
This electronic thesis or dissertation has been 

downloaded from the King’s Research Portal at 

https://kclpure.kcl.ac.uk/portal/  

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing 

details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENCE AGREEMENT 

Unless another licence is stated on the immediately following page this work is licensed 

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ 

You are free to copy, distribute and transmit the work

Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and 

other rights are in no way affected by the above. 

The copyright of this thesis rests with the author and no quotation from it or information derived from it 

may be published without proper acknowledgement. 

The Role of Ambiguity in Financial Markets
Applications to Return, Volatility and Economic Prediction

So, Ha Yan

Awarding institution:
King's College London

Download date: 09. Jan. 2025



 
 

PhD Thesis 

 
The Role of Ambiguity in Financial Markets: 

Applications to Return, Volatility and Economic Prediction 

       

 

 

Raymond Ha Yan So 

 

King’s College London 

University of London 

 

 

December 2016



ii Raymond H.Y. So 

 

TABLE OF CONTENTS 

LIST OF FIGURES V 

LIST OF TABLES VI 

ACKNOWLEDGEMENT VIII 

CHAPTER 1. INTRODUCTION 1 

CHAPTER 2. OPTION MARKET AMBIGUITY AND EXCESS RETURNS 5 

2.1. Introduction 6 

2.2.  Background Literature and Theoretical Predictions 9 

2.3.  Ambiguity Measurement and Testing Methodology 13 

2.4.  Data and Variables Description 18 
2.4.1.  Option Market Ambiguity 19 
2.4.2.  Other Predictor Variables 20 

2.5.  Predicting Market Returns 23 
2.5.1.  Ambiguity and Market Return Prediction 23 
2.5.2.  Ambiguity and the Risk-Uncertainty vs. Return Trade-off 31 
2.5.3.  Out-of-sample Prediction 36 

2.6.  International Evidence 40 

2.7.  Conclusion 44 

References 44 

Appendix to Chapter 2 50 

Supplementary Appendix to Chapter 2 52 

CHAPTER 3.  OPTION MARKET AMBIGUITY AND REAL ECONOMIC ACTIVITY53 

3.1. Introduction 54 

3.2. Theory and Literature 56 

3.3. Ambiguity Modeling and Empirical Setup 60 

3.4. Economic Activity Data and Variables Description 67 
3.4.1. Dependent Variables 67 
3.4.2. Predictor Variables and Controls 68 

3.5. Empirical Results 71 
3.5.1. Summary Statistics 71 
3.5.2. Validating Option Market Ambiguity as a Measure of Aggregate Uncertainty 74 



Contents iii 

 

3.5.3. Impact of Option Market Ambiguity on Real Economic Activity 76 
3.5.4. Predictive Performance of Market Ambiguity 78 

3.6. Conclusion 93 

References 95 

Appendix to Chapter 3 - Comparisons with VIX, VRP and CS 100 

CHAPTER 4.  ACCOUNTING FOR AMBIGUITY AVERSION IN GARCH 

VOLATILITY MODELS 103 

4.1.  Introduction 104 

4.2. Empirical Framework 107 
4.2.1 Inferring Ambiguity Attitudes from the Option Market 108 
4.2.2 GARCH-in-mean Estimations 110 
4.2.3 EGARCH-in-mean Estimations 111 
4.2.4 Estimation, Inference and Diagnostic Analysis 112 
4.2.5 Out-of-sample Forecasting 113 

4.3.  Data and Variables 114 
4.3.1 Option Data 114 
4.3.2 Stock Market Data 117 

4.4. GARCH Volatility Forecasting and the Role of Ambiguity Attitudes 118 
4.4.1 GARCH-in-mean Estimation and In-sample Forecasting 119 
4.4.2 Exponential GARCH-in-mean Estimation and In-sample Forecasting 122 
4.4.3 Out-of-sample Volatility Forecasting 125 
4.4.4 Economic Significance Analysis 128 

4.5. Conclusion 132 

References 133 

CHAPTER 5.  AMBIGUITY ATTITUDES, THE VARIANCE PREMIUM AND 

INTERNATIONAL STOCK MARKET VOLATILITY 137 

5.1. Introduction 138 

5.2. Modeling Framework and Empirical Methodology 141 

5.3.  Data and Variable 143 
5.3.1 Option Data 143 
5.3.2 Other Data 145 

5.4.  Financial and Economic Predictability Findings 147 
5.4.1  Predicting Equity Market Excess Returns 148 
5.4.2  Predicting Real Economic Activity 150 
5.4.3  Predicting Financial Instability 151 
5.4.4 Additional Results: Predicting International Volatility 153 

5.5.  Conclusion 157 

References 158 



iv Raymond H.Y. So 

 

Appendix to Chapter 5 161 

CHAPTER 6.  CONCLUSIONS 163 

TECHNICAL APPENDIX - OPTION PRICING UNDER AMBIGUITY (BASED ON 

DRIOUCHI, TRIGEORGIS AND SO (2016) AND DRIOUCHI, TRIGEORGIS AND 

GAO (2015)) 165 

 



Contents v 

 

List of Figures 

Figure 2.1.Option-market Implied Ambiguity and Annualized Excess Returns on S&P 500 (1990-2012) ............................. 21 

Figure 2.2. Estimated Slope Coefficients and Adjusted R2 of Implied Ambiguity from Predictive Regressions ..................... 24 

Figure 2.3. Out-of-sample Relative Cumulative Squared Prediction Error (vs. Historical Average Benchmark).................... 39 

Figure 2.4. Option-market Implied Ambiguity in Eight Countries .......................................................................................... 42 

Figure 3.1. Market Ambiguity, S&P 500 Implied Volatility and Economic Activity Indicators ............................................. 72 

Figure 3.2. Responses of Select Economic Indicators to Shocks in Option Market Ambiguity (IA) ....................................... 78 

Figure 4.1. S&P 500 Daily Returns, Realized Volatility, VIX, and OMAA. ......................................................................... 116 

Figure 4.2. Portfolio Value for Economic Significance Analysis. ......................................................................................... 130 

Figure 5.1. Predicting Excess Returns ................................................................................................................................... 146 

 

 

  



vi Raymond H.Y. So 

 

List of Tables 

Table 2.1. Descriptive Statistics and Correlations of S&P 500 Excess Return and Predictor Variables .................................. 22 

Table 2.2. Predictive Regressions for Option-market Implied Ambiguity ............................................................................... 24 

Table 2.3. Predictive Regressions for Option-market Implied Ambiguity and Other Predictor Variables and Alternative 

Ambiguity Proxies ......................................................................................................................................................... 25 

Table 2.4. Bivariate Predictive Regressions for Option-market Implied Ambiguity and Other Predictor Variables ............... 27 

Table 2.5. Robustness Results for Option-market Implied Ambiguity with Alternative Specifications for σ and μ ................ 29 

Table 2.6. Risk-Uncertainty vs. Return Trade-off .................................................................................................................... 33 

Table 2.7. Out-of-sample Prediction Results using Rolling and Recursive Estimation ........................................................... 41 

Table 2.8. Descriptive Statistics and Correlation Coefficients for Ambiguity and Excess Returns in Eight Countries ........... 43 

Table 2.9. International Evidence on Predictive Regressions for Option-implied Ambiguity in Eight Countries ................... 43 

Table A2.1. Hodrick Reverse Regression Results for Option-market Implied Ambiguity (Extracted from VIX) ................... 50 

Table A2.2.  Hodrick Reverse Regression Results for Option-market Implied Ambiguity (Extracted from Option Prices) ... 50 

Table A2.3. Bivariate Regression Results with CAY and Each Predictor Variable ................................................................. 51 

Table SA2.1. Robustness Tests – Controlling for Subjective Investor Required Return and Risk-free Rate ........................... 52 

Table SA2.2. Additional International Evidence (with IA*) .................................................................................................... 52 

Table 3.1. Descriptions of Variables, Data Series, and Data Sources ...................................................................................... 70 

Table 3.2. Descriptive Statistics and Correlations ................................................................................................................... 73 

Table 3.3. Correlations with Macroeconomic Uncertainty Proxies ......................................................................................... 75 

Table 3.4. Variance Decomposition and Granger Causality .................................................................................................... 77 

Table 3.5. Predicting Production.............................................................................................................................................. 79 

Table 3.6. Predicting Employment .......................................................................................................................................... 83 

Table 3.7. Predicting Consumption.......................................................................................................................................... 85 

Table 3.8. Predicting Overall Economic Output ...................................................................................................................... 89 

Table A3.1. Predicting Production and Employment ............................................................................................................. 100 

Table A3.2. Predicting Consumption and Overall Output ..................................................................................................... 101 

Table 4.1. Summary Statistics for Option Data: .................................................................................................................... 115 

Table 4.2. Descriptive Statistics and Correlation Matrix ....................................................................................................... 118 

Table 4.3. GARCH-In-Mean Estimates of the Daily Ambiguity-Volatility Relation ............................................................ 120 

Table 4.4. GARCH-In-Mean Diagnostic Tests of the Daily Ambiguity-Volatility Relation ................................................. 121 

Table 4.5. Exponential GARCH-In-Mean Estimates of the Daily Ambiguity-Volatility Relation ........................................ 123 

Table 4.6. Exponential GARCH-In-Mean Diagnostic Tests of the Daily Ambiguity-Volatility Relation ............................. 124 

Table 4.7. Out-of-sample Forecasting .................................................................................................................................... 126 

Table 4.8. Economic Significance Analysis ........................................................................................................................... 129 

Table 5.1. Summary Statistics of the Option Dataset ............................................................................................................. 144 

Table 5.2. Summary Statistics of Variables ........................................................................................................................... 147 

Table 5.3. Predicting Excess Returns ..................................................................................................................................... 148 

Table 5.4. Predicting Economic Activity ............................................................................................................................... 150 

Table 5.5. Predicting Financial Instability ............................................................................................................................. 152 

Table 5.6. Additional Results – Predicting International Volatility ....................................................................................... 156 

Table A5.1. Descriptions of Variables, Data Series, and Data Sources ................................................................................. 161 

Table A5.2. Results with Alternative Ambiguity Proxy ........................................................................................................ 162 

 

  



Acknowledgement vii 

 

 

 

 

 

 

 

 

 

 

 

 

To Sarah  



viii Raymond H.Y. So 

 

Acknowledgement 

First of all, I would like to thank my supervisors Tarik Driouchi and Lenos Trigeorgis for their 

inspiration, guidance, and support. I would also like to thank King’s College London for providing the 

financial assistance and a supportive research environment. 

I am especially indebted to Tarik. I first met Tarik in 2009 when he was my MSc dissertation 

supervisor in Cranfield University. He stimulated my research interests in option markets and 

encouraged me to advance knowledge. He gave me absolute freedom to explore topics I am interested 

in while always being supportive in providing constructive comments and guidance. Without his 

patience and support, this research could not have been completed.  

A PhD is a joint project or programme for a couple. My deepest gratitude to my wife Sarah, who 

sacrificed a lot to be with me in London during the PhD, for her love, support, and understanding. I 

would also like to thank my parents for their support, and unconditional love. Apologies are due to 

them as this research has engaged me mentally and physically in the last few years.  



Ch 1. Introduction 1 

 

Chapter 1. 

Introduction 

 

Risk and uncertainty are of crucial importance to financial decision making and investment. The 

complexity in understanding the implications of uncertainty to the financial markets and potentially 

the real economy relates to the fact that agents are not always certain about the exact probability of 

future outcomes. While the notion of ambiguity or uncertainty beyond probabilistic risk is well 

defined in Knight (1921), applications to financial economics especially in the empirical finance area 

are still scarce. Following major disruptions to the financial system and damages to the real economy 

resulting from the Great Financial Crisis of 2007-2009, academic attention has shifted towards 

understanding subjective behavior in the financial markets and the implications of uncertainty to the 

stability of the financial system and the real economy. Despite the need to study the actual impact of 

Knightian uncertainty (ambiguity) on the financial markets and real economy, empirical research in 

this area remains rare mainly due to the difficulty of quantifying investors’ ambiguity ex ante. 

Motivated by the need to empirically study the role of Knightian uncertainty in financial markets and 

the real economy, and the lack of evidence in this area, this research examines the information 

dynamics related to option market extracted ambiguity and its associations with market excess returns, 

economic activity and stock market volatility. 
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The research focuses on the information content of option market ambiguity extracted using an 

ambiguity-adjusted option pricing model developed by Driouchi, Trigeorgis and So (2016). With the 

inherently forward looking nature of financial options, a rich set of information can be obtained to 

improve our understanding of the investor-market information dynamics. The information gathered is 

then tested and applied to several important domains in the finance and economics literatures.  

Chapter 2 investigates the information content of option market ambiguity in the financial market 

by looking at the relationship between ambiguity and ex post market returns in the United States and 

eight other countries with active option trading activities. We find that option market ambiguity 

robustly predicts market excess returns and contains extra information in addition to that of other 

existing return predictors both in-sample and out-of-sample. More importantly, the chapter unveils 

empirically the long sought-after positive risk-return tradeoff as predicted by Merton (1973) and 

confirms the theoretical predictions of Cao et al (2005) regarding the dynamics among risk, ambiguity 

and equity premium under limited market participation. The results show a clear positive risk-return 

trade-off when ambiguity is controlled for. Our findings further suggest, as predicted by Cao et al. 

(2015), risk (ambiguity) carries a positive (negative) premium and that ambiguity dominates risk in 

the determination of the equity premium. In an additional analysis extending the tests to eight 

additional countries, we find that the predictive power of ambiguity generally holds globally.  

Witnessing the aftermath of the Great Financial Crisis of 2007-2008 in the real economy, huge 

attention has been drawn to studying the relationship between financial market uncertainty and real 

economic activity. Chapter 3 is devoted to understanding the information efficiency of option market 

ambiguity in predicting ex post economic activity. A number of theories, including precautionary 

saving theory, real option theory, and financial friction theory, suggest uncertainty depresses real 

economic activity. By comparing it to established measures of aggregate uncertainty, option market 

ambiguity is significantly correlated to thirteen out of fourteen established macroeconomic 

uncertainty measures. This suggests option market ambiguity tends to also be a good proxy for 

aggregate uncertainty, and might even be a source of macroeconomic uncertainty. We analyze the 

causal relationship between option market ambiguity and economic activity indicators covering 

production, employment, consumption, and overall economic output using a vector autoregressive 
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(VAR) model. Results from VAR suggest a unidirectional causal relationship between option market 

ambiguity and economic activity, in which option market ambiguity significantly Granger-cause each 

of the economic indicators. The finding confirms the negative relationship between uncertainty, as 

inferred from the option market, and real economic activity. Guided by the theories relating 

uncertainty to depressed economic activity and confirmation from the VAR results, we investigate the 

information efficiency of option market ambiguity in predicting economic activity indicators. In an 

extensive analysis covering eight economic indicators for production, employment, consumption, and 

overall output, we find superior predictive power afforded by option market ambiguity for all eight 

indicators for all horizons up to eight quarters ex post. The superior predictive power of option market 

ambiguity holds even when other established predictors of economic activity are controlled for. 

Inspired by the heterogeneous behavior of individuals towards situations of gains and losses, and 

the shifts in ambiguity attitudes observed in laboratory settings, we also investigate to what extent 

ambiguity attitudes inferred from option prices could improve the accuracy of volatility modeling. 

From a volatility forecasting point of view, Chapter 4 examines if investors’ attitudes to ambiguity 

could improve our ability to forecast volatility in-sample, out-of-sample, and generate economic value 

in risk management and investment. Considering investors’ behavior in the gain and loss domains, 

GARCH-class models that take into account the information of investors’ ambiguity attitudes robustly 

outperform their unambiguous or ambiguity-free counterparts both in-sample and out-of-sample. 

Economic significance analysis based on two simple volatility-timing trading strategies further 

highlights the importance of considering investors’ ambiguity attitudes in volatility forecasting.  

Having investigated the role of ambiguity in market return, economic activity and volatility 

dynamics, this research further examines in Chapter 5 the role of ambiguity in the estimation of 

variance risk premium. Considered to be a measure of risk aversion, with some even viewing it as a 

proxy for Knigntian uncertainty, the variance risk premium has emerged rapidly as a fundamental 

indicator of aggregate uncertainty in the empirical finance literature in the last decade. The estimation 

of the variance risk premium is not without limitations however. Attempts to improve the estimation 

of the variance risk premium have mainly focused on capturing a more accurate conditional variance 

component, which essentially reduces the measurement exercise to a mere volatility forecasting 
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problem. Chapter 5 tackles the (mis)estimation problem of variance risk premium (and its two 

variance components) from an ambiguity point of view and investigates if a subjective adjustment 

factor, inferred from traded option prices according to the aforementioned ambiguity-adjusted option 

pricing model, is able to improve the forecasting accuracy of variance risk premium to financial 

market returns, economic activity, and financial instability. Results from the chapter suggest that the 

consideration of ambiguity in the estimation of the variance risk premium and its two market variance 

components can deliver additional information content in financial and economic predictions. In an 

additional analysis, we also find that the subjective adjustment factor improves the detection of 

international volatility spillovers. This suggests investors and policy makers can be better informed 

about spillover risks when ambiguity is explicitly accounted for. 

To summarize, this research presents novel empirical evidence on the importance of considering 

ambiguity in financial prediction, economic prediction, and volatility modeling, and contributes to the 

empirical financial economics literature on market behavior under Knightian uncertainty. There are 

four major contributions from this research. Chapter 2 validates the theoretically predicted 

relationship between ambiguity and market returns, and is the first study to uncover a positive risk-

return trade-off empirically when ambiguity is controlled for. Chapter 3 is the first study to validate 

option market ambiguity as an appropriate proxy for macroeconomic uncertainty, confirms that 

Knightian uncertainty has a negative impact on economic activity, and shows that ambiguity contains 

superior information in predicting every aspect of real economic activity. Chapter 4 contributes to the 

literature by unveiling the importance of investors’ ambiguity attitudes in volatility modeling both in-

sample and out-of-sample, and showing that excess trading returns can be earned through ambiguity-

based volatility-timing strategies. Chapter 5 is the first study to address the problem of 

(mis)estimation of variance risk premium and its variance components from an ambiguity point of 

view, and shows that subjectively adjusting the variance risk premium and its market variance 

components for Knightian uncertainty improves predictive power to market returns, economic activity 

and financial instability.  
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Chapter 2. 

Option Market Ambiguity and Excess Returns 

ABSTRACT 

This chapter examines the informational efficiency of market ambiguity in predicting market excess 

returns and the equity premium internationally. Empirical results show a strong predictive ability of 

option-implied, and sentiment-based, ambiguity for U.S. stock market returns for up to three years. 

The study also provides evidence of return predictability in eight other countries. Proxying for 

dispersion in beliefs, our ambiguity measures provide additional information to that of standard return 

predictors and recent economic uncertainty indicators. We document a negative relation between 

ambiguity and the equity premium in line with limited market participation theory (Cao, Wang and 

Zhang, 2005), and confirm a positive intertemporal risk-return trade-off after controlling for 

ambiguity.   
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2.1. Introduction 

Predictability of excess market returns or the equity premium has been an important area of inquiry in 

financial economics (e.g., Campbell, 1987; Fama and French, 1988; Hodrick, 1992; Ang and Bekaert, 

2007). Excess return prediction spans a wide range of empirical contexts (e.g., Pesaran and 

Timmermann, 1995; Patelis, 1997; Cohen and Frazzini, 2008; Rapach, Strauss and Zhou, 2013). 

These include financial market efficiency, profitable hedge portfolio strategies and financial 

“propagation” mechanisms (e.g., Bernanke and Gertler, 1989). Much research on market return 

prediction focused on predictor variables relating to accounting or financial ratio information and 

fundamental financial variables such as book-to-market, price-to-earnings or aggregate dividend yield 

(e.g., Campbell, 1987; Fama and French, 1988; Campbell and Shiller, 1988; Hodrick, 1992; 

Lewellen,1999, 2004; Ang and Bekaert, 2007; Menzly and Ozbas, 2010).  

The recent financial crisis of 2007-2009 has additionally brought attention to subjective investor 

behavior, changing uncertainty attitudes and sentiment affecting the real economy and markets. The 

rapid collapse of the equity markets globally has renewed interest in investor “irrationality” or 

behavioral characteristics and potential links to market excess returns. To help understand the role of 

investor perceptions of uncertainty in relation to equity market returns, many researchers turned to the 

forward-looking options markets (e.g., Cremers and Weinbaum, 2010; Bali and Murray, 2013; An et 

al., 2014). Option market-extracted information (such as risk-neutral implied volatility or skewness, 

deviations from put-call parity, and open interest) harbors valuable information in predicting market 

returns. Many option market-extracted predictors, such as CBOE’s volatility index (VIX) or the 

variance risk premium (VRP), rely on the standard option pricing assumption of risk-neutrality and 

thus can only tell part of the full story. To overcome this restriction, model uncertainty, miscalibration 

and subjective investor behavior were also examined and shown to contribute to excess market return 

prediction (e.g., Bondt and Thaler, 1985; Avramov, 2002; Simsek, 2013).  

Despite a rising need to understand the relation between subjective investor ambiguity perceptions 

and market excess returns, literature on this issue has been relatively scarce (e.g., Jeong et al., 2015) 

partly due to the difficulty in inferring investors’ ambiguity and divergence in uncertainty beliefs from 
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market data. This chapter helps fill this gap by establishing an empirical link between option market-

extracted ambiguity and equity market excess returns. Using a quarter century of financial market data 

(from 1990 to 2012), we show that option-market ambiguity inferred from VIX data robustly predicts 

aggregate excess returns on the S&P 500 index for horizons up to 36 months. This finding is robust to 

an alternative ambiguity specification that is sentiment-based (i.e., dispersion between bullish and 

bearish sentiment indices) and not reliant on option information. Our option market ambiguity 

measure, which also captures divergence in heterogeneous ambiguity beliefs among representative 

option investors, has favorable predictive power and consistency compared to other predictor 

variables and ambiguity proxies based on both in-sample and out-of-sample tests. The predictive 

power of option market ambiguity remains significant after controlling for traditional predictor 

variables used in extant research. To ascertain that our measure of option market ambiguity is an 

empirically robust predictor of excess market returns, we extend our study to eight other major 

countries in addition to the U.S. stock market. To our knowledge, this is the first study to examine the 

informational efficiency of option market ambiguity in predicting market excess returns and equity 

premia in an international context.  

Knight (1921) early on highlighted the distinction between risk and ambiguity in economic 

phenomena. Unlike risk, which involves making reasonable probabilistic estimates of possible 

outcomes, ambiguity refers to situations in which economic agents are unsure about the very 

distribution of such outcomes. Empirical implications of the role of ambiguity in human decision-

making and economic choice have been corroborated since Ellsberg (1961). With subjective behavior 

constituting an important factor in economic decisions, risk-neutral based pricing models may be 

incomplete in capturing the full implications of the uncertainty surrounding market return dynamics 

(Epstein, 1999; Jeong et al., 2015). Accounting for ambiguity in asset pricing is particularly relevant 

in turbulent economic times (e.g., Dieckmann, 2011; Guidolin and Liu, 2014; Baker et al., 2016). 

CBOE’s volatility index or VIX, known as the “fear gauge”, is deemed to contain information 

regarding S&P 500 (SPX) option investors’ attitudes toward risk and possibly ambiguity (Miao, Wei 

and Zhou, 2012; Bekaert, Hoerova and Lo Duca, 2013). More recently the variance risk premium or 

VRP (e.g., see Carr and Wu, 2009), capturing the difference between option implied variance (IV or 
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VIX
2
) and stock index realized variance (RV) and considered as a proxy for investor risk aversion, 

has been proposed as a potential indicator of ambiguity aversion (e.g., see Drechsler, 2013). 

Bollerslev, Tauchen and Zhou (2009) document a strong and robust power for VRP in predicting 

short-term U.S. stock market excess returns. Bekaert, Hoerova and Lo Duca (2013) further suggest 

that VIX itself contains information about investors’ risk aversion attitudes, other non-linear pricing 

effects and potentially Knightian uncertainty or ambiguity. The above studies have shown the richness 

of predictive information contained in VIX and the options markets. While Bollerslev, Tauchen and 

Zhou (2009) show the promise of directly extracting investors’ uncertainty attitudes from the market, 

a large portion of VRP’s predictive ability seems driven by investors’ time-varying risk-aversion 

rather than by ambiguity attitudes (Bekaert, Hoerova and Lo Duca, 2013). Despite the above notable 

efforts to harvest ambiguity information from the VIX, to date it has not been feasible to isolate 

investors’ ambiguity perceptions from an option-based indicator, and establish market ambiguity as a 

robust excess return predictor in- and out-of-sample.  

This chapter contributes to extant literature by extracting investors’ heterogeneous ambiguity 

beliefs from the options market and showing how dispersion in such beliefs can be used to predict 

subsequent stock market excess returns and the equity premium in a global context even when 

consumption-based risk aversion is controlled for. We find that our option market ambiguity measure 

robustly predicts stock market excess returns and equity premia in the nine countries examined. 

Specifically, we infer option market ambiguity from the VIX in line with rank-dependent utility 

theory based on an ambiguity-adjusted option pricing model (A-OPM) and examine the informational 

efficiency of option-market implied ambiguity in predicting excess returns in the U.S. stock market, 

as well as in Belgium, France, Germany, Hong Kong, Japan, Netherlands, Switzerland and the U.K.  

We show that our ambiguity measure predicts ex post market excess returns beyond VIX, VRP and 

other established predictors of excess stock market returns in the U.S. and internationally. We 

particularly help unveil the intertemporal relationship between risk, ambiguity and market returns by 

decoupling ambiguity from risk. We empirically confirm the existence of a positive and significant 

intertemporal risk-return tradeoff as predicted by ICAPM theory (Merton, 1973) once ambiguity is 

explicitly controlled for. Moreover, we provide robust evidence that the relation between ambiguity 
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and the equity premium is negative, in line with the limited market participation theory predictions of 

Cao, Wang and Zhang (2005). This negative relation between ambiguity and returns is also consistent 

with disagreement theory (e.g., Baker et al., 2016) and recent evidence on the relationship of survey- 

and statistical-based uncertainty and disagreement proxies with excess returns (e.g., Diether, Malloy, 

and Scherbina, 2002; Yu, 2011; Kim, Ryu and Seo, 2014). This finding is robust to an alternative 

sentiment-based ambiguity measure of dispersion in beliefs among optimistic (bullish) and pessimistic 

(bearish) investors that does not rely on our A-OPM, option data or the VIX. 

2.2.  Background Literature and Theoretical Predictions 

Many studies examining the predictability of market returns focus or benchmark on the intertemporal 

risk-return trade-off. Merton’s (1973) intertemporal capital asset pricing model (ICAPM) posits that 

the conditional expectation of excess returns on the stock market should be positively related to the 

market’s conditional variance: 

    [    ]        (2.1) 

where   [    ] is the expected market return conditional on the information set at time t,    is the 

constant term,    is the conditional variance of market returns, and   captures economic agents’ 

relative risk-aversion. Similar to Anderson, Ghysels and Juergens (2009) and Hedegaard and Hodrick 

(2016), we include a constant term to account for possible model misspecification, capturing the 

influence of other potential state variables. Despite a clear theoretical prediction of ICAPM 

concerning a positive sign for  , the empirical evidence has been inconclusive and validation of a 

significant positive risk-return relation has not been straight-forward (e.g., see Campbell, 1987; 

Bollerslev, Tauchen and Zhou, 2009; Nyberg, 2012). French, Schwert and Stambaugh (1987) using 

GARCH-in-mean find a positive relationship between expected market premium and the volatility of 

stock returns. Bali and Peng (2006) find a significant positive risk-return association using intra-day 

high frequency data. Not many other empirical studies, however, find evidence of a significant 

positive relationship using non-parametric estimation of volatility and low frequency (e.g., daily or 

monthly) data. Several studies find an insignificant relation (e.g., Nelson, 1991; Campbell and 

Hentschel, 1992), while others even document a significant negative association (e.g., Glosten et al., 
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1993). If ambiguity is an important driver (but so far an omitted variable), a way to help address this 

empirical puzzle is to explicitly account for ambiguity as an incremental explanatory factor or as a 

control. Leippold, Trojani and Vanini (2008) find evidence of ambiguity potentially explaining the 

weak relationship between excess returns and conditional variance in low frequency data. Yet no clear 

and robust evidence has been provided to date documenting a positive risk-return relationship while 

controlling for ambiguity. This chapter addresses this issue by investigating the role of ambiguity in 

asset pricing.  

Anderson, Ghysels and Juergens (2009) extend Merton’s ICAPM framework to test the role of 

ambiguity, beyond risk, in determining expected excess returns as follows: 

    [    ]            (2.2) 

where   captures economic agents’ attitudes to ambiguity and    is the amount (degree) of ambiguity 

prevailing in the economy at time t. If there is no ambiguity (i.e.,    = 0) or if agents are neutral (i.e., 

neither ambiguity averse nor seeking ambiguity such that   = 0), the relationship between return and 

risk/ambiguity of Eq. (2.2) reduces to Merton’s ICAPM of Eq. (2.1). We examine the above 

risk/uncertainty vs. expected return relationship by empirically testing the validity of Eq. (2.2). We 

confirm that a positive relationship exists between risk and return (γ > 0) as predicted by Merton 

(1973) when the effect of ambiguity is explicitly considered.  

The theoretical sign of the ambiguity coefficient ( ) in above Eq. (2.2) is not as clear-cut as it is 

influenced by economic agents’ heterogeneous beliefs and their degree of participation in the market 

when faced with ambiguity (Ui, 2011; Epstein and Schneider, 2007). Since a large fraction of 

individuals do not participate in the financial market,
1
 the dynamics between ambiguity and the equity 

premium, through the mechanism of market nonparticipation, is too important to ignore (Ui, 2011). 

While earlier work suggests the equity premium should rise as market participation decreases (Basak 

and Cuoco, 1998), Guiso, Haliassos and Jappelli (2003) document a positive relationship between the 

equity premium and market participation in empirical data. One explanation is that agents are 

                                                      
1 According to the U.S. Consumer Expenditure Survey, less than one third of U.S. households had investments in either stocks or bonds 

between 1982 and 1995 (Paiella, 2007). Guiso, Haliassos and Jappelli (2003) show that stock market participation in Europe is limited, 

ranging from 15% in Italy to 54% in Sweden.  
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ambiguous about the distribution of future market returns, which affects their willingness to 

participate in the market and the premium they require for exposure to heightened uncertainty. Dow 

and Werlang (1992) and Epstein and Schneider (2007) examine theoretically how ambiguity affects 

agents’ decision to participate in the market. Chen and Epstein (2002) recommend the equity premium 

be decomposed into a risk premium and an ambiguity premium component, with the risk premium 

derived from standard expected utility and the ambiguity one from agents’ ambiguity attitudes.  

Cao, Wang and Zhang (2005, CWZ thereafter) show in a general equilibrium model that increased 

levels of perceived ambiguity dispersion leads to limited market participation and raises the required 

risk premium as fewer investors bear the market risk. On the other hand, the ambiguity premium 

decreases as relatively more ambiguity-tolerant (or ambiguity-seeking) investors remain in the market 

requiring a lower ambiguity premium. Since the two effects are in conflict, their net effect on the 

equity premium depends on their relative dominance.  CWZ and Easley and O’Hara (2009) suggest 

the ambiguity effect tends to dominate the risk effect in driving the equity premium. We test and 

confirm empirically the hypothesized negative (positive) relationship between ambiguity (risk) and 

returns, confirming the relative dominance of ambiguity among the two effects.   

Testing the above relationship between market excess returns, risk and ambiguity requires a 

reliable measure of ambiguity. Although ambiguity cannot be directly observed ex ante, researchers 

have tried to extract ambiguity-related information from financial market data. Relying on a multiple-

priors specification (accommodating multiple growth rate scenarios), Drechsler (2013) suggests that 

the difference between implied and realized variance captured by the VRP contains information 

regarding investors’ ambiguity aversion (in addition to risk aversion). Anderson et al. (2009) employ 

disagreement among forecasters as a proxy for market ambiguity. Driouchi et al. (2016) infer 

ambiguity aversion from observed equity option prices using Choquet expected utility. Andreou et al. 

(2015) extract stock market ambiguity from the dispersion of trading volume of S&P 500 index 

options. Brenner and Izhakian (2015) extract ambiguity from intra-day trading data of an exchange-

traded fund (SPY) on the S&P500 index. Our ambiguity measure is different from Andreou et al. 

(2015) as it does not rely on intraday trading volume. Our measure differs from Driouchi et al. (2016) 

as their measure captures average ambiguity aversion whereas ours measures the divergence in 
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ambiguity beliefs among heterogeneous market investors (i.e., averse and seekers). Our measure is 

also different from Brenner and Izhakian (2015), who associate their ambiguity indicator with 

volatility of volatility, as we do not extract ambiguity from ETF (which essentially tracks the 

underlying asset) but instead we extract ambiguity from the VIX.
2
 For robustness we also use a 

sentiment-based measure, involving dispersion between bullish and bearish sentiments, that captures 

ambiguity information independently from option data.  

We particularly examine the informational efficiency of option-market implied ambiguity in 

predicting stock market excess returns and the equity premium in the U.S. and eight other countries 

globally during 2000 to 2012 (for which implied volatility indices data are available). We help unveil 

the intertemporal relationship between risk, ambiguity and market return by separating ambiguity 

from risk. In inferring ambiguity from the options market we rely on an ambiguity-extended option 

pricing model (A-OPM) based on the rank-dependent utility framework proposed by Chateauneuf et 

al. (1996) and applied to option pricing via Choquet-Brownian stochastic processes by Driouchi et al. 

(2015). While the multiple-priors ambiguity specification used previously to explain VRP dynamics 

incorporates parametric uncertainty in the drift of the Brownian motion (i.e., the growth rate of market 

returns), the Choquet or rank-dependent specification underlying our A-OPM extends the notion of 

ambiguity to accommodate multiple scenarios in both the drift and the volatility of the underlying 

process and captures heterogeneous investor beliefs. We specifically infer the divergence in ambiguity 

beliefs among representative ambiguity averse and ambiguity-seeking S&P 500 investors by 

extracting the ambiguity information directly from the VIX and testing whether option-market 

implied ambiguity predicts market excess returns in short and long horizons. We further test three 

predictions made by Cao, Wang and Zhang (2005) based on limited market participation theory:  

(P1)  ambiguity is a significant factor in determining the equity premium;  

                                                      
2 The study of Brenner and Izhakian (2015) differs in two additional dimensions: 1) they focus on contemporaneous explanatory power of 

ambiguity with excess returns without considering predictive power and thus the intertemporal nature of the relationship between risk, 

ambiguity and expected return as predicted by Merton (1973) and Cao, Wang and Zhang (2005); 2) in their risk-uncertainty-return analysis 

they do not separate out ambiguity from risk. They show a positive coefficient for conditional volatility with an interaction term between 

conditional volatility and ambiguity. 
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(P2)  ambiguity and risk have opposite effects on the equity premium with ambiguity (risk) being 

negatively (positively) related to the equity premium; and  

(P3)  ambiguity dominates risk in the determination of the equity premium. 

2.3.  Ambiguity Measurement and Testing Methodology 

We follow Chateauneuf et al. (1996) and Driouchi et al. (2016) in deriving option market ambiguity 

using an ambiguity-extended option pricing model (A-OPM) based on rank-dependent utility theory 

and probability weighting. The model relies on a Choquet modification of the geometric Brownian 

motion (GBM) allowing for ambiguity and subjective behavior in probability judgment and valuation 

that accounts for multiple scenarios in both the drift and the volatility of the Brownian motion.
3
 The 

underlying asset process takes the form: 

  

 
                             ]    [       ]   ]   (2.3) 

where S ≡ St is the price of the underlying asset (here the S&P 500 index) at time t accommodating 

multiple mean drifts      and standard deviation scenarios    in above, m and s are the mean and 

standard deviation of a general Wiener process W with           , z being a standard Wiener 

process. Parameters   ]    [ and s  ]   ] are functions of a capacity variable c, with 0 < c < 1, 

allowing uncertainty in model parameters that represents investors’ perceived ambiguity.
4
 Based on 

the above Choquet (distorted) Brownian motion, the current price   
  of a European call option at time 

t with strike price K and maturity T under A-OPM is (see also Supplementary Appendix): 

  
     

     (
  (

  
 )  (              ) 

  √ 
)

        (
  (

  
 )  (              ) 

  √ 
) 

(2.4) 

                                                      
3 Related to the uncertain expected utility theory of Gul and Pesendorfer (2014), Choquet utility has been validated by Kast and Lapied 

(2010) and Kast et al. (2014) in the context of decision theory with applications to asset pricing. 

4 Parameters mσ and s  entertain (multiple states of) uncertainty in the mean and variance of the process; these are functions of a capacity 

variable c, with 0 < c < 1 summarizing the degree of investors’ perceived ambiguity: c < 0.5 indicates investor ambiguity aversion, c = 0.5 

risk/ambiguity neutrality, and c > 0.5 ambiguity-seeking attitudes. 
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where: 

      
[        ]

   
      

          [        ]

   
, 

             √                  ]   [  

where   
  is the theoretical ambiguity-adjusted call option price, K is the strike price of the option,   is 

the risk-free interest rate,    is the subjective discount rate,   is the dividend yield,  ′  is the 

subjective dividend yield, T is time to maturity, σ is the stock index return volatility, c is the capacity 

variable capturing ambiguity aversion, and   is the subjective investor required return on the S&P500 

index.  

Given the above theoretical price of a call option on the stock market index (SPX) under ambiguity, 

we can invert the market observed or equivalent market price to infer the market investors’ subjective 

attitudes to ambiguity as captured by capacity variable c. We use VIX as the source of ambiguity 

information extraction as it is reliable, widely used and publicly available, incorporates information 

from the volatility surface, and captures implied volatility dynamics with a one-month maturity 

eliminating potential bias of the term structure of implied volatility. With capacity variable c 

capturing aggregate investors’ ambiguity attitudes, market investors’ degree of ambiguity can be 

extracted from the implied volatility or market price of S&P 500 options. Parameter c < 0.5 (or c > 0.5) 

indicates ambiguity aversion (or ambiguity seeking); for c = 0.5 the above A-OPM of Eq. (4) reduces 

to the classical Black-Scholes European call option formula. Investors’ degree of implied ambiguity 

aversion (IAA) or implied ambiguity-seeking (IAS) is then obtained by minimizing the absolute error 

between the equivalent market price (as implied by VIX)
5
 and the theoretical A-OPM price given by 

Eq. (4) restricting                       respectively: 

                     
         

[|  
 (                  )    

   (              )|] (2.5) 

                     
         

[|  
 (                  )    

   (              )|] (2.6) 

                                                      
5 We also infer option market ambiguity from traded option prices (rather than extract it from the VIX) and find relatively similar predictive 

power for market excess returns. In our price-based extraction, we select option contracts according to the CBOE’s standard methodology 

for computing VIX. This allows us to include liquid option contracts covering different moneyness and maturity levels. Hodrick’s (1992) 

reverse regressions results for price-based IA are reported in the Appendix Table A2.2. 
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In Eqs. (2.5) and (2.6) above,   
  is the theoretical ambiguity-adjusted call option price from Eq. (2.4), 

  
    is the equivalent market price estimated from the standard Black-Scholes option model using 

VIXt  as volatility input, St is the closing level of the S&P 500 index on day t, K is the strike price of 

the option,    is the risk-free interest rate, T is time to maturity in years, σt is the stock index return 

volatility, ct is the capacity variable capturing ambiguity attitudes,    is the subjective investor 

required return on the S&P500 index, and VIXt is the closing level of VIX on day t.  

The resulting capacity estimates (ct) from the minimization of Eqs. (2.5) and (2.6) for ambiguity 

averse and ambiguity-seeking investors, respectively, are referred to as IAA and IAS. Here, the 

equivalent market price of an S&P 500 option, obtained through at-the-money (ATM) Black-Scholes 

mapping from implied volatility using VIX, is an intermediate vehicle in a two-step ambiguity 

extraction process. A similar approach using IV-price conversion is followed by Jiang and Tian (2005) 

in a curve-fitting procedure for model-free implied volatility estimation, and by Cremers and 

Weinbaum (2010) in estimating put-call parity deviations. This procedure is based on the idea that the 

option price obtained through Black-Scholes OPM mapping, using VIX as the volatility input, is 

representative of the observed or equivalent market price.
6
 Eqs. (2.5) and (2.6) extract ambiguity (via 

ct) from this equivalent market price in the second step by inverting the A-OPM of Eq. (2.4). This 

two-step approach is equivalent to mimicking (or reverse-engineering) the equivalent market price of 

options over an extended time window (1990 to 2012) and extracting option-based ambiguity 

information accordingly. The enhanced prediction ability of our ambiguity measure over standard 

OPM implied volatility or VIX arises from the explicit recognition of multiple mean (μ + mσ) and 

volatility (sσ) scenarios in our A-OPM. Our implied ambiguity measure IA (see Eqs. (2.7)-(2.8) below) 

                                                      
6 Our extraction of ambiguity information from the VIX can be described intuitively as follows. We first input the VIX as a volatility 

measure into the Black-Scholes OPM for one-month options (T = 1 m) with strike (K) at the S&P level (at-the-money) to recover an 

equivalent market price (premium) of ATM options on the index. Using VIX as the source of primary information extraction is equivalent to 

inferring the price of ATM index options over a 23 year period. This is confirmed by the very high correlation between the VIX and its 

predecessor (VXO) series since 1990 (ρ = 0.987). Initially (from 1990-2003) the VIX was obtained by inverting the Black-Scholes OPM for 

ATM options, a procedure we are reverse-engineering. We then use our ambiguity-adjusted OPM of Eq. (2.4) equated to this equivalent 

price of ATM index options to extract the degree of investor ambiguity aversion (capacity measure c) on each day t. Since Black-Scholes 

OPM is nested in our A-OPM with c = 0.5 corresponding to risk/ambiguity neutrality, daily deviations of estimated c t from 0.5 

(risk/ambiguity neutrality) track investors’ time-varying implied subjective ambiguity aversion (c < 0.5) or ambiguity seeking (c > 0.5) 

attitudes.  
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captures ambiguity (Knightian uncertainty), beyond risk, as the sum of deviations from being 

ambiguity-averse or -seeking from risk/ambiguity neutrality which is equivalent to the divergence in 

beliefs between ambiguity averse and -seeking  investors. 

Specifically, with investor ambiguity attitudes obtained as described above, we estimate our 

option-market implied ambiguity (IA) measure as the divergence in ambiguity beliefs among different 

representative option market investor groups (averse and seekers) by taking the sum of absolute 

differences of each of the IAA and IAS groups from the risk/ambiguity neutral benchmark (c = 0.5).  

We construct two measures to proxy for implied ambiguity dispersion between the ambiguity averse 

(IAA) and ambiguity-seeking (IAS) investor groups (no assumption is made about the specific 

weights of these groups in the market): 

                                 (2.7) 

    
                                         (2.8) 

The above     measures overall option-market implied ambiguity and divergence in beliefs on day 

t obtained through the summation of absolute differences from risk/ambiguity neutrality. For 

robustness purposes, we also estimate the alternative measure    
 .    

  represents option-market 

implied ambiguity estimated through the product of the re-based absolute deviations from 

risk/ambiguity neutrality.
7
 Given the distorted (multiple) returns         in Eq. (3) and the 

subjective parameter        in Eq. (4), it also follows from Eq. (2.7) that: 
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(2.9) 

where      and      are   for ambiguity-seeking and averse investors, respectively. That is,     

measures the belief heterogeneity or divergence in ambiguity attitudes
8

 among representative 

ambiguity averse and seeking investors through their difference in beliefs about the distorted risk-

                                                      
7 Re-basing of the absolute deviations avoids that the IA* measure collapses to zero when either IAS or IAA is at the risk-neutral benchmark 

level of 0.5. Under risk/ambiguity neutrality, IA reduces to a base value of zero, while IA* reduces to a base value of 25.  

8 We thank an anonymous referee for this suggestion. 
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adjusted returns    and their subjective adjustments to the unobserved drift  . While our main focus is 

on the     measure that is option-based, we also use for robustness an imperfect alternative proxy that 

roughly matches the divergence in beliefs description of Eq. (2.9), namely the dispersion among the 

Bull and Bear sentiment indices from Investor Intelligence (Fisher, 2000). In line with Brenner and 

Izhakian’s (2015) intraday-based ambiguity measure, we also use the volatility of VIX (VolVIX) as 

another alternative ambiguity proxy that does not rely on our A-OPM for robustness.  

The above relations (i.e., Eqs. (2.7-2.9)) are analogous to Abdellaoui et al. (2011) who capture 

Knightian uncertainty through deviations from Bayesian expected utility (rational behavior).  They are 

also a related notion to the VRP, being the difference between “risk-neutral” expected stock market 

variance (VIX
2
) (corresponding to c = 0.5 in our A-OPM) and (actual or “physical”) realized variance 

(RV) reflecting investor risk-aversion attitudes, but extended here to ambiguity-aversion involving c < 

0.5 (aversion) or c > 0.5 (seeking). VRP has also been suggested to contain some uncertainty or 

ambiguity information (e.g., Drechsler, 2013). However, although both IA and VRP rely on 

information from implied volatility (VIX or VIX
2
) and realized variance (RV), allowing to infer 

investors’ required premium, VRP simply relies on their difference whereas IA uses a different 

channel (distinct from VRP) capitalizing on our specific ambiguity-adjusted OPM (A-OPM) of Eq. 

(2.4) with parametric uncertainty in both drifts and volatilities (see Eq. (2.3)) and on the 

heterogeneous ambiguity beliefs specification in Eq. (2.9). Effectively, using VIX to infer a Black-

Scholes option price equivalent and then using the ambiguity-based model (A-OPM) on that 

equivalent market price given the estimated realized variance and other inputs enables extracting more 

ambiguity-related information than the one contained in VRP. Our aim here is to derive measures of 

option market ambiguity based on the deviations of investors’ ambiguity attitudes from the 

risk/ambiguity neutral Black-Scholes world benchmark.
9
 Because IAS and IAA capture ambiguity 

information in both the drifts and volatilities of the Brownian motion described in Eq. (2.3), we expect 

                                                      
9 We here refer to the Black-Scholes model as “risk-neutral” in the sense that it assumes investors do not demand a risk premium for risks 

unrelated to equity market returns. The implied volatility inverted from option prices (through the Black-Scholes model) is the true 

expectation of future volatility if investors are risk-neutral. When investors are not exhibiting risk- (and ambiguity-) neutral behavior, this 

model is miscalibrated. Our IA measure captures this miscalibration information through our ambiguity-adjusted option model (A-OPM) of 

Eq. (2.4).  
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the predictive power of our implied ambiguity measures (IA and IA
*
) to be more consistent than that 

of other known predictors. This includes interpretations of VRP as an ambiguity proxy based on 

multiple-priors explanations (i.e., involving uncertainty in drift only) and VolVIX based on unknown 

unknowns (i.e., uncertainty in volatilities).  

The predictive power of the above option-market implied ambiguity measures is then tested 

according to the following standard long-horizon predictive regression specification (e.g., see Fama 

and French, 1989; Lewellen, 2004) using monthly observations: 

                  (2.10) 

where      is the annualized geometric excess return of the S&P 500 index over the risk-free interest 

rate measured over a horizon of k month(s) from time t, with    being a 1 x h row vector of 

explanatory variables (excluding the intercept term) and   is an h x 1 vector of slope coefficients. The 

use of monthly observations in testing the predictive power of each predictor variable beyond a one-

month horizon is adjusted for the fact that returns are overlapping. Although standard adjustments for 

the computation of standard errors for overlapping observations, such as Hansen and Hodrick (1980) 

and Newey and West (1987), are widely used (see for e.g., Neal and Wheatley, 1998), Hodrick (1992) 

proposes an alternative standard error (labelled 1B)
10

 for long-horizon regressions and shows this new 

estimator to be less biased in small sample analyses than the above traditional estimators. Ang and 

Bekaert (2007) further show that some predictability evidence in the literature disappears when using 

the more conservative Hodrick (1992) standard errors. We employ the more conservative Hodrick 

(1992) standard error for more robust inference.  

2.4.  Data and Variables Description 

                                                      
10 In addition to this standard error estimator, Hodrick (1992) proposes a reverse regression approach that consists of regressing one-period 

returns onto the sum of predictors over the previous k periods. This shares similar characteristics with the alternative standard error 

estimator. We test the predictive power of each predictor variable with Hodrick’s reverse regressions. Results are similar to the t-statistics 

reported in the various tables. We present the Hodrick reverse regression results for option-market implied ambiguity extracted from the 

VIX in Appendix Table A2.1; and extracted from traded option prices in Table A2.2. 
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2.4.1.  Option Market Ambiguity 

Our ambiguity measures, IA and IA
*
, are extracted from the monthly closing level of the VIX index 

from the Chicago Board Options Exchange (CBOE) website. Our dataset spans the period from 

January 1990 to December 2012. We employ the new VIX index as a proxy for the 30-day implied 

volatility of S&P 500 index options. The old version, relabeled by CBOE as VXO in 2003, had the 

S&P 100 index as its underlying. Using the new VIX also enables comparisons with other related 

studies, e.g., Bollerslev, Tauchen and Zhou (2009) and Miao, Wei and Zhou (2012).
11

  

Besides the VIX, several other inputs are needed to extract ambiguity from the option market. We 

use the one-month US dollar LIBOR as the risk-free rate from Thomson Reuters Datastream. In line 

with Gonzalez-Rivera, Lee and Mishra (2004), we use as volatility measure employed in the 

computation of the theoretical A-OPM price of Eq. (2.2) the Risk Metrics EWMA estimate.
12

 As 

common in empirical asset pricing (e.g., Fama and French, 1992), we use the historical market return 

(in this case the one-year geometric return)
13

 on the S&P 500 index as proxy for investors’ required 

return (μ) in Eqs. (2.5) and (2.6). Our results are robust to the use of alternative proxies for investors’ 

required return, volatility and riskless interest rate. 

In extending our investigation globally to eight other countries (Belgium, France, Germany, Hong 

Kong, Japan, Netherlands, Switzerland and the United Kingdom), the underlying equity market 

indices for these countries are: BEL20, CAC 40, DAX 30, HSI, NIKKEI 225, AEX, SMI 20 and 

                                                      
11 We also infer option-market ambiguity from traded option prices and find similar predictive power for market excess returns. The choice 

of information extraction domain, either VIX-implied equivalent option prices or traded SPX option prices, does not crucially affect the 

predictive power of option market ambiguity. 

12 A popular industry practice to estimate volatility, RiskMetrics EWMA has been shown to perform as well as other more sophisticated 

parametric models in option pricing (Gonzalez-Rivera, Lee and Mishra 2004) and asset allocation (Harris and Nguyen 2013). For robustness, 

we also use out-of-sample GARCH(1,1) with a three-year rolling estimation window and historical volatility computed as the standard 

deviation of the past 22 daily returns. Prediction results, presented in Table 2.5, are generally not affected by the choice of volatility measure.  

13 The choice of investors’ required rate of return (μ) is partly related to memory considerations. Barberis, Huang and Santos (2001) 

underline the importance of investors’ memory, specifically how far back an investor's mind stretches when recalling past gains and losses 

in determining required returns, and show that investors tend to have a short memory. We use the past 12-month return as our proxy for the 

required rate of return (μ) as this time frame both fits the short memory constraint and gives reasonable sample size (252 trading days). 

Robustness results in Table 2.5 show that the choice of sampling length (up to 3 years) does not alter our findings regarding the predictive 

power of IA. For further robustness we also used the risk-free rate for μ and found the predictive power of IA still holds.  
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FTSE 100, respectively. For the international evidence our sample spans from January 2000 to 

December 2012 due to limited availability of implied volatility data in these countries.
14

  

2.4.2.  Other Predictor Variables  

In addition to option market ambiguity, we consider a number of known predictor variables and 

alternative ambiguity or economic uncertainty proxies. Traditional predictor variables include the 

consumption wealth ratio measured as the ratio of consumption to wealth (CAY, Lettau and Ludvigson, 

2001), credit spread (CRE, Fama and French, 1989; Pontiff and Schall, 1998) calculated as the 

difference between Moody’s AAA and BAA corporate bond yields, aggregate dividend yield (DY, 

Campbell and Shiller, 1988; Fama and French, 1988; Hodrick, 1992), S&P 500 index price-earnings 

ratio (PER, Campbell and Shiller, 1988) , stochastically detrended risk-free rate (RREL, Campbell, 

1991) calculated as the difference between one-month treasury bill rate and its 12-month moving 

average, CBOE’s implied skewness (SKEW), and the term spread (TERM) between 10-year treasury 

bond and 3-month treasury yield.  

We also consider a set of alternative proxies for heightened uncertainty and ambiguity used in the 

literature, including the dispersion (DISP) between bullish (IBULL) and bearish sentiment indices 

(IBEAR, Fisher, 2000) from Investors Intelligence Advisors, related to our Eq. (2.9), the Consumer 

Confidence Index (CCI, Lemmon and Portniaguina, 2006), Economic Policy Uncertainty Index (PUI, 

Baker, Bloom and Davis, 2013), University of Michigan’s Consumer Sentiment Index (UMCSI, 

Lemmon and Portniaguina, 2006), and the variance risk premium (VRP, Bollerslev, Tachen and Zhou, 

2009; Drechsler, 2013) capturing the difference between ex-ante risk-neutral expectation of future 

return variance (measured by implied variance IV) and ex-post realized variance (estimated by 5-

minute intra-day realized variance, RV). 

PUI, IBEAR, IBULL, CCI and UMCSI data were obtained from Thomson Reuters Datastream. 

Monthly data on S&P 500 dividend yield and price-earnings ratios (PER) were obtained from Robert 

Shiller’s website. Data on the term spread and credit spread were downloaded from the website of the 

                                                      
14 Since VBEL was discontinued in 2010, we use a sample period from January 2000 to November 2010 for Belgium. VHSI does not have 

backdated data to 2000 and so we use a sample period from January 2001 to December 2012.  
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Federal Reserve Bank of St. Louis. Intra-day 5-minute realized variance (RV) data for BEL20, HSI, 

FTSE100, DAX30, CAC40, AEX, SMI20 and NIKKEI225 were obtained from the Oxford-Man 

Institute's website. Monthly total market capitalizations for each equity index and government bond 

yield data used in the calculation of market excess returns are obtained from Thomson Reuters 

Datastream. CAY data were obtained from Martin Lettau’s website. One-month Treasury bill rates are 

obtained from Kenneth French’s website. Monthly VRP data were obtained from Hao Zhou’s website.  

Figure 2.1.Option-market Implied Ambiguity and Annualized Excess Returns on S&P 500 (1990-2012) 

Figure 2.1 plots the time-varying S&P 500 annualized excess return and option market implied ambiguity (IA). The upper figure shows the excess return of the 

S&P 500 index over the 3-Month T-bill in annualized percentages. The lower figure shows the option market ambiguity measure IA. The plot for IA*is very 

similar. The shaded grey bands show (from left to right) the periods of the “dot-com bubble”, the 2007-2009 Great Financial Crisis, and the European debt 

crisis, respectively. The sample covers monthly observations from January 1990 to December 2012.   

 

Figure 2.1 plots annualized excess returns of the S&P 500 index over the 1990 to 2012 period, also 

showing the time evolution of our option-based ambiguity measure IA (the pattern of IA
*
 is very 

similar). Distinctive periods with prolonged high levels of ambiguity are observed, such as during the 

1999 to 2000 “dot-com bubble”. IA peaked in April 2000, around the “dot-com bubble” as the 

NASDAQ 100 index reached an all-time high in late-March, followed by three years of relative 

turmoil (IA from 2001 to 2003 is about 25 compared to an all-time average of 15). By the end of 2002, 

-250

-200

-150

-100

-50

0

50

100

150

1
9

90

1
9

91

1
9

92

1
9

93

1
9

94

1
9

95

1
9

96

1
9

97

1
9

98

1
9

99

2
0

00

2
0

01

2
0

02

2
0

03

2
0

04

2
0

05

2
0

06

2
0

07

2
0

08

2
0

09

2
0

10

2
0

11

2
0

12

Annualized Excess Return

0

20

40

60

80

100

1
9

90

1
9

91

1
9

92

1
9

93

1
9

94

1
9

95

1
9

96

1
9

97

1
9

98

1
9

99

2
0

00

2
0

01

2
0

02

2
0

03

2
0

04

2
0

05

2
0

06

2
0

07

2
0

08

2
0

09

2
0

10

2
0

11

2
0

12
Option Market Ambiguity - IA



22 Raymond H.Y. So  

 

the NASDAQ 100 index declined by more than 75% from its peak of 4816 points. Another prolonged 

period of high ambiguity surrounds the 2007 to 2009 global financial crisis. A more recent period of 

prolonged high ambiguity is the European sovereign debt crisis manifesting investors’ concern about 

a possible exit of an EU country from the Eurozone. In August 2011, the IA indicator reached an all-

time high of 70. In that month, the European Commission President warned of the risk the sovereign 

debt crisis spreading beyond the periphery of the Eurozone. The yields on government bonds from 

Greece, Spain and Italy rose sharply, while Germany’s (considered as safe haven) fell to record lows 

in the same month. 

