

King’s Research Portal

DOI:
10.4230/LIPIcs.CPM.2016.8

Document Version
Publisher's PDF, also known as Version of record

Link to publication record in King's Research Portal

Citation for published version (APA):
Iliopoulos, C. S., & Radoszewski, J. (2016). Truly Subquadratic-Time Extension Queries and Periodicity
Detection in Strings with Uncertainties. In Leibniz International Proceedings in Informatics, LIPIcs (Vol. 54, pp.
8.1-8.12). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing.
https://doi.org/10.4230/LIPIcs.CPM.2016.8

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 19. Oct. 2024

https://doi.org/10.4230/LIPIcs.CPM.2016.8
https://kclpure.kcl.ac.uk/portal/en/publications/fda938de-02fe-4019-b444-2f4434e7ac96
https://doi.org/10.4230/LIPIcs.CPM.2016.8

Truly Subquadratic-Time Extension Queries and
Periodicity Detection in Strings with Uncertainties
Costas S. Iliopoulos1 and Jakub Radoszewski∗2

1 Department of Informatics, King’s College London, London, UK
csi@kcl.ac.uk

2 Department of Informatics, King’s College London, London, UK; and
Institute of Informatics, University of Warsaw, Warsaw, Poland
jrad@mimuw.edu.pl

Abstract
Strings with don’t care symbols, also called partial words, and more general indeterminate strings
are a natural representation of strings containing uncertain symbols. A considerable effort has
been made to obtain efficient algorithms for pattern matching and periodicity detection in such
strings. Among those, a number of algorithms have been proposed that behave well on random
data, but still their worst-case running time is Θ(n2). We present the first truly subquadratic-
time solutions for a number of such problems on partial words. We show that n longest common
compatible prefix queries (which correspond to longest common extension queries in regular
strings) can be answered on-line in O(n

√
n logn) time after O(n

√
n logn)-time preprocessing. We

also present O(n
√
n logn)-time algorithms for computing the prefix array and two types of border

array of a partial word. We show how our solutions can be adapted to indeterminate strings over
a constant-sized alphabet and prove that, unless the Strong Exponential Time Hypothesis is false,
the considered problems cannot be solved efficiently over a general alphabet.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases string with don’t cares, partial word, indeterminate string, longest com-
mon conservative prefix queries, prefix array

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.8

1 Introduction

In this work we deal with different representations of sequential data with uncertainty and
imprecision. An (ideal) text is a sequence of symbols from an alphabet Σ. The symbols at
some positions may be unknown; in this case they are represented by a don’t care symbol
(sometimes called a hole and denoted as �) and the resulting sequence is called a partial word.
In a more general variant, for some positions, instead of a single character from Σ or a hole,
a subset of Σ is specified, thus representing a symbol which can be decoded in a number of
ways. The presence of such generalised symbols results in a so-called indeterminate string
(also called a degenerate string).

Our main goal here is to develop worst-case efficient algorithms for different variants
of pattern matching problem and periodicities detection in the context of strings with
uncertainty. The classical pattern matching problem consists in finding all fragments of a
given text that match a given pattern. In the presence of uncertainty one needs to specify

∗ The author is a Newton International Fellow. Supported by the Polish Ministry of Science and Higher
Education under the “Iuventus Plus” program in 2015–2016 grant no 0392/IP3/2015/73.

© Costas S. Iliopoulos and Jakub Radoszewski;
licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 8; pp. 8:1–8:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Extensions and Periodicity Detection in Strings with Uncertainties

the relation of matching (denoted by ≈): a don’t care symbol matches every other symbol,
and a generalised symbol matches every symbol that belongs to the set represented by it
(in particular, two generalised symbols match if their sets have a common element). The
pattern matching problem is well-studied in the case of partial words [14, 21, 22, 9, 8]. Also
if the pattern is an indeterminate string and the text is a regular string, then worst-case
efficient [2] or practically efficient [26, 17, 24] algorithms are known.

One of the variants of the pattern matching problem in strings with uncertainty are
longest common compatible prefix queries (lccp-queries), being a natural generalisation of
longest common prefix queries in a regular string. Here we are to preprocess a text of length
n with uncertain symbols so that the queries for longest matching prefix of any two suffixes
of the text can be answered efficiently. They were first defined in [6], where a solution for
partial words was presented with O(n2) preprocessing time and O(1) query time for the case
of a constant-sized alphabet. A solution with the same complexity for a linearly-sortable
alphabet, which works more efficiently in the case that the number of blocks of don’t cares in
the text is bounded, was shown in [11]. A connected notion is that of a prefix array, which
stores the answers to the longest common compatible prefix queries between the whole text
and all its suffixes. Its O(n2) worst-case time (and O(n) average time) computation for
partial words was shown in [18] and for indeterminate strings in [23]. Further combinatorial
insights on the prefix array of an indeterminate string have been recently presented in [3, 7].

