 mM sodium chloride, 10 mM EDTA, pH 7.6) containing 1% SDS and 1 

mg/ml fresh proteinase K (GIBCO-Invitrogen, Burlington, ON, Canada). Lysates were extracted 

with phenol/chloroform (1:1), followed by chloroform. Sodium chloride was added to a final 

concentration of 0.2 M and the DNA precipitated in 2 volumes of ethanol. DNA was spooled onto a 

sealed Pasteur pipette, washed in 70% ethanol, and dissolved in 15–100 µl of TE buffer (10 mM 

Tris, 0.1 mM EDTA, pH 7.6).   

 

Animal Treatment and Tissue Collection 

The lacZ transgenic mouse strain 40.6 (BALB/c x DBA2), also known as the Muta™Mouse, 

has been described in detail elsewhere [41,42]. The animals harbour a multi-copy, concatenated 

recombinant λgt10 vector containing the complete E. coli lacZ gene (3096 bp) as a target for 

mutation scoring. Animals were bred, maintained and treated at Health Canada facilities under 
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conditions approved by the Health Canada Animal Care Committee. Male mice (16−20 weeks) used 

in this study were maintained on a 12-hour light/dark cycle and provided with fresh water and 

Rodent Chow (Ralston Purina, Hazleton, PA, USA) ad libitum. These experiments involved 4 to 6 

animals per group. Both 3-ABA and 3-NBA were administered in olive oil at 2 or 5 mg/kg bw and 

vehicle controls received olive oil alone. The mice were treated by oral gavage (p.o.) daily for 28 

days resulting in final doses of 56 (low dose group) or 140 mg/kg bw (high dose group). Following 

the final treatment, a 28-day recovery period was allowed for mutation fixation. Mice were killed 

by cervical dislocation and liver, lung and bone marrow were removed, frozen in liquid nitrogen 

and stored at –80°C until DNA isolation. To obtain bone marrow, femurs were flushed with cold 

PBS, the solution centrifuged at 10,000g at 4°C for 1 minute, and the pellet stored at –80°C. 

Thawed lung was minced prior to cell lysis and proteinase K digestion. Liver tissue was 

homogenised using a conical Teflon
®

 Duall homogeniser (Fisher Scientific, Ottawa, ON, Canada) 

and nuclei were isolated by differential centrifugation prior to lysis. Minced or homogenised tissues 

were digested overnight in lysis buffer, and DNA was extracted and handled as described above. 

 

LacZ Mutation Analysis 

Transgene mutant frequency (MF) was determined using the P-gal positive selection assay 

described elsewhere [40,42]. The method employs a galE
-
 host bacterium to facilitate the isolation 

and enumeration of mutant copies of the lacZ transgene [43]. λgt10lacZ DNA copies were rescued 

from genomic Muta™Mouse DNA (4 µl aliquots) using the Transpack™ lambda packaging system 

(Stratagene, La Jolla, CA, USA). Packaged phage preparations were mixed with host bacteria 

(Escherichia coli lacZ
-
, galE

-
, recA

-
, pAA119 with galT and galK) [43,44] and allowed to adsorb 

for 25 minutes at room temperature. An aliquot of the phage/bacteria mix was diluted with 

additional bacterial culture and plated on non-selective minimal agar to determine titre (pfu). The 

remaining phage/bacteria mixture was plated on minimal agar with 0.3% w/v phenyl-β-D-galacto-

pyranoside (P-gal; Sigma-Aldrich). Both were incubated overnight at 37°C. MF was expressed as 

the ratio of mutant plaques to total pfu. 

 

DNA Adduct Analysis using 
32

P-Postlabelling 

DNA adducts were measured in each DNA sample using the butanol enrichment version of the 

32
P-postlabelling method as described previously [30,45] with minor modifications. Enrichment by 

butanol extraction was used in preference to nuclease P1 digestion as it has been shown to yield a 

better recovery of 3-NBA-DNA adducts [22]. Briefly, DNA samples (4 µg) were digested with 
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micrococcal nuclease (120 mU, Sigma-Aldrich, Gillingham, UK) and calf spleen phosphodiesterase 

(40 mU, Calbiochem, Nottingham, UK), extracted with butanol, and labelled as reported. 

Chromatographic conditions for thin-layer chromatography (TLC) on polyethyleneimine-cellulose 

(PEI-cellulose) (Macherey-Nagel, Düren, Germany) were: D1, 1.0 M sodium phosphate, pH 6.0; 

D3, 4 M lithium formate, 7 M urea, pH 3.5; D4, 0.8 M lithium chloride, 0.5 M Tris, 8.5 M urea, pH 

8.0. DNA adduct levels (RAL, relative adduct labelling) were calculated from the adduct cpm, the 

specific activity of [γ-
32

P]ATP and the amount of DNA (pmol of DNA-P) used. DNA adducts were 

identified using authentic standards as described previously [32]. Results were expressed as DNA 

adducts/10
8
 nucleotides (nt). 

 

Statistical Analysis 

The MF was analysed by Poisson regression using SAS version 9.1 (SAS Institute, Cary, NC, 

USA). The natural log of total plaque count was used as an ‘offset’ (i.e., regression variable with a 

constant coefficient of 1.0 for each observation). Log-linear relationships between mutant count and 

concentration or dose were specified by a natural log link function. Type 1, or sequential analysis, 

was employed to examine the statistical significance of the chemical treatment, and custom 

contrasts statements were employed to evaluate the statistical significance of responses at selected 

doses or concentrations. Pearson Correlation coefficients of MF and DNA adduct levels in FE1 

cells were calculated using Microsoft Excel (Edition 2003).  