Table 2.1. Descriptive Statistics and Correlations of S&P 500 Excess Return and Predictor Variables 

This table presents descriptive statistics and correlation coefficients of the S&P 500 excess return and predictor variables. RM - Rf is the excess return of 

the S&P 500 calculated as the logarithmic return of S&P 500 in excess of the logarithmic yield of 3M T-bills. IA and IA* measure option market implied 

ambiguity extracted from VIX as defined in equations (2.7) and (2.8). Seven traditional predictors are used for comparison. CAY is the consumption-

wealth ratio. CRE is the credit spread between Moody's AAA and BAA bond yield indices. DY represents the aggregate dividend yield on the S&P500 

index. PER is the price/earnings ratio. RREL is the stochastically detrended interest rate. SKEW denotes CBOE’s SKEW index. TERM denotes the term 

spread between 10Y T-bond and 3M T-bill. Alternative ambiguity proxies include CCI, DISP, PUI, UMCSI and VRP, denoting the Consumer 

Confidence Index, Dispersion (DISP) between Investors Intelligence Sentiment Indices – Bearish and Bullish, Policy Uncertainty Index, University of 

Michigan’s Consumer Sentiment Index, and the variance risk premium calculated as the difference between implied variance (IV) and realized variance 

(RV). Variables are denoted as annualized percentages. The sample period covers monthly observations from January 1990 to December 2012.   

 

Panel A of Table 2.1 reports descriptive statistics for all the predictor variables. For the option-

based ambiguity measures, IA and IA
*
, first-order autocorrelations are relatively low. For most 

traditional predictors, except SKEW, first-order autocorrelations are generally very high. This 

includes one of the most widely tested predictor variables, dividend yield.  In the set of alternative 

ambiguity proxies considered, autocorrelations are also generally high, except for VRP. In light of 

serious inference issues characterizing highly auto-correlated predictors, adjusted R
2
 for regressions 

Panel A. Descriptive Statistics

Alternative Ambiguity Proxies

R M -R f IA IA* RV IV CAY CRE DY PER RREL SKEW TERM CCI DISP PUI UMCSI VRP

 Mean 6.03 15.35 33.94 21.32 39.79 0.27 0.97 2.10 25.15 -0.08 116.17 1.88 90.67 17.67 106.59 86.41 18.47

 Std. Dev. 52.51 19.53 12.33 37.47 35.61 1.57 0.42 0.66 16.00 0.33 5.06 1.16 28.12 10.34 35.18 13.29 20.35

 Skewness -0.77 1.29 1.52 7.86 3.34 0.04 3.06 0.66 4.18 -0.39 0.39 -0.15 0.01 0.18 1.02 -0.25 -2.48

 Kurtosis 1.57 0.29 1.08 85.26 16.31 -0.99 12.23 -0.48 20.07 0.10 -0.22 -1.14 -0.90 -0.84 0.55 -0.62 35.17

 AR(1) 0.07 0.36 0.35 0.65 0.80 0.95 0.96 0.99 0.97 0.83 0.55 0.98 0.97 0.61 0.86 0.95 0.26

Panel B. Correlation Coefficients

R M -R f IA IA* RV IV CAY CRE DY PER RREL SKEW TERM CCI DISP PUI UMCSI VRP

R M -R f 1.00

IA -0.02 1.00

IA* -0.02 0.99 1.00

RV -0.38 0.43 0.44 1.00

IV -0.42 0.34 0.33 0.85 1.00

CAY 0.04 -0.04 -0.07 0.03 0.10 1.00

CRE -0.13 0.30 0.27 0.59 0.65 -0.06 1.00

DY -0.02 -0.11 -0.12 0.05 0.04 0.45 0.29 1.00

PER 0.03 0.15 0.11 0.25 0.40 -0.03 0.59 0.04 1.00

RREL 0.10 -0.13 -0.11 -0.24 -0.31 -0.10 -0.41 -0.20 -0.31 1.00

SKEW 0.12 -0.06 -0.06 0.00 0.00 -0.31 0.05 -0.11 -0.05 0.16 1.00

TERM -0.04 -0.08 -0.10 0.08 0.06 0.17 0.27 0.35 0.22 -0.36 -0.08 1.00

CCI 0.04 -0.03 -0.02 -0.21 -0.19 -0.02 -0.56 -0.60 -0.17 0.34 -0.03 -0.67 1.00

DISP 0.14 -0.16 -0.16 -0.12 -0.16 -0.42 -0.05 -0.37 -0.04 0.09 0.20 0.01 0.12 1.00

PUI -0.14 0.18 0.17 0.37 0.44 -0.01 0.51 0.28 0.15 -0.29 0.14 0.42 -0.70 -0.08 1.00

UMCSI 0.09 -0.15 -0.14 -0.29 -0.28 0.10 -0.62 -0.54 -0.15 0.37 -0.10 -0.46 0.92 0.13 -0.70 1.00

VRP -0.03 -0.20 -0.24 -0.36 0.19 0.11 0.04 -0.02 0.24 -0.10 0.00 -0.03 0.05 -0.05 0.09 0.05 1.00

Risk Measures Traditional PredictorsAmbiguity
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involving highly persistent return predictors need to be interpreted carefully. Low autocorrelation in 

IA and IA
*
 reduces potential concerns associated with excess return predictions using highly auto-

correlated predictor variables. Panel B of Table 2.1 summarizes the correlations among the variables. 

Correlations between the traditional predictor variables and contemporaneous monthly excess returns 

are weak, except for IV which is significantly negatively correlated. Our option market ambiguity 

measures IA and IA
*
 show insignificant correlation with contemporaneous excess returns (-0.02).  

2.5.  Predicting Market Returns 

The predictive power of various market return predictors is examined with standard long-horizon 

prediction regressions with various lags according to Eq. (2.10). We find that the predictive power of 

option-market ambiguity is significant even when controlling for well-established predictor variables 

and alternative ambiguity proxies. When controlling for ambiguity, implied variance (IV) shows a 

positive and significant association with future excess returns, validating the risk-return trade-off 

relation proposed by ICAPM theory (Merton, 1973) but not readily confirmed in low-frequency 

empirical studies (Bali and Peng, 2006). We show that our uncertainty-related measures, both option 

ambiguity extracted from VIX and bull-bear sentiment dispersion (DISP), robustly predict future 

excess market returns with a negative sign. As a second alternative proxy for ambiguity, VolVIX also 

shows a negative sign but its predictive ability (consistent with Brenner and Izhakian’s (2015)) is 

weaker than that of IA and DISP. Our findings confirm the predictions of Cao, Wang and Zhang 

(2005) regarding the determinants of the equity premium under ambiguity. 

2.5.1.  Ambiguity and Market Return Prediction 

Table 2.2 reports our main empirical results on market return predictability for the U.S. Our main 

measures of ambiguity (IA and IA
*
) show strong and consistent predictive power for future aggregate 

excess returns (on S&P 500) for all prediction horizons considered. The coefficient of IA is 

consistently negative for all horizons in line with recent studies reporting a negative relationship 

between proxies of  
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Table 2.2. Predictive Regressions for Option-market Implied Ambiguity  

Table 2.2 shows predictive regression results for option market implied ambiguity measures IA and IA* on S&P 500 excess returns. Predictive 

regressions are specified according to equation (2.10). The sample covers monthly observations from January 1990 to December 2012. Robust t-statistics 

according to Hodrick (1992) adjustment 1B are reported in parentheses. The superscripts ***, **, and * indicate significance at 1%, 5%, and 10% levels, 

respectively.  

 

 

Figure 2.2. Estimated Slope Coefficients and Adjusted R2 of Implied Ambiguity from Predictive Regressions 

Figure 2.2 shows the estimated slope coefficient and the adjusted R2 of implied ambiguity (IA) from the predictive regression specification according to 

equation (2.10). The figure on the left shows the slope coeffient of IA from the regressions of k-month S&P 500 excess returns. The figure on the right shows 

the adjusted R2 values from the corresponding regressions. The sample covers monthly observations from January 1990 to December 2012. The plots for IA* are 

similar.  

  

ambiguity and the equity premium (Brenner and Izhakian, 2015; Andreou et al., 2015). This is also 

later evidenced in univariate predictability findings based on the sentiment dispersion (DISP) index 

(Table 2.3, Panel C). Hodrick (1992) robust t-statistics using one-month prediction horizons for IA 

and IA
*
 are significant (at -2.41 and -2.40, respectively) and remain significant for longer prediction 

horizons up to 36 months. Adjusted R
2
 for the 36-month horizons ranges from 2.57% to 7.33% for IA 

and from 2.61% to 8% for IA
*
. The predictive power provided by IA

*
 is generally slightly superior to 

that of IA. Our empirical findings in Table 2.2 show a strong and persistent predictive power by 

option-market implied ambiguity measures in both short and long horizons. Figure 2.2 shows a time-

consistent predictive power for our ambiguity measures including slope coefficients, confidence 

bands and adjusted R
2
 for various prediction horizons. Exhibiting a consistently negative coefficient 

of option-implied ambiguity across all prediction horizons, our findings are in line with recent 

theoretical ambiguity and asset pricing literatures on the  

  

Return 

Horizon (k)
Adj. R 2 (%)

Return 

Horizon (k)
Adj. R 2 (%)

1 13.58 (3.72)
***

-0.46 (-2.41)
**

2.57 1 31.37 (3.15)
***

-0.73 (-2.40)
**

2.61

6 10.19 (3.45) *** -0.25 (-1.86) * 3.87 6 20.14 (3.07) *** -0.41 (-1.95) * 4.13

12 9.77 (3.66) *** -0.21 (-1.96) * 5.14 12 18.10 (3.50) *** -0.34 (-2.03) ** 5.37

18 9.59 (3.77)
***

-0.22 (-2.44)
**

7.33 18 18.71 (4.31)
***

-0.37 (-2.63)
***

8.00

24 9.00 (3.65)
***

-0.18 (-2.35)
**

6.01 24 16.77 (4.46)
***

-0.31 (-2.62)
***

7.00

30 8.54 (3.53) *** -0.15 (-2.25) ** 5.38 30 15.37 (4.47) *** -0.27 (-2.55) ** 6.58

36 8.21 (3.46) *** -0.14 (-2.34) ** 5.21 36 14.39 (4.60) *** -0.25 (-2.64) *** 6.41

IA IA*Cst Cst
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Table 2.3. Predictive Regressions for Option-market Implied Ambiguity and Other Predictor Variables and Alternative 

Ambiguity Proxies 

Table 2.3 shows predictive regression results for option-market implied ambiguity and other predictor variables on S&P 500 excess returns. IA and IA* measure 

option market implied ambiguity. CAY is the consumption-wealth ratio. CRE is the credit spread. DY represents the aggregate dividend yield on the S&P500 

index. PER is the price/earnings ratio. RREL is the stochastically detrended interest rate. SKEW denotes CBOE’s SKEW index. TERM denotes the term spread 

between 10Y T-bond and 3M T-bill. CCI, DISP, PUI and UMCSI, denoting the Consumer Confidence Index, Dispersion (DISP) between Investors Intelligence 

Sentiment Indices – Bearish and Bullish, Policy Uncertainty Index, and University of Michigan’s Consumer Sentiment Index respectively. VRP is the variance 

risk premium. Predictive regressions are specified according to equation (2.10). The sample covers monthly observations from January 1990 to December 2012. 

Robust t-statistics according to Hodrick (1992) adjustment 1B are reported in parentheses. The superscripts ***, **, and * indicate significance at 1%, 5%, and 

10% levels, respectively.  

 

negative association between ambiguity and the equity risk premium. These findings corroborate 

CWZ’s prediction (P1) that ambiguity is important in asset pricing. 

Panel A. Option Market Ambiguity

k Adj. R
2 

(%) k Adj. R
2 

(%)

1 13.58 (3.72)
***

-0.46 (-2.41)
**

2.57 1 31.37 (3.15)
***

-0.73 (-2.40)
**

2.61

12 9.77 (3.66)
***

-0.21 (-1.96)
*

5.14 12 18.10 (3.50)
***

-0.34 (-2.03)
**

5.37

24 9.00 (3.65)
***

-0.18 (-2.35)
**

6.01 24 16.77 (4.46)
***

-0.31 (-2.62)
***

7.00

36 8.21 (3.46)
***

-0.14 (-2.34)
**

5.21 36 14.39 (4.60)
***

-0.25 (-2.64)
***

6.41

Panel B. Traditional Predictor Variables

k Adj. R 2 (%) k Adj. R 2 (%)

1 5.47 (1.76) * 3.99 (2.42) ** 1.08 1 16.05 (1.45)  -9.79 (-0.81)  0.27

12 4.90 (1.62)  5.10 (3.47) *** 21.18 12 6.42 (0.92)  0.07 (0.01)  -0.38

24 4.30 (1.50)
 

5.61 (3.74)
***

44.04 24 5.13 (0.90)
 

1.19 (0.22)
 

-0.25

36 3.81 (1.40)  5.39 (3.68) *** 59.62 36 6.00 (1.20)  0.05 (0.01)  -0.42

k Adj. R
2 

(%) k Adj. R
2 

(%)

1 -6.28 (-0.55)  6.11 (1.17)  0.23 1 5.25 (0.84)  0.05 (0.21)  -0.34

12 -11.21 (-1.14)
 

8.43 (2.06)
**

10.13 12 6.65 (1.62)
 

-0.01 (-0.04)
 

-0.38

24 -12.18 (-1.42)
 

8.75 (2.62)
***

19.53 24 5.25 (1.53)
 

0.04 (0.34)
 

-0.18

36 -12.45 (-1.60)
 

8.75 (2.94)
***

29.61 36 5.88 (2.00)
**

0.01 (0.08)
 

-0.41

k Adj. R
2 

(%) k Adj. R
2 

(%)

1 8.18 (2.73) *** 21.48 (2.27) ** 1.52 1 75.40 (1.02)  -0.59 (-0.93)  -0.04

12 7.89 (2.88) *** 17.70 (2.01) ** 11.49 12 -20.01 (-0.42)  0.23 (0.57)  0.05

24 6.59 (2.49)
**

4.12 (0.76)
 

0.74 24 31.87 (1.02)
 

-0.22 (-0.84)
 

0.26

36 6.00 (2.30)
**

-0.58 (-0.16)
 

-0.38 36 70.52 (3.03)
***

-0.56 (-2.82)
***

5.35

k Adj. R 2 (%)

1 10.10 (1.78) * -1.88 (-0.75)  -0.19

12 3.92 (0.74)
 

1.36 (0.60)
 

0.47

24 -1.19 (-0.22)  4.01 (2.05) ** 12.23

36 -2.00 (-0.39)  4.48 (2.50) ** 22.08

Panel C. Alternative Ambiguity Proxies

k Adj. R
2 

(%) k Adj. R
2 

(%)

1 8.28 (0.64)  -0.02 (-0.14)  -0.35 1 15.58 (2.34) ** -0.51 (-1.75) * 0.66

12 11.14 (1.05)  -0.05 (-0.44)  0.30 12 10.73 (2.62) *** -0.24 (-1.75) * 1.71

24 18.14 (2.09)
**

-0.13 (-1.30)
 

6.57 24 12.65 (3.88)
***

-0.37 (-3.58)
***

7.74

36 21.06 (2.83) *** -0.16 (-1.81) * 14.22 36 12.12 (3.90) *** -0.35 (-3.94) *** 10.28

k Adj. R 2 (%) k Adj. R 2 (%)

1 8.53 (0.74)
 

-0.02 (-0.16)
 

-0.35 1 -5.50 (-0.21)
 

0.14 (0.47)
 

-0.24

12 4.73 (0.64)  0.02 (0.26)  -0.28 12 2.28 (0.10)  0.05 (0.19)  -0.24

24 0.30 (0.04)
 

0.06 (1.04)
 

1.28 24 15.92 (0.88)
 

-0.11 (-0.53)
 

0.72

36 -1.41 (-0.21)
 

0.08 (1.51)
 

3.02 36 20.01 (1.28)
 

-0.16 (-0.86)
 

2.79

k Adj. R
2 

(%)

1 -4.81 (-0.92)  0.62 (2.48) ** 5.39

12 3.50 (1.12)  0.16 (2.18) ** 3.23

24 4.37 (1.50)  0.10 (1.80) * 1.95

36 5.41 (1.92) * 0.03 (0.71)  -0.01

Cst

UMCSI

VRP

DY

Cst

TERM

PER

RREL SKEW

CCI DISP

Cst

Cst

IA*

CAY CRE

Cst Cst

Cst Cst

Cst

Cst

Cst

PUI

IA

Cst

Cst

Cst
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Table 2.3 presents comparative univariate regression results based on seven traditional market 

predictor variables and five alternative ambiguity proxies using monthly prediction horizons for up to 

3 years. For easier comparison, we pool the predictor variables according to their category (option 

market ambiguity in Panel A, traditional predictors in Panel B, and alternative proxies for economic 

uncertainty or ambiguity in Panel C). Among the known market predictor variables, consumption 

wealth ratio CAY
15

 has the strongest predictive power for future market excess returns in both short 

and long horizons. Aggregate dividend yield also predicts market excess returns quite well, consistent 

with earlier findings by Hodrick (1992) and Cochrane (2007). The stochastically-detrended interest 

rate (RREL) only predicts at short horizons, while SKEW and TERM predict only at long horizons. 

With regard to alternative ambiguity proxies, DISP predicts returns fairly well in line with Eq. (2.9). 

VRP predicts short and medium term returns only. Overall, option market ambiguity (IA and IA
*
) and 

DISP along with CAY are the only predictors that predict well over the entire range of return horizons 

considered. Table 2.3 confirms that, overall, six other predictor variables also harbor future market 

excess returns prediction information, besides our option ambiguity measures. 

To investigate further whether our option market ambiguity measures contain different or 

incremental predictive power (beyond the six variables that also capture predictive excess return 

information), we examine joint predictions using bivariate and multivariate predictive regressions. 

Results are reported in Table 2.4. Due to similarities with IA
*
 findings, we report only the more 

conservative IA results (IA
*
 results are available from the authors). Panels A and B of Table 2.4 report 

bivariate regression results involving our option-market implied ambiguity (IA) measure jointly with 

each of the other known predictor variables and alternative ambiguity proxies, respectively. In Panel 

A, IA remains robust in predicting future market excess returns when each of the other established 

predictor variables is also  

                                                      
15 Despite the strong in-sample predictive power of CAY, concerns have been raised in the literature regarding the use of this ratio as a 

predictor out of sample. Since CAY is constructed using ex post estimation regression coefficients, Welch and Goyal (2008) question the 

suitability of CAY as a return predictor as investors cannot estimate this ratio in real time without knowledge of ex post information. 

Campbell and Thompson (2008) also raise concerns about revision of data definitions for several variables used in the construction of CAY 

by the Bureau of Economic Analysis in 2003, making the definition of the variable itself uncertain. We do not deal with these issues here, 

using CAY merely as a control.  
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Table 2.4. Bivariate Predictive Regressions for Option-market Implied Ambiguity and Other Predictor Variables  

Table 2.4 shows bivariate and multivariate predictive regression results for option-implied market ambiguity IA, other predictor variables and alternative ambiguity proxies on S&P 500 

excess returns. IA and IA* measure option market implied ambiguity. CAY is the consumption-wealth ratio. CRE is the credit spread. DY represents the aggregate dividend yield on the 

S&P500 index. PER is the price/earnings ratio. RREL is the stochastically detrended interest rate. SKEW denotes CBOE’s SKEW index. TERM denotes the term spread between 10Y T-

bond and 3M T-bill. CCI, DISP, PUI and UMCSI, denoting the Consumer Confidence Index, Dispersion (DISP) between Investors Intelligence Sentiment Indices – Bearish and Bullish, 

Policy Uncertainty Index, and University of Michigan’s Consumer Sentiment Index respectively. VRP is the variance risk premium. Predictive regressions are specified according to 

equation (2.10). Panel A shows bivariate regressions between IA and other known predictor variables, and panel C between IA and alternative ambiguity proxies. Panel C contains 

multivariate results among IA, CAY and either sentiment indexes (IBEAR/IBULL) or VRP. The sample covers monthly observations from January 1990 to December 2012. Robust t-

statistics according to Hodrick (1992) adjustment 1B are reported in parentheses. The superscripts ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively. 

  

 

included. Given the strong predictive power of CAY reported in Table 2.3, the robust joint predictive 

power of IA and CAY in the bivariate setup suggests IA contains meaningful incremental information 

beyond that of CAY. As further confirmed in Appendix Table A2.3, IA is the only predictor variable 

which remains significant for all horizons in bivariate regressions along with CAY. In Table 2.4 Panel 

Panel A. Traditional Predictor Variables

k Adj. R 2 (%) k Adj. R 2 (%)

1 12.35 (3.36) *** -0.44 (-2.33) ** 3.75 (2.26) ** 3.48 1 16.99 (1.53)  -0.43 (-2.30) ** -3.92 (-0.32)  2.30

12 7.88 (2.94) *** -0.19 (-1.78) * 4.98 (3.43) *** 25.30 12 6.91 (0.99)  -0.23 (-2.49) ** 3.36 (0.48)  5.39

24 6.61 (2.64) *** -0.15 (-2.02) ** 5.49 (3.71) *** 48.19 24 5.63 (0.99)  -0.21 (-3.01) *** 3.98 (0.74)  7.13

36 5.41 (2.24) ** -0.10 (-1.78) * 5.29 (3.65) *** 62.35 36 6.40 (1.29)  -0.16 (-2.83) *** 2.17 (0.49)  5.48

k Adj. R 2 (%) k Adj. R 2 (%)

1 3.45 (0.28)  -0.44 (-2.28) ** 4.70 (0.89)  2.56 1 10.38 (1.62)  -0.47 (-2.49) ** 0.14 (0.55)  2.38

12 -7.17 (-0.74)  -0.18 (-1.68) * 7.84 (1.91) * 13.79 12 9.04 (2.19) ** -0.21 (-2.05) ** 0.03 (0.21)  4.86

24 -8.98 (-1.09)  -0.14 (-1.93) * 8.26 (2.51) ** 23.19 24 7.17 (2.06) ** -0.19 (-2.64) *** 0.08 (0.71)  6.49

36 -10.18 (-1.38)  -0.10 (-1.78) * 8.39 (2.88) *** 32.09 36 7.39 (2.48) ** -0.14 (-2.59) *** 0.03 (0.42)  5.06

k Adj. R 2 (%) k Adj. R 2 (%)

1 14.34 (3.95) *** -0.42 (-2.22) ** 18.31 (1.97) ** 3.56 1 95.51 (1.31)  -0.47 (-2.49) ** -0.70 (-1.12)  2.67

12 10.50 (3.95) *** -0.17 (-1.76) * 16.42 (1.94) * 14.86 12 -12.22 (-0.27)  -0.21 (-1.99) ** 0.19 (0.48)  5.07

24 9.11 (3.69) *** -0.17 (-2.46) ** 2.80 (0.55)  6.15 24 39.00 (1.27)  -0.18 (-2.41) ** -0.26 (-0.99)  6.53

36 8.13 (3.38) *** -0.14 (-2.53) ** -1.64 (-0.49)  5.07 36 75.30 (3.17) *** -0.14 (-2.40) ** -0.58 (-2.89) *** 11.06

k Adj. R 2 (%)

1 18.53 (2.77) *** -0.47 (-2.43) ** -2.53 (-0.98)  2.52

12 7.65 (1.46)  -0.20 (-1.90) * 1.08 (0.48)  5.30

24 1.64 (0.33)  -0.16 (-2.12) ** 3.80 (1.95) * 16.89

36 0.11 (0.02)  -0.12 (-2.08) ** 4.34 (2.44) ** 25.95

Panel B. Alternative Ambiguity Proxies

k Adj. R 2 (%) k Adj. R 2 (%)

1 16.07 (1.29)  -0.46 (-2.43) ** -0.03 (-0.20)  2.23 1 26.27 (3.71) *** -0.67 (-2.29) ** -0.51 (-2.70) *** 3.92

12 14.97 (1.44)  -0.21 (-2.00) ** -0.06 (-0.49)  5.60 12 15.65 (4.20) *** -0.31 (-2.30) ** -0.24 (-2.21) ** 8.18

24 20.82 (2.40) ** -0.18 (-2.33) ** -0.13 (-1.29)  12.57 24 16.71 (4.93) *** -0.42 (-3.69) *** -0.21 (-2.59) *** 15.98

36 23.54 (3.14) *** -0.14 (-2.42) ** -0.16 (-1.84) * 19.96 36 15.26 (4.62) *** -0.39 (-3.84) *** -0.16 (-2.53) ** 17.61

k Adj. R 2 (%) k Adj. R 2 (%)

1 10.70 (0.92)  -0.47 (-2.54) ** 0.03 (0.26)  2.24 1 10.39 (0.40)  -0.45 (-2.43) ** 0.04 (0.12)  2.22

12 5.33 (0.73)  -0.23 (-2.10) ** 0.05 (0.69)  5.49 12 10.02 (0.45)  -0.21 (-2.04) ** 0.00 (-0.01)  4.78

24 1.11 (0.16)  -0.20 (-2.53) ** 0.08 (1.40)  8.76 24 22.05 (1.21)  -0.19 (-2.52) ** -0.15 (-0.70)  7.59

36 -1.47 (-0.22)  -0.17 (-2.78) *** 0.10 (2.01) ** 10.94 36 25.91 (1.62)  -0.16 (-2.62) *** -0.20 (-1.05)  9.66

k Adj. R 2 (%)

1 1.65 (0.31)  -0.34 (-1.85) * 0.55 (2.23) ** 6.61

12 7.02 (2.76) *** -0.18 (-1.73) * 0.12 (1.78) * 6.88

24 7.41 (2.92) *** -0.17 (-2.16) ** 0.07 (1.32)  6.83

36 7.92 (3.03) *** -0.14 (-2.24) ** 0.01 (0.27)  4.87

Panel C. Multivariate Predictive Regressions

k Adj. R 2 (%)

1 22.60 (2.84) *** -0.49 (-2.54) ** 2.30 (1.22)  -0.51  3.96

12 7.34 (2.03) ** -0.19 (-1.83) * 5.06 (3.32) *** 0.03  25.03

24 7.92 (2.49) ** -0.16 (-2.11) ** 5.31 (3.48) *** -0.07  48.20

36 6.23 (1.91) * -0.10 (-1.86) * 5.17 (3.41) *** -0.04  62.32

k Adj. R
2 

(%)

1 1.21 (0.23)  -0.34 (-1.82) * 3.04 (1.79) * 0.52 ** 7.10

12 6.02 (2.36) ** -0.17 (-1.62)  4.87 (3.33) *** 0.09  26.01

24 5.84 (2.28) ** -0.14 (-1.88) * 5.45 (3.68) *** 0.04  48.28

36 5.99 (2.27) ** -0.11 (-1.77) * 5.33 (3.68) *** -0.03  62.46

Cst IA TERM

Cst IA CAY VRP

(-1.56)

(0.22)

(-0.79)

DISP

Cst

Cst

Cst

Cst

Cst

Cst

Cst

IA CAY

IA CAY

IA CRE

IA DY IA PER

Cst

Cst

IA RREL IA SKEW

IA CCI IA DISP

Cst

Cst

IA PUI IA UMCSI

IA VRP

Cst

(2.10)

(1.22)

(0.66)

(-0.57)

(-0.54)
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B, IA strongly and robustly predicts future market excess returns in all regressions when other 

ambiguity proxies are controlled for. The dispersion between bullish and bearish sentiments (DISP) 

motivated by our Eq. (2.9) is the only other ambiguity variable which remains significant in predicting 

future market excess returns in all horizons considered, suggesting that IA and DISP contain 

complementary ambiguity information. In both Panels A and B, the sign of IA is consistently negative 

implying that the negative relationship between IA and future market excess returns holds when other 

predictors are controlled for. This provides confirmation to CWZ’s second prediction (P2) regarding a 

negative relation between ambiguity and ex post equity premium. In Panel C, we specify the first two 

sets of multivariate regressions based on those robust predictor variables which predict excess returns 

for all horizons. In the presence of IA and CAY, the predictive power of DISP disappears suggesting 

that the information content of IBEAR and IBULL divergence is likely to be subsumed in CAY and 

IA. By contrast, IA remains robust in the first two sets of regressions in Panel C. The predictive power 

and statistical significance of IA is maintained when included along DISP (with CAY). Given 

evidence that VRP might also partly capture investors’ attitudes toward ambiguity, we further specify 

multivariate regressions involving IA, CAY and VRP. From the third set of regressions in Panel C, IA 

is significant in almost all horizons. The predictive power of VRP is also weakened and becomes 

insignificant at the 12-month horizon. In the medium term, information in IA and VRP seems partly 

absorbed by CAY (VRP is insignificant but IA remains significant).
16

 The above suggests that CAY, 

though not a normative predictor, may also capture a portion of ambiguity information. Overall, the 

above results provide strong evidence that option market ambiguity contains incremental excess 

return information beyond that of other predictor variables and alternative ambiguity or economic 

uncertainty proxies.   

  

                                                      
16 This finding can be explained by, and is consistent with, the fact that the ambiguity-related information of VRP is in line with a multiple-

priors explanation (i.e., uncertainty in the drift only) while the information in IA (or IA*) follows the more general Choquet and rank-

dependent utility specification (accommodating uncertainty or multiple scenarios in both drift and volatility).  
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Table 2.5. Robustness Results for Option-market Implied Ambiguity with Alternative Specifications for σ and μ  

Table 2.5 presents predictive regression robustness results for market ambiguity IA estimated with different inputs for  σ and μ. Volatility σ is estimated 

in three different ways: (i) from RiskMetrics EWMA, (ii) from out-of-sample GARCH(1,1) with 3-year rolling estimation window, and (iii) from 1-

month (22-trading day) historical volatility. Investor’s subjective required rate of return (μ) is estimated from historical returns over windows ranging 

from 12 to 36 months, as well as using the 3M risk-free rate. The sample covers monthly observations from January 2000 to December 2012. Robust t-

statistics according to Hodrick (1992) adjustment 1B are reported in parentheses. The superscripts ***, **, and * indicate significance at 1%, 5%, and 

10% levels, respectively. 

 

We conduct a variety of robustness tests and provide additional results confirming the predictive 

power of market ambiguity and its sensitivity to alternative input specifications. First, we examine 

robustness of the predictive power of IA to different volatility and alternative subjective investor 

required return (μ) estimations. IA is alternatively inferred using different volatility estimation 

methods, including the RiskMetrics EWMA, out-of-sample GARCH(1,1) with 3-year rolling 

estimation window, and using simple historical volatility measured as the sample standard deviation 

of daily returns over 22 trading days (one month). We further use different historical return estimation 

horizons as proxies for the investors’ subjective required return (μ), namely 12-, 18-, 24-, and 36-

month horizons. Related robustness results are reported in Table 2.5. Table 2.5 confirms that the 

predictive power of IA is generally preserved, particularly for longer horizons. Among the alternative 

volatility specifications considered, IA inferred from out-of-sample GARCH(1,1) seems to provide a 

comparable (or relatively better) predictive power as RiskMetrics EWMA, while a simple 22-day 

standard deviation of returns gives a slightly weaker predictive power. This confirms that accounting 

for the autoregressive nature of volatility is important in estimating IA. Concerning the subjective rate 

σ: RiskMetrics EWMA; μ: 12m return σ: GARCH(1,1); μ: 12m return σ: HV 22-day; μ: 12m return

k Adj. R 2 

(%)
k Adj. R 2 

(%)
k Adj. R 2 

(%)
1 13.58 (3.72)

***
-0.46 (-2.41)

**
2.57 1 13.89 (3.51)

***
-0.41 (-2.43)

**
2.16 1 11.38 (3.07)

***
-0.27 (-1.58)

 
0.88

12 9.77 (3.66)
***

-0.21 (-1.96)
*

5.14 12 9.97 (3.50)
***

-0.19 (-2.19)
**

4.62 12 10.02 (3.79)
***

-0.20 (-2.12)
**

5.42

24 9.00 (3.65)
***

-0.18 (-2.35)
**

6.01 24 9.28 (3.54)
***

-0.17 (-2.58)
***

5.92 24 8.92 (3.54)
***

-0.15 (-2.26)
**

5.17

36 8.21 (3.46)
***

-0.14 (-2.34)
**

5.21 36 8.20 (3.30)
***

-0.12 (-2.24)
**

4.06 36 8.06 (3.30)
***

-0.11 (-2.16)
**

4.12

σ: RiskMetrics EWMA; μ: 18m return σ: GARCH(1,1); μ: 18m return σ: HV 22-day; μ: 18m return

k Adj. R
2 

(%)
k Adj. R

2 

(%)
k Adj. R

2 

(%)
1 13.46 (3.75)

***
-0.44 (-2.33)

**
2.60 1 13.84 (3.62)

***
-0.41 (-2.41)

**
2.32 1 10.50 (2.92)

***
-0.23 (-1.32)

 
0.55

12 9.90 (3.75)
***

-0.21 (-2.05)
**

5.83 12 9.75 (3.49)
***

-0.18 (-2.16)
**

4.33 12 9.40 (3.58)
***

-0.17 (-1.98)
**

3.99

24 9.07 (3.71) *** -0.18 (-2.32) ** 6.75 24 9.26 (3.61) *** -0.17 (-2.60) *** 6.33 24 8.56 (3.42) *** -0.14 (-2.14) ** 4.29

36 8.23 (3.45) *** -0.14 (-2.21) ** 5.64 36 8.23 (3.33) *** -0.12 (-2.26) ** 4.62 36 7.95 (3.25) *** -0.11 (-2.15) ** 4.11

σ: RiskMetrics EWMA; μ: 24m return σ: GARCH(1,1); μ: 24m return σ: HV 22-day; μ: 24m return

k Adj. R
2 

(%)
k Adj. R

2 

(%)
k Adj. R

2 

(%)
1 12.70 (3.59) *** -0.40 (-2.14) ** 2.22 1 13.23 (3.47) *** -0.38 (-2.21) ** 2.04 1 10.02 (2.78) *** -0.20 (-1.16)  0.37

12 8.88 (3.35) *** -0.15 (-1.51)  2.99 12 9.11 (3.26) *** -0.15 (-1.76) * 2.89 12 8.92 (3.40) *** -0.14 (-1.66) * 2.78

24 8.52 (3.50) *** -0.15 (-2.00) ** 4.76 24 8.85 (3.50) *** -0.15 (-2.30) ** 5.10 24 8.29 (3.32) *** -0.12 (-1.92) * 3.40

36 7.88 (3.33) *** -0.12 (-1.98) ** 4.39 36 8.02 (3.30) *** -0.11 (-2.09) ** 4.12 36 7.76 (3.19) *** -0.10 (-1.97) ** 3.49

σ: RiskMetrics EWMA; μ: 36m return σ: GARCH(1,1); μ: 36m return σ: HV 22-day; μ: 36m return

k
Adj. R 2 

(%)
k

Adj. R 2 

(%)
k

Adj. R 2 

(%)
1 11.93 (3.42) *** -0.36 (-1.92) * 1.85 1 13.12 (3.49) *** -0.39 (-2.28) ** 2.30 1 10.72 (3.01) *** -0.25 (-1.49)  0.87

12 8.50 (3.11) *** -0.13 (-1.38)  2.32 12 8.65 (3.03) *** -0.13 (-1.63)  2.19 12 8.75 (3.27) *** -0.13 (-1.83) * 2.82

24 8.22 (3.32) *** -0.13 (-1.98) ** 3.97 24 8.47 (3.28) *** -0.13 (-2.36) ** 4.20 24 8.26 (3.27) *** -0.12 (-2.35) ** 3.97

36 7.76 (3.26) *** -0.11 (-2.17) ** 4.35 36 7.84 (3.19) *** -0.11 (-2.29) ** 3.91 36 7.80 (3.18) *** -0.11 (-2.54) ** 4.49

Cst IA Cst IA Cst IA

IA

Cst IA Cst IA Cst IA

Cst IA Cst IA Cst

Cst IA Cst IA Cst IA



30 Raymond H.Y. So  

 

of return (μ) estimations, the use of 12- and 18-month return windows provides the best predictive 

power.
17

 This is in line with the findings of Barberis, Huang and Santos (2001) that investors have a 

short memory when determining required returns. We have also controlled for relative risk aversion 

measured using consumption- and CAPM-based approaches and find the strong predictive power of 

IA still holds. 

Since option market ambiguity may also contain aggregate economic uncertainty information, we 

compare the correlations between our IA measure and many established indicators of economic 

uncertainty. We consider the conditional variance of the Chicago Fed National Activity Index 

(        ) and of industrial production growth (       estimated using GARCH (1,1) models 

(Bollerslev, 1986); the macroeconomic uncertainty index (       ) of Bali, Brown, and Caglayan 

(2014) based on principal component analysis (PCA); and the macroeconomic uncertainty measure 

(       
   etc.) of Jurado, Ludvigson and Ng (2015) measured by a weighted conditional variance of 

financial and macroeconomic series with 1-, 3-, and 12-month forecasting horizons. We also examine 

survey-/media-based measures such as disagreement among economic forecasters from the Federal 

Reserve Bank of Philadelphia’s Survey of Professional Forecasters (         with different 

forecasting horizons. IA shows significant correlations with each of the above uncertainty proxies, 

with the highest correlations with        
    (ρ=0.405) and       (ρ=0.356). The correlation 

between IA and the first principal component formed by        
    and       is higher (at 0.49). 

While the sign of the association between our ambiguity measures and excess returns is in line with 

CWZ, we sought to find further confirmatory empirical evidence for robustness. We use        
   , 

which measures dispersion in forecasting errors, as a predictor of ex post excess returns and find 

negative insignificant coefficients under the Hodrick (1992) standard error adjustment.  

 Regarding our extraction of option-implied ambiguity from VIX for our main IA measure, we 

perform robustness on other needed inputs, including the risk-free interest rate (  ). For further 

                                                      
17 Although not in line with Barberis, Huang and Santos (2001) short memory principle, we also used 60-month return windows to estimate 

the subjective rate of return for further robustness. Prediction results are qualitatively similar to those using 24- and 36-month horizons. The 

predictive power of IA is robust to alternative inputs of subjective rate of return. 
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validation we repeat the analysis in Table 2.2 adding direct controls for μ and    (one at a time as 

reported in Supplementary Appendix Table SA2.1). IA and IA
*
 are significant in all horizons 

considered. The coefficients of IA and IA
*
 are stable in line with the univariate results. Robust t-

statistics generally improve when μ is directly controlled for. When    is also controlled, IA and IA
*
 

are again negative and significant in all horizons. The robust t-statistics of option market ambiguity 

are generally improved. This suggests the information content of our ambiguity measures is not 

directly attributed to μ and   . 

To confirm that our results are not driven by the way we extract option-implied ambiguity from the 

VIX, we alternatively extract divergence in beliefs and option market ambiguity information from 

traded S&P 500 option prices with short average maturities of one month for the same sample period 

based on our A-OPM of Eq. (2.4). Despite lower data quality compared to that contained in CBOE’s 

VIX, the predictive ability of IA extracted from traded call and put option prices on the S&P 500 

index largely holds, more so when extracted from puts. In a robustness test that captures differences in 

ambiguity beliefs among representative ambiguity-averse and ambiguity-seeking investors without 

relying on option data or our A-OPM, the level of dispersion between bullish and bearish sentiment 

(DISP) predicts future excess returns for 34 out of 36 monthly horizons with a negative coefficient in 

our univariate settings (unreported).
18

 This confirms in a robust way our finding that a negative 

association exists between measures of economic uncertainty based on divergence in heterogeneous 

ambiguity beliefs and ex post excess returns. The robust power of IA in predicting market excess 

returns and the equity premium holds regardless of the method we use to extract our ambiguity 

measure (whether from VIX, from traded SPX option prices or from DISP). Table A2.2 presents our 

additional results for the price-based IA predictors. 

2.5.2.  Ambiguity and the Risk-Uncertainty vs. Return Trade-off 

To further examine the role and importance of market ambiguity in asset pricing, we next consider the 

information content of our IA measures by examining the risk-uncertainty-return trade-off through 

                                                      
18 This predictive ability no longer holds, however, when CAY is controlled for. 
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multiple regression setups. Table 2.6 presents our predictive excess market return regression results 

for k = 6 to 18 months ahead. Panel A reports univariate regression results with implied variance (IV 

or VIX
2
) as proxy for risk as the sole regressor. Risk as proxied by implied variance is not 

significantly related to future excess returns, in line with most empirical literature failing to document 

a significant positive risk-return trade-off in low-frequency data. When divergence in ambiguity 

beliefs is controlled for (adding IA in the bivariate regressions) in Panel B, the significance of IV 

generally improves (becoming significant at most intermediate horizons from 9 to 16 months). The 

coefficient of IA is stronger and significantly negative for all horizons in the presence of IV. Adjusted 

R
2
 for the bivariate regressions is larger than (the sum of) adjusted R

2
s for the separate univariate 

regressions. While IV does not exhibit market excess return predictability on its own, when including 

ambiguity it shows significant positive association with future excess market returns. This association 

is positive but not significant if we replace IA with DISP, confirming that IA captures more accurate 

and forward-looking ambiguity information. 

As Merton (1973) assumes a market in which investors can borrow and lend at a common interest 

rate, we also consider the risk-uncertainty-return relation when the borrowing rate proxied by one-

month USD Libor is controlled for. When controlling for the interest rate in Panel D, the risk-

uncertainty-return trade-off of Eq. (2.2) holds concretely: the risk measure (IV) is significantly 

positively related to future market excess returns over most horizons (from 8 to 17 months) while the 

ambiguity measure (IA) is negative and significant in all horizons. The above confirms CWZ’s second 

prediction (P2) that risk is positively related, and ambiguity is negatively related, to future market 

excess return. To put our findings in broader perspective, note that option-implied ambiguity alone is 

significant in predicting market excess returns (Table 2.2) but implied variance (proxying for risk) in 

itself is not (Panel A of Table 2.6). The robust t-statistics for IA are higher than those for IV for all 

horizons. This corroborates CWZ’s third prediction (P3), that ambiguity dominates risk in the 

determination of the equity premium.  

Additionally, Cao, Wang and Zhang (2005) suggest that when the level of ambiguity dispersion in 

the market increases, investors with high ambiguity aversion leave the market while those with low 

ambiguity aversion stay. The latter participants that dominate the market in high ambiguity regimes 
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Table 2.6. Risk-Uncertainty vs. Return Trade-off  

Table 2.6 shows predictive regression results using implied variance (IV) as measure for risk, option-market implied ambiguity IA, and Libor as control 

for predicting S&P 500 excess returns. Predictive regressions are specified according to equation (2.10). The above are meant to test theoretical 

predictions by Merton’s (1993) ICAPM and limited market participation theories whereby risk (IV) has a positive sign while ambiguity (IA) a negative 

association with retruns. Results in Panel D are obtained according to Eq. 2.11. The sample covers monthly observations from January 1990 to December 

2012. Robust t-statistics according to Hodrick (1992) adjustment 1B are reported in parentheses. The superscripts ***, **, and * indicate significance at 

1%, 5%, and 10% levels, respectively. 

 

require a lower ambiguity premium, so the sign of IA on market returns should be negative. At the 

same time, limited market participation results in a higher price of risk since less investors remain in 

the market to share the risk. This suggests that the risk premium (sign of IV) should be higher in 

Panel A. Risk-return Tradeoff

k Adj. R 2 (%)
6 3.19 (0.79)   1.03
7 3.23 (0.85)   1.18
8 3.50 (1.00)   1.11
9 3.74 (1.12)   1.06
10 4.12 (1.29)   0.84
11 4.40 (1.43)   0.68
12 4.50 (1.50)   0.66
13 4.43 (1.50)   0.79
14 4.57 (1.59)   0.65
15 4.85 (1.71) *  0.37
16 4.92 (1.76) *  0.32
17 5.08 (1.83) *  0.13
18 5.23 (1.89) *  0.02

Panel B. Uncertainty-Risk vs Return Tradeoff 

k Adj. R 2 (%)
6 5.93 (1.42)   -0.33 (-2.83) *** 7.48
7 5.75 (1.46)   -0.31 (-2.62) *** 7.46
8 5.84 (1.60)   -0.29 (-2.76) *** 7.52
9 6.18 (1.79) * * -0.31 (-2.97) *** 8.77
10 6.60 (2.01) ** * -0.31 (-3.04) *** 9.47
11 6.83 (2.16) ** * -0.30 (-2.94) *** 9.59
12 6.74 (2.19) **  -0.27 (-2.83) *** 8.57
13 6.71 (2.23) ** * -0.28 (-2.85) *** 9.39
14 6.82 (2.33) ** * -0.28 (-2.93) *** 9.68
15 7.09 (2.47) **  -0.28 (-3.07) *** 9.80
16 7.29 (2.59) *** * -0.29 (-3.36) *** 11.27
17 7.21 (2.59) ***  -0.28 (-3.22) *** 10.16
18 7.34 (2.66) ***  -0.27 (-3.24) *** 9.91

Panel C. Uncertainty-Risk vs Return Tradeoff with DISP

k Adj. R
2 

(%)
6 8.01 (1.52)   -0.25 (-1.48)  1.82
7 8.30 (1.65) *  -0.26 (-1.59)  2.30
8 8.72 (1.87) *  -0.27 (-1.71) * 2.53
9 8.50 (1.92) *  -0.25 (-1.62)  2.34
10 8.41 (2.00) **  -0.22 (-1.53)  1.94
11 8.49 (2.09) **  -0.21 (-1.51)  1.76
12 8.77 (2.21) **  -0.22 (-1.64)  2.00
13 8.64 (2.21) **  -0.22 (-1.69) * 2.19
14 9.00 (2.32) **  -0.23 (-1.82) * 2.36
15 9.86 (2.58) ***  -0.26 (-2.14) ** 2.84
16 9.83 (2.60) ***  -0.25 (-2.18) ** 2.82
17 10.09 (2.67) ***  -0.26 (-2.27) ** 2.92
18 10.79 (2.85) ***  -0.29 (-2.54) ** 3.73

Panel D. Uncertainty-Risk vs Return Tradeoff  - Controlling for Borrowing/Lending Rate Libor

k Adj. R
2 

(%)
6 2.65 (0.42)  -0.34 (-2.83) *** 0.77 (0.59)  7.67
7 2.62 (0.43)   -0.31 (-2.62) *** 0.73 (0.56)  7.66
8 2.46 (0.43)  * -0.30 (-2.78) *** 0.79 (0.64)  7.89
9 2.83 (0.51)  * -0.31 (-2.99) *** 0.77 (0.65)  9.20
10 3.55 (0.65)  * -0.31 (-3.05) *** 0.70 (0.59)  9.81
11 4.22 (0.79)  * -0.30 (-2.95) *** 0.60 (0.51)  9.79
12 4.50 (0.86)  * -0.27 (-2.85) *** 0.51 (0.44)  8.63
13 4.85 (0.96)  * -0.28 (-2.86) *** 0.42 (0.37)  9.34
14 5.40 (1.10)  * -0.28 (-2.94) *** 0.32 (0.29)  9.52
15 6.15 (1.29)  * -0.28 (-3.09) *** 0.21 (0.20)  9.53
16 6.63 (1.42)  * -0.30 (-3.38) *** 0.15 (0.14)  10.97
17 7.05 (1.55)  * -0.28 (-3.23) *** 0.04 (0.04)  9.82
18 7.42 (1.68) *  -0.27 (-3.25) *** -0.02 (-0.02)  9.56

Panel E. Price of Risk in High and Low Ambiguity Regimes

k Adj. R
2 

(%)
6 0.62 (0.11)  0.21 (2.52) ** 0.10 (0.76)  -0.24 (-1.59)  0.74 (0.57)  8.00
7 1.36 (0.24)  0.18 (2.33) ** 0.11 (0.94)  -0.25 (-1.74) * 0.71 (0.55)  7.62
8 2.18 (0.40)  0.14 (2.01) ** 0.13 (1.20)  -0.28 (-2.22) ** 0.78 (0.64)  7.56
9 2.59 (0.48)  0.14 (2.05) ** 0.13 (1.29)  -0.30 (-2.44) ** 0.77 (0.64)  8.87
10 3.62 (0.67)  0.12 (1.87) * 0.13 (1.40)  -0.31 (-2.62) *** 0.70 (0.59)  9.47
11 4.66 (0.89)  0.10 (1.62)  0.13 (1.53)  -0.32 (-2.73) *** 0.61 (0.52)  9.50
12 5.33 (1.03)  0.08 (1.36)  0.13 (1.66) * -0.32 (-2.82) *** 0.53 (0.46)  8.50
13 5.68 (1.12)  0.08 (1.38)  0.13 (1.76) * -0.32 (-2.83) *** 0.44 (0.39)  9.22
14 6.32 (1.28)  0.07 (1.26)  0.12 (1.83) * -0.33 (-2.98) *** 0.34 (0.31)  9.48
15 7.22 (1.50)  0.06 (1.01)  0.12 (1.85) * -0.33 (-3.19) *** 0.24 (0.22)  9.63
16 7.80 (1.65) * 0.06 (0.93)  0.12 (1.96) ** -0.36 (-3.49) *** 0.18 (0.17)  11.19
17 8.30 (1.78) * 0.04 (0.75)  0.11 (1.95) * -0.34 (-3.41) *** 0.08 (0.07)  10.12
18 8.73 (1.91) * 0.03 (0.60)  0.11 (1.89) * -0.34 (-3.46) *** 0.03 (0.03)  9.96

0.02 (0.36)
0.01 (0.27)

DISP
0.07 (0.66)
0.06 (0.70)
0.06 (0.69)
0.05 (0.70)

(1.75)
(1.66)
(1.53)

(1.84)
(1.84)
(1.80)
(1.88)
(1.85)

Cst IV

0.05 (0.65)
0.04 (0.62)
0.04 (0.61)
0.04 (0.66)
0.04 (0.60)
0.03 (0.46)
0.03 (0.44)

(1.60)
(1.71)
(1.82)

(1.64)
(1.73)
(1.72)
(1.62)
(1.65)

(1.73)

(1.67)
(1.67)

(0.66)
(0.64)
(0.56)
(0.49)

(1.41)

(1.59)
(1.48)

(0.81)
(0.77)

(0.77)
(0.83)
(0.83)
(0.84)

(1.49)
(1.56)
(1.65)

0.11
0.10
0.09
0.09
0.08

0.14
0.13
0.12
0.12
0.11

0.14

r f

IV

IV

IV
0.15 (1.51)

0.08
0.08
0.07
0.07
0.06
0.05
0.05
0.05
0.05
0.04

IA

0.08

0.14
0.13
0.13
0.12

Cst IA r f

IA

Cst

Cst

0.04
0.03
0.03

0.11
0.11
0.10
0.10
0.10
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0.09
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higher ambiguity regimes than in lower ambiguity states.
19

 To test the above hypothesis and assess 

empirically how long the gradual market participation shift takes as divergence in ambiguity beliefs 

rises, we specify the following regressions: 

                     ̅̅ ̅    [            ̅̅ ̅ ]                    (2.11) 

where      is the ex post k-month excess return of the S&P 500 index, IV is the implied variance 

measuring risk,       ̅̅ ̅ is a dummy variable taking the value of 1 when IA is above or equal to its 

mean and zero otherwise. This setup allows obtaining comparable coefficients from IV under both 

high and low IA regimes while directly controlling for the level of implied market ambiguity (IA) 

itself.  

Table 2.6 Panel E results corroborate Cao et al’s (2005) prediction concerning the price of risk 

being higher under a high ambiguity regime. The switch adjustment from a relatively low risk 

premium to a high risk premium, depending on the time it takes for ambiguity averse investors to 

leave the market and for ambiguity-tolerant investors to dominate, takes about a year. Panel E shows 

that such a shift tends to happen after 11 months of rising ambiguity. IV is significant (and positively 

priced) under the low ambiguity regime prior to the 11-month horizon, and in the high ambiguity 

regime after the 11-month horizon. From a one-year horizon onwards, the price of risk in high 

ambiguity regimes is higher (ranging from 0.11 to 0.13 with mean of 0.12) than that under low 

ambiguity (ranging from 0.03-0.08 with mean 0.06) or the unconditional IV in Panel D (ranging from 

0.08-0.11 with mean 0.09). This persists beyond the 18-month horizon. This finding confirms Cao et 

al’s (2005) prediction concerning a higher risk premium under high ambiguity. The panel also 

highlights a gradual shift towards more ambiguity-tolerant investors. Interestingly, the theoretical 

(ICAPM) risk-return trade-off holds more clearly (significantly) for days with low or no ambiguity. 

That is, the IV x (1 -       ̅̅ ̅) variable capturing low regimes is more significantly positive in a 

trivariate specification of Eq. (2.10) without IA. The IV x       ̅̅ ̅ variable capturing high regimes is 

                                                      
19 Cao et al’s (2005) prediction of a higher risk premium when ambiguity is high depends on two factors: 1) the number of investors who 

participate in the market decreases (i.e., the number of ambiguity averse individuals who leave the market exceeds the number of ambiguity-

tolerant investors who enter the market as ambiguity rises); and 2) the time period the process of reduced market participation takes for this 

gradual shift to materialize as ambiguity rises. 
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positive and significant only after controlling for IA. For further robustness, we divided our sample 

into states with above vs. below median IA (instead of mean) as well as into two sub-samples 

according to (i) NBER recessions and (ii) financial crisis periods based on the crisis classification of 

Reinhart and Rogoff (2009). Results (unreported) again confirm Cao et al’s (2005) conjecture about a 

significant positive sign for IV and negative one for IA. Further, the coefficient of IV is higher during 

NBER recessions than non-NBER recession times and it is higher during financial crisis periods than 

non-crisis times. Finally, we tested the above relationships with IA extracted from traded option 

prices, with similar results.  

While the above findings are in line with CWZ’s predictions, it is also important to verify if 

increased ambiguity is indeed associated with limited stock market participation. Using data from the 

Survey of Consumer Finances published by the Federal Reserve, we find a significant negative 

correlation of -0.55 between changes in the proportion of household investment in stocks and the 

average level of IA over our sample period. This confirms a negative relationship between the level of 

ambiguity in the market and stock market participation as suggested by CWZ. This is also in line with 

the recent survey evidence of Dimmock et al. (2016).  The above findings represent the first piece of 

empirical evidence on the intertemporal risk-uncertainty-return relation for low frequency 

nonparametric data.
20

 Bollerslev, Tauchen and Zhou’s (2009) attempt to reveal a positive and 

significant risk-return relation by including VRP was not effective. The risk-uncertainty-return 

relation revealed above by including IA (rather than VRP) suggests that the ambiguity information 

contained in IA operates through a different and more effective channel than VRP. This enables our 

approach to empirically uncover the sought-after risk-return trade-off based on nonparametric and low 

frequency conditional variance. This calls for further consideration of ambiguity measures in asset 

pricing models to help better understand the risk-return trade-off puzzle. 

                                                      
20 As noted, Brenner and Izhakian (2015) provide partial evidence for a risk-uncertainty-return trade-off though not in an intertemporal 

setting as intended by Merton (1973). Their inclusion of an interaction term is useful but does not separate out ambiguity from risk. 
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2.5.3.  Out-of-sample Prediction 

Welch and Goyal (2008) raise the concern that many variables used to predict excess market returns 

fail to outperform simple historical averages in out-of-sample analysis. We next investigate whether 

the predictive performance of IA is robust out-of-sample. 

2.5.3.1. Econometric Specification 

To investigate the out-of-sample prediction performance of each of the predictor variables considered, 

we divide our sample into two sub-periods: an estimation period and a forecasting period. For 

robustness, we employ two estimation period specifications, one with a rolling estimation period and 

another with a recursive one. Under the rolling estimation period, the forecast on day t is based on 

observations from t-m to t-1, with m the number of observations in the estimation period; under 

recursive estimation, the sample used to estimate the forecast on day t is based on observations from 1 

to t-1. Following Campbell and Thompson (2008), Welch and Goyal (2008), Rapach, Strauss and 

Zhou (2009), and Li, Ng and Swaminathan (2013), we use the historical average market excess return 

as the benchmark for comparison. For fairness, we assume the first day of our sample (January 1990) 

as the first piece of information in investors’ information set. The first out-of-sample forecast using 

predictor variable   
  is obtained by: 

  ̂   
    ̂   

   ̂   
     

  (2.12) 

where  ̂   
  and  ̂   

  are estimated using m observations under the fixed estimation period 

specification, estimated using all observations up to t.  

