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Abstract: Cancer stem cells (CSCs) are thought to be responsible for cancer relapse. CSCs are a
subtype of cancer cells with the ability to differentiate, self-renew, and form secondary or tertiary
tumors. Current cancer treatments—including chemotherapy, radiation, and surgery—effectively
remove bulk cancer cells but are unable to eliminate CSCs. Here, we present the synthesis,
characterization, and anti-CSC properties of a cobalt(III)–cyclam complex bearing two tolfenamic
acid moieties, 3. Notably, 3 displays sub-micromolar potency towards breast CSCs and bulk breast
cancer cells. Detailed mechanistic studies show that 3 is taken up readily by breast CSCs, enters the
nucleus, causes DNA damage, and induces caspase-dependent apoptosis. Furthermore, 3 inhibits
cyclooxygenase-2 (COX-2) expression in CSCs. The mechanism of action of 3 is similar to that of a
naproxen-appended cobalt(III)–cyclam complex, 1 recently reported by our group. The advantage of
3 over 1 is that it has the potential to remove whole tumor populations (bulk cancer cells and CSCs)
with a single dose.

Keywords: metallopharmaceuticals; cobalt(III)–cyclam complexes; cancer stem cell; nonsteroidal
anti-inflammatory drug; DNA damage; COX-2 inhibition

1. Introduction

Cancer is the third highest cause of death in the developed world [1]. Despite significant
improvements in traditional cancer therapies (chemotherapy, radiation therapy, and surgery),
long-term cures for cancers of all tissue types remains out of reach [2]. Tumors have the ability
to recur months, if not years, after seemingly effective treatment. Cancer reoccurrence has been heavily
linked to the existence of a small subpopulation of tumor cells called cancer stem cells (CSCs) [3,4].
CSCs exhibit cancer and stem-like properties and thus self-renew, divide asymmetrically, and evade
standard treatments [5–8]. These traits endow CSCs with the ability to control tumor initiation,
propagation, and metastasis [9,10]. Given the implications of CSCs, to provide long-lasting durable
responses, cancer therapies must have the ability to remove entire tumor populations, including CSCs.
Although vulnerabilities in CSC defenses have been identified—such as overactive organelles [11,12],
cell surface markers [13–17], dysregulated signaling pathways [18–20], and components of their
microenvironment [21,22]—there is still no clinically approved agent (chemical or biological) that can
effectively remove CSCs. The development of CSC-potent agents is in its infancy, and most of the drug
candidates undergoing preclinical or clinical trials are completely organic in nature [7]. Our group and
others have recently shown that metal complexes are capable of potently and selectively killing CSCs
(over bulk cancer cells) [23–28].

CSC depletion can be achieved by disrupting the microenvironments maintaining and supporting
CSCs [21,22]. The CSC microenvironment is believed to be hypoxic, and the hypoxia-inducible
factors (HIFs), HIF1α and HIF2α, are thought to be involved in CSC-associated self-renewal and
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metastasis [29–33]. Specifically, HIF1α has been shown to promote CSC mammosphere growth under
hypoxic conditions [34]. Therefore, prodrugs capable of undergoing activation in hypoxic conditions
can potentially block CSC growth. Octahedral cobalt(III) complexes containing cytotoxic ligands can
be utilized for this purpose, as the oxidized form is inert, but upon one-electron reduction to the labile
Co(II) form, the coordinated cytotoxic ligands can be released [35–37]. A number of Co(III) complexes
containing tetradentate nitrogen ligands such as cyclam (1,4,8,11-tetraazacyclotetradecane), cyclen
(1,4,7,10-tetraazacyclododecane), and TPA (tris(2-pyridylmethyl)amine), have been used to deliver
therapeutic and imaging agents to hypoxic tumor microenvironments [38–42]. The reduction potential
of these complexes range from 0 to −1400 mV (vs normal hydrogen electrode, NHE), therefore, in
theory they can be fine-tuned by ligand modification to coincide with the CSC microenvironment.

We previously reported the anti-CSC properties of a cobalt(III)–cyclam complex, 1 (Figure 1),
containing naproxen, a nonsteroidal anti-inflammatory drug (NSAID). This complex was shown to
release naproxen under reducing conditions and selectively kill CSCs grown under hypoxic-mimicking
conditions [24]. The mechanism of action of 1 involves genomic DNA damage and cyclooxygenase-2
(COX-2) inhibition. NSAIDs, like naproxen, inhibit cyclooxygenase (COX-1 or COX-2)-catalyzed
production of prostaglandin, a mediator of inflammation [43]. The inducible isoform, COX-2, is
overexpressed in colon, glioma, and breast cancer CSCs and promotes their proliferation, and therefore
is a viable a target for CSC therapy [44–46]. Here, we report a novel tolfenamic acid-appended
cobalt(III)–cyclam complex, 3, capable of potently killing breast CSCs and bulk breast cancer cells
in vitro. The rationale for the attachment of tolfenamic acid to the cobalt(III)–cyclam core is two-fold;
it increases the lipophilicity of the complex, which facilitates cell uptake, and it inhibits COX-2 [47],
which is overexpressed in breast CSCs. The CSC cytotoxicity and mechanism of action of 3 will be
discussed in detail, and compared to 1.
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Figure 1. Chemical structure of a cobalt(III)–cyclam complex bearing two naproxen molecules, 1, which
was previously reported to selectively kill breast cancer stem cells (CSCs) over bulk breast cancer cells.

It should be noted that several metal–NSAIDs have been previously reported, and their binding
to biomolecules such as DNA and human serum albumin (HSA) has been well characterized using
spectroscopic methods [48–52]. In general, metal–NSAID complexes display stronger binding to
biomolecules than the corresponding free NSAID. Many of the metal–NSAID complexes display
anti-inflammatory/analgesic, antibacterial, and antiproliferative properties [53]. Encouragingly, some
metal–NSAID complexes exhibit greater cytotoxicity than cisplatin. A recent comprehensive review
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concluded that the molecular weight of metal–NSAID complexes (with the same NSAID) was linearly
correlated to their antiproliferative activity against breast cancer cells (MCF-7) [53]. We recently
reported a series of copper(II)–phenanthroline–indomethacin complexes capable of selectively killing
breast CSCs over bulk breast cancer cells [23,25]. Our studies have shown that metal–NSAID complexes
are an important class of anti-CSC agents that deserves further investigation.

2. Results and Discussion

The novel cobalt(III)–cyclam complex, 3 (Scheme 1), was synthesized by reacting
trans-dichloro(cyclam)–cobalt(III) chloride, 2, with tolfenamic acid (2.5 equivalents) in methanol
(dried over Na2SO4) in the presence of excess silver(I) oxide (4.5 equivalents). After precipitation of
the crude product using diethyl ether and conversion to the corresponding hexafluorophosphate salt,
alumina column chromatography (dichloromethane (DCM):methanol (95:5)) was preformed to isolate 3
as a pure light-brown solid, in a reasonable yield (34%). Complex 3 was characterized by 1H and
13C NMR, infrared spectroscopy, high-resolution electrospray ionization (ESI)-TOF mass spectrometry,
and elemental analysis (Figures S1–S3 in the Supplementary Materials). Attachment of tolfenamic
acid to cobalt(III)–cyclam via the carboxylic acid group was confirmed by the disappearance of the
hydroxyl signal (at 13.15 ppm, Figure S4) in the 1H NMR spectrum of 3. Furthermore, the aromatic
proton signals shifted (up to 0.4 ppm) relative to tolfenamic acid, indicative of metal coordination.
A distinctive molecular ion peak with the appropriate isotopic pattern expected for 3 was observed
in the ESI mass spectrum (m/z = 779.2305 amu, [M − PF6]+), providing further evidence for product
formation. The purity of 3 was established by elemental analysis.
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Scheme 1. The reaction scheme for the preparation of the novel cobalt(III)–cyclam complex, 3, from
trans-dichloro(cyclam)–cobalt(III) chloride, 2, and tolfenamic acid.