 

 



 8

RESULTS 

Mutagenesis induced by 3-NBA and 3-ABA at the lacZ transgene in FE1 cells in vitro 

To examine the mutagenic effect of 3-NBA and 3-ABA in FE1 cells, cells were exposed to 

increasing doses (0.1−10 µg/ml) of both compounds (Fig. 2). For 3-NBA a clear dose-dependent 

increase in MF of lacZ was observed at doses higher than 0.1 µg/ml both in the presence or absence 

of an exogenous metabolic activation system (S9) (Fig. 2A). Statistical analysis looking at the 

concentration-specific effect of S9 showed that the mutagenic activity with S9 was greater than that 

without S9 at 10 µg/ml 3-NBA only (p<0.05). For 3-ABA a concentration-dependent increase in 

MF was found at doses higher than 1 µg/ml, but MF was much greater (up to 1.8-fold) in the 

presence of an exogenous S9 activation system (Fig. 2B). The mutagenic activity with S9 was 

statistically greater than without S9 at 3 and 10 µg/ml 3-ABA (p<0.0001 in both cases). In FE1 cells 

the mutagenic activity of 3-NBA was much greater than that of 3-ABA. 

 

DNA adduct formation of 3-NBA and 3-ABA in FE1 cells in vitro 

DNA from FE1 cells treated with 3-NBA or 3-ABA was analysed by TLC 
32

P-postlabelling 

(Fig. 3). For both compounds, the DNA adduct pattern consisted of a cluster of up to five adducts 

(spots 1−5). No DNA adducts were detected in control cells (data not shown). DNA adducts were 

identified by cochromatographic analysis of individual spots on HPLC using authentic standards 

[32], confirming that all DNA adducts are derived from reductive metabolites of 3-NBA bound to 

purines (data not shown). Three of these adducts have been identified as 2-(2’-deoxyadenosin-N
6
-

yl)-3-aminobenzanthrone (dA-N
6
-ABA; spot 1), dG-N

2
-ABA (spot 3) and dG-C8-N-ABA (spots 

4/5). 

For cells treated with either 3-NBA or 3-ABA, a dose-dependent increase in DNA adduct 

formation was observed both with and without S9 activation (Fig. 4). However, DNA binding by 3-

NBA was much higher than by 3-ABA, with 173.1 and 18.1 adducts per 10
8
 nt being formed by 3-

NBA and 3-ABA, respectively, at the highest dose (10 µg/ml; -S9). Thus, DNA adduct formation 

by 3-NBA was not only 10 times higher, but it was detectable at a 10-fold lower dose (Fig. 4A). 

DNA adduct formation by both 3-NBA and 3-ABA was lower in the presence of S9 mix suggesting 

either that 3-NBA and 3-ABA can bind to S9 proteins or that metabolic enzymes present in S9 

readily detoxify the compounds before they enter cells.  

Pearson correlation analysis of MF with total DNA adduct levels revealed a strong correlation 

under all treatment conditions (r>0.940 for 3-NBA; r>0.900 for 3-ABA; p<0.05). 

 

Mutagenesis induced by 3-NBA and 3-ABA at the lacZ transgene in vivo 
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DNA was isolated from Muta™Mouse bone marrow, liver and lung 28 days after the last 

treatment. The results of the lacZ MF analyses are shown in Figure 5 (see also Supporting Tables 

S1 and S2). For 3-NBA, dose-related increases in MF were observed in bone marrow and liver, 

with up to 2.3- and 4.1-fold increases above control, respectively (Fig. 5A). For 3-ABA a 

significant increase in MF at both doses was found in bone marrow (up to 3-fold) and for liver at 

the lower dose (Fig. 5B). No increases in MF above control levels were seen in lung. 

 

DNA adduct formation of 3-NBA and 3-ABA in vivo 

DNA adduct formation in Muta™Mouse was analysed in bone marrow, liver and lung. As 

shown in Figure 6, 3-NBA and 3-ABA induced essentially the same DNA adduct patterns as those 

observed in FE1 cells (compare Fig. 3). The observed pattern in DNA of treated animals consisted 

of a cluster of up to five adducts (spots 1−5).  In addition, a previously unobserved spot (spot X) 

was found in liver DNA (see also Supporting Table S3 and S4). No DNA adducts were observed in 

DNA isolated from control animals (data not shown). DNA adducts (e.g., dA-N
6
-ABA, spot 1; dG-

N
2
-ABA, spot 3; dG-C8-N-ABA, spots 4/5) were identified as described above for FE1 cells. 

Highest DNA binding was observed in liver, with 230 adducts/10
8
 nt and 55.6 adducts/10

8
 nt for 3-

NBA and 3-ABA, respectively (Fig. 7). The liver was also the only tissue where dose-dependent 

increases in DNA adduct formation were found.  There were no differences in DNA binding 

between the low and high dose treatment in bone marrow or lung. Levels of individual adduct spots 

showed that dG-N
2
-ABA (adduct spot 3) was the major adduct found in all tissues examined (see 

Supporting Table S3 and S4).  
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DISCUSSION 

 DNA damage such as DNA adduct formation is an important first step in the process of 

mutation induction [46]. DNA adducts represent premutagenic lesions, and both the initial levels of 

specific adducts and their persistence in the target organ contribute to their mutagenic potential and 

subsequent tumour development. Thus, simultaneous, tissue-specific detection of DNA adducts and 

mutation induction in any tissue of interest afforded by the use of transgenic animals has proved to 

be a powerful tool to study the genotoxic hazards of environmental contaminants [47-50]. One of 

the convenient and effective transgenic rodent mutation assay systems is the Muta™Mouse system. 

