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Local dimensionality determines imaging speed
in localization microscopy
Patrick Fox-Roberts1, Richard Marsh1, Karin Pfisterer1, Asier Jayo1, Maddy Parsons1 & Susan Cox1

Localization microscopy allows biological samples to be imaged at a length scale of tens of

nanometres. Live-cell super-resolution imaging is rare, as it is generally assumed to be too

slow for dynamic samples. The speed of data acquisition can be optimized by tuning the

density of activated fluorophores in each time frame. Here, we show that the maximum

achievable imaging speed for a particular structure varies by orders of magnitude, depending

on the sample dimensionality (that is, whether the sample is more like a point, a strand or an

extended structure such as a focal adhesion). If too high an excitation density is used, we

demonstrate that the analysis undergoes silent failure, resulting in reconstruction artefacts.

We are releasing a tool to allow users to identify areas of the image in which the activation

density was too high and correct for them, in both live- and fixed-cell experiments.
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T
he ability of fluorescence microscopy to image live cells has
made it one of the most popular cell biology tools.
Localization based techniques (PALM1, fPALM2 and

STORM3) boost the resolution down to tens of nanometres by
identifying fluorophore positions from a large number of time
frames and reconstructing a super-resolution image. Unlike most
light microscopy techniques, the resolution in localization
microscopy is not determined solely by the optical set up.
Instead, the resolution of the final reconstructed image depends
on how the sample is labelled, how dense the fluorophores are4–7

and the precision with which a fluorophore can be localized,
which in turn depends on the number of photons emitted by the
molecule and the background level8. The density of the
fluorophores will also affect the optimum blinking rate for an
experiment9. The number of photons collected per molecule in an
experiment on a given sample is determined by the laser power
used and optics available, and the imaging speed is determined by
the camera10.

As many cell processes are highly dynamic, when performing
live-cell localization microscopy it is important to acquire the
data necessary for a super-resolution reconstruction of a
particular resolution as quickly as possible. The two most
controllable factors in a live-cell experiment are usually the
activation density, which is the average number of fluorophores
that are activated in a time frame, and the speed at which time
frames are acquired.

The speed at which time frames are acquired can be increased by
using photoswitchable fluorophores. The switching rate of these
fluorophores can be precisely controlled and so matched to the
camera frame rate. By using high illumination intensities and short
exposure times, the speed at which data can be acquired is
increased11. In some cases the imaging speed will be limited by the
properties of the fluorophore—using organic fluorophore pairs, it
has been shown that the switching rate12 can limit the speed at
which images of a certain number of molecules can be acquired.

One can also consider how many fluorophores should be
activated per time frame, to minimize the number of time frames
needed. The two extreme cases are obviously undesirable: if the
activation density is too low it will take a long time to acquire the
data, because many time frames are required, and if the activation
density is too high the images of the fluorophores will overlap too
much and their positions cannot be accurately fitted.

The most commonly proposed solution to the problem of
imaging in live cells is to allow denser activation and analyse the
data using a more sophisticated algorithm that can fit overlapping
fluorophores13–17. These methods have pushed the time needed
to acquire the data necessary for a particular resolution down
dramatically. However, the maximum speed at which this data
can be acquired is still limited and must currently be determined
by trial and error.

As well as the above considerations for designing and
performing the experiment, it is also important to have a robust
metric for evaluating how well the data analysis algorithm has
worked and measuring the resolution of the resulting recon-
structed image afterwards. However, the determination of
resolution is not a trivial matter for localization microscopy, as
the reconstructed image is not a linear representation of the
photons emitted by the sample (as is the case for most optical
microscopy techniques). Therefore, considerable effort has been
put into evaluating localization microscopy algorithms and into
finding fair ways to evaluate localization microscopy images.
For the evaluation of algorithms, the most standard method
has been to perform tests on simulations of a known ground
truth structure and then test how well that structure is
reproduced12,18. Unfortunately, for real experiments ground
truth is not available.

An evaluation using the data alone is possible using Fourier Ring
Correlation (FRC)7, which splits the data into two sets of localized
positions and evaluates how well they are correlated in the Fourier
domain. However, as the authors point out, systematic errors in
localization can lead to an FRC value, which does not reflect the
true resolution. Such systematic errors can arise when the
activation density is too high. Therefore, for experimental data, it
is particularly important to achieve an activation density that
allows the resolution to be calculated reliably. For live-cell
experiments, this must be balanced against the need to operate
at high speed, to allow dynamic samples to be imaged.

Here we demonstrate by considering a simplified mathematical
model, but also via simulations and both live- and fixed-cell
experiments, that the dimensionality of the sample at the length
scale of the point spread function (PSF) changes the best imaging
speed that can be achieved, by around an order of magnitude for
an integer increase in dimensionality. The dimensionality of the
sample is determined by its structure: small point-like objects
much smaller than the size of the PSF are zero-dimensional, linear
structures such a microtubules are one dimensional (1D) and
structures such as a focal adhesion are two dimensional (2D). We
show how to calculate, in advance, the minimum number of time
frames needed to achieve a given resolution and the density of
fluorophore activations in the raw data that will allow that speed to
be achieved. This is important, because it is a fundamental
constraint on the achievable localization microscopy imaging
speed. In addition, we demonstrate a new method of post
processing the collected data, which will warn users whether the
data fitting is not reliable in certain data sets, or in certain regions
of an image. This uses a machine-learning approach, trained via
user input, to build a random forest classifier to evaluate the
accuracy of each reported fluorophore localization, optimized for
that particular data set and localization algorithm.

