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FLUCTUATIONS OF THE TOTAL NUMBER OF CRITICAL POINTS
OF RANDOM SPHERICAL HARMONICS

V. CAMMAROTA AND I. WIGMAN

ABSTRACT. We determine the asymptotic law for the fluctuations of the total number of critical points of ran-
dom Gaussian spherical harmonics in the high degree limit. Our results have implications on the sophistication
degree of an appropriate percolation process for modelling nodal domains of eigenfunctions on generic compact
surfaces or billiards.

1. INTRODUCTION AND MAIN RESULTS

1.1. Critical points of random spherical harmonics. It is well-known that the eigenvalues A of the
Laplacian A on the 2-dimensional round unit sphere S2, satisfying the Schrodinger equation

Af+Af=0

are of the form A = A\, = (¢ + 1) for some integer ¢ > 1. For any given eigenvalue Ay of the above form, the
corresponding eigenspace is the (2¢ + 1)-dimensional space of spherical harmonics of degree ¢; we can choose
an arbitrary L*-orthonormal basis {Yz(.)} _s<,,<(, and consider random eigenfunctions of the form

1 l
(11) f[(.’E) = ﬁmgeafmnm(x)a

where the coefficients {ag, }_ v<m<y¢ are independent, standard Gaussian variables. The random fields

{fé(x)’ x € 82}

are centred Gaussian and the law of f, in (1.1) is invariant with respect to the choice of {Yz,,}. Also, fo
are isotropic, meaning that the probability laws of f¢(-) and f/(-) := f¢(g-) are the same for every rotation
g € SO(3). Here we choose the commonly adopted basis of real valued spherical harmonics

V2 K cos(mep) P (cos 0), if m >0,
Yem (0, ) = K9P (cos b), if m=0,
V2K sin(—mep) P, ™ (cos0), if m < 0;

where P;” are the associated Legendre functions and

_ |
K = \/2z+ 1(¢— |m|)!

4 (L4 |m|)!
By the addition theorem for spherical harmonics [3, Theorem 9.6.3] the covariance function of fy is given by

E[fe(x)fe(y)] = Pe(cosd(z,y)),
where Py are the usual Legendre polynomials,
cosd(z,y) = cos b, cos b, + sin 8, sin 6, cos(p, — @y)

is the spherical geodesic distance between x and y, 8 € [0,7], ¢ € [0,27) are standard spherical coordinates
and (6, ¢z), (0y,¢y) are the spherical coordinates of z and y respectively.

Our primary focus is the total number of critical points of f,

Ne(fo) = #{z € S : Vfu(x) = 0}

Date: March 20, 2017.



2 V. CAMMAROTA AND I. WIGMAN

It is known [19, 11] that, as £ — oo, the expected total number of critical points N¢(f;) is asymptotic to

ENC(fo)] = %ﬁ +o(1).

An upper bound for the variance of the number of critical points N¢(f) was also derived [11]:
Var(N“(f) = O(¢3);
in fact, it is likely that the same method yields the stronger result
Var(N¢(fe)) = O(£*log ().
It was conjectured [11] that the true asymptotic behaviour of the variance is
(1.2) Var(N(f;)) = const - £2log £ + O(£?).
More generally let I C R be any interval and NF(f,) be the number of critical points of f; with value in I:

NE(fo) = #{x € 82 : fi(x) € I,V fo(z) = 0};

it was proved in [11, Theorem 1.2] that as £ — oo it holds that
Var(WF(fe)) = Cve(I) + O(E°/?),

where the leading constant v°(I) was evaluated explicitly. For some intervals I, such as, for example I = R
(corresponding to the total number of critical points), the leading constant v¢(I) vanishes, and, accordingly,
the order of magnitude of the variance is smaller than £3. In this paper we prove (1.2), i.e. we determine the
precise asymptotic shape for the variance of the total number of critical points of f;.

1.2. Statement of the main result. The principal result of this paper is the following:

Theorem 1.1. As { — oo
1

3372

Var(N*(fe)) = *log £+ O(£2).

The constant in the O(-) term is universal.

Asin [11], our argument is based on an approximate version of the Kac-Rice formula for counting the number
of zeros of the gradient of fy (see Section 2). It is easy to adapt the same approach to separate critical points
into extrema and saddles; in fact, we have the following:

Remark 1.2. Let N¢(f;) and N5(f,) be the total number of extrema and saddles of f,
Ne(fe) = #{z € 8% : V fo(x) = 0,det(V? fo(x)) > 0},
N*(fe) = #{x € §? : V fo(x) = 0,det(V? fu(x)) < 0},

As ¢/ — oo we have that

(1.3) Var(N¢(fe)) = mzﬁ log ¢ + O(¢?),
(1.4) Var(W*(fo)) = ﬁﬁ log £ + O(£2).

The asymptotic laws for the fluctuations of the total number of extrema and saddles in (1.3) and (1.4) follow
immediately from Theorem 1.1 and Morse Theory. In fact,

Ne(fe) = N¥(fe) + N*(fe)
and, via Morse Theory, it is possible to prove that

Ne(fz) — Nc(fé)

1.
9 +

Remark 1.3. For the intervals I # R such that the constant v¢(I), v(I) or v*(I) vanish, the variance of the
number of critical points, extrema and saddles in I has the following asymptotic behaviour: as £ — oo

(1.5) Var(N7 (fe)) = [u*(I)]*¢*log £ + O(¢?),

where we use a = ¢, e, s to denote critical points extrema and saddles, p®(I) = [, u®(t)dt, and the functions
u®, for a = ¢, e, s are defined in (B.3)-(B.5) and derived in Appendix B.
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1.3. Nodal domains and percolation. The nodal domains of f;, are the connected components of the
complement of the nodal lines f[l(O), i.e. the connected components of

S*\ f;71(0).
Let N(f¢) be the number of nodal domains of f;. Nazarov and Sodin [18] proved that there exists a constant
a > 0 such that the expected number of nodal domains is asymptotic to

(1.6) E[N (fo)] ~ al®.

Little is known about the leading constant a in (1.6). For once the nodal domains number is bounded
from above by the total number of critical points; the latter inequality could be improved by a factor of 2 by
separating the critical points into extrema and saddles (for example, via Morse Theory), an approach pursued
by Nicolaescu [19] yielding the upper bound

1
a< —;
T V3
while it is possible to improve the latter bound by using other local estimates (e.g. [14]), these are far off the
numerical Monte-Carlo simulations or the conjectured values of a.

To the other end, other than the Nastasescu’s [17] explicating the Nazarov-Sodin “barrier” construction [18]
(yielding a tiny lower bound on a), to our best knowledge, no lower bound for a is known rigorously. Bogomolny
and Schmit [10] conjectured that, as £ — oo, nodal domains of f; (more generally, deterministic Laplace
eigenfunctions on generic compact surfaces or billiards) are described by the clusters in a rectangular lattice
bond percolation-like process with ~ ¢2 sites (called the Percolation Model), and in particular that the true
value of a equals the leading constant

a= L/i q ~ 0.0624

for the asymptotic number of connected clusters in the Percolation Model. Here we think of the maxima and
minima of fy as rigidly arranged along two mutually dual percolation lattices; adjacent maxima are connected
independently with probability %, if and only if the dual minima are disconnected.

Some recent simulations [17, 6] showed deviations of about 4.5% between the predicted constant for a and its
numerical values; these cannot be attributed to numerical errors. It is then desirable to come up with a more
sophisticated percolation model! [6, 7] that would match these constant more precisely, where, in particular, the
arrangement critical points of f; would exhibit some degree of randomness, less rigid than rectangular lattice.
The variance (1.5) of the total number of critical points (or the extrema) of f; is then crucial in determining
the rigidity or flexibility of the (random) percolation sites.

1.4. Cosmological applications. It is well-known that random spherical harmonics are the Fourier compo-
nents of square integrable isotropic fields on the sphere [16], i.e., for every centred Gaussian spherical random
field f the following spectral representation holds:

00 0o 0
fla)y=>"fo@) =" > VCrawm Yim(w), v e 8’
=1

=1 m=—1¢

where equality holds in the L? sense and the sequence {Cy}s—1 ... denotes the so-called angular power spectrum,
which fully characterizes the dependence structure of f. The analysis of spherical random fields is at the heart of
observational cosmology, for instance for experiments handling Cosmic Microwave Background radiation data
[1, 9]: indeed CMB observations can be viewed as a realization f of an isotropic Gaussian random function
f on the sphere. A natural question is whether these observed CMB maps are indeed consistent with the
assumptions of Gaussianity and isotropy, in fact, departures from these assumptions, could signal physically
motivated deviations from standard cosmological models.

Our results can be exploited in this setting by means of the implementation of Gaussianity and isotropy
tests, for instance, by comparing the actual number of maxima for an observed component fg with the expected
values which we reported in the previous sections. It is natural to expect the convergence of the standardized
number of maxima to a standard Gaussian limit, in the high-energy regime, under the null assumption that f,
is a pure Gaussian field. In practice, it is not always easy to derive the Fourier components f; from realized
maps; due to missing observations in some regions of the sky. However, very recently, a number of statistical

1We would like to thank Dmitry Belyaev for discussing connections between our work and percolation.
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techniques have been proposed [8] to reconstruct these missing observations, so that, in principle, our results
are applicable to the resulting maps.

1.5. Acknowledgements. The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreements n° 277742 (V.C.) and n° 335141 (I.W.). We are grateful to Dmitry Belyaev, Domenico Marinucci
and Zeev Rudnick for some useful discussions and suggestions and to Mikhail Sodin for discussion especially
with relations to nodal domains.

2. ON (APPROXIMATE) KAC-RICE FORMULA FOR COMPUTING 2ND (FACTORIAL) MOMENT

In this section we express the second factorial moment of N¢(f,) via Kac-Rice formula. Let £ C R™ be an
open subset of R”, and g : £ — R” a centred Gaussian random field such that all components of f, Vf and
V2f are a.s. continuous. Define the 2-point correlation function

Ky=Ksy:E =R
of the zeros of g as

(2.1) Ka(2,y) = d(g(2),9(1)(0,0) - E[| det J, (z)| - | det J, (y)]|g(x) = g(y) = 0],

where ¢(4(2),4(y)) 18 the Gaussian probability density of (g(x),g(y)) € R*™ and Jy(z), J4(y) are the Jacobian
matrices of g at x and y respectively. In view of [4, Theorem 6.3] (see also [4, Proposition 1.2]) the 2nd factorial
moment of g~1(0) is given by

(2.2) Ef#g1(0) - (#g71(0) — 1)] = / Ko (2, y)dedy,
62

provided that the Gaussian distribution of (g(z),g(y)) € R?" is non-degenerate for all (z,y) € £2. Moreover,
for Dy, Dy C £ two open disjoint domains, we have

(2.3) El(#971(0) ' Dy) - (#9~1(0) N D)] = / Ko(z,y)dedy,
D1 xXDs

under the same non-degeneracy assumption for all (x,y) € D; x Dy. To apply Kac-Rice formulas (2.3) and (2.2)
in our case we will work with spherical coordinates on S? and choose an explicit orthogonal frame, see (3.2)
below. Counting the critical points of f; is then equivalent to counting the zeros of the map [0, 7] x [0, 27] — R?
given by x — V fy(x); accordingly for « # +y the two-point correlation function of critical points of f; is (cf.