In the present study we used Muta™Mouse lung FE1 epithelial cells to investigate the mutagenicity 

of the urban air pollutant 3-NBA and its human metabolite 3-ABA, and explored the utility of this 

in vitro tool as a predictive test for determining mutagenic potency in the in vivo version of the 

Muta™Mouse assay. 

 Although several other transgenic cell lines have been developed to study environmentally 

induced mutations [51,52], recent results have shown that Muta™Mouse FE1 cells are a useful in 

vitro tool for assessing the mutagenic activity for a wide range of mutagens, including 

benzo[a]pyrene (BaP), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), and complex 

mixtures such as coal tar and carbon black [38,53]. In the present study we found that treatment 

with 3-NBA and 3-ABA resulted in a ~5- and ~2-fold increase in lacZ MF over the solvent control, 

respectively. This response shows that FE1 cells have the metabolic capabilities to activate both 

compounds. Similarly, human lung epithelial A549 cells were able to metabolise 3-NBA and 3-

ABA and to induce oxidative DNA damage [21].  Another study showed that 3-NBA forms DNA 

adducts in A549 cells, although 3-ABA was not tested [16]. Whereas the addition of S9 had no 

influence on the MF for 3-NBA, for 3-ABA its presence resulted in a 2.5-fold increase in MF.  FE1 

cells express CYP1A1 and exhibit ethoxyresorufin-O-deethylase (EROD) activity, a measure of 

CYP1A1 and CYP1A2 activity [38], and it was previously demonstrated that CYPs are important in 

the metabolic activation of 3-ABA in mouse [29].  Moreover, that CYP1A1 and CYP1A2 are the 

predominant enzymes involved in the phase I bioactivation of 3-ABA [28]. Generally, these results 

suggest that endogenous CYP1A1 is responsible for the metabolic activation of 3-ABA in FE1 cells 

in the absence of exogenous S9, whereas in the presence of S9 exogenous CYPs (e.g., CYP1A1 and 

CYP1A2) also contributes to 3-ABA activation. It should also be noted that 3-NBA and 3-ABA are 

strongly activated by NATs and SULTs  [24,30,31], but external activating systems (as used in the 

present study) usually lack the cofactors for these enzymes [54]. We also noted a strong correlation 

between DNA adduct levels and MF in FE1 cells after treatment with 3-NBA and 3-ABA, 

indicating that the mutagenic effects are clearly correlated with the formation of DNA adducts. 
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Paradoxically, although the MF in FE1 cells tended to be higher after addition of exogenous S9, 

DNA adduct levels were lower in the presence of S9 both for 3-NBA and 3-ABA. This could be a 

consequence of choosing the same time point to observe different biological/biochemical events, or 

may be an indication of additional S9-mediated DNA damage (e.g. strand breaks), but further 

investigations will be required to explain this phenomenon. 

 Previous studies have shown that 3-NBA and 3-ABA form the same DNA adducts in tissues 

of rats and mice indicating that N-OH-3-ABA is the reactive intermediate [22-24,29,33]. The 

persistence of DNA adducts has been investigated in several rat organs after a single dose of 3-NBA 

by intratracheal administration [35]. After initial formation DNA adducts, levels decreased rapidly 

during the first 2 weeks and then remained practically unchanged between 4 and 36 weeks. This 

pattern of adduct reduction was similar in target tissue (lung) and non-target tissues (e.g., liver and 

kidney). The dG-N
2
-ABA adduct (spot 3) was the most persistent suggesting that this DNA adduct 

is less amenable to repair, and more likely to be converted into mutations in critical genes for 

carcinogenesis [11,35]. Indeed, in the present study dG-N
2
-ABA was the most abundant DNA 

adduct detected in Muta™Mouse following a 28-day recovery period after oral treatment with 3-

NBA or 3-ABA. Highest DNA binding (dose-dependent) was found in liver after treatment with 

both 3-NBA or 3-ABA, but levels for 3-ABA were up to 8-fold lower than those of 3-NBA. We 

found a strong association between the formation of DNA adducts in the liver and the MF, which 

supports a previous Muta™Mouse that employed repeated 3-NBA treatments via intraperitoneal 

injection [33]. In the latter study it was shown that in Muta™Mouse liver 3-NBA induces mainly 

GC→TA transversion mutations in the cII gene, and this is consistent with extensive formation of 

dG-N
2
-ABA (and dG-C8-N-ABA) in liver DNA. The induction of GC→TA transversions by 3-

NBA can be explained by intrinsic properties of DNA polymerase(s) to insert dA opposite an 

adduct lesion during replication, referred to as the ‘A’-rule [55]. This conclusion is essentially the 

same as that arrived at from studies with other nitro-PAH mutagens (e.g., 1,3-, 1,6- and 1,8-

dinitropyrene given singly or as a mixture) that have been examined in transgenic mouse mutation 

assays [47,49]. Moreover, a recent study showed that diesel exhaust particles and their extracts 

induce mainly GC→TA transversion mutations in the gpt delta transgenic mouse mutation assay, 

suggesting that nitro-PAHs present in diesel exhaust (e.g., 3-NBA) induce the same mutations and 

may be responsible for the observed carcinogenicity [50].  