Given that the analogous cobalt(III)–cyclam–naproxen complex, 1, and other cobalt complexes
bearing tetradentate ligands have been reported to effectively cleave DNA [24], the DNA nuclease
activity of 3 was investigated by agarose gel electrophoresis. Upon incubation of plasmid pUC19 DNA
(100 ng) with 3 (0–20 µM for 20 h in the absence of external reducing agents), a marked increase in the
amount of nicked circular DNA and a concurrent decrease in the in the amount of supercoiled DNA
was observed, indicative of DNA cleavage (Figure 2A). In the presence of cellular reductants, ascorbic
acid, and glutathione (10-fold excess), the nuclease activity of 3 was markedly enhanced (Figure 2B,C).
In the presence of ascorbic acid, supercoiled pUC19 DNA was completely converted to circular DNA
(at 5 µM), whereas in the presence of glutathione, the DNA was cleaved into several fragments (at
2 µM). This suggests that 3-mediated DNA cleavage is redox-dependent. To determine the oxidative
mechanism by which 3 induces DNA cleavage, nuclease activity was probed in the presence of reactive
oxygen species (ROS) scavengers (DMSO, tBuOH, KI, and NaN3) (Figure 2D). KI and NaN3 displayed
the greatest inhibitory effect, suggesting that hydrogen peroxide and singlet oxygen are the major ROS
intermediates formed during the DNA cleavage process. A similar result was previously observed for
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1 [24]. tBuOH partially inhibited 3-induced cleavage, therefore, hydroxyl radicals could also play a
role in the nuclease activity of 3. To gain insight into the DNA-binding mode of 3 prior to initiating
DNA cleavage, nuclease activity was examined in the presence of a major groove binder (methyl
green, 50 µM) and a minor groove binder (DAPI, 2-(4-amidinophenyl)-1H-indole-6-carboxamidine,
50 µM). Cleavage was found to be considerably reduced in the presence of both methyl green and
DAPI, suggesting that 3 binds to both the minor and major DNA grooves (Figure 2E).
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Figure 2. (A) Concentration-dependent DNA cleavage by 3 after 20 h incubation. Lane 1: DNA
only; Lanes 2–6: DNA + 2, 5, 10, 15, and 20 µM of 3. (B) Effect of ascorbic acid on 3-mediated DNA
cleavage after 20 h incubation. Lane 1: DNA only; Lanes 2–6: DNA + 2, 5, 10, 15, and 20 µM of 3
with 10 equivalents of ascorbic acid. (C) Effect of glutathione on 3-mediated DNA cleavage after 20 h
incubation. Lane 1: DNA only; Lanes 2–6: DNA + 2, 5, 10, 15, and 20 µM of 3 with 10 equivalents of
glutathione. (D) Inhibition of 3-mediated DNA cleavage by reactive oxygen species (ROS) scavengers
after 20 h incubation. Lane 1: DNA only; Lane 2: DNA + 3 (10 µM); Lanes 3–6: DNA + 3 (10 µM) +
NaN3 (40 mM), KI (40 mM), DMSO (10 mM), or tBuOH (10 mM). (E) Inhibition of 3-mediated DNA
cleavage by DNA minor and major groove binders after 20 h incubation. Lane 1: DNA only; Lane 2:
DNA + 3 (10 µM); Lane 3: DNA + 3 (10 µM) + methyl green (50 µM); Lane 4: DNA + 3 (10 µM) + DAPI
(50 µM).

The lipophilicity of 3 was determined by measuring the extent to which it partitioned between
octanol and water (P) using the shake-flask method. The LogP value for 3 was calculated to be
0.96 ± 0.05, which is indicative of hydrophobicity. The hydrophobic character of 3 suggests that
the complex should be readily internalized by cells. UV–visible spectroscopy and high-resolution
ESI-TOF MS studies were carried out to assess the stability of 3 in biologically relevant solutions.
In phosphate-buffered saline (PBS), the absorption associated to 3 (25 µM) decreased steadily over
the course of 24 h at 37 ◦C (Figure S5). In contrast, 1 displayed no significant spectral changes under
the same conditions [24]. Upon addition of ascorbic acid (250 µM) to 3 (25 µM) in PBS, a marked
change in the UV–visible trace was observed, followed by a decrease in absorption over the course
of 24 h, yielding a spectrum similar to free tolfenamic acid (Figures S6 and S7). This suggests that
tolfenamic acid is released from 3 under these conditions. Upon incubating 3 (25 µM) with glutathione
(250 µM) in PBS for 72 h, the ESI-TOF MS (positive mode) displayed new peaks corresponding to
[tolfenamic acid]+ (260.9963 m/z) and [tolfenamic acid + K]+ (300.9819 m/z) (Figure S8). This shows
that tolfenamic acid is liberated, presumably through reduction of the cobalt metal center from CoIII to
CoII. The presence of a peak corresponding to the oxidized form of glutathione, [GSSG + H]+ (613.1581
m/z) and the absence of a peak for the reduced form, implies that 3 has been reduced (Figure S8).

The cytotoxicity of 3 towards bulk breast cancer cells (HMLER) and breast CSCs (HMLER-shEcad)
was assessed using the colorimetric MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay. IC50 values, the concentration required to decrease cell viability by 50%, were calculated
from dose–response curves (Figure S9) and are summarized in Table 1. The cobalt(III)–cyclam complex,
3, exhibited sub-micromolar potency towards HMLER and HMLER-shEcad cells, comparable
to 1. Interestingly, 3 kills CSCs and bulk cancer cells indiscriminately, whereas 1 displays 4-fold
selective potency for CSCs over bulk cancer cells. Therefore, 3 has the potential to remove cancer cell
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populations in their entirety (bulk cancer cells and CSCs) with a single dose. Notably, the IC50 value of
3 for HMLER-shEcad cells was 24-fold lower than that of salinomycin, a well-established CSC toxin,
and similar to a series of CSC-selective copper(II)–phenanthroline–NSAID complexes recently reported
by our group [23,25]. We have previously shown that tolfenamic acid displays moderate toxicity
towards HMLER and HMLER-shEcad cells (Table 1) [25]. The data acquired in this study shows that
the cytotoxicity of tolfenamic acid toward CSCs and bulk cancer cells is significantly enhanced by
tethering it to cobalt(III)–cyclam. Given the stability studies above (UV–visible spectroscopy and
high-resolution ESI-TOF MS), the CSC cytotoxicity of 3 is likely to result from its reduced products
rather than intact 3.

Table 1. IC50 values of 1, 3, tolfenamic acid, and salinomycin against HMLER and HMLER-shEcad
cells and HMLER-shEcad mammospheres determined after 72 or 120 h incubation (mean of three
independent experiments ± SD). The IC50 values correspond to the concentration required to decrease
cell or mammosphere viability by 50% and were calculated from dose–response curves.