Results
Theory and simulations. We first examine a simple mathematical
model of the process by which fluorophore activations are
localized. In particular, we focus on the effect of activations that
occur close to one another, causing the algorithm to reject them or
incorrectly fit to their overlapping PSFs. Here we assume that we
are operating in the regime where the resolution is limited by the
density of fluorophores in the reconstructed image. This will
always apply, as we are aiming to take as few time frames as
possible, and as we lower the number of time frames we will always
reach a point where the density is the limiting factor7.

Consider a sample S, which is to be imaged using localization
microscopy. The sample is tagged with fluorophores, which are
stochastically activated and can undergo blinking and bleaching.
The images of the sample are analysed to find the location of
individual emitters. The resolution of the super-resolution
reconstruction will then be determined by the localization
precision, uncorrected drift and the density of localized emitters.
As the first two factors are determined by the equipment and
sample, and therefore will vary between experiments, we define
the quality Q of the super-resolution image as the density of
activations on the sample, which are successfully localized by the
data analysis. As we are interested in the minimum number of
time frames required to achieve a particular resolution, we have
assumed that the experiment will operate in the density-limited
case. We have therefore taken the number of time frames
required to achieve a particular Q in the region about a point x in
the sample as a measure of acquisition time, denoted T xð Þ.

We assume that for any time frame in the sequence the number
of active emitters N is Poisson distributed, with a mean of a Sj j.
Sj j is the size of the tagged area of the sample, whereas a is a
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parameter that represents the probability of an emitter activating
per unit area of sample in a given time frame. This models the
situation where there is a very large ‘pool’ of possible
fluorophores, of which a small subset activate in any given time
frame and the total proportion that undergo irreversible
bleaching is considered negligible. This is a common situation
in live-cell imaging due to the short available acquisition time, in
contrast to fixed-cell imaging, where the proportion of
fluorophores activated and subsequently bleached during the
entire acquisition may become significant. The value of a is
determined by the properties of the fluorophores, the laser power,
any activation laser used, the frame rate of the camera and the
embedding conditions, among other factors. For a given sample,
the situation where a¼ 0 corresponds to a probability of zero of
observing any activations. As a is increased, the average number
of activations grows linearly. Initially, so does the number of
accurate localized fluorophore positions.

However, if a is increased beyond a certain point, although the
average number of fluorophore activations will continue to grow,
the average number of accurate localizations will plateau and then
rapidly decrease. This occurs because the fluorophore PSFs are not
sufficiently spatially separated for the algorithm to individually
identify them. The necessary degree of separation varies
between algorithms (experimentally, we have found it to be around
400–600 nm when using the QuickPALM19 or ThunderSTORM20

algorithms, with l¼ 488 nm, numerical aperture (NA)¼ 1.4, pixel
size 110 nm), but is always non-zero (see Supplementary Note 1
and Supplementary Fig. 1). We model this by assigning an
exclusion area E xð Þ to the active emitter at position x. Within this
exclusion area, no further activation can occur if the fluorophore is
to be successfully localized. This is true also of multi-emitter fitting
algorithms, although due to their ability to tolerate significant PSF
overlap when localizing molecules the size of this exclusion area is
much smaller. We assume E xð Þ is circular, with radius r, where r
depends on the algorithm used and the PSF.

We assume that the emitters are uniformly distributed across
the sample (that is, within S), and absent elsewhere. Next, for an
active emitter, the probability of falling within E xð Þ is equal to
SE xð Þj j= Sj j, where SE xð Þ is the intersection between S and E xð Þ

(that is, SE xð Þ¼S \ E xð Þ). Given that N is Poisson distributed, it
follows from this that the acquisition time T xð Þ to achieve the
desired quality Q (in terms of localizations per unit area) can be
estimated as

T xð Þ¼ Qea SE xð Þj j

a
: ð1Þ

(For derivation see Supplementary Note 2.) Differentiating with
respect to a shows that the minimum value of T xð Þ occurs at
a¼1= SE xð Þj j and is equal to Q SE xð Þj je.

For real samples, SE xð Þj j is not usually known. However, as it is
equal to the intersection of a circle of radius r with the tagged
portion of the sample, we can conclude that it will depend
strongly on the dimensionality D of the sample at the scale r and
be of the form Se xð Þj j � c xð ÞrD, where c(x) is a position-
dependent function, which is approximately constant for small
changes in r (see Supplementary Note 2). This implies that
samples with a high intrinsic dimensionality may take much
longer to image than those with a low dimensionality (conversely,
if a method can be found to reduce r, such as by using a multi
emitter fitter, samples with a high intrinsic dimensionality will
benefit the most—this is illustrated in Supplementary Fig. 2).
More detail on calculating c(x) and the potential speed of imaging
given a particular sample shape is given in Supplementary Note 3.

An example of an approximately 1D sample would be an actin
filament or microtubule, whereas an example of a 2D sample
would be a focal adhesion (which are generally at least a

micrometre wide and several micrometres long). To give an
example of how we might calculate the change expected in SE xð Þj j,
let us consider the case of an actin filament 7 nm wide21. This is
imaged using localization microscopy and the data analysed using
an algorithm with r¼ 400 nm. If the target reconstruction
density is Q¼40;000 molecules per mm� 2, then c(x)E2� 7 nm,
SE xð Þj jE0.0056mm2; therefore, T xð Þ � 609 time frames at the

optimum value of a (the fluorophore activation probability). If we
were analysing a 2D sample such as a focal adhesion, which is
c0.4mm in all directions, then c(x)Ep and SE xð Þj jE0.50mm2.
Therefore, T xð Þ � 55;000 time frames at this sample’s optimum
value of a. Therefore, changing from a 1D to a 2D structure means
that it takes almost a factor of 100 longer to acquire the data for a
reconstruction of the same resolution.