The basic array of periodicity on strings is the border array. It stores, for every prefix of
a string, the length of its longest proper border. Its importance stems from applications in
pattern matching algorithms and connections with the set of periods of a string; see [10, 13].
There are two different definitions of border on strings with uncertainty; see [16, 23]. A
quantum border of an uncertain string X is its prefix that matches its suffix. The main
weakness of this definition is that if X has a quantum border of length b, there does not
necessarily need to exist a solid string S matching X and having a border of length b. For
example, this is the case for X = a � b which has a quantum border of length 2: a � ≈ � b;
however, none of the strings aab, abb has a border of this length. Therefore, one could be
interested in so-called deterministic borders: a deterministic border of an uncertain text is
defined as a border of some regular string that matches this text. As in the case of regular
strings, quantum and deterministic borders correspond to quantum and deterministic periods
of uncertain texts (the definitions are deferred until Section 2) and thus allow periodicity
detection. Quantum periods are also called weak periods and deterministic periods are
also called strong periods [5]. Both variants of the border array for a partial word or an
indeterminate string can be computed in O(n2) worst-case time and O(n) average time;
see [18, 16].

Our Results. In Section 3 we show that, for a partial word of length n, for any q ∈ {1, . . . , n}
one can compute in O(n2 logn/q) time a data structure for answering lccp-queries in O(q)
time. In particular, one can answer n such queries in a partial word in O(n

√
n logn) time.

In Section 4 we present a construction of the prefix array and both types of a border array –
hence, the corresponding types of period array – in the same time complexity. Finally in
Section 5 we show that all these results (apart from the deterministic border/period array
computation) extend to indeterminate strings over a constant-sized alphabet. Under the
word-RAM model the complexities improve by a factor of

√
logn. We also argue that, under

the Strong Exponential Time Hypothesis, none of the considered problems can be solved on
indeterminate strings in O(n2−εσO(1)) time over an alphabet of size σ, for ε > 0.

C. S. Iliopoulos and J. Radoszewski 8:3

2 Preliminaries

A string S of length n = |S| is a sequence of n letters over a finite alphabet Σ. The letter
at the position i, for 1 ≤ i ≤ n, is denoted as S[i]. The size of the alphabet is denoted by
σ = |Σ|. By S[i..j] we denote a factor of S equal to S[i] . . . S[j] (if i > j then it is the empty
string ε). The factor is called a prefix if i = 1 and a suffix if j = n. The length of the longest
common prefix of S[i..n] and S[j..n] is denoted as lcp(i, j).

If S[1..b] = S[n− b+ 1..n] then the string S[1..b] is called a border of S. A positive integer
p ≤ n is called a period of S if S[i] = S[i+ p] for all i = 1, . . . , n− p. It is known that S has
a period p if and only if it has a border of length n− p [10, 13].

For a string S we define the following arrays of length n:
prefix array π, such that π[i] = lcp(1, i) for i ≥ 2;
border array B, such that B[i] is the length of the longest border of S[1..i];
period array P , such that P [i] is the shortest period of S[1..i].

A partial word X of length n = |X| is a sequence of elements X[1], . . . , X[n] from Σ∪{�}.
Here � 6∈ Σ is a special character called a don’t care symbol. Two characters a, b ∈ Σ ∪ {�}
are said to match (denoted as a ≈ b) if a = b or a = �, or b = �. The ≈-relation is extended
to partial words position by position. Note that ≈ is not transitive; for instance, a ≈ � and
� ≈ b, but a 6≈ b.

We define a factor of X as a partial word X[i..j] = X[i] . . . X[j] (if i > j then it is the
empty partial word). A factor is called a prefix if i = 1 and a suffix if j = n. The length
of the longest common conservative prefix at positions i and j, denoted as lccp(i, j), is the
greatest integer k such that X[i..i+ k− 1] ≈ X[j..j + k− 1]. Then the prefix array π[2..n] of
X is defined as π[i] = lccp(1, i).

A quantum border of a partial word X is an integer b ∈ {0, . . . , n} such that X[1..b] ≈
X[n− b+ 1..n]. A quantum period of X is an integer p ∈ {0, . . . , n} such that X[i] ≈ X[i+p]
for all i = 1, . . . , n− p. Those two notions correspond, i.e., if X has quantum period p then
it has a quantum border n− p and vice versa; see [23]. A deterministic border (deterministic
period) of X is an integer b (p, respectively) such that there exists a string S such that
S ≈ X and S has a border of length b (a period p, respectively). Here, obviously, we have
that if p is a deterministic period of X, then n− p is a deterministic border of X and vice
versa. Up to the length n

2 quantum and deterministic borders of a partial word are the
same [16]. However, as we have mentioned before, this does not apply to greater lengths.
For partial words we have the following alternative definition of a deterministic period.

