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Abstract Given a string on alphabet Σ the partitioning problem is to com-
pute classes of equivalences on the set of positions of the input string. These
classes implicitly memorise identical factors of the string and, hence, their
efficient computation is essential for a wide range of string processing appli-
cations. We study this problem for a weighted string: for every position of the
weighted string and every letter of the alphabet a probability of occurrence of
this letter at this position is given. Thus a weighted string may represent many
different strings, each with probability of occurrence equal to the product of
probabilities of its letters at subsequent positions. In this article, we present a
non-trivial generalisation of Crochemore’s partitioning algorithm (IPL, 1981)
that works on weighted strings requiring time O(υn log υn), where n is the
length of the string, υ = min{z2, zn, σn}, σ is the size of Σ, and 1/z is a
cumulative weight threshold, defined as the minimal probability of occurrence
of factors in the string. Our contributions can be summarised as follows: (a)
we design the first algorithm to solve the partitioning problem on weighted
strings for arbitrary z and σ in time O(υn log υn) and space O(υn) improving
the state of the art for z = O(1); (b) we improve the state of the art for numer-
ous other string processing problems; and (c) we show further combinatorial
insight into the relation between weighted and indeterminate strings, that is,
sequences of alphabet subsets without associated occurrence probabilities.
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1 Introduction

We start by outlining some definitions and notation required to explain our
results as well as previous results. An alphabet Σ is a finite non-empty set of
size σ, whose elements are called letters. A string on the alphabet Σ is a finite,
possibly empty, sequence of elements of Σ. The zero-letter sequence, denoted
by ε, is called the empty string. The length of a string x is defined as the length
of the sequence associated with x, and is denoted by |x|. We denote by x[i],
for all 0 ≤ i < |x|, the letter at index i of x. Each index i, for all 0 ≤ i < |x|,
is a position in x when x 6= ε. It follows that the i-th letter of x is the letter
at position i− 1 in x.

The concatenation of two strings x and y is the string of the letters of x
followed by the letters of y; it is denoted by xy. A string x is a factor of a
string y if there exist two strings u and v, such that y = uxv. Consider the
strings x, y, u, and v, such that y = uxv, if u = ε then x is a prefix of y, if
v = ε then x is a suffix of y. Let x be a non-empty string and y be a string,
we say that there exists an occurrence of x in y, or more simply, that x occurs

in y, when x is a factor of y. Every occurrence of x can be characterised by a
position in y; thus we say that x occurs at the starting position i in y when
y[i . . i+ |x| − 1] = x.

A weighted string x of length n on an alphabet Σ is a finite sequence of n
sets. Every x[i], for all 0 ≤ i < n, is a set of ordered pairs (sj , πi(sj)), where
sj ∈ Σ and πi(sj) is the probability of having letter sj at position i. Formally,
x[i] = {(sj , πi(sj))|sj 6= sℓ for j 6= ℓ, and

∑

j πi(sj) = 1}. A letter sj occurs

at position i of a weighted string x if and only if the occurrence probability

of letter sj at position i, πi(sj), is greater than 0. A string u of length m
is a factor of a weighted string if and only if it occurs at starting position i
with cumulative occurrence probability Πi(u) =

∏m−1
j=0 πi+j(u[j]) > 0. Given

a cumulative weight threshold 1/z ∈ (0, 1], we say that factor u is valid, or
equivalently that factor u has a valid occurrence, if it occurs at starting position
i and Πi(u) =

∏m−1
j=0 πi+j(u[j]) ≥ 1/z. For clarity of presentation, in the

rest of this article, a set of ordered pairs in a weighted string is denoted by
{(s0, πi(s0)), . . . , (sσ−1, πi(sσ−1))}.

Sequences of this type are common in various applications for a number
of reasons: (i) data measurements such as imprecise sensor measurements;
(ii) flexible modelling of DNA sequences such as DNA binding profiles; (iii)
observations are private and thus sequences of observations may have artificial
uncertainty introduced deliberately. Consider, for example, the process of DNA
sequencing, where single nucleotide polymorphisms (SNPs) can occur. In some
cases, these polymorphisms can be accurately modelled as a don’t care letter.
However, sometimes they can be more subtly expressed, and, at each position
of the sequence, a probability of occurrence can be assigned to each letter
of the alphabet; this process gives rise to a weighted string. For instance, the
SNPs present in a population can be incorporated to transform a sequence into
a weighted sequence. Consider a IUPAC-encoded [29] DNA sequence, where
the ambiguity letter M occurs at some position of the sequence, representing
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either base A or base C. This gives rise to a weighted DNA sequence, where at
the corresponding position of the sequence, we can assign to each of A and C

an occurrence probability of 0.5.
The fundamental problem of pattern matching on weighted strings has been

intensively studied [6–8,23]. A great deal of research has also been conducted
for computing various types of regularities in a weighted string x of length n
(cf. [22,19,12,31,32,5,15]). Most of the algorithms for computing regularities
rely on Crochemore’s partitioning algorithm [13] adapted to weighted strings;
that is, the computation of an equivalence relation on the set of positions of x
such that all identical valid factors are in the same equivalence class. The best-
known algorithms for this computation on weighted strings are the O(n2)-time
algorithms of [22,32] and the O(n log d)-time algorithm of [12] for computing
classes of valid factors of length d. The efficiency of these algorithms relies
completely on the assumption of a constant cumulative weight threshold and
often a fixed-sized alphabet.

It was thus commonly thought that, even under these assumptions, the
partitioning scheme could not be efficiently applied to weighted strings [32,
12]. In this article, we show the opposite: it is possible to efficiently compute
Crochemore’s partitioning under those assumptions; moreover, our approach
generalises efficiently for arbitrary z and σ.