In live-cell experiments it is often necessary to minimize the data
acquisition time, as the sample can move. Therefore, it is desirable
to use a high activation density, to maximize the quality of the
reconstructed image. However, if the activation density is too high,
then fluorophore PSFs in the acquired time frames can be close to
each other or overlap. Ideally, in this case the algorithm would
exclude these fluorophores from the fitting. There are a number of
approaches to achieve this: QuickPALM performs symmetry tests
on the fitted PSF, whereas ThunderSTORM can exclude based on
the fitted PSF width.

However, in practice it is very difficult to avoid
mis-localizations in all cases, in particular given the wide
variability in experimental parameters. Our evaluation of
localization algorithms indicates that when fitting two nearby
fluorophores, there are three possible outcomes: above a certain
distance the fluorophores will be successfully localized; below this,
there is a region in which two fluorophores are localized but the
positions can be biased; and then a distance is reached below
which only a single fluorophore is fitted rather than two. Any
localization algorithm will return incorrect localizations if the
emitting fluorophores are close enough. The higher the activation
density, the more mislocalizations will happen.

The errors that these mislocalizations introduce have a
systematic bias. For example, on a line type structure the bias
will be towards the centre of the line (see Sinkó et al.18 for a more
detailed analysis). This makes individual lines appear sharper,
but it is to be noted that this is not an increase in resolution and
the ability to distinguish two crossing lines will be degraded.
These artefacts are very difficult to detect, as methods that
evaluate the resolution without access to the ground truth
structure, such as FRC, will incorrectly report a higher resolution
(see Supplementary Note 4).

It is clearly desirable to be able to test for this silent failure of the
data analysis, where misfits are present in the reconstruction and
may change the observed sample structure. However, such testing
is challenging, both because of the absence of ground truth
information and because of the wide range of background levels,
photon numbers per molecule, activation densities and sample
structures encountered in real experiments. We have taken a
machine-learning approach, in which the user examines a small
subset of the localized fluorophore positions selected at random
(usually 300 patches) and classifies whether they are correct,
background or an incorrect fitting of overlapping fluorophores. For
each localization a feature vector is built, based on the pixel values
around the localized position and in the corresponding image
patches in the previous and next frame, along with all the
information returned by the localization algorithm. Using principle
component analysis (PCA) this vector is then compressed to only
its 20 most significant components. The localizations classified by
the user are used to train a random forest classifier22, which is then
used on the other (unclassified) localizations. As the classifier is
trained based on user feedback to recognize the characteristics of
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an incorrect localization for a particular data set, the classifier tunes
its response to both the specific experimental conditions and the
algorithm used.

Our method has the advantage that it can, in principle, be used
with almost any localization algorithm. The only assumptions
made about the algorithm are that it is analysing one frame at a
time, it returns a list of individual localization co-ordinates,
and that the position of the fluorophore is inferred from
characteristics of the local image region. These assumptions hold
true for the vast majority of localization microscopy algorithms,
with exceptions such as 3B (ref. 16), which outputs a probability
density, and SOFI (ref. 16), which outputs an image.

Verifying the effect of sample dimensionality in simulations.
To demonstrate the effect of local dimensionality on the
maximum acquisition speed, we simulated structures for 0D, 1D
and 2D samples (l¼ 488 nm, NA¼ 1.4, pixel size 110 nm).
Fluorophore blinking data were simulated for different activation
densities and analysed using ThunderSTORM20 (for Fig. 1) and
QuickPALM19 (see Supplementary Note 5 and Supplementary
Fig. 3). For the mathematical theory, the resolution was
quantified as the reconstruction density, Q. For each type of
structure, the theory predicts high numbers of time frames will be
required to achieve a given Q at both low and high activation
densities, with a density in between requiring a minimum
number of time frames (see Fig. 1d). The number of time frames
required and the activation density required, vary between the
different structures by more than an order of magnitude for each
change in dimensionality. The radius of the exclusion region was

estimated to fall in the range 400–600 nm and theoretical
acquisition times for these two extremes are shown (it is
noteworthy that the exclusion area that intersects the sample
varies quadratically with the exclusion radius for a 2D structure
and linearly for a 1D structure).

Although the theoretical results showed a clear optimum
activation density, fits of simulated data showed the number of
frames required to achieve a particular resolution decreased
continuously with increasing activation density. This appears
both for evaluations using Q (Fig. 1d) and FRC (see Fig. 1f).
(It is noteworthy that FRC is a stochastic technique, which relies
on evaluating the correlation of random subsets of the observed
localizations and therefore data sets with lower numbers of
localizations give FRC results with higher variance.) This
difference between theory and simulations arose, because more
misfits occur at high activation densities. The misfits lead to
artificial sharpening, which improves both the measured Q and
FRC value (see Supplementary Note 4 and also Supplementary
Fig. 4). At very high activation densities, the number of misfitted
localizations stabilizes, leading to an apparent plateau in the
number of frames required to achieve a particular resolution.