 A major benefit of the present study was that we were able to demonstrate that the FE1 

Muta™Mouse lung epithelial cells can provide in vitro mutagenicity data that can reliably predict 

the outcome of an in vivo Muta™Mouse test. The data presented in this paper clearly show that the 
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high mutagenic potency of 3-NBA in FE1 cells is in agreement with the clear positive findings in 

vivo. Moreover, the weaker mutagenic activity of 3-ABA in FE1 cells in vitro, relative to 3-NBA, is 

in accordance with the weak positive results obtained in the in vivo assay. It should be noted that 

recent data demonstrated that 2-nitrobenzanthrone (2-NBA), an isomer of 3-NBA, found in urban 

air pollution ([56,57] can form DNA adducts in vitro, but is unable to bind to DNA in vivo [16]. 

The FE1/Muta™Mouse assay system employed in this study can provide an ideal system to 

examine the mutagenic potency of 2-NBA in vitro and in vivo, and this will form the basis of a 

future study. 

 The data presented in this study collectively demonstrate that the Muta™Mouse FE1 cells 

constitute a useful cost-effective in-vitro tool to screen suspected mutagens that require activation 

via mammalian metabolic pathways. The results obtained can subsequently be used to guide a 

restricted set of follow-up in-vivo tests in the Muta™Mouse, which employ the same transgenic 

mutation reporting system, to confirm hazard and identify target tissues. Such a model significantly 

reduces assumptions in exploring from in vitro to in vivo conditions. Moreover, this type of test 

system can ultimately help ensure compliance with policies such as the amended Cosmetics 

Directive of the European Parliament (i.e., 2003/15/EC of 27 February 2003) that are aimed at 

restricting or eliminating the use of in vivo animal tests in human health and safety evaluations [58]. 

The Directive banned the testing of finished cosmetic products in September 2004, and a complete 

test ban on cosmetic ingredients will go into effect in March 2009. Thus, the development and 

validation of in vitro test systems such as that examined here are essential for legislative 

compliance. Additional evaluations of the FE1 and similar in vitro systems using a larger set of 

compounds is a promising area for further research. 
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Legend to Figures 

 

Figure 1: 

Proposed pathways of metabolic activation and DNA adduct formation of 3-NBA and 3-ABA. See 

text for details. POR, cytochrome P450 oxidoreductase. R = −C(O)CH3 or −SO3H. 

 

Figure 2: 

Mutant frequency in the lacZ gene in FE1 cells treated with 3-NBA (A) or 3-ABA (B). Cells were 

treated without an exogenous activation system (-S9) or in the presence of an exogenous activation 

system (+S9). Values represent mean ± SD of up to ten separate incubations [see Supporting Tables 

S5 and S6]. − = not determined. ***p<0.0001, **p<0.01, *p<0.05 by comparison to controls. 

 

Figure 3: 

Autoradiographic profiles of DNA adducts formed in FE1 cells by 3-NBA (upper panel) or 3-ABA 

(lower panel). Adduct profiles in FE1 cells treated with 10 µg/ml of either 3-NBA (A) or 3-ABA 

(C) without an exogenous activation system (-S9), and treated with 10 µg/ml of either 3-NBA (B) 

or 3-ABA (D) in the presence of an exogenous activation system (+S9).  

 

Figure 4: 

Levels of total DNA adducts in FE1 cells after exposure to 3-NBA (A) or 3-ABA (B). Cells were 

treated without an exogenous activation system (-S9) or in the presence of an exogenous activation 

system (+S9). Values represent mean ± SD of two separate incubations; each DNA sample was 

determined by two independent 
32

P-postlabelling analyses. Levels of individual DNA adducts are 

given in Supporting Tables S7 and S8. RAL, relative adduct labelling. ND = not detected. − = not 

determined. 

 

Figure 5: 

Mutant frequency in the lacZ gene from various organs of Muta™Mouse treated with 3-NBA (A) 

or 3-ABA (B). Results represent mean ± SD of up to six animals. Results represent mean of two 

separate animal treatments [see Supporting Tables S1 and S2]. ***p<0.0001, **p<0.01, *p<0.05 by 

comparison to controls. 

 

Figure 6: 
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Autoradiographic profiles of DNA adducts formed in liver of Muta™Mouse treated with 3-NBA 

(upper panel) or 3-ABA (lower panel) [these profiles are representative of adduct profiles obtained 

with DNA from other mice tissue, e.g. lung and bone marrow]. Adduct profiles in Muta™Mouse 

treated with a total dose of 56 mg/kg bw (A) or 140 mg/kg bw 3-NBA (B). Adduct profiles in 

Muta™Mouse treated with a total dose of 56 mg/kg bw (C) or 140 mg/kg bw 3-ABA (D). 

 

Figure 7: 

Levels of total DNA adducts in Muta™Mouse after exposure to 3-NBA (A) or 3-ABA (B). Values 

represent mean ± SD of four animals; each DNA sample was determined by two independent 
32

P-

postlabelling analyses. Individual levels of DNA adducts are given in Supporting Tables S3 and 

S4). RAL, relative adduct labelling. ND = not detected. 
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Figure 6 
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Table S1: Mutant frequency in the LacZ gene in Muta™Mouse treated with 3-NBA 

 

 

 

Tissue 

Dose 

3-NBA 

(mg/kg bw 

per day)
1
 

Total  

3-NBA 

(mg/kg 

bw) 

 

 

 

Animals 

 

 

Total 

mutants 

 

 

Total 

plaques 

 

 

MF 

(x10
5
) 

 

MF 

(x10
5
) 