Our Contributions.We present the first algorithm for computing equiva-
lence classes of valid factors of a weighted string x of length n for arbitrary z,
in time O(υn log υn), where υ = min{z2, zn, σn}, improving the best-known
algorithm, for z = O(1), from O(n2) to O(n log n), whilst efficiently gener-
alising for arbitrary σ as well. We then show numerous applications of this
technique. Note that the σn term only applies in the most unrealistic cases
such as when every possible factor of x is valid.

2 The Algorithm

2.1 Properties and Auxiliary Techniques

We start by describing some known properties and techniques used for the
processing of weighted strings. In the following discussion, we assume that at
each position of the weighted string at least one letter occurs with probability
greater than or equal to 1/z. If this is not the case, the weighted string can be
split around this position, and each resulting weighted string can be processed
separately. We additionally assume that the string has been filtered so that
at each position of the weighted string we keep only those letters with occur-
rence probability not less than 1/z; trivially, these are at most min{z, σ} per
position. This is simply done for convenience as clearly no letter with proba-
bility less than 1/z is of interest. For clarity of presentation, in the rest of this
article, we assume that the weighted string resulting from this filtering step
is the input weighted string x of length n. We then apply a simple colouring
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scheme on x, similar to the one presented in [19,2], which assigns a colour to
every position of x:

– mark position i black, if none of the possible letters at position i has oc-
currence probability greater than 1− 1/z.

– mark position i grey, if one of the possible letters at position i has occur-
rence probability greater than 1− 1/z.

– mark position i white, if one of the possible letters at position i has occur-
rence probability of 1.

It is straightforward to note that this scheme only applies when z ≥ 2; for
1 ≤ z < 2 all positions are grey, white or contain no valid letter. Next we
define the extended maximal factors of a weighted string.

Definition 1 ([2]) Given a weighted string x and a cumulative weight thresh-
old 1/z ∈ (0, 1], a maximal factor of x is a factor f of length h that occurs at
position i of x, such that:

– Πi(f) ≥ 1/z;
– If i ≥ 1, then πi−1(a)×Πi(f) < 1/z, for all a ∈ Σ;
– If i+ h < n, then Πi(f)× πi+h(a) < 1/z, for all a ∈ Σ.

Informally, a maximal factor of a weighted string is a valid factor that cannot
be extended to the left nor right and remain valid.

We define the solid transform of a weighted string x, denoted by ST(x), as
the weighted string created by: (i) replacing all grey positions by their only
valid letter; (ii) setting the occurrence probability of that letter to 1 (all other
letters are removed). An extended maximal factor of x is then defined as a
maximal factor of ST(x).

Example 1 Let the following string x and 1/z = 0.1.

a{(a, 0.5), (c, 0.1), (g, 0.2), (t, 0.2)}t{(a, 0.5), (g, 0.5)}c.

From position 0, the following extended maximal factors are generated: aatac,
aatgc, act, agtac, agtgc, attac, attgc.

Lemma 1 ([2]) Given a weighted string x and a cumulative weight threshold

1/z ∈ (0, 1], any valid factor of x occurs in at least one extended maximal

factor.

Consider some position i of the weighted string x that is a black position and,
without loss of generality, assume we start with one factor with probability
1. As the factor is extended and split when extending at black positions, the
sum of probabilities of the factors generated from this position is no more
than 1 at all times. We show that as more black positions are considered, the
sum of probabilities must drop below 1 in a predictable way. First we start by
restating an important lemma on extended maximal factors.

Lemma 2 ([2]) Given a weighted string x and a cumulative weight threshold

1/z ∈ (0, 1], no more than ⌊z⌋ extended maximal factors are generated from i,
where i is a black position of x.
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We wish to show that a position i of x is contained in O(min{z2, zn, σn})
extended maximal factors. We make a distinction between black positions
causing at least one extended maximal factor to be split and those which do
not; we refer to the former as branching positions. By Lemma 2, there are
no more than ⌊z⌋ of these factors for any black position. We assume that at
most z of the black positions after i do not alter the sum of probabilities of
the factors generated from i. We now claim that after extending the factors to
contain an addition of α black positions, the sum of the probabilities will be
no greater than (1− 1

z )
α.

Lemma 3 Given a weighted string x, a cumulative weight threshold 1/z ∈
(0, 1], a black position i of x, and the set M of extended maximal factors

generated from i, there are no more than z(1−1/z)α extended maximal factors

containing z + α black positions.

Proof By Lemma 2, there can be no more than ⌊z⌋ extended maximal factors
generated from a black position, and therefore there can be no more than ⌊z⌋
branching positions. Assume these do not alter the sum of the probabilities
of the extended maximal factors. There are now α black positions remaining
and by definition no letter at these positions has a probability of occurrence
more than 1−1/z, so every extended maximal factor will have a probability of
occurrence reduced by at least this amount. Therefore, the sum of probabilities
will be at most (1− 1/z)α and this proves the statement. ⊓⊔

Now we are ready to show the following lemma.

Lemma 4 Given a weighted string x, a cumulative weight threshold 1/z ∈
(0, 1], a black position i, and the set M′ of extended maximal factors containing

i, then |M′| = O(min{z2, zn, σn}) and this bound is tight.

Proof Consider the extended maximal factors containing the k-th black po-
sition. By Lemma 3, at most z(1 − 1/z)i of them start at (i.e., immediately
after) the (k − z − i)-th black position and at most z of them start at the
(k− i)-th black position (for i < z). So the total number of extended maximal
factors containing the k-th black position is

z−1
∑

i=1

z +

∞
∑

i=0

z(1− 1/z)i ≤ 2z2.