I Observation 1. A positive integer p is a deterministic period of a partial word X if and
only if X[i] ≈ X[j] whenever p | i− j.

I Example 2. The partial word

a b a � � � a � a a

has six quantum periods: 2, 3, 4, 6, 9, 10. For example, 2 is a quantum period because

a b ≈ a � ≈ � � ≈ a � ≈ a a.

However, this partial word has only four deterministic periods 3, 6, 9, 10, all corresponding
to the solid string

aba aba aba a.

CPM 2016

8:4 Extensions and Periodicity Detection in Strings with Uncertainties

As in the case of regular strings, we introduce the border arrays and the period arrays for
partial words. By QB[i], QP [i], DB[i], and DP [i] we denote the longest quantum border,
shortest quantum period, longest deterministic border, and shortest deterministic period
of X[1..i]. As we have already mentioned, for every i it holds that QP [i] = i−QB[i] and
DP [i] = i−DB[i].

I Example 3. The following table presents the prefix array and the border arrays of two
types of an example partial word.

X[i] a � a � b a b b b �
π[i] – 4 2 5 0 2 0 0 0 1
QB[i] 0 1 2 3 4 3 4 5 0 1
DB[i] 0 1 2 3 2 3 2 0 0 1

We say that a pattern P occurs in a text T , both being partial words, at position i

if P ≈ T [i..i + |P | − 1]. Pattern matching on partial words can be done efficiently via
convolutions. A line of research lead through alphabet-dependent algorithms and randomized
algorithms [14, 21, 22] eventually to an efficient deterministic algorithm; see [9, 8].

I Fact 4. Given two partial words P and T of length m and n, respectively, one can find all
occurrences of P in T in O(n logm) time.

3 Longest Common Compatible Prefix Queries

Let X be a partial word of length n. In this section we show how to answer lccp-queries for X
in O(q) time after O(n2 logn/q)-time preprocessing, for any q ∈ {1, . . . , n}. In the solution
we use a dynamic programming approach combined with pattern matching in partial words.

Let us define a family of partial words Xi = X[(i− 1)q + 1..iq] for i = 1, . . . , bn/qc. Let
the array A[i, j] for i = 1, . . . , bn/qc and j = 1, . . . , n− q+ 1 be defined as follows: A[i, j] = 1
if Xi ≈ X[j..j + q − 1], and A[i, j] = 0 otherwise.

I Observation 5. The array A can be computed in O(n
2 logn
q) time.

Proof. Computation of the array is equivalent to pattern matching of each Xi in X. The
time complexity follows from Fact 4. J

Let the array L for i = 1, . . . , bn/qc and j = 1, . . . , n− q + 1 be defined as follows:

L[i, j] = max{k ≥ 0 : Xi . . . Xi+k−1 ≈ X[j..j + kq − 1]}.

I Lemma 6. The array L can be computed from the array A in O(n
2

q) time.

Proof. We compute L[i, j] for decreasing values of i and j using a dynamic programming
approach. Assume that if i > bn/qc or j > n− q + 1, then L[i, j] = 0. For i = bn/qc , . . . , 1
and j = n − q + 1, . . . , 1, if A[i, j] = 1, then L[i, j] = L[i + 1, j + q] + 1, and otherwise
L[i, j] = 0. J

We answer lccp-queries using the array L. In the query algorithm we use a simple bounded
lccp routine (denoted as blccp) that for a pair of indices i, j and a length parameter ` returns
min(lccp(i, j), `).

I Observation 7. blccp(i, j, `) for any i, j, ` can be computed in O(`) time.

C. S. Iliopoulos and J. Radoszewski 8:5

function lccp(i, j)

k := bi/qc; ` := kq − i+ 1;
x := blccp(i, j, `);
if x < ` then return x;
y := L[k + 1, j + x] · q;
z := blccp(i+ x+ y, j + x+ y, q);
return x+ y + z;

Figure 1 Function lccp(i, j).

X
i

x y z

kq

`

X
j

Figure 2 A schematic illustration of the algorithm answering an lccp(i, j)-query. For simplicity
the partial word X is depicted twice; the upper copy is divided into fragments of length q. The
result of the query is shown in bold.

I Lemma 8. Knowing the array L for the partial word X, one can compute lccp(i, j) for
any i, j ∈ {1, . . . , n} in O(q) time.