To quantify the effect of misfits, we applied our re-classification
technique to divide the localizations into good localizations and
mis-fits due to fluorophore overlap, either as individual molecules
or as a high background. When only ‘good’ localizations were
used, the results of the simulations fell within the range of the
theoretical predictions (see Fig. 1e), an impressive degree of
agreement given the small number of free parameters in the
theory, and the simplicity of the user input to the classifier.
Interestingly, the 2D structure appears to fall closer to the
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Figure 1 | Effect of sample dimensionality on acquisiton time. Demonstrates how local dimensionality changes the acquisition time needed to achieve a

particular resolution. (a–c) Examples of 0D, 1D and 2D sample structures. Samples are shown in green, the exclusion area in purple and the intersection

between the two in blue. The exclusion area approximately follows the pattern c xð ÞrD where D is the local sample dimensionality at scale r. (a) For a 2D

sample, the intersection between the exclusion zone and the sample is given by SEj jEpr2; (b) for a 1D sample, it is SEj jE2wr; (c) and for a 0D sample,

SEj jEw1w2. (d,e) The theoretical and simulated values of the number of acquisition frames T(x) (to achieve a particular resolution) vary with the activation

density a. Theoretical values are shown for exclusion radii of 400 nm (dashed line) and 600 nm (dotted line). The localizations returned by the fitting

algorithm are displayed in d and those determined to be good fits after re-classification are shown in e. Only 2D and 1D data were reclassified; as the 0D

simulated structures were very small, users were not able to reclassify accurately. An alternative approach is to evaluate the resolution for a given number

of frames. This can be done with FRC (f,g). (f) The FRC resolution using all localizations returned by the analysis algorithm and (g) the FRC resolution using

only those localizations classified as good.
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theoretical result for a 600 nm exclusion radius, whereas the 1D
falls closer to the result for the 400 nm exclusion radius. This may
indicate that the user labelling the training set was more cautious
as to the definition of a good localization when labelling 2D data.

Similarly, when the FRC measure is calculated for only those
localizations classified as good, we no longer see a continuous
improvement (see Fig. 1g). Although noisy (due to the stochastic
nature of FRC calculations and the comparatively small number
of good matches at high activation densities), each structure has a
clear optimum. This optimum, for which both the values
and variance of the FRC is minimized, falls at a slightly
higher activation density than that estimated by considering
the minimum acquisition time. The optimal density and
corresponding best FRC values differ for the 1D and 2D cases,
with the optimum FRC of the 1D structure lower than that of the
2D structure. This indicates a better resolution reconstruction for
the 1D structure, as expected from the theory.

It is worth noting that we only show classification results for the
1D and 2D case. For our 0D sample, as the simulated structure
only consisted of a single 8� 8 nm region, the localizations were so
concentrated that distortions due to multiple fluorophores being
mistaken for a single activation were not discernible by the eye.
This will not be the case for all 0D structures one encounters in
practice—a sample consisting of many point-like structures
randomly scattered across the field of view, for example, may
feature groupings of points that are sufficiently dense to cause
errors in the localization algorithm, whereas still changing the
apparent PSF enough that an experienced user can clearly see the
difference. In addition, for many applications, errors localizing
fluorescent molecules within a 0D structure may be unimportant
due to the small absolute size of the actual position error. However,
this case does illustrate an important limitation of this method
(namely that it can only learn to correct errors that the user can
first identify) and to correct for it would require using a different
measure of error to that applied to the 2D and 1D cases; hence, we
have let the results stand as they are.

Furthermore, it is worth noting that the same basic analysis
applies to three-dimensional (3D) localization microscopy,
with the caveat that the best acquisition speed is also strongly
determined by the sample’s orientation with respect to the
imaging plane. Further discussion of this is given in the
Supplementary Note 6 and also illustrated in Supplementary
Fig. 5. A 3D STORM/PALM synthetic data set was simulated in
the same manner as the 2D data discussed above, using the
astigmatic method to encode depth information, and analysed
using QuickPALM. The results for this are shown in
Supplementary Fig. 6. It is noteworthy that as the PSF is now
stretched along each axis, our machine-learning method of
removing false positives is no longer applicable—instead, we
approximate this using a Bayesian classifier as described in
Supplementary Note 7 (the limitations of this are discussed in
Supplementary Note 6).

Verifying the effect of sample dimensionality in live cells. To
demonstrate the effect of dimensionality on the time it takes
to acquire the data for a particular resolution in live-cell
experiments, we used samples expressing the photoswitchable
fluorophore mEOS2 (l¼ 584 nm, NA¼ 1.4). Two structures were
imaged: microtubules, which have a thickness of around 25 nm
(ref. 23) and are therefore approximately 1D (see Fig. 2a), and
focal adhesions, which grow to 2� 6 mm long and around a
micrometre wide24, making them 2D (see Fig. 2b). It is
noteworthy that focal adhesions do have structure along the
z axis as well25, but in these experiments we are not measuring
the z-position of molecules.

We calculated the intersection between both of these structures
and the exclusion zone, assuming an exclusion zone radius of
600 nm. For microtubules, which have a thickness of 25 nm
(ref. 23), SE xð Þj jE0.025*2*0.6¼ 0.03mm2, and for focal adhesions
SE xð Þj jEp*0.62E1.13mm2. This gives a ratio between the 2D and

1D values of 38. It is worth noting that this assumes the
microtubules are well separated from one another, and that focal
adhesions are uniform and large; thus, it ignores edge effects,
non-uniform labelling and other causes of density variations not
related to the basic structure of the sample.

This prediction can be tested by quantifying the achieved
resolution (using FRC) for different lengths of image sequence.
This was achieved by analysing successively longer subsets of the
collected image sequence. The horizontal displacement of the 1D
and 2D data relative to each other (shown in Fig. 2c) indicates
that, to achieve the same resolution, the 2D structure consistently
needs approximately � 30 more time frames than the 1D
structure. This is in general agreement with the calculated SEj j
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ratio and shows the order of magnitude type scaling observed in
our tests on synthetic data sets. Therefore, a localization-based
system and algorithm that can acquire the data required for a
reconstruction of a certain quality of microtubules in, for
example, 10 s, will require 3 min to image a focal adhesion at
the same resolution.