Compound HMLER
IC50 (µM)

HMLER-shEcad
IC50 (µM)

Mammosphere
IC50 (µM)

1 1 0.43 ± 0.05 0.11 ± 0.03 0.98 ± 0.02
3 0.22 ± 0.01 0.21 ± 0.01 1.83 ± 0.28

salinomycin 1 12.17 ± 3.16 5.06 ± 1.45 14.05 ± 1.58
tolfenamic acid 2 30.77 ± 4.69 57.95 ± 1.62 >66

1 Taken from [24]; 2 Taken from [24].

When cultured in serum-free, anchorage-independent conditions, breast CSCs can form
three-dimensional, tumor-like structures called mammospheres [54]. The ability of 3 to inhibit the
formation of mammospheres from single-cell suspensions of HMLER-shEcad cells was determined
using an inverted microscope. Dosage with 3 (at the IC20 value after 5 days of incubation) reduced
the number of mammospheres formed by 44% (Figure 3A). The size of mammospheres formed was
also markedly reduced upon incubation with 3 (Figure 3B). A similar effect was previously noted
for 1 and salinomycin [24,25]. Treatment with tolfenamic acid (at 20 µM after 5 days of incubation)
did not noticeably alter the number or size of mammospheres formed (Figure 3A,B). To determine
the ability of 3 to reduce mammosphere viability, the colorimetric resazurin-based reagent, TOX8,
was employed. The IC50 values, the concentration required to decrease mammosphere viability
by 50%, were extrapolated from dose–response curves (Figure 3C) and are summarized in Table 1.
The cobalt(III)–cyclam complex, 3, displayed micromolar mammosphere potency, comparable to 1
and 8-fold better than salinomycin. Tolfenamic acid is relatively nontoxic against mammospheres
(IC50 > 66 µM). Hypoxic conditions are known to enhance mammosphere growth from single-cell
HMLER suspensions in a HIF1α-dependent manner. The mammosphere potency of 3 in the presence
of cobalt chloride (5 µM), a hypoxia-mimicking agent that activates HIF1α, was unaltered (Figure S10).
In the presence of cobalt chloride (5 µM), 3 (at the IC20 value after 5 days of incubation) considerably
reduced the number and size of mammospheres formed (Figures S11 and S12). A similar result was
observed for 1-treatment [24]. Taken together, this shows that 3 is able to reduce the formation, growth,
and viability of CSCs grown in normoxic and hypoxic-like conditions equally.
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coupled plasma mass spectrometry (ICP-MS). As depicted in Figure 4A, 3 is readily internalized by 
HMLER-shEcad cells (149.5 ppb of Co/million cells). The whole cell uptake of 3 is 2-fold lower than 
1 [24], which may explain the higher potency of the latter against HMLER-shEcad cells (Table 1). A 
reasonable amount of 3 was detected in the nucleus (11.4 ppb of Co/million cells), giving it access to 
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Figure 3. (A) Quantification of mammosphere formation with HMLER-shEcad cells untreated and
treated with 3 or tolfenamic acid (at their IC20 values, 5 days). Error bars represent standard deviations
and Student’s t-test, * p < 0.05. (B) Representative bright-field images (×10) of HMLER-shEcad
mammospheres in the absence and presence of 3 or tolfenamic acid (at their IC20 values, 5 days).
(C) Representative dose–response curves for the treatment of HMLER-shEcad mammospheres with 3
or tolfenamic acid after 5 days of incubation.

Cellular uptake studies were carried to determine the cell permeability and intracellular
localization of 3. HMLER-shEcad cells were incubated with 3 (0.5 µM for 16 h) and the cobalt
content was determined in the whole cell and cytoplasmic, nuclear, and membrane fractions by
inductively coupled plasma mass spectrometry (ICP-MS). As depicted in Figure 4A, 3 is readily
internalized by HMLER-shEcad cells (149.5 ppb of Co/million cells). The whole cell uptake of 3 is
2-fold lower than 1 [24], which may explain the higher potency of the latter against HMLER-shEcad
cells (Table 1). A reasonable amount of 3 was detected in the nucleus (11.4 ppb of Co/million
cells), giving it access to genomic DNA. Therefore, 3 could induce its cytotoxic effect by genomic
DNA damage. It should be noted that a large proportion of internalized 3 was also detected in
the cytoplasm (65.2 ppb of Co/million cells), suggesting that cellular toxicity could also result from
genomic DNA-independent mechanisms.
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Figure 4. (A) Cobalt content in whole cell, cytoplasm, nucleus, and membrane fractions isolated from
HMLER-shEcad cells treated with 3 (0.5 µM for 16 h). (B) Representative histograms displaying the
green fluorescence emitted by anti-COX-2 (cyclooxygenase-2) Alexa Fluor 488 nm antibody-stained
HMLER-shEcad cells treated with lipopolysaccharide (LPS) (5 µM for 24 h) (red) followed by 48 h in
media containing 1 (0.125 µM: blue and 0.5 µM: orange).

As 3 was found to enter the nucleus and exhibit high nuclease activity in cell-free systems,
immunoblotting studies were conducted to determine if the genomic DNA damage pathway was
activated. HMLER-shEcad cells treated with 3 (0.125–0.5 µM for 72 h) displayed a marked increase
in the expression of phosphorylated H2AX (γH2AX) and a slight increase in the expression of
phosphorylated CHK2 (Figure S13), suggestive of DNA damage. An increase in γH2AX and
phosphorylated-CHK2 expression was also observed for 2-treatment (20 µM for 72 h). DNA damage,
when left unrepaired, can lead to apoptosis [55], therefore, the expression of proteins associated to
apoptosis were monitored. HMLER-shEcad cells dosed with 3 (0.5 µM for 72 h) exhibited a clear
increase in the level of cleaved caspase 3 and 7 compared to untreated control cells, indicative of
caspase-dependent apoptosis (Figure S13). Notably, 2- or tolfenamic acid-treatment (both 20 µM for
72 h) did not trigger caspase 3 or 7 cleavage (Figure S13). Collectively, the immunoblotting studies show
that 3 induces genomic DNA damage and apoptotic CSC death. A similar result was also observed for
1-treatment [24], implying that both compounds evoke similar cellular responses regardless of their
varying potencies.

COX-2 expression has been implicated in CSC proliferation and CSC-assisted metastasis [45,56,57].
As 3 possesses two tolfenamic acid molecules, which are well-known COX-2 inhibitors, flow cytometric
studies were conducted to determine if the mechanism of action of 3 involved COX-2 inhibition.
HMLER-shEcad cells pretreated with lipopolysaccharide (LPS) (5 µM for 24 h), to increase basal COX-2
levels, and dosed with 3 (0.125 µM and 0.5 µM for 48 h) displayed a noticeable decrease in COX-2
expression (Figure 4B). This suggests that the cytotoxic effect of 3 may involve COX-2 downregulation.