It was shown in [2] that it is possible to generate a set of extended maximal
factors such that a black position is contained in at least z2 extended maximal
factors. The zn comes from Lemma 2 and the observation that no extended
maximal factor can be of length greater than n; and σn can only occur if every
possible factor of x is valid. ⊓⊔

For a factor consisting of white and grey positions, it is clear that the number
of times it appears in extended maximal factors is upper bounded by the sum
of the number of times the closest black position to the left and right appear
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in extended maximal factors. Therefore, by Lemma 4, the sum of lengths of
extended maximal factors is O(min{z2, zn, σn}n).

We also compute an array LF for each extended maximal factor by starting
at the first position in the extended maximal factor and computing the longest
valid factor starting from this position by multiplying together the occurrence
probability of the letters we encounter and storing this in π′. If multiplying
the probability of some letter at position j > 0 causes π′ < 1/z, we set
LF[0] := j − 1. To proceed, we remove by division the occurrence probability
of the first letter from π′. If π′ < 1/z, then we set LF[1] := j−2; otherwise, we
continue as before multiplying the occurrence probability of letters at positions
j, j+1, j +2, and so on, until the threshold is once again violated. In general,
for an extended maximal factor u and some position i, we set LF[i] := max{r :
∏r−1

j=0 πi+j(u[j]) ≥ 1/z}. The LF arrays allow us to efficiently determine the
length of the longest valid string beginning at any position of any extended
maximal factor. This will allow us to filter out positions from the partitioning
scheme when they become invalid. We are now ready to present our algorithm.

2.2 Crochemore’s Partitioning for Weighted Strings

In this section, we use the tight bound shown in Lemma 4, along with some
painful, however, necessary technical details to achieve the main result of this
article. These technical details mainly involve the usage of a series of simple
data structures to apply tricks similar to Crochemore’s partitioning in the
standard setting.

We start by providing a brief description of Crochemore’s partitioning al-
gorithm on a regular string y of length n [13]. For a factor w in y, the set of
starting positions of all the occurrences of w in y gives us the start set of w.
We define an equivalence relation ≈p on the set of positions on y, such that
i ≈p j if and only if y[i . . i + p − 1] = y[j . . j + p − 1]. Therefore, depending
on the length of the factor, we get equivalence classes for each length p, for all
1 ≤ p ≤ n. Equivalence classes for p = 1 are found by going through y once,
and keeping the occurrences of each letter in separate sets. For 2 ≤ p ≤ n, we
consider classes of the previous level, refine them, and compute the classes of
level p. On level p, where 2 ≤ p ≤ n, we refine a class C with respect to a class
DF by splitting C in the classes {i ∈ C | i+ 1 ∈ DF} and {i ∈ C | i+ 1 /∈ DF}.
In order to achieve an optimal O(n log n) runtime, only classes of the previous
level, which were split two levels before, are used for refinement. From those,
we can omit the largest siblings of each family, using only the small classes for
the computation; this is known as the smaller class trick [13]. The algorithm
terminates when all classes are singletons.

We are now in a position to describe our generalisation for a weighted string
x of length n. Let E , |E| = s, represent the multiset of all extended maximal
factors of x. We can use the starting position of each factor to distinguish
between identical factors and assign a unique label ℓ to each factor from 0
to s− 1. From this point, when referring to an extended maximal factor it is
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referred to as uℓ[i . . i + |uℓ| − 1] such that uℓ occurs at position i in x. We
can uniquely identify valid factors of a weighed string by the triple: starting
position, length, and the label of the extended maximal factor it is from. An
extended maximal factor implicitly represents the black positions contained
within the factor and all valid combinations of black positions in the weighted
string are represented by extended maximal factors.

Example 2 Consider the weighted string x = aba{(a, 0.5), (b, 0.5)}bab with
the cumulative probability threshold 1/z = 0.25. It generates the following
extended maximal factors: abaabab and ababbab are generated from position
0. We assign them the following labelling: (abaabab,0) and (ababbab,1).

The approach we take is to generate the initial equivalence classes E1 from
extended maximal factors and then compute an equivalence relation on all
extended maximal factors simultaneously. E1 is generated over all extended
maximal factors. Sets of tuples (i, h) are produced, where i is the position in
the weighted string and h is the label of the extended maximal factor it was
extracted from. The equivalence relation can then be defined as follows:

((i, h), (j, k)) ∈ Ep iff ((i, h), (j, k)) ∈ Ep−1

and ((i+ 1, h), (j + 1, k)) ∈ Ep−1.

To ensure validity, we further put the following restriction on each equivalence
class:

for all ((i, h), (j, k)) ∈ Ep, Πi(uh[i . . i+ p− 1]), Πj(uk[j . . j + p− 1]) ≥ 1/z.

This means that a pair of tuples ((i, h), (j, k)) belongs to Ep if and only if the
following hold:

– uh[i . . i+ p− 1] = uk[j . . j + p− 1];
– Πi(uh[i . . i+ p− 1]) ≥ 1/z;
– Πj(uk[j . . j + p− 1]) ≥ 1/z.

In the above definitions related to the probabilities of the factors, we now
consider the actual probability of occurrence at grey positions again. The main
problem considered in this article can then be formally defined as follows.

Problem 1 (Partitioning) Given a weighted string x of length n and a
cumulative weight threshold 1/z ∈ (0, 1], compute E1,E2, . . . ,EN such that
1 ≤ N ≤ n and EN−1 6= EN = EN+1.

E1 is computed from the extended maximal factors by creating a tuple (j, k)
for every position in every extended maximal factor where j is the index in
the weighted string and k is the label of the extended maximal factor it was
extracted from. We represent the equivalence relation in two ways: an array
EQ; and a linked list EC.