(mean ± SD) 

bone marrow 0 0 1 9 200,125 4.50 6.36 ± 1.83  

bone marrow 0 0 2 14 151,751 9.23  

bone marrow 0 0 3 16 247,837 6.46  

bone marrow 0 0 4 12 236,572 5.07  

bone marrow 0 0 5 17 259,765 6.54  

bone marrow 2x28 56 6 53 359,165 14.76 13.37 ± 2.83 

bone marrow 2x28 56 7 39 231,933 16.82  

bone marrow 2x28 56 8 23 223,981 10.27  

bone marrow 2x28 56 9 29 201,451 14.40  

bone marrow 2x28 56 10 30 282,296 10.63  

bone marrow 2x28 56 16 -
2
 - -  

bone marrow 5x28 140 11 26 217,355 11.96 14.80 ± 3.27 

bone marrow 5x28 140 12 12 62,788 19.11  

bone marrow 5x28 140 14 19 122,262 15.54  

bone marrow 5x28 140 15 26 206,752 12.58  

liver 0 0 1 12 233,424 5.10 5.10 ± 1.00 

liver 0 0 2 14 224,147 6.20  

liver 0 0 3 3 80,348 3.70  

liver 0 0 4 16 363,473 4.40  

liver 0 0 5 6 104,039 5.80  

liver 2x28 56 6 16 161,028 9.90 11.20 ± 5.90 

liver 2x28 56 7 9 138,332 6.50  

liver 2x28 56 8 8 66,764 12.00  

liver 2x28 56 9 22 280,971 7.80  

liver 2x28 56 10 17 201,616 8.40  

liver 2x28 56 16 19 83,496 22.80  

liver 5x28 140 11 23 174,778 13.20 21.10 ± 9.10 

liver 5x28 140 12 13 63,947 20.30  

liver 5x28 140 14 27 79,189 34.10  

liver 5x28 140 15 57 336,303 16.90  

lung 0 0 1 14 314,767 4.45 5.33 ± 2.31 

lung 0 0 2 16 208,740 7.67  

lung 0 0 3 2 89,957 2.22  

lung 0 0 4 26 343,261 7.57  

lung 0 0 5 31 653,389 4.74  

lung 2x28 56 6 31 474,469 6.53 6.42 ± 1.44 

lung 2x28 56 7 26 473,144 5.50  

lung 2x28 56 8 42 490,373 8.56  

lung 2x28 56 9 38 499,982 7.60  

lung 2x28 56 10 5 104,867 4.77  

lung 2x28 56 16 37 666,643 5.55  

lung 5x28 140 11 15 178,754 8.39 6.92 ± 1.28 

lung 5x28 140 12 31 522,844 5.93  

lung 5x28 140 14 20 346,409 5.77  

lung 5x28 140 15 32 421,456 7.59  
1
 Doses 2 and 5 mg/kg bw administered p.o. daily for 28 days, followed by a 28 day recovery period. 

2
 Sample lost. 
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Table S2: Mutant frequency in the LacZ gene in Muta™Mouse treated with 3-ABA 

 

 

 

Tissue 

Dose 

3-ABA 

(mg/kg bw 

per day)
1
 

Total  

3-ABA 

(mg/kg 

bw) 

 

 

 

Animals 

 

 

Total 

mutants 

 

 

Total 

plaques 

 

 

MF 

(x10
5
) 

 

MF 

(x10
5
) 

(mean ± SD) 

bone marrow 0 0 2 20 580,496 3.45 3.66 ± 0.45  

bone marrow 0 0 3 25 607,003 4.12  

bone marrow 0 0 4 24 579,171 4.14  

bone marrow 0 0 5 11 316,258 3.48  

bone marrow 0 0 6 16 510,253 3.14  

bone marrow 2x28 56 7 31 288,260 10.75 11.27 ± 1.29 

bone marrow 2x28 56 8 73 657,365 11.10  

bone marrow 2x28 56 9 7 68,917 10.16  

bone marrow 2x28 56 10 31 242,536 12.78  

bone marrow 2x28 56 11 51 394,949 12.91  

bone marrow 2x28 56 12 47 474,469 9.91  

bone marrow 5x28 140 13 56 607,003 9.23 9.69 ± 2.61 

bone marrow 5x28 140 14 25 431,396 5.80  

bone marrow 5x28 140 15 46 450,613 10.21  

bone marrow 5x28 140 16 34 333,984 10.18  

bone marrow 5x28 140 17 44 337,297 13.04  

liver 0 0 2 37 386,997 9.56 8.93 ± 2.27 

liver 0 0 3 27 365,129 7.39  

liver 0 0 4 36 429,408 8.38  

liver 0 0 5 20 294,224 6.80  

liver 0 0 6 41 327,357 12.52  

liver 2x28 56 7 25 156,389 15.99 12.39 ± 2.56 

liver 2x28 56 8 13 102,216 12.72  

liver 2x28 56 9 24 235,578 10.19  

liver 2x28 56 10 49 483,747 10.13  

liver 2x28 56 11 28 188,529 14.85  

liver 2x28 56 12 38 363,804 10.45  

liver 5x28 140 13 28 220,834 12.68 10.45 ± 1.42 

liver 5x28 140 14 40 455,915 8.77  

liver 5x28 140 15 25 252,145 9.91  

liver 5x28 140 16 46 439,348 10.47  

liver 5x28 140 17 38 365,792 10.39  

lung 0 0 2 23 404,889 5.70 6.60 ± 1.79 

lung 0 0 3 31 352,207 8.80  

lung 0 0 4 15 195,818 7.70  

lung 0 0 5 21 325,038 6.50  

lung 0 0 6 13 312,116 4.20  

lung 2x28 56 7 3 79,354 3.80 7.30 ± 2.13 

lung 2x28 56 8 28 399,588 7.00  

lung 2x28 56 9 17 195,487 8.70  

lung 2x28 56 10 28 376,395 7.40  

lung 2x28 56 11 18 259,765 6.90  

lung 2x28 56 12 30 295,715 10.10  

lung 5x28 140 13 47 551,339 8.50 6.70 ± 1.91 

lung 5x28 140 14 24 328,848 7.30  

lung 5x28 140 15 37 440,839 8.40  

lung 5x28 140 16 2 39,926 5.00  

lung 5x28 140 17 13 294,224 4.40  
1
 Doses 2 and 5 mg/kg bw administered p.o. daily for 28 days, followed by a 28 day recovery period. 
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Table S3: DNA adduct formation in Muta™Mouse treated with 3-NBA 