Demonstrating the identification and removal of artefacts. Our
user-driven localization reclassification provides a method that
can indicate whether data are reliable. Microtubules labelled with
Alexa 647 were excited with different laser powers so as to give
three different levels of activation density. Reconstructions for the
high, medium and low activation densities, which have been
reclassified with user input, are shown in Fig. 3. Localizations
classified as good are shown in yellow–green and misfits are
shown in magenta. In the high-density reconstruction, there is a
low proportion of good localizations, with most being classified as
inaccurate. Localizations classified as too overlapping are
concentrated in regions where there are many filaments close
together, or at points where microtubules cross (as expected, as
these areas will have a higher fluorophore density). The
proportion of good localizations increases in the medium-density
data set and is highest in the low-density data set.

In addition, as previously noted, there is a variation in the
proportion of the localizations classified as good and bad, for any
given excitation density. This is because, unlike in the
simulations, the microtubules can be close to one other and can
cross over each other in the image. This means that for some data
sets, the reconstruction will be mostly high quality but will show
artefacts in some regions. For example, when two filaments cross,
they can come close enough together that PSFs on the two
different strands will frequently overlap in the images. In Fig. 4a
we see a reconstruction that shows two longer strands coming
together, with a third, shorter strand between them. However,
when the data are classified using a Random Forest into accurate/
inaccurate localizations (as shown in Fig. 4b,c), we can see that
the apparent middle filament arises solely from fits classified as
too dense, due to simultaneous activation of a fluorophore in each
of the real strands. The accurate/inaccurate localizations are
shown together in two colours in Fig. 4d, with insets i and ii
illustrating identified artefacts due to inappropriately dense
fluorophore activation.

To investigate the impact that activation density has on the
reconstruction quality, we took three different regions from the
data set shown in Fig. 3a. We used the sum of the fluorophore
brightnesses, divided by the median brightness for that activation
level (as estimated by ThunderSTORM), as a proxy for the
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Figure 3 | Variation of reconstruction quality with activation density. User-driven reclassification can identify the quality of fits of localization microscopy

data analysis. Localization microscopy data were taken of a fixed cell sample, with tubulin labelled with Alexa 647. A sequence of 25,000 time frames of

raw data was divided into three subsequences, each of which had a different activation density. The data were classified as either accurate fits to a single

fluorophore (yellow–green) or inaccurate (shown in magenta). (a) The reconstruction using all three sub-sequences, (d) using the dense subsequence,

(e) the medium and (f) the subsequence with the sparsest activation density. Misfits to multiple fluorophores increase as the activation density increases

and within a single data set occur more frequently where the microtubules are close together or cross. (b) The variation in nominal activation density

(estimated from the sum of localization intensities returned by ThunderSTORM, for 1,000 frame sequences) on the horizontal axis, against approximate

density of good localizations on the vertical. A clear peak is visible within the achievable range of activation densities. (c) The number of localizations

classified as too dense in the same manner. Scale bar, 2.5mm.
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number of activated fluorophores (the accuracy of this proxy is
demonstrated in the Supplementary Note 8 and Supplementary
Fig. 7). This allows the data from misfitted fluorophores to be
taken into account, as they are still fitted, albeit with an incorrect
number of fluorophores. The number of activated fluorophores
was converted into a density by estimating the area of the
microtubules in the image, using a thresholded reconstruction
from which small clusters (areas smaller than 10 pixels) had been
removed. The calculation was performed for sequences of 1,000
frames. The results (see Fig. 3b) show a peak in the reconstruction
density Q at a certain activation density, whereas the bad fits
increase sharply at densities above the optimum (Fig. 3c).

To further illustrate the capabilities and limitations of our artefact
removal method, we replicated the test performed in Fig. 8 of Sinkó
et al.18 This involves simulating four vesicle structures, with x and y
co-ordinates in nanometres of (0, 0), (200, 200), (200, 400) and
(400, 600), where each vesicle is represented by a uniform circle of
radius 30 nm. Fluorophore blinking and bleaching, at different
activation densities, was simulated using the same Markov model as
for our earlier tests (l¼ 488 nm, NA¼ 1.4, pixel size¼ 110 nm).
The resulting reconstructions are shown in Fig. 5, with localizations
classified as accurate shown in green and inaccurate in magenta.
The majority of accurate classifications are localized correctly in
four clumps, corresponding to the vesicle positions, whereas the
localizations classed as inaccurate tend to form bridges between
these. However, between the central two vesicles, a number of
incorrect localizations forming a bridge have been classified as
accurate—we attribute this to their separation being only 200 nm,
which is marginally below the separation at which fluorophores can
no longer be distinguished by eye. Hence, the random forest
classifier cannot be given accurate labels to learn from and it makes
errors as expected.

Discussion
The speed of live-cell localization microscopy is limited by the
rate at which information can be transmitted through the system
and this in turn depends on the structure of the sample. Thus, the

optimum activation density and optimum speed varies from
sample to sample, even if the same fluorophore and microscope is
used. This is fundamentally different from other microscopy
techniques, which are limited by the optics and illumination
source, but not the structure of the sample.