The array EQ gives for each tuple of extended maximal factors x the index
of its current equivalence class. EQ is two dimensional, for each extended max-
imal factor uℓ there is an array with size |uℓ|; more formally, for all 0 ≤ ℓ < s,
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EQ[0 . . |uℓ| − 1, ℓ]. Let {C1,C2, . . . ,Cq} be the equivalence classes of Ep. We
define EQ for some tuple (j, k) as follows:

EQ[j, k] = r iff (j, k) ∈ Cr.

The j indices of this array are offset by the starting position of the extended
maximal factor it refers to, to ensure it is consistent with how we reference
extended maximal factors.

The equivalence relations are also stored as a doubly-linked list EC. Each
equivalence class EC[i] stores a list of the tuples in the class Ci. We also store
a two dimensional array EP (the same size as EQ) to store for each tuple a
pointer to the corresponding element in EC. We compute E1 such that the
elements of EC are stored in increasing order of element j of each tuple.

We define a difference function on the tuples that allows for the efficient
computation of the nearest distinct tuple in the same equivalence class.

Dp(i, h) = min











the least integer g ≥ 0 s.t ((i, h), (i+ g, k)) ∈ Ep iff h 6= k

the least integer g > 0 s.t ((i, h), (i+ g, k)) ∈ Ep iff h = k

∞ if no such integer exists.

The difference function is represented in a similar way as the equivalence
relation: (i) a two dimensional array DF; (ii) a doubly-linked list DC such
that DC[r] gives the list of tuples which satisfy DF[i, h] = r; and (iii) a two
dimensional array DP which for each tuple points to its corresponding element
in DC.

To refine the equivalence relation efficiently it is important to be able to
quickly determine when a position should be excluded because the factor it
represents has a probability of occurrence below 1/z. For each position i in an
extended maximal factor, we compute the length of the longest valid factor
starting at position i; this is what we compute in the LF array (see Section 2.1).
A single LF array is computed for each extended maximal factor and denoted
by LFℓ for the extended maximal factor with label ℓ.

An additional array of linked lists PR must be computed to efficiently filter
out those tuples representing factors that are not valid. Let PR be an array of
n+ 1 linked lists and PR[i] the list of all pairs (j, k) such that LFk[j] = i, for
0 ≤ k < s and 0 ≤ i ≤ n. PR specifies the tuples which break the probability
threshold at each partitioning step. After computing partitioning step p, 1 ≤
p ≤ n, PR[p − 1] is processed and the tuples which violate the probability
threshold are removed. In our algorithm, the partitioning step corresponds to
satisfying the first two conditions of the equivalence relation and processing
the PR array satisfies the probabilistic condition.

An overview of the proposed method is presented in algorithm WPART

below.
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WPART(weighted string x)
E ← set of extended maximal factors;
Compute array PR on E;
p← 1;
Define EQ to be Ep on E; define DF to be Dp on E;
Initialise list SMALL to be Ep;
while SMALL 6= ∅ do

p← p+ 1;
{Let ((i, h), (j, k)) ∈ S′ iff ((i+ 1, h), (j + 1, k)) exists in a small Ep class}
EQ← EQ ∩ S′;
Update DF;
Remove from EQ and DF tuples stored in PR[p− 1];
SMALL← set of indices of small Ep classes;

2.3 Correctness and Complexity Analysis

The first steps of the algorithm are to colour x and to generate extended max-
imal factors. The colouring can be done in time O(zn) and, by Lemma 4, the
generation of extended maximal factors and the size of the initial equivalence
classes are in O(min{z2, zn, σn}n) (For a more detailed description see [2]).
We know by Lemma 1 that every valid factor occurs in an extended maximal
factor, so computing the equivalence relation over extended maximal factors
will consider all valid factors. Lemma 4 also tells us that the computation of
both the LFℓ and PR arrays can be done within the same time complexity
O(min{z2, zn, σn}n).

To use the smaller class trick we make a distinction between equivalence
classes that are big and those that are small. Initially, for p = 1, all classes
are considered small, and when a class is refined during the partitioning, all
resulting classes are small except for the largest which is big. The idea behind
the efficient computation of the equivalence relation is to only partition with
respect to the small classes. The indices of the small classes will be stored in
a linked list SMALL and partitioning is only done with respect to the classes
identified here.

The representation of the equivalence relation allows us to move an element
from one class to another in constant time. We can directly access any tuple
in the EQ array and change the index of its equivalence class in constant time.
The EP array can then be used to directly access any element in EC and,
as EC is a linked list, move an element in constant time. We now show that
partitioning with respect to the small classes is correct. We define the following
equivalence Sp on tuples:

((i, h), (j, k)) ∈ Sp iff

{

((i, h), (j, k)) ∈ Ep

or, both (i, h) and (j, k) are in big Ep classes.

Equivalently:

((i, h), (j, k)) ∈ Sp iff for any small Ep class C, (i, h) ∈ C iff (j, k) ∈ C.

It now suffices to show the following lemma over tuples of positions.
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Lemma 5 For any step p ≥ 1 in the partitioning, ((i, h), (j, k)) ∈ Ep+1 iff

((i, h), (j, k)) ∈ Ep and ((i+ 1, h), (j + 1, k)) ∈ Sp.

Proof (⇒) Ep is a refinement of Sp therefore Ep+1 ⊂ Ep ∩ Sp.
(⇐) Let ((i, h), (j, k)) be two positions such that

((i, h), (j, k)) ∈ Ep and ((i+ 1, h), (j + 1, k)) ∈ Sp.

– If (i+ 1, h) is in a small Ep class then (j + 1, k) is in the same Ep class; so
((i, h), (j, k)) ∈ Ep+1.