In summary, we report a cobalt(III)–cyclam complex, 3, that is able to release tolfenamic acid
under reducing conditions. The reduced forms of 3 are likely to be responsible for the biological
activity observed. The cobalt(III)–cyclam complex, 3, kills bulk breast cancer cells and breast CSCs with
sub-micromolar toxicity, and potently inhibits mammosphere formation in normoxic and hypoxic-like
conditions. The biophysical and cellular properties observed for 3 are similar, but distinct, to those of 1,
a naproxen-appended cobalt(III)–cyclam complex previously reported by our group. As 3 displays
equal potency towards bulk cancer cells and CSCs (unlike 1), it could potentially be used to remove
entire cancer populations with a single dose. This study not only shows that cobalt(III) complexes
with tetradentate ligands and NSAIDs warrant further investigation as anticancer agents, but it also
provides insight into cobalt-induced cell death.
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3. Materials and Methods

3.1. General Procedures

All synthetic procedures were performed under normal atmospheric conditions. 1H and 13C NMR
spectra were recorded on a BrukerAvance 400 MHz Ultrashield NMR spectrometer (Billerica, MA,
USA). High-resolution time-of-flight electron spray ionization mass spectra were recorded on a
BrukerDaltronics Esquire 3000 spectrometer (Bremen, Germany) by Dr. Lisa Haigh (Imperial College
London). Fourier-transform infrared (FTIR) spectra were recorded with an IRAffinity-1S Shimadzu
spectrophotometer (Shimadzu, Japan). Elemental analysis was performed commercially by Stephen
Boyer (London Metropolitan University). trans-Dichloro(cyclam)–cobalt(III) chloride, 2, was prepared
according to a previously reported protocol [58].

3.2. Synthesis of Co(1,4,8,11-Tetraazacyclotetradecane)(Tolfenamic Acid)2 (3)

Tolfenamic acid (104 mg, 0.4 mmol) was dissolved in MeOH (45 mL) dried with Na2SO4. 2 (60 mg,
0.16 mmol) in MeOH (5 mL), and Ag2O (165 mg, 0.72 mmol) was added to this solution and the
mixture was stirred for 3 days. The resulting silver salts were removed by filtration and the volume of
the filtrate was reduced to ~5 mL. Diethyl ether (100 mL) was added and the resulting precipitate was
collected and washed with diethyl ether (20 mL). The crude product was dissolved in acetone, filtered,
and the filtrate dispersed in a solution of NaPF6 (151 mg, 0.9 mmol) in water (10 mL). The resulting
suspension was left overnight and the precipitate collected and washed with water (2 × 10 mL). The
crude product was further purified by Al2O3 column chromatography (DCM:MeOH (95:5)) to yield 3
as a light-brown solid (50 mg, 0.05 mmol, 34%); mp. 227.0–227.5 ◦C; 1H NMR (400 MHz, DMSO) δ
9.83 (s, 2H), 8.40 (s, 4H), 7.50 (dd, 2H), 7.30–7.14 (m, 8H), 6.86 (d, 2H), 6.74 (t, 2H), 3.07–2.55 (m, 14H),
2.48–2.31 (m, 4H), 2.29 (s, 6H), 2.28–2.20 (m, 2H); IR (solid, cm−1) 3261, 3091, 2888, 1613, 1580, 1560,
1501, 1464, 1353, 1277, 1249, 1154, 1105, 1073, 1041, 1009, 832, 773, 747, 692, 974, 614, 556; ESI-MS Calcd.
for C38H46Cl2CoN6O4 [M − PF6]+: 780.1964 amu. Found [M − PF6]+: 779.2305 amu.; Anal. Calcd. for
C38H46Cl2CoN6O4PF6: C, 49.31; H, 5.01; N, 9.08. Found: C, 49.34; H, 5.13; N, 8.97.

3.3. DNA Cleavage Studies

Plasmid DNA (pUC19) was purchased from Invitrogen (Carlsbad, CA, USA). The DNA cleavage
activity of 3 was determined by monitoring the conversion of supercoiled plasmid DNA (form I) to
nicked circular DNA (form II) in Tris-HCl buffer (5 mM, pH 7.4), using agarose-gel electrophoresis.
To probe the effect of compound concentration on cleavage, solutions containing DNA (100 ng) and 3
(0–20 µM), with a total reaction volume of 20 µL, were incubated at 37 ◦C for 20 h. To determine the
oxidative cleavage mechanism, solutions containing DNA (100 ng), 3 (10 µM), and various radical
scavenges (10 or 40 mM of KI, DMSO, tBuOH, and NaN3), with a total reaction volume of 20 µL, were
incubated at 37 ◦C for 20 h. Reactions were also conducted in the presence of 10 equivalents of ascorbic
acid or glutathione, and in the presence of methyl green (50 µM) and DAPI (50 µM). After incubation,
loading buffer (5 µL, containing 0.25% bromophenol blue, 0.25% xylene cyanol, and 60% glycerol) was
added and reaction mixtures were immediately loaded onto a 1% agarose gel containing ethidium
bromide (1.0 mg·mL−1). The DNA fragments were separated by applying 60 V for 2 h in Tris-acetate
EDTA (TAE) buffer. The DNA bands were analyzed under UV light using a Fujifilm Image Reader
LAS-3000 (Tokyo, Japan).

3.4. Measurement of Water–Octanol Partition Coefficient (LogP)

The LogP value of 3 was determined using the shake-flask method and UV–vis spectroscopy
(Agilent Cary 100 UV–vis spectrophotometer, Santa Clara, CA, USA). The octanol used in this
experiment was presaturated with water. An aqueous solution of 3 (500 µL, 100 µM) was incubated
with octanol (500 µL) in a 1.5 mL tube. The tube was shaken at room temperature for 24 h. The
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two phases were separated by centrifugation and 3 content in each phase was determined by
UV–vis spectroscopy.

3.5. Cell Lines and Cell Culture Conditions

The human mammary epithelial cell lines, HMLER and HMLER-shEcad, were kindly donated by
R. A. Weinberg (Whitehead Institute, MIT) [59]. HMLER and HMLER-shEcad cells were maintained
in Mammary Epithelial Cell Growth Medium (MEGM) with supplements and growth factors
(bovine pituitary extract (BPE), hydrocortisone, human epidermal growth factor (hEGF), insulin, and
gentamicin/amphotericin-B). The cells were grown at 310 K in a humidified atmosphere containing
5% CO2.

3.6. Cytotoxicity MTT Assay

The colorimetric MTT assay was used to determine the toxicity of 3. HMLER or HMLER-shEcad
cells (5 × 103) were seeded in each well of a 96-well plate. After incubating the cells overnight, various
concentrations of 3 (0.0004–100 µM), were added and incubated for 72 h (total volume 200 µL). A stock
solution of 3 was prepared in DMSO (10 mM) and diluted using media. The final concentration of
DMSO in each well was 0.5%, and this amount was present in the untreated control. After 72 h, the
medium was removed, 200 µL of a 0.4 mg/mL solution of MTT in MEGM was added to each well, and
the plate was incubated for an additional 4 h. The MEGM/MTT mixture was aspirated and DMSO
(200 µL) was added to dissolve the resulting purple formazan crystals. The absorbance of the solutions
in each well was read at 550 nm. Absorbance values were normalized to DMSO-containing control
wells and plotted as concentration of test compound versus % cell viability. IC50 and IC20 values were
interpolated from the resulting dose-dependent curves. The IC50 and IC20 values correspond to the
concentration required to decrease cell viability by 50% or 20% and were calculated from dose–response
curves. The reported IC50 values are the average of three independent experiments.