(2.1))
(24)  Kou(@.y) = 6(v1,00).950(0(0,0) - E[| det Hy, ()| - | det Hy, (y)||V fo() = V fuly) = 0],

where Hy,(z) and Hy,(y) are the Hessian matrices of f, at # and y respectively. Here [4, Theorem 6.3] (see
also [2, Theorem 11.2.1]) would yield

(2. BV W) = D] = [[ | Kaslewdedy

under the condition that for all z,y € &2, the Gaussian distribution of (Vf(z), Vf(y)) € R* were non-
degenerate. We can easily adapt the definition of the 2-point correlation in (2.4) to separate the critical points
into extrema and saddles, or count critical points with values lying in I (see Appendix B.1 and [11]).

Note that the rotational invariance of f, implies that the function K3, in (2.4) depends on the points z,
y only via their geodesic distance ¢ = d(z,y); with a slight abuse of notations we write Ka ¢(¢) = Ka ¢(x,y).
Also, note that K5 () is everywhere nonnegative.

We do not validate the non-degeneracy assumption of the 4 x 4 covariance matrices of (Vf(x),Vf(y)) de-
pending on both & and y (and {); instead we prove that the precise Kac-Rice formula (2.5) holds up to an
admissible error, an approach inspired by [20]. We recall here the main steps of the proof of the approzimate
Kac-Rice formula and refer to [11, Section 3] for a complete proof. The argument is based on a partitioning of
the integration domain in (2.5); we apply (2.3) on the valid slices we bound the contribution of the rest.

For z € 8%, r > 0 let B(x,7) = {y € 8% : d(x,y) < r} be a closed spherical cap on S2. For € > 0 we say that
E. = {él,sa v 7§N,€} c 82
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is a maximal e-net if for every i # j we have d(&; ¢, ;) > ¢, and also every x € S? satisfies
d(z,Z:) <e.

That is, informally speaking an e-net is a collection of e-separated points, whose e-thickening covers the whole
of 82. The number N of points in a e-net on the sphere can be bounded from above and from below; indeed
it satisfies the following [5, Lemma 5]:

(2.6) — <N < =72

Given a maximal e-net, it is natural to partition the sphere into disjoint sets, each of them associated with
a single point in the net. This task is accomplished by the Voronoi cells construction [16, Section 11.2]:

Definition 2.1. Let Z. be a maximal e-net. For all §; . € E., the associated family of Voronoi cells is defined
by

V(iere) ={x €8 :Vj#1i, d(z,&.) <d(x,&)}
Each Voronoi cell is associated to a single point on the net. The Voronoi cells are disjoint, save to boundary
overlaps, and cover the whole sphere.

It is possible to prove the following:

Proposition 2.2. There exists a constant C' > 0 sufficiently big, such that the following approzimate Kac-Rice
holds:

1) Var (N () = [ Koo(o.9) dody = BN (O + O(E),

where W is the union of all tuples of points belonging to Voronoi cells far from the domain of degeneracy, i.e.,

W= U V(&e) x V().

d(V(£i,e);V(€5,6))e(C/Lm—C/E)

2.1. On the proof of Proposition 2.2. Note that, almost surely, the summation of the critical points over
the Voronoi cells equals the total number of critical points, therefore we write the variance of the total number
of critical points as

(2.8) Var (N(f)) = Y Cov(N°(f5: V(&) N(fi; V(&) »
Eie,6j,c€EEe

where

NE(fe; V(&ier€)) = #{x € V(& e, €) : Vfo(x) =0}

The main steps of the proof of Proposition 2.2 are the following. In [11, Lemma 3.2] it was proved that
there exists a constant C' > 0 sufficiently big, such that, in the regime d(V(&; ), V(&) € (C/¢,m — C/f), the
covariance matrix is nonsingular and so Kac-Rice formula holds exactly. This gives the first term in (2.7).

In the regime d(V(&; ), V(&jc)) € [0,C/¢ U [ — C/¢, 7], using Cauchy-Schwartz inequality, we can bound
the covariance as

(29)  |Cov(N“(fi VI&)) MU V(& < y/Var (We(fi V(o)) - Var (Ve(f V(€ ).

In [11, Section 4.2] the non-degeneracy of the covariance matrix was proved for sufficiently close points z, y,
i.e., it was proved that there exists a constant ¢ > 0 sufficiently small such that for e = ¢/¢ the Kac-Rice
formula holds precisely:

1) VarC(evie) = [ K ey + BN V€]~ BN VE)

Now, in view of [11, Lemma 3.6], there exists a constant ¢ > 0 such that, for d(z,y) < ¢/{, one has

Ko o(z,y) = 0(54),
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and since B(&c,e/2) C V(&ic,e) C B(&ie,e), we have Vol(V(&; ¢, €)) ~ 2. Then the first term in (2.10) is
bounded by

// Ko (a,y)dady < €1 (1®)? = O(1),
V(€ ) XV(Ex )

moreover, by [11, Proposition 1.1], for the expectation in (2.10) we have

EWN(fe; V()] S EINC(fe; B(&,0)] < me€* = O(1).

Then, using (2.9), we can bound the covariance as

|[Cov (N*(fe: V(&i.e))s N°(fes V(&) = O(1),
and since by (2.6) there are O(¢?) pairs of Voronoi cells at distance d(x,y) € [0,C/¢) U [r — C/t, 7], we finally
obtain
) |Cov (N*(fe: V(&) N(fis V(&;.2)))| = O(F%).

d(V(&i,e),V(&j,6))€[0,C/f)U[n—C/L,7]
3. PROOF OF THEOREM 1.1

3.1. Kac-Rice formula in coordinate system. To study the asymptotic behaviour of the two-point corre-
lation function we write a more explicit frame-dependent formula by using the orthogonal frames (3.2) so that,
by the isotropic property of f¢, K2, depends only on the geodesic distance ¢ = d(z,y).

For x,y € S? we define the following random vector

Zé;w,y = (Vfg(ﬂ?), Vf@(y)v Vfo(m)a VZf@(y))
To write the Kac-Rice formula in coordinate system, given z, y € S?, we consider two local orthogonal frames

{e7,e5} and {e¥,ef} defined in some neighbourhood of z and y respectively. This gives rise to the (local)
identifications

(3.1) T,(8%) 2R = T,(8?),

so that we do not have to work with probability densities defined on tangent planes which depend on the points
x and y respectively. Under the identification (3.1) the random vector Zy.; ,, is a R'? centred Gaussian random
vector.

By the isotropic property of f; it is convenient to perform our computations along a specific geodesic. In
particular, we focus on the equatorial line © = (7/2, ¢), y = (7/2,0) and we work with the orthogonal frames

(3.2) {el R 62&%}, {el a0, ey = 8903/}'

Let Ay(¢) be the conditional covariance matrix of the scaled Gaussian vector

\/f(Vsz(f)’ V2 fe()|V fe(x) = Vfe(y) = 0).

With the choice (3.2) the covariance matrix Ag(¢) is of the following form

2@ Ban(@)
Ad9) = ( os(6) Arelo) )

where
1663 ,(¢) 2 1682.0(¢)Ba.0(4) | 2
A Vi vy ) R v 0 L vipv e b
_ 1667 ,(¢)
(3.3) A (¢) = 0 1—- (-0, (@) 0 )
1 16826(0)85.0(8) | 2 0 3_ 168,04 2
Xe(AZ—4aZ ,(6) T N Xe(Z—4aZ (8) e
an o ($)62 ,($) o
8%>"'(¢)+44:§;f)2:i; 0 73,6 (8)+° 2’62;;{2;?551(@
Py BY;
day ¢ ($)8F ,(9)
(3.4)  Asy(e) = V2.0t T T 7
: 0 8 - 0
o ()P, 0 ()83 () ) 10z ()83 (9)
73,2(¢)+ 4(1%,2(4))7)\% O 74,€(¢)+W

Y, Y,
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with
a14(¢) = Pj(cos ¢), ag () = —sin® ¢P;'(cos ¢) + cos P} (cos ¢),

Bre(¢) = sin¢Py (cos @), Pa.e(d) = sin ¢ cos pP;' (cos ¢) + sin ¢ P (cos ¢),
B3.0(¢) = —sin® P} (cos ¢) + 3sin ¢ cos pP;’ (cos ¢) + sin ¢.P}(cos ¢),

T,0(¢) = (2+ cos® ¢) P}/ (cos §) + cos pPy(cos §),  v2,0(¢) = —sin® pP;" (cos §) + cos ¢ P} (cos ¢),
Y3.0(¢) = —sin® ¢ cos P, (cos ¢) + (—2sin® ¢ + cos® ¢) P}’ (cos ¢) + cos ¢ P)(cos ¢),
Ya.0(¢) = sin® ¢P}"" (cos ¢) — 6sin? ¢ cos ¢ P, (cos ¢) + (—4sin? ¢ + 3 cos? ¢) P}/ (cos ¢) + cos ¢ P)(cos ¢).

For a proof of (3.3) and (3.4) we refer to [11, Appendix A and Appendix B]. We also introduce the vector a
that collects the perturbing elements of the covariance matrix Ay(¢):

a=ay(¢) = (a1,e(¢),a2,(9), a3 ¢($),a1,6(9), as¢($), ase(9), aze(d), as e(9))
with a; ¢(¢), i = 1,...,8, defined by

3+ a1 () 0 1+ aqe(p) as () 0 as ¢(¢)
A1 (o) = 0 1+ az.(9) 0 ;o Doy(e) = 0 ase(®) 0
1+ aq.(9) 0 3+ ase(¢) ag,o(®) 0 aro(P)

In what follows, with a slight abuse of notation, we write the conditional covariance matrix Ay(¢) as a function
of a

Aute) = Aarlo) = A = ( 312 322 )

where
3 —+ aq 0 ]. + a4 as 0 as
Aq(a) = 0 1+ as 0 , As(a) = 0 as O
1+a4 0 3+ as ag 0 ar

At this point we may write the 2-point correlation function K3, in (2.4) as a function of the perturbing
elements a; ¢(¢), ¢ = 1,...,8 of the covariance matrix:

_X !
8 (2m)2/det(A¢(9))

where Ay(¢) is the covariance matrix of the Gaussian random vector (V f¢(z), V fe(y))

K 0(0)

q(ae(9)),

% /? a1,0(0) 0
a 0 2L 0 a0 (¢)
A2(¢) — al,é(¢) 8 % 0 )
0 az.0() 0 2

see [11, Appendix B], and ¢(ag(¢)) is the conditional expectation

1 / / 2 2
ay = 2123 — 25| - Jlwiws — w
q(ar(9)) NN ) ]R3><]R3| 123 — 23| - [wiws — wy
1
X exp{ - 5(21, 29, 23, W1, Wa, w3) A () "1 (21, 22, 23, w1, Wa, wg)t}dzlede;gdwldwzdwg.
Note that there exists a constant C' > 0 sufficiently big such that, for C'/¢ < ¢ < m—C/{, the covariance matrix
Ay(¢) is nonsingular, in view of [4, Proposition 1.2], this guarantees the existence of the inverse Ay(¢)~! and
the validity of Kac-Rice formula on this range as discussed in Section 2.1. The determinant of Ay(¢) can be
easily computed so that we obtain

P !
8 72, 07 - 403 () O0F - 403 ,(9))

(3.5) Ks.0(9) q(ar(e)).



8 V. CAMMAROTA AND I. WIGMAN

3.2. Taylor expansion of the two-point correlation function. To study the asymptotic behaviour of the
variance in the long-range regime, we investigate now the asymptotic behaviour of (2.7), i.e., the high energy
asymptotic behaviour of

(3.6) Aﬁ/m(yg e a(ae(6))do — (BIN*(f,)))?
~ 8o\ JU— 103 (0)/ 31— 407 (0)/3D) o

In the range ¢ € (C/¢,m — C/{) the conditional covariance matrix Ay(¢) = A(a) is a small perturbation of the

6 x 6 matrix U where
3
_(U 0 _
U‘(o m)’ Ui = ?