   RAL
2
 (mean ± SD/10

8
 nucleotides) 

 

Tissue 

3-NBA 

(mg/kg bw per day)
1
 

Total 3-NBA 

(mg/kg bw) 

 

Spot 1 

 

Spot 2 

 

Spot 3 

 

Spot 4 

 

Spot 5 

 

Spot X 

 

Total 

bone marrow 0 0 ND ND ND ND ND ND ND 

bone marrow 2x28 56 1.2 ± 0.6 1.6 ± 1.0 2.7 ± 1.1 0.4 ± 0.2 ND ND 5.9 ± 2.6 

bone marrow 5x28 140 1.1 ± 0.3 1.0 ± 0.3 2.8 ± 0.8 0.4 ± 0.1 ND ND 5.3 ± 1.3 

liver 0 0 ND ND ND ND ND ND ND 

liver 2x28 56 3.4 ± 0.6 2.2 ± 0.6 62.4 ± 12.0 2.4 ± 1.0 ND 2.5 ± 0.5 72.8 ± 14.5 

liver 5x28 140 6.8 ± 2.1 3.8 ± 1.1 199.6 ± 69.4 11.0 ± 5.7 3.6 ± 1.7 6.8 ± 1.7 230.2 ± 81.1 

lung 0 0 ND ND ND ND ND ND ND 

lung 2x28 56 1.1 ± 0.4 0.8 ± 0.3 4.3 ± 1.7 0.5 ± 0.4 ND ND 6.7 ± 2.7 

lung 5x28 140 1.4 ± 0.6 0.9 ± 0.3 7.1 ± 3.1 0.8 ± 0.7 ND ND 10.3 ± 4.3 
1
 Doses 2 and 5 mg/kg bw administered p.o. daily for 28 days, 28 day recovery time. 

2
 Mean RAL (relative adduct labelling) of four animals (each DNA sample was determined by two 

32
P-labelling analyses); spot 1 = dA-N

6
-ABA, spot 3 = dG-N

2
-ABA, spots 4/5 = 

dG-C8-N-ABA. ND, not detected. 
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Table S4: DNA adduct formation in Muta™Mouse treated with 3-ABA 

   RAL
2
 (mean ± SD/10

8
 nucleotides) 

 

Tissue 

3-ABA 

(mg/kg bw per day)
1
 

Total 3-ABA 

(mg/kg bw) 

 

Spot 1 

 

Spot 2 

 

Spot 3 

 

Spot 4 

 

Spot 5 

 

Spot X 

 

Total 

bone marrow 0 0 ND ND ND ND ND ND ND 

bone marrow 2x28 56 0.9 ± 0.2 1.0 ± 0.5 2.7 ± 0.6 0.6 ± 0.3 ND ND 5.2 ± 0.9 

bone marrow 5x28 140 1.2 ± 0.3 1.0 ± 0.2 3.5 ± 1.0 0.8 ± 0.3 ND ND 6.5 ± 1.6 

liver 0 0 ND ND ND ND ND ND ND 

liver 2x28 56 1.1 ± 0.3 1.7 ± 0.5 5.6 ± 1.6 1.1 ± 0.5 ND ND 9.5 ± 2.8 

liver 5x28 140 2.9 ± 1.6 2.5 ± 0.9 44.5 ± 23.6 3.2 ± 1.3 1.0 ± 0.3 1.6 ± 0.7 55.6 ± 26.8 

lung 0 0 ND ND ND ND ND ND ND 

lung 2x28 56 0.8 ± 0.3 0.6 ± 0.2 2.2 ± 1.1 0.4 ± 0.3 ND ND 4.1 ± 1.8 

lung 5x28 140 0.9 ± 0.4 0.8 ± 0.3 3.4 ± 3.2 0.5 ± 0.4 ND ND 5.6 ± 4.3 
1
 Doses 2 and 5 mg/kg bw administered p.o. daily for 28 days, 28 day recovery time. 