– If (i+1, h) is in a big Ep class then (j+1, k) is also in a big Ep class. From
((i, h), (j, k)) ∈ Ep we can deduce that ((i+1, h), (j+1, k)) ∈ Ep−1 so they
are in the same big Ep class. So again we have that ((i, h), (j, k)) ∈ Ep+1.
⊓⊔

Lemma 5 establishes that the smaller class trick can be used for partitioning.
It also shows that partitioning may be performed by computing the following:

((i, h), (j, k)) ∈ S′p iff ((i+ 1, h), (j + 1, k)) ∈ Sp

Ep+1 = Ep ∩ S′p.

When a class is split, we keep track of how many elements are in each new
equivalence class. When the partitioning step has been completed the class
with the maximum number of elements is labelled as big, the rest are labelled
small, and the indices of small classes are stored in the linked list SMALL.
Partitioning therefore takes time proportional to the sum of the sizes of all
small classes. In the following lemma, we establish the sum of sizes of all small

classes and the time required to partition them.

Lemma 6 Let R be the sum of the sizes of all small classes. It holds that

R = O(υn log υn), where υ = min{z2, zn, σn}.

Proof Consider a tuple (i, h), for a partitioning step p, in a small Ep class F

and let F′ be its Ep−1 class. By definition of the small classes:

|F| ≤ |F′|/2.

Thus no position can be in more thanO(log υn) small classes since by Lemma 4
the E1 class of i has cardinality less than O(υn); by Lemma 4 there are O(υ)
tuples of the form (i, h) and this proves the claim. ⊓⊔

There are a few final technical considerations:

– Efficiently perform the pruning step so each Ep class only contains factors
which have a probability of occurrence no less than 1/z;

– Ensure the pruning step does not cause problems for partitioning;
– Ensure that the difference function DFp is correctly updated.
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To realise the pruning step we make use of arrays PR and EP. After partitioning
step p, we process the list PR[p − 1] which gives the elements which require
pruning. An element contained in the PR array can be removed from its Ep

class in constant time by setting its class to -1 in the EQ array and removing
it from the list EC using the EP array to access the element in constant time.
The initial E1 classes only have O(υn) elements so the pruning step cannot do
any more work than this.

Consider that some tuple (i, h) has been removed, we must be able to
guarantee that partitioning with respect to tuple (i − 1, h) is still computed
correctly. If (i, h) was removed at step p then it must be the case that either
(i− 1, h) has already been removed or that (i− 1, h) will become invalid when
considering step p + 1. The only reason (i − 1, h) must be included in the
partitioning at step p+ 1 is to guarantee the correct partitioning of the tuple
(i− 2, h) which may be valid at step p+ 1 but will not be at p+ 2. The Ep+1

class that (i−1, h) ends up in after partitioning is therefore irrelevant as it will
be removed immediately. By the correctness of the pruning stage all empty
classes can simply be ignored.

It remains to show that DF and DC are correctly computed in the same
time complexity as partitioning. We compute DF1 after the computation of E1;
as E1 is stored in ascending order of the first element of the tuple, this requires
constant time per tuple. Consider that during a partitioning step, each tuple
that requires moving from some Ep class to another, is performed one at a
time. Let (i, h) and (j, k) be two tuples such that (j, k) is a tuple that has
been moved and (i, h) is the tuple that preceded (j, k) before it was moved;
then the following must be true where DF′ denotes the updated DF:

DF′[i, h] = DF[i, h] + DF[j, k].

Furthermore, let (ℓ,m) be the tuple preceding (j, k) in its new equivalence
class, then the following holds:

DF′[ℓ,m] = j − ℓ.

Updating DC can be done by transferring a tuple to a new DC at the same time
it is moved from an EC. We update the DF array entries of the affected tuples,
as specified above, and update DC by moving a tuple (i, h) that has been
updated into DC[DF[i, h]]. This can be achieved in constant time by using the
DP array. Note that DFp, for a partitioning step p, can be correctly updated
during the pruning step in the same way as specified above.

With everything described above, we have presented a new O(υn log υn)-
time algorithm, where υ = min{z2, zn, σn}, for the computation of equivalence
classes in weighted strings and get the following result.

Theorem 1 The Partitioning problem can be solved in time O(υn log υn)
and space O(υn), where υ = min{z2, zn, σn}.

An example of the proposed method is shown in Figure 1.
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{(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0), (4, 1),
(5, 0), (5, 1), (6, 0), (6, 1), (7, 0), (7, 1)}

{(1, 0), (1, 1), (3, 1), (4, 0), (4, 1),
(6, 0), (6, 1)}b

{(1, 0), (1, 1), (4, 0), (4, 1)}ba

{(1, 1), (4, 0), (4, 1)}bab

{(0, 0), (0, 1), (2, 0), (2, 1), (3, 0),
(5, 0), (5, 1)}a

{(0, 0), (0, 1), (2, 1), (3, 0),
(5, 0), (5, 1)}ab

{(0, 0), (0, 1), (3, 0)}aba

{(0, 1), (3, 0)}abab

Fig. 1 Classes of equivalence with their refinements for weighted string x =
aba{(a, 0.5), (b, 0.5)}bab and 1/z = 1/4. The small classes of the partitioning are shown
in bold. To improve readability all singletons have been omitted, and we assume a unique
terminating letter for each extended maximal factor.

3 Applications to Weighted and Indeterminate Strings

An indeterminate string w of length n on an alphabet Σ is a finite sequence
of n sets, such that w[i] ⊆ Σ, w[i] 6= ∅, for all 0 ≤ i < n. If |w[i]| = 1, that is,
w[i] represents a single letter of Σ, we say that w[i] is a solid position. Any
indeterminate string w of length n can be represented by a weighted string x of
length n such that (a, 1

|w[i]| ) ∈ x[i] iff a ∈ w[i] and setting z to the probability

of the lowest probability factor of x.