The elements a;, ¢ = 1,...,8 are in fact uniformly small for ¢ € (C/¢, 7 — C/¢), see Lemma 4.1 below.
Consequently we may use perturbation theory [13, Theorem 1.5] to yield that the Gaussian expectation ¢ is an
analytic functions of the perturbing elements a;, i = 1,...,8 and we can expand it into a Taylor polynomial
around a = 0 as follows:

01
10
0 3
(

TG/t sin ¢

ot \J(1— 403 ,(8)/X)(L - 403 ((9)/7)

1 < 02
0 + 5 Z Ailiz’z [aah@aiz q(a>:| a=0

i1,i2=1

q(ar(9))do

= Ao q(0) + i A e {G%Q(a)}

: 3 a=
i1=1 1

1 < X " g ot
o Asyini {7 } - Asigisi { }
+ 3' . Z 1 vizis,f 8&1'180,1'28@1‘3 Q(a) a=0 + 4‘ L Z 1 viziia,f 8&1'130,1‘28@1‘36044 q(a) a=0
11,12,13= 11,12,13,14=

T—C/¢

(7 + o O(l[all’) do
o/t \J(L-403,(6)/X})(L — 403 ,(6)/X?)
where we adopted the following notation: for iy,149,i3,94 = 1,...,8,
T—C/e
Agy = ! sin ¢ do,
o/t J(1—403,(8)/X)(1 — 402 ((9)/2)
Aiy o= o ai,.¢(¢) sin ¢ do,
o/t y(1- 403 (6)/A)(1 - 4a2 (9)/73)
m=C/tL ) s
A e @iy 0(8) -+~ a4y 0(0) dnods. h_254

o \/(1 — 403 ,(¢)/A2)(1 — 4a3 ,(6)/22)

Note that to obtain the exact asymptotic behaviour of the variance of the total number of critical point we
need to sharpen the bounds obtained in [11]; for this reason we have expanded ¢ in (3.7) up to order four
(instead of order three as in [11]).

3.3. Asymptotics for the two-point correlation function. We now study the decay rate of 4;, ;¢ In
particular, we improve the bounds obtained in [11, Lemma 4.3 and Lemma 4.4] for the A;, ;. ¢ to O(¢?). Such
refinement requires a more careful investigation of the tail decay of the perturbing elements as(¢) of Ay(¢)
that are expressed in terms of the first four derivatives of Legendre polynomials as shown in (3.3)-(3.4).

The tail decay, for £ — oo, of the first four derivatives of Legendre polynomials, is derived in Appendix A
using the high degree asymptotics of the Legendre polynomials and their derivatives, i.e., Hilb asymptotics. In
particular, to improve the bounds obtained in [11], we apply here a more general version of the Hilb asymptotic
derived in [12, Lemma 1] (see also [21, Theorem 8.21.5]).

All the work for establishing the asymptotics of the perturbing elements ay(¢) (see Lemma 4.1 in the next
section) leads to the high energy asymptotic behaviour of the terms A;, ;¢ in Lemma 3.1 and Lemma 3.2.
In particular we see that the main contribution to the A;, ;, ¢ comes from the leading non-oscillatory terms
in the Taylor expansion (3.7), so we obtain Lemma 3.1 and Lemma 3.2 by bounding the contribution of the
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oscillatory terms and error terms.

We first show that the first term in the expansion (3.7) cancels out the squared expectation in (3.6):

Lemma 3.1. As/{ — oo,

Lo a(0) - R W) = 5 [20+ 23 10n] at0) + 0

Then we study the high frequency asymptotic behaviour of the other terms:
Lemma 3.2. As { — oo, fori # 3, we have A} A; , = O({?), whereas for i = 3, we get

2 3 253 2 2
)\ZAS,Z = [—16¢° — ?é logﬁ +O(€ ),

for (i,5) # (3,3),(7,7) we have A2 A;; 0 = O(¢?), instead for (i,j) = (3,3),(7,7) we have

1 1 26
A%Asg,,g = log ¢ + O(£?), A§§Am = [3%3 — = Plogl| +O(£?),
™
for (i,4, k) # (3,7,7) we have A2 A;j0 = O(£?), and
23 2% 5 2
)\é 514377)( = —ﬁf logﬁ + O(f ),
for (i, 4, k,1) # (7,7,7,7) we have N} Aijiie = O(£?), whereas
x1a _ 2 piogry o2
tqpArmrre = 5t log b+ (£%).

The proofs of Lemma 3.1 and Lemma 3.2 are postponed to Section 4.

In view of Lemma 3.1 and Lemma 3.2, we immediately see that, as £ — oo, (3.6) has the following leading
terms

’ 1,5 2:3, 1 s 29-3, o)
Var(N“(fe)) = 5 [% + 10g4 a(0)+ [—w - P og [aag‘I(a)L:o
1 3 6 9 2 173- 27 2 2
g {3% 2€ 10g4 {Ba 8@7 (a)]a_ 8 Flogt [8(1 8a3 (a)L:O
1] 22, ok ot 9
(38) + 8 {7725 1og4 [8a38a76a7 a a=0 { } 8a78a78a78a7 e(a ):|a:0+0(€ )

3.4. Evaluation of the leading constant. Let Y = (Y7,Y3,Y3) be a centred jointly Gaussian random vector
with covariance matrix
3 01
010 |,
1 0 3
and let Z,., r = 0, 2,4, be the Gaussian expectations of the form
I, = E[V1Y; — Y7|(Y1 — 3Y3)"].
The relevant derivatives in (3.8) and ¢(0) are evaluated in the following two lemmas. We first note that

(3.9) q(0) = (E[V1Y3 - Y5[))* = I5.

U, =

Lemma 3.3. One has

0 1 1
(3.10) [@Q(a)}a:o = ﬁ[—313 + 570T2],
1) | S )| = gl — TP
' 8a78a7q A amo 261070 T 32
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1

62
(3.12) {aagaaf(a)}a:o = 5l2° 82T —2* 3T T, + 221014 n 2213}
3 1
(3.13) {mq(a)} = gl 8 T 4 2T BTy - 21 80T, 4 20T — 2 - B3],
3.14 A AL PO LY A
(3.14) 8a78a78a73a7q<a) a=0 224[ 1320+ 14— 20 3DL

Substituting (3.9) and (3.10)-(3.14) into (3.8) we obtain the following simple form for the variance

[T — 23 512 5  [20-3-17Tp— 2% 11 Ty + Ty)?
910 &+ 918 2

In the next lemma we compute the Gaussian expectations Z,., r = 0, 2, 4.

(3.15) Var(N¢(fe)) = Plogl + O(%).

Lemma 3.4. One has ) 5 8 =2
===,  L=-—2, ==L
0 V3 ? V3 ! 3v3

The proofs of Lemma 3.3 and Lemma 3.4 are postponed to the next section.

The statement of Theorem 1.1 now follows upon substituting the values of Z,., obtained in Lemma 3.4, into
(3.15).

4. PROOFS OF AUXILIARY LEMMAS

To prove Lemma 3.1 and Lemma 3.2 we first derive, in the next lemma, the asymptotic behaviour of the
terms appearing in the perturbing elements of the covariance matrix Ay(¢).

Lemma 4.1. Let ho(0), ho(1) and h1(0) be the constants ho(0) = \/%, ho(1) = —%\/g, h1(0) = \/g and let
U 04w e the functions Py, g4y = (0 +u+1/2)¢p —nn/2 — /4 where £ > 1, n,u=0,1, ¢ € [C/l,7/2] and C
be any positive constant. We have the following estimates.

For a; o(¢), i = 1,2, we get

af (¢)
(4.1) 62(;‘; o7 =970,
a3 () 1 , 1
(4.2) 62(21 O = h2(0) cos? wg,g£81n¢ + 2h3(0) sin g ¢41 cos wwm
1 1
— ho(0)ho(1) sin g ¢ cos wwm —hZ(0 ) sinpg 1 cos o, CEaZg p
1
+ hZ(0) cos ¢ cos g ¢ sin wwm +o o),
4
1
(4.3) m = hé(O) cos? on,lm + (25730(573)'
For Bi¢(9), i =1,2,3, we have
ﬁ%é(¢) 3
(4.4) BULIP = ¢ 0(™?),
B2,0(0) 1 —o_ o
(4.5) B+ 1) = —ho(0) COS¢07gCOS¢m + 72712042 1/2),
B3 (o _ _
(4.6) ﬁ%g =0 20,
Bso(d) . 1 Lo/—12\11 3 ; 1
(4.7) BT+ 1% —ho(0) sﬂlwo,éigl/z e jz::o ( i >2j€j + §h0(0) 51111/)0,4461“/2 sin'/2
1 . 1
+ 3h0(0) COS ’lﬁol.*.lm — ho(O) Sin waeW
— ho(l) coS ’(/1074 L + hl(O) Sin’l/}LgAl(¢) L

0412450t/ ¢ 04+1/25in1/2
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1

1
_ §h0 (0) (COS w07£+1 + 5 COS ¢07[_1)m

1

_ R —2-1/2 —2-1/2
3ho(0) cos ¢ cos o ESYERNEETEp +{ O(¢ )
B33 1(9) . 1 . 1
(48) @(?efl)?’ = hg (O) 811’12 1/’0,5@ — 6h% (0) Ssin ¢)07g COS ¢07g+1m
. 1
+ 2h0(0)h0(1) Sin wo,[ COS w07gm
1 : . 1 1
_ ZhO(O)hl(O) sin g,¢ sin i ¢ (762 %o cos ¢ — —W)
. 1
+ h% (0) sin g ¢(cos ¢g ¢+1 + 5 cos ¢0’€_1)£2"2
sin® ¢
1
+ th(()) sin g, ¢ cos ¢ cos g p———5— + qiflO(E*Q),
' " 02 sin” ¢
6;[(925) 4 .4 1 _3 _3
(49) W = ho(O) S1n wo’zm + (b O(é ),
where

A(¢) = [(a+1)

2,1](1f¢cot¢>)_ (a+1)*-p* ¢

4 2 4 e

And finally for v; ¢(¢), i = 1,2, 3,4, we have

(4.10) m = ¢~ 212007 21/2),

72,é(¢) . 1 —2-1/2 —2-1/2
(411) W = 7h0(0) Slnwo’ém —+ ¢ / O(E / )7
’YS,E(@ _ : 1 —2-1/2 —2-1/2
(412) W = _hO(O) Slnwo’e COS (bm + qb / O([ / )7
1
74,6(615) _ 1 —1/2 il _ 71
(4.13) S ho(0) cos wo,eﬁp Ve jgo i )yw 2hg(0) cos ¢0,Z€1+1/2 sin'/Z ¢
1 1
+ 4 cos ¢1’e+1m + ho(0) cos ¢0,em
. 1 1
— hO(]-) Sin Zboy[m + hl (0) [0} wl,ﬁAl(qs)m
3 ) . 1
- iho(O)(Sln Yo,e4+1 + 3sin ¢0,£—1)m
. 1 —2-1/2y/p—2—1/2
— 6h(0) cos ¢ sin 1/10,/3—[1“/2 SV +¢ 20(¢ /2,
2
74,[(@17) 12 2 1 1
(4.14) S h(0) cos qpo,ggsin(ﬁ + 4ho(0) cos 91 e41 cosqpo’gm
. 1 3 . . 1
- hO(O)ho(l) S wo’[ COS ’(/JO’EW — §h3(0)(sln ¢0’Z+1 + 3 sin @[10’571) COS '(b()jm
1
— Gh%(O) cos ¢ sin g ¢ cos Yo p———5— + ¢_1O(€_2),
£28in” ¢
3
Vi 0(9) 3 3 1 —2-1/2/p—2-1/2
4.15) —>—— = hy(0)cos —— + 20(¢ / ,
( ) 86(64— ]_)6 0( ) %7%3/2 in3/2 & ¢ ( )
4
’Y4,z(¢) 1 _ .
(4.16) BU+1)E h(0) cos* %,zm +¢20(7?).
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Proof. The proof follows immediately from the tail decay of the derivatives of Legendre polynomials derived
in Appendix A. Recalling that o ¢(¢) = Pj(cos ¢) and in view of (A.7) we obtain

CY1,£(¢) = i ; —2-1/2 —2-1/2 1 _9
e+1) 0 (0) Sm%lglﬂ/z sinl*1/2 4 T o[t )+ 0).