The activation density required to achieve the optimum
imaging speed and the imaging speed that can be achieved, both
vary by roughly an order of magnitude with each increase in the
local dimensionality of the sample (that is, from 0D to 1D, to 2D).
Therefore, when benchmarking the performance of live-cell
localization microscopy techniques, the same type of structure
must be used for any comparison to be meaningful. As live-cell
localization microscopy becomes a more widely used technique,
our method will allow users to calculate the achievable imaging
speed for their structure in advance and to optimize their
acquisition parameters to achieve the best possible results.

Our results also have broader implications for the evaluation of
localization microscopy performance. Methods that seek to
maximize the number of returned localizations or to minimize the
measured FRC resolution or the full width at half maximum of the
reconstruction can be prone to overestimating performance on real
data, as artificial sharpening will be reported as improved resolution.
By re-classifying the data, the presence of fits to overlapping PSFs
can be identified. This allows users to identify whether certain
regions of an image, or indeed the whole data set, contain an
unacceptable number of misfits. Our method is applicable to the
vast majority of localization algorithms and can be used alongside
any of the current resolution determination techniques to show
when data are reliable and how that reliability varies across the
image. Such a confidence metric is a key component to bringing
localization microscopy into the wider community.

Methods
Simulation parameters. Data were generated for different dimensionalities of
sample, to evaluate the effect of dimensionality on the time taken to acquire the
data necessary for a particular reconstruction quality (the value chosen was
Q¼ 0:04 localizations per nm2). The resulting image sequences were analysed
using ThunderSTORM20 and QuickPALM19 (discussed in Supplementary Note 5).

Accurate (green)
Inaccurate (purple)

i)

ii)

All localizations Accurate localizations

i)

Inaccurate localizations

ii)

a b c

d

Figure 4 | Artefact identification using random forest classifier. Re-classification of the data allows artefacts to be identified and removed. A fixed cell

sample, with microtubules labelled with Alexa 647, was used to acquire a localization microscopy data set. (a) All localized positions found by the

ThunderSTORM, (b) only those classified as accurate and (c) those classified as inaccurate. Although the structure indicated by an arrow in a appears to consist

of three strands, the middle one appears only in the image made from misfits due to overlapping fluorophores PSFs, revealing it to be an artefact. The image

reconstructed from accurate fits; (b) only two strands. (d) A false colour image of the same data, with insets (i) and (ii) shown in more detail. Scale bar, 1.5mm.
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When generating samples, two factors were varied: the shape of the sample and
the activation density a. Three different sample shapes were examined, each
one uniformly tagged and localized in 2D using the standard QuickPALM method.
These sample shapes were an 8� 8 nm2 ‘0D’ point, an 8� 3,520 nm2 ‘1D’ line
and a 3,520� 3,520 nm2 ‘2D’ plane. The tagging density was set to 0.5 nm� 2

throughout.
The blinking and bleaching dynamics of each tag were simulated using a

Markov chain (see Supplementary Note 9 and Supplementary Table 1, which gives
the transition probabilities). The activation density was controlled by altering the
tagging density (that is, the number of emitters per unit volume or area) and the
probability of each tag activating. The tagging density was varied to ensure that
there were a large number of emitters available for activation, whereas still allowing
the simulations to be run in a reasonable amount of time—this was most important
for the 3D simulation, where the difference in volume between the largest and
smallest sample spans six orders of magnitude. The activation probability was
treated as a tunable parameter, which when varied resulted in different values of a.
For each fluorophore activation probability and structure, ten different data sets
were simulated using different random number seeds. Finally, random photon
emissions, detection and a readout error simulating an electron multiplying
charge-coupled device camera was applied (see Supplementary Note 9), assuming a
wavelength of 488 nm and a NA of 1.4 objective (giving a l/Na ratio of 348 nm).
A pixel size of 110 nm was used. A fluorophore that was active for the entire
duration of a time frame would emit E450 photons.

In all cases, our tests estimated the number of time frames that must be
analysed to reach a target localization density in the reconstruction. It proved
impractical to do this directly by creating longer and longer image sequences, until
the target density Q was reached, as the estimated time taken to achieve this varied
by multiple orders of magnitude between samples. Instead, all samples were
generated with sequence length 1,000 time frames and from this the average
number of successful localizations per time frame calculated. Given that the density
scales linearly with the number of samples, this figure was then used to extrapolate
the number of time frames required to reach Q, assuming that this average value is
maintained throughout acquisition.

We found that the minimum separation between two reported localizations
was E440 nm (see Supplementary Note 1). This implies that E xð Þ can be
approximated as a circle of radius 440 nm. Using this, we estimated several
approximate values of SE xð Þ as follows: for the 0D sample, it was assumed that the

sample S fell entirely within E xð Þ for all readings and therefore SE xð Þj j¼8�8 nm2;
for the 1D sample, it was assumed that the intersection between S and E xð Þ
approximately formed a rectangle, with length equal to the diameter of E xð Þ and
width equal to the filament thickness (8 nm), giving SE xð Þj j ¼ 8� 880 nm2, and for
the 2D sample, it was assumed that E xð Þ fell entirely within S (ignoring edge
effects), resulting in SE xð Þ being identical to E xð Þ and hence giving
SE xð Þj j ¼ p4402 nm2.

To calculate T xð Þ, it is necessary to set a target reconstruction density Q.
Results are shown for Q¼ 1/25 nm� 2 (1 localization per 5� 5 nm2 region). It is
also necessary to estimate a. This was performed by averaging the number of active
emitters per time frame across all time frames in the sequence and dividing this by
the tagged area per volume of the sample.