In this section, we outline a number of applications of our techniques to
solving various problems in weighted and indeterminate strings. In many cases,
we provide the first algorithms for these problems on weighted and indeter-
minate strings and for others we improve on the state of the art. For some
of the problems considered below, it is possible to check if the string is inde-
terminate, and if so we can optimise the computation of extended maximal
factors by only computing extended maximal factors of length ⌈n

2 ⌉ giving us
υ = min{z2, zn, nσ

n

2 }.

3.1 Computing Covers and Seeds

A string u is a cover of a string y if every position of y lies within some
occurrence of u in y and u 6= y. A string u is a cover of a weighted string x
if every position in x is lies within a valid occurrence of u and |u| ≤ |x|. A
cover u of x, occurring at position 0 of x, can be represented as a pair (p, b),
where p is the length of the cover and b is a set of ordered pairs (j, a), where
0 ≤ j < p and a ∈ Σ, denoting u[j] = a; b is used to uniquely define a cover
as there may be ambiguous positions in x. The AllCovers problem can be
therefore defined as follows.
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Problem 2 (AllCovers) Given a weighted string x of length n and a cu-
mulative weight threshold 1/z ∈ (0, 1], find all covers of x.

Covers were first introduced by Apostolico et al. in [3] for regular strings,
where the authors presented a linear-time algorithm to test the superprimitiv-
ity of a string and to give its shortest cover. Since the introduction of covers,
their efficient computation and combinatorial properties have been extensively
studied for regular strings. Breslauer [10] presented an online linear-time algo-
rithm for the computation of not just the shortest cover of some string but also
the shortest cover of all its prefixes. Moore and Smyth [28] presented a linear-
time algorithm for computing all the covers of a string; this was later [26]
improved to an online linear-time algorithm for the computation of all covers
of every prefix of a string. Flouri et al. presented a linear-time algorithm to
compute all enhanced covers, a generalisation of the notion of cover [16].

For the case of weighted strings, there exists an O(n)-time algorithm for
computing all covers [19]. This result only holds for z = O(1) and σ = O(1);
for other values of z and σ little is known. For indeterminate strings a simple
O(nσk/2k)-time algorithm and a fixed parameter tractable 2O(k log k)+nkO(1)-
time algorithm was presented in [14], where k is the number of non-solid
positions and 1 < σ ≤ n. In [1], an O(n2)-time algorithm was presented for
some, but not all, covers of an indeterminate string.

With the computation of EQ, computing all covers in a weighted string
is fairly straightforward. For an equivalence class Cr, we maintain a vari-
able MGr storing the maximum gap between any two consecutive tuples in
Cr, where tuples are ordered by their first element. More formally, let Cr =
{(x1, e1), (x2, e2), . . . , (xa, ea)} be a set of tuples sorted by their first element;
MGr is therefore:

MGr = max{xi+1 − xi}, for 0 < i < a.

By definition of the equivalence classes, MGr remains the same or increases.
Let {C1,C2, . . . ,Cq} be the equivalence classes of Ep. In order to compute
all covers, we maintain a variable MGr for each equivalence class Cr which
contains a tuple of the form (0, k), for any r and k, as any cover must be
a prefix of x. The initial values of MGr for the equivalence classes of E1 are
computed by brute force when the initial equivalence relation is computed.
We only update the value of a MGr variable if Cr is split and (0, k) ∈ Cr for
some k. When splitting a class, the appropriate MGr variable can be updated
for both classes in time proportional to the size of the smallest class. At each
step p in the partitioning, a class, such that (0, k) ∈ Cr, is a cover if and only
if the following conditions hold:

– MGr ≤ p;
– (n− p+ 1, h) ∈ Cr, for any h.

Each cover is represented as a pair: length and index of an extended maximal
factor, thereby implicitly specifying the set b and allowing reporting in constant
time. The checks above are only applied when a class is split. Therefore we
obtain the following result.
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Theorem 2 The AllCovers problem can be solved in time O(υn log υn)
and space O(υn), where υ = min{z2, zn, σn}.

A related notion to covers is that of seeds. Intuitively, seeds are similar to
covers, but a seed may additionally be a cover of a superstring of y, rather
than a cover of y itself. Seeds in weighted strings can then be defined as follows.
A string u is a seed of a weighted string x if there exists a weighted superstring
of x for which u is a cover, every occurrence of u is valid, and |u| < n. A seed
u can be represented, similar to cover, as a tuple (i, p, b), where the additional
element i is the starting position of a valid occurrence of u in x. The AllSeeds

problem can be therefore defined as follows.

Problem 3 (AllSeeds) Given a weighted string x of length n and a cumu-
lative weight threshold 1/z ∈ (0, 1], find all seeds of x.

Computing all seeds in weighted strings was considered in [31], where an
O(n2)-time algorithm was presented for z = O(1). To the best of our knowl-
edge, no other algorithm exists for computing all seeds in a weighted string.
To quickly compute seeds, we must be able to efficiently determine if a string
u, represented by an equivalence class of Er, is a seed; this is true if and only
if the following conditions hold:

1. MGr ≤ |u|;
2. There exists a suffix s of u that is a valid prefix of x and |s| ≥ first(u);
3. There exists a prefix p of u that is a valid suffix of x and |p| ≥ n−last(u)−1;

where first(u) denotes the starting position of the first valid occurrence of u
in x, and last(u) denotes the ending position of the last valid occurrence of u
in x. It is known that Conditions 1-3 need only be checked as classes are split
at each level. The first condition is checked trivially, but Conditions 2 & 3 are
more complex.