Similarly, plugging (A.7) and (A.8) into as (¢), we have
1
) 1 ~1/2\ 1 1 1
: =h _— ———h —_—
Wt ) 0(0) cos o ¢ e JZ:;) ; 0(0) cos o ¢ (2l 2 g
v ho(0 1 £ ho(1) si .
/112 Sin1+1/2 (b + 0( )COS 1/10,2 [1+1/2 Sin1/2 v 0( )Sln T/JO,Z £1+1/2¢Sin1/2 ¢

1 . 1
+ h1(0) cos ¢1,3A1(¢)m — ho(0) sin ¢0,£—1m

+ 2ho(0) sin¢g,¢41

o —2-1/2/p—2-1/2 —2
+ ho(0) cosqivsmi/)o,eelﬂ/2 TR +¢ 120(¢ 2y 4+ 0(72),
Bielo) 1 20— 1/2(p—2—1/2
€3/2(€+ 1)3/2 = 7h0(0) COS¢O,££1+1/2 Sin1+1/2 (Z; +¢ O(e )7

and the asymptotic behaviour of 23/5523%)3/2 and Z;E;_ﬁ(f))g as in the statement. From (A.7), (A.8) and (A.9) we

obtain the decay rate of 53/f?é§(f;3/2, szﬁ(f))z and zziﬁf))r Finally, in view of (A.7), (A.8), (A.9) and (A.10),

we obtain the asymptotic behaviour of e}‘&ﬁ‘f)),,. O

We exploit now Lemma 4.1 to obtain the bounds for the terms Ag,, A;, ¢ and A;, 4,0 for k = 2,3,4,
i, .. 0 =1,...,8.

Proof of Lemma 3.1. In view of (4.1) and (4.2) we first obtain

©—C/e .
Aoe = 2 Slzl(b 2 2 dé
o/t J(1=103,(8)/03)(1 ~ 402 ,(6)/7)
—C/e 2 4
_ / 1 +2a2*f2(¢) 42 30‘2{5‘1’) sin gdo + O(£~2)
cre AL Al
T—C/l 2 T—C/l 4
— cos (C/0) +2 / 0‘2‘%2@) sin¢dp + 2 - 3 / 0‘2’{5@ sin ¢de + O(072).
c/e g c/e Ay
Now, from (4.2), we have
O/t a3 (¢) T=C/ETh2(0) cos? o ¢ —1/2 sin 1) cos cos Y ¢ sin
9 s . dé = 2 0 R 9 h2 0 0,0+1 0,6 ha(0Vha(1 0,4 0,4
/c/z e /C/e T Gsmg ( ! ) O s o) g
—R2(0 cos Yg,¢ sin g p—1 1200 COS’(/)O,gCOS(ﬁSinl/)O,g] b 012
Oz, PO a5, sin ¢de + O(¢™)
m=C/t [h2(0) cos? v
4 2o\Y) O 10,6 —2
—2/0/6 Y }sm¢d¢+0(€ )

4 T—C/t 4 210 +1/2 Al sin 6d o~
—W/C/z €sin¢COb [0+ 1/2)¢ — /4] sin pdp + O(£™7)

21 W*C/Z 2 1 TI'*C/Z

- ﬂ/ do + —7/ cos[2(0 + 1/2)¢ — 2m /4]de + O(£72)
4 c/e Tl c/e

_2 -2

and from (4.3), and the equality cos® 1, = 3 + §[— cos(2¢(20 + 1)) + 4sin(¢(2¢ + 1))], we have

©—C/¢ 0/21@(415) 1 n—C/t )
2- ’ i =2.3=— 4 4 9
3/0/£ X sin ¢d¢ 3£2 /C/z ho(O)Sind)COs Yo.0dp + O(072)
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=2-3- +0(7?).

3921 (¢t 2-3%log !
dop+0(7?) = —=
82 (2 /C/e sin ¢ 9+07) w2 L2

Therefore the statement follows since we obtain

2 2-3%logl
Wos o(0) - (] = 3¢ |3+ 25 !

2-3?
+ 0(6_2)] q(0) = [%3 + %fz log £| q(0) + O(¢?).
7r
(]
Proof of Lemma 3.2. In view of (4.1), (4.2), (4.4) and (4.6), we immediately obtain that A; ¢, A2, = O({~2):

16 (70" B34(¢) T Bl9)
Ay g = —— : sin pdp = —16 : sin pdg + O(0~2) = 002
=5 Ly T e eds =16 [ S snods + 07%) = 0673
16 [/ 37 (9) O/t Bt (9)
Agp=—— : in ¢pd¢ = —16 : ingpdg + O(£~2) = O(L~?).
205 Ly TR e = 16 [ S gds k01 =00
Form (4.1), we have
16 [*C/t 53 ,(9) 16 [T—C/¢ 3 4a2
Agp=—= L in gpde = —— 2 1+ S—2| singdo + 002
S L ey e e LR ) ) Bl 1455 [ sinoto + 01072,

where, in view of (4.8), we obtain a leading non-oscillatory term in

16 [7C/¢ _ T—C/t B2 (§)
S/, Bedorsmodo=—16 [ T SCE oot 0
¢
T—C/¢
= _16 [h% sm ¢0 Z} sin pdo + O(£72)
C’/ﬂ

T—C/e
= —16 h3(0 %/ [ — - cos(21/)0 Z)} do + 0 ?)
1
’

=-16h3(0) - - 7+ O0((7%) = -—+0((7?)

l
and, from (4.2), (4.8) and the equality sin® ¢ ¢ cos? 1o ¢ = § cos®[(2¢0 + 1)¢] = L + & cos[2¢(2¢ + 1)], we have

5t [ o Ganode =162t [ BED B gas 00
_ —16gh4( 0L /wC/Z {sin2 wojé gos2 %,e} sin ¢dop + O(02)
2 Jes sin?
r—C/e
- 1634h4(0)é£12/c/€ / Sirll¢d¢+0(€’2)
% ;42 7 [log (cos (;)) —log (sin (;))} + 02
_E 3262 log ¢+ O(£3).

Then
2 3 25 -3 2 2
)\€A3,g = —166 — 76 10g£+ O(g )

The terms Ay, Ase, Ao, A70, As e are O(072). In fact, for Ay, using (4.1), (4.2), (4.5), (4.7) and the
trigonometric equality — cosg ¢sing e = 1/2 cos[(2¢ + 1)¢], we have

_ 16 s Ba.e(¢)Bs.6(9) .
A= /C/e (1= 4a3/32)"2(1 — daz /g2 o 0

_ Lo e in pdep + O(£2

=5 [, Bl sinsds + O
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T—C/l .
— 16 / {—ho(())“sw““os‘b] [—ho(o)smm} sin ¢do + O(£~2) = O(£72),

o/t 01+1/26in' /2 01/2sin'/? ¢
for As g, form (4.1), (4.2), (4.6) and (4.10), we immediately have
As
_ 8 / e 71.0(9) sin gdg — 22 / e %2.(9)5%4(9) sin d
A Jope (=403 /A)2(1 — 4o} /AP X Jepe (L—4a3/A0)%2(1 — 4a2/N))1/?

©—C/¢ T—C/t o 2
= / ”1754(@ sin gdp — 8 - 4 / hcbcue ¥ Aies (@f 24(%) sin gpdgp = O(072),

cye 14 o/ !

the asymptotic behaviour of Ag ¢ follows from (4.1), (4.2), (4.4) and (4.11)

Ag 0
©—C/¢ . . )
- %/ D) 2727@(@ 372 sin ¢pd¢ — 8—44/ o1,0(0) 57 (0) in oo
A Jepe (L= 4a3/07)Y2(1 - 4af /A])/2 N Joje (1= 4a2/X2)172(1 — 403 /22)3/2
T—C/¢ 7o €(¢) ) Y n—C/¢ 1 . . , .
= 8/0/£ 64 S ¢d¢ + O([ ) = —8/0/Z m Slnwo’fho(o) Ssin ¢d¢ -+ O(g ) — O(f )’

the asymptotic behaviour of A7, follows from (4.1), (4.2), (4.8) and (4.13), in fact we have
Az

= 8 e 74.0(9) sin ¢pd¢ — 8-4 /W_C/Z 0‘2,€(¢)/3§,e(¢)
A c/e (1 —4a3/72)1/2(1 — 43 /X\2)1/? A Jeg (1—4a3/72)3/2(1 — 403 /X2)

72 sin ¢pd¢

7—C/t n—C/¢ . /2
-3 / a(9) sin pidd + = — / van(@)ad (#) sin gdg — 22 / oo (832 () sin b + O(£2)

A Jege )‘71235)\7? c/e A c/e
8 2 T—=C/t 16 T—C/l
: 9 _
Nz (1 - g) / 4.0(9) sindde + o5 / 74,0(9)03 ((¢) sin gdd
c/e c/e
8.4 [TC/¢ ) ) ) g [mC/t . ,
- gT/ 2,0(0)B3,4(#) sin gdp + O(L77) = ?4/ Ya,0(¢) sin pdp + O(L77),
Cc/e c/e

where, using integration by parts,
8 W*C/f
i [ mdo)singas
c/e

1 TF—C/Z
= 8ho(0)— / S0 G b do

1/2 o/e Sin1/2¢

~

m—C/L

1 m—C/t 1 [T gin](0+1/2)¢p — 7 /4
:8h0(0>m {Sin[(g+1/2>¢_7r/4] sin'/? ¢‘0/e - 2/0/12 = —Zin/l/zi = ]d¢}

= 8\/353% [sin[(z +1/2)7/2 — 7/4]sin'/2(x — C /L) — sin[(£ + 1/2)C /¢ — 7 /4] sinl/Q(C/z)} +0(™?),

and finally Ag, follows from (4.1), (4.2), (4.5), (4.7) and (4.12):
As

_ 8 o/t v3,¢(P) . 8.4 [TC/ a2 0(9)B2,6(0)03.6(d)
by /C/e (1— 402/32)172(1 — da2 /23172 ¢do = Yl /C/z (1—4a3/22)3/2(1 — 4a}/A?)

g [TC/t i 9 1 T=C/ gin 4o cos ¢
= 64/0/@ V3,0(®) sinpdp + O(L™7) = _ShO(O)W/(;/Z T Zg

72 sin ¢pd¢

dp+0(™?) =0(?).
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We study now the asymptotic behaviour of the higher order terms of the form A;  _;, » with £ = 2,3,4.
Note that each term of the form

Ail,.‘.ik,é with (ilv .. ) 7é (3 3) ( 7) (7 7) (37 7; 7)7 (7a 77 7)? (77 7a 77 7)7
is of order O(£~2). This implies that, to prove the statement, it is enough to analyse the high energy asymptotic

behaviour of the following terms.