Proof. The lccp(i, j) query is answered by the algorithm from the pseudocode in Figure 1.
First, we find the smallest ` such that i+ ` ≡ 1 (mod q). We start with an lccp-query from i

and j bounded by ` (part x). If the bound is attained, we read the remaining lccp length
up to a multiple of q from the array L (part y). The remainder of the result modulo q is
computed using a final blccp query (part z); see also Figure 2.

The only non-constant-time operations are two blccp-queries, which can be answered in
O(q) time each by Observation 7. J

I Theorem 9. Let X be a partial word of length n and q ∈ {1, . . . , n} be an integer. After
O(n2 logn/q)-time and O(n2/q)-space preprocessing one can answer lccp-queries for X in
O(q) time.

Proof. We use Observation 5 and Lemma 6 for the construction of the data structure and
the algorithm of Lemma 8 for answering lccp-queries. J

4 Computing Periodicity Arrays

The prefix array of a partial word can be computed via n lccp-queries. By selecting q =⌊√
n logn

⌋
in Theorem 9, we obtain O(n

√
n logn)-time computation of the array. The space

usage of this algorithm is O(n
√
n/ logn). However, we can obtain better space complexity if

we refrain from storing the whole array L.

CPM 2016

8:6 Extensions and Periodicity Detection in Strings with Uncertainties

I Corollary 10. The prefix array of a partial word of length n can be computed in O(n
√
n logn)

time and O(n) space.

Proof. Consider the array L from the algorithm of Theorem 9. To compute the array π, it
suffices to store the values `j = L[1, j] for j = 2, . . . , n (assuming L[1, j] = 0 for j > n−q+1).
Then

π[j] = `j · q + blccp(1 + `j · q, j + `j · q, q),

which can be computed in O(q) time.
The values `j can be computed with only linear space. Probably the simplest approach is

to perform subsequent matching in X of bn/qc partial word patterns of the form X1 . . . Xi

for i = 1, . . . , bn/qc. Then as `j we store the greatest index i such that X1 . . . Xi occurs at
the position j in X.

By Fact 4, the aforementioned computation of `j-values takesO(n2 logn/q) time. Knowing
those values, we can compute all π[j] in O(nq) time. We select q =

√
n logn and obtain an

O(n
√
n logn)-time algorithm. It requires only linear space. J

In the case of solid strings one can compute the border array from the prefix array in
linear time; see [10, 13]. For partial words we can apply a similar approach to compute the
quantum border array. Assume π[n+ 1] = 0. We use the following combinatorial observation.

I Observation 11. p is a quantum period of X[1..i] if and only if p ≤ i ≤ p+ π[p+ 1].

Proof.
(⇒) Assume that p is a quantum period of X[1..i]. Then i − p is a quantum border of
X[1..i], X[1..i− p] ≈ X[p+ 1..i]. Hence, π[p+ 1] ≥ i− p, i.e., i ≤ p+ π[p+ 1]. Obviously,
p ≤ i.

(⇐) We have X[1..π[p + 1]] ≈ X[p + 1..p + 1 + π[p + 1] − 1]. As p ≤ i ≤ p + π[p + 1] =
p+ 1 + π[p+ 1]− 1, this concludes that X[1..i− p] ≈ X[p+ 1..i]. Hence, i− p is a quantum
border of X[1..i], so p is a quantum period of X[1..i]. J

I Lemma 12. The quantum border array and the quantum period array of a partial word of
length n can be computed in O(n) time given its prefix array.

Proof. We focus on computing the array QP [i]; the array QB[i] can then be computed in
O(n) time. The algorithm is shown in Figure 3.

In the algorithm we store the last index l for which QP [l] has been computed. For every
p ∈ {1, . . . , n} we set the value of the quantum period to p for positions determined by
Observation 11, taking care not to override the previously computed values. As each position
in QP is set at most once, the algorithm runs in linear time. J

Let us proceed to the computation of deterministic border and period arrays. We will
use the following characterisation of a deterministic period of a partial word in terms of its
quantum periods, which is a consequence of Observation 1.

I Observation 13. A partial word X has a deterministic period p if and only if it has all
quantum periods jp for 1 ≤ j ≤ n

p .

Let us define

Ik(p) = [kp, (k + 1)p), Mk(p) = min
j=1,...,k

(jp+ π[jp+ 1]).

We combine Observation 11 with Observation 13 to obtain the following criterion.

C. S. Iliopoulos and J. Radoszewski 8:7

function Compute-QP (X,n)

{ Assume π[n+ 1] = 0 }
l := 0;
for p := 1 to n do

for i := max(p, l + 1) to p+ π[p+ 1] do
QP [i] := p;

l := max(l, p+ π[p+ 1]);
return QP ;

Figure 3 Algorithm computing the quantum period array.