2.5.3.2. Prediction Evaluation 

To evaluate the performance of out-of-sample predictions by each predictor model, we compute an 

out-of-sample (OS) R
2
 statistic (Campbell and Thompson, 2008) that can be compared to the in-

sample R
2 
statistics: 

    
     

∑      ̂  
  

   

∑      ̅  
  

   

 (2.13) 

Above    is the realized market excess return,   ̂  is the predicted value from the out-of-sample 

regression, and  ̅  is the historical average excess return.    
  is positive if the mean squared 

prediction error (MSPE) of forecasts from a predictor variable is smaller than the historical average 
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forecasts. To test whether the advantage in out-of-sample prediction is statistically significant, we 

follow Clark and West (2007) in using the adjusted squared prediction error statistic (      ), as 

follows: 

              ̅  
  [     ̂  

    ̅   ̂  
 ] (2.14) 

The time series of        for each predictor model is then regressed on a constant and the t-statistics 

of the constant are obtained from the estimations. We report the p-values of    
  from the upper-tail t-

statistic. Since the out-of-sample evaluation statistics in (2.13) and (2.14) do not follow specific 

assumptions, we mainly rely on those in our discussion. 

To investigate the out-of-sample implications of each return prediction model for investors’ risk-

return profile, we next consider the utility gains for a mean-variance investor based on each return 

prediction model (Campbell and Thompson, 2008; Welch and Goyal, 2008; Rapach, Strauss and Zhou, 

2009). An investor’s optimal portfolio allocation
21

 in the risky asset (the aggregate stock market 

portfolio) w in period t based on her forecasts of expected market return and market variance at t and 

her relative risk aversion   is given by: 

    (
 

 
)(

 ̂ 
 

 ̂ 
 ) (2.15) 

where  ̂ 
  is the variance of market (risky asset) returns. We estimate market variance using the 

annualized 10-year rolling sum of squared market returns. To maintain comparability with other 

predictor variables, we do not account for investors’ ambiguity attitudes in the optimal asset allocation 

problem. Our analysis considers the extracted ambiguity as a market timing factor given a constant 

risk aversion. Similar to Li, Ng and Swaminathan (2013), we report results in Table 2.7 based on   = 

3.
22

  The resulting average utility of the representative investor managing an optimal portfolio p 

between the market (with weight w) and the risk-free asset is: 

             
  (2.16) 

where     and   
  are the sample mean and variance of portfolio p returns. We compute the investor’s 

utility gain as the difference between utility based on portfolios with each predictor variable and the 

                                                      
21 Following Campbell and Thompson (2008), we allow the allocation in the risky asset to be between 0 to 150%. 

22 The results are robust to alternative   values.  
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historical average. This utility gain represents the certainty-equivalent excess return of a mean-

variance investor in using a specific predictor variable (instead of using the historical mean model) in 

the asset allocation.  

2.5.3.3.  Out-of-sample Prediction Results 

In producing reliable estimates for out-of-sample analysis, it is important to ensure the estimation 

period is not too short (e.g., Welch and Goyal, 2008); hence we use an estimation period containing at 

least 180 monthly observations. For one-month return prediction, the estimation period for the first 

forecast utilizes data from January 1990 to December 2004. Figure 2.3 shows the time-varying 

difference between the cumulative squared prediction error for the historical average benchmark and 

that of each predictor variable. The figure is based on one-month prediction (the forecasting period is 

January 2005 to December 2012). A reliable predictor variable should also show an upward-sloping 

plot indicating robust outperformance of the predictor variable compared to the historical average in 

out-of-sample prediction. Figure 2.3 shows that most standard predictors and ambiguity proxies 

(namely, DY, PER, CRE, TERM, CCI, DISP, PUI, and UMCSI) collapse during the 2007 to 2009 

financial crisis. CAY and SKEW consistently underperform the historical average model. Only IA, 

VRP and RREL deliver forecasting advantages vs. the historical average.   

Out-of-sample prediction results are reported in Table 2.7. Panels A and B report results based on 

rolling and recursive estimation periods, respectively. Panel A shows that at k = 1 and 6 only implied 

ambiguity IA (or IA
*
), VRP and RREL show significant    

 . A portfolio based on optimal allocation 

in the risky asset (market) according to these predictor variables generates an annualized return of 

more than 5% for a 1-month holding period (k = 1) and more than 4% for a 6-month holding period (k 

= 6). For a 12-month horizon (k = 12), IA (or IA*), RREL, VRP, DY and CAY are also significant. 

However, DY and VRP show negative utility gains. This suggests that while the out-of-sample 

forecasts of DY and VRP outperform the historical average at the 12-month horizon, they do not 

necessarily benefit the mean-variance investor. The risk-adjusted returns (given by the Sharpe ratio) 

generated by an optimal portfolio of DY and VRP are not superior to those of the historical market 

average. Results based on the recursive estimation period reported in Panel B are similar. Our out-of-

sample prediction results are robust to the  
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Figure 2.3. Out-of-sample Relative Cumulative Squared Prediction Error (vs. Historical Average Benchmark) 

Figure 2.3 shows the cumulative squared prediction error for the historical average benchmark model minus the cumulative squared prediction error for models 

involving each of the following predictors: option market implied ambiguity (IA), consumption-to-wealth ratio (CAY), credit spread (CRE), dividend yield 

(DY), price-to-earnings ratio (PER), stochastically detrended interest rate (RREL), CBOE’s SKEW index (SKEW), term spread (TERM), consumer confidence 

index (CCI), Economic Policy Uncertainty Index (PUI), Dispersion (DISP) between Investors Intelligence Sentiment Indices – Bullish (IBULL), and Bearish 

(IBEAR), University of Michigan Consumer Sentiment Index (UMCSI), and variance risk premium (VRP). All y-axes are rescaled to 100 times. The out-of-

sample forecasting period covers monthly observations from January 2005 to December 2012.   

  

  

  

  

  

  

  

length of estimation period and parameter instability. The effectiveness of IA in out-of-sample 

prediction reaffirms its robust predictive ability shown in previous sections. 
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2.6.  International Evidence 

Given the strong evidence that ambiguity predicts excess stock market returns across various forecast 

horizons in the U.S., we next extend our scope globally examining eight other countries with VIX-

type indices. Figure 2.4 shows the time-varying divergence in ambiguity beliefs in each of eight 

additional countries examined revealing differences in investors’ perceived ambiguity across 

countries. Table 2.8 provides a descriptive summary for option-market ambiguity and excess market 

returns (Panel A), and correlation matrices in Panels B and C. Panel C shows that the average 

correlation among the excess market returns of Asian countries (i.e., Hong Kong and Japan) with 

European counterparts is lower than among European countries (0.61 vs. 0.83). The distinctive 

characteristics of the Asian markets highlight the importance of estimating a specific ambiguity 

measure per country.  

Table 2.9 summarizes the predictive regressions findings for option-implied ambiguity (IA) in the 

eight countries examined.
23

 In Belgium, France, Germany and Netherlands, IA predicts future 

aggregate market excess returns from 6-month to 36-month horizons. The predictive power of IA is 

highly significant with robust t-statistics. In the two Asian markets, Hong Kong and Japan, IA is 

significant for five out of seven horizons considered. In Switzerland and the United Kingdom, IA 

predicts in four and three out of seven horizons, respectively. Although predictability is not as strong 

as in the U.S., the predictive power of IA is quite impressive given the small sample size examined, 

relatively low liquidity and small scale of foreign option markets in comparison to the U.S. Yet the 

coefficient of IA in each foreign country is consistently negative (in line with CWZ’s P2), suggesting 

that the negative relationship found between implied ambiguity and the equity premium is robust 

across countries and that ambiguity is priced in equity markets internationally. 

 

                                                      
23 Due to similarity, we report the IA* results in Supplementary Appendix Table SA2.2. 
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Figure 2.4. Option-market Implied Ambiguity in Eight Countries 

Figure 2.4 shows the monthly estimates of our option-market implied ambiguity measure (IA) for Belgium (BEL20), France (CAC40), Germany (DAX30), 

Hong Kong (HSI), Japan (Nikkei225), Netherlands (AEX), Switzerland (SMI20), and United Kingdom (FTSE100). Shaded grey bands show (from left to right) 

the period of the “dot-com bubble”, the 2007-2009 Great Financial Crisis, and the European debt crisis, respectively. The sample covers monthly observations 

from January 2000 to December 2012.   

Belgium – BEL20 France - CAC40 
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Table 2.8. Descriptive Statistics and Correlation Coefficients for Ambiguity and Excess Returns in Eight Countries 

Table 2.8 presents descriptive statistics and correlation coefficients of international option-market implied ambiguity and excess returns in eight foreign 

countries with stock index option data. RM-Rf is the excess market return calculated as the logarithmic return of the corresponding stock market index in excess 

of the logarithmic yield of 3 month government bond in each foreign country. IA and IA* are the option market ambiguity measures extracted from the 

corresponding volatility indices as defined in equations (2.7) and (2.8). All variables are denoted in annualized percentages. The sample covers monthly 

observations from January 2000 to December 2012 except Belgium and Hong Kong, which cover January 2000 to November 2010 and January 2001 to 

December 2012 respectively.  

 

 

 
Table 2.9. International Evidence on Predictive Regressions for Option-implied Ambiguity in Eight Countries 

Table 2.9 presents predictive regression results for option market ambiguity IA in eight countries. Predictive regressions are specified according to equation 

(2.10). The sample covers monthly observations from January 2000 to December 2012 except Belgium and Hong Kong, which cover January 2000 to 

November 2010 and January 2001 to December 2012 respectively. Robust t-statistics according to Hodrick (1992) adjustment 1B are reported in parentheses. 

The superscripts ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively. 

 

 

  

Panel A. Descriptive Statistics

Country Variable  Mean  Std. Dev.  Skewness  Kurtosis AR(1) Country Variable  Mean  Std. Dev.  Skewness  Kurtosis AR(1)
R M -R f -5.26 68.51 -1.43 3.33 0.29 R M -R f -4.61 71.61 -0.75 1.63 0.14
IA 27.23 22.09 0.40 -1.03 0.33 IA 23.82 20.56 0.38 -1.21 0.20
IA* 41.06 14.45 0.72 -0.51 0.35 IA* 39.04 13.09 0.61 -0.83 0.20

R M -R f -6.02 66.56 -0.61 0.67 0.13 R M -R f -5.20 74.74 -1.00 2.15 0.11
IA 25.12 21.60 0.43 -1.20 0.48 IA 20.88 21.83 0.83 -0.45 0.35
IA* 39.84 13.95 0.66 -0.88 0.46 IA* 37.28 14.07 1.16 0.59 0.32

R M -R f
0.67 80.91 -0.94 2.77 0.08 R M -R f

-0.81 50.64 -0.72 0.62 0.25
IA 23.92 21.17 0.50 -1.23 0.42 IA 22.21 21.67 0.67 -1.01 0.35
IA* 39.15 13.64 0.70 -0.97 0.42 IA* 38.21 13.96 0.86 -0.66 0.35

R M -R f
2.02 78.55 -0.69 1.45 0.14 R M -R f

-0.02 0.53 -0.61 0.74 0.05
IA 22.73 20.22 0.54 -0.95 0.28 IA 21.13 22.15 0.74 -0.88 0.46
IA* 38.31 12.89 0.80 -0.47 0.29 IA* 37.51 14.20 0.97 -0.39 0.43

Hong Kong United Kingdom

Belgium Japan

France Netherlands

Germany Switzerland

Panel B. Correlation Coefficients for IA
Belgium France Germany Hong Kong Japan Netherlands Switzerland United Kingdom

Belgium 1.00
France 0.58 1.00
Germany 0.40 0.73 1.00
Hong Kong 0.40 0.54 0.46 1.00
Japan 0.27 0.30 0.36 0.33 1.00
Netherlands 0.63 0.76 0.65 0.49 0.36 1.00
Switzerland 0.59 0.61 0.57 0.41 0.28 0.66 1.00
United Kingdom 0.63 0.77 0.68 0.56 0.33 0.76 0.70 1.00

Panel C. Correlation Coefficients for Excess Returns
Belgium France Germany Hong Kong Japan Netherlands Switzerland United Kingdom

Belgium 1.00
France 0.81 1.00
Germany 0.74 0.92 1.00
Hong Kong 0.65 0.68 0.67 1.00
Japan 0.48 0.60 0.57 0.63 1.00
Netherlands 0.85 0.91 0.87 0.68 0.59 1.00
Switzerland 0.78 0.82 0.77 0.60 0.53 0.81 1.00
United Kingdom 0.82 0.87 0.81 0.70 0.59 0.86 0.79 1.00

k Adj. R 2 (%) k Adj. R 2 (%)
1 5.26 (0.68)  -0.32 (-1.38)  0.36 1 -0.15 (-0.02)  -0.21 (-0.95)  -0.17
6 6.73 (1.26)  -0.38 (-2.91) *** 4.14 6 0.30 (0.06)  -0.29 (-2.26) ** 3.19
12 5.71 (1.34)  -0.36 (-3.36) *** 6.27 12 -3.53 (-0.76)  -0.16 (-1.70) * 1.34
18 5.26 (1.35)  -0.35 (-3.87) *** 8.35 18 -1.54 (-0.36)  -0.26 (-3.43) *** 6.31
24 1.84 (0.50)  -0.25 (-3.37) *** 5.56 24 -2.63 (-0.64)  -0.17 (-2.85) *** 3.36
30 1.26 (0.37)  -0.23 (-3.38) *** 6.58 30 -2.68 (-0.69)  -0.15 (-2.92) *** 3.01
36 0.71 (0.23)  -0.16 (-3.26) *** 3.79 36 -2.21 (-0.64)  -0.14 (-3.84) *** 3.79

k Adj. R 2 (%) k Adj. R 2 (%)
1 4.37 (0.52)  -0.14 (-0.54)  -0.51 1 8.84 (1.05)  -0.31 (-0.92)  -0.08
6 9.79 (1.78) * -0.40 (-2.43) ** 4.60 6 9.93 (1.77)  -0.32 (-1.86) * 2.21
12 7.54 (1.46)  -0.32 (-2.40) ** 5.23 12 9.41 (1.87)  -0.26 (-1.69) * 3.60
18 6.60 (1.33)  -0.30 (-2.66) *** 6.28 18 7.21 (1.51)  -0.16 (-1.31)  2.08
24 6.98 (1.44)  -0.28 (-2.94) *** 7.25 24 8.15 (1.76)  -0.16 (-1.70) * 3.55
30 7.78 (1.72) * -0.28 (-3.24) *** 9.76 30 9.44 (2.10)  -0.17 (-2.18) ** 8.71
36 7.68 (1.88) * -0.24 (-4.68) *** 9.29 36 8.40 (1.91)  -0.11 (-1.76) * 5.74

k Adj. R 2 (%) k Adj. R 2 (%)
1 -0.23 (-0.03)  -0.17 (-0.69)  -0.41 1 -3.09 (-0.47)  -0.05 (-0.22)  -0.62
6 1.28 (0.23)  -0.27 (-2.39) ** 2.05 6 2.54 (0.51)  -0.38 (-2.31) ** 4.45
12 -1.83 (-0.35)  -0.12 (-1.40)  0.38 12 -1.17 (-0.25)  -0.23 (-1.80) * 2.67
18 -1.21 (-0.25)  -0.13 (-1.96) ** 1.21 18 -0.52 (-0.12)  -0.29 (-2.67) *** 6.68
24 -1.14 (-0.26)  -0.10 (-2.02) ** 0.70 24 -1.84 (-0.42)  -0.19 (-2.32) ** 3.62
30 0.32 (0.08)  -0.14 (-2.79) *** 2.64 30 -2.25 (-0.54)  -0.15 (-2.32) ** 3.00
36 0.40 (0.11)  -0.12 (-2.52) ** 2.40 36 -2.45 (-0.65)  -0.11 (-2.54) ** 1.95

k Adj. R 2 (%) k Adj. R 2 (%)
1 7.21 (1.44)  -0.30 (-1.65) * 1.03 1 0.05 (1.14)  -0.00 (-1.77) * 1.09
6 6.30 (1.65) * -0.31 (-2.65) *** 5.61 6 0.04 (1.16)  -0.00 (-2.28) ** 6.02
12 1.39 (0.42)  -0.12 (-1.50)  1.08 12 0.01 (0.35)  -0.00 (-1.44)  2.61
18 1.54 (0.53)  -0.15 (-2.18) ** 2.93 18 0.01 (0.33)  -0.00 (-1.72) * 3.48
24 1.62 (0.58)  -0.14 (-2.31) ** 3.10 24 0.00 (-0.10)  -0.00 (-0.88)  0.07
30 0.31 (0.11)  -0.07 (-1.46)  0.32 30 0.00 (-0.12)  -0.00 (-0.77)  -0.25
36 0.24 (0.10)  -0.04 (-1.15)  -0.37 36 0.00 (-0.18)  -0.00 (-0.32)  -0.77

Cst Japan IA Cst

Cst Switzerland IA

Cst Belgium IA Cst

Cst Germany IA Cst

Cst United Kingdom IA

France IA

Hong Kong IA

Netherlands IA
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2.7.  Conclusion 

We have examined the predictive power of market ambiguity for excess equity market returns or the 

equity premium in the U.S. and eight other countries. For the U.S., we extracted differences in 

ambiguity beliefs among heterogeneous investors using information contained in the VIX based on 

our ambiguity-adjusted OPM, and tested its forecasting power for S&P 500 index excess returns up to 

36 months ahead. The predictive power of option market ambiguity is confirmed out-of-sample. 

Similar predictive regression results are obtained when ambiguity is extracted from traded option 

prices rather than backed out from the VIX. Our main results on the negative association between 

ambiguity and excess returns are also robust to an alternative measure of ambiguity, based on the 

difference between IBULL and IBEAR investor sentiments motivated by our Eq. (2.9), which does 

not rely on our A-OPM, VIX or option data. Globally, we extend our analysis to cover the equity 

markets of Belgium, France, Germany, Hong Kong, Japan, Netherlands, Switzerland and the UK, 

countries with major option trading activity but with a shorter option data series. We confirm that 

option-implied ambiguity is priced similarly in these international equity markets, raising the 

possibility of ambiguity contagion among different countries. 

We have documented a robust and significant negative relationship between dispersion in 

ambiguity beliefs and the equity premium at the country and international levels, confirming 

empirically prior theoretical predictions by Cao, Wang and Zhang (2005) concerning the impact of 

ambiguity under limited market participation. Once ambiguity is properly controlled for, we confirm a 

positive risk-return trade-off as predicted by Merton’s (1973) ICAPM. The above results contribute to 

helping resolve the long-standing risk-return trade-off puzzle. Our overall findings underline the 

wider importance of accounting for ambiguity in asset pricing research.  
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Appendix to Chapter 2 

Table A2.1. Hodrick Reverse Regression Results for Option-market Implied Ambiguity (Extracted from VIX) 

This table presents predictive regression results for market ambiguity (IA and IA*) using the reverse regressions according to Hodrick (1992) 

reorganization of the long-horizon  regression: 

         
∑       

 
   

 
    

where      is the one-step ahead market excess return,        is the predictor variable, and   is the prediction horizon. The sample covers monthly 

observations from January 2000 to December 2012. t-statistics are reported in parentheses. The superscripts ***, **, and * indicate significance at 1%, 

5%, and 10% levels, respectively. 

 

 

Table A2.2.  Hodrick Reverse Regression Results for Option-market Implied Ambiguity (Extracted from Option Prices) 

This table presents predictive regression results for price-based market ambiguity (IAPrice
 and IA*Price) using the reverse regressions according to Hodrick 

(1992) reorganization of the long-horizon  regression: 

         
∑       

 
   

 
    

where      is the one-step ahead market excess return,        is the predictor variable, and   is the prediction horizon. The sample covers monthly 

observations from January 2000 to December 2012. t-statistics are reported in parentheses. The superscripts ***, **, and * indicate significance at 1%, 

5%, and 10% levels, respectively. 

 

 

  

Return 

Horizon (k)
Adj. R 2 (%)

Return 

Horizon (k)
Adj. R 2 (%)

1 13.58 (3.72)
***

-0.46 (-2.41)
**

2.57 1 31.37 (3.15)
***

-0.73 (-2.40)
**

2.61

6 16.17 (3.17)
***

-0.63 (-2.46)
**

1.84 6 42.49 (2.95)
***

-1.06 (-2.57)
**

2.04

12 18.56 (3.29)
***

-0.75 (-2.51)
**

1.98 12 49.36 (2.95)
***

-1.25 (-2.59)
***

2.12

18 18.83 (3.10)
***

-0.79 (-2.40)
**

1.81 18 52.46 (2.81)
***

-1.35 (-2.51)
**

2.01

24 17.66 (2.72)
***

-0.75 (-2.07)
**

1.29 24 51.33 (2.51)
**

-1.33 (-2.25)
**

1.58

30 18.48 (2.63)
***

-0.78 (-1.97)
**

1.16 30 55.04 (2.45)
**

-1.43 (-2.20)
**

1.53

36 18.56 (2.45) ** -0.79 (-1.84) * 0.98 36 55.74 (2.29) ** -1.45 (-2.06) ** 1.33

Cst IA Cst IA*

Return 

Horizon (k)
Adj. R 2 (%)

Return 

Horizon (k)
Adj. R 2 (%)

1 20.94 (2.65) *** -0.58 (-1.98) ** 1.06 1 43.83 (2.44) ** -0.95 (-2.11) ** 1.23

6 30.85 (2.68) *** -0.98 (-2.22) ** 1.43 6 67.44 (2.49) ** -1.56 (-2.27) ** 1.52

12 37.34 (2.76)
***

-1.22 (-2.32)
**

1.63 12 80.36 (2.50) ** -1.87 (-2.30) ** 1.59

18 40.36 (2.64)
***

-1.36 (-2.27)
**

1.58 18 87.92 (2.40) ** -2.07 (-2.24) ** 1.53

24 44.70 (2.64)
***

-1.55 (-2.32)
**

1.71 24 98.77 (2.43)
**

-2.36 (-2.29)
**

1.65

30 54.40 (2.88) *** -1.92 (-2.59) *** 2.26 30 121.21 (2.67) *** -2.92 (-2.54) ** 2.16

36 57.99 (2.80) *** -2.07 (-2.54) ** 2.22 36 130.58 (2.62) *** -3.16 (-2.51) ** 2.15

Cst IA Price Cst IA* Price
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Table A2.3. Bivariate Regression Results with CAY and Each Predictor Variable 

The table presents bivariate regression results involving CAY with each predictor variable, implied ambiguity and other alternative ambiguity proxies. IA 

and IA* measure option market implied ambiguity. CAY is the consumption-wealth ratio. CRE is the credit spread. DY represents the aggregate dividend 

yield on the S&P500 index. PER is the price/earnings ratio. RREL is the stochastically detrended interest rate. SKEW denotes CBOE’s SKEW index. 

TERM denotes the term spread between 10Y T-bond and 3M T-bill. CCI, DISP, PUI and UMCSI, denoting the Consumer Confidence Index, Dispersion 

(DISP) between Investors Intelligence Sentiment Indices – Bearish and Bullish, Policy Uncertainty Index, and University of Michigan’s Consumer 

Sentiment Index respectively. VRP is the variance risk premium. Predictive regressions are specified according to equation (2.10). The sample covers 

monthly observations from January 1990 to December 2012. Robust t-statistics according to Hodrick (1992) adjustment 1B are reported in parentheses. 

The superscripts ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively. 

 

 

Panel A. Traditional Predictor Variables

k Adj. R 2 (%) k Adj. R 2 (%)

1 12.35 (3.36) *** 3.75 (2.26) ** -0.44 (-2.33) ** 3.48 1 14.23 (1.26) 3.86 (2.29) -9.00 (-0.74) 1.25

12 7.88 (2.94) *** 4.98 (3.43) *** -0.19 (-1.78) * 25.30 12 4.05 (0.58) 5.11 (3.51) 0.89 (0.12) 20.92

24 6.61 (2.64) *** 5.49 (3.71) *** -0.15 (-2.02) ** 48.19 24 2.08 (0.38) 5.64 (3.84) 2.32 (0.43) 44.38

36 5.41 (2.24) ** 5.29 (3.65) *** -0.10 (-1.78) * 62.35 36 2.97 (0.62) 5.40 (3.77) 0.89 (0.21) 59.57

k Adj. R
2 

(%) k Adj. R
2 

(%)

1 0.77 (0.06)  3.56 (1.85) * 2.29 (0.38)  0.78 1 3.82 (0.61)  4.01 (2.43) ** 0.07 (0.26)  0.76

12 -2.66 (-0.24)  4.39 (2.47) ** 3.71 (0.76)  22.50 12 4.46 (1.07)  5.11 (3.48) *** 0.02 (0.12)  20.90

24 -3.00 (-0.31)  4.92 (2.64) *** 3.58 (0.85)  46.48 24 2.38 (0.67)  5.66 (3.77) *** 0.07 (0.65)  44.62

36 -4.31 (-0.49)  4.61 (2.59) *** 3.99 (1.07)  64.46 36 2.39 (0.79)  5.44 (3.72) *** 0.05 (0.63)  60.07

k Adj. R
2 

(%) k Adj. R
2 

(%)

1 7.11 (2.39) ** 4.49 (2.72) *** 23.59 (2.49) ** 2.98 1 31.94 (0.40)  3.76 (2.13) ** -0.23 (-0.34)  0.76

12 6.37 (2.26) ** 5.51 (3.64) *** 20.12 (2.24) ** 36.14 12 -87.59 (-1.71) * 5.87 (3.73) *** 0.80 (1.83) * 25.66

24 4.79 (1.74) * 5.75 (3.70) *** 6.62 (1.16)  46.74 24 -31.22 (-1.00)  5.87 (3.79) *** 0.31 (1.17)  44.98

36 3.93 (1.46)  5.42 (3.61) *** 1.47 (0.39)  59.67 36 17.57 (0.89)  5.30 (3.58) *** -0.12 (-0.74)  59.70

k Adj. R 2 (%)

1 10.75 (1.88) * 4.34 (2.56) ** -2.86 (-1.11)  1.11

12 4.46 (0.84)  5.07 (3.37) *** 0.24 (0.10)  20.90

24 -0.41 (-0.08)  5.22 (3.48) *** 2.61 (1.34)  48.97

36 -1.02 (-0.20)  4.87 (3.35) *** 2.81 (1.59)  67.77

Panel B. Ambiguity Proxies

k Adj. R 2 (%) k Adj. R 2 (%)

1 6.79 (0.53)  3.99 (2.42) ** -0.01 (-0.11)  0.72 1 11.18 (1.54)  3.13 (1.70) * -0.31 (-0.96)  1.03

12 8.52 (0.79)  5.08 (3.44) *** -0.04 (-0.34)  21.28 12 2.99 (0.65)  5.39 (3.39) *** 0.10 (0.72)  21.19

24 14.23 (1.60)  5.48 (3.64) *** -0.11 (-1.07)  48.64 24 4.54 (1.22)  5.57 (3.50) *** -0.01 (-0.14)  43.83

36 15.09 (1.98) ** 5.13 (3.48) *** -0.12 (-1.34)  67.45 36 3.94 (1.08)  5.38 (3.42) *** -0.01 (-0.08)  59.45

k Adj. R 2 (%) k Adj. R 2 (%)

1 7.19 (0.62)  3.99 (2.41) ** -0.02 (-0.14)  0.73 1 -2.76 (-0.10)  3.91 (2.32) ** 0.10 (0.32)  0.77

12 3.98 (0.55)  5.10 (3.48) *** 0.01 (0.14)  20.90 12 4.92 (0.22)  5.10 (3.54) *** 0.00 (-0.00)  20.87

24 1.13 (0.16)  5.56 (3.71) *** 0.03 (0.56)  44.30 24 17.21 (0.97)  5.67 (3.90) *** -0.15 (-0.72)  45.82

36 2.21 (0.32)  5.34 (3.65) *** 0.02 (0.33)  59.61 36 17.94 (1.17)  5.40 (3.79) *** -0.16 (-0.89)  62.74

k Adj. R 2 (%)

1 -5.16 (-1.00)  3.13 (1.84) * 0.59 (2.34) ** 5.92

12 2.75 (0.87)  4.93 (3.35) *** 0.12 (1.62)  22.83

24 3.22 (1.08)  5.54 (3.71) *** 0.06 (1.11)  44.62

36 4.04 (1.40)  5.41 (3.72) *** -0.01 (-0.27)  59.50

Cst CAY VRP

PER

Cst CAY IA Cst CAY CRE

Cst CAY DY Cst CAY

Cst CAY RREL Cst CAY SKEW

Cst CAY TERM

UMCSI

Cst CAY CCI Cst CAY DISP

Cst CAY PUI Cst CAY
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Supplementary Appendix to Chapter 2 

Table SA2.1. Robustness Tests – Controlling for Subjective Investor Required Return and Risk-free Rate 

The table presents the robustness regression results for market ambiguity IA and IA* controlling for subjective required rate of return (μ12m) and risk-free 

rate (  ). Predictive regressions according to equation (2.10). The sample covers monthly observations from January 1990 to December 2012. Robust t-

statistics according to Hodrick (1992) adjustment 1B are reported in parentheses. The superscripts ***, **, and * indicate significance at 1%, 5%, and 

10% levels, respectively. 

 

 
Table SA2.2. Additional International Evidence (with IA*) 

The table presents predictive regression robustness results for option market ambiguity using IA* in eight countries. Predictive regressions are specified 

according to equation (2.10). The sample covers monthly observations from January 2000 to December 2012 except Belgium and Hong Kong, which 

cover January 2000 to November 2010 and January 2001 to December 2012 respectively. Robust t-statistics according to Hodrick (1992) adjustment 1B 

are reported in parentheses. The superscripts ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively. 

 

Panel A. Controlling for Subjective Required Rate of Return

k Adj. R
2 

(%) k Adj. R
2 

(%)

1 12.88 (2.63) *** -0.44 (-2.35) ** 0.06 (0.23)  2.24 1 29.54 (2.75) *** -0.69 (-2.32) ** 0.08 (0.31)  2.32

6 10.08 (3.05) *** -0.25 (-2.36) ** 0.01 (0.05)  3.52 6 19.70 (3.62) *** -0.40 (-2.38) ** 0.02 (0.09)  3.79

12 9.31 (3.22) *** -0.20 (-2.28) ** 0.04 (0.23)  4.91 12 17.02 (3.83) *** -0.32 (-2.28) ** 0.05 (0.28)  5.20

18 9.89 (3.68) *** -0.23 (-3.06) *** -0.03 (-0.17)  7.04 18 19.16 (4.97) *** -0.38 (-3.14) *** -0.02 (-0.12)  7.68

24 9.72 (3.95) *** -0.20 (-3.27) *** -0.06 (-0.49)  6.18 24 18.16 (5.89) *** -0.34 (-3.45) *** -0.06 (-0.44)  7.10

30 9.40 (4.05) *** -0.18 (-3.30) *** -0.07 (-0.68)  5.94 30 17.09 (6.47) *** -0.31 (-3.54) *** -0.07 (-0.65)  7.09

36 9.30 (4.15) *** -0.18 (-3.64) *** -0.10 (-1.02)  6.74 36 16.60 (7.04) *** -0.30 (-3.87) *** -0.09 (-0.97)  7.83

Panel B. Controlling for Risk-free Rate

k Adj. R 2 (%) k Adj. R 2 (%)

1 11.18 (1.77) * -0.45 (-2.40) ** 0.63 (0.45)  2.29 1 28.83 (2.63) *** -0.73 (-2.39) ** 0.65 (0.46)  2.34

6 8.85 (1.63)  -0.25 (-1.86) * 0.34 (0.26)  3.62 6 18.70 (2.55) ** -0.40 (-1.94) * 0.35 (0.27)  3.89

12 9.08 (1.81) * -0.21 (-1.95) * 0.17 (0.15)  4.83 12 17.32 (2.62) *** -0.34 (-2.02) ** 0.19 (0.16)  5.06

18 10.56 (2.36) ** -0.22 (-2.45) ** -0.25 (-0.23)  7.10 18 19.56 (3.37) *** -0.37 (-2.62) *** -0.22 (-0.21)  7.74

24 11.75 (3.00) *** -0.18 (-2.37) ** -0.67 (-0.73)  6.81 24 19.42 (3.95) *** -0.31 (-2.62) *** -0.65 (-0.70)  7.72

30 11.86 (3.40) *** -0.16 (-2.32) ** -0.79 (-0.91)  6.85 30 18.70 (4.31) *** -0.28 (-2.60) *** -0.76 (-0.89)  7.96

36 11.53 (3.76) *** -0.14 (-2.43) ** -0.77 (-0.97)  6.76 36 17.74 (4.86) *** -0.25 (-2.71) *** -0.75 (-0.95)  7.87

Cst Cst

Cst CstIA r f IA* r f

IA µ 12m IA* µ 12m

k Adj. R 2 (%) k Adj. R 2 (%)

1 11.89 (0.82)  -0.37 (-1.11)  -0.11 1 5.57 (0.40)  -0.28 (-0.81)  -0.31

6 18.20 (2.10) ** -0.53 (-2.63) *** 3.40 6 9.33 (1.24)  -0.41 (-2.16) ** 2.55

12 19.33 (3.27) *** -0.57 (-3.52) *** 6.73 12 1.59 (0.25)  -0.23 (-1.69) * 1.04

18 19.07 (4.03) *** -0.57 (-4.14) *** 9.61 18 7.81 (1.51)  -0.40 (-3.81) *** 6.21

24 11.91 (3.02) *** -0.41 (-3.61) *** 6.69 24 4.25 (0.88)  -0.28 (-3.35) *** 3.68

30 10.08 (2.91) *** -0.36 (-3.47) *** 7.37 30 3.38 (0.77)  -0.25 (-3.52) *** 3.54

36 7.14 (2.38) ** -0.26 (-3.45) *** 4.60 36 3.81 (0.96)  -0.24 (-4.61) *** 4.62

k Adj. R
2 

(%) k Adj. R
2 

(%)

1 8.04 (0.48)  -0.18 (-0.45)  -0.56 1 21.41 (1.09)  -0.51 (-0.96)  0.00

6 22.57 (2.55) ** -0.57 (-2.35) ** 3.83 6 24.70 (2.46) ** -0.58 (-2.01) ** 3.09

12 18.09 (2.52) ** -0.46 (-2.46) ** 4.56 12 21.12 (2.40) ** -0.46 (-1.78) * 4.70

18 16.79 (2.65) *** -0.44 (-2.86) *** 5.69 18 13.91 (1.98) ** -0.27 (-1.35)  2.52

24 17.40 (2.87) *** -0.44 (-3.37) *** 7.30 24 15.11 (2.53) ** -0.28 (-1.83) * 4.61

30 18.55 (3.28) *** -0.45 (-3.66) *** 10.08 30 16.45 (2.95) *** -0.29 (-2.23) ** 9.91

36 16.64 (3.36) *** -0.38 (-5.23) *** 9.52 36 13.19 (2.50) ** -0.19 (-1.89) * 7.00

k Adj. R 2 (%) k Adj. R 2 (%)

1 7.16 (0.45)  -0.29 (-0.75)  -0.36 1 -5.69 (-0.41)  0.04 (0.10)  -0.64

6 11.67 (1.45)  -0.43 (-2.48) ** 2.11 6 15.09 (1.87) * -0.55 (-2.33) ** 3.59

12 2.94 (0.43)  -0.20 (-1.53)  0.47 12 7.22 (1.13)  -0.36 (-1.98) ** 2.46

18 3.93 (0.68)  -0.21 (-2.10) ** 1.29 18 10.83 (1.99) ** -0.47 (-3.15) *** 6.98

24 2.86 (0.59)  -0.17 (-2.18) ** 0.76 24 5.92 (1.18)  -0.32 (-2.80) *** 3.99

30 5.94 (1.41)  -0.23 (-2.95) *** 2.87 30 4.47 (1.00)  -0.27 (-2.87) *** 3.77

36 5.43 (1.40)  -0.20 (-2.67) *** 2.79 36 2.59 (0.63)  -0.20 (-3.17) *** 2.61

k Adj. R
2 

(%) k Adj. R
2 

(%)

1 17.13 (1.59)  -0.43 (-1.53)  0.81 1 0.15 (1.50)  -0.00 (-1.59)  0.74

6 17.88 (2.68) *** -0.48 (-2.71) *** 5.64 6 0.14 (2.38) ** -0.00 (-2.37) ** 5.88

12 6.02 (1.33)  -0.19 (-1.62)  1.11 12 0.07 (1.31)  -0.00 (-1.52)  2.64

18 7.48 (2.17) ** -0.24 (-2.45) ** 3.30 18 0.07 (1.69) * -0.00 (-1.92) * 3.99

24 7.53 (2.32) ** -0.24 (-2.69) *** 3.85 24 0.02 (0.73)  -0.00 (-1.13)  0.46

30 3.50 (1.20)  -0.12 (-1.85) * 0.80 30 0.02 (0.62)  -0.00 (-1.07)  0.17

36 2.43 (0.96)  -0.08 (-1.67) * 0.03 36 0.01 (0.30)  -0.00 (-0.73)  -0.47

Cst Belgium IA* Cst France IA*

Cst Germany IA* Cst Hong Kong IA*

Cst Japan IA* Cst Netherlands IA*

Cst Switzerland IA* Cst United Kingdom IA*
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Chapter 3.  

Option Market Ambiguity and Real Economic 

Activity 

ABSTRACT 

We document a negative relation between option-market ambiguity and real economic activity during 

1990-2014. Our empirical analysis unveils a strong predictive link between market ambiguity and 

subsequent real economic activity covering production, employment, consumption and overall 

economic output. Corroborating prominent economic theories, our evidence indicates that ambiguity 

from the financial markets is associated with depressed production, lower consumption, higher 

unemployment and decreased aggregate economic output for up to eight quarters. Capturing 

divergence in beliefs, our ambiguity measure is able to predict economic activity beyond VIX, 

variance premium, credit spread and other established market predictors.  
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3.1. Introduction 

Characterizing many economic phenomena, uncertainty refers to the inability to predict future 

outcomes (Nelson, 1961; Jurado, Ludvigson and Ng, 2015). A more general definition, as distinct 

from that of risk, is attributed to Knight (1921) and is illustrated by Ellsberg (1961) in his famous 

mind experiment. Knightian uncertainty or ambiguity refers to uncertain events where the 

probabilities of possible outcomes are unknown and cannot be estimated with confidence. Due to the 

inherent difficulty in inferring Knightian or “extreme” uncertainty, studies linking it to economic 

activity are rather scarce (Bloom, 2009; Bachmann, Elstner and Sims, 2013; Jurado, Ludvigson and 

Ng, 2015). This is the case despite more research being conducted recently on economic agents’ 

behavior and risk aversion characteristics in both real and financial markets (see, for example, Bloom, 

2009; Christiano, Motto and Rostagno, 2010 and 2014; Drechsler and Yaron, 2011; Gourio, 2012; 

Bansal et. al., 2014; Caggiano, Castelnuovoa and Groshenny, 2014). Undoubtedly, changing investor 

sentiment creates more subjectivity and time-variability driving the risk and uncertainty tolerance of 

market participants, which in turn drives asset prices and contributes to financial system instability. In 

Bansal and Yaron (2004), time-variation in consumption uncertainty drives the equity risk premium. 

As such, and as a way of improving economic and financial prediction, many institutions have 

recently turned to sentiment indices or other proxies for ambiguity aversion and model uncertainty 

(e.g., see Coudert and Gex’s (2008) survey).  

Economic uncertainty, while not directly or fully observable, remains a key driver in many 

economic theories (e.g., real options theory, precautionary saving, financial frictions, risk premia and 

ambiguity aversion, reviewed below) that connect agents’ behavior to subsequent real economic 

activity. Macroeconomic or monetary policy itself can also be linked to risk and ambiguity aversion 

(e.g., Bekaert, Hoerova and Lo Duca, 2013). Being able to infer the degree of market uncertainty and 

investor ambiguity aversion and assess its impact on real economic activity can therefore be key to 

understanding economic fluctuations and anticipating instability in the real economy. The present 

chapter extends research in this area examining the relationship between ambiguity, as inferred from 

the market through forward-looking option prices, and real economic activity in the U.S. over the last 

quarter century.  
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Aggregate investor expectations of the future level of uncertainty can be derived from the state of 

the economy itself and from the financial markets (e.g., Abdellaoui et al., 2011) as economic agents 

act according to their subjective uncertainty aversion or ambiguity preferences. Economists have 

extracted uncertainty or ambiguity information using different data proxies, such as forecast 

disagreements from surveys (Boero, Smith and Wallis, 2008; Bachmann, Elstner and Sims, 2013), 

coverage of ‘uncertainty’ (and other related keywords) in the press (Baker, Bloom and Davis, 2013), 

option market implied volatility or CBOE’s volatility index (VIX)
1
 (Bloom, 2009; Bekaert and 

Hoerova, 2014), and the variance risk premium or VRP (Bollerslev, Tauchen and Zhou, 2009; Zhou,  

2009; Drechsler, 2013).  

In this chapter we examine whether ambiguity, as inferred from the forward-looking options 

market, influences or anticipates subsequent real economic activity and whether it is a good predictor 

of changes in macroeconomic activity. Given the general inability to accurately predict fluctuations in 

economic activity (Jurado, Ludvigson and Ng, 2015), accounting for Knightian uncertainty might help 

improve predictive power and the quality of economic forecasts and policy interventions. Despite 

some mixed evidence that uncertainty proxies are associated with contemporaneous or subsequent 

economic activity fluctuations, so far no financial market-based measure offers comprehensive and 

robust predictive power for an extensive range of real economic activity indicators. Spanning the 

recent quarter century (from 1990 to 2014) of option market and macroeconomic data, our study 

documents a strong predictive relationship between option-market implied ambiguity (IA) and ex post 

fluctuations in real economic activity. Production, employment and consumption respond negatively 

to ambiguity as inferred from the financial option markets. These dynamics are consistent with those 

documented by economic proxies for uncertainty, such as the uncertainty measure proposed by Jurado, 

Ludvigson and Ng (2015) and disagreement indicators among economic forecasters. We extend this 

literature proposing a market-based indicator of ambiguity that comprehensively predicts real 

economic activity beyond other established financial market-based predictors. Option market 

                                                      
1 While widely considered as a proxy for uncertainty, implied volatility such as the VIX is more a risk measure under Knight’s stricter 

definition. As noted, Knightian/heightened uncertainty or ambiguity refers to situations in which agents are uncertain about the probability 

or distribution of possible outcomes. The 2007-2010 crisis was, for instance, characterized by Knightian uncertainty. 
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ambiguity robustly predicts the ex post performance of eight macroeconomic indicators and 

outperforms other prevalent financial market-based predictor variables in terms of reliability, 

consistency and robustness, including CBOE’s volatility index (VIX), the variance risk premium 

(VRP), the credit spread (CS), and market excess returns (ER). Option market ambiguity also 

provides superior, comprehensive and robust predictive ability with regards to future real economic 

activity in multivariate settings relative to (the best of) other established predictor variables while 

controlling for risk aversion. Our findings suggest that option-market implied ambiguity provides 

important incremental information beyond that already contained in extant financial market predictors.  

We particularly note three important contributions to the extant literature on the relationship 

between Knightian uncertainty and real economic activity. First, we document that option market 

investors’ subjective ambiguity perceptions are important determinants of real economic activity. 

Second, we add to the evidence that option market ambiguity contains valuable information regarding 

macroeconomic uncertainty (Drechsler and Yaron, 2011; Drechsler, 2013). Given the basic nature of 

aggregate economic shocks and the inability to reliably predict, we show that forward-looking option 

market ambiguity is a more reliable proxy for heightened aggregate uncertainty and demonstrate its 

superior predictive power for a wide range of economic activity indicators. Finally, the empirical 

relationships we test corroborate the predictions of prominent economic theories on the negative 

association between time-varying uncertainty and real economic activity up to eight quarters forward.  

3.2. Theory and Literature 

Establishing a link between time-varying market ambiguity and ex post real economic activity 

requires an understanding of how heightened uncertainty (i.e., uncertainty beyond probabilistic risk or 

volatility) impacts real economic activity and verifying this through robust empirical evidence. A 

number of main economic theories provide predictions on this relationship: real options theory, 

precautionary saving, financial frictions, risk premia and ambiguity aversion. Under real options 

theory and the related bad news principle, economic agents follow a “wait and see” approach in 

guiding their future economic actions in the presence of uncertainty and irreversibility (see Dixit and 

Pindyck, 1994; Trigeorgis, 1996). Due to high adjustment costs to labor and capital, when uncertainty 
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rises firms become more cautious and hence delay their investment and hiring, while individuals 

become more reserved with consumption spending, particularly on durables (Romer, 1990). These 

depressing effects on the economy are more pronounced under Knightian uncertainty as shown by 

Nishimura and Ozaki (2007) and Miao and Wang (2011). Resulting delays in investment, hiring and 

major consumption decisions might thus cause a slowdown in production, employment and 

consumption growth, leading to depressed economic activity. The depressing effect of uncertainty on 

investment has been confirmed by Rivoli and Salorio (1996) in foreign direct investment decisions, by 

Guiso and Parigi (1999) in explaining the negative effect of uncertainty on investments by Italian 

manufacturing firms, by Bloom, Bond and Van Reenen (2007) in describing firm-level investment 

dynamics, and by Bloom (2009) in explaining depressed hiring and investment following uncertainty 

shocks.  

Precautionary saving theory prescribes that when facing increasing uncertainty, economic agents 

suppress costly activities concerning investment, production, consumption and hiring (Leland, 1968; 

Kimball, 1990; Guiso, Jappelli and Terlizzese, 1992; Bansal and Yaron, 2004). For example, one may 

have to save more during economic stress periods in case their job security is affected by adverse 

unanticipated circumstances. This shift of preferences by individuals and firms towards saving, rather 

than spending and investing, causes restraint in consumption, investment, hiring, and production 

growth. This also implies a negative relationship between uncertainty and overall real economic 

output.  

Financial frictions theory argues that stricter financial constraints during times of financial stress 

and uncertainty (e.g., higher lending rates due to increased probability of default) produce adverse 

propagation effects onto real economic activity (Hall, 2010). This financial friction effect essentially 

slows down capital flows in the real economy, adversely affecting economic efficiency and 

productivity. Hall (2011) highlights the intricate linkage between uncertainty in financial markets and 

ex post real economic activity. The slowed capital flows in the real economy hinder investment and 

planned improvements in production, suggesting a depressed economic output following higher 

uncertainty in the economic system. Related to this, uncertainty raises the probability of default and 

the cost of finance and risk premia (Bansal and Yaron (2004); Liu and Miao (2015)). Moreover, when 
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economic agents lack confidence and entertain worst-case beliefs, they fear and act as if the worst 

case scenario will occur, exhibiting ambiguity aversion (Ilut and Schneider, 2014). As the range of 

outcomes broadens under ambiguity, economic agents are more pessimistic reducing investment, 

hiring and consumption. 

The above economic theories uniformly suggest that heightened economic uncertainty will likely 

have negative ramifications on investment, production, employment, consumption growth and overall 

output. In this chapter, we focus on the effect of Knightian-type uncertainty, particularly forward-

looking ambiguity extracted from the option market, on subsequent real economic activity. Given the 

predictions made by the real options, precautionary saving, financial frictions, and risk premium and 

ambiguity aversion theories, we test the hypothesized negative effect of heightened uncertainty on 

production, employment, consumption growth and overall output empirically. An important 

perspective of this chapter is to corroborate the efficiency of option-market extracted ambiguity in 

predicting real economic activity.  

Following decades of research in macroeconomics and finance on how financial market 

information is reflected in real economy performance indicators, it is widely accepted that financial 

market dynamics are associated with key fluctuations in economic activity. Fama (1981) documents a 

positive relationship between stock market returns and future economic activity, providing an 

explanation for the anomalous negative relationship between stock returns and inflation. Lee (1992) 

finds further supportive evidence using both interest rates and inflation in a VAR system. James, 

Koreisha and Partch (1985) find evidence that the stock market signals changes in real activity and the 

monetary base. Chen, Roll and Ross (1986) show that various macroeconomic risk factors are priced 

in stock market returns. Given that changes in expectations drive ex post economic activity (Keynes 

1936), information on changes in financial market investor expectations is, not surprisingly, linked to 

fluctuations in economic uncertainty and real economic activity. Fama (1990) finds that stock returns, 

being a proxy for stock market investors’ expectations, predict ex post industrial production (IP) 

growth in the U.S. from 1953 to 1987. Chen (1991) finds that credit spread (CS), proxying for default 

risk expectations, is correlated with economic output growth. Estrella and Hardouvelis (1991) find 
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that the term spread (TS) predicts consumption and investment. Beaudry and Portier (2006) use stock 

price movements proxying for changes in investor expectations to explain business cycle fluctuations.  

Motivated by the aforementioned evidence and the established informational efficiency of the 

financial options market, we extract ambiguity information from the market based on an ambiguity-

extended option pricing model (A-OPM) and test its relevance and power as a proxy for uncertainty, 

beyond probabilistic risk, in predicting real economic activity in the U.S. during the recent quarter 

century. We extract economic agents’ subjective ambiguity preferences (or degree of miscalibration) 

and divergence in beliefs from the Chicago Board Options Exchange (CBOE) volatility index (VIX) 

using our modified option pricing model (A-OPM) based on rank-dependent utility.
2
 We verify the 

relevance of our market ambiguity measure by comparing it to a number of established 

macroeconomic uncertainty indicators from the extant economics literature. To investigate the 

empirical linkages between uncertainty and real economic activity, we employ a vector autoregressive 

(VAR) analysis of statistical causality between option-market implied ambiguity and real economic 

activity. Once we establish that uncertainty shocks are driven by ambiguity inferred from the option 

market, we test the predictive power of aggregate market-implied ambiguity (IA) on key economic 

indicators spanning production, employment, consumption, and overall economic performance. 

Controlling for risk aversion effects, we show that option-market ambiguity robustly predicts these 

real economic activity indicators for up to eight quarters (two years) with a consistent negative sign as 

predicted by the aforementioned economic theories. Our comprehensive findings contribute to 

growing evidence on the interaction between the financial markets and the real economy while 

revealing the informational efficiency and richness of option-market extracted ambiguity measures. 

More importantly, we provide empirical evidence on the linkages between option market ambiguity 

and macroeconomic uncertainty, showing that Knightian uncertainty expectations are subsumed in the 

pricing behavior of financial market investors.  

                                                      
2 This A-OPM has been proposed by Chateauneuf, Kast and Lapied (1996) and applied to option pricing by Driouchi, Trigeorgis and Gao 

(2015), to implied volatility estimation by Driouchi, Trigeorgis and So (2016) and to real option analysis in environmental policy and 

corporate financing by Agliardi and Sereno (2011) and Agliardi et al. (2015). 
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The superior predictive ability of implied ambiguity (IA) for real economic activity is important to 

economic policy making as our measure can help enhance the predictability of economic activity 

fluctuations and anticipate potential shocks in economic output. Different from many existing 

economics-based uncertainty indicators that can only be estimated ex post, our financial market-based 

measure offers forward-looking information through the option pricing approach. This approach 

allows us to take advantage of the informational efficiency of the financial options market and obtain 

valuable information about agents’ perceived level of ambiguity about the economy on a real-time 

basis. With respect to the economic implications, our empirical findings support key theory 

predictions that heightened uncertainty suppresses investment, production, employment, consumption 

and overall output. These findings suggest that option-implied ambiguity is a superior forward-

looking proxy for aggregate uncertainty in the economy, contributing to the extant literature on the 

linkages between financial markets and the real economy (Fama, 1981; Chen, Roll and Ross, 1986; 

Estrella and Mishkin, 1998; McQueen and Roley, 1993; Liew and Vassalou, 2000; Beaudry and 

Portier, 2006). This is achieved through explicating the negative impact of heightened uncertainty on 

real economic activity.  

3.3. Ambiguity Modeling and Empirical Setup 

We infer economic agents’ ambiguity preferences from the options market based on Choquet 

Brownian motion and rank-dependent utility proposed by Chateauneuf, Kast and Lapied (1996) and 

applied to option pricing by Driouchi, Trigeorgis and So (2016). The underlying asset return process 

is: 

 
  

 
                      ]    [    ]   ]  

(3.1) 

where S is the price of the underlying asset (the S&P 500 stock index or SPX) having mean drifts 

     and standard deviations    per unit time; m and s are the mean and standard deviation of a 

general Wiener process W following           , with z being a standard Wiener process.  

Parameters mσ and s  entertain (multiple states of) uncertainty in the mean and variance of the process; 

these are functions of a capacity variable c, with 0 < c < 1, summarizing the degree of investors’ 
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perceived ambiguity: c < 0.5 indicates investor ambiguity aversion, c = 0.5 risk/ambiguity neutrality, 

and c > 0.5 ambiguity-seeking attitudes. Eq. (3.1) implies that, due to ambiguity, there are multiple 

mean drifts and volatility states (scenarios), with mean drift(s) (of dS/S) of μ + mσ (set apart by m 

units of σ) and volatilities of sσ (with parameters m and s taking multiple values). Under this more 

general Brownian motion, the distance of c from the ambiguity neutrality value of 0.5 captures the 

amount of ambiguity perceived by the investor or decision maker
3
 (Kast et al., 2014). Using the above 

Choquet (distorted) Brownian motion, the price of a European call option under ambiguity (A-OPM) 

takes the form (see Technical Appendix): 
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In the A-OPM of Eq. (3.2),   
  is the price of a European call option under ambiguity at time t,    

is the current price of the underlying asset (S&P500),   is the strike (exercise) price,   is return 

volatility,   is any form of ‘dividend yield’, and   is time to maturity. In Eqs. (3.1) to (3.4), m and s 

are subjective ambiguity parameters dependent on capacity function c (Eq. (3.4)). The above 

summarize uncertainty in model parameters and represent economic agents’ model misspecification 

(miscalibration) under Knightian uncertainty (Sarin and Wakker, 1992; Hong and Karni, 1994; 

Ghirardato and Marinacci, 2002; Chateauneuf, Eichberger and Grant, 2007; Kast et al., 2014). 

Variables    and    in Eq. (3.3) are the subjective discount rate and subjective dividend yield, 

respectively. When c = 0.5 (risk/ambiguity neutrality), m = 0 and s = 1, with Eq. (3.2) reducing to the 

Black-Scholes option pricing model (OPM) (adjusted for constant dividend yield δ). Similar to what 

has been shown by Gagliardini, Porchia and Trojani (2009) regarding the effect of ambiguity on bond 

                                                      
3 While more popular in the literature for analysing agents’ economic choice, the multiple-prior approach only accounts for uncertainty in 

the drift. We follow the more flexible Choquet and rank-dependent utility approach which allows for uncertainty in both drift and volatility. 
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premiums, miscalibration is reflected in adjusted discount rate    and dividend yield    in our 

ambiguity-adjusted framework. This behavior can distort economic and financial fundamentals, 

affecting investment, production, hiring and consumption. 

We use the VIX as an input
4
 to our ambiguity-adjusted option pricing model (A-OPM) of Eqs. 

(3.2-3.4)
5
 to extract ambiguity information from the options market.

6,7
 Our extraction of ambiguity 

information from the VIX can be described intuitively as follows. We first input the VIX as a 

volatility measure into the Black-Scholes OPM for one-month options (T = 1 m) with strike (K) at the 

S&P level (at-the-money) to recover an equivalent market price (premium) of ATM options on the 

index. Using VIX as the source of primary information extraction is equivalent to inferring the price 

of ATM index options over a 23 year period. We then use our ambiguity-adjusted OPM of Eqs. (3.2 - 

3.4) equated to this equivalent price of index options to extract the degree of investor ambiguity 

aversion (capacity measure c) on each day t. Since Black-Scholes OPM is nested in our A-OPM with 

c = 0.5 corresponding to risk/ambiguity neutrality, daily deviations of estimated ct from 0.5 track 

investors’ time-varying implied subjective ambiguity aversion (c < 0.5) or ambiguity seeking (c > 0.5) 

attitudes. The prediction ability of our ambiguity measure over OPM implied volatility or VIX arises 

from the explicit recognition of multiple mean (μ + mσ) and volatility (sσ) scenarios in our A-OPM. 

IA in Eq. (3.7) thus captures ambiguity (Knightian uncertainty) attitudes, beyond risk, as it is the sum 

                                                      
4 Known as the market fear gauge, VIX contains rich information regarding real economic activity. Bekaert, Hoerova and Lo Duca (2013) 

show strong co-movement between VIX and monetary policy measured by real interest rates. Bekaert and Hoerova (2014) find that VIX 

predicts industrial production growth for up to a year, while Zhang, Zhou and Zhu (2009) show VIX predicts cross-sectional credit default 

swap spreads. 