We first note that A7z, produces a leading non-oscillating term, in fact

A /W_C/E a2 ,(¢) in 6d
7T = - sin
cle (1—4015/)\?)1/2(1—404%/)‘%)1/2

where
82 4 ap 7 ® 16 o3 f Y
PRI L ST S ST T T T
Tl L A (21 BVl PV (R o 12y L A (e T )
so that
m=C/t \2 g3 [m—C/t
(4.17) Agp o =82 / " (1 +2 2) sin ¢d¢ — 7z / Ysa235 sin pdg + O(L2).
cye cle
Now, in view of (4.14) and (4.2), we obtain
W—C/f 2 1 TF—C/Z 2 2
g2 / 2 0 gdo = 8h3(0) cos e+ O(6~2) = 232 4 0(02),
cre L CJcye ¢

n—C/l 2 2 T—C/e 2
Q2 T4 2 2 2/ €08~ Yo,r 2y CO8” Y00
2-8 / —2sinpdp =2 - 8 /C/Z (ho(O) Tono )(ho(o) o )sm¢d¢—|—0( 2

1 %3 1 1
=2 82h4(0)£2 /C/e {§+§COS(4¢0,£) 5003(2¢oe)}ﬂd¢+0( %)

:2-82h3(0)§—/ ——do+O(L7?)

862 c/e Sln¢
2231 2.3-261
2 _
—2.2.822 3 iogr 4 0(?) = 252 Lo 4 0(07?),

for the last term in (4.17) we use (4.8), (4.13) and

cos? 1o ¢ sin’ g ¢ = é + ! cos[2(0 +1/2)¢ + 7 /2] + i cos[2(0 +1/2)¢p — /2] + écos[2(2£ +1)9)

4
to obtain
g3 [m—C/t ,
- ﬁ/ Yacua 35 sin pd¢
c/e
T—C/e o
=83 _ costoe _costor ) (1o, S0 Yo »
=5 [ (o0 ) (o0 e ) (O st ) sinoao-+ 072
1 (™9 cos? 4 4 sin®
_ _ Q314 0,0 0,6 o
- 8h()£2/w o dg+O(L™?)
1 ©—C/¢ 1 9. 28 1
_ _Q2p4 oy :
Sh()gz/c/l g 10+ O = == logl+0(C).
Therefore
1 32 3.261 28 1 26
2 2 3 ) )
)\551477,@:)\12 {EJF 2 521 gl — =@ log? +O(£72)| = 32¢ fﬁﬂ log ¢ + O(£%).
We apply now (4.1), (4.2) and (4.9) to study the asymptotic behaviour of Asj s
TF—C/K a2 (¢)
Ann y = 3, &
33,4 /C’/g (1 _ 40[%/)\?)1/2(1 _ 4@%/)\3)1/2 Sln(l5 ¢
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where
ﬁ4
) =1 daz
that is
Trfc'/f 54 w— C/Zﬂ
Agz g = 162/ 3 sin ¢pdep = 162/ = sin pdp + O
e c/e )\?(1—4045/)\2)5/2(1—4a%//\§)1/2 c/e )\6 S )
1 [t sin 1 ¢ 2 322 2.3.271
= 16— ha d 16°— == log —— = _log/
B [, MO+ 0 =16 G g 01 = 2 G ew 40
since sin? 1o ¢ = 3 — £ cos[2¢(2¢ + 1)] — 3 sin[p(2¢ + 1)]. Therefore
1 3.27 1
/\52143374:)\@[ 7z logl+O(” )] = log £ + O(£?).

The terms As7 ¢ and Az77¢ are both O(£~2) since their leading non-constant term are oscillating. One has

T as,e(d)ar,e(¢)
Aur ) — 3.0 7.0 in od
37,4 /C/E (1—404%/)\5)1/2(1—404%//\?)1/2 bln¢ ¢
where, by (4.1) and (4.2),
PN
as,e(p)are(¢) — 16 S Ny — 168 53 74 o1,
(= 403/N) 20— 4a30)12 O = 4aB/W)1/2(1 — 4aZ/N])1? o H Ol
Then, in view of (4.8) and (4.13), we have
T—C/¢ ﬁ
Aszo=—16-8 / o i sinodp+ 0((?)
c/e
m=C/e sin? ¢ cos 1
=-16-8 h2(0 0L 1 R (0) ——2L | sin gpdp = O (¢
L, o ] oot snods = 0@
since
/Tr—c/é sin® wo,f czos o, do = O(1-112).
c/e sin!/ )
And for Av77 ¢ we write
=0yt a3 (6)
A _ 7.0 i bd
f a /c/e (1= 4a3/38)1/2(1 — daz gy 2 o1 00
where
a7.(%) =84 L Oo()
T i s Ol
and, from (4.15),
. 1 =/ cosBap
Q313 0.6 5, -2
Arrre =8 h°(0)£1+1/2 /C/e sin'/2 ¢ 1o =0t
The last two terms we need to study are Asy7 ¢ and Azr77.¢; Asyre is defined by
m=C/e az,o(@)az ,(¢)
A: = . ’ in ¢d
et /c/tz (0~ a3/ 21— daz/agie
where
4o¢2[ﬁ§ 2
B3 2 [74+4&2**2J
as,¢(¢)a? (9) — 16 4037535 S — 16 - 82 Ps i +O0(—— ! ).
=120 — el T~ 4030 21— 42 3012 o O
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Now, by applying (4.1), (4.2), (4.8) and (4.14), we have

2 T 53 ’74
Asg7rre=—16-8 / sin ¢pdp + O
377, o 758 (=2
m=C/e sin? 1), cos? g,
6-8 /C/e { 5(0) 5o 5(0) Tsing sin ¢pdg + O(£72)
21281 , 221,
=-2-16-8 ?27, ogl+0( %) =— B ogl+O(L72).

Therefore
2 3 29 2 2
AE§A377,[ = 7ﬁ€ 10g€+0(€ )

Finally for A7777, we apply (4.1), (4.2) and (4.16), so that

s az () T—C/t 4
A = 7.t 3 d —4 84/ 74 d
e /c/g (1- 404%/,\%)1/2(1 _ 404%/)\%)1/2 sin ¢d¢ e 7id sin ¢pd¢
L[ cost 2.3.911
4p4 0,2
o T —— —1o
=50 [ a0 = S et 0,
and
2 1 2 1 3.2111 29 ) )
)\ZIAW?M = )\gﬂ e logl +0(L7?)| = Pg log ¢ + O(£2).

We prove now Lemma 3.3 and Lemma 3.4 stated in Section 3.4.

Proof of Lemma 3.3. Let

4(a, 21, 22, 23, w1, W, w3) = W p{ 21722,23,w1,w2,w3)ﬁ( )" 1(21,22723,w17w2,w3)t}a
e
and
a; = (0,...,0,a;,0,...,0), i=1,...,8,
where a; is the ith perturbing element of a. Since {(a, 21, 22, 23, w1, w2, ws3) is an analytic function of the
elements of the vector a [13, Theorem 1.5], to simplify the calculations note that, for example for the jth
derivative with respect to a;, we have

o7 Y ‘
|:8 ]q( tlth;zlaZZawlan)}azo |:8 ] (a’mtlatQaZhZvalan) ai:0’ 7':17"'78'
Now, using Leibniz integral rule and a computer-oriented computation to evaluate the derivates of ¢, we obtain
the statement of Lemma 3.3. O

Proof of Lemma 3.4. To prove the lemma it is convenient to introduce the transformation W, =Yy, Wy =Ys
and W3 =Y; + Y3, so that
I, = E[[V1Ys — Y5'|(Y1 — 3Y3)"] = E[[W1 (W3 — W1) — W3| (W1 — 3(W3 — Wh))"].
We write now Z,. in terms of a conditional expectation as follows:
I, = By, [E[[W1(Ws — W1) — W3 (W — 3(Ws — Wh))" W5 = t]]
and note that
t2

T 47

WAV — W) — W31 (s — 3% — W)y Wi = ¢ = & ||

(42, — t)r}

where Z1, Z5 denote standard independent Gaussian variables.
In the case 7 = 0 we only have the chi-squared random variable ( = Z? + Z2 with density

]. v
fc(”):?f_f, vER,

[N
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so that we immediately have
t2

t2
E =E||l— —
and, since W3 is a centred Gaussian with density

fVV:s(t): e 16,

—Zi - 73

we obtain
22

1 t2 t2 t2
Tg=—— [ e B (244 %+ )dt = —_.
0 m/ﬂ@“( ””4) 3

For r = 2, 4 the proof is similar with the only difference that now we need to compute the joint density function
of ¢ = Z; and ¢ = Z? + Z2 that is given by

82 1 zl +22
= Pz Z2+ 72
f(€7C) (u,v) Oudv 2y <u. Zi+ 25 <v] = o auav // dz1dz,

Z1<u
0<Z2+2Z2<v

i.e.

5 o5 5 /" o da f _Zﬁzz dzo 0 <u < /v,
0 u> o,

v

e 2

217r dudv f_ Vo dz fﬂ _21+22 dzo  —y/v<u <0,
1
%\/vj]l{vzoﬁ wE(—VT,\/0)}>

so that, for r = 2,4, we have

2 1 [ . VU (du —t)"
E||> — 22— 22| (42, — t)" (46 — T le =
[4 11— 23| (42, t)] [ (4€ t] 27T/0 7 Yle dv/_ﬁmdu

APPENDIX A. ESTIMATES FOR THE FIRST FOUR DERIVATIVES OF LEGENDRE POLYNOMIALS
We start with the following lemma:

Lemma A.1. Fora+1>—-1/2 and a+ 5+ 1> —1, we have

(50 9)™" (con3) P M (cosg) = L2 <bm¢)1/2[z Anf0) S o

where
N=1(+ %(a+5+2)
and
O = GTO(NTT0)
the O-therm being uniform with respect to 6 € [0, 7 — ], € > 0. The coefficients A, (@) are analytic functions
in0< ¢ <m—e, and are O(¢™) in that interval. In particular, Ao(¢) =1 and

B 1—¢coto (a+1)% -3 1)

Ai(p) = {(aJrl) 4}( % ) 1 tan2.

For a proof of Lemma A.1 see [12, Lemma 1]. We will apply Lemma A.1 with « = -1, 3 =0 and m = 1,2, 3,
ie.,

)1/2[214 W((C+u+1/2)¢ )+¢m0((€+u+1/2)7m)}’

PZ+M(COS¢):( €+u+1/2)

sin ¢
with v =0,1,2...
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Lemma A.2. The following asymptotic representation for the Bessel functions of the first kind holds:

1/2 oo
I () = (2) cos(x —nm/2 —w/4)) (=1)k(n,2k) (22)2k
T P
1/2 oo
— (2> sin(z —nw/2 — m/4) (—1)k(n, 2k 4+ 1) (Qx)—Qk—l’
T P

where e > 0, |argz| <7 —¢, (n,0) =1, and
(4n? — 1)(4n? — 3%)--- (4n% — (2k — 1)?)