Estimating the size of the exclusion region. To determine the size of the
exclusion region, simulations were carried out with two fluorophore PSFs a certain
distance apart. A series of images were generated in which the two PSFs were
gradually moved closer together. The images were processed with ThunderSTORM
and QuickPALM, both popular localization microscopy analysis algorithms. The
localized positions were compared with the ground truth positions of the simulated
fluorophores (see Supplementary Note 1 and Supplementary Fig. 1). Several factors
likely to alter r were also examined in this manner, to determine the degree of their
effect, and these are included in the Supplementary Material—the use of a multi
emitter fitter is discussed in Supplementary Note 10 and illustrated in
Supplementary Fig. 8, a higher NA objective is discussed in Supplementary Note 11
and shown in Supplementary Figs 9 and 10, and a much smaller pixel size is shown
in Supplementary Fig. 11.

Both algorithms successfully found the correct positions of both fluorophores
above E600 nm separation (l¼ 488 nm, NA¼ 1.4). Below this, as the separation
distance decreased, both algorithms showed a gradual bias towards the mean
position of the two fluorophores. The distortion became larger at E400 nm,
with QuickPALM rejecting half of the potential localizations, whereas
ThunderSTORM developed a sharper bias towards the central position. Both
algorithms fit the two fluorophores as one when separated by less than E400 nm.
Therefore, for these analysis algorithms the exclusion region has a radius between
400 and 600 nm.

Accurate

Inaccurate

Activation density = 6.3×10–5  nm–2 Activation density = 9.9×10–5  nm–2 Activation density = 1.5×10–4  nm–2

Activation density = 2.5×10–4 nm–2 Activation density = 3.9×10–4 nm–2 Activation density = 6.4×10–4 nm–2

Activation density = 1.0×10–3 nm–2 Activation density = 1.5×10–3 nm–2

a b c

d e f

g h

Figure 5 | Artefact identification in simulated vesicles. (a–h) A simulation of imaging four vesicles, based on the test shown in Fig. 18 of Sinkó et al.18

Four vesicles, with relative positions (0, 0), (200, 200), (200, 400) and (400, 600) (measured in nm), were simulated at different activation

densities. Each vesicle is simulated as a uniform circle of radius 30 nm. Localizations classified as accurate are shown in green, inaccurate in magenta.

Scale bar, 200 nm.
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DNA constructs for live-cell experiments. For the study of focal adhesions we
used an mEOS2-vinculin construct26, which was kindly provided by Dr Clare
Waterman (National Heart, Lung and Blood Institute, Bethesda, MD, USA). For
the study of microtubules, we used the pQCXIP- tdEOS-atubulin construct, which
was a kind gift from Dr Michael Winding and Professor Vladimir Gelfand
(Northwestern University, IL, USA).

Cell lines and protein expression. To perform this study, HeLa human cervical
carcinoma cell line (ATCC, Middelsex, UK) were grown in complete DMEM medium
supplemented with 2 mM glutamine, 100 U ml� 1 penicillin/streptomycin and 10% fetal
bovine serum (all the cell media reagents from Sigma, Dorset, UK).

For transient expression of mEOS2-vinculin and mEOS2-tubulin, HeLa cells
were transfected with Effectene Transfection Reagent (Qiagen) according to
manufacturer’s instructions. Briefly, cells were seeded in 24-well plates the day
before transfection. Next day, cells were transfected and incubated overnight with
the transfection mixture. Thereafter, transfected cells were harvested and re-seeded
in 35 mm cell-imaging dishes and cultured for another 24 h. For live-cell imaging,
medium was replaced with Optimem (Life Technologies, Paisley, UK)
supplemented with 10% fetal bovine serum.

For imaging of fixed samples, Hela cells were seeded in 35 mm cell-imaging
dishes, cultured overnight, thereafter washed twice with prewarmed PBS and fixed
with 4% paraformaldehyde for 15 min at room temperature (RT). Fixed cells were
permeabilized with methanol for 10 min at � 20 �C and rehydrated in PBS. Cell
samples were blocked with 5% BSA–PBS before incubation with the primary
mouse anti-b-tubulin antibody (Sigma) in 3% BSA–PBS for 2 h at RT. Cells were
washed five times with PBS, followed by a short block with 5% BSA–PBS. The
primary antibody was detected with goat anti-mouse Alexa Flour 647 secondary
antibody (Invitrogen) diluted in 3% BSA–PBS. After 1 h incubation at RT, the actin
cytoskeleton was labelled with phalloidin Alexa Fluor 488 for 20 min at RT, cells
were washed four times with PBS and stored at 4 �C in PBS containing 0.02%
sodium azide, until imaging.

Microscopy. Imaging was carried out on the Nikon N-STORM super-resolution
system, with a � 100 1.49 NA Nikon objective. Images were recorded with an Andor
Ixon DU897 Ultra camera (DU-897U-CS0-#BV), with a 16mm pixel pitch and an
exposure time of 10 ms. For samples expressing mEOS-2, the samples were con-
tinuously imaged using a low laser intensity at 405 nm, to switch fluorophores into
the 561 nm absorbing state, and with a stronger intensity at 561 nm. For fixed-cell
samples, the samples were illuminated using a 647 nm laser, with both the 647 nm
laser and the 405 nm laser being used to control the activation density observed in
the data. All experiments were carried out using near-total internal reflectance
(TIRF) illumination.

Data processing. For live-cell data, the sequences were edited to remove the
beginning and end of each data set. The beginning was removed to exclude the
brief period of extremely high-density data, which commonly occurs at the start of
the acquisition, whereas the end was removed to prevent blurring due to movement
of the live sample. To create an image sequence of a given length, frames were
sampled uniformly at random from those remaining. This randomization prevents
repeat localizations of a single emitters across several consecutive frames from
artificially boosting the measured FRC of short image sequences.