Let i be a position in an extended maximal factor t and assume we have
computed the ending position j of the longest valid match between a prefix of
x and the i-th suffix of t, along with the starting position k of the longest valid
match between a suffix of x and a factor ending at i. For each extended max-
imal factor we compute this information for all i representing it as intervals
[i, j] and [k, i] respectively. We compute this information for all extended max-
imal factors and for each extended maximal factor store the prefix information
and suffix information in two separate arrays. These arrays are sorted by the
first element of each entry; we then additionally construct a Range Maximum
Query (RMQ) data structure on the second element of each entry.

This structure allows us to answer in constant time [9] queries such as:
Does string u occurring at position i in extended maximal factor t have a suffix
(prefix) of length at least m that occurs as a prefix (suffix) of the weighted
string x? Clearly checking Conditions 2 & 3 can be cast as one of these queries.

For clarity we will only discuss how to answer if u has a suffix of length at
least m that is a prefix as the other case is symmetric. For u to have a suffix
of length at least m that is a prefix of x there must exist an interval [z1, z2] in
our prefix information that satisfies:
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1. i ≤ z1 ≤ i+ |u| −m; and
2. z2 ≥ i+ |u| − 1.

These two conditions ensure that the longest valid prefix starting at z1 is
at least of length m. To check such an interval exists we perform two binary
searches for those intervals with a first element satisfying the first bullet point,
and then perform an RMQ for this range. If the result has a second element at
least i+ |u| − 1 then an appropriate interval exists and the query is answered.
The prefix/suffix information can be computed through the partitioning al-
gorithm taking time O(υn log υn). When splitting an EQ class, we first check
if the class contains a prefix; the class is then split as normal; we then find
if any class no longer contains a prefix and record this information. Clearly
the suffix condition can be updated as each suffix tuple becomes a singleton.
Construction of all the relevant data structures takes time O(υn log υn) as
sorting the intervals dominates the time complexity. We can run the entire
partitioning algorithm once to compute all the interval information and then
a second time to detect seeds. Therefore we obtain the following result.

Theorem 3 The AllSeeds problem can be solved in time O(υn log υn+α),
where υ = min{z2, zn, σn} and α is the size of the output.

3.2 Maximal Quasiperiodicities

Maximal quasiperiodicities are a further notion of periodicity that has been
studied in strings and are strongly related to covers. Informally, maximal
quasiperiodicities are to covers what repetitions are to periods: they are a
local version of covers. Informally, a string is called quasiperiodic if it has a
cover. A factor u of a string y is a maximal quasiperiodicity if it has a cover v
and no extension of u can be covered by v or va, where a is the letter following
u in x. Similarly, we can define maximal quasiperiodicities in weighted strings
as follows. A factor u of a weighted string x is a maximal quasiperiodicity if
it has a cover v and no extension of u can be covered by v or va, where a is
the letter following u in x. The MaximalQuasiperiodicities problem can
be therefore defined as follows.

Problem 4 (MaximalQuasiperiodiities) Given a weighted string x of
length n and a cumulative weight threshold 1/z ∈ (0, 1], find all maximal
quasiperiodicities of x.

For regular strings, the fastest algorithms are the O(n log n)-time algo-
rithms presented in [21,11,20]. These algorithms were later shown to be op-
timal [18]. The algorithm of [21,20] is based on Crochemore’s partitioning
for regular strings and a left/right gap array defined as follows. Let Cr =
{(x1, e1), (x2, e2), . . , (xa, ea)} be an equivalence class then:

LG[i− 1] = xi − xi−1 for all i ∈ {2, . . , a}
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RG[i− 1] = xi+1 − xi for all i ∈ {1, . . , a− 1},

with LG[0] = 0 and RG[a − 1] = ∞. Clearly these arrays can be easily main-
tained during the partitioning. We can then apply the algorithm of [21,20] to
obtain the following result.

Theorem 4 Let υ = min{z2, zn, σn}, the MaximalQuasiperiodicities prob-

lem can be solved in time O(υn log υn+ α), where α is the size of the output.

3.3 Computing Squares and Runs

Here we define a square as any non-empty string of the form yy. A square

in a weighted string x is defined as a factor of the form yy such that both
occurrences of y are valid. The AllSquares problem can be therefore defined
as follows.

Problem 5 (AllSquares) Given a weighted string x of length n and a
cumulative weight threshold 1/z ∈ (0, 1], find all squares of x.

There exists an optimalO(n log n)-time algorithm for computing all squares
of x for z = O(1) [5], matching the time complexity of the algorithm for squares
in the standard setting [27]. To the best of our knowledge, there is no known
algorithm for computing squares in indeterminate strings or weighted strings
for arbitrary z.

By Lemma 4, there may be many tuples with the same first element occur-
ing consecutively in the difference function, this makes retrieving the squares
more complicated than the non-weighted case. We solve this by storing a re-
fined version of the difference function that we call the compressed difference
function, denoted by CDF. CDF is the same as DF but where there exists
consective tuples with the same first element, only the first is stored.

For each element of DF we store a pointer between its element in CDF and
vice versa. The computation of this additional array is initially done by brute
force for E1 and can be easily updated as DF is updated. From the compressed
difference function we compute an additional pointer for each tuple that will
allow us to easily report squares. These pointers are in some sense a special
skip list on CDF, allowing us to skip to the entry we are interested in. We
store it by augmenting CDF so that each element also has an additional skip
pointer. For some element (i, h) in CDF we define the target of the skip pointer
as (j, k) such that it is the least such j satisfying the invariant j − i ≥ p such
that (i, h), (j, k) ∈ Ep and (j, k) exists in CDF. If no such tuple exists then the
skip pointer is undefined. Now we state an important fact about skip pointers.