(n, k) = 22k |
For a proof of Lemma A.2 see [15, Section 5.11].
We will use the following notation: for n =0,...,m—1and u =0,1,2,...
¢ \1/2 Ju((0+u+1/2)9)
n,l+u = \-" An )
Prttu(®) (smqb) (4) L+u+1/2)"
so that we have
(A1) Py (cos ¢) = Z Prtu(@) + TOUL™).
n=0
Let
2\ '/? 1 A(¢) 1
m) = (2) 7 0nRigee bnes = us Do nnf2= w1, salte) = o

In view of Lemma A.2 we can rewrite py, ¢4, as follows

pn,é+u(¢) = pnm@+u(¢)) + ¢n—1/20(£7r7n73/2)’

where
S 2% —n—1/2 1
Prrtu(P) = cOSYn etu Z(—l) B (2k) Sp 25 ( ZZ ( n—1/ ) ( )EJ it
k=0 =0 j=1
i S —3/2 1
_sm@bn,HuZ( )h(2k+1sn2k+1g¢zz( -n /)()w wioi—i
k=0 =0 j=1
(A.2) + ¢n20(07Tn3/2),

in particular for u = 0 we have

pn,@(@b) = Pn,r €(¢) ¢n71/20(€77“7n73/2)

= cos ’(/Jngz n(2k) S 214, @) (
0

Jj=

C =2k —-m—3/2\1 1
_Slnwnéz n 2k+1)5n 2k+1(£ ¢)Z( n / )@23

Jj=0 J

—2k—-n-1/2\11
j 07 2

+ ¢n—1/20(£—r—n—3/2).

We will use the following recurrence relations to express the first four derivatives of Legendre polynomials
in terms of Py, for u=0,1,2,3,4. We have [15, Section 4.3]:

Lemma A.3. For{=0,1,2...

(A.3) Fl(x) = éﬁ_ll)[xw) Pra(o),
(A.4)
Pé/(m) = (i(fj_ll))Q[xng(x) — 2$P[+1(£L’) + Pg+2(.’£)] + (xg—f—_ll)z[(]_ + 2x2)Pg(£L') - 51’P£+1((E) + 2P£+2(x)]



20 V. CAMMAROTA AND I. WIGMAN

12+1 2,
(A.5) P (z) = Zf Zgww )Pryo(z),

where
swoo(z) = —2%,  swai(z) =327,  swap(z) = -3z, swas(x) =1,
30.)1,0(1‘) = —(3I + 5$3), 3(4)1)1(.1‘) = (3 + 181‘2), 36()172(%‘) = —18x, 30.)1,3(1‘) =

5
3(4)070(.’5) = —(9:5 + 61’3), 3W011($) = (6 + 27$2), 3&)0’2(1') = —241’, 3(4)073(.’5) = 6,

3 4
/+1 "
(A.G) Pém(‘r) = m Z l Z:: AWy, v (JL‘)P@.,.U (13),
where
awso(z) =2, qws 1 (v) = —42°, qwso(z) = 627, 4w 3(z) = —dw, 4w a(x) = 1,

) =
awa o(r) = 92% + 622, ywo 1 (x) = —(422° 4+ 122), qwa2(x) = 6627 + 6, qwo3(2) = 427, 4wz 4(z) =9,
awio(z) = 262" + 4227 + 3, 4w1,1(2) = —(1462° + 78z), 4w 2(x) = 23122 + 30, sw1 3(z) = —134z, w3 4(z) = 26,
awo0(z) = 242" + 722% + 9, 4wo1(7) = —(1682° + 1112), 4w o(x) = 24627 + 36, 4wo3(z) = —1327, 4ws3 4(7) = 24.
We state now the main result of the section:

Lemma A.4. For any constant C > 0, we have, uniformly for £ > 1 and ¢ € [C/¢,7/2]

(AT) Pi(eos ) = o [ho(0) singsin i so (L) +072 2007 1/2) + 067,
(A.8)
PYc059) = <o [~ ha(0)sin? 6 cos o sa(1,6) g( S35~ 2m000)sing sinvo sasn(t. )7
+ Smid) [ — ho(0) sin® ¢ cos Yo 50,0(¢, ¢)] + Sljiqb [ho(1) sin® ¢ sin v ¢ S0,1(, @)
+ Siﬁid)[_hl(()) sin® ¢ cos ¢y ps1,0(¢, 9)] + sinﬂ 5 [ho(0) sin ¢ sin g ¢—150,0(¢, )]

+ ¢_4_1/2O(€_1/2) + O<¢—2)7

3
(A.9) PY'(cos0) = = [1o(0) Sin3¢SiH¢o,650,o(f,¢)jz_%< V) gy s s0alt. ) 4(0)
— 3ho(0) sin? ¢ cos Yo e1150.0(¢, ¢) ! + sin ¢s0,0(¢, ¢)fb(¢)l2}
2
— [ho(0) sin® ¢ sin 1o ¢50,0(4, )]
3
L [ho(1) sin® 6 cos o es0. (€, 6) + sin® dso1 (6 6) o(6) 1]
sin® ¢ 12
3
o SlﬁTqﬁ [ - hl(O) sin3 d)SiIl 1/)1758170(& (,25)}
2
;ﬁ@ [ ho(0) sin® ¢(cos tho,e41 + 5 cos o r—1)S0,0(¢, ¢) + sin ¢so,0(L, ¢)fb(¢)%]
2
e [sin® ¢so0,1 (€, ¢) f5(¢)] + Siﬁ 5 [sin ¢s0,0(0, @) fo(@)] + ¢~ CH20(0712) + o~10(0),
(A.10)
4 1 _
P} (cos ¢) = ¢ e [sm qbcoswogz V¥ ho(2k)s0 21 (£, d) Z ( Qk] 1/2)21]2

k=0 Jj=
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+ sin? ®s0,0(¢, ng)fb(qu) + 4sin® ¢ cos 1,041 Z ho (2k)s0,25 (L, qi))%

3
+ sin® @ s0,0(4, qﬁ)fb(q’)) + sin? 50,0, ) fo(o Z% + sin ¢sg,0(¢, (b)fb(qS) }
=2

3

: 5 {Sln ¢ cos o, Z )*ho(2k)s0,25 (¢, ) + sin’ ¢s0,0(¢, ¢)

SlIl k=0

| =

i 650.0(4,6) (0) g + sin® b0l ) fo(9) 5

1
siﬁ 5 { — sin” ¢ sin g ¢ kzo ¥ho(2k 4 10,2811 (¢, @) — sin® ¢so 1 (¢, ¢)fb(¢)%
+sin’ ¢50,1(£7¢)fb(¢)2 + sin® 6s0.1(4,6) fo(9) 75 Ly sin? dso. (6, 6)o(9) 1}
83 -
S o sin’ ¢s0,1(4, 6) S () + sin® gs0.1 (¢, ) fb((b)l}
4 1
Sijg p 71(0) sin” ¢ cos v ¢s1,0(L, ¢)j§0 ( E/ 2> o7 7 + s’ #s1.0(4,9) fb(gb)z]
B 04
m _Sin4 ¢51,0(€a ¢)fb(¢):| 1’1 ¢ |:Sln ¢31 1 Z ¢) fb :| {sin4 ¢32,O(£,¢)fb(¢):|
3 - 1
sijg(ﬁ |~ gho( )Sln ¢(Sln¢oe+1 + 3sing e—1 500 (4, 9) jz:(:) ( 1‘/2>21j£1j
2
+ sin® ¢so 2 (£, ¢) fo(¢) + sin® ¢so,0(C, @) fu(d Z% + sin ¢s0.0(C, &) fo(6) = }
2 7 3 ) 1
el §h0(0) sin® ¢(sin 1o o1 + 3sinvo,r—1)s0,0(¢, ¢) + sin’ ¢30,o(f,¢)fb(¢)ﬂ
e ¢ €¢) 1l 2¢ Zﬁb)()l]—F r? .3 ¢
T 5 0 (L DA )2+ S0l ARG+ g [sin® 630,1(6,6) /(9)
G £ 1
—— | sin® ¢s1,0(, ¢)fb(¢)} {bm $50.0(4, ) fu( ZZ sin ¢so.0(£; @) fo(¢)~ }
sin® ¢ L 8¢ =
2
+ s[5 03008 )] + o [ B0 (L0 (0)] + i [sn o061 (o)

+o 20(712) + ¢7P0(0),
where f denotes a bounded function on (0,7/2].

Proof. First derivative

To prove (A.7) we start from (A.3) and we rewrite P, and Pyyq as in (A.1) with m =1, i.e.,
{41

Piteos ) = S [coss Picos ) = P (cos )]
(A1) = S (003 0m0.(6) =0 (0]

+0(p71).
We rewrite now (A.11) in the form (A.2) with r =0, i.e.
cos ¢ po,¢(@) — po,e+1(¢)
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= cos #P0,0,¢(¢) — P0,0,e+1(¢) + ¢~ 20(73/?)

— cos ¢ [cosmz ) ho(2K) 50,24 (£, ) —SHN/)MZ Voho(2k + 1)so20.41(£,6)]

- [COb 0,041 Z )*ho(2k) 50,26 (£, §) — sin g p41 Z )V¥ho(2k + 1)80 2141 (£, ¢)}

k=0
+ 4100,
now note that

COS ¢ cos Yy ¢ — COSYp ¢+1 = Sin ¢ sin Yy ¢,
(A.12) L) R . ’
— cos ¢ sing ¢ + sin g g1 = sin ¢ cos Yo ¢,

(A.12) implies that

€08 ¢ po.e() — po,es1(d) = SIH¢SIH¢OEZ )¥ho (2k) 50,26 (€, 6)

k=0

+s1n¢coswogz Yho(2k 4 1)s0.2k41 (¢, ¢)
k=0

+ ¢—1/20(£—3/2)

and we obtain the estimate in the statement, in fact (A.11) is such that

?t;[cowpom) ~ possr (@)

s

(A.13) = - €2¢ sin ¢ sin vo,cho(0)s0,0(4, @) + ¢~ 2 /20(L7V2) + O(671).

Sin

Second derivative

We prove now (A.8). We start from (A.4) and we rewrite Py, for u = 0,1,2 in the form (A.1) with m = 2,
i.e.,

Pl(cos ) = gifnl‘;) [cos? 6Py (cos d) — 2cos SPrs1(cos 6) + Peya(cos d)]
+ :;n* ; [(1 + 2cos 8) Py(cos ¢) — 508 $Pr1(cos 8) + 2Pry2(cos ¢)]
(A1) = o (o b l6) — 2608 670.141(6) + 10.42(0)]
(A.15) + ) (o 6p10(6) — 2c050m1.041(6) + prsa(9)]
(A.16) + S0+ 2008 0) 0. (0) = 5cos 1 (6) + 20.142(6)]
(A17) i [ 200826)p14(6) = 5003 0p1141(0) + 201 042(6)] +0(672)

sin*
We first consider the terms (A.14) and (A.15); we rewrite them in the form (A.2) with r = 1. For (A.14) we
obtain:
cos” ¢ po,¢(¢) — 208 ¢ po,c+1(9) + Po,c+2(0)
= cos® ¢ po,1,6(¢) — 208 ¢ po.1,e41(d) + po é+2(¢) + ¢71/20(€7271/2)

2%—1/2
eﬂ 27

ox (™
(5 )s

= cos (b[coswogz ho (2k)s0,25 (£

J

"‘II

_slnwozz )¥ho(2k + 1)s0,2041(¢ 7 2]}

M



now, since

(A.18)
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11
_2c05¢[005¢oe+12 V¥ho(2k)s0 21 (¢, ) ZZ( 2k—1/2>£1<>21 J

1=0 j=1
11
2k —3/2
—bln%eﬂz V¥ho(2k +1) 802k+1€¢zz< . /)Eﬂ(>21 ]]
i=0 j=1
o (2K —1/2 o
[COS¢06+QZ V¥ho(2k)s0 2k (¢, ) Z ; 2°2
=0 j=1
11

_51n¢oe+22 ¥ ho(2k + 1) 50,211 (¢, @) Z( 2k 3/2)2(>2 2" ]}

1=0 j=1

<.