I Observation 14. If i ∈ Ik(p), then X[1..i] has a deterministic period p if and only if
i ≤Mk(p).

Using Observation 14 we obtain the following result.

I Lemma 15. The deterministic border array and the deterministic period array of a partial
word X can be computed in O(n logn) time and O(n) space given its prefix array.

Proof. First we compute, for every p ∈ {1, . . . , n}, an interval I(p) such that i ∈ I(p) if
and only if X[1..i] has a deterministic period p. For this, notice that the intervals Ik(p) for
k = 1, . . . ,

⌊
n
p

⌋
are pairwise disjoint, their left endpoints are monotonically increasing, whereas

the values Mk(p) for k = 1, . . . ,
⌊
n
p

⌋
are monotonically non-increasing. By Observation 14,

we have Ik(p) ⊆ I(p) as long as Mk(p) ≥ (k + 1)p − 1. The last interval included in I(p)
is Ik(p) ∩ [1,Mk(p)] for the smallest k such that Mk(p) < (k + 1)p − 1, if such a value of
k exists. The computation of I(p) takes O(np) time, which gives O

(∑n
p=1

n
p

)
= O(n logn)

time in total.
The final step consists in computing the smallest deterministic period of each X[1..i].

This is equivalent to the min-variant of the Manhattan skyline problem: for a family of
intervals I(p) with heights p we are to compute, for every i, the smallest height of an interval
that covers it. Using the linear-time nested union/find data structure [15] this problem can
be solved in O(n) time (see also Section 5.1 in [12]). J

We plug Corollary 10 into Lemmas 12 and 15 to arrive at the following final result.

I Theorem 16. The prefix array, the quantum border array, the quantum period array, the
deterministic border array, and the deterministic period array of a partial word of length n
can all be computed in O(n

√
n logn) time and O(n) space.

I Remark. In [18] it is mentioned that all quantum periods/borders of the whole partial word
can be computed via a single run of pattern matching, i.e., in O(n logn) time. Therefore, by
Observation 13, all deterministic periods (hence, borders) of the whole partial word can also
be computed in O

(∑n
p=1

n
p

)
= O(n logn) time (and linear space).

5 The Case of Constant Alphabet and Indeterminate Strings

An indeterminate string X of length |X| = n over an alphabet Σ of size σ is a sequence
of nonempty sets X[1], . . . , X[n] with X[i] ⊆ Σ. Two subsets A, B of Σ are said to match

CPM 2016

8:8 Extensions and Periodicity Detection in Strings with Uncertainties

(denoted as A ≈ B) if they contain at least one letter in common. Under this matching
relation one can transfer all notions of pattern matching and periodicity from partial words
to indeterminate strings [16, 23]. In this section we show that the majority of the results from
the previous sections extend to indeterminate strings over a constant-sized alphabet. Due
to large constants hidden in the time complexities, the resulting algorithms are plausible in
practice only for a small σ. The most common alphabet over which indeterminate strings are
considered is Σ = {A, C, G, T}. Such indeterminate strings occur, e.g., in the FASTA format.

In the data structure of Section 3 we used an efficient pattern matching routine on partial
words. The state-of-the-art algorithm for pattern matching on indeterminate strings works in
O(σn logn) time or in O(n

√
n logn) time [2], however, only if the text is a regular string. If

both the pattern and the text are indeterminate, we obtain an efficient solution for σ = O(1).

I Lemma 17. Given two indeterminate strings P and T of length m and n, respectively,
over a constant-sized alphabet, one can find all occurrences of P in T in O(n logm) time.

Proof. For every A ⊆ Σ we perform the following procedure. Construct a binary string P ′ of
length m such that P ′[i] = 1 if and only if P [i] = A. Construct a binary string T ′ of length
n such that T ′[i] = 1 if and only if the sets T [i] and A are disjoint. Use an FFT convolution
to count, for every alignment of P ′ and T ′, the number of common 1s at the corresponding
positions of P ′ and a factor of T ′.

In the end we report all alignments for which no common 1 was found in any of the steps.
The algorithm works in 2σ steps, each taking O(n logm) time. J

Another building block of the lccp data structure are the blccp queries. For indeterminate
strings with σ = O(1) they can be implemented in O(`) time just as in Observation 7. We
can also answer them slightly faster using standard properties of the word-RAM model.

I Fact 18. For an indeterminate string X of length n over an alphabet of size σ = O(1),
after O(n)-time and space preprocessing one can compute blccp(i, j, `) in O(`/ logn) time.