2
 Mean RAL (relative adduct labelling) of four animals (each DNA sample was determined by two 

32
P-labelling analyses); spot 1 = dA-N

6
-ABA, spot 3 = dG-N

2
-ABA, spots 4/5 = 

dG-C8-N-ABA. ND, not detected. 
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Table S5: Mutant frequency in the LacZ gene in FE1 treated with 3-NBA  

 

 

Trial 

 

3-NBA 

(µg/ml) 

 

 

S9 (%) 

 

Total 

mutants 

 

Total 

plaques 

 

MF 

(x10
5
) 

MF 

(x10
5
) 

(mean ± SD) 

A 0 0 118 296,875 39.7 58.9 ± 24.2 

A 0 0 117 241,211 48.5  

B 0 0 388 434,709 89.3  

B 0 0 224 328,683 68.2  

B 0 0 348 383,021 90.9  

C 0 0 274 483,032 56.7  

C 0 0 195 331,333 58.9  

C 0 0 70 365,268 19.2  

A 0.1 0 128 162,353 78.8 68.3 ± 14.9 

A 0.1 0 154 266,392 57.8  

A 1 0 402 394,949 101.8 140.0 ± 31.2 

A 1 0 461 458,565 100.5  

B 1 0 696 380,371 183.0  

B 1 0 768 433,384 177.2  

B 1 0 848 579,171 146.4  

C 1 0 688 487,024 141.3  

C 1 0 460 305,489 150.6  

C 1 0 366 306,152 119.5  

B 3 0 700 234,584 298.4 352.1 ± 47.2 

B 3 0 1,216 339,285 358.4  

B 3 0 1,028 288,923 355.8  

C 3 0 1,088 292,414 372.1  

C 3 0 868 204,101 425.3  

C 3 0 1,480 489,020 302.6  

A 10 0 1,240 486,397 254.9 315.6 ± 73.0 

A 10 0 498 249,163 199.9  

B 10 0 552 165,667 333.2  

B 10 0 672 218,680 307.3  

C 10 0 616 168,163 366.3  

C 10 0 436 102,713 424.5  

C 10 0 1,160 359,165 323.0  

A 0 0.5 200 365,792 54.7 73.3 ± 42.1 

A 0 0.5 283 625,557 45.2  

B 0 0.5 284 265,067 107.1  

B 0 0.5 332 369,768 89.8  

B 0 0.5 428 270,368 158.3  

C 0 0.5 273 694,608 39.3  

C 0 0.5 237 491,699 48.2  

C 0 0.5 128 291,416 43.9  

A 0.1 0.5 74 149,763 49.4 52.6 ± 4.5 

A 0.1 0.5 290 519,531 55.8  

A 1 0.5 268 372,419 72.0 120.2 ± 40.7 

A 1 0.5 469 487,723 96.2  

B 1 0.5 736 437,360 168.3  

B 1 0.5 772 422,781 182.6  

B 1 0.5 528 389,648 135.5  

C 1 0.5 664 862,272 77.0  

C 1 0.5 529 519,696 101.8  

C 1 0.5 604 470,493 128.4  

B 3 0.5 1,416 355,189 398.7 390.1 ± 42.7 

B 3 0.5 1,232 266,392 462.5  

B 3 0.5 1,060 291,573 363.5  

C 3 0.5 1,168 315,368 370.4  

C 3 0.5 1,256 310,128 405.0  

C 3 0.5 2,120 622,752 340.4  

A 10 0.5 1,000 322,056 310.5 394.8 ± 87.7 

A 10 0.5 1,088 337,960 321.9  

B 10 0.5 180 57,652 312.2  
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B 10 0.5 268 72,231 371.0  

C 10 0.5 872 187,624 464.8  

C 10 0.5 1,008 190,848 528.2  

C 10 0.5 1,792 393,624 455.3  
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Table S6: Mutant frequency in the LacZ gene in FE1 treated with 3-ABA 

 

 

Trial 

 

3-ABA 

(µg/ml) 

 

 

S9 (%) 

 

Total 

mutants 

 

Total 

plaques 

 

MF 

(x10
5
) 

MF 

(x10
5
) 

(mean ± SD) 

A 0 0 85 249,163 34.11 51.0 ± 22.0 

A 0 0 74 169,643 43.62  

B 0 0 248 324,707 76.38  

B 0 0 324 400,251 80.95  

B 0 0 333 467,843 71.18  

C 0 0 96 338,126 28.39  

C 0 0 98 324,707 30.18  

C 0 0 79 357,840 22.08  

D 0 0 90 133,859 67.24  

D 0 0 52 93,436 55.65  

A 0.1 0 73 235,247 31.03 44.5 ± 14.1 

A 0.1 0 75 173,619 43.20  

E 0.1 0 1 663 -  

E 0.1 0 49 82,833 59.15  

A 1 0 150 364,467 41.16 59.4 ± 22.9 

A 1 0 185 352,539 52.48  

B 1 0 436 410,853 106.12  

B 1 0 384 518,205 74.10  

B 1 0 200 234,584 85.26  

C 1 0 178 417,480 42.64  

C 1 0 191 461,216 41.41  

C 1 0 255 535,435 47.62  

D 1 0 86 130,545 65.88  

D 1 0 54 144,461 37.38  

B 3 0 332 454,589 73.03 84.0 ± 21.0 

B 3 0 444 373,744 118.80  

B 3 0 344 420,131 81.88  

C 3 0 411 650,739 63.16  

C 3 0 342 531,459 64.35  

C 3 0 301 446,637 67.39  

D 3 0 240 229,283 104.67  

D 3 0 106 107,352 98.74  

A 10 0 152 216,029 70.36 79.6 ± 15.2 

A 10 0 189 307,477 61.47  

B 10 0 344 384,347 89.50  

B 10 0 280 333,984 83.84  

B 10 0 496 454,589 109.11  

C 10 0 407 573,869 70.92  

C 10 0 293 462,541 63.35  

C 10 0 331 485,072 68.24  

D 10 0 178 201,451 88.36  

D 10 0 141 155,064 90.93  

A 0 0.5 124 284,947 43.52 56.8 ± 27.1 

A 0 0.5 88 181,571 48.47  

B 0 0.5 432 490,373 88.10  

B 0 0.5 516 528,808 97.58  

B 0 0.5 500 557,965 89.61  

C 0 0.5 189 613,629 30.80  

C 0 0.5 125 453,264 27.58  

C 0 0.5 86 360,491 23.86  

D 0 0.5 135 222,656 60.63  

D 0 0.5 138 237,566 58.09  

A 0.1 0.5 77 176,269 43.68 48.5 ± 6.6 

A 0.1 0.5 31 72,396 42.82  

E 0.1 0.5 77 152,413 50.52  

E 0.1 0.5 65 113,979 57.03  

A 1 0.5 143 271,693 52.63 75.2 ± 15.5 

A 1 0.5 118 233,259 50.59  
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B 1 0.5 332 462,541 71.78  