+ ¢—1/20(€—2—1/2),

cos? ¢ cos P s — 208 ¢ cos o 11 + COS Y o = — sin? ¢ cos o,
—cos? ¢ sin Yo, + 2cos ¢ sinpg 41 — sing 40 = sin? @ sin g ¢,
—2c0os ¢ cosPg g+1 + 208 Yo 42 = —2sin ¢ sin g 41,
2cos ¢sintg 1 — 28I Y p42 = —28in @ o8 Yo ¢41,

in view of (A.18), we obtain

cos® ¢ po,e(¢) — 208 ¢ po,r11(¢) + Po,et2()

1
2k;—1 2\ 11
= —sin ¢COS’(/JogZ ho 2k802k€¢2( />€j2j

j=0

— 2sin ¢ sin g p41 Z Veho(2k)s0 21 (¢, ¢)< 1_ 1/2)2

1
—2k—-3/2\ 1 1
+ sin ¢Slnwoez )¥ho(2k + 1)s0,2641 (L, ¢)Z( . />£j2j

k=0 =0 J

<.

— 2sin ¢ cos ¢o,e41 Z )*ho(2k + 1)s0,2641 (¢, §) (

k=0
+ ¢71/20(€7271/2)

—2k —3/2\ 1
1 0

and then the term (A.14) has the following asymptotic behaviour:

(A.19)

L(0+1)
sin* ¢

+

+

[cos? ¢ po,e(¢) — 2 cos po,e+1(¢) + Po,e+2(9)]

sin o i
siné p { — sin® ¢ cos 1o ¢ ho(0)s0.0(4, ¢)}
2
Sh‘; ; [sinz & sin .o ho(1)s0.1(¢, (;5)] + 6741200712 + 0(672).

For (A.15) we get

now, note that

(A.20)

cos® ¢ p1o(¢) —2cos G p1es1(d) + prer2(o)
= cos” p11,6(¢) — 2¢08 Sp11,e41(0) + Pr,1e42(9) + 92O ),

cos? ¢ cos Py g — 208 P oSy g1 + COSYy gy = —sin® ¢ cos Y1,
—cos? ¢ siney g + 2008 psiney g1 — sinahy g0 = sin® ¢ sinhy 4,
—2cos g cos Py pr1 + 20891 p12 = sin g f1(9),
2cos ¢sinyy py1 — 280ty p42 = sin g fo(9),

2 1o/_
.€4 p [ — sin ¢ cos o,cho(0)s0,0(¢, @) Z ( 1‘/2) 6%2% — 2sin ¢ sin g ¢11h0(0)s0,0(¢, ¢)%

23
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where f}, is a bounded function of ¢ € (0,7/2]. Exploiting as before the trigonometric relations in (A.20) we
obtain that (A.15) is such that

AEHD) 05?1 o(6) — 208 b1 01 (6) + presa(d)]
sin® ¢
(A.21) = ~£z ¢[_ sin® ¢ cos 1,001 (0)s1,0(4, 9)] + ¢+ H20(L7Y2) + O(¢72).
Sin

We apply the same procedure to obtain the asymptotic behaviour of the terms (A.16) and (A.17). We rewrite
them in the form (A.2) but in this case it is enough to choose = 0. For (A.16) we get

(14 2cos® ) po,e(¢) — 5cos ¢ po,e+1(d) + 2po,e42(0)
= (1+2c0s” ) Po,0,e(d) — 505 P po,0,.e41() + 2p0.0.e42(¢) + ¢~ /0L 1/?)

=(1+ 2 cos? ®) [cos Yo.e Z ho (2k)s0,25 (£, @) — sinehg ¢ Z ho 2k 4 1)s0,2k+1 (¢, qb)}

k=0

- 5005(25[005 00,041 Z V¥ ho(2k) 0,2 (¢, ¢) — sing,e1 Z V¥ho(2k + 1)s0 2141 (£, ¢)}

k=0 k=0

+2 {COS Yo,042 Z )*ho(2Kk) 0,25 (£, §) — sin o e Z )*ho(2k + 1)s0,2k-41(L, ¢)]

k=0
+¢ 1/20(6_1 1/2)’
and since

(A.22) (14 2cos? ¢) costhg ¢ — 5 cos ¢ cos g r41 + 208 Yo r42 = sin ¢ sinthg 1,
: —(1+2cos® @) sinthg e + 5cos @sin g g1 — 28into 4o = sin ¢ cos g p—1,

in view of (A.22) we obtain that
(1 +2cos® ¢) poe(d) — 508 ¢ po.e1 () + 2po.e+2()

= sin ¢ sintg o1 Z V¥ ho(2k) 50,25 (£, ¢) + sin ¢ cos 1o ¢—1 Z V¥ ho(2k 4 1)s0.211 (¢, ¢)

- k=0
)
and then for (A.16) we obtain:
int; [(1 + 2cos® @) po,e(¢) — 5cos ¢ po,es1(9) + 2p0,e+2()]
(A.23) = sinigb [sin ¢ sin o r—1ho(0)s0,0(¢, ¢)] + o207 ) + 0(672).
Finally for (A.17) one has

(1+2cos® ¢) p1,e(@) — 5cosdp1es1(d) + 2p1,er2(0)

(A.24) = (1 +2c08” ¢) p1,0,6(¢) — 5¢0s P p1,0,e41(8) + 2p1.0,042(0) + ¢/ 20(271/2),
and since
(A.25) (1+2cos® §) cosihi p — 5cos pcosihy py1 +2c0sP1 e = sin ¢ fi(o),
' —(1+2cos® @) sinthy o + 5cos psinyy 41 — 28invy 1o = sin @ fi(¢),
exploiting, as before, (A.25) in (A.24) one obtain that (A.17) is of order
+1
—— [(1 4 2cos® ¢) p1,¢(¢) — 5cos @ p1,e41(0) + 2p1,042(9)]
sin® ¢
(A.26) = ¢ 20 + 0(97?).

By summing up the terms in (A.19), (A.21), (A.23) and (A.26) we obtain the asymptotic expression (A.8) in
the statement. The main steps in the proof of (A.7) and (A.8) are summarised in Table 1.

Third derivative
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Pj(cos ¢) P} (cos ¢)
fix m=11n (A.1) fix m=2in (A.1)
(A1l) withr=0 and (A.12) = (A.13) (A.14) withr =1 and (A.18) = (A.19)
(A15) withr =1 and (A.20) = (A.21)
(A.16) with r =0 and (A.22) = (A.23)
(A.17) withr =0 and (A.25) = (A.26)

TABLE 1.

We move now to the proof of the asymptotic behaviour of the third and fourth derivative given in formula
(A.9) and formula (A.10) of the statement. For brevity sake we do not give, as before, all details of the proof;
the main steps of the proof are summarised in Table 2 and the related formulas written below.

To prove (A.9) we start form (A.5) and we write Pg+u, u=0,1,2,3 in the form (A.1) with m = 2:

+1
s1n6q§

3
Z A Z Z 3wu,v(cos ¢)pn,l+v(¢) + ¢74O(€)

n=0v=0

(A.27) P (cos

Now, as described in Table 2, one can rewrite the p, ¢4+,,’s in the form (A.2) with the value of the parameter r
chosen so that the error term is small enough (see Table 2). By exploiting the simplifications produced by the
following trigonometric relations:

32 3w2,0(cos @) cos Yo g4y = sin® Psinio g,
Zi:1 3wa,,(COS @) vV COS Yo p+v = —3 sin? ¢ cos V0,041,
(A28) 23:1 3(‘02,1)(COS ¢) ’U2 Cos 1/)0,€+11 = sin ¢ fb(¢)7
— 3 swa,0(cOS ) SN Yo ¢4y = sin® ¢ cos i,

- 23:1 3w, (COS @) vt sin gy = sin37¢ o fo(d), i=1,2,

Zi 03W2 U(COS }) cos by g1y = — sin® ¢ sin V1,0,

(A.29) o 33 v(COb $) v cos 1 oy =sin® T G fy(), i=1,2,
— Yoo 8w w(c08 @) sin iy ey = sin® ¢ fy(¢),

- 22:1 3w,y (cos @) v sinhy 10 = sin® " o fo(d), i=1,2,

S 3wi,(CoS @) cos o rry = 1/25in% G(co8 o 041 + 5 cos Yo 1),

(A.30) Ziﬁl SWLU(COS (;5)1) COS ¢O,Z+v = sin ¢fb(¢)7
> EU:() 3W1,v (COS (b) sin '(/)O,K-HJ = Sin2 ¢fb(¢)7

4 zizl 51,0 (C08 @) sin g 1y = sin ¢ fi(¢)

Y

U 0 3W1,0(COs @) oSy g4y = sin 2o fu(0),
(A.31) lgwlv(cos@vcoswl fiy = sm(bfb( ),
' U 0 3w1,0(C0s @) sin gy ¢y, = sin® @ f;(),
_1 3W1(cos)vsiny gy, = sin @ fr (@),
A v=0 30 w(cos @) cos Yo ry, = sin @ fr(¢),
( 32) { 1, 0 3Wo, U(COS Qb) sin 1/)0 ¢4 = Sin ¢fb(¢)
A. o= 0 3Wo, 'U(COS QS) cos ¢ L+v = Sin ¢fb( )
(4.3 {3 50 a60,0(c0s ) sintér oo = sin 6£3(0).
we can rewrite the terms (A.27) as follows:

3 Lo/_
f+1 02 Z 3W2. 4 (cos qf))po g+v<¢) = si£6 p [Sin3 ¢ sin wo,gho(O)Sop(f, ?) Z ( ‘17/2) li
=0

=0

(A.34)

sin®

<.
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| =

+ sin® ¢ sin g ¢ho(2)s0,2 (£, §) — 3sin® ¢ cos Yo,e41h0(0)s0,0(£; §)

+ fo(@) sin ¢so,0(¥, ¢)£l2] + [sin® ¢ sin e eho(0)s0,0(¢, ¢)]

]

€2
sin® ¢
3

+ =% €6 5 [sin® ¢ cos vo,cho(1)s0,1 (£, @) + sin® ¢ fy(¢)s0,1 (¢, &)

|

Sin
+¢ 520071 2) + 6710(0),

(41 3
(A.35) Sl: q§€2 1}2% 3w2,0(COS P)p1,040(9) = %o [ —sin® ¢sin ey h1(0)s1,0(4, ¢)]
+o 0T P02 + 9710 ),
(A.36)
1, _ e 5 h ¢ | 0,61
NG ) vzosm v(COS ¢)p0 €+v(¢) = 6 62 [* sin ¢(COS¢0 ¢+1 + Hcostg - 1)ho(0 )So,o( ,¢) + Sln¢fb(¢)50,0( ,615)?]
2
sifiGd) [ — % sin® (b(sin ’L/Jo’g+1 + 5sin wo’gfl)ho(l)SO,l(g, (b)]
+o 0 TVPO(T?) + ¢ t0(0),

(+1 i —6-1/2(y—1/2 -4

(A.37) o JZ 01,0 (€08 O)p1e14(8) = 6~O120(712) + 6740(0),
{+1 Y4

(A.38) 51;1:3 e Z 3w0,0 (€08 @)po,e+v(¢) = snd [sin ¢ fy(0)s0,0(€, 9)] + ¢~ 5"H20(71/2) + ¢~*0(0),

(+1 1 —6-1/2y/y—1/2 —4
(A.39) o ppa Z 3w0,0(COS P)P1,e40(P) = ¢ O™ 7%) +¢770(0).