Proof. Consider any ε > 0. Let c = (2 + ε)σ and L = max
(⌊

logn
c

⌋
, 1
)
. The number of

indeterminate strings of length L over the alphabet of size σ is:

2σL ≤ 2
σ logn
(2+ε)σ = n

1
2+ε <

√
n,

so each of them can be assigned an integer identifier between 1 and b
√
nc. For every pair of

indeterminate strings of length L we precompute their lccp. There are 22Lσ such pairs, and
the result for each of them can be computed in O(L) time. All the results can be stored in
an array of size 22Lσ. In total this precomputation takes

O(22LσL) = O(n
1

1+ε/2 logn) = o(n)

time.
For every factor of X of length L we then compute its integer identifier. This can be

done in O(n) time if the identifiers are determined by Rabin-Karp-style polynomials with
the rolling property; see [13]. Finally a blccp(i, j, `) query is answered by cutting the factors
of length ` into factors of length L and using the precomputed answers. J

I Remark. For a partial word over a constant-sized alphabet a much better constant
c = (2 + ε) log(σ + 1) would suffice.

Using Lemma 17 and Fact 18 we obtain an implementation of lccp-queries on indeterminate
strings.

C. S. Iliopoulos and J. Radoszewski 8:9

I Theorem 19. Let X be an indeterminate string of length n over a constant-sized alphabet
and q ∈ {1, . . . , bn/ lognc} be an integer. After O(n2/q)-time preprocessing one can answer
lccp-queries for X in O(q) time.

Now the computation of the prefix array and quantum border/period array is the same
as in partial words. However, the computation of the deterministic border and period array
does not generalise, since Observation 1, and consequently Observation 13, does not hold
for indeterminate strings. For example, consider an indeterminate string X of length 3 over
Σ = {a, b, c} such that X[1] = {a, b}, X[2] = {a, c}, X[3] = {b, c}. It has a quantum period
1 and X[1] ≈ X[2] ≈ X[3] ≈ X[1]. However, it does not have a deterministic period 1 since
there is no s ∈ Σ that would match X[1], X[2], and X[3] simultaneously. Therefore we obtain
only the following result for indeterminate strings.

I Corollary 20. The prefix array, the quantum border array, and the quantum period array
of an indeterminate string of length n over a constant-sized alphabet can be computed in
O(n
√
n) time and O(n) space.

The time complexities of the algorithms of Corollary 20 have exponential dependency on
the alphabet size σ. We will now show that, under some well-known hypotheses, no truly
subquadratic algorithms with polynomial dependency on σ exist for any of the considered
problems.

The Orthogonal Vectors Problem is defined as follows: given two sets A and B containing
N vectors from {0, 1}d each, does there exist a pair of vectors α ∈ A and β ∈ B that is
orthogonal, i.e.,

∑d
h=1 α[h]β[h] = 0? The following conjecture is known to be implied (see

[25]) by the Strong Exponential Time Hypothesis (SETH), see [19, 20], which asserts that for
any ε > 0 there is an integer k > 3 such that k-SAT cannot be solved in 2(1−ε)n time. This
conjecture has already been applied to prove hardness results of stringology problems [1, 4].

I Conjecture 21. There is no ε > 0 and an algorithm that solves the Orthogonal Vectors
Problem in O(N2−ε · dO(1)) time.

We will show that, under this conjecture, pattern matching on indeterminate strings
of length n and 2n, respectively, both over an alphabet of size σ, cannot be solved in
O(n2−ε · σO(1)) time.

I Theorem 22. The Orthogonal Vectors Problem can be reduced to pattern matching of an
indeterminate pattern of length n in an indeterminate text of length 2n, where n = N , over
an alphabet of size σ = d.

Proof. Let A = {α1, . . . , αN} and B = {β1, . . . , βN} be the two sets of vectors in {0, 1}d.
Consider an alphabet Σ = {1, . . . , σ}. For a vector α ∈ {0, 1}d, by f(α) we denote the
subset of Σ defined as: s ∈ f(α)⇔ α[s] = 1. Under this mapping, two vectors α and β are
orthogonal if and only if the sets f(α) and f(β) are disjoint, i.e., the indeterminate symbols
f(α) and f(β) do not match.

We construct an indeterminate pattern P = f(α1) . . . f(αN) and an indeterminate text
T = f(β1) . . . f(βN)f(β1) . . . f(βN). Then the Orthogonal Vectors Problem for the sets A
and B has a positive answer if and only if P does not occur in T at any of the positions
1, . . . , n. J

Let P and T be the indeterminate pattern and text of Theorem 22 and S be the
concatenation of P and T . As the pattern matching can be solved by computing the prefix
array of S or any of the border arrays of S, or answering n lccp-queries in S, we obtain the
following conditional lower bound.