5 We also used VIX as the implied volatility of at-the-money (ATM) put options in inferring option market ambiguity. The specification of 

call or put does not affect our results and the informational content of the ambiguity measure inferred. 

6 Although VIX primarily measures risk (implied annualized standard deviation over the next month, interpreted as the % annual move in 

the S&P 500 index over a year with 67% probability) it has sometimes been used in the literature to partly extract information on uncertainty 

or ambiguity and as a barometer of investor sentiment (CBOE website). For example, Bloom (2009) finds that economic uncertainty 

measured by the VIX is associated with lower employment and output. Bekaert and Hoerova (2014) show that VIX2 predicts industrial 

production growth (IP) up to a year. 

7 VIX initially (since its inception in 1990) was derived from at-the-money (ATM) options on the S&P100 index using the Black-Scholes 

OPM (still published by CBOE under VXO). After 2003 CBOE moved to a model-free estimation of near-term expected volatility using a 

weighted average of S&P500 (SPX) calls and puts with a wide range of strike prices (both at- and out-of-the money) with care to eliminate 

the volatility smile arising from the use of various strike prices (effectively being analogous to its previous estimation from ATM options 

using the OPM). A very high correlation between the VIX and VXO series since 1990 (ρ = 0.987) confirms that an equivalent option market 

price can be inferred by inverting the OPM using the VIX as input for ATM options. 
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of deviations from risk/ambiguity neutrality (c = 0.5). This represents the divergence in ambiguity 

beliefs or heterogeneity of ambiguity attitudes among representative ambiguity averse and ambiguity-

loving investors in the market. Our results are unchanged if we use option prices, rather than VIX, as 

inputs in our extraction of the c measure. 

By inverting Eq. (3.2) numerically and minimizing the absolute deviations between the theoretical 

model option price in Eq. (3.2) and the equivalent market price (for ATM options on S&P500) as 

implied by CBOE’s implied volatility index (VIX) over a one-month maturity (T = 1 m), we extract 

investors’ subjective ambiguity attitudes as follows: 
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  above is the theoretical ambiguity-based call option price according to our A-OPM of Eq. (3.2), 

  
    is the equivalent market option price (estimated by inverting the option price from VIX using 

the standard Black-Scholes OPM), St is the closing level of the S&P 500 index on day t, K is the strike 

price, r the risk-free rate, T the time to maturity (set at T = 1 m), σt is return volatility (estimated using 

RiskMetrics EWMA), ct is the capacity (ambiguity degree) measure,    is the subjective required rate 

of return (estimated as average return over the previous year), and VIXt is the closing level of 

CBOE’s VIX on day t.
8
 This approach is analogous to Jiang and Tian (2005) in a curve-fitting 

exercise for computing model-free implied volatility, and to Cremers and Weinbaum (2010) in 

calculating put-call parity for return predictions. The above procedure allows inferring the equivalent 

market price of SPX options over a longer window (1990-2012) and extracting option-based 

ambiguity information. Our conclusions are generally unchanged if we use option prices, rather than 

VIX, for ambiguity extraction. 

                                                      
8 The impact of dividend yield (δ) in the extraction process is negligible. In extracting the ambiguity attitudes, we set δ to 0 to avoid 

potential informational overlapping with dividend yield (DY), one of the alternative predictor variables used in our predictive regressions. 

For robustness, we also extracted ambiguity with the actual (non-zero) S&P dividend yield confirming the results are essentially the same 

(with correlation greater than 0.96).  This is due to offsetting effects in the procedure as the errors from the two inverse operations 

(volatility-price conversion and price-ambiguity extraction) tend to cancel out. We present the results without dividend (DY) adjustment to 

further ensure that the information content picked up in the estimation of our ambiguity (IA) measure is not mixed with (or contaminated by) 

the information content from DY (itself claimed to be a good predictor of stock returns and certain economic indicators). 
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The resulting capacity variable (ct) inferred from numerically solving the minimization problem of 

Eqs. (3.5) and (3.6) gives the degree of market investor implied ambiguity aversion (IAA, when c < 

0.5) or ambiguity seeking (IAS, when c > 0.5) reflected in option prices. Once market investors’ 

heterogeneous beliefs or time-varying ambiguity aversion attitudes are obtained, we estimate 

aggregate option market ambiguity on day t (IAt) as the sum of deviations of each of the implied 

ambiguity or seeking beliefs (IAA and IAS) from neutrality (c = 0.5) as follows: 

                             (3.8) 

The above is analogous to Abdellaoui et al. (2011) who estimate Knightian uncertainty through 

deviations from Bayesian expected-utility (rational behavior), and to Kast et al. (2014) who apply the 

Choquet framework to the Intertemporal CAPM (Merton, 1973). Eq. (3.8) and its deviations from 

ambiguity-neutrality enable us to capture the overall divergence in ambiguity beliefs among 

representative option investors. Other related measures of heterogeneity in beliefs relying on 

deviations from a norm include dispersion in analysts’ forecasts and survey-based disagreement 

among professional forecasters (Anderson et al. 2009). Our ambiguity proxy is obtained directly from 

market-observed option pricing dynamics. It is also a related notion to the variance risk premium 

(VRP), being the difference between “risk-neutral” expected stock market variance (VIX
2
) 

(corresponding to c = 0.5 in our A-OPM) and (actual or “physical”) realized variance (RV) reflecting 

investor risk-aversion attitudes, but extended here to ambiguity-aversion involving c < 0.5 (aversion) 

or c > 0.5 (seeking). VRP has also been suggested to contain uncertainty or ambiguity information 

(e.g., Drechsler, 2013). However, although both IA and VRP rely on information from implied 

volatility (VIX or VIX
2
) and realized variance (RV), allowing to infer investors’ required premium, 

VRP simply relies on their difference whereas IA uses a different channel (distinct from VRP) 

capitalizing on our specific ambiguity-adjusted OPM (A-OPM) of Eq. (3.2) with parametric 

uncertainty in both drifts and volatilities (see Eq. (3.1)). Interpretations of VRP as an ambiguity proxy 

are, on the other hand, based on multiple-priors explanations (i.e., involving uncertainty in drift only) 

(e.g., Drechsler, 2013). Effectively, using VIX to infer a Black-Scholes option price equivalent and 

then using the ambiguity-based model (A-OPM) on that equivalent market price given the estimated 

realized variance and other inputs enables extracting more ambiguity-related information than the one 
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contained in VIX or VRP. In light of this shared commonality in informational sources, we include 

VIX and VRP as benchmarks in our analysis and provide (in section 3.5.4.5) direct comparisons of 

their information content vs. IA. Our use of VIX as a source of ambiguity information extraction (as 

an alternative to directly using option prices) is due to (longer) data availability, coverage, quality and 

comparability to extant research.
9
 In section 3.5.4., we confirm that our predictive regression findings 

are not due to using VIX as a source of ambiguity information extraction and that they generally hold 

if IA is inferred directly from SPX option prices. This holds even after controlling for market-induced 

risk aversion. To confirm the validity of option market ambiguity as a relevant financial market-based 

proxy for aggregate uncertainty, we compare it to other established uncertainty proxies from extant 

economics research. Validation results confirm IA is significantly correlated to seven out of eight 

macroeconomic uncertainty indicators, with expected signs.  

To examine the behavior of a range of economic indicators in response to ambiguity shocks we 

employ a five-variable VAR system which, besides option market ambiguity (IA), includes industrial 

production growth (IP), total non-farm payroll (TNP), personal consumption expenditure (PCE), and 

the Chicago Fed National Activity Index (CFNAI). This VAR system considers the dynamics 

between option market ambiguity and changes in economic activity including production, 

employment, consumption and overall output. We use variance decomposition, Granger causality and 

impulse-response analysis for this purpose. After validating the predicted negative impact of 

ambiguity on real economic activity using the aforementioned methods, we investigate the 

informational efficiency of our option market extracted ambiguity measure in long horizon (up to 

eight quarter) economic predictions.  

In ascertaining the relationship between option-market ambiguity and ex post economic activity, 

we consider an extensive set of economic activity indicators, two per sector. These indicators include: 

                                                      
9 VIX represents the aggregate investor expectation of future volatility (based on realized option transactions). As such, VIX summarizes 

economic agents’ expectation of future variability in the financial markets and the real economy. VIX further contains aggregate information 

from the most liquid portions of the volatility surface that is representative of the information set contained in the option markets. Finally, 

VIX data is readily and widely available providing information on economic agents’ forward-looking expectations in real-time. VIX is a 

model-free option implied volatility measure which does not rely on a specific model such as the Black-Scholes OPM. The correlation 

between VIX and VXO, the former version of CBOE volatility index which relies on the Black-Scholes model with underlying the S&P100 

index from 1990 to 2012 is 0.99. This extremely high correlation supports using the VIX as the at-the-money (ATM) implied volatility. 
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growth in industrial production (IP) and capacity utilization (CU) as measures of production activity; 

in total non-farm payroll (TNP) and in unemployment rate (UR) as measures of (un)employment; in 

personal consumption expenditure (PCE) and durable goods consumption (DG) as measures of 

consumption activity; and in real GDP per capita (GDPC) and the Chicago Fed National Activity 

Index (CFNAI) as measures of overall economic performance. The above eight indicators are used to 

test the theoretical predictions on the negative relationship between Knightian uncertainty and real 

economic activity. Since production drives demand for labor (employment), which in turn affects 

consumption decisions, we investigate the relationship between option-market ambiguity and real 

economic activity in the following order: production, employment, and consumption. After analysing 

the effect of market ambiguity on each of these categories of economic activity, we turn to the bigger 

picture concerning general economic output (based on real GDP growth per capita and the CFNAI 

indicators).  

In benchmarking to other known financial market predictor variables, we compare implied 

ambiguity (IA) to the following: the credit spread (CS), dividend yield on the S&P 500 composite 

stock index (DY), earnings-to-price ratio (EP), market excess return (ER), term spread (TS), implied 

volatility of the S&P 500 index (VIX) and the variance risk premium (VRP).
10

 Detailed specifications 

and references on these standard predictor variables are given in the next section and summarized in 

Table 3.1.  

In the last part we employ standard long horizon predictive regressions (e.g., Fama, 1990; Schwert, 

1990; Cochrane, 1991; Carroll, Fuhrer and Wilcox, 1994; Yang, 2011; Chen and Zhang, 2011) with 

various lags predicting ex post economic activity using our time-varying market implied ambiguity 

(IA) and other standard predictors. Our standard predictive regression takes the form: 

     
        

 
      (3.9) 

where     
  is ex post economic activity growth over k-months for economic indicator i,   

 
 is a 1 x h 

row vector of explanatory variables (excluding intercept),    is an h x 1 vector of intercepts, and   is 

                                                      
10 The real risk-free interest rate was also considered as a possible predictor but was generally insignificant in univariate tests, except for CU, 

hence it was not included in subsequent analysis. 



Ch 3. Option Market Ambiguity and Real Economic Activity 67 

 

an h x 1 vector of slope coefficients. To address the overlapping issue arising from measurement of 

long-horizon growth (where k > 1) and for comparability, we closely follow extant literature (e.g. 

Cochrane, 1991; Estrella and Hardouvelis, 1991; De Lint and Stolin, 2003; Berardi and Torous, 2005; 

Berardi, 2009; Chen and Zhang, 2011; Yang, 2011; Allen, Bali and Tang, 2012; Bekaert and Hoerova, 

2014) by considering robust t-statistics based on Newey and West (1987) standard errors. 

3.4. Economic Activity Data and Variables Description 

3.4.1. Dependent Variables 

Production. In examining the predictive ability of market implied ambiguity (IA) concerning the 

growth of future production, we employ two indicators: growth in industrial production (IP) and 

growth in capacity utilization (CU). Monthly data on industrial production and capacity utilization 

from December 1989 to December 2014 are obtained from the Board of Governors of the Federal 

Reserve System. IP and CU are computed as the logarithmic change of the relevant indicator over a k-

month horizon. Since industrial production values are denoted in real terms, no inflation adjustment is 

needed.  

Employment. We use the unemployment rate growth (UR) and total non-farm payroll growth (TNP, 

net hiring) as indicators for employment activity. Monthly data of total non-farm payroll and 

unemployment rate from December 1989 to 2014 are obtained from the Bureau of Labor Statistics. 

UR and TNP are computed as the logarithmic change of the relevant indicator over a horizon of k 

months.  

Consumption. For consumption indicators, we consider personal consumption expenditures growth 

(PCE) and personal consumption expenditures on durable goods consumption growth (DG). Monthly 

consumption data covering December 1989 to December 2014 are obtained from the Bureau of 

Economic Analysis (BEA). All values of the consumption indicators are divided by population and 

adjusted by the consumer price index (CPI) to obtain real consumption per capita. PCE and DG are 

the logarithmic change of the relevant per capita indicator in real terms over k month(s).  

Overall Economic Output. In addition to the three key separate aspects of economic activity described 

above (namely production, employment and consumption), we also investigate the relationship of IA 
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to overall economic activity. We consider real gross domestic product (GDP) per capita and the 

Chicago Fed National Activity Index (CFNAI) as overall economic indicators. Quarterly data of real 

GDP is collected from the BEA. Real GDP per capita growth (GDPC) is then computed as the 

logarithmic change of the relevant indicator over q quarter(s). Changes in aggregate economic output 

proxied by the CFNAI are computed as the average of the index over a k-month horizon.  

3.4.2. Predictor Variables and Controls 

We estimate option-market implied ambiguity (IA) based on Equations (3.4)-(3.6) using the closing 

level of the VIX index obtained from the Chicago Board Options Exchange (CBOE). Our option 

dataset relying on VIX covers the period from January 1990 to December 2012 when VIX data are 

available. Our results are robust to the use of VIX or option price data for extracting IA. We limit our 

dataset to a period up to 2012 to allow a 24-month window for the estimation of growth rates for the 

various economic indicators. To estimate IA, besides the VIX index closing levels, we estimate other 

input parameters needed for our calibration and option pricing models. We use the one-month USD 

LIBOR as the risk-free interest rate (r), the one-year geometric return on the S&P 500 index as a 

proxy for the subjective required return for S&P 500 investors (μ), and RiskMetrics EWMA volatility 

as the S&P return volatility measure (σ). Our results are robust to alternative input estimations.
11

 

In addition to option-market implied ambiguity (IA), we consider a number of known financial 

market based predictors of economic activity for benchmarking. These include the aggregate dividend 

yield (DY) on the S&P 500 index (Yang, 2011), the term spread (TS) calculated as the difference 

between 10-year T-bond and 1-year T-bill yields (Harvey, 1988; Estrella and Hardouvelis, 1991; 

Plosser and Rouwenhorst, 1994; Rendu de Lint and Stolin, 2003; Estrella, 2005; Ang, Piazzesi and 

Wei, 2006; Chen and Zhang, 2011), the credit spread (CS) computed as the difference between 

Moody’s BAA and AAA yield indices (Gilchrist, Yankov and Zakrajšek, 2009; Chen and Zhang, 

2011), option implied volatility of the S&P 500 index as measured by the CBOE VIX (Bloom, 2009; 

                                                      
11 For robustness, we test the predictive power of IA using alternative inputs for the subjective required rate of return μ and volatility σ. As 

alternative proxies for μ we used 6, 12, 18, 24, 36, and 60 months recent historical annualized returns. As alternative volatility specifications 

(to using RiskMetrics EWMA), we used (i) a simple 22-day historical standard deviation of returns and (ii) out-of-sample GARCH(1,1) with 

three-year rolling estimation window. The predictive power of IA is not significantly affected by the choice of these inputs.  
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Bekaert and Hoerova, 2014), market excess return (ER)  (Fama, 1981 and 1990; Barro, 1990; Schwert, 

1990; Cochrane, 1991; Beaudry and Portier, 2006) of the S&P 500 index as measured by the monthly 

logarithmic return of S&P 500 index in excess of the logarithmic yield of 3-month treasury bills, the 

aggregate price-to-earnings ratio (EP) (Rapach, Strauss and Zhou, 2010) of S&P 500 index 

constituents, and the variance risk premium (VRP) (e.g., Zhou, 2009; Bekaert and Hoerova, 2014) as 

measured by the difference between S&P 500 index implied variance (VIX
2
) and realized variance 

computed as the sum of squared returns using intra-day 5-mins index data. As our measure of option 

ambiguity is a market based predictor, we restrict comparison to analogous market based predictors to 

provide fair comparisons.  

Aggregate DY and EP data are from Robert Shiller’s website. US 10-year T-bill, 1-year T-bill 

yields, Moody’s BAA yield index and Moody’s AAA yield index data for computing the term and 

credit spreads (TS and CS) are from the Federal Reserve Bank of St. Louis’s Federal Reserve 

Economic Data (FRED). S&P 500 index data for calculation of monthly excess returns are from 

Thomson Reuters Datastream. VRP data is obtained from Hao Zhou’s website. A summary of all 

above variables is provided in Table 3.1. 
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Table 3.1. Descriptions of Variables, Data Series, and Data Sources 

Table 3.1 describes the variables, data and data sources. All data series from websites of cited sources are downloaded in December 2014. All data series span a 

common sample period from January 1990 to December 2014 unless otherwise specified in the descriptions. 

Panel A. Predictor Variables  

 
Panel B. Real Economic Activity Measures 

 
Panel C. Macroeconomic Uncertainty Proxies 

 

 

  

Category Abbreviation Corresponding Indicator Description Source

IA Options Market Ambiguity
Estimated by rank dependent option pricing model according to (7). End of 

month values. 
-

RV S&P500 Realized Variance
Computed as the sum of squared returns using intra-day 5-min S&P500 index 

prices
Hao Zhou's website

VIX S&P500 Implied Volatility S&P 500 option implied volatility based on the CBOE VIX index. 
Chicago Board Options 

Exchange

VRP Variance Risk Premium
Variance risk premium defined as the difference between realized variance and 

implied variance of S&P 500 return. 
Hao Zhou's website

DY Dividend Yield Aggregate dividend yield of S&P 500 composite. Robert Shiller's website

EP Earnings to Price Ratio Reciprocal of aggregate price to earnings ratio of S&P 500 composite. Robert Shiller's website

ER S&P500 Excess Return S&P 500 index return in excess of 3-month treasury bond yield. Thomson Datastream

CS
Credit Spread (BAA yield - AAA 

yield)
Difference between Moody's BAA and AAA corporate bond yield. 

Federal Reserve Bank of St. 

Louis FRED

TS
Yield Curve (Term Spread, 10Y 

T-yield - 3M T-yield)
Difference between 10-year and 3-month U.S. treasury bond yield. 

Federal Reserve Bank of St. 

Louis FRED

Equity 

fundamentals

Bond 

fundamentals

Uncertainty 

Measures

Category Abbreviation Corresponding Indicator Description Source

IP Industrial Production Growth

Logorithmic change of k-month horizon industrial production index, measured 

as the real seasonally adjusted output for all facilities located in the United 

States manufacturing, mining, and electric, and gas utilities.  

Board of Governors of the 

Federal Reserve System 

CU
Capacity Utilization Ratio 

Growth

Logorithmic change of k-month horizon capacity utilization measured as the 

percentage of resources used by corporations and factories to produce goods 

in manufacturing, mining, and electric and gas utilities for all facilities located 

in the United State. 

Board of Governors of the 

Federal Reserve System 

TNP Total Non-farm Payroll Growth

Logorithmic change of k-month horizon total nonfarm payroll, measured as 

the seasonally adjusted number of U.S. workers in the economy that excludes 

proprietors, private household employees, unpaid volunteers, farm employees, 

and the unincorporated self-employed. 

U.S. Bureau of Labor Statistics

UR Unemployment Rate Growth
Logorithmic change of k-month horizon unemployment rate, measured as the 

seasonally adjusted number of unemployed as a percentage of the labor force. 
U.S. Bureau of Labor Statistics

PCE

Personal Consumption 

Expenditure Growth (Real, per 

capita)

Logorithmic change of k-month horizon personal consumption expenditure per 

capita, measured as the seasonally adjusted per capita real value of goods and 

services purchased by U.S. residents. 

U.S. Bureau of Economic 

Analysis

DG
Durable Goods Expenditure 

Growth (Real, per capita)

Logorithmic change of k-month horizon durable goods expenditure per capita, 

measured as the seasonally adjusted per capita real value of durable goods 

purchased by U.S. residents. Durable goods is defined as tangible commodities 

that can be stored or inventoried and that have an average life of at least 3 

years. 

U.S. Bureau of Economic 

Analysis

GDPC Real GDP per Capita Growth
Logorithmic change of q-month quarter real gross domestic product per 

capita. Sample: 1990Q1 to 2012Q4.

U.S. Bureau of Economic 

Analysis

CFNAI
Chicago Fed National Activity 

Index
Sum of k-month Chicago Fed National Activity Index. 

Federal Reserve Bank of 

Chicago

Overall Output

Employment

Consumption

Production

Category Abbreviation Corresponding Indicator Description Source

CV CFNAI

Conditional Variance of Chicago 

Fed National Activity Index

Conditional Variance of Chicago Fed National Activity Index estimated by 

GARCH(1,1)
-

CV IP

Conditional Variance of 

Industrial Production Growth

Conditional Variance of Industrial Production Growth estimated by 

GARCH(1,1)
-

MUNC BBC

Bali et al (2014) Macroeconomic 

Uncertainty

Macroeconomic Uncertainty measure according to Bali, Brown, and Caglayan 

(2014)
Turan Bali's website

MUNC JLN

Jurado et al.(2015) 

Macroeconomic Uncertainty  

Macroeconomic Uncertainty measure with 1-, 3-, and 12-month forecasting 

horizons according to Jurado, Ludvigson and Ng (2015) 
Sydney Ludvigson's website

CCI Consumer Confidence Index Consumer Confidence Index
Federal Reserve Bank of St. 

Louis FRED

PUI
Economic Policy Uncertainty 

Index
Economic Policy Uncertainty Index

http://www.policyuncertainty.c

om/

SPF
Forecast Dispersion for Survey 

of Professional Forecaster

Forecast Dispersion for Survey of Professional Forecaster in forecasting GDP 

for current quarter, and 1-4 quarters ex post

Federal Reserve Bank of 

Philadelphia website

UMCSI
University of Michigan 

Consumer Sentiment Index
University of Michigan Consumer Sentiment Index

Federal Reserve Bank of St. 

Louis FRED

Survey / media-

coverage based 

measures

Statistical based 

measures
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3.5. Empirical Results 

3.5.1. Summary Statistics 

Figure 3.1 plots the time-varying levels of option-market implied ambiguity (IA) compared to option 

implied volatility (CBOE’s VIX) and each of the eight economic activity indicators, with shaded areas 

representing NBER recessions. Graph 1 in Figure 3.1 reveals prolongedly inflated IA values during 

the more uncertain periods (recessions), including the 1990 recession, 1999 dot-com bubble, the 2008 

financial crisis and the 2010 Eurozone debt crisis.  IA is seen to be positively but loosely correlated 

with the VIX shown in Graph 2 and exhibits volatile fluctuations.
12

 The IA plot in Graph 1 also has 

some resemblance to (and sometimes leads) the other graphs (shown in pairs) in Figure 3.1 depicting 

fluctuations in production (Panel B), employment (Panel C), consumption (Panel D), and overall 

economic output (Panel E). 

Table 3.2 Panel A reports the descriptive statistics of our eight indicators of economic activity and 

the eight standard predictor variables concerning risk, uncertainty, equity and bond fundamentals 

(summarized in Table 3.1). All statistics for the predictor variables and indicators of economic 

activity are based on monthly observations, except for GDPC that is based on quarterly observations. 

Among the predictor variables, IA, ER and VRP show low levels of first-order autocorrelation 

(ranging from 0.07 to 0.36). Other predictor variables including DY, EP, CS, TS and VIX generally 

show very high first-order autocorrelations (ranging from 0.85 to 0.99 based on monthly observations). 

In light of the high persistence of these predictor variables, adjusted R
2
 needs to be interpreted with 

care. The low first-order autocorrelation of our implied ambiguity measure IA largely mitigates the 

concern of spurious regressions when compared to highly auto-correlated predictor variables such as 

VIX, CS, EP, TS and DY. Despite the inference concerns regarding these highly persistent standard 

predictor variables, they are considered for benchmarking and comparability with extant research. 

Concerning the basic descriptive statistics of the economic activity indicators, their comparative 

                                                      
12 IA is more volatile than the VIX as the latter captures mostly risk (volatility) whereas the former captures something akin to volatility of 

volatility (i.e., uncertainty in both rates of return and market volatility) and more extreme economic scenarios that are harder to specify with 

confidence. IA may also capture investor or consumer sentiment which may endogenously affect future macroeconomic outcome changes 

(such as consumption and employment growth), which IA is able to predict better than most standard predictors.  
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Figure 3.1. Market Ambiguity, S&P 500 Implied Volatility and Economic Activity Indicators 

Figure 3.1 shows time-varying levels of option market ambiguity, S&P 500 implied volatility and (pairs of) economic activity indicators concerning production, 

employment, consumption, and overall economic output. All variables are sampled with monthly frequency except GDPC which is sampled with quarterly 

frequency. Shaded areas represent NBER recession periods based on quarterly dates. The sample period spans Jan 1990 to Dec 2014. 

Panel A. Market Ambiguity 

Graph 1 – Option-market Implied Ambiguity (IA) Graph 2 – Option Implied Volatility (VIX) 

  
Panel B. Production 

Graph 3 - Industrial Production (IP) Growth Graph 4 – Capacity Utilization (CU) Growth 

  
Panel C. Employment 

Graph 5 – Unemployment Rate (UR) Growth Graph 6 – Total Non-farm Payroll (TNP) Growth 

  
Panel D. Consumption 

Graph 7 – Personal Consumption Expenditure (PCE) Growth Graph 8 – Durable Goods Consumption (DG) Growth 

  
Panel E. Overall Economic Output 

Graph 9 – GDP Per Capita (GDPC) Growth Graph 10 - Chicago Fed National Activity Index (CFNAI) 
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Table 3.2. Descriptive Statistics and Correlations  

Table 3.2 reports the descriptive statistics and correlation matrices. IA is option market ambiguity. VIX is the CBOE volatility index. VRP is the variance risk 

premium calculated as the difference between implied variance and realized variance. DY is the dividend yield of the S&P 500 index.  EP is the earnings to 

price ratio of the S&P 500 index. ER is the excess return of the S&P 500 index calculated as the logarithmic return of S&P 500 in excess of the logarithmic yield 

of 3M T-bill.  CS is the credit spread between Moody's AAA and BAA bond yield indices. TS is the term spread between 10Y T-bond and 3M T-bill yields. IP 

and CU denote industrial production growth and capacity utilization ratio growth respectively. TNP and UR represent total non-farm payroll growth and 

unemployment rate growth respectively. PCE and DG denote personal consumption expenditure per capita growth and personal consumption expenditure on 

durable goods per capita growth respectively. GDPC denotes gross domestic product per capita growth. CFNAI is the Chicago Fed National Activity Index. All 

variables are reported in annualized percentage whenever possible. Descriptive statistics for predictor variables, production indicators, employment indicators, 

consumption indicators, and CFNAI are computed using monthly samples covering observations from 1990M01 to 2014M12. Descriptive statistics for GDPC 

are computed using quarterly data covering 1990Q1 to 2014Q4. 

Panel A. Descriptive Statistics 

 

Panel B. Correlation Matrix for Monthly Sample 

 

Panel C. Correlation Matrix for Quarterly Sample 

 

annualized mean growth rates provide a good snapshot of aggregate shocks to the US economy during 

the last two decades. Real industrial production (mean IP of 2.02%) grew slower than overall per 

capita economic growth (mean GDPC of 4.15%), while real consumption per capita (mean PCE of 

4.83%) grew in pace with overall per capita real economic growth. 

Panel B of Table 3.2 reports the correlation matrix of the predictor variables and economic 

indicators based on monthly data. Correlations among contemporaneous predictor variables are 

generally low except for those between CS and VIX ( = 0.61) and EP and VIX ( = -0.44). To 

reduce the risk of incorrect and misleading inference due to multicollinearity, we avoid including 

IA VIX VRP DY EP ER CS TS IP CU TNP UR DG PCE GDPC CFNAI

Mean 0.15 20.43 18.47 2.10 4.67 6.03 0.97 1.88 2.02 -0.30 0.94 1.65 4.00 4.83 4.15 -0.17

Std. Dev. 0.20 7.77 20.35 0.66 1.40 52.51 0.42 1.16 7.98 8.00 2.10 31.67 26.52 5.16 7.59 0.86

Skewness 1.29 1.59 -2.48 0.66 -0.48 -0.77 3.06 -0.15 -1.74 -1.57 -1.22 0.29 0.36 -0.12 -1.28 -1.86

Kurtosis 0.29 4.04 35.17 -0.48 -0.10 1.57 12.23 -1.14 8.79 8.21 2.42 0.59 6.09 4.93 3.68 5.92

AR(1) 0.36 0.85 0.26 0.99 0.98 0.07 0.96 0.98 0.24 0.23 0.79 0.05 -0.26 -0.09 0.44 0.69

Production

Predictor Variables

Employment
Overall Economic 

Activity
Equity Fundamentals

Bond 

Fundamentals
Uncertainty Measures Consumption

Real Economic Activity Measures

IA VIX VRP DY EP ER CS TS IP CU TNP UR DG PCE CFNAI
IA 1.00

VIX 0.37 1.00

VRP -0.20 0.31 1.00

DY -0.11 -0.04 -0.02 1.00

EP -0.16 -0.44 -0.20 0.26 1.00

ER -0.02 -0.39 -0.03 -0.02 0.06 1.00

CS 0.30 0.61 0.04 0.29 -0.35 -0.13 1.00

TS -0.08 0.05 -0.03 0.35 -0.19 -0.04 0.27 1.00
IP -0.20 -0.25 -0.04 -0.13 0.20 0.02 -0.44 0.02 1.00
CU -0.18 -0.22 -0.06 -0.09 0.18 -0.01 -0.31 0.18 0.95 1.00

TNP -0.29 -0.51 -0.10 -0.24 0.43 0.13 -0.75 -0.24 0.53 0.40 1.00

UR 0.17 0.28 0.05 0.15 -0.25 -0.09 0.37 0.04 -0.39 -0.35 -0.45 1.00

DG -0.10 -0.08 0.12 -0.07 -0.01 0.04 -0.13 0.00 0.10 0.07 0.15 0.00 1.00

PCE -0.19 -0.26 0.12 -0.15 0.05 0.11 -0.37 -0.08 0.24 0.20 0.32 -0.11 0.78 1.00

CFNAI -0.31 -0.49 -0.05 -0.28 0.31 0.12 -0.72 -0.08 0.82 0.74 0.82 -0.55 0.17 0.38 1.00

IA VIX VRP DY EP ER CS TS GDPC

IA 1.00

VIX 0.28 1.00

VRP -0.14 0.72 1.00

DY -0.03 -0.04 0.03 1.00

EP -0.11 -0.42 -0.15 0.23 1.00

ER 0.00 -0.24 -0.16 -0.05 0.00 1.00

CS 0.39 0.56 0.15 0.28 -0.36 -0.05 1.00

TS -0.12 0.05 0.06 0.34 -0.20 -0.13 0.25 1.00

GDPC -0.38 -0.38 0.02 -0.37 0.15 0.14 -0.64 -0.06 1.00
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highly-correlated predictor variables together in our multivariate regressions. Absolute values of 

correlations between contemporaneous predictor variables and monthly economic activity indicators 

are below 0.5, except for three pairs: CS and CFNAI ( = -0.72), TNP and CS ( = -0.75), and TNP 

and VIX ( = -0.51).  

By comparison, the correlation matrix based on quarterly data in Panel C of Table 3.2 confirms 

that correlations among predictor variables are generally in line with those of the monthly sample 

(Panel B) except for VRP. When sampled with a quarterly frequency, the correlation between VRP 

and VIX, one of the sources of VRP’s information extraction, increases from 0.31 to 0.72. This is 

likely due to the mean-reverting property of the realized volatility component of VRP. By contrast, 

despite also relying on VIX as a main information source, IA’s correlation with VIX declines from 

0.37 to 0.28 in quarterly data, suggesting that IA and VIX contain different sets of information for 

different sampling frequencies.  

3.5.2. Validating Option Market Ambiguity as a Measure of Aggregate Uncertainty 

Similar to Bali and Zhou (2016) and Bekaert and Hoerova (2016), we compare the correlations 

between IA and established economic uncertainty proxies to validate the suitability of IA as a 

financial market-based proxy for aggregate uncertainty. While comparing option market ambiguity to 

established macroeconomic uncertainty indicators, we bear in mind two important distinctions: 1) IA 

does not rely on ex post information, thus providing real-time predictive information to future real 

activity; 2) IA is a financial market-based measure that captures forward-looking information from 

options.  

Table 3.3 reports correlations between IA and both statistical- and survey/media-based 

macroeconomic uncertainty proxies. For statistical-based uncertainty measures, following Bali and 

Zhou (forthcoming), we consider the conditional variance of the Chicago Fed National Activity Index 

(        ) and of industrial production growth (       estimated using GARCH(1,1) models 

(Bollerslev (1986)); the macroeconomic uncertainty measure (       ) of Bali, Brown, and 

Caglayan (2014) based on  Principle Component Analysis (PCA); and macroeconomic uncertainty 

(       
   etc.) of Jurado, Ludvigson and Ng (2015) measured by a weighted conditional variance of 
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financial and macroeconomic series with 1-, 3-, and 12-month forecasting horizons. For 

survey/media-based uncertainty measures, we consider the University of Michigan 

ConsumerSentiment Index (UMCSI); Consumer Confidence Index (CCI); disagreement among 

economic forecasters from the Federal Reserve Bank of Philadelphia’s Survey of Professional 

Forecasters (            with different forecasting horizons; and the Economic Policy Uncertainty 

Index (PUI, Baker, Bloom and Davis, 2013).  

Table 3.3. Correlations with Macroeconomic Uncertainty Proxies 

Table 3.3 reports correlations between option market ambiguity IA and other established macroeconomic uncertainty proxies. 

        is the conditional variance of the Chicago Fed National Activity Index estimated by GARCH(1,1);      is the 

conditional variance of industrial production growth estimated by GARCH(1,1);         is the macroeconomic uncertainty 

measure according to Bali, Brown, and Caglayan (2014);        
  ,         

  , and        
   are the macroeconomic 

uncertainty measures according to Jurado, Ludvigson and Ng (2015) with 1-, 3-, and 12-month forecasting horizons 

respectively;     is the consumer confidence index;     is the economic policy uncertainty index; 

     ,      ,      ,      , and       are dispersion of the Survey of Professional Forecasters in forecasting GDP for 

current quarter, and 1-4 quarters ex post respectively; and       is the University of Michigan Consumer Sentiment Index. 

Correlations are computed using monthly samples covering observations from 1990M01 to 2014M12. p-values are shown in 

parenthesis. *, **, and *** represent significance at 90%, 95%, and 99% confidence levels respectively. 

Panel A. Correlations with statistical based measures 

          

        0.189***          
   0.386*** 

 (0.002)    (0.000) 

     0.190***          
   0.393*** 

 (0.002)    (0.000) 

        0.159**          
    0.405*** 

 (0.017)    (0.000) 

Panel B. Correlations with survey / media-coverage based measures 

          

    -0.026         0.263** 

 (0.667)    (0.011) 

    0.181***         0.283*** 

 (0.003)    (0.006) 

      0.240**         0.356*** 

 (0.021)    (0.001) 

      0.268***         -0.155*** 

 (0.010)    (0.010) 

From Panel A of Table 3.3, the correlations between IA and each of the statistical-based 

macroeconomic uncertainty measures are all positive and significant. Out the four statistical-based 

macro uncertainty indicators, Jurado, Luvigson and Ng’s (2015) measures are reported to have 

relatively less noise (Bekaert and Hoerova, 2016) due to their use of forecasting errors with many 

economic series. The correlation between IA and         with different forecasting horizons ranges 

from 0.386 to 0.405 with expected positive signs. From Panel B of Table 3.3, IA is significantly 

correlated with all survey/media-coverage based uncertainty proxies, except for the consumer 

confidence index. Among this group of uncertainty indicators, IA achieves the highest correlation of 
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0.356 with       which measures the dispersion in forecasts among professional forecasters for GDP 

growth 4 quarters ahead. We also find our ambiguity measure to be more significantly positively 

correlated ( = 0.49) with a principal component combining statistical- and survey/media-based 

uncertainty information (i.e.,         and       ). The above and the results in Table 3.3 confirm 

the validity of IA as a proxy for aggregate uncertainty (and divergence in beliefs) in the economy. 

With a simple extraction methodology relying on forward-looking option data, IA captures a rich set 

of macroeconomic uncertainty information on a real-time basis.  

3.5.3. Impact of Option Market Ambiguity on Real Economic Activity 

To investigate the impact of option market ambiguity on various sectors of the real economy, we 

employ a five-variable VAR system using industrial production growth (IP), total non-farm payroll 

growth (TNP), personal consumption expenditure per capita growth (PCE), and changes in the 

Chicago Fed National Activity Index (CFNAI), in addition to implied ambiguity (IA). We specify the 

VAR system with a constant and five lags based on minimization of the Akaike information criterion:  
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(3.10) 

where      to      represent each of the five variables at time t including IP, TNP, PCE, CFNAI, and 

IA.  

Table 3.4 summarizes our variance decomposition and Granger causality results from the above 

VAR system.
13

 Panel A gives the percentage of 24-month forecast error variance explained by 

innovations (shocks) in each variable based on the VAR system, while Panel B reports the p-value 

from Granger causality analysis. Panel A of Table 3.4 indicates that market ambiguity IA is only 

minimally explained by the other four economy indicators considered in the system. Among the four 

economic indicators, TNP does best but only explains 3.86% of the 24-month forecast error in IA.  By 

                                                      
13 All the economic activity indicators used are log changes (e.g., industrial production growth rather than production level) so the dependent 

variables are not persistent. In the VAR system specification all the time series variables are stationary. Investors' Knightian uncertainty 

perceptions influence future macroeconomic activity by affecting the changes (growth) rather than the level itself. Since IA captures 

Knightian uncertainty and miscalibration, it represents a "top-up" part beyond VIX-related risk expectations. As an econometric analogue to 

IA and a market return predictor for up to 12 months (with low persistence), VRP captures only part of this miscalibration information. 
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contrast, IA seems to explain better the forecast error variance of all four economic indicators. IA 

explains 22.88% of CFNAI’s and 25.22% of TNP’s forecast error variance, though only 12.68% of 

IP’s and 6.22% of PCE’s. These results suggest ambiguity shocks are important in explaining the 

forecast variance in main economic indicators.  

Table 3.4. Variance Decomposition and Granger Causality 

Table 3.4 reports the variance decomposition and Granger causality results. Panel A reports the 24-month forecast error 

variance explained by innovations (shocks) in each of the variables. Panel B reports the p-value of Granger causality tests with 

null hypothesis of no Granger causality. IA is the option market ambiguity. IP denotes industrial production growth. TNP 

represents total non-farm payroll growth. PCE denotes personal consumption expenditure per capita growth. CFNAI is the 

Chicago Fed National Activity Index. The VAR system includes monthly sample covering observations from 1990M01 to 

2014M12.  

Panel A. Variance Decomposition 

 

Panel B. Granger Causality 

 

To further understand the impact of ambiguity (IA) shocks on real economic activity, Granger 

causality results are presented in Panel B of Table 3.4. IA explains in a Granger-causal sense all four 

economic indicators at the 95% confidence level (p-value < 0.05). In terms of causal relationships in 

the reverse direction, none of the four economic activity indicators Granger-causes IA in the system. 

We further perform impulse response analysis (shown in Figure 3.2) to guide as to the signs expected 

for long-horizon predictions (up to 24 months).  Figure 3.2 suggests that industrial production IP, 

employment measured by TNP, and overall output measured by CFNAI respond negatively to shocks 

in option-market ambiguity (IA) throughout a majority of the 24-month lags considered. PCE 

generally also responds negatively to shocks in IA in the first two month lags. The above impulse- 

  

IA IP PCE TNP CFNAI

(%) (%) (%) (%) (%)

IA 88.42 3.01 1.77 3.86 2.94

IP 12.68 67.07 4.90 4.90 10.45

PCE 6.22 6.10 79.81 3.94 3.93

TNP 25.22 20.13 4.08 38.10 12.47

CFNAI 22.88 37.55 6.38 10.73 22.45

Dependent 

Variable

Expla ined by Innovations  in

IA IP PCE TNP CFNAI

IA - 0.69 0.12 0.93 0.75

IP 0.02 - 0.18 0.20 0.00

PCE 0.04 0.54 - 0.34 0.36

TNP 0.02 0.08 0.33 - 0.00

CFNAI 0.01 0.00 0.02 0.87 -

Dependent 

Variable

Granger Caused by
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Figure 3.2. Responses of Select Economic Indicators to Shocks in Option Market Ambiguity (IA) 

Figure 3.2 shows impulse responses of industrial production (IP) growth, total non-farm payroll (TNP) growth, personal consumption expenditure (PCE) 

growth, and the Chicago Fed National Activity Index (CFNAI) to shocks in IA. Dotted lines represent confidence bands at 90% level. The sample period spans 

Jan 1990 to Dec 2014. 

Panel A. Response of Industrial Production (IP) Growth to 

shock in IA 

Panel B. Response of Total Non-farm Payroll (TNP) Growth 

to shock in IA 

  
Panel C. Response of Personal Consumption Expenditure 

(PCE) Growth to shock in IA 

Panel D. Response of Chicago Fed National Activity Index 

(CFNAI) to shock in IA 

  

response analysis broadly confirms the findings obtained from the previous variance decomposition 

and Granger causality tests, suggesting that market ambiguity is a significant predictor of real 

economic activity. Overall, these findings highlight the important role of option market ambiguity in 

negatively impacting subsequent real economic activity and providing a solid foundation for long-

horizon prediction of various economic sector indicators up to 24 months or 8 quarters. Given the 

negative impact of ambiguity shocks on economic activity corroborated by our Granger causality tests 

and impulse response analysis (in line with mentioned economic theories), we next turn to examining 

the informational efficiency of option market-implied ambiguity in long-horizon predictions of 

economic sector activity.  

3.5.4. Predictive Performance of Market Ambiguity 

The predictive ability of each of eight predictor variables (IA, VIX, VRP, DY, EP, ER, CS, TS) on the 

various economic sector indicators (two indicators each, in Panels A and B of Tables 3.5 - 3.8, related 

to production, employment, consumption, and overall economic output activity) are tested using 

standard predictive regressions with various horizons up to eight quarters (e.g., Fama, 1981; Fama, 

1990; Schwert, 1990; Cochrane, 1991; Carroll, Fuhrer and Wilcox, 1994; Yang, 2011; Chen and 

Zhang, 2011). These are reported in Tables 3.5 – 3.8. The intercept, slope, Newey and West (1987)  
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Table 3.5. Predicting Production 

Table 3.5 reports the predictive regression results for production activity. IA is the option market ambiguity. VIX is the implied volatility of the S&P 500 index 

based on the CBOE volatility index. VRP is variance risk premium, obtained as the difference between implied variance and realized variance of the S&P 500 

index. DY is the dividend yield of the S&P 500 index. EP is the earnings to price ratio of the S&P 500 index. ER is the excess return of the S&P 500 index 

calculated as the logarithmic return of S&P 500 in excess of the logarithmic yield of 3M T-bill. CS is the credit spread between Moody's AAA and BAA bond 

yield indices. TS denotes the term spread between 10Y T-bond and 3M T-bill yields. The sample covers monthly observations from 1990M01 to 2014M12. 

Newey-West t-statistics with lags equal to the return horizon (in months) are reported in parentheses. *, **, and *** represent significance at 90%, 95%, and 99% 

confidence levels respectively. 

Panel A. Predictive Regressions on Industrial Production 

(IP) Growth 

Panel B. Predictive Regressions on Capacity Utilization 

(CU) Growth 

Part 1 – Univariate Regressions Part 1 – Univariate Regressions 

  

Part 2 – Multivariate Regressions Part 2 – Multivariate Regressions 

  

adjusted t-statistics, and the adjusted R
2

 for each regression are reported for prediction horizons from 

one to eight quarters. Univariate regression results for each predictor variable are presented in Part 1. 

To further examine the collective information content provided by the set of significant predictor 

variables and assess whether option market ambiguity (IA) has unique and incremental information 

content compared to other good predictor variables, we additionally employ multivariate predictive 

regressions for each economic sector activity while paying careful attention to potential 

1 2 3 4 5 6 7 8

Cst 3.69 3.65 3.43 3.37 3.29 3.20 3.11 2.99

(8.85) (7.99) (6.65) (6.23) (5.71) (5.24) (4.67) (4.15)
IA -10.76*** -10.56*** -9.14** -8.52*** -7.76*** -6.93*** -6.17*** -5.24***

(-3.22) (-2.69) (-2.53) (-2.80) (-2.98) (-3.18) (-3.44) (-3.44)
Adj. R2 (%) 13.31 16.20 14.32 14.43 13.99 12.92 11.69 9.49
Cst 8.61 6.92 5.64 4.90 4.29 3.86 3.52 3.31

(5.04) (4.63) (5.71) (5.68) (4.29) (3.25) (2.48) (2.01)
VIX -0.32*** -0.24*** -0.18*** -0.14*** -0.11** -0.08* -0.07 -0.06

(-3.43) (-2.70) (-2.72) (-2.65) (-2.15) (-1.79) (-1.36) (-1.03)
Adj. R2 (%) 18.92 13.12 8.29 5.88 3.96 2.73 1.87 1.36
Cst 1.52 1.34 1.35 1.50 1.60 1.70 1.80 1.86

(1.37) (1.30) (1.36) (1.52) (1.61) (1.70) (1.79) (1.81)
VRP 0.03 0.04 0.04* 0.03* 0.03* 0.02 0.02 0.02

(0.60) (1.28) (1.87) (1.88) (1.78) (1.64) (1.38) (1.21)
Adj. R2 (%) 0.63 1.85 2.22 1.67 1.52 1.30 0.91 0.84
Cst 4.65 3.21 2.09 1.25 0.46 -0.11 -0.44 -0.70

(2.46) (1.63) (1.09) (0.64) (0.23) (-0.06) (-0.23) (-0.37)
DY -1.25 -0.56 -0.03 0.39 0.78 1.07 1.24 1.37*

(-1.29) (-0.58) (-0.03) (0.46) (0.97) (1.39) (1.63) (1.85)
Adj. R2 (%) 1.72 0.17 -0.36 -0.02 1.30 3.24 5.16 7.34
Cst -1.00 -0.01 0.79 1.29 1.48 1.55 1.64 1.68

(-0.40) (-0.00) (0.33) (0.61) (0.81) (0.99) (1.16) (1.23)
EP 0.65 0.44 0.26 0.16 0.13 0.13 0.11 0.11

(1.41) (0.97) (0.66) (0.45) (0.41) (0.41) (0.36) (0.32)
Adj. R2 (%) 2.17 1.07 0.26 -0.08 -0.15 -0.14 -0.16 -0.15
Cst 1.81 1.84 1.88 1.93 1.99 2.05 2.09 2.12

(3.30) (2.72) (2.51) (2.48) (2.52) (2.57) (2.61) (2.65)
ER 0.04*** 0.03*** 0.03*** 0.02*** 0.02*** 0.02*** 0.01*** 0.01***

(3.23) (2.97) (2.91) (3.06) (3.25) (3.23) (3.27) (3.32)
Adj. R2 (%) 11.22 10.38 7.83 6.54 5.76 4.20 2.98 2.63
Cst 8.67 6.96 5.64 4.70 3.97 3.49 3.25 3.14

(5.79) (3.95) (3.50) (3.13) (2.80) (2.51) (2.28) (2.16)
CS -6.84*** -5.09** -3.72* -2.73 -1.93 -1.39 -1.12 -0.99

(-3.94) (-2.41) (-1.91) (-1.58) (-1.32) (-1.14) (-1.03) (-0.96)
Adj. R2 (%) 25.71 17.79 11.12 6.79 3.81 2.16 1.51 1.30
Cst 1.37 1.12 0.79 0.59 0.49 0.30 0.13 -0.02

(1.82) (1.16) (0.69) (0.45) (0.34) (0.20) (0.08) (-0.01)
TS 0.35 0.48 0.66 0.78* 0.86** 0.97** 1.08** 1.17**

(0.92) (1.09) (1.45) (1.76) (1.96) (2.15) (2.23) (2.31)
Adj. R2 (%) 0.15 0.86 2.31 4.02 5.83 8.88 12.60 16.92

P r e di c t i on Hor i z on ( Qua r t e r s)

1 2 3 4 5 6 7 8

Cst 1.20 1.14 0.88 0.76 0.63 0.48 0.35 0.19

(2.65) (2.23) (1.62) (1.42) (1.21) (0.93) (0.65) (0.34)
IA -9.67*** -9.24** -7.55** -6.55** -5.47** -4.29** -3.29** -2.15*

(-3.06) (-2.52) (-2.29) (-2.41) (-2.40) (-2.23) (-2.08) (-1.71)
Adj. R2 (%) 10.86 12.75 10.20 9.18 7.73 5.72 3.95 1.86
Cst 5.62 3.72 2.23 1.27 0.48 -0.10 -0.53 -0.81

(3.41) (2.58) (2.39) (1.57) (0.54) (-0.10) (-0.50) (-0.70)
VIX -0.29*** -0.20** -0.12* -0.07 -0.03 0.00 0.02 0.03

(-3.19) (-2.25) (-1.86) (-1.30) (-0.60) (-0.07) (0.36) (0.65)
Adj. R2 (%) 15.48 8.96 4.04 1.58 0.12 -0.36 -0.15 0.44
Cst -0.66 -0.88 -0.90 -0.76 -0.67 -0.57 -0.46 -0.41

(-0.61) (-0.90) (-1.01) (-0.90) (-0.83) (-0.74) (-0.64) (-0.59)
VRP 0.02 0.03 0.03 0.03 0.02 0.02 0.02 0.01

(0.45) (1.11) (1.57) (1.52) (1.51) (1.41) (1.24) (1.09)
Adj. R2 (%) 0.19 1.37 1.94 1.50 1.47 1.24 0.82 0.75
Cst 1.33 -0.05 -1.11 -1.86 -2.52 -2.91 -3.02 -3.03

(0.70) (-0.03) (-0.58) (-0.96) (-1.29) (-1.50) (-1.58) (-1.64)
DY -0.77 -0.11 0.40 0.77 1.10 1.30* 1.36* 1.38*

(-0.80) (-0.11) (0.46) (0.92) (1.37) (1.68) (1.80) (1.90)
Adj. R2 (%) 0.44 -0.34 -0.03 1.13 3.37 6.00 8.06 9.97
Cst -2.42 -1.05 0.07 0.83 1.22 1.42 1.58 1.65

(-0.93) (-0.38) (0.03) (0.32) (0.51) (0.64) (0.75) (0.80)
EP 0.46 0.17 -0.07 -0.23 -0.30 -0.34 -0.37 -0.38

(0.94) (0.33) (-0.15) (-0.51) (-0.72) (-0.84) (-0.94) (-0.97)
Adj. R2 (%) 0.92 -0.15 -0.31 0.24 0.92 1.60 2.46 3.25
Cst -0.48 -0.44 -0.40 -0.34 -0.28 -0.23 -0.19 -0.16

(-0.86) (-0.66) (-0.55) (-0.47) (-0.39) (-0.32) (-0.28) (-0.25)
ER 0.03*** 0.03*** 0.02** 0.02** 0.01** 0.01** 0.00* 0.00

(2.94) (2.60) (2.42) (2.38) (2.41) (2.07) (1.67) (1.31)
Adj. R2 (%) 8.76 7.65 5.25 3.83 2.82 1.33 0.33 0.00
Cst 3.82 1.93 0.44 -0.64 -1.47 -1.98 -2.20 -2.23

(2.16) (1.00) (0.28) (-0.50) (-1.38) (-2.20) (-2.60) (-2.72)
CS -4.23** -2.29 -0.74 0.41 1.30 1.86* 2.10*** 2.16***

(-2.08) (-0.98) (-0.37) (0.25) (1.00) (1.94) (2.86) (3.51)
Adj. R2 (%) 9.76 3.42 0.11 -0.19 1.80 5.03 7.98 10.16
Cst -2.87 -3.01 -3.21 -3.28 -3.25 -3.29 -3.32 -3.32

(-3.93) (-3.34) (-3.13) (-3.05) (-3.08) (-3.29) (-3.62) (-4.06)
TS 1.38*** 1.45*** 1.56*** 1.61*** 1.62*** 1.65*** 1.68*** 1.69***

(3.38) (3.04) (3.21) (3.55) (4.04) (4.70) (5.24) (5.67)
Adj. R2 (%) 7.64 11.01 15.53 20.03 24.59 31.48 39.28 47.82

P r e di c t i on Hor i z on ( Qua r t e r s)

1 2 3 4 5 6 7 8

Cst 7.06 5.53 4.23 3.31 2.61 2.08 1.76 1.53

(5.92) (3.80) (2.82) (2.27) (1.81) (1.37) (1.08) (0.89)
IA -6.21*** -7.27*** -6.59** -6.55*** -6.26*** -5.62*** -4.86*** -3.80***

(-3.11) (-2.75) (-2.46) (-2.72) (-2.89) (-3.03) (-3.18) (-2.99)
CS -6.16*** -4.27*** -3.12** -2.19 -1.47 -1.14 -1.10 -1.22

(-5.40) (-2.98) (-2.06) (-1.50) (-1.12) (-0.97) (-1.00) (-1.15)
ER 0.03*** 0.03*** 0.02*** 0.02*** 0.02*** 0.01*** 0.01*** 0.01***

(4.62) (4.31) (3.96) (4.05) (4.47) (4.47) (4.55) (4.54)
TS 0.91*** 0.84*** 0.91*** 0.93*** 0.94*** 1.03** 1.14** 1.25**

(3.23) (2.66) (2.64) (2.70) (2.60) (2.55) (2.50) (2.53)
Adj. R2 (%) 41.31 36.95 29.95 27.47 26.12 25.77 26.99 29.38

P r e di c t i on Hor i z on ( Qua r t e r s)

1 2 3 4 5 6 7 8

Cst 1.65 -0.35 -1.80 -2.70 -3.37 -3.78 -4.04 -4.22

(0.90) (-0.21) (-1.18) (-1.68) (-2.05) (-2.35) (-2.75) (-3.33)
IA -6.21** -7.28** -6.38* -5.94** -5.31** -4.29** -3.36** -2.22**

(-2.50) (-2.23) (-1.95) (-2.07) (-2.20) (-2.21) (-2.27) (-2.02)
VIX -0.18** -0.08 -0.02 0.02 0.05 0.06 0.06 0.06

(-2.19) (-1.18) (-0.42) (0.28) (0.77) (1.00) (1.26) (1.54)
ER 0.02*** 0.02*** 0.02** 0.02** 0.02** 0.01** 0.01** 0.01*

(3.06) (3.04) (2.54) (2.35) (2.44) (2.14) (1.96) (1.92)
TS 1.39*** 1.41*** 1.51*** 1.55*** 1.55*** 1.60*** 1.63*** 1.65***

(4.04) (3.49) (3.58) (3.95) (4.51) (5.22) (5.81) (6.41)
Adj. R2 (%) 31.52 31.89 30.49 32.41 35.13 39.12 44.76 51.63

P r e di c t i on Hor i z on ( Qua r t e r s)
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multicollinearity problems that may exist among highly-correlated predictor variables (shown in Part 

2 at the bottom of each of Tables 3.5-3.8). 

3.5.4.1. Predicting Production Activity 

Results of our predictive regressions regarding production activity, including growth in industrial 

production (IP) and capacity utilization (CU), are reported in Table 3.5, Panels A and B.  

Industrial Production (IP). Panel A of Table 3.5 shows that IA has a strong and robust predictive 

power for IP. IA significantly predicts IP for all prediction horizons from one to eight quarters at the 1% 

significance level. For all horizons the coefficient of IA is consistently negative as predicted, ranging 

from -10.76 to -5.24. This corroborates the theory prediction that increased ambiguity (as revealed in 

the options market) is associated with subsequent depressed real industrial production. The significant 

negative coefficient of IA is in line with the aforementioned economic theories predicting a negative 

relationship between aggregate ambiguity and economic output. Among other standard predictor 

variables, only market excess return (ER) contains comparable information content over all horizons. 