3.7. Tumorsphere Formation and Viability Assay

HMLER-shEcad cells (5 × 103) were plated in ultralow-attachment 96-well plates (Corning,
New York, NY, USA) and incubated in MEGM supplemented with B27 (Invitrogen), 20 ng/mL EGF,
and 4 µg/mL heparin (Sigma, Poole, UK) for 5 days. Studies were also conducted in the presence
of 3 and tolfenamic acid (0–66 µM). Mammospheres treated with 3 and tolfenamic acid (at their
respective IC20 values, 5 days) were counted and imaged using an inverted microscope. The viability
of the mammospheres was determined by addition of a resazurin-based reagent, TOX8 (Sigma). After
incubation for 16 h, the fluorescence of the solutions was read at 590 nm (λex = 560 nm). Viable
mammospheres reduce the amount of the oxidized TOX8 form (blue) and concurrently increases the
amount of the fluorescent TOX8 intermediate (red), indicating the degree of mammosphere cytotoxicity
caused by the test compound. Fluorescence values were normalized to DMSO-containing controls
and plotted as concentration of test compound versus % mammospheres viability. IC50 values were
interpolated from the resulting dose-dependent curves (Figure 3C). The IC50 values correspond to
the concentration required to decrease mammosphere viability by 50% and were calculated from
dose–response curves. Identical studies were also conducted in the presence of cobalt chloride (5 µM).
The reported IC50 values are the average of two independent experiments.

3.8. Cellular Uptake

To measure the cellular uptake of 3, 1 million HMLER-shEcad cells were treated with 3 (0.5 µM for
16 h). Then the media was removed, the cells were washed with PBS solution (2 mL × 3), harvested,
and centrifuged. The cellular pellet was suspended in an appropriate volume of PBS to obtain a
homogeneous cell suspension (1 mL). The suspension was divided into two. One part was used
to determine the cobalt content in the whole cell and other was used for nuclear, cytoplasmic, and
membrane analysis. The Thermo Scientific NE-PER Nuclear and Cytoplasmic Extraction Kit was
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used to extract and separate the nuclear, cytoplasmic, and membrane fractions. The fractions were
dissolved in 65% HNO3 overnight (250 µL final volume). The samples were then diluted 5-fold with
water and analyzed using ICP-MS (PerkinElmer NexION 350D, Waltham, MA, USA). Cobalt levels are
expressed as Co (ppb) per million cells. Results are presented as the mean of five determinations for
each data point.

3.9. Immunoblotting Analysis

HMLER-shEcad cells (5 × 105 cells) were incubated with 3 (0.125, 0.25, and 0.5 µM), 2 (20 µM),
and tolfenamic acid (20 µM) for 72 h at 37 ◦C. Cells were washed with PBS, scraped into sodium
dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) loading buffer (64 mM Tris-HCl
(pH 6.8)/9.6% glycerol/2% SDS/5% β-mercaptoethanol/0.01% bromophenol blue), and incubated at
95 ◦C for 10 min. Whole cell lysates were resolved by 4%–20% SDS-PAGE (200 V for 25 min) followed
by electrotransfer to polyvinylidene difluoride membrane (PVDF, 350 mA for 1 h). Membranes were
blocked in 5% (w/v) nonfat milk in PBST (PBS/0.1% Tween 20) and incubated with the appropriate
primary antibodies (Cell Signaling Technology, Danvers, MA, USA). After incubation with horseradish
peroxidase-conjugated secondary antibodies (Cell Signaling Technology), immune complexes were
detected with the electrochemiluminescence (ECL) detection reagent (BioRad, Hertfordshire, UK) and
analyzed using a chemiluminescence imager (Amersham Imager 600, Tokyo, Japan).

3.10. Flow Cytometry

HMLER-shEcad cells were seeded in 6-well plates (at a density of 5 × 105 cells/mL) and the cells
were allowed to attach overnight. The cells were treated with lipopolysaccharide (LPS) (5 µM for
24 h), and then treated with 3 (0.125 and 0.5 µM) and incubated for a further 48 h. The cells were then
harvested by trypsinization, fixed with 4% paraformaldehyde (at 37 ◦C for 10 min), permeabilized
with ice-cold methanol (for 30 min), and suspended in PBS (100 µL). The Alexa Fluor® 488 nm-labeled
anti-COX-2 antibody (2 µL) was then added to the cell suspension and incubated in the dark for 1 h.
The cells were then washed with PBS (1 mL) and analyzed using a FACSCanto II flow cytometer
(BD Biosciences, San Jose, CA, USA). The FL1 channel was used to assess COX-2 expression. Cell
populations were analyzed using the FlowJo software (Tree Star, Ashland, OR, USA).

Supplementary Materials: The following are available online at www.mdpi.com/2304-6740/5/1/12/s1,
Figures S1–S13.

Acknowledgments: Kogularamanan Suntharalingam is supported by an Early Career Fellowship (ECF-2014-178)
from the Leverhulme Trust. Arvin Eskandari received financial support from a King’s College London Faculty
Graduate School International Studentship. We are grateful to Robert Weinberg for providing the HMLER and
HMLER-shEcad cell lines used in this study.

Author Contributions: Kogularamanan Suntharalingam conceived and designed the experiments; Paul B. Cressey
and Arvin Eskandari performed the experiments; Kogularamanan Suntharalingam, Paul B. Cressey and Arvin
Eskandari analyzed the data; Kogularamanan Suntharalingam and Paul B. Cressey wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Health Organization. Fact Sheet; WHO Press: Geneva, Switzerland, 2015.
2. Morrison, R.; Schleicher, S.M.; Sun, Y.; Niermann, K.J.; Kim, S.; Spratt, D.E.; Chung, C.H.; Lu, B. Targeting the

mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J. Oncol.
2011, 2011, 941876. [CrossRef] [PubMed]

3. Gupta, P.B.; Chaffer, C.L.; Weinberg, R.A. Cancer stem cells: Mirage or reality? Nat. Med. 2009, 15, 1010–1012.
[CrossRef] [PubMed]

4. Nguyen, L.V.; Vanner, R.; Dirks, P.; Eaves, C.J. Cancer stem cells: An evolving concept. Nat. Rev. Cancer 2012,
12, 133–143. [CrossRef] [PubMed]

www.mdpi.com/2304-6740/5/1/12/s1
http://dx.doi.org/10.1155/2011/941876
http://www.ncbi.nlm.nih.gov/pubmed/20981352
http://dx.doi.org/10.1038/nm0909-1010
http://www.ncbi.nlm.nih.gov/pubmed/19734877
http://dx.doi.org/10.1038/nrc3184
http://www.ncbi.nlm.nih.gov/pubmed/22237392


Inorganics 2017, 5, 12 11 of 13

5. Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer 2005, 5, 275–284.
[CrossRef] [PubMed]

6. Tan, B.T.; Park, C.Y.; Ailles, L.E.; Weissman, I.L. The cancer stem cell hypothesis: A work in progress.
Lab. Investig. 2006, 86, 1203–1207. [CrossRef] [PubMed]

7. Kaiser, J. The cancer stem cell gamble. Science 2015, 347, 226–229. [CrossRef] [PubMed]
8. Chen, K.; Huang, Y.-H.; Chen, J.-L. Understanding and targeting cancer stem cells: Therapeutic implications

and challenges. Acta Pharmacol. Sin. 2013, 34, 732–740. [CrossRef] [PubMed]
9. Marx, J. Cancer’s perpetual source? Science 2007, 317, 1029–1031. [CrossRef] [PubMed]
10. Yu, Y.; Ramena, G.; Elble, R.C. The role of cancer stem cells in relapse of solid tumors. Front. Biosci. 2012, 4,