CPM 2016

8:10 Extensions and Periodicity Detection in Strings with Uncertainties

I Corollary 23. The prefix array and any of the border arrays of an indeterminate string of
length n cannot be computed in O(n2−ε · σO(1)) time unless SETH fails. Also the problem
of answering n lccp-queries in an indeterminate string of length n cannot be solved in
O(n2−ε · σO(1)) time unless SETH fails.

6 Conclusions and Final Remarks

We have presented a worst-case efficient framework for answering longest common compatible
prefix queries in a partial word. We have then shown how we can compute the prefix array
and two types of border/period arrays of a partial word basically as fast as answering n
lccp-queries. In some cases lccp-queries can be answered faster than using our approach –
e.g., if the number of don’t care symbols is small or the number of groups of consecutive
don’t care symbols is small, see [11] – which automatically yields more efficient algorithms
for computing the aforementioned arrays.

Then we have presented extensions of all the results apart from the construction of the
deterministic border and period array to indeterminate strings over a constant-sized alphabet.
We have also argued that, for general alphabets, efficient solutions to any of the considered
problems for indeterminate strings would violate the Strong Exponential Time Hypothesis.
This, in particular, justifies the usage of heuristic approaches for these problems. As an open
question we leave the computation of deterministic periods of an indeterminate string over a
constant-sized alphabet in O(n2−ε) time.

Acknowledgements. The authors thank an anonymous referee for a number of helpful
suggestions.

References

1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results
for LCS and other sequence similarity measures. In Venkatesan Guruswami, editor, IEEE
56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, 17-20 October, 2015, pages 59–78. IEEE Computer Society, 2015. doi:10.1109/
FOCS.2015.14.

2 Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051,
1987. doi:10.1137/0216067.

3 Ali Alatabbi, M. Sohel Rahman, and William F. Smyth. Inferring an indeterminate string
from a prefix graph. J. Discrete Algorithms, 32:6–13, 2015. doi:10.1016/j.jda.2014.12.
006.

4 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In Rocco A. Servedio and Ronitt Rubinfeld,
editors, Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Com-
puting, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 51–58. ACM, 2015.
doi:10.1145/2746539.2746612.

5 Francine Blanchet-Sadri and Robert A. Hegstrom. Partial words and a theorem of
Fine and Wilf revisited. Theor. Comput. Sci., 270(1-2):401–419, 2002. doi:10.1016/
S0304-3975(00)00407-2.

6 Francine Blanchet-Sadri and Justin Lazarow. Suffix trees for partial words and the
longest common compatible prefix problem. In Adrian Horia Dediu, Carlos Martín-
Vide, and Bianca Truthe, editors, Language and Automata Theory and Applications

http://dx.doi.org/10.1109/FOCS.2015.14
http://dx.doi.org/10.1109/FOCS.2015.14
http://dx.doi.org/10.1137/0216067
http://dx.doi.org/10.1016/j.jda.2014.12.006
http://dx.doi.org/10.1016/j.jda.2014.12.006
http://dx.doi.org/10.1145/2746539.2746612
http://dx.doi.org/10.1016/S0304-3975(00)00407-2
http://dx.doi.org/10.1016/S0304-3975(00)00407-2

C. S. Iliopoulos and J. Radoszewski 8:11

– 7th International Conference, LATA 2013, Bilbao, Spain, April 2-5, 2013. Proceed-
ings, volume 7810 of Lecture Notes in Computer Science, pages 165–176. Springer, 2013.
doi:10.1007/978-3-642-37064-9_16.

7 Manolis Christodoulakis, P. J. Ryan, William F. Smyth, and Shu Wang. Indeterminate
strings, prefix arrays & undirected graphs. Theor. Comput. Sci., 600:34–48, 2015. doi:
10.1016/j.tcs.2015.06.056.

8 Peter Clifford and Raphaël Clifford. Simple deterministic wildcard matching. Inf. Process.
Lett., 101(2):53–54, 2007. doi:10.1016/j.ipl.2006.08.002.

9 Richard Cole and Ramesh Hariharan. Verifying candidate matches in sparse and wildcard
matching. In John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on Theory
of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 592–601. ACM, 2002.
doi:10.1145/509907.509992.

10 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on Strings.
Cambridge University Press, 2007.

11 Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Marcin Kubica, Alessio
Langiu, Jakub Radoszewski, Wojciech Rytter, Bartosz Szreder, and Tomasz Waleń. A note
on the longest common compatible prefix problem for partial words. J. Discrete Algorithms,
34:49–53, 2015. doi:10.1016/j.jda.2015.05.003.