ER is positive and significant for all 8 quarters. When investors are optimistic about future economic 

output, market expectations tend to be priced in the stock market aggressively, manifested in a solid 

positive coefficient for excess market return (ER). These results are in line with previous studies (e.g., 

Fama, 1981; Fama, 1990; Schwert, 1990) and confirm that the predictive power of ER has not 

diminished in the post-1990s era. A few other known predictor variables also exhibit some predictive 

power for IP, but this is far weaker than what IA and ER offer. TS seems to predict IP for horizons 

longer than four quarters, while CS predicts only for short horizons (from one to three quarters).  VIX, 

though providing the basis for information extraction for both IA and VRP, predicts industrial 

production up to six quarters only. VIX’s (limited) predictive ability is in line with findings by Bloom 

(2009) and Bekaert and Hoerova (2014). Despite being widely viewed as a proxy for economic 

uncertainty and sometimes for Knightian uncertainty (Drechsler, 2013; Bekaert, Hoerova and Lo 

Duca, 2013; Miao, Wei and Zhou, 2014), VRP’s predictive power for IP extends only to short (three- 

to five-quarter) horizons.  
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To further ensure that the information contained in IA is not due to an information overlap with 

other known predictor variables, we include it in multivariate regressions along with (the most 

significant of) other predictor variables. In Part 2 of Panel A in Table 3.5, we report multivariate 

regression results involving ER, CS and TS along with IA as predictors of IP. In these regressions, IA 

and ER still significantly predict IP for all horizons. According to robust t-statistics, ER is more 

significant for short horizons, yet IA contains a meaningful portion of information in predicting future 

economic output. Importantly, when VRP is included in the multivariate regressions it is rejected 

whenever IA is also included. The above implies that although VRP may contain some information on 

Knightian uncertainty as suggested by previous studies (Zhou, 2009; Drechsler, 2013; Miao, Wei and 

Zhou, 2014), this information content is not rich and incremental enough to remain significant in the 

presence of our implied ambiguity (IA) measure. This can be explained by the fact that VRP-related 

ambiguity information is mostly based on multiplier-priors arguments concerning uncertainty in the 

drift component of Eq. (3.1), while IA information relates to uncertainty in both drifts and volatilities 

(i.e., Choquet-based and rank-dependent utility arguments) specified in our ambiguity-adjusted OPM. 

Spreads CS and TS have complementary roles (as confirmed by a separate unreported bivariate 

regression) producing improved robust t-statistics.
14

 The consistently negative and significant 

coefficient of IA in these multivariate regressions confirms the predictions that increased ambiguity in 

the financial markets is associated with depressed production.  

Capacity Utilization (CU). Panel B of Table 3.5 shows that IA remains robust in predicting future CU 

for up to eight-quarter horizons. The slope of IA is again negative for all horizons confirming that 

higher ambiguity is associated with lower future capacity utilization. This corroborates the previous 

finding based on IP that ambiguity suppresses production. TS significantly predicts CU for all 

horizons up to eight quarters. Market excess return (ER) is no longer a significant predictor in the 

longer horizons. VIX, CS and DY show moderate predictive ability but are generally weaker and less 

consistent than IA, ER and TS. VIX only predicts up to three quarters, while VRP again does not 

                                                      
14 Due to high correlation between VIX and CS, only one is included; VIX becomes insignificant for most horizons as confirmed by separate 

bivariate regressions (unreported) involving both VIX and CS. 
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seem to have predictive ability for capacity utilization. EP also does not predict CU (similar to IP). 

Overall, univariate predictive regression results confirm a strong and robust predictive power of IA 

with regards to production activity growth. They provide confirmatory empirical evidence concerning 

a negative lead-lag relationship between option market ambiguity and future production activity levels. 

Part 2 of Panel B reports multivariate regression results for all significant predictors from part 1 of 

Panel B and examines the joint predictive power of VIX and IA, along with ER and TS. Based on 

robust t-statistics, the predictive power of IA holds up to eight-quarter horizons while TS improves in 

all horizons compared to the univariate regressions. ER also improves for all horizons when IA is 

included (unreported). VIX predicts only for the first quarter. Overall, IA remains significant in all 

horizons in predicting shocks in production activity measured by capacity utilization. As was the case 

with IP, IA contains a meaningful portion of information concerning future capacity utilization 

growth and remains a strong predictor in the presence of other known predictor variables.  

Given that IA is the only variable that consistently predicts both production (IP and CU) indicators 

for all horizons, we conclude that option market ambiguity outperforms other known predictor 

variables of production activity in terms of consistency and reliability. These findings confirm that 

option market investors’ subjective ambiguity preferences are a robust indicator of future production 

activity in the real economy and are in line with theoretical predictions linking increased aggregate 

uncertainty with depressed production activity. This holds even after controlling for market-induced 

risk aversion (i.e., consumption- and CAPM-based) in the regressions. 

3.5.4.2. Predicting Employment  

When greater uncertainty looms on the horizon, firms and economic agents tend to suppress their 

hiring plans waiting until they are more confident about what the future will bring (a real options 

hysteresis effect) or downscale investment due to precautionary saving motives. Recent studies 

(Bachmann, Elstner and Sims, 2012; Jurado, Ludivigson and Ng, 2013), using disagreement as proxy 

for uncertainty inferred from macroeconomic indicators, document a negative relationship between 

disagreement and labor market performance. We here examine the association between market 

ambiguity and ex post labor market activity using standard predictive regressions on unemployment  
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Table 3.6. Predicting Employment 

Table 3.6 reports the predictive regression results for employment activity. IA is the option market ambiguity. VIX is the implied volatility of the S&P 500 

index based on the CBOE volatility index. VRP is variance risk premium, obtained as the difference between implied variance and realized variance of the S&P 

500 index. DY is the dividend yield of the S&P 500 index. EP is the earnings to price ratio of the S&P 500 index. ER is the excess return of the S&P 500 index 

calculated as the logarithmic return of S&P 500 in excess of the logarithmic yield of 3M T-bill. CS is the credit spread between Moody's AAA and BAA bond 

yield indices. TS denotes the term spread between 10Y T-bond and 3M T-bill yields. The sample covers monthly observations from 1990M01 to 2014M12. 

Newey-West t-statistics with lags equal to the return horizon (in months) are reported in parentheses. *, **, and *** represent significance at 90%, 95%, and 99% 

confidence levels respectively. 

Panel A. Predictive Regressions on Unemployment Rate 

(UR) Growth 

Panel B. Predictive Regressions on Total Non-farm Payroll 

(TNP) Growth 

Part 1 – Univariate Regressions Part 1 – Univariate Regressions 

  

Part 2 – Multivariate Regressions Part 2 – Multivariate Regressions 

 

 

rate (UR) growth in Panel A and on total non-farm payroll growth (net hiring) (TNP) in Panel B of 

Table 3.6.
15

 Our empirical findings below are in line with studies suggesting a strong negative 

relationship between uncertainty and employment activity in the economy. Our innovation here is that 

we infer Knightian uncertainty and divergence in beliefs from the market and link it to real economic 

activity. 

                                                      
15 For robustness we also examine the predictive power of market ambiguity for total jobless claim growth (JC). IA robustly predicts JC for 

all horizons considered. Results are available upon request. 

1 2 3 4 5 6 7 8

Cst -3.24 -3.52 -3.58 -3.61 -3.61 -3.62 -3.40 -3.25

(-2.00) (-2.00) (-1.84) (-1.70) (-1.60) (-1.54) (-1.35) (-1.23)
IA 31.83*** 33.20*** 32.38*** 31.22*** 29.73*** 28.26*** 25.70*** 23.47***

(2.82) (2.59) (2.58) (2.69) (2.85) (3.01) (3.11) (3.14)
Adj. R2 (%) 9.09 13.31 14.30 14.69 14.69 14.49 12.93 11.59
Cst -21.63 -18.70 -15.80 -13.52 -11.17 -9.50 -8.01 -6.49

(-4.01) (-3.81) (-3.95) (-3.54) (-2.81) (-2.19) (-1.65) (-1.20)
VIX 1.14*** 0.99*** 0.84*** 0.72*** 0.59*** 0.50** 0.42** 0.34*

(3.89) (3.52) (3.55) (3.27) (2.88) (2.58) (2.20) (1.73)
Adj. R2 (%) 18.77 18.94 15.28 12.28 9.11 6.99 5.21 3.49
Cst 1.67 2.24 2.19 2.19 1.91 1.65 1.33 1.23

(0.45) (0.59) (0.58) (0.56) (0.48) (0.40) (0.32) (0.30)
VRP 0.00 -0.04 -0.04 -0.05 -0.05 -0.05 -0.04 -0.05

(-0.01) (-0.31) (-0.50) (-0.73) (-0.75) (-0.75) (-0.67) (-0.77)
Adj. R2 (%) -0.36 -0.19 -0.08 0.13 0.13 0.15 0.04 0.17
Cst -11.51 -8.61 -5.47 -2.59 0.03 2.15 3.75 5.24

(-1.73) (-1.12) (-0.65) (-0.29) (0.00) (0.23) (0.39) (0.56)
DY 6.26* 4.85 3.27 1.80 0.44 -0.68 -1.53 -2.33

(1.94) (1.32) (0.85) (0.45) (0.11) (-0.17) (-0.38) (-0.60)
Adj. R2 (%) 3.80 2.95 1.33 0.20 -0.33 -0.27 0.17 0.97
Cst 21.07 16.75 13.32 10.84 8.95 7.43 6.16 5.31

(2.82) (2.04) (1.62) (1.38) (1.21) (1.06) (0.92) (0.82)
EP -4.16*** -3.25** -2.55* -2.07 -1.71 -1.43 -1.20 -1.06

(-2.92) (-2.13) (-1.70) (-1.44) (-1.24) (-1.05) (-0.87) (-0.75)
Adj. R2 (%) 7.87 6.32 4.28 3.00 2.18 1.59 1.12 0.88
Cst 2.16 2.12 1.89 1.63 1.36 1.08 0.84 0.62

(1.10) (0.88) (0.69) (0.55) (0.44) (0.34) (0.26) (0.19)
ER -0.09** -0.09** -0.08*** -0.07*** -0.07*** -0.06*** -0.05*** -0.04***

(-2.27) (-2.50) (-2.65) (-2.76) (-2.78) (-2.87) (-2.83) (-3.05)
Adj. R2 (%) 4.68 6.97 6.49 5.86 5.18 4.30 3.26 2.70
Cst -21.70 -18.08 -14.73 -11.99 -9.61 -7.55 -5.81 -4.58

(-5.32) (-4.12) (-3.38) (-2.80) (-2.29) (-1.80) (-1.33) (-1.02)
CS 24.08*** 20.27*** 16.63*** 13.59*** 10.89*** 8.53** 6.55** 5.09

(5.53) (4.18) (3.48) (3.02) (2.72) (2.43) (1.97) (1.59)
Adj. R2 (%) 25.17 23.71 17.89 13.10 9.18 6.03 3.71 2.29
Cst 2.47 4.31 6.12 7.53 8.51 9.48 10.42 11.03

(0.88) (1.26) (1.45) (1.57) (1.64) (1.76) (1.91) (2.03)
TS -0.44 -1.45 -2.51 -3.37* -4.01** -4.65*** -5.25*** -5.67***

(-0.33) (-0.97) (-1.50) (-1.93) (-2.29) (-2.71) (-3.13) (-3.43)
Adj. R2 (%) -0.30 0.56 2.74 5.81 9.31 13.82 19.18 24.24

P r e di c t i on Hor i z on ( Qua r t e r s)

1 2 3 4 5 6 7 8

Cst 1.46 1.54 1.54 1.54 1.55 1.53 1.53 1.51

(8.94) (7.80) (6.72) (6.08) (5.66) (5.27) (4.96) (4.67)
IA -3.49*** -3.94*** -3.89*** -3.84*** -3.76*** -3.58*** -3.44*** -3.25***

(-3.17) (-2.91) (-2.71) (-2.75) (-2.85) (-2.98) (-3.16) (-3.27)
Adj. R2 (%) 12.09 16.78 17.33 17.96 18.45 17.91 17.76 16.94
Cst 3.85 3.67 3.45 3.23 2.99 2.78 2.61 2.46

(7.47) (6.49) (6.69) (6.62) (6.07) (5.32) (4.51) (3.83)
VIX -0.14*** -0.13*** -0.12*** -0.11*** -0.10*** -0.09*** -0.08*** -0.07***

(-4.96) (-4.12) (-4.02) (-3.88) (-3.60) (-3.36) (-3.06) (-2.78)
Adj. R2 (%) 32.78 31.09 27.56 23.99 20.27 17.08 14.59 12.58
Cst 0.99 0.92 0.91 0.91 0.90 0.92 0.93 0.94

(2.44) (2.12) (2.04) (1.97) (1.89) (1.90) (1.89) (1.87)
VRP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(-0.18) (0.04) (0.13) (0.22) (0.38) (0.39) (0.44) (0.47)
Adj. R2 (%) -0.26 -0.36 -0.33 -0.29 -0.17 -0.17 -0.13 -0.09
Cst 2.42 2.19 1.87 1.55 1.22 0.92 0.67 0.44

(3.64) (2.63) (2.04) (1.60) (1.21) (0.90) (0.65) (0.43)
DY -0.71** -0.60 -0.45 -0.29 -0.12 0.03 0.16 0.27

(-2.04) (-1.38) (-0.95) (-0.59) (-0.25) (0.06) (0.33) (0.59)
Adj. R2 (%) 5.55 4.13 2.27 0.79 -0.14 -0.35 0.07 1.04
Cst -1.65 -1.27 -0.95 -0.70 -0.50 -0.34 -0.18 -0.04

(-2.00) (-1.27) (-0.91) (-0.68) (-0.51) (-0.37) (-0.21) (-0.05)
EP 0.55*** 0.47** 0.40** 0.35* 0.31* 0.28* 0.25 0.22

(3.51) (2.51) (2.10) (1.91) (1.80) (1.73) (1.62) (1.51)
Adj. R2 (%) 15.52 12.16 9.37 7.57 6.33 5.47 4.61 3.85
Cst 0.88 0.87 0.88 0.90 0.92 0.94 0.96 0.97

(4.40) (3.29) (2.86) (2.66) (2.55) (2.50) (2.49) (2.49)
ER 0.01** 0.01** 0.01** 0.01*** 0.01*** 0.01*** 0.01*** 0.01***

(2.17) (2.12) (2.39) (2.63) (2.71) (2.84) (2.84) (3.01)
Adj. R2 (%) 5.39 6.61 6.85 7.08 6.66 5.92 5.03 4.67
Cst 4.34 4.03 3.72 3.42 3.13 2.88 2.69 2.50

(16.29) (10.48) (8.48) (7.14) (6.29) (5.58) (4.95) (4.36)
CS -3.52*** -3.20*** -2.87*** -2.54*** -2.23*** -1.96*** -1.74*** -1.54***

(-12.56) (-7.71) (-6.17) (-5.23) (-4.81) (-4.60) (-4.30) (-3.86)
Adj. R2 (%) 59.63 53.07 45.20 37.51 30.86 25.38 21.53 17.89
Cst 1.43 1.24 1.05 0.87 0.72 0.56 0.42 0.29

(6.14) (3.77) (2.53) (1.79) (1.30) (0.94) (0.66) (0.44)
TS -0.27** -0.16 -0.06 0.04 0.13 0.22 0.31 0.38*

(-2.01) (-0.95) (-0.29) (0.20) (0.62) (1.02) (1.40) (1.73)
Adj. R2 (%) 2.21 0.67 -0.23 -0.29 0.47 2.16 4.79 8.16

P r e di c t i on Hor i z on ( Qua r t e r s)

1 2 3 4 5 6 7 8

Cst -17.67 -13.25 -9.15 -5.81 -3.03 -0.56 1.65 3.25

(-4.89) (-3.53) (-2.21) (-1.39) (-0.72) (-0.13) (0.36) (0.70)
IA 15.67** 19.28** 20.16** 20.37** 20.17** 19.72*** 17.75*** 15.94***

(2.00) (2.14) (2.20) (2.36) (2.56) (2.77) (2.82) (2.79)
CS 22.76*** 18.76*** 15.59*** 13.03*** 10.74*** 8.87*** 7.62*** 6.73**

(6.88) (5.48) (4.42) (3.76) (3.33) (3.08) (2.74) (2.46)
ER -0.06*** -0.07*** -0.07*** -0.06*** -0.06*** -0.05*** -0.05*** -0.04***

(-2.70) (-3.92) (-3.93) (-4.18) (-4.28) (-4.59) (-4.65) (-5.19)
TS -2.54** -3.12*** -3.86*** -4.46*** -4.87*** -5.33*** -5.82*** -6.17***

(-2.43) (-2.93) (-3.16) (-3.35) (-3.50) (-3.78) (-3.95) (-4.03)
Adj. R2 (%) 31.74 36.95 35.54 35.07 35.08 36.31 37.81 40.21

P r e di c t i on Hor i z on ( Qua r t e r s)

1 2 3 4 5 6 7 8

Cst 4.26 3.94 3.63 3.32 3.05 2.81 2.63 2.45

(18.64) (12.97) (10.06) (8.34) (7.27) (6.31) (5.54) (4.82)
IA -1.38** -2.10*** -2.28*** -2.46*** -2.59*** -2.58*** -2.58*** -2.51***

(-2.35) (-2.88) (-2.77) (-2.86) (-2.97) (-3.02) (-3.18) (-3.27)
CS -3.25*** -2.81*** -2.46*** -2.10*** -1.77*** -1.51*** -1.30*** -1.11***

(-14.73) (-9.36) (-6.87) (-5.47) (-4.73) (-4.19) (-3.68) (-3.11)
ER 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01***

(3.13) (3.89) (4.21) (4.22) (4.33) (4.43) (4.32) (4.57)
Adj. R2 (%) 63.06 60.10 53.70 47.74 42.32 37.04 33.29 29.68

P r e di c t i on Hor i z on ( Qua r t e r s)
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Unemployment Rate (UR). We first examine the relationship between option market ambiguity and 

changes in unemployment rate in the economy. Predictive regression results of unemployment rate 

(UR) growth are summarized in Panel A of Table 3.6. IA predicts the unemployment growth rate 

from one- to eight-quarter horizons. The consistently positive coefficient of IA is in line with theories 

suggesting that uncertainty suppresses employment. This can be explained by either the wait-and-see 

(real option) behavior of hiring managers or the precautionary saving motive where companies save 

on costs to face uncertain periods. Market excess return (ER) and VIX are also efficient in predicting 

fluctuations in employment activities across horizons. This is in line with Bloom (2009) who uses the 

VIX to show that heightened uncertainty reduces employment and output. CS also predicts UR well 

(from one- to seven-quarter horizons). DY and EP exhibit limited, short-term predictive power (at 

one-quarter horizon and from one- to three-quarter horizons, respectively). Term spread (TS) predicts 

UR for longer horizons only (from four- to eight-quarter horizons). VRP fails to predict employment 

(UR).  

In terms of multivariate predictive regressions (involving IA, ER, CS and TS) shown in Part 2 of 

Panel A in Table 3.6, the predictive power of IA essentially remains intact across horizons.
16

 ER, CS 

and TS show improvements in significance for all horizons when IA is included. The overall findings 

from Panel A of Table 3.6 confirm that IA contains a meaningful and unique incremental set of 

information that helps explain ex post fluctuations in labor market activity as measured by growth in 

unemployment.  

Total Non-farm Payroll (TNP). We next examine net hiring, another important indicator of 

employment activity in the real economy. Our results regarding total non-farm payroll (TNP) growth 

prediction are summarized in Panel B of Table 3.6. IA again significantly and robustly predicts ex 

post TNP for horizons up to eight quarters. That is, besides predicting unemployment rate changes, IA  

  

                                                      
16 Similar to the IP multivariate regressions, due to high correlation between VIX and CS (with stronger predictive power being generally 

observed from CS), VIX is here omitted from the multivariate model. We have run separate sets of bivariate regressions involving IA and 

VIX which confirm IA predicts UR for all horizons in the presence of VIX. 
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Table 3.7. Predicting Consumption 

Table 3.7 reports the predictive regression results for consumption activity. IA is the option market ambiguity. VIX is the implied volatility of the S&P 500 

index based on the CBOE volatility index. VRP is variance risk premium, obtained as the difference between implied variance and realized variance of the S&P 

500 index. DY is the dividend yield of the S&P 500 index. EP is the earnings to price ratio of the S&P 500 index. ER is the excess return of the S&P 500 index 

calculated as the logarithmic return of S&P 500 in excess of the logarithmic yield of 3M T-bill. CS is the credit spread between Moody's AAA and BAA bond 

yield indices. TS denotes the term spread between 10Y T-bond and 3M T-bill yields. The sample covers monthly observations from 1990M01 to 2014M12. 

Newey-West t-statistics with lags equal to the return horizon (in months) are reported in parentheses. *, **, and *** represent significance at 90%, 95%, and 99% 

confidence levels respectively. 

Panel A. Predictive Regressions on Personal Consumption 

Expenditure (PCE) Growth 

Panel B. Predictive Regressions on Durable Goods (DG) 
Consumption Growth 

Part 1 – Univariate Regressions Part 1 – Univariate Regressions 

  

Part 2 – Multivariate Regressions Part 2 – Multivariate Regressions 

 

 

is a robust predictor of net hiring. The IA coefficient is consistently negative for all prediction 

horizons, confirming that ambiguity shocks are associated with a decrease in net hiring. This negative 

relationship between uncertainty and labor activity corroborates previous studies and the 

aforementioned economic theories. In terms of the other predictor variables, it seems that information 

about future overall employment is subsumed in many predictor variables, including VIX, CS and ER. 

By contrast, DY and TS perform poorly as TNP predictors. The apparent inability of DY and TS 

variables to forecast future payroll growth is in line with Chen and Zhang (2011). Compared to Chen 

1 2 3 4 5 6 7 8

Cst 5.54 5.40 5.31 5.30 5.28 5.24 5.21 5.16

(26.13) (26.22) (22.91) (20.90) (18.76) (17.02) (15.95) (14.68)
IA -4.75** -3.92** -3.47** -3.40** -3.20** -2.97** -2.79** -2.40**

(-2.50) (-2.07) (-1.98) (-2.16) (-2.18) (-2.22) (-2.33) (-2.20)
Adj. R2 (%) 9.69 10.37 10.16 11.12 11.11 10.49 10.04 8.04
Cst 7.74 6.83 6.39 6.18 5.96 5.68 5.50 5.26

(10.15) (10.98) (13.71) (12.99) (12.17) (10.58) (9.62) (8.23)
VIX -0.14*** -0.10*** -0.08** -0.07** -0.06* -0.04 -0.03 -0.02

(-3.36) (-2.66) (-2.56) (-2.19) (-1.85) (-1.40) (-1.18) (-0.79)
Adj. R2 (%) 14.10 10.55 8.19 7.01 5.45 3.35 2.22 0.89
Cst 4.56 4.50 4.52 4.53 4.51 4.50 4.49 4.49

(8.29) (9.35) (10.20) (10.22) (10.12) (10.09) (9.89) (9.84)
VRP 0.01 0.02 0.01 0.01 0.01* 0.02** 0.02** 0.02**

(0.62) (1.16) (1.43) (1.57) (1.83) (2.00) (2.17) (2.16)
Adj. R2 (%) 0.52 1.60 1.51 1.64 2.20 2.88 3.42 3.77
Cst 6.54 6.07 5.87 5.60 5.29 5.04 4.83 4.63

(8.31) (8.00) (7.10) (6.15) (5.49) (5.06) (4.76) (4.54)
DY -0.82** -0.61 -0.52 -0.39 -0.24 -0.12 -0.02 0.08

(-1.99) (-1.60) (-1.34) (-0.96) (-0.59) (-0.30) (-0.05) (0.20)
Adj. R2 (%) 3.07 2.58 2.34 1.37 0.38 -0.15 -0.36 -0.27
Cst 4.52 4.70 4.97 5.12 5.28 5.46 5.62 5.68

(4.29) (4.21) (4.17) (4.22) (4.44) (4.78) (5.18) (5.55)
EP 0.06 0.02 -0.04 -0.07 -0.11 -0.15 -0.18 -0.19

(0.32) (0.11) (-0.20) (-0.36) (-0.53) (-0.74) (-0.94) (-1.05)
Adj. R2 (%) -0.28 -0.35 -0.30 -0.09 0.28 0.96 1.79 2.35
Cst 4.71 4.72 4.72 4.72 4.73 4.74 4.75 4.75

(17.55) (15.15) (13.78) (12.91) (12.31) (11.83) (11.55) (11.33)
ER 0.02*** 0.01** 0.01** 0.01** 0.01** 0.01** 0.01** 0.01**

(2.69) (2.14) (2.18) (2.45) (2.37) (2.10) (2.25) (2.28)
Adj. R2 (%) 8.25 6.74 5.05 5.93 5.09 3.48 3.44 2.99
Cst 7.76 7.36 7.07 6.80 6.55 6.35 6.18 6.03

(11.07) (10.78) (11.60) (12.87) (14.03) (13.50) (12.50) (11.47)
CS -3.05*** -2.65*** -2.36*** -2.09*** -1.82*** -1.62*** -1.44*** -1.28***

(-3.64) (-3.18) (-3.23) (-3.44) (-3.79) (-3.84) (-3.64) (-3.38)
Adj. R2 (%) 19.14 22.76 22.62 20.04 17.16 14.88 12.69 10.94
Cst 5.25 5.06 4.87 4.72 4.57 4.45 4.35 4.28

(16.55) (14.18) (11.27) (8.85) (7.27) (6.26) (5.56) (5.13)
TS -0.23 -0.14 -0.05 0.03 0.11 0.18 0.23 0.27

(-1.36) (-0.76) (-0.25) (0.16) (0.50) (0.71) (0.85) (0.91)
Adj. R2 (%) 0.49 0.13 -0.29 -0.33 0.15 1.01 2.19 3.37

P r e di c t i on Hor i z on ( Qua r t e r s)

1 2 3 4 5 6 7 8

Cst 5.32 5.19 4.91 4.91 4.97 4.89 4.80 4.75

(6.24) (7.06) (6.08) (6.07) (5.81) (5.48) (5.13) (4.81)
IA -9.86** -8.40** -6.26* -5.85* -5.92** -5.08* -4.21* -3.67*

(-2.07) (-2.06) (-1.85) (-1.82) (-1.98) (-1.89) (-1.85) (-1.81)
Adj. R2 (%) 2.56 4.76 3.88 4.06 5.20 4.35 3.35 2.76
Cst 6.96 5.93 5.01 5.06 4.80 3.96 3.84 3.63

(3.54) (4.35) (4.00) (3.60) (3.10) (2.20) (1.91) (1.61)
VIX -0.15 -0.10 -0.05 -0.05 -0.04 0.01 0.02 0.03

(-1.52) (-1.36) (-0.84) (-0.77) (-0.56) (0.12) (0.23) (0.37)
Adj. R2 (%) 0.76 0.77 0.09 0.18 -0.04 -0.35 -0.29 -0.09
Cst 3.41 3.11 3.44 3.46 3.49 3.53 3.59 3.66

(3.42) (3.30) (3.50) (3.32) (3.18) (3.13) (3.06) (3.03)
VRP 0.02 0.04** 0.03 0.03 0.03 0.03 0.03 0.03

(0.63) (2.04) (1.29) (1.39) (1.53) (1.46) (1.50) (1.42)
Adj. R2 (%) -0.21 1.08 0.53 0.88 1.28 1.62 1.69 1.69
Cst 7.57 6.16 5.45 4.64 3.79 3.11 2.63 2.17

(2.55) (2.66) (2.22) (1.82) (1.47) (1.20) (1.02) (0.85)
DY -1.79 -1.08 -0.72 -0.30 0.13 0.48 0.72 0.96

(-1.26) (-0.95) (-0.61) (-0.26) (0.12) (0.44) (0.70) (0.99)
Adj. R2 (%) 0.73 0.59 0.27 -0.23 -0.33 0.11 0.88 2.06
Cst 5.40 5.52 5.77 5.99 6.25 6.39 6.46 6.36

(1.56) (2.26) (2.49) (2.76) (3.23) (3.65) (3.93) (4.14)
EP -0.34 -0.35 -0.39 -0.42 -0.47 -0.49 -0.49 -0.47

(-0.50) (-0.76) (-0.89) (-1.02) (-1.22) (-1.32) (-1.31) (-1.22)
Adj. R2 (%) -0.19 0.08 0.48 0.82 1.42 1.86 2.25 2.20
Cst 3.64 3.75 3.84 3.90 3.96 4.06 4.10 4.13

(4.15) (4.52) (4.31) (4.19) (4.17) (4.18) (4.16) (4.18)
ER 0.03** 0.02** 0.02** 0.02** 0.02*** 0.01* 0.01** 0.01***

(2.10) (2.24) (2.42) (2.41) (2.60) (1.93) (2.01) (2.66)
Adj. R2 (%) 1.47 2.52 2.07 2.62 2.87 0.79 0.81 1.35
Cst 7.63 7.31 7.03 6.66 6.14 5.79 5.61 5.45

(3.24) (3.79) (4.08) (4.13) (3.92) (3.58) (3.38) (3.23)
CS -3.94 -3.52 -3.18* -2.73* -2.14 -1.73 -1.51 -1.30

(-1.54) (-1.63) (-1.75) (-1.74) (-1.61) (-1.42) (-1.30) (-1.19)
Adj. R2 (%) 1.84 3.88 4.82 4.20 3.08 2.22 1.89 1.48
Cst 2.92 2.71 2.47 2.33 2.07 1.83 1.65 1.58

(2.01) (1.99) (1.53) (1.26) (1.03) (0.86) (0.74) (0.70)
TS 0.47 0.63 0.79 0.89 1.06 1.21 1.33* 1.38*

(0.80) (1.21) (1.40) (1.41) (1.54) (1.64) (1.72) (1.73)
Adj. R2 (%) -0.13 0.65 2.00 3.26 5.93 9.11 12.70 15.28

P r e di c t i on Hor i z on ( Qua r t e r s)

1 2 3 4 5 6 7 8

Cst 7.53 7.21 6.96 6.69 6.46 6.29 6.11 5.97

(14.45) (13.11) (12.86) (14.44) (15.65) (14.61) (13.36) (12.08)
IA -3.14** -2.49** -2.18* -2.30** -2.27** -2.14** -2.07** -1.76**

(-2.41) (-2.00) (-1.81) (-2.09) (-2.07) (-2.11) (-2.25) (-2.07)
CS -2.40*** -2.16*** -1.95*** -1.65*** -1.41*** -1.24*** -1.07*** -0.97***

(-4.46) (-3.45) (-3.21) (-3.34) (-3.64) (-3.40) (-2.99) (-2.65)
ER 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.00*** 0.00***

(3.49) (2.97) (3.12) (3.33) (3.19) (2.79) (3.12) (3.06)
Adj. R2 (%) 28.27 30.40 28.83 28.05 25.10 21.60 19.56 16.39

P r e di c t i on Hor i z on ( Qua r t e r s)

1 2 3 4 5 6 7 8

Cst 5.13 5.03 4.79 4.79 4.86 4.83 4.74 4.68

(5.95) (6.80) (5.90) (5.89) (5.69) (5.44) (5.09) (4.80)
IA -9.71** -8.28** -6.17* -5.76* -5.83** -5.03* -4.16* -3.62*

(-2.13) (-2.16) (-1.93) (-1.92) (-2.09) (-1.95) (-1.93) (-1.90)
ER 0.03** 0.02** 0.02*** 0.02*** 0.02*** 0.01** 0.01** 0.01***

(2.13) (2.43) (2.60) (2.75) (3.02) (2.27) (2.29) (2.87)
Adj. R2 (%) 3.96 7.16 5.85 6.56 7.93 5.07 4.09 4.03

P r e di c t i on Hor i z on ( Qua r t e r s)
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and Zhang (2011), CS in our study generally gives stronger predictive power primarily due to 

differences in sampling period and frequency (they employ quarterly data from 1952Q1 to 2009Q1). 

TNP has likely become more predictable using CS in the last two decades. As in the UR case, VRP 

fails to predict TNP.  

Although TNP seems to be predictable by five out of the eight predictor variables, the information 

contained in those variables may be overlapping. To help analyse whether IA provides a meaningful 

and unique set of information concerning the prediction of total non-farm payroll growth, Part 2 of 

Panel B presents multivariate predictive regression results among the more significant variables (IA, 

CS and ER). Out of the five variables showing predictive power for TNP in Part 1, three are more 

significant and included in Part 2.
17

 Given a stronger predictive signal offered by CS (than VIX and 

PE combined), CS is kept in the multivariate analysis. With IA, CS and ER jointly included in the 

multivariate model, IA still robustly predicts TNP with a negative coefficient for all horizons. This 

holds even after controlling for market-induced risk aversion in the regressions. Results confirm that 

IA contains a unique and meaningful portion of information that can predict future total non-farm 

payroll growth, while it complements the predictive power of CS and ER across all horizons. We next 

turn to consumption.  

3.5.4.3. Predicting Consumption Activity 

Consumer spending reflects the choice made by consumers during times of economic prosperity or 

hardship. In analysing the empirical linkage between option market ambiguity and ex post real 

consumption growth, we examine real personal consumption expenditure per capita growth (PCE) in 

Panel A, and real durable goods (DG) consumption expenditure per capita growth in Panel B of Table 

3.7. All consumption figures are adjusted for both inflation and population to obtain per capita real 

consumption growth. The per capita measure of real consumption allows examining the lead-lag 

relationship between market ambiguity and subsequent personal consumption choices.  

                                                      
17 In a separate three-variable regression (unreported) with VIX, CS and EP as the independent variables, we find the significance of VIX 

and EP to be weakened in the presence of CS. Due to high correlations between VIX and CS, separate bivariate regressions show that the 

predictive power of IA remains unchanged in the presence of either VIX or CS.  
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Personal Consumption Expenditure (PCE) Per Capita. Predictive regression results for PCE are 

summarized in Panel A of Table 3.7. Implied ambiguity (IA) robustly predicts PCE for all horizons. 

The IA coefficient is consistently negative, in line with aforementioned economic theories that predict 

higher uncertainty suppresses consumption. Investors in the options market respond early to 

anticipation of heightened uncertainty and its perceived impact on general households and their future 

consumption behavior. CS and ER also predict PCE for all horizons, whereas VIX and VRP are 

significant from one to five-quarter horizons and from six to eight-quarter horizons, respectively. DY 

performs poorly, only predicting PCE at the one-quarter horizon, while EP does not predict PCE at all. 

We do not observe any predictive ability concerning PCE from term spread (TS) as in early studies 

(Harvey, 1988; Estrella and Hardouvelis, 1991). It appears the predictive power afforded by TS may 

have diminished during the last two decades.
18

 A separate set of regressions confirms the reduced 

predictive power afforded by TS in the post-1990s era (unreported). 

In our multivariate predictive regression results summarized in Part 2 of Panel A in Table 3.7, IA, 

CS and ER reliably predict PCE jointly for all horizons, with adjusted R
2
 ranging from 16.4% to 

30.4%. Signs of slopes for all three predictor variables are consistent with our univariate results in 

Part 1, with the t-statistics improving for CS and ER in the presence of IA. The consistently negative 

coefficient of IA in predicting PCE validates various related economic theory predictions, including 

real options and precautionary saving motives that prescribe how increasing uncertainty reduces 

consumption.
19

  

Real Durable Goods (DG) Consumption Per Capita. Predictive regression results for durable 

goods (DG) consumption growth are reported in Panel B of Table 3.7. DG is generally a good proxy 

for real personal consumption of durable goods. Durable goods, by definition, provide service flows 

for more than one period. Strictly speaking, period on period growth of consumption expenditure does 

not measure the exact consumption achieved during the period. Following standard literature (Yang, 

                                                      
18 Our sample covers twenty-three years of more recent or post-1990 data, while previous studies mostly cover two decades of pre-1990 data 

(1953Q1-1987Q1 in Harvey 1988; 1955Q2-1988Q4 in Estrella and Hardouvelis 1991). 

19 Due to multicollinearity, VIX is here rejected by CS when included in the multivariate setup (verified by a separate bivariate regression, 

unreported). Despite the t-statistics of IA being slightly weaker in the multivariate regressions, we can still conclude that a very significant 

and meaningful portion of information contained in IA is not overlapped by the other two robust predictors (CS and ER).  
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2011), we assume consumption of durable goods to be proportional to net stock. Compared to PCE, 

DG is more difficult to predict. In Panel B, only IA and ER reliably predict DG for all horizons. The 

predictive power of IA is solid (with robust t-statistics varying from -1.81 to -2.07). The coefficient of 

IA is consistently negative across all horizons, in line with findings in previous subsections. VIX, 

VRP and all other known predictors do not predict DG well.  

Part 2 of Panel B in Table 3.7 summarizes our multivariate predictive regression results based on 

only the two efficient predictors (IA and ER). In this multivariate setup, IA robustly predicts DG with 

improved t-statistics, consistent sign of slopes and similar slope values compared to the univariate 

results. The significance of IA and ER improves for all horizons in the presence of each other.
20

 The 

above results suggest that IA and ER jointly capture incremental information about variations in 

future durable consumption growth while they contain distinct, complementary and non-overlapping 

information. Our overall findings confirm a clear negative relation between market ambiguity and 

subsequent consumption growth. This holds even after controlling for market-induced risk. 

3.5.4.4. Predicting Overall Economic Output 

In this section we turn our attention to the empirical linkage between market ambiguity and two 

key overall economic activity indicators, real GDP per capita growth (GDPC) in Panel A and changes 

in the Chicago Fed National Activity Index (CFNAI) in Panel B of Table 3.8. Using indicators in real 

terms (and using population growth in the case of GDPC) allows more fair examination of the relation 

between market ambiguity and ex post real economic growth.  

Real GDP Per Capita (GDPC) Growth. Panel A of Table 3.8 reports the predictive regression 

results related to real GDP per capita growth. IA robustly predicts future real GDP per capita growth 

with a consistently negative coefficient and significant robust t-statistics at 98% confidence for all 

horizons. Adjusted R
2
 ranges from 13.2% to 20.5% at an annual horizon. The predictive performance 

of IA for GDPC is strong across both short and long horizons with stable robust t-statistics. Results 

confirm theoretical predictions that Knightian uncertainty and ambiguity are associated with a decline  

                                                      
20 The joint adjusted R2 of IA and ER almost equals the sum of the individual regression adjusted R2s. For example, the 6-quarter horizon 

adjusted R2s for IA and ER are 4.4% and 0.8%, respectively, while the multivariate regression adjusted R2 is 5.1%. 



Ch 3. Option Market Ambiguity and Real Economic Activity 89 

 

Table 3.8. Predicting Overall Economic Output 

Table 3.8 reports the predictive regression results for overall economic output. IA is the option market ambiguity. VIX is the implied volatility of the S&P 500 

index based on the CBOE volatility index. VRP is variance risk premium, obtained as the difference between implied variance and realized variance of the S&P 

500 index. DY is the dividend yield of the S&P 500 index. EP is the earnings to price ratio of the S&P 500 index. ER is the excess return of the S&P 500 index 

calculated as the logarithmic return of S&P 500 in excess of the logarithmic yield of 3M T-bill. CS is the credit spread between Moody's AAA and BAA bond 

yield indices. TS denotes the term spread between 10Y T-bond and 3M T-bill yields. The GDPC sample covers quarterly observations from 1990Q1 to 2014Q4.  

The CFNAI sample covers monthly observations from 1990M01 to 2014M12. Newey-West t-statistics with lags equal to the return horizon (in months) are 

reported in parentheses. *, **, and *** represent significance at 90%, 95%, and 99% confidence levels respectively. 

Panel A. Predictive Regressions on GDP per capita (GDPC) 
growth 

Panel B. Predictive Regressions on Chicago Fed National 

Activity Index (CFNAI) 

Part 1 – Univariate Regressions Part 1 – Univariate Regressions 

  

Part 2 – Multivariate Regressions Part 2 – Multivariate Regressions 

  

in per capita real economic growth. In line with the findings by Ang, Piazzesi and Wei (2006), credit 

spread (CS) also robustly predicts GDPC for all horizons, being stronger for shorter horizons. Market 

excess return (ER), one of the best predictors for real activity so far, shows predictive power for short-

to-intermediate horizons only. Dividend yield (DY) predicts GDPC with a negative coefficient for one 

to two-quarter horizons. VIX and VRP, along with EP and TS, show no predictive power at all. 

Previous studies have documented strong predictive power of the term spread (TS) for real economic 

output proxied by real GNP growth in the pre-1990s era (Harvey, 1988; Estrella and Hardouvelis, 

1 2 3 4 5 6 7 8

Cst 2.12 2.10 2.06 2.07 1.99 1.96 1.95 1.90

(7.70) (8.08) (7.58) (7.60) (7.05) (6.61) (6.40) (5.89)
IA -5.27** -5.06*** -4.69*** -4.50*** -3.86*** -3.48*** -3.29*** -2.86***

(-2.43) (-2.71) (-2.71) (-2.98) (-2.71) (-2.70) (-2.97) (-2.66)
Adj. R2 (%) 14.12 18.47 18.77 20.51 17.43 16.00 15.98 13.19
Cst 3.00 2.81 2.49 2.26 2.05 1.89 1.72 1.63

(3.18) (3.42) (3.64) (3.68) (3.57) (3.33) (2.78) (2.35)
VIX -0.08 -0.07 -0.05 -0.04 -0.03 -0.02 -0.01 -0.01

(-1.52) (-1.49) (-1.32) (-1.12) (-0.90) (-0.73) (-0.43) (-0.24)
Adj. R2 (%) 4.90 5.43 3.36 2.01 0.76 -0.03 -0.71 -0.96
Cst 1.20 1.15 1.11 1.12 1.15 1.15 1.11 1.12

(2.43) (2.55) (2.55) (2.52) (2.55) (2.43) (2.25) (2.17)
VRP 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.02

(0.42) (0.70) (1.09) (1.23) (1.16) (1.38) (1.49) (1.50)
Adj. R2 (%) -0.81 -0.41 0.18 0.73 0.75 1.40 2.74 3.17
Cst 3.68 3.23 2.82 2.44 2.08 1.80 1.60 1.45

(4.17) (3.74) (3.14) (2.65) (2.28) (1.98) (1.79) (1.66)
DY -1.10*** -0.89** -0.68 -0.48 -0.30 -0.16 -0.06 0.02

(-2.60) (-2.09) (-1.61) (-1.18) (-0.80) (-0.46) (-0.19) (0.06)
Adj. R2 (%) 7.24 6.42 4.11 2.02 0.32 -0.64 -1.04 -1.10
Cst 1.28 1.63 1.83 1.91 1.94 1.94 1.94 1.91

(1.18) (1.48) (1.73) (1.96) (2.19) (2.39) (2.54) (2.62)
EP 0.02 -0.06 -0.09 -0.10 -0.11 -0.10 -0.10 -0.09

(0.09) (-0.27) (-0.49) (-0.60) (-0.70) (-0.71) (-0.69) (-0.62)
Adj. R2 (%) -1.10 -0.98 -0.65 -0.44 -0.27 -0.23 -0.19 -0.28
Cst 1.29 1.29 1.32 1.37 1.39 1.42 1.44 1.47

(4.80) (4.34) (4.07) (4.04) (4.04) (4.02) (4.00) (3.99)
ER 0.01** 0.01** 0.01* 0.01* 0.01* 0.01 0.01 0.00

(2.08) (2.01) (1.90) (1.65) (1.70) (1.56) (1.47) (1.24)
Adj. R2 (%) 6.56 10.30 8.99 6.37 5.72 3.86 2.65 1.12
Cst 4.17 3.66 3.33 3.00 2.75 2.52 2.42 2.39

(7.56) (6.37) (5.52) (5.24) (4.97) (4.55) (4.22) (4.07)
CS -2.89*** -2.36*** -1.99*** -1.63*** -1.35** -1.10** -0.98** -0.93**

(-4.80) (-3.60) (-2.96) (-2.65) (-2.51) (-2.34) (-2.26) (-2.27)
Adj. R2 (%) 22.75 21.03 17.61 13.70 10.69 7.70 6.78 6.80
Cst 1.34 1.24 1.19 1.14 1.08 1.00 0.92 0.86

(3.05) (2.70) (2.24) (1.94) (1.70) (1.45) (1.24) (1.11)
TS 0.02 0.07 0.11 0.15 0.19 0.24 0.30 0.33

(0.09) (0.37) (0.53) (0.73) (0.91) (1.09) (1.22) (1.30)
Adj. R2 (%) -1.11 -0.97 -0.72 -0.20 0.61 2.07 4.16 6.38

P r edic t ion Hor iz on ( Quar t e r s)

1 2 3 4 5 6 7 8

Cst 0.06 0.07 0.05 0.05 0.04 0.03 0.02 0.01

(1.11) (0.95) (0.67) (0.55) (0.45) (0.32) (0.20) (0.07)
IA -1.55*** -1.57*** -1.48** -1.40*** -1.32*** -1.21*** -1.12*** -1.00***

(-3.14) (-2.64) (-2.54) (-2.64) (-2.73) (-2.80) (-2.93) (-2.92)
Adj. R2 (%) 15.27 17.30 16.82 16.70 16.45 15.33 14.21 12.40
Cst 0.98 0.80 0.64 0.53 0.43 0.34 0.27 0.21

(4.08) (3.42) (3.54) (3.35) (2.60) (1.89) (1.31) (0.90)
VIX -0.06*** -0.05*** -0.04*** -0.03*** -0.03*** -0.02*** -0.02** -0.02**

(-4.24) (-3.50) (-3.59) (-3.56) (-3.19) (-2.91) (-2.54) (-2.09)
Adj. R2 (%) 32.13 25.12 19.21 15.63 12.23 9.53 7.51 5.85
Cst -0.21 -0.23 -0.23 -0.22 -0.22 -0.21 -0.20 -0.19

(-1.17) (-1.32) (-1.34) (-1.28) (-1.24) (-1.17) (-1.11) (-1.07)
VRP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(0.23) (0.55) (0.76) (0.84) (0.96) (0.97) (0.94) (0.94)
Adj. R2 (%) -0.15 0.35 0.44 0.42 0.57 0.52 0.46 0.51
Cst 0.49 0.33 0.18 0.05 -0.08 -0.18 -0.26 -0.32

(1.85) (1.09) (0.57) (0.15) (-0.24) (-0.55) (-0.78) (-0.99)
DY -31.57** -23.86 -16.73 -10.30 -3.93 1.42 5.27 8.55

(-2.27) (-1.54) (-1.09) (-0.68) (-0.27) (0.10) (0.38) (0.64)
Adj. R2 (%) 6.97 4.26 2.14 0.68 -0.20 -0.34 0.01 0.70
Cst -0.80 -0.63 -0.50 -0.40 -0.33 -0.28 -0.24 -0.20

(-2.30) (-1.67) (-1.34) (-1.15) (-1.07) (-1.01) (-0.91) (-0.83)
EP 0.13** 0.10 0.07 0.05 0.04 0.03 0.02 0.01

(2.04) (1.43) (1.07) (0.84) (0.70) (0.57) (0.39) (0.25)
Adj. R2 (%) 5.53 3.18 1.58 0.72 0.30 0.05 -0.16 -0.27
Cst -0.20 -0.20 -0.20 -0.19 -0.18 -0.17 -0.16 -0.16

(-2.56) (-1.94) (-1.66) (-1.50) (-1.37) (-1.26) (-1.19) (-1.14)
ER 0.00*** 0.00** 0.00** 0.00*** 0.00*** 0.00*** 0.00** 0.00***

(2.62) (2.35) (2.43) (2.63) (2.65) (2.61) (2.58) (2.65)
Adj. R2 (%) 9.67 9.05 7.57 7.21 6.33 5.00 3.90 3.41
Cst 1.06 0.86 0.70 0.56 0.44 0.35 0.29 0.24

(6.32) (4.19) (3.48) (2.90) (2.40) (1.93) (1.52) (1.22)
CS -1.27*** -1.07*** -0.90*** -0.75*** -0.62*** -0.52*** -0.45*** -0.40***

(-6.64) (-4.42) (-3.81) (-3.44) (-3.29) (-3.27) (-3.15) (-2.95)
Adj. R2 (%) 48.96 38.26 29.48 22.75 17.30 13.35 10.84 9.14
Cst -0.16 -0.22 -0.28 -0.33 -0.36 -0.41 -0.45 -0.48

(-1.66) (-1.64) (-1.71) (-1.74) (-1.73) (-1.78) (-1.85) (-1.93)
TS -0.01 0.02 0.06 0.09 0.11 0.13* 0.16** 0.18**

(-0.15) (0.37) (0.83) (1.21) (1.52) (1.82) (2.05) (2.23)
Adj. R2 (%) -0.35 -0.22 0.54 1.86 3.60 6.35 9.91 14.03

P r edic t ion Hor iz on ( Quar t e r s)

1 2 3 4 5 6 7 8

Cst 3.95 3.42 3.11 2.81 2.58 2.37 2.29 2.29

(9.35) (9.99) (8.36) (7.50) (6.58) (5.56) (4.86) (4.46)
IA -3.26* -3.58*** -3.51*** -3.66*** -3.20*** -3.00*** -2.89*** -2.42**

(-1.90) (-2.97) (-2.92) (-3.23) (-2.71) (-2.62) (-2.94) (-2.53)
CS -2.25*** -1.66*** -1.32*** -0.94** -0.75** -0.54 -0.45 -0.49

(-4.94) (-4.86) (-3.42) (-2.48) (-2.08) (-1.58) (-1.34) (-1.42)
ER 0.01** 0.01** 0.01** 0.01* 0.01* 0.01* 0.01* 0.00

(2.42) (2.45) (2.22) (1.85) (1.87) (1.73) (1.65) (1.34)
Adj. R2 (%) 32.53 37.80 34.36 30.70 25.72 21.05 19.38 15.41

P r edic t ion Hor iz on ( Quar t e r s)

1 2 3 4 5 6 7 8

Cst 1.00 0.81 0.66 0.52 0.41 0.33 0.27 0.22

(8.32) (5.44) (4.18) (3.38) (2.75) (2.12) (1.63) (1.27)
IA -0.83*** -0.99*** -1.01*** -1.03*** -1.03*** -0.98*** -0.92*** -0.82***

(-3.22) (-2.88) (-2.74) (-2.82) (-2.86) (-2.85) (-2.95) (-2.96)
CS -1.10*** -0.88*** -0.71*** -0.57*** -0.44*** -0.35*** -0.30** -0.26**

(-8.82) (-5.61) (-4.26) (-3.51) (-3.10) (-2.78) (-2.45) (-2.18)
ER 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00***

(4.15) (3.88) (3.73) (3.81) (3.90) (3.84) (3.84) (4.01)
Adj. R2 (%) 57.85 49.42 40.79 35.16 30.22 25.45 21.94 18.90

P r edic t ion Hor iz on ( Quar t e r s)
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1991). We do not observe predictive power by the term spread in our analysis. In additional analysis 

(unreported), we find the predictive ability of TS to largely disappear in the 1990s. Our results 

confirm the findings of Stock and Watson (2003) that the predictive power of TS has diminished after 

1985.  

In terms of multivariate predictive regression results, shown in Part 2 of Panel A in Table 3.8, IA 

continues to robustly predict GDPC for all horizons with a consistently negative coefficient. The 

predictive power of CS is weakened for longer horizons when IA is included, suggesting that IA 

subsumes most of the information contained in CS when predicting long-horizon real GDP per capita 

growth. In the multivariate setting, ER significantly predicts GDPC up to six quarters. Overall, for 

real GDP per capita growth prediction, IA is the best and only predictor that remains robust across all 

horizons in both univariate and multivariate regressions.
 21

  

Chicago Fed National Activity Index (CFNAI). Considering the robustness of overall economic 

output results, we examine the predictive power of IA and other predictors to ex post changes in the 

CFNAI. Predictive regression results for CFNAI are presented in Panel B of Table 3.8. Again, market 

ambiguity (IA) significantly predicts CFNAI for all horizons. The consistently negative coefficient of 

IA supports previous findings that heightened market uncertainty reduces overall economic activity. 

VIX, along with CS and ER, is a significant predictor of CFNAI across horizons, but VRP does not 

predict well. DY and EP predict only for the first quarter, while TS only for long horizons.   

The multivariate regressions in Part 2 of Panel B include all robust predictors (IA, CS and ER; 

VIX here is excluded due to its high correlation with CS). IA still consistently predicts CFNAI (with 

slope coefficients significant at 99% confidence) across all horizons. Our overall results for the 

prediction of real economic per capita growth represented by GDPC and CFNAI suggest that IA is the 

only variable which robustly predicts both indicators across all horizons in both univariate and 

multivariate regression specifications. We conclude that IA contains unique information on future 

                                                      
21 In addition to GDP per capita growth, we ran a separate test (unreported) on the predictive power of market ambiguity for productivity 

growth (as proxied by real GDP growth per capita per annual hours work). This test confirms that market ambiguity is negatively associated 

with ex post productivity growth from two to eight-quarter horizons. This is in line with literature documenting declined productivity during 

uncertain periods (Ohanian, 2001; Kobayashi, 2006).  
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aggregate economic activity. Our results hold even after controlling for market-induced risk aversion 

(i.e., consumption- and CAPM-based) in the regressions. Overall, our chapter is the first to 

comprehensively document a robust negative relation between divergence in option market ambiguity 

beliefs and real economic activity. 

3.5.4.5. Direct Comparisons with VIX, VRP, Credit Spread and Additional Robustness Results 

In this section we perform additional robustness tests, specifically examining the comparative 

predictive performance of IA directly with other established financial proxies for uncertainty, namely 

the VIX, VRP and credit spread (CS), while controlling for ER, using the same set of predictors 

across all economic sectors (indicators). As a follow on to Bloom (2009) and Bekaert and Hoerova 

(2014) who use VIX as the main proxy for economic or measurable uncertainty, we first examine 

whether the predictive power of IA is robust when VIX is jointly included. By adding VIX (which is 

more strictly a measure of risk) and IA together in the predictive regressions we are able to assess the 

relative contributions of risk and ambiguity on economic activity. Subsequently we examine the 

comparative performance of IA vis-à-vis VRP (also related to VIX), another popular proxy for 

ambiguity; and finally we consider the inclusion of CS, a known predictor from the credit market 

(also highly correlated to VIX). Since VRP is also considered as a measure of risk aversion, its 

inclusion also serves as a control for risk aversion. As market excess returns were shown to be a solid 

predictor for most economic indicators, we control for ER in all our robustness regressions. We 

specify three trivariate regression setups for each economic indicator prediction. Our first setup 

includes IA, ER, and VIX; the second setup includes IA, ER, and VRP; and the third includes IA, ER, 

and CS. (These are in Supplementary Appendix, Tables A3.1 and A3.2.)  

In all three regression setups considered, joint inclusion of VIX, VRP or CS with IA (while 

controlling for ER) does not reduce the predictive ability of IA. The results confirm the robust and 

superior predictive power of IA across the range of economic activities (spanning production, 

employment, consumption and overall output) even when VIX, VRP and CS are included in a direct 

“horse race” with IA while ER is controlled for. Results from the last trivariate specification, which 

combines information from three different markets, namely the stock market (ER), the bond or credit 
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market (CS), and the option market (IA), seem to  have the best overall predictive ability and highest 

adjusted R
2
 among all robustness setups considered. This coincides with the best combination of 

predictors from the univariate specifications that entered the multivariate regressions in previous 

subsections (e.g., in part 2 of Table 3.8 for predicting overall economic activity). This confirms and 

justifies our previous use of a different set of predictors to predict different economic indicators in 

line with related literature (see e.g., Chen, Roll and Ross, 1986; Estrella and Hardouvelis, 1991; 

Gilchrist, Yankov and Zakrajšek, 2009; Chen and Zhang, 2011). The multivariate regression results 

presented in Part 2 of Tables 3.5 – 3.8 in the previous sections likely contain the strongest set of 

predictors for each different economic activity (although differing from economic indicator to 

indicator) without suffering from multicollinearity issues. 

The direct comparisons of the predictive power of implied ambiguity (IA) with the VIX or VRP are 

particularly revealing. IA in general has a much better predictive power for long horizons (8 quarters 

or more). VIX (or VRP) is not well suited for long-term prediction of real economic activity. IA 

remains a significant predictor even when VIX (or VIX
2
) is included. For example, in predicting 

capacity utilization (CU) growth (Table 3.5 Panel B), VIX is significant in univariate regressions up 

to 3 quarters but in multivariate regressions it is significant only for 1 quarter, while IA remains 

significant up to 8 quarters (or more). VIX tends not to be as good a predictor of economic activity in 

general (e.g., it predicts well for unemployment up to a year, but not so well for consumption or GDP 

per capita growth), whereas IA predicts well across all areas of economic activity. VRP is generally 

also a poor predictor of real economy activity across the board, with or without the inclusion of IA. IA 

in general dominates VIX or VRP (and their components) in predictive ability, especially over long 

horizons. In auxiliary Tobit and OLS regressions, we use an isolated and residuals-based IA (filtering 

potential commonality effects by regressing Eq. (3.7)’s IA on VIX, VRP and other predictors) and 

find that our prediction conclusions are maintained under the isolated IA
iso

 (residuals) specification. 