1528–1541. [CrossRef]
11. Feng, Y.X.; Sokol, E.S.; Del Vecchio, C.A.; Sanduja, S.; Claessen, J.H.; Proia, T.A.; Jin, D.X.; Reinhardt, F.;

Ploegh, H.L.; Wang, Q.; et al. Epithelial-to-mesenchymal transition activates PERK-eIF2α and sensitizes cells
to endoplasmic reticulum stress. Cancer Discov. 2014, 4, 702–715. [CrossRef] [PubMed]

12. Lamb, R.; Harrison, H.; Hulit, J.; Smith, D.L.; Lisanti, M.P.; Sotgia, F. Mitochondria as new therapeutic targets
for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition.
Oncotarget 2014, 5, 11029–11037. [CrossRef] [PubMed]

13. Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of
tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 2003, 100, 3983–3988. [CrossRef] [PubMed]

14. Eramo, A.; Lotti, F.; Sette, G.; Pilozzi, E.; Biffoni, M.; Di Virgilio, A.; Conticello, C.; Ruco, L.;
Peschle, C.; De Maria, R. Identification and expansion of the tumorigenic lung cancer stem cell population.
Cell Death Differ. 2008, 15, 504–514. [CrossRef] [PubMed]

15. Li, C.; Heidt, D.G.; Dalerba, P.; Burant, C.F.; Zhang, L.; Adsay, V.; Wicha, M.; Clarke, M.F.; Simeone, D.M.
Identification of pancreatic cancer stem cells. Cancer Res. 2007, 67, 1030–1037. [CrossRef] [PubMed]

16. Prince, M.E.; Sivanandan, R.; Kaczorowski, A.; Wolf, G.T.; Kaplan, M.J.; Dalerba, P.; Weissman, I.L.;
Clarke, M.F.; Ailles, L.E. Identification of a subpopulation of cells with cancer stem cell properties in
head and neck squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 2007, 104, 973–978. [CrossRef] [PubMed]

17. Singh, S.K.; Hawkins, C.; Clarke, I.D.; Squire, J.A.; Bayani, J.; Hide, T.; Henkelman, R.M.; Cusimano, M.D.;
Dirks, P.B. Identification of human brain tumour initiating cells. Nature 2004, 432, 396–401. [CrossRef]
[PubMed]

18. Janikova, M.; Skarda, J. Differentiation pathways in carcinogenesis and in chemo- and radioresistance.
Neoplasma 2012, 59, 6–17. [CrossRef] [PubMed]

19. Korkaya, H.; Paulson, A.; Charafe-Jauffret, E.; Ginestier, C.; Brown, M.; Dutcher, J.; Clouthier, S.G.; Wicha, M.S.
Regulation of mammary stem/progenitor cells by PTEN/Akt/β-catenin signaling. PLoS Biol. 2009, 7,
e1000121. [CrossRef] [PubMed]

20. Takebe, N.; Harris, P.J.; Warren, R.Q.; Ivy, S.P. Targeting cancer stem cells by inhibiting Wnt, Notch, and
Hedgehog pathways. Nat. Rev. Clin. Oncol. 2011, 8, 97–106. [CrossRef] [PubMed]

21. Albini, A.; Bruno, A.; Gallo, C.; Pajardi, G.; Noonan, D.M.; Dallaglio, K. Cancer stem cells and the tumor
microenvironment: Interplay in tumor heterogeneity. Connect. Tissue Res. 2015, 56, 414–425. [CrossRef]
[PubMed]

22. Kise, K.; Kinugasa-Katayama, Y.; Takakura, N. Tumor microenvironment for cancer stem cells. Adv. Drug
Deliv. Rev. 2015, 99, 197–205. [CrossRef] [PubMed]

23. Boodram, J.N.; McGregor, I.J.; Bruno, P.M.; Cressey, P.B.; Hemann, M.T.; Suntharalingam, K. Breast cancer
stem cell potent copper(II)-non-steroidal anti-inflammatory drug complexes. Angew. Chem. Int. Ed. 2016, 55,
2845–2850. [CrossRef] [PubMed]

24. Cressey, P.B.; Eskandari, A.; Bruno, P.M.; Lu, C.; Hemann, M.T.; Suntharalingam, K. The potent inhibitory
effect of a naproxen-appended cobalt(III)–cyclam complex on cancer stem cells. ChemBioChem 2016, 17,
1713–1718. [CrossRef] [PubMed]

25. Eskandari, A.; Boodram, J.N.; Cressey, P.B.; Lu, C.; Bruno, P.M.; Hemann, M.T.; Suntharalingam, K. The
breast cancer stem cell potency of copper(II) complexes bearing nonsteroidal anti-inflammatory drugs and
their encapsulation using polymeric nanoparticles. Dalton Trans. 2016, 45, 17867–17873. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nrc1590
http://www.ncbi.nlm.nih.gov/pubmed/15803154
http://dx.doi.org/10.1038/labinvest.3700488
http://www.ncbi.nlm.nih.gov/pubmed/17075578
http://dx.doi.org/10.1126/science.347.6219.226
http://www.ncbi.nlm.nih.gov/pubmed/25593170
http://dx.doi.org/10.1038/aps.2013.27
http://www.ncbi.nlm.nih.gov/pubmed/23685952
http://dx.doi.org/10.1126/science.317.5841.1029
http://www.ncbi.nlm.nih.gov/pubmed/17717165
http://dx.doi.org/10.2741/e478
http://dx.doi.org/10.1158/2159-8290.CD-13-0945
http://www.ncbi.nlm.nih.gov/pubmed/24705811
http://dx.doi.org/10.18632/oncotarget.2789
http://www.ncbi.nlm.nih.gov/pubmed/25415228
http://dx.doi.org/10.1073/pnas.0530291100
http://www.ncbi.nlm.nih.gov/pubmed/12629218
http://dx.doi.org/10.1038/sj.cdd.4402283
http://www.ncbi.nlm.nih.gov/pubmed/18049477
http://dx.doi.org/10.1158/0008-5472.CAN-06-2030
http://www.ncbi.nlm.nih.gov/pubmed/17283135
http://dx.doi.org/10.1073/pnas.0610117104
http://www.ncbi.nlm.nih.gov/pubmed/17210912
http://dx.doi.org/10.1038/nature03128
http://www.ncbi.nlm.nih.gov/pubmed/15549107
http://dx.doi.org/10.4149/neo_2012_002
http://www.ncbi.nlm.nih.gov/pubmed/22017591
http://dx.doi.org/10.1371/journal.pbio.1000121
http://www.ncbi.nlm.nih.gov/pubmed/19492080
http://dx.doi.org/10.1038/nrclinonc.2010.196
http://www.ncbi.nlm.nih.gov/pubmed/21151206
http://dx.doi.org/10.3109/03008207.2015.1066780
http://www.ncbi.nlm.nih.gov/pubmed/26291921
http://dx.doi.org/10.1016/j.addr.2015.08.005
http://www.ncbi.nlm.nih.gov/pubmed/26362921
http://dx.doi.org/10.1002/anie.201510443
http://www.ncbi.nlm.nih.gov/pubmed/26806362
http://dx.doi.org/10.1002/cbic.201600368
http://www.ncbi.nlm.nih.gov/pubmed/27377813
http://dx.doi.org/10.1039/C6DT03811E
http://www.ncbi.nlm.nih.gov/pubmed/27774561