12 Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Jakub Radoszewski, Wojciech
Rytter, and Tomasz Waleń. Extracting powers and periods in a word from its runs structure.
Theor. Comput. Sci., 521:29–41, 2014. doi:10.1016/j.tcs.2013.11.018.

13 Maxime Crochemore and Wojciech Rytter. Jewels of Stringology. World Scientific, 2003.
14 Michael J. Fischer and Michael S. Paterson. String matching and other products. In Richard

Karp, editor, Proceedings of the 7th SIAM-AMS Complexity of Computation, pages 113–
125, 1974. doi:10.1007/978-3-540-89097-3_14.

15 Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of dis-
joint set union. J. Comput. Syst. Sci., 30(2):209–221, 1985. doi:10.1016/0022-0000(85)
90014-5.

16 Jan Holub and William F. Smyth. Algorithms on indeterminate strings. In Proceedings of
14th Australasian Workshop on Combinatorial Algorithms, pages 36–45, 2003.

17 Jan Holub, William F. Smyth, and Shu Wang. Fast pattern-matching on indeterminate
strings. J. Discrete Algorithms, 6(1):37–50, 2008. doi:10.1016/j.jda.2006.10.003.

18 Costas S. Iliopoulos, Manal Mohamed, Laurent Mouchard, Katerina Perdikuri, William F.
Smyth, and Athanasios K. Tsakalidis. String regularities with don’t cares. Nord. J. Comput.,
10(1):40–51, 2003.

19 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

20 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

21 Piotr Indyk. Faster algorithms for string matching problems: Matching the convolution
bound. In 39th Annual Symposium on Foundations of Computer Science, FOCS’98, Novem-
ber 8-11, 1998, Palo Alto, California, USA, pages 166–173. IEEE Computer Society, 1998.
doi:10.1109/SFCS.1998.743440.

22 Adam Kalai. Efficient pattern-matching with don’t cares. In David Eppstein, editor,
Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
January 6-8, 2002, San Francisco, CA, USA, pages 655–656. ACM/SIAM, 2002. URL:
http://dl.acm.org/citation.cfm?id=545381.545468.

23 William F. Smyth and Shu Wang. New perspectives on the prefix array. In Amihood Amir,
Andrew Turpin, and Alistair Moffat, editors, String Processing and Information Retrieval,

CPM 2016

http://dx.doi.org/10.1007/978-3-642-37064-9_16
http://dx.doi.org/10.1016/j.tcs.2015.06.056
http://dx.doi.org/10.1016/j.tcs.2015.06.056
http://dx.doi.org/10.1016/j.ipl.2006.08.002
http://dx.doi.org/10.1145/509907.509992
http://dx.doi.org/10.1016/j.jda.2015.05.003
http://dx.doi.org/10.1016/j.tcs.2013.11.018
http://dx.doi.org/10.1007/978-3-540-89097-3_14
http://dx.doi.org/10.1016/0022-0000(85)90014-5
http://dx.doi.org/10.1016/0022-0000(85)90014-5
http://dx.doi.org/10.1016/j.jda.2006.10.003
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1109/SFCS.1998.743440
http://dl.acm.org/citation.cfm?id=545381.545468

8:12 Extensions and Periodicity Detection in Strings with Uncertainties

15th International Symposium, SPIRE 2008, Melbourne, Australia, November 10-12, 2008.
Proceedings, volume 5280 of Lecture Notes in Computer Science, pages 133–143. Springer,
2008. doi:10.1007/978-3-540-89097-3_14.

24 William F. Smyth and Shu Wang. An adaptive hybrid pattern-matching algorithm on
indeterminate strings. Int. J. Found. Comput. Sci., 20(6):985–1004, 2009. doi:10.1142/
S0129054109007005.

25 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

26 Sun Wu and Udi Manber. Agrep – a fast approximate pattern-matching tool. In Proceedings
USENIX Winter 1992 Technical Conference, page 153–162, 1992. URL: https://www.
usenix.org/legacy/publications/library/proceedings/wu.pdf.

http://dx.doi.org/10.1007/978-3-540-89097-3_14
http://dx.doi.org/10.1142/S0129054109007005
http://dx.doi.org/10.1142/S0129054109007005
http://dx.doi.org/10.1016/j.tcs.2005.09.023
https://www.usenix.org/legacy/publications/library/proceedings/wu.pdf
https://www.usenix.org/legacy/publications/library/proceedings/wu.pdf

	Introduction
	Preliminaries
	Longest Common Compatible Prefix Queries
	Computing Periodicity Arrays
	The Case of Constant Alphabet and Indeterminate Strings
	Conclusions and Final Remarks