IA
iso

-related results are available upon request. 

For additional robustness, we also investigated the relationship between macroeconomic 

uncertainty, proxied by the uncertainty measures of Jurado, Ludvigson and Ng (2015), with ex post 

real activity.  The signs of association between IA and economic activity are consistent with those of 
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        confirming that IA also captures information related to aggregate uncertainty in the 

economy. The advantage of our approach is that our IA measure is forward-looking and can be 

obtained in real-time from the options market for prediction purposes. For further robustness we also 

investigated the predictive power of IA when relative risk aversion (RRA) and time-varying risk 

aversion proxied by the Sharpe ratio (Merton, 1973; Anderson et al, 2009) are controlled for. The 

RRA measure is estimated with rolling 5-year data of market excess return and consumption growth 

using a standard consumption-based asset pricing approach (Campbell, 2003) with power utility. The 

Sharpe ratio is estimated with rolling 5 years data of ER and historical volatility of the market index. 

Our IA results hold when RRA and the Sharpe ratio are also controlled for in the predictive 

regressions (unreported).  

Finally, for further robustness on methodology we extract option-market implied ambiguity (IA) 

directly from traded SPX option prices with short maturities for the period January 1990-December 

2012 (instead of using VIX to infer an equivalent market price and then back out IA) using our A-

OPM of Eq. (3.2) and confirm that the predictive ability of IA globally holds. That is, whether we 

extract IA from VIX or directly from traded SPX option prices, the superiority of IA in predicting an 

extensive range of economic activity indicators, in comparison to other established predictors 

including the VIX, VRP, CS or ER, is generally maintained.
22

 All considered, our results show that IA 

is a robust and superior predictor of economic activity. Our overall findings underscore the need to 

consider the role of market-extracted ambiguity in economic policy and monitoring of real economic 

activity. 

3.6. Conclusion  

This chapter has examined linkages between option-market extracted ambiguity and macroeconomic 

real activity. We employ a market-based measure of Knightian uncertainty or ambiguity, inferred 

from financial options information, that allows us to investigate the propagation of ambiguity shocks 

                                                      
22 Despite the excellent predictive power of IA when extracted from option prices, significance according to t-stat is less strong than when 

VIX is used partly due to relatively weaker data quality compared to CBOE's proprietary data. This may be an additional reason why VIX 

might be a more reliable domain of ambiguity information extraction for long horizon windows. 
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from the financial markets to the real economy. We further study the informational efficiency of 

implied ambiguity (IA) compared to other variables commonly used in predicting ex post real 

economic activity.  

Extracted from the option markets, market ambiguity is informationally different from existing 

measures of risk and uncertainty, such as implied volatility (VIX), variance risk premium (VRP) or 

credit spread (CS). This chapter validates the relevance of option market implied ambiguity as a 

financial market-based measure of divergence in ambiguity beliefs and aggregate uncertainty in the 

economy. Using a 5-variable VAR system, market ambiguity (Granger) causes changes in economic 

sector indicators spanning production, employment, consumption and overall economic output. 

Variance decomposition analysis reveals significant portions of these indicators can be explained by 

ambiguity shocks inferred from the options market. Our analysis suggests a causal or lead-lag link 

between option market ambiguity and ex post economic activity extended over at least eight quarters. 

Since important policy decisions rely on economic predictions of real economic activity, improving 

the ability to predict economic performance is a key task for policy making and monitoring the real 

economy. Incorporating investors’ ambiguity perceptions as extracted from forward-looking option 

markets, consistent with an ambiguity-adjusted OPM, IA shows superior power in real economic 

activity predictions, outperforming the VIX, VRP, CS and other market-based predictors. Our results 

provide empirical support for the predictions of several key economic theories (including real options, 

precautionary saving, risk premium and financial frictions), which suggest that increasing uncertainty 

suppresses production, employment, consumption, and overall economic activity. The efficiency of 

option market extracted ambiguity in predicting a wide range of economic indicators might contribute 

to improved forecasts in monitoring the state of the economy and implementing robust 

macroeconomic policy decisions. Policy makers and economic forecasters can enrich and refine their 

models of economic activity prediction by incorporating market ambiguity information. 
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Appendix to Chapter 3 - Comparisons with VIX, VRP and CS 

Table A3.1. Predicting Production and Employment 

Table A3.1 reports horse race comparisons of IA with VIX, with VRP, or with CS (while controlling for ER) in predictive regressions involving industrial 

production (IP) growth, capacity utilization (CU) growth, unemployment rate (UR) growth, and total non-farm payroll (TNP) growth. IA is the option-market 

implied ambiguity. VIX is the implied volatility of the S&P 500 index based on the CBOE volatility index. VRP is variance risk premium, obtained as the 

difference between implied variance and realized variance of the S&P 500 index. ER is the excess return of the S&P 500 index calculated as the logarithmic 

return of S&P 500 in excess of the logarithmic yield of 3M T-bill. CS is the credit spread between Moody's AAA and BAA bond yield indices. The sample 

covers monthly observations from 1990M01 to 2014M12. Newey-West t-statistics with lags equal to the return horizon (in months) are reported in parentheses. 
*, **, and *** represent significance at 90%, 95%, and 99% confidence levels respectively. 

Panel A. Predicting  Industrial Production (IP) Growth  Panel B. Predicting  Capacity Utilization (CU) Growth  

  
Panel C. Predicting Unemployment Rate (UR) Growth  Panel D. Predicting Total Non-farm Payroll (TNP) Growth  

  
 

  

1 2 3 4 5 6 7 8

Cst 6.77 5.05 4.00 3.39 2.87 2.65 2.51 2.40

(4.43) (4.44) (4.91) (3.63) (2.48) (1.93) (1.58) (1.32)

IA -8.00*** -9.15*** -8.45*** -8.28*** -7.89*** -7.20*** -6.51*** -5.58***

(-3.23) (-2.83) (-2.58) (-2.78) (-2.97) (-3.08) (-3.25) (-3.21)

ER 0.03*** 0.03*** 0.02*** 0.02*** 0.02*** 0.02*** 0.01*** 0.01***

(3.52) (3.74) (3.21) (3.14) (3.33) (3.09) (2.89) (2.71)

VIX -0.18** -0.09 -0.04 -0.01 0.02 0.02 0.03 0.03

(-2.22) (-1.47) (-1.00) (-0.21) (0.33) (0.45) (0.47) (0.41)

Adj. R2(%) 28.22 27.18 21.83 20.38 19.24 16.76 14.45 11.94

Cst 3.21 2.99 2.78 2.86 2.86 2.84 2.84 2.73

(0.65) (0.45) (0.51) (0.57) (0.65) (0.73) (0.83) (0.92)

IA -10.34*** -9.96*** -8.54*** -8.05*** -7.36*** -6.60*** -5.92*** -5.00***

(-3.80) (-3.02) (-2.76) (-3.01) (-3.18) (-3.36) (-3.54) (-3.42)

ER 0.04*** 0.03*** 0.03*** 0.02*** 0.02*** 0.01*** 0.01*** 0.01***

(3.99) (4.21) (4.24) (4.41) (4.78) (4.86) (4.82) (4.67)

VRP 0.01 0.02 0.02** 0.02* 0.01 0.01 0.01 0.01

(0.37) (1.44) (2.46) (1.67) (1.31) (1.08) (0.71) (0.66)

Adj. R2(%) 24.00 26.53 22.43 20.94 19.66 16.98 14.42 11.91

Cst 8.16 6.54 5.31 4.44 3.74 3.32 3.13 3.03

(7.45) (5.08) (4.17) (3.63) (3.17) (2.76) (2.47) (2.29)

IA -7.16*** -8.15*** -7.53*** -7.52*** -7.25*** -6.70*** -6.04*** -5.10***

(-3.58) (-3.11) (-2.82) (-3.03) (-3.12) (-3.19) (-3.37) (-3.37)

ER 0.03*** 0.03*** 0.02*** 0.02*** 0.02*** 0.01*** 0.01*** 0.01***

(4.55) (4.19) (3.76) (3.81) (4.22) (4.27) (4.34) (4.36)

CS -5.37*** -3.54** -2.34 -1.38 -0.65 -0.25 -0.11 -0.13

(-4.47) (-2.47) (-1.61) (-1.02) (-0.55) (-0.23) (-0.11) (-0.14)

Adj. R2(%) 38.38 33.82 25.60 22.03 19.60 16.65 14.18 11.66

P r e di c t i on Hor i z on ( Qua r t e r s)

1 2 3 4 5 6 7 8

Cst 4.03 2.07 0.79 -0.03 -0.71 -1.04 -1.25 -1.39

(2.72) (1.75) (0.80) (-0.03) (-0.54) (-0.74) (-0.87) (-0.95)

IA -7.16*** -8.25*** -7.41** -7.00** -6.37** -5.38** -4.47** -3.34**

(-3.01) (-2.63) (-2.31) (-2.38) (-2.42) (-2.32) (-2.29) (-2.03)

ER 0.02*** 0.02*** 0.02** 0.02** 0.02** 0.01* 0.01 0.01

(2.90) (2.73) (2.21) (2.00) (1.99) (1.68) (1.40) (1.25)

VIX -0.16** -0.06 0.00 0.04 0.07 0.08 0.08 0.08

(-2.06) (-0.89) (-0.04) (0.52) (0.88) (1.01) (1.10) (1.11)

Adj. R2(%) 22.70 20.42 14.90 12.84 11.50 8.97 7.14 5.35

Cst 0.88 0.58 0.27 0.28 0.20 0.12 0.08 -0.08

(0.68) (0.47) (0.47) (0.47) (0.48) (0.51) (0.56) (0.60)

IA -9.40*** -8.73*** -6.98** -6.10** -5.06** -3.95** -3.03* -1.90

(-3.66) (-2.83) (-2.44) (-2.48) (-2.36) (-2.11) (-1.87) (-1.42)

ER 0.03*** 0.03*** 0.02*** 0.02*** 0.01*** 0.01** 0.00* 0.00

(3.41) (3.37) (3.16) (2.96) (3.00) (2.52) (1.91) (1.47)

VRP 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01

(0.17) (1.07) (1.53) (1.18) (1.14) (1.05) (0.85) (0.82)

Adj. R2(%) 19.03 20.28 15.83 13.18 10.81 7.30 4.38 2.10

Cst 3.36 1.57 0.16 -0.86 -1.64 -2.09 -2.25 -2.28

(2.39) (1.06) (0.13) (-0.88) (-2.09) (-3.02) (-3.24) (-3.20)

IA -7.79*** -8.66*** -7.87*** -7.56*** -6.99*** -6.07*** -5.12*** -3.91***

(-3.69) (-3.23) (-2.89) (-3.06) (-3.07) (-3.01) (-3.08) (-2.94)

ER 0.03*** 0.03*** 0.02*** 0.02*** 0.01*** 0.01*** 0.01** 0.01**

(3.81) (3.36) (2.92) (2.83) (2.91) (2.59) (2.31) (2.09)

CS -2.70* -0.69 0.67 1.72 2.49*** 2.87*** 2.92*** 2.78***

(-1.75) (-0.43) (0.49) (1.47) (2.71) (4.14) (5.24) (5.79)

Adj. R2(%) 22.73 20.10 15.25 15.31 17.26 18.17 18.44 17.32

P r e di c t i on Hor i z on ( Qua r t e r s)

1 2 3 4 5 6 7 8

Cst -18.86 -14.75 -11.70 -9.43 -7.07 -5.62 -4.56 -3.18

(-3.64) (-3.29) (-3.11) (-2.47) (-1.68) (-1.19) (-0.86) (-0.54)

IA 18.89** 23.61** 25.28** 25.96** 26.38*** 26.11*** 24.30*** 23.07***

(2.18) (2.32) (2.35) (2.56) (2.76) (2.91) (2.99) (3.05)

ER -0.04 -0.05** -0.05** -0.05*** -0.05*** -0.05*** -0.04*** -0.04***

(-1.43) (-2.41) (-2.57) (-2.66) (-2.75) (-2.77) (-2.62) (-2.75)

VIX 0.87*** 0.64*** 0.47** 0.34** 0.21 0.13 0.08 0.01

(3.17) (2.73) (2.54) (1.98) (1.21) (0.70) (0.41) (0.06)

Adj. R2(%) 21.38 25.46 23.68 22.01 20.16 18.59 15.82 13.80

Cst -3.87 -3.38 -3.31 -3.10 -3.17 -3.21 -3.14 -2.83

(2.56) (2.14) (2.13) (2.41) (2.63) (2.82) (3.12) (3.33)

IA 32.56*** 33.19*** 32.24*** 30.82*** 29.39*** 27.95*** 25.51*** 23.12***

(3.27) (2.95) (2.87) (2.94) (3.10) (3.25) (3.29) (3.28)

ER -0.08** -0.09*** -0.08*** -0.07*** -0.06*** -0.06*** -0.05*** -0.04***

(-2.39) (-2.94) (-3.20) (-3.49) (-3.56) (-3.82) (-3.77) (-4.33)

VRP 0.05 0.02 0.01 0.00 0.00 0.00 0.00 -0.01

(0.50) (0.29) (0.27) (-0.01) (0.00) (-0.01) (0.06) (-0.12)

Adj. R2(%) 13.53 19.74 20.21 19.96 19.29 18.23 15.67 13.81

Cst -20.72 -17.01 -13.78 -11.16 -8.89 -6.95 -5.33 -4.17

(-6.18) (-5.15) (-4.00) (-3.30) (-2.64) (-2.04) (-1.45) (-1.08)

IA 18.32** 22.54** 24.18*** 25.01*** 25.25*** 25.26*** 23.81*** 22.37***

(2.32) (2.54) (2.61) (2.77) (2.95) (3.06) (3.16) (3.23)

ER -0.06*** -0.07*** -0.07*** -0.06*** -0.06*** -0.05*** -0.05*** -0.04***

(-2.69) (-3.71) (-3.49) (-3.61) (-3.56) (-3.80) (-3.64) (-4.02)

CS 20.56*** 16.05*** 12.25*** 9.17*** 6.51** 4.25 2.57 1.38

(6.30) (4.94) (3.70) (2.88) (2.24) (1.59) (0.96) (0.51)

Adj. R2(%) 30.06 33.31 29.13 25.49 22.38 19.66 16.24 13.97

P r e di c t i on Hor i z on ( Qua r t e r s)

1 2 3 4 5 6 7 8

Cst 3.70 3.39 3.12 2.85 2.60 2.40 2.24 2.10

(6.76) (5.91) (5.84) (5.63) (4.97) (4.22) (3.58) (3.02)

IA -1.68** -2.41** -2.57** -2.74** -2.86*** -2.83*** -2.82*** -2.73***

(-2.09) (-2.41) (-2.30) (-2.43) (-2.61) (-2.75) (-2.98) (-3.11)

ER 0.00 0.00 0.00 0.00** 0.00** 0.00** 0.00** 0.00**

(0.63) (1.24) (1.60) (1.96) (2.10) (2.15) (2.12) (2.21)

VIX -0.12*** -0.10*** -0.09*** -0.07*** -0.06** -0.05* -0.04 -0.03

(-3.95) (-3.18) (-2.96) (-2.69) (-2.27) (-1.89) (-1.56) (-1.25)

Adj. R2(%) 34.78 36.32 34.12 32.17 29.93 27.19 25.15 23.22

Cst 1.61 1.62 1.59 1.58 1.55 1.55 1.53 1.51

(0.29) (0.26) (0.25) (0.28) (0.31) (0.34) (0.37) (0.40)

IA -3.64*** -4.03*** -3.96*** -3.89*** -3.78*** -3.60*** -3.46*** -3.26***

(-3.75) (-3.38) (-3.08) (-3.08) (-3.15) (-3.24) (-3.39) (-3.47)

ER 0.01** 0.01** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01***

(2.21) (2.35) (2.76) (3.15) (3.39) (3.62) (3.71) (4.05)

VRP -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00

(-0.69) (-0.59) (-0.65) (-0.61) (-0.43) (-0.42) (-0.35) (-0.28)

Adj. R2(%) 17.88 23.26 23.91 24.67 24.61 23.35 22.31 21.11

Cst 4.26 3.94 3.63 3.32 3.05 2.81 2.63 2.45

(18.64) (12.97) (10.06) (8.34) (7.27) (6.31) (5.54) (4.82)

IA -1.38** -2.10*** -2.28*** -2.46*** -2.59*** -2.58*** -2.58*** -2.51***

(-2.35) (-2.88) (-2.77) (-2.86) (-2.97) (-3.02) (-3.18) (-3.27)

ER 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01***

(3.13) (3.89) (4.21) (4.22) (4.33) (4.43) (4.32) (4.57)

CS -3.25*** -2.81*** -2.46*** -2.10*** -1.77*** -1.51*** -1.30*** -1.11***

(-14.73) (-9.36) (-6.87) (-5.47) (-4.73) (-4.19) (-3.68) (-3.11)

Adj. R2(%) 63.06 60.10 53.70 47.74 42.32 37.04 33.29 29.68

P r e di c t i on Hor i z on ( Qua r t e r s)
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Table A3.2. Predicting Consumption and Overall Output 

Table A3.2 reports comparisons of IA with VIX, with VRP, or with CS (while controlling for ER) in predictive regressions involving personal consumption 

expenditure (PCE) growth, durable goods (DG) consumption growth, real GDP per capita (GDPC) growth, and the Chicago Fed National Activity Index 

(CFNAI).  IA is the option-market implied ambiguity. VIX is the implied volatility of the S&P 500 index based on the CBOE volatility index. VRP is variance 

risk premium, obtained as the difference between implied variance and realized variance of the S&P 500 index. ER is the excess return of the S&P 500 index 

calculated as the logarithmic return of S&P 500 in excess of the logarithmic yield of 3M T-bill. CS is the credit spread between Moody's AAA and BAA bond 

yield indices. The sample covers monthly observations from 1990M01 to 2014M12. Newey-West t-statistics with lags equal to the return horizon (in months) 

are reported in parentheses. *, **, and *** represent significance at 90%, 95%, and 99% confidence levels respectively. 

Panel A. Personal Consumption Expenditure (PCE) Growth  Panel B. Predicting Durable Consumption (DG) Growth  

  
Panel C. Predicting GDP Per Capita (GDPC) Growth  Panel D. Chicago Fed National Activity Index (CFNAI)  

  
 

  

1 2 3 4 5 6 7 8

Cst 6.93 6.18 5.86 5.59 5.41 5.19 5.01 4.79

(12.34) (12.56) (13.11) (11.44) (10.18) (8.97) (8.05) (6.78)

IA -3.51** -3.19* -2.95* -3.08** -3.02** -2.94** -2.88** -2.63**

(-2.24) (-1.93) (-1.81) (-2.12) (-2.16) (-2.25) (-2.41) (-2.34)

ER 0.01*** 0.01** 0.01** 0.01** 0.01** 0.01** 0.01** 0.01**

(2.85) (2.15) (2.05) (2.46) (2.28) (2.12) (2.34) (2.29)

VIX -0.08*** -0.05* -0.03 -0.02 -0.01 0.00 0.01 0.02

(-2.71) (-1.78) (-1.27) (-0.69) (-0.34) (0.00) (0.29) (0.54)

Adj. R2(%) 20.69 18.26 15.72 16.89 15.77 13.45 13.09 11.07

Cst 5.30 5.10 5.07 5.06 5.01 4.96 4.91 4.84

(0.31) (0.23) (0.23) (0.26) (0.29) (0.32) (0.34) (0.37)

IA -4.54*** -3.64** -3.24** -3.18** -2.96** -2.70** -2.50** -2.11**

(-2.91) (-2.28) (-2.08) (-2.26) (-2.25) (-2.24) (-2.35) (-2.15)

ER 0.02*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01***

(3.29) (2.79) (2.98) (3.41) (3.37) (3.23) (3.64) (3.66)

VRP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(0.44) (1.23) (1.30) (1.16) (1.27) (1.33) (1.47) (1.46)

Adj. R2(%) 17.51 17.26 15.32 17.18 16.68 14.97 14.91 12.93

Cst 7.53 7.21 6.96 6.69 6.46 6.29 6.11 5.97

(14.45) (13.11) (12.86) (14.44) (15.65) (14.61) (13.36) (12.08)

IA -3.14** -2.49** -2.18* -2.30** -2.27** -2.14** -2.07** -1.76**

(-2.41) (-2.00) (-1.81) (-2.09) (-2.07) (-2.11) (-2.25) (-2.07)

ER 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.00*** 0.00***

(3.49) (2.97) (3.12) (3.33) (3.19) (2.79) (3.12) (3.06)

CS -2.40*** -2.16*** -1.95*** -1.65*** -1.41*** -1.24*** -1.07*** -0.97***

(-4.46) (-3.45) (-3.21) (-3.34) (-3.64) (-3.40) (-2.99) (-2.65)

Adj. R2(%) 28.27 30.40 28.83 28.05 25.10 21.60 19.56 16.39

P r e di c t i on Hor i z on ( Qua r t e r s)

1 2 3 4 5 6 7 8

Cst 4.87 4.08 3.50 3.57 3.30 2.83 2.78 2.46

(2.30) (3.02) (2.36) (2.29) (1.92) (1.43) (1.25) (1.00)

IA -9.91** -9.02** -7.17** -6.70** -7.04** -6.57** -5.67** -5.34**

(-2.03) (-2.19) (-1.98) (-2.05) (-2.27) (-2.18) (-2.15) (-2.26)

ER 0.03* 0.03** 0.02** 0.02*** 0.02*** 0.02** 0.01** 0.02***

(1.94) (2.44) (2.57) (2.73) (2.84) (2.32) (2.29) (2.76)

VIX 0.01 0.05 0.07 0.07 0.08 0.11 0.11 0.12

(0.13) (0.83) (1.03) (1.00) (1.26) (1.45) (1.29) (1.35)

Adj. R2(%) 3.61 7.04 6.10 6.86 8.88 7.16 6.41 7.51

Cst 5.01 4.38 4.40 4.33 4.38 4.32 4.22 4.17

(1.13) (0.79) (0.88) (0.90) (1.00) (1.09) (1.16) (1.27)

IA -9.59** -7.65** -5.79* -5.31* -5.37* -4.53* -3.66* -3.12

(-2.00) (-1.99) (-1.81) (-1.77) (-1.93) (-1.76) (-1.70) (-1.56)

ER 0.03** 0.02*** 0.02*** 0.02*** 0.02*** 0.01** 0.01** 0.01***

(2.15) (2.62) (2.64) (3.02) (3.20) (2.44) (2.38) (2.77)

VRP 0.01 0.03 0.02 0.02 0.02 0.02 0.02 0.02

(0.14) (1.51) (0.76) (0.92) (1.01) (1.00) (1.10) (1.02)

Adj. R2(%) 3.61 7.50 5.86 6.81 8.39 5.78 4.96 5.01

Cst 7.25 7.01 6.81 6.42 5.92 5.71 5.52 5.32

(3.29) (4.14) (4.16) (4.14) (3.98) (3.66) (3.43) (3.27)

IA -8.18* -6.85* -4.70* -4.58 -5.07* -4.39* -3.59* -3.16*

(-1.86) (-1.91) (-1.65) (-1.62) (-1.85) (-1.72) (-1.68) (-1.67)

ER 0.03* 0.02** 0.01** 0.02*** 0.02*** 0.01** 0.01** 0.01***

(1.83) (2.48) (2.48) (2.59) (3.03) (2.14) (2.23) (3.06)

CS -2.41 -2.26 -2.30 -1.86 -1.21 -1.00 -0.90 -0.72

(-1.07) (-1.22) (-1.43) (-1.31) (-1.01) (-0.84) (-0.77) (-0.67)

Adj. R2(%) 4.35 8.40 7.95 8.12 8.58 5.51 4.45 4.19

P r e di c t i on Hor i z on ( Qua r t e r s)

1 2 3 4 5 6 7 8

Cst 2.55 2.33 2.06 1.92 1.73 1.63 1.51 1.47

(3.32) (3.78) (4.28) (4.58) (4.03) (3.49) (2.70) (2.24)

IA -4.98*** -4.88*** -4.66*** -4.56*** -4.00*** -3.66*** -3.54*** -3.11***

(-2.84) (-3.54) (-3.41) (-3.53) (-3.03) (-2.90) (-3.07) (-2.72)

ER 0.01** 0.01** 0.01** 0.01** 0.01** 0.01** 0.01** 0.00*

(2.17) (2.32) (2.32) (2.06) (2.19) (2.06) (2.05) (1.76)

VIX -0.03 -0.02 0.00 0.00 0.01 0.01 0.02 0.02

(-0.70) (-0.56) (-0.15) (0.23) (0.54) (0.75) (0.91) (0.81)

Adj. R2(%) 20.66 28.69 27.36 26.47 22.84 19.71 19.08 14.76

Cst 1.89 1.79 1.71 1.72 1.66 1.61 1.55 1.52

(0.41) (0.33) (0.29) (0.29) (0.30) (0.34) (0.38) (0.43)

IA -5.20*** -4.95*** -4.54*** -4.34*** -3.72*** -3.32*** -3.10*** -2.67***

(-2.76) (-3.19) (-3.16) (-3.38) (-2.98) (-2.91) (-3.22) (-2.80)

ER 0.01** 0.01** 0.01** 0.01** 0.01** 0.01** 0.01** 0.00**

(2.30) (2.46) (2.47) (2.24) (2.38) (2.30) (2.37) (2.10)

VRP 0.01 0.01 0.01 0.01 0.01 0.01* 0.02* 0.02

(0.45) (0.92) (1.42) (1.45) (1.42) (1.66) (1.69) (1.55)

Adj. R2(%) 20.28 28.98 28.45 27.83 24.09 21.21 21.04 16.92

Cst 3.95 3.42 3.11 2.81 2.58 2.37 2.29 2.29

(9.35) (9.99) (8.36) (7.50) (6.58) (5.56) (4.86) (4.46)

IA -3.26* -3.58*** -3.51*** -3.66*** -3.20*** -3.00*** -2.89*** -2.42**

(-1.90) (-2.97) (-2.92) (-3.23) (-2.71) (-2.62) (-2.94) (-2.53)

ER 0.01** 0.01** 0.01** 0.01* 0.01* 0.01* 0.01* 0.00

(2.42) (2.45) (2.22) (1.85) (1.87) (1.73) (1.65) (1.34)

CS -2.25*** -1.66*** -1.32*** -0.94** -0.75** -0.54 -0.45 -0.49

(-4.94) (-4.86) (-3.42) (-2.48) (-2.08) (-1.58) (-1.34) (-1.42)

Adj. R2(%) 32.53 37.80 34.36 30.70 25.72 21.05 19.38 15.41

P r e di c t i on Hor i z on ( Qua r t e r s)

1 2 3 4 5 6 7 8

Cst 0.82 0.61 0.46 0.35 0.25 0.18 0.13 0.08

(3.69) (3.08) (2.88) (2.26) (1.45) (0.92) (0.57) (0.30)

IA -0.93*** -1.11** -1.13** -1.14** -1.13*** -1.07*** -1.01*** -0.92***

(-2.74) (-2.46) (-2.34) (-2.46) (-2.60) (-2.65) (-2.76) (-2.76)

ER 0.00** 0.00** 0.00** 0.00** 0.00*** 0.00** 0.00** 0.00**

(2.26) (2.49) (2.40) (2.56) (2.60) (2.44) (2.31) (2.28)

VIX -0.04*** -0.03*** -0.02*** -0.02** -0.01 -0.01 -0.01 0.00

(-3.47) (-2.90) (-2.80) (-2.36) (-1.63) (-1.14) (-0.77) (-0.48)

Adj. R2(%) 37.48 33.52 28.59 26.28 23.83 20.74 18.16 15.60

Cst 0.05 0.03 0.02 0.01 0.01 0.00 -0.01 -0.02

(0.11) (0.09) (0.09) (0.10) (0.11) (0.12) (0.13) (0.14)

IA -1.55*** -1.54*** -1.45*** -1.38*** -1.29*** -1.19*** -1.09*** -0.97***

(-3.83) (-3.08) (-2.87) (-2.94) (-3.00) (-3.05) (-3.15) (-3.10)

ER 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00***

(2.95) (2.90) (3.12) (3.47) (3.62) (3.65) (3.69) (3.92)

VRP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(-0.17) (0.11) (0.25) (0.25) (0.36) (0.32) (0.28) (0.35)

Adj. R2(%) 24.33 25.68 23.78 23.30 22.22 19.81 17.62 15.37

Cst 1.00 0.81 0.66 0.52 0.41 0.33 0.27 0.22

(8.32) (5.44) (4.18) (3.38) (2.75) (2.12) (1.63) (1.27)

IA -0.83*** -0.99*** -1.01*** -1.03*** -1.03*** -0.98*** -0.92*** -0.82***

(-3.22) (-2.88) (-2.74) (-2.82) (-2.86) (-2.85) (-2.95) (-2.96)

ER 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00***

(4.15) (3.88) (3.73) (3.81) (3.90) (3.84) (3.84) (4.01)

CS -1.10*** -0.88*** -0.71*** -0.57*** -0.44*** -0.35*** -0.30** -0.26**

(-8.82) (-5.61) (-4.26) (-3.51) (-3.10) (-2.78) (-2.45) (-2.18)

Adj. R2(%) 57.85 49.42 40.79 35.16 30.22 25.45 21.94 18.90

P r e di c t i on Hor i z on ( Qua r t e r s)
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Chapter 4.  

Accounting for Ambiguity Aversion in GARCH 

Volatility Models 

ABSTRACT 

Distinguishing between risk and uncertainty, this chapter proposes a volatility forecasting framework 

that incorporates asymmetric ambiguity shocks in the (exponential) GARCH-M conditional volatility 

process. Spanning 23 years of daily data and considering the differential role of ambiguity attitudes in 

the gain and loss domains, our models capture a rich set of information and provide more accurate 

volatility forecasts both in-sample and out-of-sample when compared to the unambiguous or risk-

based counterparts. Volatility-timing trading strategies confirm the economic significance of our 

proposed methodology and indicate that an annualized excess return of 4.09% over the benchmark 

could be earned from 1995 to 2012. 
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4.1.  Introduction 

Pioneered by Engle (1982), the autoregressive conditional heteroskedasticity (ARCH) volatility 

modeling approach has revolutionized the way we predict volatility and allowed us to understand 

time-varying volatility under different assumptions. Engle’s seminal approach in modeling 

conditional volatility has been extended to the generalized ARCH (GARCH, Bollerslev, 1986), 

exponential ARCH (E(G)ARCH, Nelson 1991), and GJR-(G)ARCH models (Glosten et al., 1993). In 

recent years, an important stream of research concerned with the notion of ambiguity, as uncertainty 

beyond probabilistic risk, has emerged to highlight the relevance and significance of model 

uncertainty in asset pricing, volatility prediction, policy evaluation, and decision making (e.g., Manski, 

2000; Cao et al., 2005; Brock et al., 2007; Agliardi and Agliardi, 2009; Easley and O’Hara, 2009; 

Kast et al., 2014). The concept of uncertainty and its distinction from risk was highlighted almost a 

century ago by Knight (1921), was further conceptualized by Keynes (1921, 1937), and corroborated 

by Ellsberg (1961) in his famous thought experiments on individual decision making under ambiguity. 

Although ambiguity has been widely recognized and theorized by researchers in the context of 

financial markets (see for e.g., Gilboa and Schmeidler, 1989; Chateauneuf et al., 1996; Cao et al., 

2005; Handel et al., 2013), empirical work linking model uncertainty to volatility modeling is still 

scarce (e.g., Buraschi and Jiltsov, 2006; Anderson et al., 2009; Fan and Mancini, 2009; Driouchi et al., 

2016). This is due to the inherent difficulties in quantifying ambiguity empirically. 

Motivated by the need to quantify ambiguity and assess the potential implications of model 

uncertainty in volatility prediction, this chapter investigates the empirical relation between ambiguity 

attitudes and risk in financial markets and highlights the value of incorporating ambiguity in GARCH 

volatility forecasts. In a recent paper, Driouchi et al. (2016) study the lead-lag relationship between 

ambiguity implied by option prices and realized volatility around the subprime crisis in a standard 

historical variance setting, and demonstrate that forward-looking ambiguity can be important in 

volatility prediction especially in uncertain times (i.e., 2006-2008). In their effort to estimate the 

impact of uncertainty on expected returns, Anderson et al. (2009) also examined the effect of 

uncertainty on conditional volatility as a robustness check. However, their study only focuses on 
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quarterly data, as limited by the availability of professional forecasters’ survey data, and does not 

provide information on how uncertainty affects conditional volatility in higher frequency settings (e.g., 

daily). Also related, Fan and Mancini (2009) show how accounting for learning and model 

misspecification in option pricing can minimize empirical pricing errors and improve volatility 

prediction. They validate their approach using option pricing data for the 2002-2004 period. No study 

has highlighted the role of ambiguity aversion, as a decision-theoretic construct, in volatility 

forecasting over an extensive time window in- and out-of-sample and using a large dataset of option 

prices in the context of GARCH volatility modeling. 

We fill this gap in research by examining the relationship between investors’ attitudes to ambiguity, 

as inferred from market traded option prices (and also the CBOE’s VIX), and conditional volatility 

over the 1990-2012 period in the context of the GARCH volatility framework. More specifically, we 

extract investors’ attitudes to ambiguity from S&P 500 index options using a modified option pricing 

formula under ambiguity and account for ambiguity innovations in our GARCH volatility forecasts. 

This approach allows us to capture and quantify the ambiguity attitudes of sophisticated options 

investors/traders on a real-time basis. Our chapter differs from that of Driouchi et al. (2016) in that we 

explicitly incorporate ambiguity innovations in the GARCH methodology, control for downside and 

upside markets (i.e., gains vs. losses), and assess economic significance and forecasting accuracy in- 

and out-of-sample over the entire 1990-2012 period.  Not concerned with the GARCH apparatus, 

Driouchi et al. (2016) are focused on the subprime crisis and the incremental information content of 

ambiguity implied from put option prices over 2006-2008 in a standard historical variance setting. By 

allowing asymmetric uncertainty shocks in the GARCH conditional volatility process for calls/puts, 

gains and losses, we show that option market ambiguity attitudes (OMAA) are quantitatively 

important in determining the subsequent level of conditional volatility. Our analysis reveals a strong 

relationship between OMAA and ex post conditional volatility over a quarter century of daily data. 

Ambiguity aversion is positively associated with ex post conditional volatility in the gain domain, 

while negatively associated with ex post conditional volatility in the loss domain. This special S-shape 

relationship has been prominent in the behavioral economics, decision theory and psychology 

literatures regarding agents’ decision making behavior. We unveil it in the context of financial 
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markets and GARCH volatility forecasting. Our results are robust to  a range of forecasting tests (e.g., 

in-sample, out-of-sample, and economic significance) and various modeling specifications. 

Back in the 1990s, many studies suggested that the relationship between an individual’s decision 

and her ambiguity attitude may not be explained by a simple linear relationship, especially when 

considering emotional sensitivities to gains and losses (Thaler et. Al, 1997; Tversky and Kahneman, 

1986; Thaler and Johnson, 1990; Low, 2004). For example, Viscusi and Chesson (1999) explained 

how an individual’s ambiguity attitude may shift from ambiguity aversion to ambiguity seeking (and 

vice versa) under the fear and hope effects. Their work underlines the differential role of ambiguity 

attitudes in the gain and loss domains. They suggest that in the gain domain, subjects are more 

ambiguity averse for high probabilities of gains but become more ambiguity seeking for low 

probabilities of gains. On the other hand in the loss domain, subjects are more ambiguity seeking for 

high probabilities of loss and more ambiguity averse for low probabilities of loss. A similar shift in 

ambiguity preference is also documented by Ho, Keller and Keltyka (2002) and Chkravarty and Roy 

(2009). Kelsey et al. (2011) also point out that under Knightian uncertainty or ambiguity investors 

react differently to past winners and losers, and explain how momentum profitability relates to such 

an asymmetry. In line with this pattern of attitudes, we posit that the different impacts of positive and 

negative returns on investors’ ambiguity and sentimental attributes might explain the difficulties 

researchers have faced in modeling the interaction between market risk and ambiguity empirically. 

This is especially important in our analysis of the relationship between volatility and ambiguity, as the 

sought-after association might change from time to time depending on the level of gain/loss on the 

investment. 

Inspired by the observed pattern of shifting ambiguity attitudes in decision making experiments, 

this chapter analyses the relationship between volatility and ambiguity by taking into account the 

gains/losses of market investors, and examines the extent to which adopting an ambiguity-based 

approach to modeling volatility can contribute to improving the accuracy and practical relevance of 

GARCH volatility forecasts. Given the behavioral observations of Viscusi and Chesson (1999) and 

that behavioral biases from ambiguity neutrality create instability, we expect ambiguity aversion 

(seeking) to contribute to upward revisions in conditional volatility in the gain (loss) domain. 
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Our proposed GARCH volatility modeling methodology incorporates the asymmetric impact of 

option market ambiguity attitudes on ex post conditional volatility and shows that ambiguity or model 

uncertainty, as proxied by OMAA, can improve the forecasting accuracy of GARCH volatility models 

using daily data that spans 23 years from 1990 to 2012. The inclusion of OMAA yields significant 

improvements in the in-sample root mean squared error (RMSE) for up to 7.8% versus the standard 

benchmark. We also assess the out-of-sample forecasting ability of our ambiguity-based volatility 

models when compared to their unambiguous and risk-based benchmark counterparts. Analyses based 

on different estimation windows, forecasting windows, sampling frequencies of intraday realized 

volatility, and four different loss functions, consistently confirm that OMAA is statistically significant 

in improving the accuracy of both in-sample and out-of-sample volatility forecasts. As a robustness 

test, we also examine the economic significance of considering OMAA in GARCH volatility 

modeling by comparing portfolio returns generated from two simple volatility timing trading 

strategies based on our out-of-sample volatility forecasts under ambiguity. For the out-of-sample 

estimation window 1995-2012, an annualized 4.09% return can be earned in excess of that generated 

by the unambiguous or risk-based forecasts. We contribute to the literature by presenting robust and 

extensive empirical evidence on the importance of miscalibration and the efficiency of option market 

information in GARCH volatility forecasting. 

4.2. Empirical Framework 

To investigate the role of ambiguity attitudes in the formation of subsequent conditional variance of 

excess returns, we employ the GARCH-in-mean model and account for ambiguity and option implied 

variance as exogenous variables in the variance equation. For robustness, we examine the same 

linkage under an exponential version of GARCH to ensure the positivity of forecasted variance. We 

expand our study out-of-sample with different estimation windows in order to verify if the 

relationship observed from the in-sample estimation is stable and consistent in out-of-sample settings, 

and whether the discovered relationship provides economic value to volatility forecasting practice. 
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4.2.1 Inferring Ambiguity Attitudes from the Option Market 

To assess the relationship between investors’ ambiguity attitudes and ex post conditional variance, 

daily estimations of ambiguity attitudes are crucial. To this aim, we employ the rank dependent utility 

framework under ambiguity proposed by Chateauneuf et al. (1996) and extended to option pricing by 

Driouchi et al. (2015). Underlying the expanded option pricing framework is a modified version of 

geometric Brownian motion that allows subjective attitudes towards Knightian uncertainty to come 

into play. Related to the uncertain expected utility of Gul and Pesendorfer (2014), this type of 

Brownian motion has been validated by Kast and Lapied (2010) and Kast et al. (2014) in a number of 

decision theoretic contributions. The ambiguity-based Brownian motion is, thus, specified as follows: 

   

 
                     ]    [       ]   ]   (4.1) 

            (4.2) 

where S is the price of the underlying asset, m and s are the mean and standard deviation of a general 

Wiener process W, z is a standard Wiener process. Agent’s model misspecification under ambiguity is 

summarized by a capacity variable c which determines m and s, where 0 < c < 1 (Kast et al., 2014). 

Driouchi et al. (2015) employ this set of Brownian motions to derive an ambiguity-adjusted model for 

European exchange option pricing under Knightian uncertainty. As a special case of that model, the 

price of a European call
1
 option with fixed strike K under ambiguity takes the following modified 

Black-Scholes form:
2
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where: 

                                                      
1 As robustness, we also obtained OMAA using VIX-implied model prices with comparable results. The alternative procedure consists of 1) 

taking VIX as the implied volatility of at-the-money options, 2) converting implied volatility into option prices using the standard Black-

Scholes model, and 3) extracting OMAA from the VIX-implied option prices using Eq. (4.3). Results are in line with the OMAA from 

traded option prices presented herein. The additional VIX-based OMAA results are available from the authors. 

2 Technical details of the model are included in the supplementary appendix.  
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where   
  is the rank dependent utility or ambiguity-adjusted option price for 0 < c < 1, K is the strike 

price of the option, r is the risk-free rate, T is the time to maturity in years,   is the subjective 

expected return, σ is the volatility measure, c is the capacity variable proxying for miscalibration,    is 

the subjective discount rate and    is the subjective dividend yield. 

To obtain an estimate of investors’ ambiguity attitudes, we invert Eq. (4.3) numerically by 

minimizing the absolute deviations between the model price and market price: 

         
           

       
[|  

                          
   |] (4.6) 

where   
    is the market traded SPX option price, St is the closing level of S&P 500 index on day t, 

   is the index volatility,    is the time-varying ambiguity measure,    is the rate of return on the 

index, and    is the dividend yield of S&P 500 portfolio. Investors’ ambiguity attitudes are 

summarized by the capacity variable    through the minimization of the absolute error function in 

(4.6). The resulting capacity variable    from (4.6) is, therefore, our proxy for option market 

ambiguity attitudes (OMAA). In the extraction process, we take the 1-month LIBOR rate as the risk-

free rate, the trailing twelve months dividend yield of the S&P 500 index as dividend yield, 

RiskMetrics EWMA volatility
3
 (JP Morgan 1996) as the volatility input (  ), and 12-month historical 

returns as a proxy for the subjective rate of return
4
 (  ). The choice of inputs in the extraction process 

                                                      
3 We have also used out-of-sample GARCH(1,1) with a three-year rolling estimation window and a simple 22-day standard deviation of 

returns as alternative measures of expected volatility. The use of alternative volatility measures does not change our overall conclusions. Our 

results are not crucially affected by the choice of volatility measure. 

4 The choice of proxy for the subjective rate of return relates to investors’ memory about past returns. Barberis, Huang and Santos (2001) 

emphasize the importance of investors’ memory in determining their required returns. They show that investors tend have a short memory 

when recalling past gains and losses. We employ the 12-month past returns as our proxy for the subjective rate of return as this time frame 

fits well with the short memory assumption plus it gives us a reliable sample size of 252 trading days. As a robustness check, we also 

extracted OMAA using shorter (6 months) and longer (up to 3 years) periods of returns as proxies for    and found the conclusions still hold.  
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is in line with the relevant literature (Barberis, Huang and Santos, 2001; Gonzalez-Riveria, Lee and 

Mishra, 2004; Harris and Nguyen, 2013). 

4.2.2 GARCH-in-mean Estimations 

To begin with our specifications of econometric model, we assume the following mean equation for 

all the ARCH class models used in this chapter: 

               (4.7) 

where    is the daily logarithmic return of the S&P 500 index in excess of the logarithmic yield of 3-

month treasury bill,    is the conditional variance at time t, which is estimated dynamically in the 

variance equation, and    represents the unexpected excess return at time t. Rearranging terms, we get: 

                 (4.8) 

In order to compare and assess the information content of ambiguity attitudes in determining ex 

post conditional variance, we first estimate a benchmark vanilla GARCH model without the 

innovation from investors’ ambiguity attitudes. We define the variance equation of the benchmark 

Model 1.1 as: 

Model 1.1:   

             
         (4.9) 

To assess the information content of the variance model with ambiguity attitudes under different 

gains and losses, we specify two variance Models 1.2 and 1.3 as follows: 

Model 1.2:   

             
                              (4.10) 

Model 1.3:   

             
           (             )        (4.11) 

where             is a dummy variable that takes a value of 1 when the excess return is positive and 0 

otherwise, and         is the ambiguity attitude measure. The dummy variables in Models 1.2 and 

1.3 aim to capture the asymmetric effects of ambiguity attitude and ex post conditional variance in the 

gain (Model 1.2) and loss (Model 1.3) domains in with ambiguity theory predictions. Since the 

inferred ambiguity attitude is based on option market information and to ensure the additional 
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information content provided by ambiguity innovation is not due to informational overlaps with 

implied variance (despite the low correlation between OMAA and IV), we specify three additional 

models with option implied variance
5
 as one of the exogenous variables: 

Model 1.4:   

             
                 (4.12) 

where       is the daily implied variance of the S&P 500 index. Model 1.4 represents the vanilla 

GARCH specification with implied variance and without the innovation from ambiguity attitudes. To 

differentiate between gains and losses, we again consider the following two models with ambiguity: 

Model 1.5:   

             
                                      (4.13) 

Model 1.6:   

             
                   (             )        (4.14) 

4.2.3 EGARCH-in-mean Estimations 

The introduction of exogenous variables in ARCH class models may sometimes suffer from yielding 

negative conditional variances. As a robustness test and to ensure positivity in our out-of-sample 

volatility forecasts, we follow Engle (1982) and Nelson (1991), and consider equivalents of Models 

1.1 to 1.6 in exponential form: 

Model 2.1:   

              |    √    ⁄ |              (4.15) 

Model 2.2:   

              |    √    ⁄ |                                   (4.16) 

  

                                                      
5 We have also investigated the role of volatility of volatility (as measured by CBOE VVIX index) in volatility modeling with a reduced 

sample period from 2007 to 2012 (since VVIX data is only available from 2007). In general VVIX is not significant under both GARCH-M 

and EGARCH-M estimations, while OMAA remains significant in the presence of VVIX. 
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Model 2.3:   

 

             |    √    ⁄ |             

   (             )        

(4.17) 

Model 2.4:   

              |    √    ⁄ |                           (4.18) 

Model 2.5:   

 

             |    √    ⁄ |                          

                      

(4.19) 

Model 2.6:   

 

             |    √    ⁄ |                          

   (             )        

(4.20) 

Models 2.1 to 2.6 are the exponential versions of Models 1.1 to 1.6. Model 2.1 is the vanilla 

EGARCH without ambiguity attitudes, and acts as a benchmark for Models 2.2 and 2.3 which 

consider OMAA under gains and losses respectively. In Models 2.4 to 2.6, we also take into account 

the impact of implied variance on subsequent conditional variance and investigate if the information 

from OMAA innovations is still significant (Models 2.5 and 2.6). 

4.2.4 Estimation, Inference and Diagnostic Analysis 

We estimate the models described in the previous section by maximizing their log-likelihood 

functions. Inference of variables is based on robust t-statistics as described in Bollerslev and 

Woodridge (1992).  In addition to the estimated coefficients and robust t-statistics, the likelihood ratio 

and its chi-squared test statistics are also reported to judge the significance of the added OMAA 

parameter. In-sample error statistics based on four loss functions (described in the next section) are 

also reported to evaluate the in-sample forecasting performance of each model. For diagnostic 

analysis, we examine whether the inclusion of option market ambiguity attitudes reduces the 

skewness and excess kurtosis of standardized residuals from the mean equations. Jarque-Bera test 

statistics are also reported to compare the normality of standardized residuals from each model. 



Ch4. Accounting for Ambiguity Aversion in GARCH Volatility Models 113 

 

4.2.5 Out-of-sample Forecasting 

We further test the consistency of the relationship between option market ambiguity attitude and 

conditional variance, and the ability of improving variance forecasts by assessing the out-of-sample 

forecasting accuracy of the models. To ensure the positivity of conditional variance forecasts out-of-

sample, we carry out out-of-sample forecasting based on Models 2.1 to 2.6.  To compare the variance 

forecasts across models, an estimated variance benchmark is needed. This benchmark relates to a one-

step ahead realized volatility computed using intra-day returns. Due to the high degree of noise in 

using daily squared returns as the variance benchmark (Anderson et al. 2001; Anderson et al. 2003), 

we employ model-free realized variance computed from intraday 1-minute return data. As evidence 

suggests that the realized variance computed from 1-minute return data can be noisy due to intraday 

market microstructure issues, we also compute realized variance with rolling 5-minute and 10-minute 

squared return on 1-minute grid (e.g., Stroud and Johannes, 2014). This approach follows 

Christoffersen et al. (2014) by minimizing the noise while preserving all the information subsumed in 

1-minute returns. 

Following Chou (2005), Wei et al. (2010), and Hou and Suardi (2011), we consider the following 

four loss functions (LF) to evaluate the performance of each of the variance models (2.1 to 2.6). 

LF 1: Root mean squared error (RMSE)  
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LF 2: Mean absolute error (MAE)  
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LF 3: Logarithmic loss function (LL)  
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LF 4: Loss implied by Gaussian likelihood (QLIKE)  
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 (4.24) 

where       represents the estimated variance benchmark as measured by our intraday variance 

proxies at time t+1,         represents the forecasted variance from model M in which M represents 

each of the Models 2.1 to 2.6. While RMSE is the most commonly used loss function in variance 

forecasting, MAE and QLIKE have been shown to be more robust (Fan et al., 2008; Wei et al., 2010; 

Hou and Suardi, 2011). More importantly, QLIKE measures relative forecasting error and is known to 

penalize more heavily forecasts that underestimate the benchmark estimated variance. In this chapter, 

we mainly rely on QLIKE in drawing our conclusions regarding the accuracy of our ambiguity-based 

GARCH volatility forecasts. QLIKE is indeed more preferable for risk management and investment 

purposes. From a risk management standpoint, underestimating volatility may cost more than 

overestimating it by the same amount. From an investment point of view, relative forecasting errors 

are more relevant than absolute forecasting errors as returns are computed relative to an investment 

cost. We also implement the test for superior predictive ability (SPA)
6
 using the bootstrapping method 

proposed by Hansen (2005) as a reality check for data snooping issues.  

4.3.  Data and Variables 

4.3.1 Option Data 

We employ a dataset of European S&P 500 index options for the period of 2 Jan 1990 to 31 Dec 2012. 

To ensure the liquidity of option contracts included, we follow the option contract selection method of 

the Chicago Board Options Exchange (CBOE) in computing the VIX (Chicago Board Options 

Exchange, 2014). To confirm that the information extracted from traded option prices is not biased 

                                                      
6 A similar diagnostic technique is the reality check (RC) for data snooping of White (2000). Hansen and Lunde (2005) compared 330 

GARCH-based models and found RC to be less powerful and fails to detect inferior models. Herein, we rely on the SPA test for out-sample 

model evaluation. 
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towards certain option specification, we include both call and put options
7
 with different moneyness 

including out-of-the-money (OTM), at-the-money (ATM), and in-the-money (ITM). Similar to the 

CBOE, we include both near-term options and next-term options in our sample. The average day-to-

maturity (DTM) of our near-term and next-term option samples are 19.04 days and 46.59 days 

respectively. Our sample contains 947,314 contract-days with an average moneyness (S/K) of 1.06, 

and an average DTM of 31.92 days. Given the large scale of the dataset, we report basic summary 

statistics with option data sorted by DTM, VIX level, and the degree of OMAA. This helps us  

Table 4.1. Summary Statistics for Option Data:  

Panels A, B, and C report the basic descriptive statistics sorted by day-to-maturity (DTM), level of VIX, and level of OMAA respectively.  The data period 

covers 2 Jan 1990 to 31 Dec 2012. 

Panel A. By Day-to-maturity (DTM) 

 

Panel B. By level of VIX 

 

Panel C. By level of OMAA 

 

understand relationships among implied volatility, ambiguity attitudes, and option contract 

specification. Table 4.1 summarizes the key characteristics of the option data we use including the 

number of option prices / contract-days, average price, average Black Scholes implied volatility, 

average bid-ask spread, and average bid-ask spread to average price ratio. From Panel C of Table 4.1, 

                                                      
7 According to the CBOE selection methodology, call and put options have matched strikes meaning there are equal number of call and put 

option contracts selected at any given moment. As a robustness check, we also extracted OMAA from only calls and then only puts. Our 

results are robust regardless of using OMAA from call options, put options prices or an average of both. 

DTM < 14 14 ≤ DTM < 30 30 ≤ DTM < 45 45 ≤ DTM < 60 60 ≤ DTM All

Number of Contract-days 159,278 292,004 248,574 180,336 67,122 947,314

Average Price 42.520 58.191 67.021 68.536 68.286 60.558

Average Implied Volatility 0.316 0.279 0.260 0.237 0.228 0.269

Average Bid-ask Spread 1.758 1.792 1.889 1.813 1.805 1.817

Average Bid-ask Spread / Price 4.14% 3.08% 2.82% 2.64% 2.64% 3.00%

VIX < 15 15 ≤ VIX < 20 20 ≤ VIX < 25 25 ≤ VIX < 30 30 ≤ VIX All

Number of Contract-days 194,076 271,666 232,506 113,472 135,594 947,314

Average Price 37.288 54.706 67.175 73.103 83.740 60.558

Average Implied Volatility 0.153 0.221 0.274 0.323 0.475 0.269

Average Bid-ask Spread 1.232 1.728 1.883 1.976 2.583 1.817

Average Bid-ask Spread / Price 3.30% 3.16% 2.80% 2.70% 3.08% 3.00%

OMAA < 0.25 0.25 ≤ OMAA < 0.5 0.5 ≤ OMAA < 0.75 0.75 ≤ OMAA All

Number of Contract-days 194 259,936 680,484 6,700 947,314

Average Price 59.275 60.905 60.012 102.545 60.558

Average Implied Volatility 0.309 0.280 0.262 0.551 0.269

Average Bid-ask Spread 2.988 1.815 1.798 3.793 1.817

Average Bid-ask Spread / Price 5.04% 2.98% 3.00% 3.70% 3.00%
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we can observe that when investors are extremely ambiguity seeking (0.75 ≤ OMAA) or very 

ambiguity averse (OMAA < 0.25), the average bid-ask spread to price ratio tends to be higher. Taking 

the percentage bid-ask spread as a proxy for illiquidity, our data confirms a positive association 

between market illiquidity and ambiguity in line with extant research on market microstructure 

(Routledge and Zin, 2009). 

Figure 4.1. S&P 500 Daily Returns, Realized Volatility, VIX, and OMAA.  

Graph A plots the daily S&P 500 returns. Graph B plots the daily realized volatility from an average RV estimator with rolling 5-minute squared return on 1-

minute grid. Realized volatility in Graph B is shown in annualized standard deviation terms. Graph C plots the daily VIX index. Graph D plots the daily 

ambiguity attitudes from S&P 500 options. All plots span 2 Jan 1990 to 31 Dec 2012. 

Graph A. Daily S&P 500 Returns 

 

Graph B. Daily Realized Volatility from Average RV Estimator (5-min) 

 

Graph C. Daily Level of VIX 

 

Graph D. Daily Ambiguity Attitudes from S&P 500 Options (OMAA) 
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4.3.2 Stock Market Data 

Daily closing levels of the S&P 500 index, daily 1-month USD LIBOR, and the daily trailing twelve 

month dividend yield of the S&P 500 index were obtained from Thomson Datastream. Data of U.S. 3-

month Treasury bill rate was obtained from the Federal Reserve Bank of St. Louis. 

To assess the out-of-sample forecasting performance of our models, intraday high frequency return 

data was used to compute the realized variance based on different sampling grids. This intraday 

dataset consists of 2.2 million data points from 2 January 1990 to 31 Dec 2012. We construct three 

realized variance measures as the estimated variance used in our out-of-sample forecasting 

performance evaluations. Realized variance based on 1-minute returns is simply the sum of squared 1-

minute returns during the day. As noted in the literature (Marterns and van Dijk, 2007; Bandi et al., 

2008;  Christoffersen et al., 2014), the 1-minute realized variance can be noisy due to market 

microstructure effects, we also compute 5-minute and 10-minute realized variance with rolling grids 

as a result. For realized variance based on 5-minute returns, we start computing realized variance as 

the sum of squared 5-minute returns from the first price on 1-minute grid. Once finished with the 

rolling approach from the first minute of the day, we compute the realized variance starting from the 

second minute price of the day. We repeat these steps until we have 5 realized variance estimates in a 

day and take the sample average to obtain the 5-minute realized variance. 