Formula (A.9) in the statement is obtained by summing up the terms (A.34)-(A.39).
Fourth derivative

The proof of formula (A.10) goes along the same lines. In view of (A.6) and by applying (A.1), where we fix
m = 3, we have:

(A.40) Pi(cosg) = ~ 41 Z 33 wunlcon)pcnnld) + 6000,

8
Hl(i) n=0v=0

We can simplify each term in (A.40) by observing that:

Ei:o 4ws3 4, (COS @) COS Y g4y = sin* ¢ cos Yoz,
Zi:l U 4w3.4(COS @) cos g o1 = 4 sin® ¢ cos V1,041,
(A.41) Zizl u’ qw3,, (oS @) cos Yo g4y = sin*~* ¢fb(¢), 1=2,3,
- Zi _0 4W3,u(COs @) sintg g4y = — sin? ¢ sin Yo.e,
— Yy 4wy (cos @) sin v ey = sin T @fi(¢),  i=1,2,3,

. Zizo 4ws3 4, (COS @) COS Y1 p4s 4: sin4 ¢ cos P g,

(A.42) Do Ut 4w3,X(COS }) costhy g1y =sin" " Bfp(9), 1=1,2,3,
— Y 0 4w, (CoS @) sin 1y g4 = sin® ¢ fi (),

- Zi:l u' 4w3’v(COS ¢) sin 1pl,lJrv = Sin4_i ¢fb(¢)7 1=1,2,3,
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P} (cos ) P} (cos ¢)

fix m=2in (A.1) fix m =3 in (A.1)

(A27) withu=2,n=0r=2 and (A.28) — (A.34) (A40) u=3,n=0r=3 and (A.41)

(A27) withu=2,n=1r=2 and (A.29) = (A.3H) (A40) u=3,n=17r=3 and (A.42)

(A27) withu=1,n=0r=1 and (A.30) = (A.36) (Ad0)u=3,n=2r=3 and (A43)

(A27) withu=1,n=1r=1 and (A.31) = (A.37) (A40) u=2,n=0r=2 and (A.44)

(A27) withu=0,n=0r=0 and (A.32) = (A.38) (A40)u=2,n=1r=2 and (A.45)

(A27) withu=0,n=1r=0 and (A.33) = (A.39) (Ad0) u=2,n=2r=2 and (A.46)
(A40)u=1,n=0r=1 and (A.47)
(Ad0)u=1,n=1r=1 and (A.48)
(Ad0)u=1,n=2r=1 and (A.49)
(A40) u=0,n=07r=0 and (A.50)
(A40) u=0,n=17r=0 and (A.51)
(A40) u=0,n=27r=0 and (A.52)

TABLE 2.

) Zi:o 4W3 v (COS (b) COS ¢2,Z+v 2 Silfl4 ¢fb(¢)>
(A 43) Zi:l ul 4w37U(COS d)) COos 77[’2,@-&-1) N Sin4iz ¢fb(¢)7 7’ = 17 27 37
. - Zi:o 4W3 v (COS ¢) sin 1/}2,€+v : SiIl4 ¢fb(¢)7
— Yyl aws o (cos @) sin vy oy = sin T @ fi(¢),  i=1,2,3,

Yo 42}2"”(?05 ¢) cos Yo 40 = —3/2sin’ P(sintho,e41 + 3sinth,e—1),
(A.44) Zuzl u' 4wi,v (cos @) cos 10,040 = sin® o fu(9), 1=1,2
- Zuzo 4w2 (o8 @) sin g r4p = sin® b fu(9),

- Zi:l u’ 4W2 1y (COS ¢) sin ¢0,€+’u = Sin?)ii ¢fb(¢)7 1= la 2;

Zizo 4w2 1, (COS @) cOS Y1 r4y = _SiH3 b fv(),
(A.45) Zizl u" 4wa , (COS @) COS Y1 4y = sin®~? ofo(9), i=1,2,
' — > a0 awa v (COs ) sin ey ¢, = sin® G f(¢),

- 2141,:1 ui 4W2 .y (COS (b) sin ¢1,£+v = Sin37i ¢fb(¢)7 1= la 2)

Zizo 4w3 4 (COS @) COS Y2 g4y = _Sins ¢ fu(0),

(A 46) Zizl u' 4W2 1y (COS (b) Cos w27€+v = Singil ¢fb(¢)7 1= 17 2a
‘ — Yuro 4wz, (cos ) sint e, = sin® Gfy(4),

— 24“:1 U’ qwa (o8 @) sin g g1 = sin®~? ofs(d), i=1,2,

Zizo 4w1,0(cos @) cos Y o4 = sin® @ fy(9),
(A47) Zi:l U 4W1 0 (COS (b) Cos ¢0,£+u = sin ¢fb(¢)7
- ;:0 4w1 4 (COS @) sin g gy = sin? o fu(0),

=D ey Wawi v (cos @) sin g p1y = sin G fy (),

S 4w w(cos @) cos 4y = sin® ¢ f(¢),
(A.48) Zif U 4w1 (€08 P) o8 P1 04y = sin G fi(9),
— Zu:O 4W1 v (COS (b) sin wl,é—&-’u = sin2 ¢fb(¢),
3 wawi (o8 @) sin ey gy = sin ¢ f3(0),
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Zizo 4w1,v(COS ®) cos V2 040 = sin? ¢ fu(9),

(A.49) Ziil U 4W1 o (COS @) COS Y2 p40y = 8iN @ f1(9),
— >0 4w1,v(cos @) sin o o1y = sin® ¢ f(),
- Zizl U 4W1 0 (COS @) sin v g4, = sin @ f (@),

(A50) { u 0 4Wo, U(COS ¢) COS 1/)0 l+v = sin ¢fb( )
u 0 4Wo, v(cos ¢) sin 10,640 = Sin éfu(9),
(A51) { ~0 4W0,,(€OS @) COS Y1 4o = sin @ fo (),
Y w0 4wo v (cos @) sin )y o1, = sin ¢ f(9),
(A52) { u= 0 4%Wo U(COS ¢) Cos ¢2 f+v = sin ¢fb(¢)
> u=0 4w0,0(COS @) sin vz p4 = sin @ fi(¢),
Now combining (A.40) with (A.41)-(A.52) as described in Table 2 one obtain the asymptotic behaviour of the

fourth order derivative (A.10).
U

APPENDIX B. PROOF OF FORMULA (1.5)

B.1. Approximate Kac-Rice formula for counting critical points with value in I C R. For counting
the number of critical points with corresponding value lying in any interval I in the real line, we define, for
x # £y, the two-point correlation function K ¢(x,y) as:

KQZ(:E y7t17t2 |:|V2f/€ ‘ |V2fl ‘Vfé fo(y):vaf(x):tlﬂfl(y):tle 'Qoz,y,l(tlvlbaoao)a
where ¢, ¢(t1,12,0,0) denotes the density of the 6-dimensional vector

(fe(@), fe(y), V fe(2), V fe(y))
in fo(z) =t1, fe(y) = ta, Ve(x) = Ve(y) = 0. In [11] the following approzimate Kac-Rice formula is derived:

(B.1) Var (N7 (fe)) = /W / o Ko (2, y; t1, o) dtrdtadady — (BN (fo)])? + O(€2).

Now, exploiting isotropy and observing that the level field f,; is a linear combination of gradient and second
order derivatives, we have [11, Section 4.1.2]:

1
72 JOF = 403 ,(6) (N} — 43 ()

)\4
Ko o(p5ti,t2) = ge q(ag(¢);t1,t2),

where

1
a;ti,ty) = 21V/8t —22—22‘-’10 V8ty — w? — w?
alastbe) = 1o det(A(a))//RW, PSR T AL T A (VR T

1
X exp {—5(21,227 V8t1 — 21, w1, wa, V8ty — w1)A(a) ! (21, 22, V8t — 21, w1, wy, V8t — w1)t}
X ledZdeldw2.

B.2. Taylor expansion and asymptotics for the two-point correlation function. By performing the
Taylor expansion as in Section 3.2 and by applying Lemma 3.1 and Lemma 3.2 as in Section 3.3, one obtain
that, in the high energy limit,

1., 232
Var(N°(fe)) = 3 {263 + 7262 Ing] // q(0;t1,t2)dt1dts
IxI

i s 2 //
+8 | 16/ f 10g€:| ol 8(13 a tl,tg)] dtldtg
T
- 3263——621 14 // ———q(a;ty,t dt,dt
+ 8 | atlog ] - 8a78a7Q(a’ 15 2)L=0 1dts
1[3-27 0?
- log ¢ b1, t dtdt
+8 | 72 0g ]//le {Oagaagq(a’ 1, 2)]a:0 1at2
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N AT // [873 (ast t)] dt dt
8| x2 ® IxI 8a38a78a7q R PR

(B.2) + L2 21ge // [3—4 (st )] _dnds +O(8)
. 8 | 72 g Il 8@70@78a78a7q y U1, 02 aco 1012 .

B.3. Evaluation of the leading constant. Let Z;,, r = 0, 2,4, be the integrals 77 , = f] pr(t)dt where the
functions p, for » = 0, 2,4 are defined by

2 2
po(t) = V8- E“YIYS - Yzz\‘yl +Y3 = \/gt} by 4y, (VBE) = \/;[26_t2 +12—1le” 7,
pa(t) = VB -E[(3t - V2V 1iYs - Y22|‘Y1 Y5 = VB - vy (VEY)
2 24—t 2y1,— 2
=\ S[At 24t e 24 4 32)]e 7,
™
pa(t) = VB E[(3 = VY1) Y5 = V2|1 + Vs = VBt] - by, (V)
= \/5[(72 + 9612 + 38t4)e " — 36 — 1262 + 114 + t5]e~ 7,
™

and Y = (Y1,Y>,Y3) is the centred jointly Gaussian random vector defined in Section 3.4. Using Leibniz
integral rule and some mechanical computations, one has

1
// q(o;tl,tg)dtldtg = fI?O,
IxI 2875
0

B

//Ixz [3(1(79;@7 ala tl’tQ)} a.:odtldt2 B 2719[311’0 ~I12]%
|
[

/ RE G tl,tQ)L bty = 2%[23 BT — 24 BT 0 Tro + 201014 + 2T2,),
3 1 472 4 2 272
//M o argad(as o ] (dtidts = 273[—2 BYT2 G+ 2 3%, 0Ty — 2 3T10T1a + 2T 4T 0 — 22 - 3T3,),
64
//M mq(a;thtz)hzodtldtz 215 = [3%T10 — 2 3%y 0 + Tya]*

so that the variance (B.2) can be rewritten as

Var(/\/} (fe)) [51[ 0— 1172}2 Eg +

71'226 [511],0 —-2-11 1-172 +I],4]2 52 logf + O(EQ)

Formula (1.5) follows by observing that

(B.3)
c 1 1 2 2 4y, —t2 2 4 61,— Lt
pe(t) = E[51po(t) —2-11 po(t) + pa(t)] = —3 [( 2 —36t% + 38t1)e ™" + 1+ 17t% — 11t* +t%e

The proof of (1.5) for extrema and saddles is analogous and we obtain that x¢ and p® in (1.5) are given by
e 1 2 2 4y, —t? 2 4 461, -8

(B.4) ut(t) = R \/7[( 1—18t" +19t%)e™" +14+17¢t° — 11t* + t°]e” 7,
s 1 2 a2

(B.5) ) = 55— \f( 1—18t% + 19t )e 2.
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