B 1 0.5 322 377,720 85.25  

B 1 0.5 416 421,456 98.71  

C 1 0.5 251 344,587 72.84  

C 1 0.5 268 398,925 67.18  

C 1 0.5 313 385,672 81.16  

D 1 0.5 138 151,751 90.94  

D 1 0.5 109 133,859 81.43  

B 3 0.5 408 424,107 96.20  

B 3 0.5 280 286,272 97.81 113.9 ± 24.7 

B 3 0.5 552 426,757 129.35  

C 3 0.5 812 630,859 128.71  

C 3 0.5 776 511,579 151.69  

C 3 0.5 652 499,319 130.58  

D 3 0.5 253 254,464 99.42  

D 3 0.5 125 161,691 77.31  

A 10 0.5 360 279,645 128.73 141.2 ± 38.6 

A 10 0.5 371 292,899 126.66  

B 10 0.5 542 477,120 113.60  

B 10 0.5 528 434,709 121.46  

B 10 0.5 628 357,177 175.82  

C 10 0.5 688 361,816 190.15  

C 10 0.5 1,104 653,389 168.97  

C 10 0.5 1,096 591,099 185.42  

D 10 0.5 441 327,357 134.72  

D 10 0.5 327 490,373 66.68  
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Table S7: DNA adduct formation in FE1 cells treated with 3-NBA 

  RAL
1
 (mean ± SD/10

8
 nucleotides) 

Dose [µg/ml] Metabolic 

activation 

 

Spot 1 

 

Spot 2 

 

Spot 3 

 

Spot 4 

 

Spot 5 

 

Total 

0.1 -S9 1.2 ± 0.5 1.3 ± 0.7 2.3 ± 0.5 0.6 ± 0.2 ND 5.3 ± 1.0 

0.1 +S9 ND ND ND ND ND ND 

1 -S9 1.0 ± 0.5 2.6 ± 0.3 5.3 ± 2.6 1.3 ± 0.8 ND 10.2 ± 3.0 

1 +S9 0.7 ± 0.3 0.8 ± 0.3 2.4 ± 0.5 0.6 ± 0.2 ND 4.4 ± 1.0 

3 -S9 4.1 ± 0.8 16.4 ± 3.0 61.4 ± 8.0 44.4 ± 11.1 2.3 ± 1.3 128.6 ± 18.7 

3 +S9 2.9 ± 1.9 11.5 ± 5.2 27.6 ± 10.7 13.1 ± 2.0 1.0 ± 0.4 56.1 ± 18.4 

10 -S9 13.5 ± 1.0 15.4 ± 5.7 93.10 ± 5.7 45.1 ± 6.3 6.0 ± 2.4 173.1 ± 15.9 

10 +S9 3.5 ± 2.1 11.6 ± 1.9 21.45 ± 3.7 8.2 ± 1.7 0.8 ± 0.1 45.6 ± 5.5 
1
 Mean RAL (relative adduct labelling) of two separate incubations (each DNA sample was determined by two 

32
P-

labelling analyses); spot 1 = dA-N
6
-ABA, spot 3 = dG-N

2
-ABA, spots 4/5 = dG-C8-N-ABA. ND, not detected. 
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Table S8: DNA adduct formation in FE1 cells treated with 3-ABA 

  RAL
1
 (mean ± SD/10

8
 nucleotides) 

 

Dose [µg/ml] 

Metabolic 

activation 

 

Spot 1 

 

Spot 2 

 

Spot 3 

 

Spot 4 

 

Spot 5 

 

Total 

0.1 -S9 ND ND ND ND ND ND 

0.1 +S9 ND ND ND ND ND ND 

1 -S9 1.0 ± 0.4 1.0 ± 0.2 1.9 ± 0.2 0.4 ± 0.1 ND 4.3 ± 0.4 

1 +S9 ND ND ND ND ND ND 

3 -S9 0.8 ± 0.2 3.5 ± 0.4 5.4 ± 0.6 1.3 ± 0.3 ND 11.0 ± 1.3 

3 +S9 0.3 ± 0.1 0.9 ± 0.3 1.7 ± 0.8 0.4 ± 0.2 ND 3.3 ± 1.1 

10 -S9 1.2 ± 0.4 5.2 ± 1.0 9.2 ± 2.0 2.5 ± 1.2 ND 18.1 ± 3.6 

10 +S9 0.6 ± 0.2 2.5 ± 1.1 4.2 ± 1.5 0.9 ± 0.5 ND 8.2 ± 3.1 
1
 Mean RAL (relative adduct labelling) of two separate incubations (each DNA sample was determined by two 

32
P-

labelling analyses); spot 1 = dA-N
6
-ABA, spot 3 = dG-N

2
-ABA, spots 4/5 = dG-C8-N-ABA. ND, not detected. 


	OA Article Coversheet
	Open Access document downloaded from King’s Research Portal
	General rights

	Citation to published version:

	Arlt_2008_Mutagenesis