The daily returns on the S&P 500 index, realized variance (measured as squared realized volatility) 

from the average RV estimator based on 5-minute intraday returns, daily level of VIX, and option 

market ambiguity attitudes are plotted in Figure 1. The Great Financial Crisis of 2007-2008 dominates 

the picture in Graph A. The realized variance plot in Graph B is characterized by two episodes of high 

volatility: a mini-crash
8
 in Oct 1997 and the crisis of 2007-2008. A prolonged low volatility era from 

2003 to 2006 is also evident in Graph B. From Graph D, we can see that 2007-2008 is dominated by 

ambiguity seeking behavior (where OMAA>0.5). OMAA recorded its maximum value of 0.8191 on 

21 Oct 2008 and minimum value of 0.2196 on 28 Oct 1997, the day right after the mini-crash. While 

OMAA has a daily average of 0.5312 over the entire 23-year sample period, ambiguity seeking  

                                                      
8 The Mini-crash refers to the stock market crash of October 27, 1997 that is believed to have been caused by the economic crisis in Asia.  
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Table 4.2. Descriptive Statistics and Correlation Matrix 

Panel A reports the basic descriptive statistics for excess returns (ER), implied variance (IV), options market ambiguity attitudes (OMAA), and realized 

variances (RV) using different estimation grids. Panel B reports the correlation matrix. The data period covers 2 Jan 1990 to 31 Dec 2012. 

Panel A. Descriptive Statistics 

 

Panel B. Correlation Matrix 

 

behavior is most prominent in the crisis year of 2008. Daily average OMAA in 2008 is 0.5870, the 

highest level in the 23 years covered. 

Table 4.2 reports the descriptive statistics and correlation matrix for excess returns, implied 

variance, option market ambiguity attitudes, and the three realized variances specified above. In Panel 

A of Table 4.2, we observe that the long-run mean excess return of the market is close to zero. Excess 

returns are negatively skewed and have excess kurtosis. On the other hand, average OMAA is at 

0.5312, just above the ambiguity neutral threshold (0.5). This implies investors in the S&P 500 index 

option market are on average moderately ambiguity seeking
9
. 

4.4. GARCH Volatility Forecasting and the Role of Ambiguity Attitudes 

This section presents our empirical results examining the relationship between ambiguity attitudes and 

ex post conditional variance in the gain/loss domains. As noted, we assess the informational 

efficiency of OMAA by comparing our models with ambiguity to benchmark models (without 

ambiguity) under GARCH-in-mean and also via the exponential GARCH-in-mean to ensure positivity 

of the conditional variance. 

                                                      
9 OMAA is moderately correlated (correlation = 0.26) to the United States Valuation Index developed by the Yale School of Management, 

indicating investors’ ambiguity seeking is positively related to their confidence / aggressiveness in valuing stocks. 

ER IV OMAA RV 1min RV 5min RV 10min

Mean 0.0249 0.0484 0.5312 0.0165 0.0158 0.0153

Median 0.0970 0.0356 0.5394 0.0069 0.0066 0.0064

SD 2.9549 0.0002 0.0644 0.0003 0.0002 0.0002

Skewness -0.2193 4.7023 -0.1036 35.3165 36.4704 34.6836

Kurtosis 11.4454 37.5037 4.0978 1760.7280 1858.6330 1709.8930

AR(1) -0.0572 0.9705 0.8253 0.3165 0.3025 0.3214

ER IV OMAA RV 1min RV 5min RV 10min

ER 1.0000

IV -0.1331 1.0000

OMAA 0.1041 0.1536 1.0000

RV 1min -0.0184 0.5114 0.1315 1.0000

RV 5min -0.0156 0.5017 0.1289 0.9995 1.0000

RV 10min -0.0187 0.5163 0.1320 0.9994 0.9996 1.0000
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4.4.1 GARCH-in-mean Estimation and In-sample Forecasting 

Table 4.3 presents our estimates for Models 1.1 to 1.6. Model 1.1 is the vanilla GARCH model 

(without ambiguity) used as benchmark for comparison with Models 1.2 and 1.3 (with ambiguity), 

while Model 1.4 serves as the benchmark model involving IV as an exogenous variable for 

comparison with Models 1.5 and 1.6 containing OMAA innovations. From Models 1.1 to 1.3, it is 

clear that ambiguity innovations provide additional prediction information and have different effects 

on conditional variance for gains and losses. From Model 1.2, innovations from ambiguity in the gain 

domain result in downward revisions of the conditional variance. Turning to the loss specification 

(Model 1.3), innovations from ambiguity generate positive revisions of the conditional variance. In 

both cases, judging by the reported likelihood ratios, ambiguity attitude information is significant in 

explaining ex post variations in conditional variance. Without controlling for the effect of implied 

variance in the model, ambiguity attitudes matter more to the revisions of conditional variance in the 

domain of losses. In general, from Models 1.2 and 1.3, we learn that increased ambiguity seeking is 

associated with upward revisions in the conditional variance in the loss domain while increased 

ambiguity aversion is associated with upward revisions of the conditional variance in the gain domain. 

This is directly in line with the qualitative prescriptions of the hope and fear effects. 

In Models 1.4 to 1.6, we consider implied variance as one of the explanatory variables in the 

variance equations. When compared to Models 1.1-1.3, Models 1.4 to 1.6 show improved fit, as 

measured by the log likelihood, when implied variance is included in the variance process. In Model 

1.5, OMAA is significant and once again negatively related to conditional variance in the gain domain. 

The LR statistic confirms that the inclusion of OMAA is meaningful and significant. The negative 

relationship between OMAA and conditional variance in the gain domain is improved by the 

inclusion of implied variance. This confirms the result obtained in Model 1.2. Option market 

ambiguity attitudes are robustly correlated with ex post conditional variance in the gain domain. 

Turning to Model 1.6, the OMAA coefficient in the loss domain is positive and significant with an  
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Table 4.3. GARCH-In-Mean Estimates of the Daily Ambiguity-Volatility Relation 

Panel A reports the estimated parameters of Models 1.1 to 1.6 based on maximum likelihood estimation. Robust t-statistics reported in parentheses are 

computed based on Bollerslev and Wooldridge (1992). Panel B reports the in-sample error statistics. Model 1.1 is the benchmark model for Models 1.2 and 

1.3. Model 1.4 is the benchmark model for Models 1.5 and 1.6. We estimate the models using daily close-to-close returns of S&P 500 index, implied variance 

and option market ambiguity attitudes for the period 2 Jan 1990 to 31 Dec 2012. ***,**, and * indicate 99%, 95%, and 90% confidence levels respectively. 

Panel A. Estimation Results 

 

Panel B. In-sample Error Statistics 

 

improved robust t-statistic of 3.191. The log-likelihood of Model 1.6 reveals a better explanatory 

power for OMAA in the loss domain (than under gains) when implied variance is controlled for. 

Considering all models in Table 4.3 collectively, our study unveils the important role of ambiguity 

attitudes in the conditional variance process. Judging by the log likelihood output, Model 1.6 is the 

most successful in terms of in-sample forecasting accuracy and efficiency
10

. Our results overall 

suggest that option market ambiguity attitudes capture important information regarding future 

                                                      
10 For robustness, we also included a GJR term for asymmetric shocks and found OMAA remains significant in the variance equations. With 

the inclusion of asymmetric shocks in Models 1.5(1.6), OMAA remains significant and negatively (positively) associated with ex post 

variance. The coefficients of OMAA are generally more significant than those of GJR. The GJR term is insignificant under EGARCH, and 

thus not suitable for out-of-sample comparison. 

α0 1.68E-04  5.72E-05  2.19E-05  4.62E-06  -1.84E-05  -1.39E-05  

(1.073) (0.358) (0.136) (0.028) (-0.112) (-0.085)

α1 2.746 * 3.231 ** 3.304 ** 0.668  0.981  0.937  

(1.712) (1.967) (2.009) (0.339) (0.498) (0.478)

β0 1.04E-06 *** 3.05E-06 *** -1.29E-06 ** -1.16E-05 *** -4.03E-07  -1.20E-05 ***

(3.927) (3.056) (-1.981) (-3.331) (-0.093) (-4.991)

β1 0.076 *** 0.075 *** 0.071 *** -0.017  0.001  0.000  

(8.345) (8.273) (8.274) (-0.682) (0.052) (0.019)

β2 0.917 *** 0.914 *** 0.919 *** -0.014  0.314 ** 0.310 **

(109.713) (104.733) (111.268) (-0.072) (2.355) (2.280)

βOMAA,Gain - -6.22E-06 ** - - -2.11E-05 *** -

- (-2.152) - - (-3.280) -

βOMAA,Loss - - 9.86E-06 *** - - 2.14E-05 ***

- - (3.503) - - (3.191)

βIV - - - 0.717 *** 0.466 *** 0.471 ***

- - - (5.537) (4.706) (4.657)

Log Likel ihood 18,752.46 18,760.97 18,774.31 18,855.27 18,868.95 18,869.76

LR - 17.02 43.7 - 27.36 28.98

P(LR) > χ 2 - 3.70E-05 3.83E-11 - 1.69E-07 7.31E-08

Model 1.1 Model 1.2 Model 1.3 Model 1.4 Model 1.5 Model 1.6

(x1000)

RMSE 0.1734 0.1684 0.1687 0.1411 0.1398 0.1399

MAE 0.0859 0.0843 0.0839 0.0751 0.0743 0.0744

LL 1.7821 1.7866 1.7763 1.7741 1.7664 1.7665

QLIKE 0.5542 0.5543 0.5523 0.5470 0.5448 0.5447

Model 1.1 Model 1.2 Model 1.3 Model 1.4 Model 1.5 Model 1.6
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evolutions of conditional volatility and are efficient in improving the accuracy of GARCH volatility 

forecasts in practice. 

Turning to the in-sample error statistics in Panel B of Table 4.3, for models without implied 

variance as an exogenous variable (Models 1.1 to 1.3), the RMSE indicates that the model based on 

gains (Model 1.2) generates the best volatility forecasts, while MAE, LL and QLIKE point to Model 

1.3 as the best model overall. As LL and QLIKE penalize underestimated volatility forecasts, this 

implies that considering OMAA in the loss domain minimizes the underestimation of forecasted 

volatility. Considering all error statistics at the same time suggests that accounting for OMAA 

improves the accuracy of the in-sample volatility forecasts. For Models 1.4 to 1.6, with implied 

variance as an exogenous variable, the error statistics of Models 1.5 and 1.6 beat those of Model 1.4. 

The in-sample error statistics support the model estimation results and suggest that option market 

ambiguity attitude is quantitatively important in determining ex post conditional volatility. This sheds 

light on how to improve the accuracy of GARCH volatility forecasts by considering investors’ 

attitudes to uncertainty in prediction exercises. 

Given the non-normality property of US stocks return data, a good variance model should also 

reduce, or ideally remove, the negative skewness and excess kurtosis in the residuals (Campbell and 

Hentschel, 1992). To further understand the importance of ambiguity aversion in variance modeling, 

we carry out additional diagnostic tests to check the impact of ambiguity attitudes on conditional 

variance forecasting while considering skewness and kurtosis dynamics. Table 4.4 reports diagnostic 

tests on the standardized residuals from the mean equations of Models 1.1 to 1.6. Table 4.4 shows 

Table 4.4. GARCH-In-Mean Diagnostic Tests of the Daily Ambiguity-Volatility Relation 

The table reports the diagnostic tests of Models 1.1 to 1.6. Skewness and excess kurtosis are the estimated skewness and excess kurtosis of the standardized 

residuals from the mean equation. Model 1.1 is the benchmark model for Models 1.2 and 1.3. Model 1.4 is the benchmark model for Models 1.5 and 1.6. We 

estimate the models using daily close-to-close returns of S&P 500 index, implied variance and option market ambiguity attitudes over the period 2 Jan 1990 to 

31 Dec 2012. 

 

Model 1.1 Model 1.2 Model 1.3 Model 1.4 Model 1.5 Model 1.6

Skewness -0.405 -0.400 -0.378 -0.379 -0.353 -0.346

(-12.572) (-12.423) (-11.735) (-11.774) (-10.972) (-10.750)

Excess Kurtosis 1.765 1.645 1.528 1.602 1.332 1.294

(27.415) (25.553) (23.741) (24.887) (20.692) (20.101)

Jarque-Bera 909.625 807.304 701.350 757.988 548.531 519.630
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that skewness and excess kurtosis levels are reduced in the models containing the OMAA measure. 

Although the t-statistics still suggest that skewness and excess kurtosis cannot be ruled out, reductions 

in skewness and excess kurtosis confirm the findings in Table 4.3 that with the inclusion of ambiguity 

attitudes in the variance processes, better model fits can be obtained. Jarque-Bera statistics that 

summarize information from skewness and excess kurtosis dynamics further confirm that the 

residuals from the models with ambiguity are much closer to normality. 

The success of Models 1.2, 1.3, 1.5 and 1.6 renews our understanding of the economic value of 

model uncertainty and option market ambiguity attitudes for conditional variance estimations. Results 

from this section lead to the following conclusions on the impact of OMAA on conditional variance: 

1. The relationship between conditional variance and option market ambiguity attitude is 

negative and statistically significant in the gain domain, meaning increases in ambiguity 

aversion is related to increases in conditional variance. 

2. The relationship between conditional variance and option market ambiguity attitude is 

positive and statistically significant in the loss domain, meaning increases in ambiguity 

seeking is related to increases in conditional variance. 

3.  In general the inclusion of OMAA allows better fits of empirical data and that conclusions 1-2 

hold after controlling for option implied variance or risk-based option information. 

The next section turns to the exponential versions of Models 1.1 to 1.6 for robustness and also as a 

prelude to the out-of-sample forecasting analysis (covered in Section 4.4.3).  

4.4.2 Exponential GARCH-in-mean Estimation and In-sample Forecasting 

Table 4.5 reports the estimation results for Models 2.1 to 2.6. Model 2.1 is the benchmark model 

without ambiguity or implied variance. Comparing Models 2.1 and 2.2, OMAA towards gains 

exhibits the same negative relationship with conditional variance as in the previous section. The 

robust t-statistic of OMAA in the gain domain is -4.52, which suggests that OMAA is more 

significant in Model 2.2 than in Model 1.2. Model 2.3 shows a positive and statistically significant 

relationship between OMAA and conditional variance in the loss domain, confirming our results from 
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the previous section. In general, the OMAA measure is statistically significant for both gains and 

losses, with the likelihood ratio being significant at the 99.99% confidence level. 

Turning to the specifications with controls for implied variance, Models 2.4 to 2.6 are showing 

similar conclusions as those in Models 1.4 to 1.6. From Model 2.5, OMAA towards gains exhibits a 

negative relationship with conditional variance but with a slightly weaker robust t-statistics when 

compared to Model 2.2. On the other hand, in Model 2.6, OMAA towards losses also shows 

Table 4.5. Exponential GARCH-In-Mean Estimates of the Daily Ambiguity-Volatility Relation 

Panel A reports the estimated parameters of Models 2.1 to 2.6 based on maximum likelihood estimation. Robust t-statistics reported in parentheses are 

computed based on Bollerslev and Wooldridge (1992). Panel B reports the in-sample error statistics. Model 2.1 is the benchmark model for Models 2.2 and 

2.3. Model 2.4 is the benchmark model for Models 2.5 and 2.6. We estimate the models using daily close-to-close returns of S&P 500 index, implied variance 

and option market ambiguity attitudes over the period 2 Jan 1990 to 31 Dec 2012. ***,**, and * indicate 99%, 95%, and 90% confidence levels respectively. 

Panel A. Estimation Results 

 

Panel B. In-sample Error Statistics 

 

a strong positive relationship with ex post conditional variance. OMAA is significant under gains and 

losses. In general, the significance of OMAA is improved when the models are specified in 

exponential form (when compared to robust t-statistics in Table 4.3). 

α0 1.42E-04  -5.33E-05  -6.39E-05  1.95E-07  -1.69E-05  -1.67E-05  

(0.863) (-0.312) (-0.401) (0.001) (-0.113) (-0.113)

α1 2.791  2.686  1.921  0.550  0.891  0.888  

(1.550) (1.420) (1.144) (0.328) (0.539) (0.545)

β0 -2.40E-01 *** -2.15E-01 *** -3.09E-01 *** 1.65E+00 *** 1.20E+00 *** 8.99E-01 ***

(-7.837) (-6.650) (-9.382) (4.077) (3.574) (2.678)

β1 0.165 *** 0.161 *** 0.148 *** -0.111 ** -0.063  -0.054  

(9.047) (8.997) (8.993) (-2.354) (-1.475) (-1.303)

β2 0.988 *** 0.985 *** 0.986 *** -0.086  0.267 * 0.312 **

(365.602) (326.034) (414.242) (-0.534) (1.953) (2.436)

βOMAA,Gain - -1.76E-01 *** - - -4.07E-01 *** -

- (-4.520) - - (-4.176) -

βOMAA,Loss - - 2.73E-01 *** - - 4.44E-01 ***

- - (6.776) - - (4.390)

βIV - - - 1.327 *** 0.894 *** 0.839 ***

- - - (6.763) (5.118) (5.130)

Log Likelihood 18,745.50 18,768.21 18,794.72 18,878.90 18,888.76 18,890.31

LR - 45.42 98.44 - 19.72 22.82

P(LR) > χ 2 - 1.59E-11 3.35E-23 - 8.97E-06 1.78E-06

Model 2.6Model 2.1 Model 2.2 Model 2.3 Model 2.4 Model 2.5

(x1000)

RMSE 0.1542 0.1422 0.1720 0.1569 0.1553 0.1583

MAE 0.0824 0.0795 0.0839 0.0818 0.0820 0.0823

LL 1.7951 1.7939 1.7688 1.7513 1.7422 1.7397

QLIKE 0.5588 0.5563 0.5506 0.5408 0.5383 0.5377

Model 2.1 Model 2.2 Model 2.3 Model 2.4 Model 2.5 Model 2.6
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Turning to the in-sample error statistics for Models 2.1 to 2.6 in Panel B of Table 4.5, similar 

conclusions can be drawn: the inclusion of option market ambiguity attitudes does improve the 

accuracy of GARCH volatility forecasts. When we consider the in-sample error statistics of Models 

2.4 to 2.6, RMSE and MAE tend to give mixed suggestions as to which model gives the most accurate 

forecasts. In light of that, and as noted earlier, we rely on QLIKE, which has proved to be more 

reliable in assessing the quality of forecasts (e.g., Kumar, 2015), for our model comparison. The in-

sample QLIKE for Model 2.6 gives 0.5377 x 10
3

, the smallest error in all six models (Table 4.5). The 

results from Table 4.5 confirm our findings and highlight the suitability of using exponential models 

in forecasting exercises. 

Table 4.6. Exponential GARCH-In-Mean Diagnostic Tests of the Daily Ambiguity-Volatility Relation 

The table reports the diagnostic tests of Models 2.1 to 2.6. Skewness and excess kurtosis are the estimated skewness and excess kurtosis of the standardized 

residuals from the mean equation. Model 2.1 is the benchmark model for Models 2.2 and 2.3. Model 2.4 is the benchmark model for Models 2.5 and 2.6. We 

estimate the models using daily close-to-close returns of S&P 500 index, implied variance and option market ambiguity attitudes over the period 2 Jan 1990 to 

31 Dec 2012. 

 

In line with Table 4.4, we present the diagnostic test results for Models 2.1 to 2.6 in Table 4.6. 

Skewness and excess kurtosis of the standardized residuals from the mean equations are in general 

reduced in all models involving OMAA except for skewness in Model 2.2. This suggests that models 

with OMAA tend to better account for the non-normality of S&P 500 returns. Standardized residuals 

from Model 2.6 have the least skewness and least excess kurtosis out of the six models. The 

magnitude of skewness is reduced from -0.395 in benchmark Model 2.1 to -0.354 in Model 2.6. 

Excess kurtosis decreases from 1.779 in Model 2.1 to 1.391 in Model 2.6. Jarque-Bera statistics in 

Table 4.6 also suggest that the standardized residuals from the models with OMAA innovations are 

closer to normality. 

The in-sample forecasting success of option market ambiguity helps us understand the asymmetric 

property of OMAA in affecting revisions in conditional variance. Our analysis is the first empirical 

study to reveal this special relationship in financial markets data in the context of the GARCH 

Model 2.1 Model 2.2 Model 2.3 Model 2.4 Model 2.5 Model 2.6

Skewness -0.395 -0.404 -0.359 -0.371 -0.364 -0.354

(-12.278) (-12.567) (-11.148) (-11.531) (-11.320) (-11.009)

Excess Kurtosis 1.779 1.662 1.443 1.553 1.445 1.391

(27.641) (25.826) (22.420) (24.118) (22.444) (21.608)

Jarque-Bera 914.788 824.921 626.936 714.645 631.888 588.128
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framework. The approach of asymmetric modeling of conditional variance with ambiguity 

information provides insightful and statistically significant explanatory power beyond what traditional 

variance models offer. Despite that, the economic value of including OMAA in variance forecasting 

might still largely depend on the model and parameter stability. In the next section, we examine the 

out-of-sample forecasting ability of our ambiguity-based models to further corroborate our 

conclusions. 

4.4.3 Out-of-sample Volatility Forecasting 

While the in-the-sample analysis in the previous sections allowed us to understand the empirical 

implications of option market ambiguity attitudes for GARCH volatility modeling, the validity of the 

improved variance models as an economically valuable tool for market statisticians also depends on 

the out-of-sample forecasting performance. Herein, we examine the out-of-sample forecasting 

performance of Models 2.1 to 2.6 over a period of 20 years from 1993 to 2012. To ensure the stability 

of model parameters, we employ at least 3 years of data in the estimation. For each model, we use 

both 3-year and 5-year rolling estimation windows for parameters’ estimation. Conditional variance 

forecasts are then compared to realized variance with different intra-day estimation grids (1, 5 and 10 

min grids as mentioned in Section 4.3). We employ four loss functions / error statistics with respect to 

the measured variance for the evaluation of the forecasting ability of each model. In addition to 

RMSE and MAE, the most popular error statistics used in out-of-sample forecasting evaluation, we 

once again take into account LL, which measures the logarithmic forecasting accuracy, and QLIKE 

which measures the relative forecasting accuracy and penalizes underestimated variance forecasts. As 

noted, due to the important properties of QLIKE in risk management and investment, our conclusions 

mainly rely on the QLIKE statistics. As discussed, we also compare the various models using Hansen 

(2005)’s superior predictive ability (SPA) test.  
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Table 4.7. Out-of-sample Forecasting 

The table reports error statistics from out-of-sample forecasting with 3 and 5-year rolling estimation windows. RMSE, MAE, LL and QLIKE are root mean 

squared error, mean absolute error, logarithmic loss function and loss implied by Gaussian likelihood respectively. Loss functions are specified according to 

(4.21)-(4.24). Hansen (2005) SPA test p-values are reported in parentheses. Model 2.1 is the benchmark model for Models 2.2 and 2.3. Model 2.4 is the 

benchmark model for Models 2.5 and 2.6. Bolded figures are the minimum errors in each set of models. We estimate the models using daily close-to-close 

returns of S&P 500 index, implied variance and option market ambiguity attitudes over the period 2 Jan 1990 to 31 Dec 2012. ***,**, and * indicate 99%, 

95%, and 90% confidence levels respectively. 

Panel A. Error Statistics Based On 3-Year Rolling Estimation Window 

 

Panel B. Error Statistics Based On 5-Year Rolling Estimation Window 

 

Table 4.7 reports the error statistics from the out-of-sample forecasting analysis. Panel A reports 

the loss functions from forecasts based on a 3-year (750 trading days) rolling estimation window. 

Panel B reports the loss functions from forecasting models based on a 5-year (1250 trading days) 

Model 2.1 Model 2.4
RMSE

0.2743 0.2542 0.3122 0.3691 0.3403 0.3328 **
(0.150) (1.000) (0.158) (0.095)

0.1882 0.1568 0.2438 0.3144 0.2791 0.2697 **
(0.154) (1.000) (0.197) (0.092)

0.2617 0.2399 0.3049 0.3650 0.3341 0.3262 **
(0.129) (1.000) (0.171) (0.098)

MAE
0.0906 0.0829 * 0.0958 0.1116 0.1066 0.1048 **

(0.100) (1.000) (0.164) (0.098)
0.0897 0.0820 0.0952 0.1111 0.1061 0.1043 **

(0.105) (1.000) (0.163) (0.094)
0.0931 0.0854 0.0987 0.1147 0.1096 0.1079 **

(0.112) (1.000) (0.160) (0.080)
LL

1.3087 1.2462 *** 1.2810 1.2577 1.2398 ** 1.2336 ***
(0.029) (0.228) (0.082) (0.015)

1.4154 1.3502 *** 1.3882 1.3642 1.3452 ** 1.3386 ***
(0.033) (0.243) (0.072) (0.016)

1.4923 1.4251 *** 1.4639 1.4404 1.4203 ** 1.4135 ***
(0.028) (0.222) (0.067) (0.012)

QLIKE
0.4628 0.4457 *** 0.4366 ** 0.4289 0.4223 ** 0.4219 **

(0.043) (0.068) (0.085) (0.053)
0.4685 0.4495 *** 0.4555 0.4454 0.4401 ** 0.4392 ***

(0.044) (0.101) (0.083) (0.031)
0.5091 0.4907 *** 0.4839 ** 0.4762 0.4691 ** 0.4686 ***

(0.042) (0.070) (0.071) (0.025)

RV 1min

RV 5min

RV 10min

RV 1min

RV 5min

RV 10min

RV 10min

Model 2.2 Model 2.3 Model 2.5 Model 2.6

RV 1min

RV 5min

RV 10min

RV 1min

RV 5min

Model 2.1 Model 2.4
RMSE

0.2871 0.2695 0.3053 0.3491 0.3281 0.3236
(0.143) (1.000) (0.182) (0.136)

0.1956 0.1680 0.2234 0.2818 0.2544 0.2484
(0.116) (1.000) (0.182) (0.130)

0.2732 0.2540 0.2948 0.3425 0.3197 0.3150
(0.140) (1.000) (0.177) (0.135)

MAE
0.0971 0.0897 ** 0.0988 0.1125 0.1077 0.1066 **

(0.090) (1.000) (0.135) (0.094)
0.0960 0.0886 ** 0.0979 0.1118 0.1069 0.1058 *

(0.093) (1.000) (0.142) (0.100)
0.0997 0.0922 ** 0.1016 0.1158 0.1108 0.1097 **

(0.091) (1.000) (0.151) (0.099)
LL

1.2100 1.1402 *** 1.1553 *** 1.1614 1.1420 *** 1.1386 ***
(0.006) (0.017) (0.027) (0.006)

1.2981 1.2252 *** 1.2410 *** 1.2499 1.2290 *** 1.2257 ***
(0.003) (0.012) (0.020) (0.002)

1.3675 1.2926 *** 1.3085 *** 1.3197 1.2977 *** 1.2943 ***
(0.005) (0.007) (0.024) (0.003)

QLIKE
0.4221 0.4037 *** 0.4038 *** 0.4026 0.3968 *** 0.3979 ***

(0.012) (0.005) (0.027) (0.020)
0.4325 0.4117 *** 0.4152 *** 0.4121 0.4061 *** 0.4065 ***

(0.008) (0.008) (0.015) (0.014)
0.4629 0.4433 *** 0.4439 *** 0.4434 0.4369 *** 0.4379 ***

(0.009) (0.009) (0.016) (0.010)
RV 10min

RV 1min

RV 5min

RV 10min

RV 1min

RV 5min

RV 10min

RV 1min

RV 5min

RV 10min

RV 1min

RV 5min

Model 2.2 Model 2.3 Model 2.5 Model 2.6
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rolling estimation window. Hansen’s SPA test bootstrapped p-values are reported in parentheses. 

Since we have 5792 daily observations from Jan 1990 to Dec 2012, loss functions in Panel A and 

Panel B are based on 5042 and 4542 days out-of-sample forecasting windows respectively. 

The first three columns of Table 4.7 report out-of-sample forecasting errors for models (2.1 to 2.3) 

that do not involve implied variance as an exogenous variable, while the last three columns report the 

errors based on models (2.4 to 2.6) with implied variance in the variance process. The smallest out-of-

sample forecasting errors are reported in bold in each sub-group for easier comparison. From Panel A 

of Table 4.7, comparing loss functions in Models 2.1-2.3 points to Model 2.2 as the best out-of-

sample forecasting model with the lowest errors in a majority of loss functions and RV computation 

grid. Model 2.3 dominates QLIKE statistics and appears to be the best for risk management purposes. 

According to the LL and QLIKE criteria, models with option market ambiguity attitudes consistently 

have smaller out-of-sample forecasting errors when compared to the benchmark Model 2.1. SPA test 

p-values suggest that Model 2.2 is the best model when data snooping bias is accounted for. Turning 

to Models 2.4 to 2.6, which take into account the impact of ex ante implied variance, models (2.5 and 

2.6) containing OMAA innovations produce better variance forecasts when compared to the 

benchmark Model 2.4 without ambiguity. All four error statistics unequivocally point to Model 2.6 as 

the best model to forecast conditional volatility. SPA test p-values also clearly point to Model 2.6 as 

the best forecasting model overall. Interestingly but unsurprisingly when we compare out-of-sample 

forecasting errors under RMSE and MAE, the inclusion of implied variance actually increases the 

absolute value of forecasting errors. Alternatively when we assess models using LL and QLIKE 

statistics, the inclusion of implied variance does help avoid the under-estimation of conditional 

variance problem. From Panel A of Table 4.7, it is clear that the inclusion of OMAA in the variance 

models significantly improves the accuracy of forecasts for different realized variance specifications 

and considering various loss functions. 

Turning to Panel B of Table 4.7, comparing the error statistics of RMSE and MAE against those 

presented in Panel A, it appears that the forecasting errors are in general smaller under the 5-year 

estimation window. LL and QLIKE error statistics based on 5-year estimation windows tend to be 

smaller than those presented in Panel A. This suggests that volatility forecasts based on the 5-year 
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estimation window are less underestimated and, thus, are more suitable for risk management matters. 

In Panel B, among the first group of models that do not include implied variance, all four loss 

functions and SPA p-values unequivocally indicate that Model 2.2 generates the most accurate 

volatility forecasts for the 5-year rolling estimation window. This reaffirms the findings from Panel A 

of Table 4.7. Error statistics based on RMSE, MAE, and LL for Models 2.4 to 2.6 indicate that Model 

2.6, which considers OMAA for losses, produces the most accurate volatility forecasts, while QLIKE 

points to Model 2.5. This suggests that volatility models that account for investors’ ambiguity 

attitudes in the gain domain may be more suitable for risk management purposes. One explanation for 

this finding is that in the loss domain, the market is dominated by ambiguity seeking investors who 

will underestimate their risk exposure. Considering all four loss functions and the out-of-sample 

analysis, we can conclude that OMAA is important in producing more accurate GARCH volatility 

forecasts, and thus is quantitatively important and valuable for volatility forecasting practice. 

The striking out-of-sample results highlight the efficiency of option market information and 

ambiguity attitudes in forecasting volatility. To further appreciate the economic significance of option 

market ambiguity attitudes in financial markets and volatility modeling, the next section studies the 

potential economic gains made from trading strategies based on our out-of-sample GARCH volatility 

forecasts from Models 2.1 to 2.6. 

4.4.4 Economic Significance Analysis 

We extend the analysis to verify if investors can benefit from more accurate variance forecasts and 

generate excess profits based on the proposed forecasting models (Fleming et al., 2003; Marquering 

and Verbeek, 2004; Boguth et al., 2011).  Similar to Han (2006) and Driesprong et al. (2008), we 

implement a daily-rebalancing volatility timing strategy based on the level of variance forecasts 

relative to the historical average realized variance. We consider a risk-seeking investor
11

 who invests 

in the S&P 500 portfolio whenever the next day variance forecast is exceeding the one-month average 

  

                                                      
11 According to Merton (1973), risk is positively related to expected returns. Since we consider the case of one-asset (S&P 500 index) 

volatility timing strategy, it is logical to assume investors who would follow this strategy to be risk-seeking individuals. 
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Table 4.8. Economic Significance Analysis 

The table reports the trading statistics for the long-only and long/short market-timing trading strategy based on variance forecasts from each model.  The trading 

window covers 2 Jan 1995 to 31 Dec 2012.  

Panel A. Economic Gain Based on Long-only Volatility-timing Trading Strategy 

 
Panel B. Economic Gain Based on Long/Short Volatility-timing Trading Strategy 

 

 

 

  

FULL PERIOD Model 2.1 Model 2.2 Model 2.3 Model 2.4 Model 2.5 Model 2.6

Cumulative Return 158.43% 263.50% 252.94% 271.71% 392.30% 325.23%

Annual ized Return 5.43% 7.46% 7.28% 7.59% 9.29% 8.40%

Portfol io Volati l ty 19.59% 19.71% 19.49% 19.77% 19.62% 19.60%

Return/risk Reward Ratio 0.28 0.38 0.37 0.38 0.47 0.43

Superiori ty to Benchmark Strategy 

(Percentage Points )
- 105.07 94.51 - 120.59 53.52

1995 - 2004 Model 2.1 Model 2.2 Model 2.3 Model 2.4 Model 2.5 Model 2.6

Cumulative Return 143.65% 138.65% 152.71% 153.67% 174.98% 178.93%

Annual ized Return 9.36% 9.13% 9.76% 9.80% 10.70% 10.86%

Portfol io Volati l ty 18.14% 18.07% 17.99% 18.12% 18.06% 18.02%

Return/risk Reward Ratio 0.52 0.51 0.54 0.54 0.59 0.60

Superiori ty to Benchmark Strategy 

(Percentage Points )
- -5.01 9.06 - 21.31 25.26

2005 - 2012 Model 2.1 Model 2.2 Model 2.3 Model 2.4 Model 2.5 Model 2.6

Cumulative Return 6.07% 52.32% 39.56% 46.43% 78.94% 52.04%

Annual ized Return 0.74% 5.41% 4.26% 4.89% 7.56% 5.38%

Portfol io Volati l ty 21.25% 21.59% 21.22% 21.65% 21.40% 21.41%

Return/risk Reward Ratio 0.03 0.25 0.20 0.23 0.35 0.25

Superiori ty to Benchmark Strategy 

(Percentage Points )
- 46.25 33.49 - 32.51 5.61

FULL PERIOD Model 2.1 Model 2.2 Model 2.3 Model 2.4 Model 2.5 Model 2.6

Cumulative Return 105.31% 310.06% 281.13% 330.95% 647.63% 459.17%

Annual ized Return 4.09% 8.18% 7.74% 8.48% 11.87% 10.07%

Portfol io Volati l ty 20.09% 20.08% 20.08% 20.08% 20.07% 20.07%

Return/risk Reward Ratio 0.20 0.41 0.39 0.42 0.59 0.50

Superiori ty to Benchmark Strategy 

(Percentage Points )
- 204.75 175.82 - 316.68 128.22

1995-2004 Model 2.1 Model 2.2 Model 2.3 Model 2.4 Model 2.5 Model 2.6

Cumulative Return 127.73% 118.23% 144.71% 147.70% 191.37% 200.14%

Annual ized Return 8.62% 8.16% 9.41% 9.54% 11.34% 11.68%

Portfol io Volati l ty 18.25% 18.25% 18.24% 18.24% 18.24% 18.24%

Return/risk Reward Ratio 0.47 0.45 0.52 0.52 0.62 0.64

Superiori ty to Benchmark Strategy 

(Percentage Points )
- -9.50 16.98 - 43.66 52.43

2005-2012 Model 2.1 Model 2.2 Model 2.3 Model 2.4 Model 2.5 Model 2.6

Cumulative Return -9.39% 90.93% 57.71% 79.12% 168.44% 93.39%

Annual ized Return -1.23% 8.43% 5.87% 7.57% 13.16% 8.61%

Portfol io Volati l ty 22.16% 22.15% 22.16% 22.15% 22.14% 22.15%

Return/risk Reward Ratio -0.06 0.38 0.26 0.34 0.59 0.39

Superiori ty to Benchmark Strategy 

(Percentage Points )
- 100.32 67.10 - 89.32 14.27
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Figure 4.2. Portfolio Value for Economic Significance Analysis.  

Graph A and B plot the daily portfolio values for the long-only market-timing strategy. Graph C and D plot the daily portfolio values for the long/short market-

timing strategy. All portfolio values are computed net of a transaction fee of 0.1% each way. All plots span 2 Jan 1995 to 31 Dec2012. 

Graph A. Portfolio Value for Long-only Strategy Model 2.1-2.3 Graph B. Portfolio Value for Long-only Strategy Model 2.4-2.6 

  

Graph C. Portfolio Value for Long/short Strategy Model 2.1-2.3 Graph D. Portfolio Value for Long/short Strategy Model 2.4-2.6 

  

of realized variance. At the end of each trading day, (s)he will decide whether to buy (or sell if the 

position was already established) the portfolio. With this strategy simply consisting of “buy” and “sell” 

timing without accounting for portfolio reallocation, we assess the economic significance of OMAA 

variance models in market timing. To allow for a more flexible trading strategy, we also consider an 

alternative situation in which the investor can go short when the variance forecast is lower than the 

historical average. In the economic significance analysis, we use out-of-sample forecasts from each 

model based on the 5-year rolling estimation window
12

. The trading window in which the strategies 

are implemented therefore covers the 1995-2012 period. Following Driesprong et al. (2008), we 

assume a transaction cost
13

 of 0.1% each way for “buy” and “sell”. 

                                                      
12 These results also hold when we use a 3-year rolling estimation window. 

13 Research on the economic significance of volatility timing trading strategies adopts various transaction costs assumptions. Bhardwaj and 

Brooks (1992), and Balduzzi and Lynch (1999) suggest 0.5% for individual equity trading; Driesprong et al. (2008) suggest that 0.1% is 

more reasonable for futures trading on commodities; and Fleming et al. (2003) suggest 0.01% for futures trading on equities. Investors can 

easily invest in index tracking ETFs, such as SPDR SPY which has a correlation of 99% with S&P500 index, and incur very low transaction 

costs. For example the largest electronic brokerage house in the U.S. charges only $0.005 per share for SPY transactions, which amounts to 

a transaction cost of 0.002% (as of Sept 2016). Although investors can trade the index cheaply by various ETF and index futures, we employ 

a more conservative rate of 0.1% each way as suggested by Driesprong et al. (2008).  
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Figure 4.2 plots the portfolio values based on the strategies described above. Graph A and B show 

the portfolio values for long-only while Graphs C and D illustrate the portfolio values for long/short 

volatility timing strategies. 

Table 4.8 reports the portfolio performance of the volatility timing strategy under each forecasting 

model. The benchmark for Models 2.2 and 2.3 is Model 2.1, while the benchmark for Models 2.5 and 

2.6 is Model 2.4. From Panel A, under the long-only strategy over the full period, ambiguity-based 

volatility Models 2.2 and 2.3 generate 105.07 and 94.51 percentage points return in excess of the 

benchmark (i.e., Model 2.1 without ambiguity innovations). Turning to Model 2.4 and its variants 

which incorporate information from implied variance, ambiguity-based volatility Models 2.5 and 2.6 

outperform the benchmark (Model 2.4 without ambiguity) by 120.59 and 53.52 percentage points 

over the whole period. All strategies based on models with ambiguity innovations generate 

significantly higher returns than the benchmark models. This suggests that, when used as part of a 

volatility timing strategy, the inclusion of investors’ ambiguity attitudes in volatility forecasting 

exercises can help generate superior returns. Turning to the sub-period results in Panel A, the superior 

returns generated by the volatility-timing strategies involving OMAA generally hold during (and after) 

the financial crisis of 2008 and the collapse of Lehman Brothers. While these strategies tend to 

generate higher returns than the benchmark (except for Model 2.2) in 1995-2004, their returns are 

even more impressive in the 2005-2012 follow-up period. Model 2.5, which considers option market 

ambiguity attitudes in the gain domain together with implied variance, produces a striking return of 

392.3% during 2005-2012. This is equivalent to 120.59 percentage points in excess of the benchmark 

Model 2.4. 

To further appreciate the importance of option market ambiguity attitudes in volatility-timing 

investment strategies, we consider a more flexible case which allows the investors to go short when 

the forecasted volatility is below the historical average level. Since the long-short strategies ensure the 

investor to have a continuous exposure to the S&P 500 index (either short or long at a given time), 
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volatilities of the portfolio values are identical to those of the S&P 500 index
14

. In Panel B of Table 

4.8, we can observe that the long-short strategy relying on GARCH volatility forecasts from our 

ambiguity Model 2.5 generates an astonishing 647.63% return over our entire sample period of 1995-

2012 compared to only 330.95% for the benchmark (Model 2.4). The annualized return from a 

strategy based on Model 2.2 (8.18%) is exactly double than that of the benchmark Model 2.1 without 

ambiguity (4.09%). Considering the full period performance of the various strategies in Panel B, 

ambiguity-based GARCH volatility models produce superior returns than the benchmarks. In 1995-

2012, all ambiguity-based strategies generated between 128.22 and 316.68 percentage points in excess 

of the corresponding benchmark or unambiguous models. Similar to the long-only strategy, our 

models perform equally well (and outperform benchmarks) during more uncertain periods. 

The superior performance of our ambiguity-based strategies highlights the economic value of 

option market ambiguity attitudes in GARCH volatility forecasting, risk management, and market 

timing. The economic significance analysis confirms that the proposed volatility forecasting models 

not only provide more accurate volatility forecasts both in-sample and out-of-sample, but are also 

important in market-timing especially during periods of economic uncertainty. 

 

4.5. Conclusion 

We propose an ambiguity-based GARCH-in-mean volatility forecasting framework which capitalizes 

on the asymmetric and well documented role of market investors’ ambiguity attitudes in the gain and 

loss domains. Our empirical results, based on a comprehensive dataset that spans 23 years of option 

pricing data and containing 5792 daily observations, confirm a significant relationship between 

ambiguity attitudes and ex post conditional volatility, and suggest that ambiguity and model 

uncertainty, as inferred from the option market, are quantitatively important in determining ex post 

conditional variance and in improving GARCH forecasts. 

                                                      
14 Slight discrepancies in portfolio volatilities as shown in Panel B are due to the transaction costs. In the case of a perfect market without 

transaction costs, the portfolio volatility based on long-short strategy in all models will be identical.  
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We evaluate the practical relevance of our ambiguity-based volatility forecasting models by 

examining their out-of-sample forecasting accuracy. Out-of-sample forecasting analysis using the 

SPA test, different estimation windows, comparison windows, estimated volatility benchmarks, and 

an extensive range of loss functions unequivocally documents robust and consistent improvements in 

the accuracy of GARCH volatility forecasts when investors’ ambiguity attitudes and implied variance 

are controlled for. In addition to the out-of-sample analysis, we also examine the economic value of 

including option market ambiguity attitudes in volatility forecasting practice by comparing portfolio 

returns based on two simple volatility-timing trading strategies with transaction costs. Economic 

significance results confirm the findings of the in-sample and out-of-sample estimations, and show 

that an annualized return of 4.09% in excess of the benchmark portfolio return can be earned using the 

volatility forecasts from our proposed models. 

Given the consistent findings from the in-sample estimations, out-of-sample forecasting, and 

economic significance analyses, option market ambiguity attitudes can be considered a statistically 

significant and quantitatively important factor in GARCH volatility forecasting. This chapter validates 

the hypothesis of efficiency of options markets in informing future volatility fluctuations and serves 

as a foundation for research on the role of ambiguity aversion and model uncertainty in other risk 

management areas such as value at risk analysis and stress testing. We leave this for future research.   
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Chapter 5.  

Ambiguity Attitudes, the Variance Premium 

and International Stock Market Volatility 

ABSTRACT 

This chapter estimates a behavioral/subjective volatility scaling factor, which captures investors’ 

ambiguity attitudes in the market, and adjusts the variance risk premium and its two components for 

model uncertainty to test the incremental role of ambiguity information in financial and economic 

prediction. Assessing the predictive power of the resulting ambiguity-adjusted measures in predicting 

market returns, economic activity and financial instability, our results document improved 

informational content over the standard variance premium and its benchmark market variance 

components. Analysis of international volatility effects further suggests that investors can be better 

informed about spillovers if ambiguity aversion is incorporated in volatility estimations.  



138 Raymond H.Y. So  

 

5.1. Introduction 

Option market information has long been praised for its informational efficiency in predicting a 

variety of important financial and economic variables. Cremers and Weinbaum (2010) document the 

return predicting ability of call and put option implied volatility deviations. Relying on VIX as a 

proxy for uncertainty, Bloom (2009) shows that non-Knightian uncertainty shocks can be associated 

with ex post depressed economic activity including aggregate output and employment. Bali and 

Murray (2013) shows that risk-neutral skewness predicts the cross section of equity option portfolio 

returns.  

The CBOE volatility index VIX has long been referred to as the “fear gauge” of the equity market 

(Whaley 2000). Computed using a model-free approach, VIX represents the risk-neutral expectation 

of future volatility of S&P 500 index returns. As it captures the expected variability in returns for a 

leading equity index, a long list of papers have used VIX as a proxy for market and economic 

uncertainty (Bloom, 2009; Chung and Chuwonganant, 2014). Ang, Hodrick, Xing and Zhang (2006) 

show that changes in aggregate volatility, as proxied by changes in VIX, are priced in cross-sectional 

returns. Bloom (2009) analyzes in a vector autoregressive model the relationship between VIX and 

economic activity to find that VIX has a potentially depressing effect on ex post economic activity. 

Bekaert, Hoerova and Lo Duca (2013) document a strong lead-lag relationship between components 

of VIX and changes in monetary policy. All the empirical evidence points to the richness of 

information embedded in VIX. Despite this, no study has been devoted to interpreting or estimating 

investors’ fear gauge and its association with the variance premium from a model uncertainty 

perspective (i.e., ambiguity or uncertainty beyond probabilistic risk). 

Over the last decade, as another option-based indicator related to VIX, the variance risk premium 

(VRP, Carr and Wu, 2009) has found prominence in the economics and finance literatures.  Computed 

as the difference between implied variance (IV, squared VIX) and an estimated conditional variance 

(RV) of the underlying market returns, VRP has been shown to predict short term market excess 

return robustly (Bollerslev, Tauchen and Zhou, 2009; Bollerslev, Marrone, Xu and Zhou, 2014). 

However, the measurement of VRP is not without limitations (Bekaert and Hoerova, 2014; Barras and 



Ch5. Ambiguity Attitudes, the Variance Premium and International Stock Market Volatility 139 

 

Malkhozov, 2016). In a recent econometric study that identifies the best VRP specification, Bekaert 

and Hoerova (2014) show how their variance risk premium and its market variance components are 

able to predict stock market returns, volatility, economic activity and financial instability. While other 

attempts have also been made to improve variance risk premium estimations, efforts are largely 

focused on capturing a more accurate conditional variance, which in essence reduces the improvement 

exercise to a volatility forecasting issue.  Herein, we examine the VRP predictive ability and its 

related estimation problems from a model uncertainty point of view. This chapter investigates whether, 

and the extent to which, the information content of variance risk premium can be augmented by 

incorporating investors’ ambiguity aversion in its two variance components (i.e., IV and RV).  

While it is important to address the problem of ambiguity attitudes in the literature (Epstein and 

Chen, 2002; Hatchondo, 2008; Dimmock et. al, 2016), ambiguity is still not a main-stream issue in 

forecasting and economic prediction. This is explained by the inherent difficulties in estimating 

investors’ ambiguity attitudes from financial market data. While limited evidence has attempted to 

interpret VRP using ambiguity theories (Miao et al., 2012; Dreschler, 2013), an increasing stream of 

research suggests that VRP’s predictive power is primarily driven or dominated by investors’ time-

varying risk aversion (Rosenberg and Engle, 2002; Bakshi and Madan, 2006; Bekaert, Hoerova and 

Duca, 2013). Although research on variance premium estimation has been on an upward trend, no 

study has shown explicitly whether ambiguity and model uncertainty information can be incorporated 

into VRP (and its two variance components) as a test of informational content. This study fills this 

gap by explicitly estimating an ambiguity-adjusted VRP with information of investors’ ambiguity 

attitudes, i.e., the behavioral adjustment factor, extracted from option prices. On the one hand, if VRP 

already captures ambiguity aversion, any attempt to incorporate ambiguity information into its 

components would fail because of information overlaps. On the other hand, if accounting for 

ambiguity aversion improves VRP predictive ability, it will indicate that VRP might not capture 

ambiguity aversion effectively after all. It may also suggest or confirm that risk aversion dominates 

VRP dynamics (Bekaert and Hoerova, 2016). Our main hypothesis is that accounting for investors’ 

ambiguity attitudes should increase the informational content of VRP and its variance components 
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when used for the purpose of economic and financial prediction. As an additional contribution, we 

extend the verification of this hypothesis to international markets and the role of volatility spillovers. 

Motivated by the forward-looking nature of option markets, we extract investors’ ambiguity 

attitudes using an ambiguity-adjusted option pricing model (A-OPM) based on Choquet utility, 

compute the subjective adjustment factor (SAF) for market variance, and compare the informational 

content of the subjectively adjusted variance measures to those of their “ambiguity-free” or risk-based 

counterparts. For ease of comparison, we follow the prediction sequence of Bekaert and Hoerova 

(2014). We also use alternative proxies for ambiguity, which are not option-based, for robustness and 

validation. After controlling for ambiguity aversion, we find that the subjectively adjusted variance 

premium (SVRP) outperforms the vanilla or ambiguity-free variance premium in predicting the future 

excess returns of the S&P 500 index. We also examine whether the ambiguity-adjusted implied (SIV) 

and realized variances (SRV) provide additional information content in predicting economic activity 

and financial instability. Our results document that both ambiguity-adjusted implied and realized 

variances gain extra predictive power in forecasting economic activity proxied by industrial 

production growth and financial instability proxied by the Kansas City Financial Stress Index 

(KCFSI). Our results are robust to alternative specifications of SAF based on ambiguity proxies that 

do not solely rely on option market information, such as the Economic Policy Uncertainty Index 

(PUI), Investors Intelligence Indices – Bearish (BEAR) and Bullish (BULL), University of Michigan 

Consumer Sentiment Index (UMCSI), and Consumer Confidence Index (CCI).  

We further investigate cross border volatility dynamics and find that investors can be better 

informed about spillovers across markets with option trading activity, and that international stock 

market volatility predictions can be enhanced if ambiguity information is explicitly accounted for. 

This chapter contributes to the extant literature by incorporating ambiguity attitudes information into 

the variance premium, implied variance and realized variance, and documenting an improved 

predictive ability to (international) market excess returns, economic activity and financial instability. 

Our analysis also contributes to the volatility spillovers literature by showing that ambiguity aversion 

can be important in explaining international risk dynamics.  
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5.2. Modeling Framework and Empirical Methodology 

To adjust the variance premium and its two volatility components for ambiguity, we need ex ante 

estimations of investors’ ambiguity attitudes. To preserve the real-time characteristics of the variance 

premium, we employ a contingent claim approach in which forward-looking ambiguity expectations 

and level of miscalibration are estimated from traded option market prices. For this purpose, we 

employ the rank dependent utility framework first proposed by Chateauneuf et al (1996) and later 

extended to European type option pricing by Driouchi et al. (2016). Under this framework, a modified 

set of Brownian motions that allows ambiguity attitudes to enter the valuation process via non-

additive Choquet capacities (see e.g., Eichberger and Kelsey, 2014), instead of standard Bayesian 

additive probabilities, is used. Validated by Kast and Lapied (2010), Kast et al. (2014) and Agliardi et 

al. (2016) to be dynamically consistent, the ambiguity-adjusted Brownian motion or set of Brownian 

motions is specified as follows: 
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where   is the spot price of the underlying asset,   is the drift,   is the volatility term,   and   are the 

mean and standard deviation of a standard Wiener process  ,   is a standard Wiener process. 

Examining the level of ambiguity surrounding the subprime crisis and its daily effects on S&P 

volatility, Driouchi et al (2016) develop an ambiguity-adjusted Black-Scholes option pricing model 

using the above Brownian motion framework. The price of a European call option is specified as 

follows: 
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  is the ambiguity-adjusted price of the call,   is the strike price,   is the risk-free rate,   is the 

dividend yield,   is the volatility measure,   is the capacity variable summarizing investors’ 

miscalibration,   is the subjective required rate of return,    and    are the subjective discount rate and 

subjective dividend yield respectively. Under this approach, agents’ model misspecification under 

ambiguity is summarized by the capacity variable  , which in turn determines behavioral factors   

and  . If investors are ambiguity averse, c will be less than 0.5 (Driouchi et al., 2016; Agliardi et al., 

2016). When there is no ambiguity in the economic environment or market, c = 0.5, the pricing 

equation reduces to the classical Black Scholes model. From (5.1),   represents the subjective 

adjustment factor to the standard deviation in the Brownian motion. Before obtaining   from option 

prices, we estimate investors’ ambiguity attitudes (OMAA) by inverting (5.3) numerically and 

minimizing the absolute deviations between model and market price
1
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where   
    is the observed market price of the S&P 500 option. The resulting capacity variable    is 

then transformed into the scaling variance factor or the subjective adjustment factor SAF (see (5.5)):
 2
 

                   (5.7) 

where      is the subjective adjustment factor for variance at time t. In the estimation of     , we 

use the 1-month USD LIBOR as risk-free rate, trailing 12-month aggregated dividend yield of the 

S&P 500 index constituents as the expected dividend yield, RiskMetrics EWMA volatility (JP 

Morgan, 1996) as the volatility input, and 12-month historical returns as the subjective required rate 

of return
3
.   

                                                      
1 A similar procedure is followed in Driouchi, Trigeorgis and So (2016) and So, Driouchi and Trigerogis (2016). 

2 For robustness, we used alternative proxies for ambiguity (i.e., PUI, BEAR, BULL, UMCSI and CCI) in our SAF estimations to find 

comparable and consistent results. The SAF based on the Investors Intelligence Bearish Index (SAFBEAR) shows the most consistent 

improvements (reported in Table A5.2). Although not as good as our option-based ambiguity-adjusted measures, the predictive ability of the 

SAFBEAR-adjusted VRP and its components is generally higher than that of alternative proxies. In a related study exploring the relationships 

among the conditional volatility of Investors Intelligence Bull/Bear ratio, stock market returns and volatility, Escobari and Jafarinejad (2016) 

achieve improved explanatory power when investor sentiment is accounted for. 

3 The choice of subjective required rate of return relates to investors’ memory of past returns. Barberis, Huang and Santos (2001) highlight 

the importance of how far back an investor’s mind stretches when determining her required return, and that investors generally have a short 
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The variance risk premium and its two variance components – implied variance and realized 

variance – have been shown to predict a variety of important economic and financial variables. This 

includes equity market returns, economic activity indicators, and financial sector instability indicators. 

To investigate if the SAF provides any additional informational content to those predictions, we 

compare the information content of VRP, and its two variance components, with and without 

ambiguity adjustment. For comparability with extant literature (e.g. see Fama and French, 1989; 

Lewellen, 2004; Bollerslev, Tauchen and Zhou, 2009; Li, Ng and Swaminathan, 2013) we employ the 

following standard long-horizon prediction regression: 

     
        

 
      (5.8) 

where     
  is the ex post excess return, industrial production growth and Kansas City Financial Stress 

Index over k-months horizons,   
 
 is a 1 x h row vector of explanatory variables (excluding intercept),  

  is an h x 1 vector of intercepts, and   is an h x 1 vector of slope coefficients. As noted in Ang and 

Bekaert (2009), Hodrick (1992) standard error provides the best inference for small samples, we 

report the robust t-statistics based on Hodrick (1992) standard error in regressions involving excess 

returns and industrial production growth. Since the computation of Hodrick (1992) spectral density 

relies on an artificially-created overlapping setup in the dependent variable, the computation is not 

suitable for the prediction of the Kansas City Financial Stress Index. For the prediction of KCFSI, we 

follow Bekaert and Hoerova (2014) by using Newey West with lags equal to max [3, 2*horizon].  

5.3.  Data and Variable 

5.3.1 Option Data 

To obtain daily investors’ ambiguity attitudes and compute the subjective adjustment factor (SAF), 

we employ a large dataset of S&P 500 European-type options from 1990 to 2012. To ensure that we 

infer investors’ ambiguity attitudes based on the most liquid option contracts, we follow the option 

contract selection procedure of the CBOE in computing VIX (Chicago Board Options Exchange,  

                                                                                                                                                                     
memory. We choose the 12-month return as it reflects short memory features plus gives a reasonable sample size (typically 252 trading 

days). We have also used different historical returns from 6 month to 5 years and volatility measures including simple historical standard 

deviation and out-of-sample GARCH-M(1,1), and found the results hold. 
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Table 5.1. Summary Statistics of the Option Dataset 

This table reports general summary statistics in Panel A and descriptive statistics of the option dataset sorted by day-to-maturity (DTM),  level of VIX, and the 

level of OMAA in Panel B, C, and D respectively. The option dataset covers Jan 1990 to Dec 2012. 