Inorganics 2017, 5, 12 12 of 13

26. Gonzalez-Bartulos, M.; Aceves-Luquero, C.; Qualai, J.; Cusso, O.; Martinez, M.A.; Fernandez de Mattos, S.;
Menendez, J.A.; Villalonga, P.; Costas, M.; Ribas, X.; et al. Pro-oxidant activity of amine-pyridine-based
iron complexes efficiently kills cancer and cancer stem-like cells. PLoS ONE 2015, 10, e0137800. [CrossRef]
[PubMed]

27. Lum, C.T.; Wong, A.S.; Lin, M.C.; Che, C.M.; Sun, R.W. A gold(III) porphyrin complex as an anti-cancer
candidate to inhibit growth of cancer-stem cells. Chem. Commun. 2013, 49, 4364–4366. [CrossRef] [PubMed]

28. Suntharalingam, K.; Lin, W.; Johnstone, T.C.; Bruno, P.M.; Zheng, Y.R.; Hemann, M.T.; Lippard, S.J. A breast
cancer stem cell-selective, mammospheres-potent osmium(VI) nitrido complex. J. Am. Chem. Soc. 2014, 136,
14413–14416. [CrossRef] [PubMed]

29. Heddleston, J.M.; Li, Z.; Lathia, J.D.; Bao, S.; Hjelmeland, A.B.; Rich, J.N. Hypoxia inducible factors in cancer
stem cells. Br. J. Cancer 2010, 102, 789–795. [CrossRef] [PubMed]

30. Heddleston, J.M.; Li, Z.; McLendon, R.E.; Hjelmeland, A.B.; Rich, J.N. The hypoxic microenvironment
maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype.
Cell Cycle 2009, 8, 3274–3284. [CrossRef] [PubMed]

31. Li, Z.; Bao, S.; Wu, Q.; Wang, H.; Eyler, C.; Sathornsumetee, S.; Shi, Q.; Cao, Y.; Lathia, J.; McLendon, R.E.;
et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009, 15,
501–513. [CrossRef] [PubMed]

32. Soeda, A.; Park, M.; Lee, D.; Mintz, A.; Androutsellis-Theotokis, A.; McKay, R.D.; Engh, J.; Iwama, T.;
Kunisada, T.; Kassam, A.B.; et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells
through activation of HIF-1α. Oncogene 2009, 28, 3949–3959. [CrossRef] [PubMed]

33. Zhang, J.; Li, L. Stem cell niche: Microenvironment and beyond. J. Biol. Chem. 2008, 283, 9499–9503.
[CrossRef] [PubMed]

34. Abu-Surrah, A.S.; Kettunen, M. Platinum group antitumor chemistry: Design and development of new
anticancer drugs complementary to cisplatin. Curr. Med. Chem. 2006, 13, 1337–1357. [CrossRef] [PubMed]

35. Hall, M.D.; Failes, T.W.; Yamamoto, N.; Hambley, T.W. Bioreductive activation and drug chaperoning in
cobalt pharmaceuticals. Dalton Trans. 2007, 3983–3990. [CrossRef] [PubMed]

36. Heffern, M.C.; Yamamoto, N.; Holbrook, R.J.; Eckermann, A.L.; Meade, T.J. Cobalt derivatives as promising
therapeutic agents. Curr. Opin. Chem. Biol. 2013, 17, 189–196. [CrossRef] [PubMed]

37. Munteanu, C.R.; Suntharalingam, K. Advances in cobalt complexes as anticancer agents. Dalton Trans. 2015,
44, 13796–13808. [CrossRef] [PubMed]

38. Chang, J.Y.; Lu, G.L.; Stevenson, R.J.; Brothers, P.J.; Clark, G.R.; Botting, K.J.; Ferry, D.M.; Tercel, M.;
Wilson, W.R.; Denny, W.A.; et al. Cross-bridged cyclen or cyclam Co(III) complexes containing cytotoxic
ligands as hypoxia-activated prodrugs. Inorg. Chem. 2013, 52, 7688–7698. [CrossRef] [PubMed]

39. Chang, J.Y.-C.; Stevenson, R.J.; Lu, G.-L.; Brothers, P.J.; Clark, G.R.; Denny, W.A.; Ware, D.C.
Syntheses of 8-quinolinolatocobalt(III) complexes containing cyclen based auxiliary ligands as models
for hypoxia-activated prodrugs. Dalton Trans. 2010, 39, 11535–11550. [CrossRef] [PubMed]

40. Renfrew, A.K.; Bryce, N.S.; Hambley, T. Cobalt(III) chaperone complexes of curcumin: Photoreduction,
cellular accumulation and light-selective toxicity towards tumour cells. Chemistry 2015, 21, 15224–15234.
[CrossRef] [PubMed]

41. Yamamoto, N.; Danos, S.; Bonnitcha, P.D.; Failes, T.W.; New, E.J.; Hambley, T.W. Cellular uptake and
distribution of cobalt complexes of fluorescent ligands. J. Biol. Inorg. Chem. 2008, 13, 861–871. [CrossRef]
[PubMed]

42. Yamamoto, N.; Renfrew, A.K.; Kim, B.J.; Bryce, N.S.; Hambley, T.W. Dual targeting of hypoxic and acidic
tumor environments with a cobalt(III) chaperone complex. J. Med. Chem. 2012, 55, 11013–11021. [CrossRef]
[PubMed]

43. Abramson, S.B.; Weissmann, G. The mechanisms of action of nonsteroidal antiinflammatory drugs.
Arthritis Rheum. 1989, 32, 1–9. [CrossRef] [PubMed]

44. Moon, C.M.; Kwon, J.H.; Kim, J.S.; Oh, S.H.; Jin Lee, K.; Park, J.J.; Pil Hong, S.; Cheon, J.H.; Kim, T.I.; Kim, W.H.
Nonsteroidal anti-inflammatory drugs suppress cancer stem cells via inhibiting PTGS2 (cyclooxygenase 2)
and NOTCH/HES1 and activating PPARG in colorectal cancer. Int. J. Cancer 2014, 134, 519–529. [CrossRef]
[PubMed]

45. Singh, B.; Berry, J.A.; Shoher, A.; Ramakrishnan, V.; Lucci, A. Cox-2 overexpression increases motility and
invasion of breast cancer cells. Int. J. Oncol. 2005, 26, 1393–1399. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0137800
http://www.ncbi.nlm.nih.gov/pubmed/26368127
http://dx.doi.org/10.1039/C2CC37366A
http://www.ncbi.nlm.nih.gov/pubmed/23223325
http://dx.doi.org/10.1021/ja508808v
http://www.ncbi.nlm.nih.gov/pubmed/25247635
http://dx.doi.org/10.1038/sj.bjc.6605551
http://www.ncbi.nlm.nih.gov/pubmed/20104230
http://dx.doi.org/10.4161/cc.8.20.9701
http://www.ncbi.nlm.nih.gov/pubmed/19770585
http://dx.doi.org/10.1016/j.ccr.2009.03.018
http://www.ncbi.nlm.nih.gov/pubmed/19477429
http://dx.doi.org/10.1038/onc.2009.252
http://www.ncbi.nlm.nih.gov/pubmed/19718046
http://dx.doi.org/10.1074/jbc.R700043200
http://www.ncbi.nlm.nih.gov/pubmed/18272517
http://dx.doi.org/10.2174/092986706776872970
http://www.ncbi.nlm.nih.gov/pubmed/16712474
http://dx.doi.org/10.1039/b707121c
http://www.ncbi.nlm.nih.gov/pubmed/17828357
http://dx.doi.org/10.1016/j.cbpa.2012.11.019
http://www.ncbi.nlm.nih.gov/pubmed/23270779
http://dx.doi.org/10.1039/C5DT02101D
http://www.ncbi.nlm.nih.gov/pubmed/26148776
http://dx.doi.org/10.1021/ic4006967
http://www.ncbi.nlm.nih.gov/pubmed/23773210
http://dx.doi.org/10.1039/c0dt01142h
http://www.ncbi.nlm.nih.gov/pubmed/21103540
http://dx.doi.org/10.1002/chem.201502702
http://www.ncbi.nlm.nih.gov/pubmed/26471438
http://dx.doi.org/10.1007/s00775-008-0374-7
http://www.ncbi.nlm.nih.gov/pubmed/18418632
http://dx.doi.org/10.1021/jm3014713
http://www.ncbi.nlm.nih.gov/pubmed/23199008
http://dx.doi.org/10.1002/anr.1780320102
http://www.ncbi.nlm.nih.gov/pubmed/2643434
http://dx.doi.org/10.1002/ijc.28381
http://www.ncbi.nlm.nih.gov/pubmed/23852449
http://dx.doi.org/10.3892/ijo.26.5.1393
http://www.ncbi.nlm.nih.gov/pubmed/15809733