Fact 1 Let (i, h) and (j, k) be elements in CDF and (i, h), (j, k) ∈ Ep. If j > i,
the skip pointer of (i, h) points to (ℓ,m), and the skip pointer of (j, k) points

to (o, q), then either (ℓ,m) = (o, q) or ℓ ≤ o.
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The skip pointers can be trivially computed for E1. Now we must show
that the skip pointers can be easily updated at each stage and that we can
correctly report squares. Assuming at some stage p that the skip pointers are
correctly computed then at stage p+1 there are two cases where a skip pointer
may need to be updated: 1) if the equivalence class is split at stage p + 1; or
2) if the invariant is violated. In Case 1, we split CDF as normal and for the
new class we scan through CDF to find the correct skip pointer for the first
element; from here each subsequent element can be updated easily by Fact 1.
For the undefined skip pointers in the class that was split, their correct target
is the closest tuple with a larger first element with respect to the previous
target. To make this easy to update we perform the partitioning in decreasing
order of position. In Case 2, we can update the skip pointer to the tuple that
immediately follows its current target in CDF.

It remains to show that we can detect when the invariant is violated. This
is achieved by augmenting CDF with an array CDP such that CDP[p] gives the
tuples in CDP such that (i, h) and (j, k) are in CDF and j − i = p. Clearly
these are only updated at the same time a skip pointer is updated. Finally, it
should be clear to see that, by the definition of the skip pointers, j − i = p
is a condition that is satisfied only when two identical factors are next to
each other; equivalently, when they form a square. Given this information at
each stage p, we read CDP[p] to report squares and update CDF. Therefore we
obtain the following result.

Theorem 5 The AllSquares problem can be solved in time O(υn log υn+α)
and space O(υn), where υ = min{z2, zn, σn} and α is the output size.

The various (equivalent) definitions of runs in regular strings are not readily
generalisable to weighted strings due to notion of validity. Rytter [30] defines
a run in a string w as an interval β = [i . . j] such that w[i . . j] is a periodic
word with the period p and this period is not expendable to the left or right.
An alternative definition is the following: a factor urt = x[i . . i+ rp+ |t| − 1]
is a run in x if and only if u is primitive, t is a proper prefix of u and no wy

exists at position i− 1 or ends at position i+ rp+ |t| where |w| = p. A direct
extension of the definition of Rytter may lead us to require that the entire run
in a weighted string is valid. Such a definition would seem to run counter to a
natural definition of a square, where each occurrence is required to be valid.
Extending the second definition may seem more natural, and allows us to
define runs in the following way. A factor v = urt is a run in a weighted string
x if and only if u is primitive and ur occurs at position i of x with period p and
there neither exists a factor va = wrs occurring at i nor a factor av = wrt′

occurring at i − 1 with period p, for some a ∈ Σ, such that each w and t′

are valid and t′ is a proper prefix of w. However, this also seems insufficient
as the notion of extending a run by a single letter does not seem to capture
runs with the concept of validity. Specifically, extending to the left of a run
changes the root factor u, which could destroy the validity of the root entirely,
even though such an extension exists. Here we consider runs as being defined
as groups of coalescing primitively rooted squares, a property implicit in all
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definitions of squares in regular strings. A primitively rooted square is a factor
yy such that y is not the power of any other string. As such we define a run

in a weighted string x as a factor ww′ such that there is a primitively rooted
square of period p at each position in w, each primitively rooted square is
valid, w′ is a proper valid prefix of w, |w′| < p, and ww′ cannot be extended.
This definition captures the original definition of runs and generalises it to
weighted strings. The AllRuns problem can be therefore defined as follows.

Problem 6 (AllRuns) Given a weighted string x of length n and a cumu-
lative weight threshold 1/z ∈ (0, 1], find all runs of x.

Runs computation is well-studied in the standard setting with linear-time
algorithms known, but there is no known algorithm for weighted or indetermi-
nate strings. Kolpakov and Kucherov, in [25], showed that the number of runs
in a string is linear in its length; they additionally provided the first linear-time
algorithm for computing runs in a regular string. After many years of work, it
was recently shown by Bannai et al. [4] that the number of runs in a string is
strictly less than its length and that their characterisation provides a far sim-
pler algorithm for runs computation than what was previously known. Prior to
the development of the algorithm by Bannai et al., a number of super-linear-
time algorithms were developed, including the O(n log n)-time algorithm by
Franek et al. [17], which is based primarily on Crochemore’s partitioning. The
main idea of this algorithm is computing all primitively rooted squares and
then post processing these to combine them into runs. Clearly our squares al-
gorithm computes at least this information. By filtering non-primitive squares,
using the data structure of [24], the algorithm of Franek et al. can be applied.
By combining this algorithm with our partitioning algorithm, we give the first
algorithm to compute runs in weighted strings and obtain the following result.

Theorem 6 The AllRuns problem can be solved in time O(υn log υn + α)
and space O(υn), where υ = min{z2, zn, σn} and α is the output size of solving

the AllSquares problem on x.

4 Final Remarks

In this article, we presented a non-trivial generalisation of Crochemore’s par-
titioning algorithm for weighted strings that requires time O(υn log υn) and
space O(υn), where υ = min{z2, zn, σn}. Our algorithm improves on the best-
known algorithm, for z = O(1), from O(n2) to O(n log n).

As a direct result of this generalisation, we provided more efficient al-
gorithms for numerous other string processing problems. Due to the limited
results on the combinatorics of weighted strings, most of the additional prob-
lems we have presented have no known bounds on the size of the output. As
an immediate target, we plan to investigate the output size of the considered
problems and the combinatorics associated with this.
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