 

2014). We include both call and put options with various moneyness levels covering out-of-the-

money (OTM), at-the-money (ATM), and in-the-money (ITM). In line with the VIX computational 

approach, we consider both near-term and next-term options. The aggregate option market ambiguity 

attitude measure is then taken as the average of OMAA across different maturities. Table 5.1 reports 

the descriptive statistics for our option data. From Panel A of Table 5.1, our option dataset covers 

nearly one million contract-days with an average moneyness (S/K) of 1.06 and an average day-to-

maturity of 31.92 days. We also report summary statistics according to day-to-maturity, level of VIX, 

and level of OMAA for a clear description of the sample characteristics. Panels B and C show that our 

dataset characteristics are consistent with those of standard option datasets used in extant research. 

Fundamental characteristics of option prices can be noted. A decreasing implied volatility across 

increasing days-to-maturity is consistent with the observed volatility term structure. Interestingly, 

Panel D of Table 5.1 documents an increased bid-ask spread when ambiguity is high (i.e., when 

OMAA is away from neutrality 0.5). This is consistent with existing literature relating depressed 

liquidity and limited participation to increased ambiguity (Epstein and Schneider, 2007; Cao, Wang 

and Zhang, 2005; Ui, 2011).  

Panel A. General Summary Statistics

Total Number of Option Prices 947,314

Average Moneyness 1.060

Average DTM 31.921

Panel B. By Day-to-maturity (DTM) DTM < 14 14 ≤ DTM < 30 30 ≤ DTM < 45 45 ≤ DTM < 60 60 ≤ DTM All

Number of Contract-days 159,278 292,004 248,574 180,336 67,122 947,314

Average Price 42.520 58.191 67.021 68.536 68.286 60.558

Average Implied Volatility 0.316 0.279 0.260 0.237 0.228 0.269

Average Bid-ask Spread 1.758 1.792 1.889 1.813 1.805 1.817

Average Bid-ask Spread / Price 4.14% 3.08% 2.82% 2.64% 2.64% 3.00%

Panel C. By level of VIX VIX < 15 15 ≤ VIX < 20 20 ≤ VIX < 25 25 ≤ VIX < 30 30 ≤ VIX All

Number of Contract-days 194,076 271,666 232,506 113,472 135,594 947,314

Average Price 37.288 54.706 67.175 73.103 83.740 60.558

Average Implied Volatility 0.153 0.221 0.274 0.323 0.475 0.269

Average Bid-ask Spread 1.232 1.728 1.883 1.976 2.583 1.817

Average Bid-ask Spread / Price 3.30% 3.16% 2.80% 2.70% 3.08% 3.00%

Panel D. By level of OMAA OMAA < 0.25 0.25 ≤ OMAA < 0.5 0.5 ≤ OMAA < 0.75 0.75 ≤ OMAA All

Number of Contract-days 194 259,936 680,484 6,700 947,314

Average Price 59.275 60.905 60.012 102.545 60.558

Average Implied Volatility 0.309 0.280 0.262 0.551 0.269

Average Bid-ask Spread 2.988 1.815 1.798 3.793 1.817

Average Bid-ask Spread / Price 5.04% 2.98% 3.00% 3.70% 3.00%
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5.3.2 Other Data 

Besides our option data, we obtain the daily closing level of S&P 500 index, daily 1-month USD 

LIBOR, and trailing 12-month dividend of the S&P 500 portfolio from Thomson Datastream. For the 

international volatility spillover analysis, we employ implied volatility indices data from seven 

countries with option trading activity obtained from Thomson Datastream. Our dataset spans the 

period from 1990 to 2014.  

We consider the predictive power of the improved VRP and its variance components to market 

excess returns, industrial production growth, and the Kansas City Financial Stress Index (KCFSI). 

Excess return is computed as the monthly annualized logarithmic return of the S&P 500 index in 

excess of the 3-month treasury yield. Industrial production growth is computed as the annualized 

logarithmic change of industrial production. In market excess returns prediction, we also control for 

other established predictors of returns including the consumption wealth ratio (CAY) measured by a 

linear combination of consumption, labor income and asset holdings (Lettau and Ludvigson, 2001), 

credit spread (CS) measured as the difference between Moody’s BAA and AAA yield indices, 

dividend yield (DY) of S&P 500 portfolio, price-to-earnings ratio (PER) of S&P 500 portfolio, 

stochastically detrended short rate (RREL), and term spread (TS) measured as the difference between 

10-year treasury bond and 3-month treasury bill yields. The KCFSI, industrial production, Moody’s 

BAA and AAA yield indices, and treasury yields used to compute TS were obtained from the website 

of the Federal Reserve Bank of St. Louis. CAY data is obtained from Martin Lettau’s website. VRP 

data is obtained from Hao Zhou’s website. Monthly data on S&P 500 dividend yield and price-

earnings ratios (PER) were obtained from Robert Shiller’s website. S&P 500 data was obtained from 

Thomson Datastream. Table A5.1 in the Appendix provides descriptions of the data series, variables 

and data sources used. Figure 5.1 plots the VRP and its two components together with their 

subjectively adjusted counterparts. Table 5.2 reports the descriptive statistics for all predictor 

variables and the target variables predicted. In Panel A of Table 5.2, market excess returns are on 

average positive meaning the US equity market in general delivers positive risk-adjusted returns to 

investors. Predictor variables used are generally highly autocorrelated except VRP (AR(1)=0.26) and 

SVRP (AR(1)=0.30). 
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Figure 5.1. Predicting Excess Returns 

This figure plots the key variables used in this study, including variance premium (VRP), ambiguity-adjusted variance premium (SVRP), implied variance (IV), 

ambiguity-adjusted implied variance (SIV), realized variance (RV), ambiguity-adjusted realized variance (SRV), industrial production growth (IPG), S&P 500 

excess returns (ER), Kansas City Financial Stress Index (KCFSI), and Subjective Adjustment Factor (SAF). The sample covers monthly observations from Jan 

1990 to Dec 2012.  

Panel A. VRP Panel B. SVRP 

  

Panel C. IV Panel D. SIV 

  

Panel E. RV Panel F. SRV 

  

Panel G. ER Panel H. IPG 

  

Panel I. KCFSI Panel J. SAF 

  

Turning to Panel B of Table 5.2, contemporary market excess returns are weakly correlated with  

predictor variables except IV (ρ=-0.42), RV (ρ=-0.38) and their subjectively adjusted counterparts 

SIV (ρ=-0.41) and SRV (ρ=-0.38).  
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Table 5.2. Summary Statistics of Variables 

This table reports the summary statistics and correlation matrix of the variables considered. ER is the excess return of S&P 500 index computed as the 

logarithmic return of S&P500 index in excess of the logarithmic yield of 3-month treasury yield. IPG is the logarithmic industrial production growth. KCFSI is 

the Kansas City Financial Stress Index. OMAA is option market ambiguity attitudes computed according to eq. 6. SAF is the subjective adjustment factor 

computed according to eq. 7. VRP and SVRP are variance premium and ambiguity-adjusted variance premium respectively. IV and SIV are implied variance 

and ambiguity- adjusted implied variance respectively. RV and SRV are realized variance and ambiguity- adjusted realized variance respectively. DY is the 

dividend yield of S&P 500 index portfolio. PER is the price-to-earnings ratio of S&P 500 index portfolio. CS is the credit spread computed as the difference 

between Moody’s BAA and AAA bond yield indices. TS is the term spread computed as the difference between 10-year and 3-month treasury yields. CAY is 

consumption wealth ratio. RREL is stochastically detrended short rate. Variables are denoted in annualized percentages whenever suitable. The sample period 

covers end-of-month observations from Jan 1990 to Dec 2012.  

 

 

5.4.  Financial and Economic Predictability Findings 

To assess the informational content of our ambiguity-adjusted measures of variance risk premium and 

the two market variance components, we revisit the predictive power evidence documented in the 

literature. Similar to Bekaert and Hoerova (2014), we consider three aspects or dimensions of 

uncertainty by predicting stock market excess returns, economic activity proxied by industrial 

production growth, and financial instability proxied by the Kansas City Financial Stress Index. In the 

additional results section, we examine how the SAF affects international volatility prediction 

dynamics and its role in related spillovers. We find that the predictive power of SVRP is more 

significant than VRP in predicting market excess returns, and SIV (SRV) is more significant in 

predicting industrial production growth than IV (RV). In addition, we also find improved information 

content to financial instability by SRV when compared to RV. Analysis of market volatility across 

seven countries (with option trading activity) suggests that accounting for model uncertainty and 

ambiguity in international volatility modeling can improve the detection of spillover effects. 

Panel A. Descriptive Statistics

ER IPG KCFSI OMAA SAF VRP SVRP IV SIV RV SRV DY PER CS TS CAY RREL

Mean 6.03 2.02 0.09 0.53 0.98 18.01 17.94 39.79 38.31 21.78 20.37 2.10 25.15 -23.05 1.88 0.27 -0.08

Std.Dev. 52.51 7.98 1.04 0.06 0.03 21.89 19.30 35.61 31.19 39.94 31.19 0.66 16.00 15.99 1.16 1.57 0.33

Skewness -0.77 -1.74 2.85 0.02 -5.50 -3.88 -1.71 3.34 2.52 8.14 6.42 0.66 4.18 -4.06 -0.15 0.04 -0.39

Kurtosis 1.57 8.79 11.20 1.76 36.06 50.78 26.83 16.31 8.36 90.10 61.41 -0.48 20.07 19.25 -1.14 -0.99 0.10

Max 126.91 24.71 6.18 0.77 1.00 115.85 113.87 298.90 214.98 517.46 372.17 3.88 123.73 -10.33 3.76 3.10 0.68

Min -222.77 -51.59 -1.01 0.32 0.71 -218.56 -157.20 9.05 9.02 1.73 1.70 1.11 13.50 -120.83 -0.53 -3.19 -1.02

AR(1) 0.07 0.24 0.95 0.35 0.56 0.26 0.30 0.80 0.80 0.65 0.68 0.99 0.97 0.97 0.98 0.95 0.83

Bond Fundamental Other Predictors
Uncertainty 

measures
Variance Premium Implied Variance Realized Variance Equity Fundamental

Panel B. Correlation Matrix

ER IPG KCFSI OMAA SAF VRP SVRP IV SIV RV SRV DY PER CS TS CAY RREL

ER 1.00

IPG 0.02 1.00

KCFSI -0.31 -0.53 1.00

OMAA 0.03 -0.16 0.16 1.00

SAF 0.23 0.24 -0.49 -0.48 1.00

VRP 0.00 -0.01 -0.01 -0.26 0.39 1.00

SVRP -0.05 0.00 0.04 -0.26 0.35 0.99 1.00

IV -0.42 -0.25 0.81 0.13 -0.56 0.10 0.19 1.00

SIV -0.41 -0.24 0.79 0.06 -0.44 0.22 0.31 0.99 1.00

RV -0.38 -0.22 0.73 0.26 -0.71 -0.46 -0.38 0.84 0.76 1.00

SRV -0.38 -0.24 0.77 0.21 -0.66 -0.39 -0.31 0.87 0.81 0.99 1.00

DY -0.02 -0.13 0.09 0.02 -0.11 -0.05 -0.04 0.04 0.01 0.06 0.04 1.00

PER 0.03 -0.23 0.49 0.02 -0.06 0.19 0.22 0.40 0.44 0.25 0.30 0.04 1.00

CS -0.04 0.22 -0.49 -0.02 0.06 -0.19 -0.22 -0.40 -0.44 -0.25 -0.30 0.00 -1.00 1.00

TS -0.04 0.02 0.03 0.10 -0.11 -0.06 -0.05 0.06 0.05 0.09 0.08 0.35 0.22 -0.21 1.00

CAY 0.04 -0.01 -0.05 -0.02 -0.12 0.12 0.14 0.10 0.09 0.02 0.01 0.45 -0.03 0.05 0.17 1.00

RREL 0.10 0.27 -0.43 -0.04 0.20 -0.07 -0.09 -0.31 -0.31 -0.24 -0.25 -0.20 -0.31 0.30 -0.36 -0.10 1.00
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5.4.1  Predicting Equity Market Excess Returns 

Table 5.3 reports the predictive regression results according to equation (8). From Panel A of Table 

5.3, VRP shows strong predictive power to market excess return from 1- to 12-month horizons with 

the adjusted R
2
 ranging from 2.91% to 11.89%. The most significant prediction horizon is at 3-month. 

This predictive pattern is generally in line with the findings reported in the literature (Bolleslev et. al, 

2009; Bolleslev et. al, 2014). Turning to the SVRP results, a significant improvement in informational 

content is observed. Robust t-statistics of the estimated coefficient of SVRP and the adjusted R
2
 

improve in every single predictive horizon. Robust t-statistics of SVRP range from 1.65 in 24-month 

horizon to 3.88 in 3-month horizon. The general predictive pattern of VRP is preserved with the 

strongest predictive power at  

Table 5.3. Predicting Excess Returns 

This table reports the excess returns prediction results. VRP and SVRP are variance premium and ambiguity-adjusted variance premium respectively. IV and 

SIV are implied variance and ambiguity-adjusted implied variance respectively. RV and SRV are realized variance and ambiguity-adjusted realized variance 

respectively. DY is the dividend yield of S&P 500 index portfolio. PER is the price-to-earnings ratio of S&P 500 index portfolio. CS is the credit spread 

computed as the difference between Moody’s BAA and AAA bond yield indices. TS is the term spread computed as the difference between 10-year and 3-

month treasury yields. CAY is consumption wealth ratio. RREL is stochastically detrended short rate. Sample covers 1990M01 to 2012M12. Hodrick (1992) t-

statistics are reported in squared brackets. *,**, and *** denote significance at 90%, 95%, and 99% confidence levels respectively.  

 

 

Horizon

Panel A. Regressions w ith (ambiguity-adjusted) variance premium

Constant -3.94 -2.69 0.70 3.91 4.48 4.71 -5.68 -4.32 -0.46 3.26 3.94 4.28

[-0.77] [-0.69] [0.19] [1.22] [1.48] [1.60] [-1.06] [-1.08] [-0.12] [1.00] [1.28] [1.43]

VRP 0.58 ** 0.50 *** 0.31 *** 0.14 * 0.10  0.08        

[2.43] [3.65] [3.03] [1.92] [1.56] [1.54]

SVRP 0.68 *** 0.60 *** 0.38 *** 0.18 ** 0.13 * 0.11 *

[2.62] [3.88] [3.32] [2.07] [1.71] [1.65]

Adj R2 (%) 5.61 11.89 8.02 2.91 1.73 1.52 5.99 12.98 9.18 3.64 2.39 2.03

241 3 6 12 18 24 1 3 6 12 18

Horizon

Panel B. Regressions w ith (ambiguity-adjusted) variance premium and other predictors

Constant -18.49  -19.66  -18.80  -15.02  -12.01  -10.55  -20.18  -21.23  -19.90  -15.62  -12.47  -10.82  

[-1.06] [-1.27] [-1.41] [-1.24] [-1.01] [-0.97] [-1.16] [-1.38] [-1.49] [-1.29] [-1.05] [-0.99]

CAY 1.89  2.34  3.27 * 4.45 *** 4.65 *** 4.84 *** 1.58  2.07  3.08 * 4.35 ** 4.59 *** 4.80 ***

[0.87] [1.23] [1.79] [2.61] [2.72] [2.84] [0.72] [1.08] [1.68] [2.55] [2.68] [2.82]

CS -7.13  -5.09  1.89  7.30  3.61  2.43  -8.01  -5.78  1.50  7.11  3.56  2.34  

[-0.48] [-0.35] [0.16] [0.94] [0.63] [0.49] [-0.54] [-0.40] [0.13] [0.92] [0.62] [0.47]

DY 9.32  9.10  7.07  4.30  3.18  2.61  9.70  9.43  7.28  4.42  3.25  2.66  

[1.51] [1.56] [1.28] [0.90] [0.73] [0.69] [1.56] [1.62] [1.31] [0.92] [0.74] [0.70]

PER 0.19  0.26  0.18  0.00  0.04  0.03  0.17  0.24  0.17  -0.01  0.04  0.03  

[0.65] [1.02] [0.84] [-0.00] [0.30] [0.29] [0.60] [0.96] [0.78] [-0.04] [0.26] [0.27]

RREL 27.02 ** 28.03 *** 29.30 *** 28.32 *** 20.25 ** 13.56 ** 27.56 *** 28.52 *** 29.64 *** 28.50 *** 20.39 ** 13.65 **

[2.58] [2.97] [3.13] [3.02] [2.44] [2.14] [2.62] [3.02] [3.16] [3.03] [2.45] [2.15]

TS -0.62  -0.97  -0.12  1.89  2.91  3.32  -0.48  -0.84  -0.03  1.95  2.95  3.34  

[-0.21] [-0.34] [-0.04] [0.77] [1.32] [1.56] [-0.16] [-0.29] [-0.01] [0.79] [1.33] [1.57]

VRP 0.57 ** 0.48 *** 0.30 *** 0.15 ** 0.09 * 0.07        

[2.28] [3.52] [3.21] [2.37] [1.72] [1.61]

SVRP       0.69 ** 0.58 *** 0.37 *** 0.19 ** 0.12 * 0.09  

[2.48] [3.78] [3.41] [2.42] [1.82] [1.61]

Adj R2 (%) 8.07 23.06 29.32 46.31 51.50 59.30 8.61 24.35 30.47 46.95 51.94 59.51

241 3 6 12 18 24 1 3 6 12 18
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3-month horizon. More importantly, the predictive power of SVRP is present from 1- to 24-month 

horizons, extending the predictive horizon of the original VRP from 12- to 24-month. This confirms 

the informational relevance of ambiguity attitudes and model uncertainty in estimating the variance 

risk premium
4
.  

While the univariate results show promising evidence about the improvement provided by the SAF 

and the extracted ambiguity information from option prices, it is also important to consider other 

variables at the same time. Evidence has shown that the equity risk premium is driven by more than 

one source of information (Ang and Bekaert, 2007; Menzly, Santos and Veronesi, 2004), making it 

important to control for other known predictors of future excess returns. By considering other known 

predictor variables, we can also verify if the information embedded in SAF is overlapped with other 

market-based quantities. Panel B considers a multivariate specification that includes other known 

predictors of excess returns such as the consumption wealth ratio (CAY), credit spread (CS), dividend 

yield (DY), price-to-earnings ratio (PER), stochastically detrended short rate (RREL), and term spread 

(TS). In Panel B, VRP’s significance improves from 6- to 24-month horizons with the inclusion of 

other predictor variables. The most significant prediction horizon is achieved at 3-month with a robust 

t-statistics of 3.52. Overall the predictive pattern is in line with Bolleslev et. al’s (2009) findings 

regarding the enhancing effect of PER. RREL is significant in predicting future excess returns in all 

horizons while CAY is significant from 6- to 24-month horizons. Turning to the regressions involving 

SVRP and other predictors, the estimated t-statistics and adjusted R
2
 improve in all horizons when 

compared to the multivariate specification with VRP. The most significant prediction is still at 3-

month with robust t-statistics of 3.78, equivalent to a 7% improvement in t-statistics. The coefficients 

and significance of other predictor variables are very similar to those of the standard VRP regressions. 

These results confirm that the additional informational content harbored in SVRP is unique and not 

due to information overlap with other known predictors.  The informational content of SAF seems to 

                                                      
4 We have also examined the out-of-sample forecasting power of SVRP versus VRP. Following Campbell and Thompson (2008), Welch and 

Goyal (2008), and Rapach, Strauss and Zhou (2009), we compared the out-of-sample R2, utility gain for investors’ asset allocation and 

annualized returns from optimal portfolios using out-of-sample return forecasts by SVRP and VRP. Our ambiguity-adjusted VRP delivers 

higher out-of-sample R2, utility gain and annualized returns when compared to VRP forecasts. Results are available from the authors upon 

request.  
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be distinct from other predictor variables and VRP itself. Our finding confirms the improvement 

brought by the inclusion of ambiguity aversion from option prices and calls for the consideration of 

ambiguity corrections in financial and economic prediction.
5
 As mentioned above, these findings are 

robust to alternative proxies for ambiguity, which do not rely solely on option information. Having 

demonstrated the improvement to VRP with a simple SAF correction, we now turn to its two variance 

components. As (S)IV and (S)RV do not normally predict market excess returns, we investigate the 

improvement in information content when predicting real economic activity and financial instability. 

This is in line with Bekaert and Hoerova (2014) who analyze the improvements brought by better 

estimations of the conditional variance. Our analysis is different in that it tackles the problem of 

(mis)estimation of market variance from a model uncertainty point of view. 

Table 5.4. Predicting Economic Activity 

This table reports the industrial production growth prediction results. VRP and SVRP are variance premium and ambiguity-adjusted variance premium 

respectively. IV and SIV are implied variance and ambiguity-adjusted implied variance respectively. RV and SRV are realized variance and ambiguity-adjusted 

realized variance respectively. Sample covers 1990M01 to 2012M12. Hodrick (1992) t-statistics are reported in squared brackets. *,**, and *** denote 

significance at 90%, 95%, and 99% confidence levels respectively.  

 

 

5.4.2  Predicting Real Economic Activity 

To understand better the dynamics between SAF, VRP and its two variance components, we examine 

the economic activity predicting ability of VRP and its two variance components vis-à-vis their 

subjectively adjusted counterparts. Table 5.4 reports the predictive regression results for (S)VRP and 

(S)RV in Panel A, and (S)IV in Panel B. In Panel A of Table 5.4, stock market returns variance RV 

                                                      
5 We have also examined if SVRP provide improved predictive power to market excess returns in six other countries including France, 

Germany, Japan, Netherlands, Switzerland, and United Kingdom. Except for Japan, in which VRP does not predict ex post excess return, 

SVRP shows improved predictive power in all countries. Results are available from the authors upon request. 

Horizon

Panel A. Regressions w ith (ambiguity-adjusted) variance premium and realized variance

Constant 4.49 *** 4.30 *** 3.40 *** 2.55 *** 2.23 *** 2.11 *** 2.06 *** 2.07 *** 4.36 *** 4.26 *** 3.34 *** 2.56 *** 2.26 *** 2.14 *** 2.09 *** 2.10 ***

[4.39] [5.84] [5.34] [4.60] [4.10] [3.81] [3.68] [3.75] [4.77] [5.89] [5.29] [4.61] [4.14] [3.82] [3.69] [3.75]

VRP -0.04  -0.03  -0.01  0.01  0.01  0.01  0.01  0.01          

[-1.20] [-1.20] [-0.32] [0.67] [1.02] [0.98] [0.96] [0.70]

RV -0.08 ** -0.08 *** -0.06 *** -0.03 ** -0.02 * -0.01  -0.01  -0.01          

[-2.48] [-2.68] [-2.92] [-2.43] [-1.84] [-1.47] [-1.28] [-1.28]

SVRP         -0.03  -0.01  0.01  0.02  0.02  0.01  0.01  0.01  

[-0.78] [-0.49] [0.49] [1.23] [1.42] [1.26] [1.18] [0.89]

SRV         -0.09 *** -0.10 *** -0.07 *** -0.04 *** -0.03 ** -0.02 * -0.01 * -0.01 *

[-2.65] [-2.76] [-3.02] [-2.65] [-2.20] [-1.86] [-1.70] [-1.74]

Adj R2 (%) 11.46 27.40 20.17 8.28 4.08 2.24 1.61 0.95 10.88 26.90 20.42 9.64 5.46 3.23 2.40 1.67

1 3 6 12 18 1 3 6 1224 30 36 3618 24 30

Horizon

Panel B. Regressions w ith (ambiguity-adjusted) implied variance

Constant 5.02 *** 5.14 *** 4.24 *** 3.15 *** 2.69 *** 2.46 *** 2.36 *** 2.30 *** 5.04 *** 5.16 *** 4.21 *** 3.17 *** 2.74 *** 2.50 *** 2.38 *** 2.34 ***

[4.54] [4.97] [5.80] [5.96] [5.56] [5.13] [4.95] [4.89] [4.93] [5.37] [5.85] [5.86] [5.44] [4.95] [4.74] [4.71]

IV -0.07 ** -0.08 *** -0.06 *** -0.03 ** -0.02 * -0.01  -0.01  -0.01          

[-2.50] [-2.75] [-2.91] [-2.36] [-1.74] [-1.37] [-1.16] [-1.16]

SIV         -0.08 *** -0.08 *** -0.06 *** -0.03 ** -0.02 * -0.01  -0.01  -0.01  

[-2.73] [-2.99] [-2.96] [-2.36] [-1.78] [-1.38] [-1.13] [-1.17]

Adj R2 (%) 10.90 23.51 15.07 4.90 1.78 0.70 0.30 0.19 9.04 19.71 12.02 4.14 1.66 0.66 0.27 0.24

24 30 361 3 6 12 18 30 361 3 6 12 18 24
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robustly predicts economic activity, proxied by industrial production growth, from 1- to 18- month 

horizons. The coefficient of RV is consistently negative suggesting that heightened volatility is 

associated with depressed ex post economic output. For the prediction horizons considered, the robust 

t-statistics of RV range from -1.28 to -2.92. VRP does not show any predictive ability towards 

industrial production growth when RV is controlled for. This is in line with the findings of Bekaert 

and Hoerova (2014). Turning to the set of results on the right hand side of Panel A, SAF clearly 

improves the predictive ability of RV in all horizons considered. SRV robustly predicts IPG from 1- 

to 36-month horizons with improved robust t-statistics from -1.70 to -3.02. The coefficient of SRV is 

consistently negative. This is in line with studies suggesting that market volatility is negatively 

associated with ex post economic activity (Bloom, 2009; Caggiano, Castelnuovo and Groshenny, 

2014). This impressive improvement echoes the findings in the last section regarding the importance 

of considering ambiguity and model uncertainty in the estimation of market variance.  

Panel B reports the predictive regression results of IV and SIV. The predictive performance of IV 

is similar to that of RV. IV robustly predicts ex post IPG from 1- to 18-month horizons with robust t-

statistics from -1.74 to -2.91. In the last specification with SIV as the sole independent variable to 

predict IPG, SIV robustly predicts IPG with negative coefficients. Robust t-statistics of SIV, ranging 

from -1.78 to -2.99 for 1- to 18-month horizons, are generally improved in short- and medium-term 

horizons compared to IV. Results in Table 5.4 confirm that in addition to more efficiently predicting 

market excess return, ambiguity-adjusted measures of market volatility harbor additional 

informational content towards the prediction of economic activity. Our results hold when alternative 

proxies for ambiguity such as BEAR, BULL, UMCSI, and CCI are used instead of the option-based 

scaling factor. 

5.4.3  Predicting Financial Instability 

This section investigates whether ambiguity-adjusted market variance (SRV and SIV) and variance 

premium (SVRP) are also able to improve the predictive ability of standard VRP and variance (IV and 

RV) when it comes to financial instability. While there are several financial instability indicators 

available, finding one that spans our entire sample period is not easy. We use the Kansas City 
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Financial Stress Index (KCFSI) as our target indicator because it covers data from 1990.
6
 KCFSI is a 

principle component of 11 indicators including treasury yield, interest rate swap spread, idiosyncratic 

volatility of bank share prices, cross-sectional dispersion of bank stock returns, and VIX. We regress 

the level of KCFSI 1 to 24 months ahead on our VRP, IV, RV variables, and their subjectively 

adjusted counterparts. One important point to note is that given that KCFSI contains direct 

information from VIX, regressions involving IV can be biased by the autocorrelation of VIX. Any 

adjustment to VIX with a stochastic adjustment factor will therefore diminish its forecasting accuracy 

vis-à-vis the KCFSI especially for shorter prediction horizons. Therefore in analyzing the predictive 

power of IV and its ambiguity-adjusted counterpart SIV, we focus on longer prediction horizons (i.e., 

>12-months) when the autocorrelation problem is far less pronounced.  

Table 5.5. Predicting Financial Instability 

This table reports the Kansas City Financial Street Index prediction results. VRP and SVRP are variance premium and ambiguity-adjusted variance premium 

respectively. IV and SIV are implied variance and ambiguity-adjusted implied variance respectively. RV and SRV are realized variance and ambiguity-adjusted 

realized variance respectively. Sample covers 1990M01 to 2012M12. Newey and West (1987) t-statistics with lag equals to max[3,2*horizon] are reported in 

squared brackets. *,**, and *** denote significance at 90%, 95%, and 99% confidence levels respectively.  

 

 

 

                                                      
6 We have also used CISS, a composite index of financial stress for Europe, and the Macroeconomic Uncertainty Index developed by Bali, 

Brown and Caglayan (2014), which is a principal component of eight financial and economic based risk factors, as alternative proxies and 

found similar results.  

Horizon

Panel A. Regressions w ith (ambiguity-adjusted) variance premium 

Constant 0.10  0.16  0.16  0.06  0.07  0.11  0.04  0.13  0.15  0.05  0.07  0.13  

[0.36] [0.58] [0.56] [0.19] [0.22] [0.35] [0.16] [0.43] [0.47] [0.16] [0.22] [0.36]

VRP 0.00  0.00  0.00  0.00  0.00  0.00        

[-0.05] [-0.45] [-0.64] [0.15] [0.00] [-0.42]

SVRP       0.00  0.00  0.00  0.00  0.00  0.00  

[0.19] [-0.22] [-0.42] [0.19] [-0.03] [-0.42]

Adj R2 (%) -0.35 0.33 0.42 -0.35 -0.39 -0.18 -0.18 -0.20 0.01 -0.33 -0.39 -0.12

24181 3 6 12 18 1 3 6 1224

Horizon

Panel B. Regressions w ith (ambiguity-adjusted) implied variance

Constant -0.85 *** -0.67 *** -0.41 ** -0.16  -0.02  0.13  -0.92 *** -0.71 *** -0.44 *** -0.20  -0.05  0.14  

[-11.98] [-6.83] [-2.50] [-0.52] [-0.06] [0.30] [-9.10] [-5.86] [-2.70] [-0.66] [-0.12] [0.29]

IV 0.02 *** 0.02 *** 0.01 *** 0.01 * 0.00  0.00        

[10.84] [8.22] [6.42] [1.95] [0.63] [-0.30]

SIV       0.03 *** 0.02 *** 0.01 *** 0.01 ** 0.00  0.00  

[7.69] [5.49] [4.89] [2.13] [0.69] [-0.28]

Adj R2 (%) 65.30 41.82 17.49 3.55 0.25 -0.18 62.72 38.58 16.27 4.13 0.44 -0.17

24181 3 6 12 18 24 1 3 6 12

Horizon

Panel C. Regressions w ith (ambiguity-adjusted) realized variance

Constant -0.32 *** -0.27 ** -0.16  -0.02  0.03  0.08  -0.43 *** -0.35 *** -0.22  -0.06  0.01  0.08  

[-3.42] [-2.31] [-0.92] [-0.08] [0.10] [0.27] [-4.85] [-3.42] [-1.36] [-0.24] [0.02] [0.26]

RV 0.02 *** 0.02 *** 0.01 *** 0.00 * 0.00  0.00        

[4.76] [7.45] [7.04] [1.91] [0.81] [-0.19]

SRV       0.03 *** 0.02 *** 0.01 *** 0.01 ** 0.00  0.00  

[6.10] [10.12] [7.43] [2.02] [0.93] [-0.15]

Adj R2 (%) 52.70 38.62 17.70 2.41 0.11 -0.37 58.51 41.74 19.47 3.54 0.46 -0.38

246 12 1824 1 31 3 6 12 18
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Our predictive regression results are presented in Table 5.5. In Panel A, VRP is not significant at 

all in predicting ex post financial stress. This is consistent with Bekaert and Hoerova (2014). In Panel 

B, IV is efficient in predicting financial instability from 1- to 13-month horizons. As noted, any 

adjustment to IV would weaken predictive ability as measured by the robust t-statistics due to the 

inclusion of VIX in the estimation of the KCFSI. In comparing the predictive power of IV and SIV, 

we focus on longer predictive horizons. Indeed from the 9-month horizon onwards, the predictive 

ability of SIV exceeds that of IV. Ambiguity-adjusted IV extends the prediction horizon of implied 

variance to 14-months. Similar findings can be observed in Panel C. RV predicts KCFSI from 1- to 

14-month horizons with robust t-statistics ranging from 1.71 to 4.76. On the other hand, SRV robustly 

improves the predictive ability to 1- to 15-month with robust t-statistics ranging from 1.81 to 6.10. 

These improvements in information content once again confirm the importance of controlling for 

model uncertainty in prediction exercises. These findings are robust to alternative ambiguity proxies 

(e.g., BULL, BEAR and UMCSI) that do not rely on option market information. The improved 

predictive power of SIV and SRV to financial instability suggests that accounting for ambiguity 

attitudes information may be key to more accurate predictions or anticipations of systemic financial 

shocks (see e.g., Fernholz, 2015 on FX interventions in times of crisis). 

5.4.4 Additional Results: Predicting International Volatility  

The evidence presented in the last three sections confirms the relevance of ambiguity attitudes and the 

SAF in economic and financial prediction. This section investigates if the informational improvement 

in volatility estimations extends to international markets.  We consider major global equity markets 

including the Netherlands (AEX index), France (CAC index), Germany (DAX index), the United 

Kingdom (FTSE index), Japan (NIKKEI index), Switzerland (SMI index), and the United States (SPX 

Index). Due to data availability, we extract the SAF from the publicly available VIX-equivalent 

volatility indices in those countries
7
. While volatility spillover effects are well documented in the 

literature (see for example, Hamao, Masulis and Ng, 1990; King and Wadhwani, 1990; Lin, Engle and 

                                                      
7 The selection of these seven countries is due to data availability and liquidity considerations. Similar analyses focusing on these countries 

include Bollerslev, Marrone, Xu and Zhou (2014).  
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Ito, 1994; Fleming, Kirby and Ostdiek, 1998; Bekaert and Wu, 2000; Baele, 2005), the potential role 

played by ambiguity aversion has not been examined empirically. It is, therefore, important to verify 

whether international volatility prediction can be improved with a simple adjustment for ambiguity. 

To compare the efficiency of capturing volatility spillovers internationally, we estimate a system of 

equations that allows for multiple channels of information propagation. A similar methodology has 

been adopted by Degryse and Ongena (2001) in analyzing the association between bank relationships 

and firm profitability, and by Buch, Koch and Koetter (2013) in analyzing the relationship between 

banks’ internationalization and risk. We first specify the following system of regression equations to 

understand how foreign realized variance affects local realized variance: 

Model 1  

    
               

            
            

             
               

            
    

    
               

            
            

             
               

            
    

    
               

            
            

             
               

            
    

    
                

            
            

            
               

            
    

    
                  

            
            

            
             

            
    

    
               

            
            

            
             

               
    

    
               

            
            

            
             

               
    

(5.9) 

where     
  represents the first difference of realized variance of index i return at time t,   denotes 

the constants, and   denotes the coefficients of the lagged foreign market realized variance. It is worth 

noting that we constrain the coefficient of one independent variable to be equal across all seven 

equations. This allows us to understand the joint impact of any specific market variance on the 

variance of other markets. The setting also facilitates easier comparison between models using 

“ambiguity-free” and ambiguity-adjusted variance. For comparison with (9), we also specify the 

following ambiguity-adjusted realized variance system: 

Model 2  

    
                

             
             

              
                

             
    

    
                

             
             

              
                

             
    

    
                

             
             

              
                

             
    

    
                 

             
             

             
                

             
    

    
                   

             
             

             
              

             
    

    
                

             
             

             
              

                
    

    
                

             
             

             
              

                
    

(5.10) 
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where      
  is the first difference of ambiguity-adjusted realized variance for index i at time t.   

We also investigate similar relationships among global VRPs according to the following system: 

Model 3  

    
               

            
            

             
               

            
    

    
               

            
            

             
               

            
    

    
               

            
            

             
               

            
    

    
                

            
            

            
               

            
    

    
                  

            
            

            
             

            
    

    
               

            
            

            
             

               
    

    
               

            
            

            
             

               
    

(5.11) 

where     
  is the VRP of index i at time t. The ambiguity-equivalent system is specified as follows: 

Model 4  

    
                

             
             

              
                

             
    

    
                

             
             

              
                

             
    

    
                

             
             

              
                

             
    

    
                 

             
             

             
                

             
    

    
                   

             
             

             
              

             
    

    
                

             
             

             
              

                
    

    
                

             
             

             
              

                
    

(5.12) 

where      
  is the SVRP of index i at time t.  

We estimate the regression systems using joint OLS and report the results in Table 5.6. We only 

report coefficients but not the constants for ease of presentation. From Table 5.6, the realized 

variances of DAX, NIKKEI, and SPX are significant as sources of international market volatility. 

Interestingly the strongest spillover signal comes from NIKKEI with t-statistics of -4.55. Turning to 

Model 2 which uses the SRVs of foreign markets as determinants of volatility spillovers, some clear 

improvements are observed. The t-statistics of AEX, CAC, FTSE, NIKKEI, SMI, and SPX SRVs all 

improved documenting six statistically significant sources of spillovers instead of three in the case 

without ambiguity (Model 1). With improvements in six out of seven countries considered, the 

average adjusted R
2
 from the seven individual regression equations increases from 3.81% in Model 1 

to 4.05% in Model 2. This confirms that correcting for model uncertainty and option-based ambiguity 

attitudes in volatility estimations can better explain volatility spillovers internationally.  
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Table 5.6. Additional Results – Predicting International Volatility 

This table reports the system regressions results according to eq. (5.9), (5.10), (5.11), and (5.12). VRP and SVRP are variance premium and ambiguity-adjusted 

variance premium respectively. RV and SRV are realized variance and ambiguity-adjusted realized variance respectively. Sample covers 1990M01 to 2012M12. 

t-statistics are reported in parentheses. *,**, and *** denote significance at 90%, 95%, and 99% confidence levels respectively.  

 

Turning to Models 3 and 4, we investigate variance risk premia spillovers among countries and 

verify whether investors can be better informed about international variance risk dynamics through 

the VRP lens. In Model 3, five out of seven countries’ variance premia contribute significantly to 

local country variance premia without accounting for SAF. Turning to Model 4 which incorporates 

SAF adjustments into VRP, six out of seven countries are once again significant in explaining 

domestic variance premia in the system. Improvements in t-statistics can be particularly observed for 

AEX, NIKKEI, and SPX. The overall average adjusted R
2
 is also improved from 17.46% in Model 3 

to 24.01% in Model 4. These findings suggest that investors and policy makers can be better informed 

about international market volatility dynamics if ambiguity about volatility is explicitly accounted for. 

This also confirms the improved informational content of our ambiguity-adjusted variance and 

variance premium measures, and suggests that uncertainty beyond risk can also contribute to 

spillovers. 

  

Model 1 Model 2 Model 3 Model 4

Index Country Coefficient RV SRV VRP SVRP

AEX Netherlands β7 0.023  -0.189 * 0.213 *** 0.272 ***

(0.338) (-1.704) (4.119) (4.465)

CAC France β1 -0.034  0.166 * -0.283 *** -0.289 ***

(-0.565) (1.788) (-5.128) (-4.548)

DAX Germany β2 -0.123 *** -0.055  -0.054  0.020  

(-2.619) (-0.795) (-1.100) (0.326)

FTSE United Kingdom β3 0.047  0.291 *** 0.498 *** 0.421 ***

(0.539) (2.812) (6.792) (5.262)

NIKKEI Japan β4 -0.305 *** -0.753 *** -0.040  0.059 *

(-4.548) (-7.601) (-1.551) (1.692)

SMI Switzerland β5 -0.102  -0.293 ** 0.270 *** 0.295 ***

(-1.133) (-2.112) (3.229) (2.771)

SPX United States β6 0.156 *** 0.313 *** -0.101 ** -0.294 ***

(3.154) (4.055) (-2.039) (-4.384)

Average Adj. R2 (%) 3.81 4.05 17.46 24.01
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5.5.  Conclusion 

We examine the information content of the variance premium, implied variance and realized variance 

from the perspective of ambiguity theory. We extract option market ambiguity attitudes from traded 

option prices on the S&P 500 index and compute a subjective adjustment factor following Choquet 

and rank-dependent utility. The predictive power and informational content of the resulting 

ambiguity-adjusted variance premium and its two variance components are then tested against their 

standard (risk-based) counterparts in predicting stock market excess returns, economic activity, 

financial instability, and international volatility.  

Our results reveal clear improvements in the predictive power of the variance premium for stock 

market excess returns. The improved predictive power provided by the subjective and behavioral 

adjustment factor could still be observed when other known predictor variables of market excess 

returns are controlled for. Our results suggest that the additional information content of the ambiguity-

adjusted variance premium is unique and not due to information overlaps with other known predictors. 

Our findings also suggest that the standard risk-based VRP may not capture ambiguity aversion 

information effectively. This also validates our hypothesis that accounting for investors’ ambiguity 

attitudes improves the market returns predicting ability of the variance premium. We also document a 

robust improvement to implied and realized variance in predicting economic activity as proxied by 

industrial production growth, and to realized variance in predicting financial instability in the United 

States. Our results hold for alternative ambiguity proxies that are not inferred from option prices 

namely PUI, BULL, BEAR, UMCSI and CCI. We further investigate the volatility spillover effect 

among seven major equity markets and find that investors can be better informed about this effect if 

ambiguity aversion information is embedded in international volatility spillover detection. Our 

findings contribute to the rapidly growing literature on model uncertainty and the (mis-)estimation of 

the variance premium.   
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Appendix to Chapter 5  

Table A5.1. Descriptions of Variables, Data Series, and Data Sources 

This table describes the variables, data series and data sources. Data series from websites are downloaded in April 2016. All data series span a common sample 

period from Jan 1990 to Dec 2012.  

 

 
 

  

Panel A. Predictor Variables

Category Abbreviation Corresponding Indicator Description Source

OMAA Option Market Ambiguity Attitudes
Estimated by rank dependent option pricing model according to eq. (6). End of 

month values. 
-

SAF Subjective Adjustment Factor Computed as 4*OMAA*(1-OMAA)according to eq. (7). End of month values. -

VRP Variance Risk Premium
Variance risk premium defined as the difference between realized variance and 

implied variance of S&P 500 return, end of month values.
Hao Zhou's website

SVRP
Ambiguity-adjusted  Variance Risk 

Premium
Computed as SAF*VRP, end of month values. -

IV S&P500 Implied Variance S&P 500 option implied variance computed as VIX
2
, end of month values. CBOE website

SIV Ambiguity-adjusted Implied Variance Computed as SAF*IV, end of month values. -

RV S&P 500 Realized Variance Sum of squared 5-min intraday returns of S&P 500 index, end of month values Hao Zhou's website

SRV Ambiguity-adjusted Realized Variance Computed as SAF*RV, end of month values. -

DY Dividend Yield Aggregate dividend yield of S&P 500 composite. Robert Shiller's website

PER Price-to-earnings Ratio Reciprocal of aggregate price to earnings ratio of S&P 500 composite. Robert Shiller's website

CS Credit Spread (BAA yield - AAA yield) Difference between Moody's BAA and AAA corporate bond yield. 
Federal Reserve Bank of St. 

Louis FRED

TS
Yield Curve (Term Spread, 10Y T-

yield - 3M T-yield)
Difference between 10-year and 3-month U.S. treasury bond yield. 

Federal Reserve Bank of St. 

Louis FRED

CAY Consumption Wealth Ratio Consumption Wealth Ratio by Lettau and Ludvigson 2004 Martin Lettau’s website

RREL Stochastically Detrended Short Rate
Computed as the difference between one-month treasury bill rate and its 12-

month moving average
-

Uncertainty Measures

Variance Premium

Option Implied Variance

Other Predictors

Realized Variance

Equity fundamentals

Bond fundamentals

Panel B. Prediction Targets

Category Abbreviation Corresponding Indicator Description Source

Equity Market Returns ER S&P500 Excess Return S&P 500 index return in excess of 3-month treasury bond yield. Thomson Datastream

Economic Activity IPG Industrial Production Growth

Logorithmic change of k-month horizon industrial production index, measured 

as the real seasonally adjusted output for all facilities located in the United 

States manufacturing, mining, and electric, and gas utilities.  

Board of Governors of the 

Federal Reserve System 

Finanical Instability KCFSI Kansas City Financial Stress Index Principal component of 11 variables.
Federal Reserve Bank of 

Kansas City  
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Table A5.2. Results with Alternative Ambiguity Proxy 

This table reports the prediction results of adjusted VRP, IV, and RV using an alternative proxy for ambiguity. The alternative proxy used is Investors 

Intelligence Bearish Index (BEAR). Ambiguity attitudes (AABEAR) are proxied by the scaled Bearish Index computed as: 

         (                    [   ] ) (              [   ]                [   ] ) 

            (          )           

VRP is the variance premium. IV is implied variance. RV is realized variance. DY is the dividend yield of S&P 500 index portfolio. PER is the price-to-earnings 

ratio of S&P 500 index portfolio. CS is the credit spread computed as the difference between Moody’s BAA and AAA bond yield indices. TS is the term spread 

computed as the difference between 10-year and 3-month treasury yields. CAY is consumption wealth ratio. RREL is stochastically detrended short rate. Sample 

covers 1990M01 to 2012M12. Hodrick (1992) t-statistics are reported in squared brackets for regressions on market excess returns and industrial production 

growth. Newey and West (1987) t-statistics with lag equals to max[3,2*horizon] are reported in squared brackets for regressions on Kansas City Financial Stress 

Index. *,**, and *** denote significance at 90%, 95%, and 99% confidence levels respectively. 

 

 

 

 
 

  

Horizon

Panel A. Predicting Excess Returns w ith adjusted variance premium and other predictors

Constant -19.68  -20.39  -19.21  -15.20  -12.15  -10.66  

[-1.12] [-1.32] [-1.44] [-1.26] [-1.02] [-0.98]

CAY 158.94  211.52  312.98 * 438.48 *** 461.17 *** 480.68 ***

[0.72] [1.10] [1.71] [2.58] [2.69] [2.83]

CS -7.12  -5.22  1.79  7.22  3.60  2.42  

[-0.48] [-0.36] [0.15] [0.93] [0.63] [0.49]

DY 9.69  9.40  7.25  4.40  3.24  2.65  

[1.56] [1.61] [1.31] [0.92] [0.74] [0.70]

PER 0.17  0.24  0.17  0.00  0.04  0.03  

[0.57] [0.96] [0.80] [-0.02] [0.28] [0.28]

RREL 27.45 *** 28.32 *** 29.46 *** 28.40 *** 20.31 ** 13.61 **

[2.61] [3.00] [3.15] [3.03] [2.45] [2.15]

TS -0.27  -0.71  0.04  1.97  2.96  3.36  

[-0.09] [-0.25] [0.01] [0.80] [1.33] [1.57]

SAFBEAR*VRP 0.65 ** 0.54 *** 0.33 *** 0.17 ** 0.11 * 0.08 *

[2.36] [3.59] [3.36] [2.47] [1.80] [1.67]

Adj R2 (%) 8.53 23.46 29.51 46.35 51.56 59.36

1 3 6 12 18 24

Horizon

Panel B. Predicting Industrial Production Grow th w ith adjusted variance premium and realized variance

Constant 4.51 *** 4.25 *** 3.37 *** 2.55 *** 2.22 *** 2.10 ***

[4.87] [6.05] [5.53] [4.77] [4.21] [3.89]

SAFBEAR*VRP -0.05  -0.03  0.00  0.01  0.01  0.01  

[-1.28] [-1.05] [-0.19] [0.80] [1.22] [1.15]

SAFBEAR*RV -0.08 *** -0.09 *** -0.06 *** -0.03 ** -0.02 * -0.01  

[-2.65] [-2.76] [-3.00] [-2.52] [-1.95] [-1.57]

Adj R2 (%) 11.99 27.79 20.54 8.72 4.45 2.49

1 3 6 12 18 24

Horizon

Panel C. Predicting Industrial Production Grow th w ith adjusted implied variance

Constant 5.01 *** 5.05 *** 4.18 *** 3.13 *** 2.67 *** 2.44 ***

[4.93] [5.26] [5.98] [6.07] [5.61] [5.15]

SAFBEAR*IV -0.08 *** -0.08 *** -0.06 *** -0.03 ** -0.02 * -0.01  

[-2.71] [-2.88] [-2.99] [-2.40] [-1.76] [-1.36]

Adj R2 (%) 11.36 23.35 14.90 4.94 1.73 0.64

1 3 6 12 18 24

Horizon

Panel D. Predicting Financial Instability w ith adjusted realized variance

Constant -0.34 *** -0.28 ** -0.16  -0.02  0.03  0.08  

[-3.75] [-2.51] [-0.98] [-0.10] [0.09] [0.27]

SAFBEAR*RV 0.02 *** 0.02 *** 0.01 *** 0.00 ** 0.00  0.00  

[5.17] [8.38] [7.31] [1.97] [0.85] [-0.18]

Adj R2 (%) 54.53 39.61 18.05 2.65 0.21 -0.37

1 3 6 12 18 24



Ch6. Conclusions 163 

 

Chapter 6.  

Conclusions 

This research focuses on obtaining a forward looking measure of ambiguity inferred from traded 

option prices and examining the informational efficiency of such a measure in several important 

research areas including market returns prediction, economic activity prediction, volatility forecasting, 

and the estimation of variance premium and market variance. The study enriches our knowledge of 

the informational dynamics among option market ambiguity, the financial market, and the real 

economy, and calls for the consideration of Knightian uncertainty principles in finance and economics 

topics in which uncertainty beyond risk has largely been ignored. This research also shows that the 

concept of ambiguity aversion, which seems complex but yet represents a natural predisposition of 

human beings, is highly relevant in determining expected returns in the equity market, producing 

more accurate economic forecasts, improving the accuracy of GARCH-based volatility forecasts, 

estimating variance premium, and detecting international volatility spillovers.  

Findings in Chapter 2 contribute to solving the puzzle of a negative risk-return tradeoff generally 

reported in the literature and show the richness of information embedded in our measure of option 

market ambiguity. Chapter 3 reveals the importance of ambiguity in determining the level of 

economic activity in a macro setting. Being the only variable to robustly predict all of the economic 

activity indicators considered, option market ambiguity serves as the most powerful piece of evidence 
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supporting various theories about the negative relationship between uncertainty and economic activity. 

Chapter 4 contributes to the volatility forecasting literature by showing the importance of option 

market ambiguity and confirming the role of the hope and fear effect in volatility formation. Chapter 5 

studies the (mis)estimation of variance premium and its market variance components from an 

ambiguity point of view and highlights an improved information content when ambiguity is explicitly 

accounted for. This contributes to our understanding of the role and nature of the variance premium as 

a popular, but imperfect, proxy for Knightian uncertainty, and further confirms the informational 

efficiency of ambiguity as inferred from traded option prices. In addition to providing a better 

understanding of the empirical relationships among risk, uncertainty, economic activity and financial 

market returns, the results derived from this study can also contribute to improving investment 

management, risk management, and asset pricing practices. 
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Technical Appendix - Option Pricing under Ambiguity (Based on Driouchi, Trigeorgis 

and So (2016) and Driouchi, Trigeorgis and Gao (2015)) 

Let   be the price of a riskless bond with instantaneous rate of return r such that: 

                                                                    
  

 
                                                                                                 

Let O be the price of a contingent-claim (e.g., a European call or put option on the S&P index) which 

depends only on S and time t,       . From Ito’s lemma and Eq. (1), the dynamics of option price O 

can be written        ]     [         ]   ]  as: 
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This simplifies to: 
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Using Eq. (1), the level(s) of marginal utility in the economy   under Choquet ambiguity is: 

                                                            
  

 
 [              ]                                                  

This results from standard economic dynamics 
  

 
                   (see Harrison and Kreps, 

1979) and the characteristics of W in the Choquet ambiguity universe. Functions g and f help derive 

the pricing kernel under uncertainty. Thus: 

                                [(              )              ]     

   [(                )             ]                                                        

Applying martingale theory, the drift (dt) term is set to zero. This implies: 

                                                                                                                 

 

Following a similar procedure for S: 
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        [             ]    {[                 ]            }

               

                               [                  ]     [          ]                                         

Setting the drift term to zero, we obtain the ambiguity-adjusted Sharpe ratio       : 

                                                                      
[        ]

   
                     

The market pricing kernel follows Harrison and Kreps (1979) dynamics but, due to market 

incompleteness, multiple marginal utility levels and Knightian uncertainty, f and g are not unique as 

they are affected by investors’ ambiguity parameters m and s. This means that Choquet ambiguity 

impacts the fundamental component of the market pricing kernel (via parameters m and s) but not the 

purely sentimental element (see Cochrane, 2001; Shefrin, 2005). Relaxing this general (market 

incompleteness) assumption reduces to the perfect replication or risk-neutral case of Black-Scholes 

(1973) OPM. Using the results from Eqs. (A6) and (A9): 
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)                    

Consider the value of a call or put option O written on underlying stock index S (with dividend yield 

δ).  
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Setting the drift (dt) term of the option to zero results in the fundamental equation for pricing 

derivatives or contingent-claims Oc/p: 
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Solving Eq. (A12) for European options written on S leads to: 
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where: 
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References for the Technical Appendix: 

Cochrane, J.H. 2001. Asset Pricing. Princeton, NJ: Princeton University Press. 

Harrison, J.M., and D.M. Kreps. 1979. Martingale and arbitrage in multiperiod securities markets. 

Journal of Economic Theory 20, 381-408. 

Shefrin, H. 2005. A Behavioral Approach to Asset Pricing. NYC: Elsevier Academic Press. 


	List of Figures
	List of Tables
	Acknowledgement
	Chapter 1. Introduction
	Chapter 2. Option Market Ambiguity and Excess Returns
	2.1. Introduction
	2.2.  Background Literature and Theoretical Predictions
	2.3.  Ambiguity Measurement and Testing Methodology
	2.4.  Data and Variables Description
	2.4.1.  Option Market Ambiguity
	2.4.2.  Other Predictor Variables

	2.5.  Predicting Market Returns
	2.5.1.  Ambiguity and Market Return Prediction
	2.5.2.  Ambiguity and the Risk-Uncertainty vs. Return Trade-off
	2.5.3.  Out-of-sample Prediction
	2.5.3.1. Econometric Specification
	2.5.3.2. Prediction Evaluation
	2.5.3.3.  Out-of-sample Prediction Results


	2.6.  International Evidence
	2.7.  Conclusion
	References
	Appendix to Chapter 2
	Supplementary Appendix to Chapter 2

	Chapter 3.  Option Market Ambiguity and Real Economic Activity
	3.1. Introduction
	3.2. Theory and Literature
	3.3. Ambiguity Modeling and Empirical Setup
	3.4. Economic Activity Data and Variables Description
	3.4.1. Dependent Variables
	3.4.2. Predictor Variables and Controls

	3.5. Empirical Results
	3.5.1. Summary Statistics
	3.5.2. Validating Option Market Ambiguity as a Measure of Aggregate Uncertainty
	3.5.3. Impact of Option Market Ambiguity on Real Economic Activity
	3.5.4. Predictive Performance of Market Ambiguity
	3.5.4.1. Predicting Production Activity
	3.5.4.2. Predicting Employment
	3.5.4.3. Predicting Consumption Activity
	3.5.4.4. Predicting Overall Economic Output
	3.5.4.5. Direct Comparisons with VIX, VRP, Credit Spread and Additional Robustness Results


	3.6. Conclusion
	References
	Appendix to Chapter 3 - Comparisons with VIX, VRP and CS

	Chapter 4.  Accounting for Ambiguity Aversion in GARCH Volatility Models
	4.1.  Introduction
	4.2. Empirical Framework
	4.2.1 Inferring Ambiguity Attitudes from the Option Market
	4.2.2 GARCH-in-mean Estimations
	4.2.3 EGARCH-in-mean Estimations
	4.2.4 Estimation, Inference and Diagnostic Analysis
	4.2.5 Out-of-sample Forecasting

	4.3.  Data and Variables
	4.3.1 Option Data
	4.3.2 Stock Market Data

	4.4. GARCH Volatility Forecasting and the Role of Ambiguity Attitudes
	4.4.1 GARCH-in-mean Estimation and In-sample Forecasting
	4.4.2 Exponential GARCH-in-mean Estimation and In-sample Forecasting
	4.4.3 Out-of-sample Volatility Forecasting
	4.4.4 Economic Significance Analysis

	4.5. Conclusion
	References

	Chapter 5.  Ambiguity Attitudes, the Variance Premium and International Stock Market Volatility
	5.1. Introduction
	5.2. Modeling Framework and Empirical Methodology
	5.3.  Data and Variable
	5.3.1 Option Data
	5.3.2 Other Data

	5.4.  Financial and Economic Predictability Findings
	5.4.1  Predicting Equity Market Excess Returns
	5.4.2  Predicting Real Economic Activity
	5.4.3  Predicting Financial Instability
	5.4.4 Additional Results: Predicting International Volatility

	5.5.  Conclusion
	References
	Appendix to Chapter 5

	Chapter 6.  Conclusions
	Technical Appendix - Option Pricing under Ambiguity (Based on Driouchi, Trigeorgis and So (2016) and Driouchi, Trigeorgis and Gao (2015))