The FRC was calculated using the Matlab implementation provided with the
original paper. In every case, quoted FRC values are found by taking the average of
20 different random splits of the localization data.

The activation density was estimated by dividing the average number of
localizations returned by the algorithm per frame by an estimate of the total area of
the sample. This area estimate was found by hand annotating the QuickPALM
reconstruction of each sample, based on the localizations returned by the
maximum length image sequence available, using a reconstruction pixel of size
10� 10 nm.

Machine-learning classification of fit quality. Machine-learning methods train
an algorithm to allow it to classify data. A user trains the algorithm by classifying
features and the algorithm then optimizes a measure of classification performance
on that training dataset. In this case, we select a small subset of localized positions
from a data set to be classified by the user and we then classify the rest of the
localizations in the data set using the trained algorithm. This allows the trained
algorithm to be optimized for specific qualities of that data set.

Features are vectors consisting of a list of measurements of the localization
under consideration, which are believed to be important. We build our feature
vectors using the set of pixel values surrounding each reported localization.
A window of 21� 21 pixels around each localization is used. The localization
lies in the centre of the middle pixel (bilinear interpolation is used to approximately
infer the shifted pixel values) and the patch is rotated so the gradient across
the centre pixel is aligned vertically (again using bilinear interpolation).
The brightness of these shifted, rotated pixels is then scaled by multiplication with
a Gaussian window, so as to reduce the apparent brightness of pixels farther from
the centre point, as these are believed to be less informative of the fluorophore

characteristics. This list of 441 scaled pixel values forms approximately one-third of
the raw feature vector.

The remaining two-thirds of the raw feature vector is formed by performing the
same shift, rotation and scaling on those pixel patches which fall in the frames
immediately before and after the current frame. Thus, the feature vector contains
information as to what that region of the sample looked like immediately before
and afterwards. This adds a further 882 dimensions to the raw feature.

The final component of the raw feature is any further numeric information
supplied by the localization algorithm. ThunderSTORM, for example, returns the
fitted PSF width and fluorophore brightness, as well as its estimate of the
background level and localization uncertainty, with each localization. This is a
valuable information for the classifier, which can be used when learning the
distinguishing characteristics of good and bad localizations. The additional
information is usually quite low dimensional compared with the set of pixel values,
typically resulting in a raw feature vector with a total size of o1,350 dimensions.

Two further manipulations convert the raw feature into a feature used for
classification. First, each element is replaced with the natural log of its magnitude.
Second, PCA is used to reduce the dimensionality of the feature from B1,350 to
20, where the components are based on the covariance matrix of the set of raw
features observed for that particular acquisition.

These two manipulations are tied together. Dimensionality reduction is used as
many of the elements of the raw feature vector are highly correlated—to aid storage
of the data and speed up the training of the classifier, it is desirable to compress
this. PCA was chosen as its runtime scales only linearly with the number of
samples, while still capturing the majority of the variance of the observed data. This
allows it to be run directly on each data set—thus, rather than choosing a fixed
dimensionality reduction that is then applied to all data sets, a unique reduction is
generated for each data set, to best capture its individual variability.

A weakness of PCA, however, is that finding the set of dimensions that best
capture the covariance of the data is only optimal if the data are distributed as a
multivariate Gaussian. Where this is not the case, performing PCA is equivalent to
assuming that the data can be approximated as such a Gaussian. This is a strong
assumption, particularly in microscopy data, where observed pixel intensities
may vary by orders of magnitude between the beginning and end of an acquisition.
Hence, we consider instead the natural log of the raw feature vectors values
and perform PCA using these instead. This assumes the data is approximately
log-normal distributed, which is a much milder assumption, and prevents a
small number of extremely high/low-intensity patches dominating the form of the
covariance matrix.

The end result of this is a 20-dimensional feature vector for each image patch.
A set of B300 patches are selected for the user to hand label. Stratified sampling is
used to ensure the set of patches to be labelled approximately spans the entire
acquisition period, reducing the variance of the set, while avoiding the introduction
of bias. The user labels each localization as either being ‘good’ if they believe it
corresponds to a single fluorophore, ‘background’ if it is a random fluctuation due
to Poissonian pixel noise or ‘too dense’ if the fit appears to be inaccurate due to too
high a density of fluorophores being activated. Using this, a random forest classifier
is trained to infer the labels from the supplied feature vectors and is then applied to
the remaining, unlabelled portion of the set.

The random forest classifier optimizes the classification performance on the
training data set. Random forest classifiers are a standard machine-learning
technique. They make use of an ensemble of tree classifiers, making decisions based
on a majority vote. Each tree classifier is trained individually on the supplied
training data. Tree classifiers are known to be unbiased and quick to train.
However, they are high variance. Hence, they are well suited to ensemble methods,
which reduce this variance by a factor of B1 over the number of trees trained,
provided the trees are uncorrelated with one another. The correlation is reduced by
forcing each tree to make a decision at each stage based on a small, random subset
of the available dimensions and additionally using bootstrapping to train each one
on a slightly different subset of the available training data. In this case, we used a
forest of 300 individual trees.

This post localization classification scheme was developed in Matlab. An
implementation will be made available for download.

Data availability. Software is available as Supplementary Software 1, and updated
versions of the software and the test data are available from coxphysics.com/lr. All
other relevant data are available from the corresponding author.
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