Inorganics 2017, 5, 12 13 of 13

46. Sharma, V.; Dixit, D.; Ghosh, S.; Sen, E. Cox-2 regulates the proliferation of glioma stem like cells.
Neurochem. Int. 2011, 59, 567–571. [CrossRef] [PubMed]

47. Pentikainen, P.J.; Neuvonen, P.J.; Backman, C. Human pharmacokinetics of tolfenamic acid, a new
anti-inflammatory agent. Eur. J. Clin. Pharmacol. 1981, 19, 359–365. [CrossRef] [PubMed]

48. Meieranz, S.; Stefanopoulou, M.; Rubner, G.; Bensdorf, K.; Kubutat, D.; Sheldrick, W.S.; Gust, R. The biological
activity of zeise’s salt and its derivatives. Angew. Chem. Int. Ed. 2015, 54, 2834–2837. [CrossRef] [PubMed]

49. Ott, I.; Kircher, B.; Bagowski, C.P.; Vlecken, D.H.; Ott, E.B.; Will, J.; Bensdorf, K.; Sheldrick, W.S.;
Gust, R. Modulation of the biological properties of aspirin by formation of a bioorganometallic derivative.
Angew. Chem. Int. Ed. 2009, 48, 1160–1163. [CrossRef] [PubMed]

50. Pathak, R.K.; Marrache, S.; Choi, J.H.; Berding, T.B.; Dhar, S. The prodrug platin-A: Simultaneous release of
cisplatin and aspirin. Angew. Chem. Int. Ed. 2014, 53, 1963–1967. [CrossRef] [PubMed]

51. Psomas, G.; Kessissoglou, D.P. Quinolones and non-steroidal anti-inflammatory drugs interacting with
copper(II), nickel(II), cobalt(II) and zinc(II): Structural features, biological evaluation and perspectives.
Dalton Trans. 2013, 42, 6252–6276. [CrossRef] [PubMed]

52. Krstic, N.S.; Nikolic, R.S.; Stankovic, M.N.; Nikolic, N.G.; Dordevic, D.M. Coordination compounds of M(II)
biometal ions with acid-type anti-inflammatory drugs as ligands—A review. Trop. J. Pharm. Res. 2015, 14,
337–349. [CrossRef]

53. Banti, C.N.; Hadjikakou, S.K. Non-steroidal anti-inflammatory drugs (NSAIDS) in metal complexes and
their effect at the cellular level. Eur. J. Inorg. Chem. 2016, 2016, 3048–3071. [CrossRef]

54. Dontu, G.; Abdallah, W.M.; Foley, J.M.; Jackson, K.W.; Clarke, M.F.; Kawamura, M.J.; Wicha, M.S. In vitro
propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003, 17,
1253–1270. [CrossRef] [PubMed]

55. Roos, W.P.; Thomas, A.D.; Kaina, B. DNA damage and the balance between survival and death in cancer
biology. Nat. Rev. Cancer 2016, 16, 20–33. [CrossRef] [PubMed]

56. Singh, B.; Cook, K.R.; Vincent, L.; Hall, C.S.; Martin, C.; Lucci, A. Role of Cox-2 in tumorospheres derived
from a breast cancer cell line. J. Surg. Res. 2011, 168, e39–e49. [CrossRef] [PubMed]

57. Kanojia, D.; Zhou, W.; Zhang, J.; Jie, C.; Lo, P.K.; Wang, Q.; Chen, H. Proteomic profiling of cancer stem cells
derived from primary tumors of HER2/Neu transgenic mice. Proteomics 2012, 12, 3407–3415. [CrossRef]
[PubMed]

58. Bosnich, B.; Poon, C.K.; Tobe, M.L. Complexes of cobalt(III) with a cyclic tetradentate secondary amine.
Inorg. Chem. 1965, 4, 1102–1108. [CrossRef]

59. Gupta, P.B.; Onder, T.T.; Jiang, G.; Tao, K.; Kuperwasser, C.; Weinberg, R.A.; Lander, E.S. Identification of
selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009, 138, 645–659. [CrossRef]
[PubMed]

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neuint.2011.06.018
http://www.ncbi.nlm.nih.gov/pubmed/21763744
http://dx.doi.org/10.1007/BF00544587
http://www.ncbi.nlm.nih.gov/pubmed/7238564
http://dx.doi.org/10.1002/anie.201410357
http://www.ncbi.nlm.nih.gov/pubmed/25604474
http://dx.doi.org/10.1002/anie.200803347
http://www.ncbi.nlm.nih.gov/pubmed/19115335
http://dx.doi.org/10.1002/anie.201308899
http://www.ncbi.nlm.nih.gov/pubmed/24453035
http://dx.doi.org/10.1039/c3dt50268f
http://www.ncbi.nlm.nih.gov/pubmed/23529676
http://dx.doi.org/10.4314/tjpr.v14i2.21
http://dx.doi.org/10.1002/ejic.201501480
http://dx.doi.org/10.1101/gad.1061803
http://www.ncbi.nlm.nih.gov/pubmed/12756227
http://dx.doi.org/10.1038/nrc.2015.2
http://www.ncbi.nlm.nih.gov/pubmed/26678314
http://dx.doi.org/10.1016/j.jss.2010.03.003
http://www.ncbi.nlm.nih.gov/pubmed/20462604
http://dx.doi.org/10.1002/pmic.201200103
http://www.ncbi.nlm.nih.gov/pubmed/22997041
http://dx.doi.org/10.1021/ic50030a003
http://dx.doi.org/10.1016/j.cell.2009.06.034
http://www.ncbi.nlm.nih.gov/pubmed/19682730
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Materials and Methods 
	General Procedures 
	Synthesis of Co(1,4,8,11-Tetraazacyclotetradecane)(Tolfenamic Acid)2 (3) 
	DNA Cleavage Studies 
	Measurement of Water–Octanol Partition Coefficient (LogP) 
	Cell Lines and Cell Culture Conditions 
	Cytotoxicity MTT Assay 
	Tumorsphere Formation and Viability Assay 
	Cellular Uptake 
	Immunoblotting Analysis 
	Flow Cytometry 


