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Abstract 
 
Complex diseases are defined by having a multifactorial aetiology, consisting of multiple 

genetic and environmental risk factors. Complex diseases are often associated with 

unusual patterns of comorbidity. They are also typified by suboptimal nosology, being 

classified according to historical diagnostic boundaries that may not be strongly justified 

given emerging evidence on pathophysiology.  Epidemiological studies have shown an 

unusual pattern of comorbidity between the psychiatric and autoimmune disorders – two 

broad categories of complex disease, however the aetiology underlying this overlap is yet 

to be established.  

 

We present three investigations into the overlap between the psychiatric and 

autoimmune disorders. First, we review the epidemiological literature of the phenotypic 

relationship between schizophrenia and rheumatoid arthritis and perform a meta-analysis 

of studies meeting inclusion criteria. Next we investigate evidence for an enrichment of 

schizophrenia genetic risk amongst controls for rheumatoid arthritis using a number of 

existing statistical genetic techniques. We find no evidence that common genetic 

variation influences the low prevalence of rheumatoid arthritis in schizophrenia cases. 

 

In a longitudinal population cohort we model depression genetic risk and its influence on 

the onset of depression, autoimmune disorders, and the comorbidity between the two. 

We find evidence that autoimmune disorder onset increases the risk of subsequent 

depression onset, independent of depression genetic risk.  

 

In a cohort of rheumatoid arthritis patients, we investigate the role of depression genetic 

risk and rheumatoid arthritis severity on disease progression. We find that low mood is a 

significant predictor of worse treatment outcomes, including inflammatory components 

of rheumatoid arthritis disease severity. 

 

To interrogate the genetic aetiology underlying comorbidity, we extend the polygenic risk 

score (PRS) approach in two ways. First, we develop software, PRSice, to perform PRS 

analyses. Secondly, we develop a novel PRS method to calculate PRS in cross-disorder 

scenarios.
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Chapter 1: Introduction 
 

Primary hypotheses 
 

There is considerable evidence for an autoimmune or inflammatory component to risk 

of psychiatric disorders, and this may be directly related to the patterns of comorbidity 

observed between these families of disorders. Within the most intensively studied 

psychiatric disorders - such as schizophrenia - evidence for an autoimmune component 

to disease is growing (Khandaker, Pearson, Zammit, Lewis, & Jones, 2014; Wium-

Andersen, Orsted, & Nordestgaard, 2014a) and may guide the development of new 

pharmacological interventions in the future.  

 

The aim of this thesis is to investigate causes of the overlap between the psychiatric 

disorders – with a focus on depression and schizophrenia – and the autoimmune 

disorders – with a focus on rheumatoid arthritis – at an epidemiological and genetic level. 

Our primary hypotheses concern the phenotypic relationships observed between the 

autoimmune and psychiatric disorders. Firstly, that these are genuine and not 

confounded by a systemic bias such as a harvesting effect - whereby individuals with 

schizophrenia and higher vulnerability towards rheumatoid arthritis, perhaps due to a risk 

factor such as smoking or urbanicity, may have a higher mortality rate the therefore be 

less likely to live to age at onset for rheumatoid arthritis - a reporting bias or a treatment 

effect. Secondly, that these relationships are due to some common aetiological factor that 

has pleiotropic effects - that is to say, has downstream effects influencing both 

psychiatric and autoimmune disorders, perhaps in different directions. This may act at a 

genetic level, where a common genetic risk profile is responsible for comorbidity 
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between two phenotypes. Alternately, it may act at a physiological level, where a 

particular perturbation of a biological pathway results in multiple downstream 

phenotypes. Therefore our primary hypotheses are firstly that the overlap between 

psychiatric and autoimmune disease isn’t simply a result of confounding. Secondly, if an 

overlap is present, it would necessarily be due to shared risk factors; if genetic, these 

would be pleiotropic. Thirdly, we hypothesise that evidence for shared environmental 

risk factors can be supported via the rejection of the hypothesis that there is a genetic 

component to epidemiological relationships. Fourthly, we test the hypothesis that the 

identification of shared genetic risk can be performed currently by a number of available 

tools. Finally, we test whether these may be improved via novel methods and 

approaches.  

 

We will investigate these hypotheses using individual-level genotype data, genome-wide 

summary data for association with a phenotype, and phenotypic data detailing the time-

course of a phenotype and its relationship with the environment. Finally, we will extend 

current methods in a number of ways to develop more accurate predictors of genetic 

risk, which may in turn aid in our understanding of the genetic architecture of comorbid 

complex phenotypes. 

 

Phenotypes Under Investigation 
 

Autoimmune Disorders 

The autoimmune disorders are a class of physical disorders typified by a failure of ‘self 

tolerance’. The Mammalian ‘active’ immune system kills cells it encounters by default; 

tolerance of ‘self’ cells, recognised by proteins in their cell membranes, prevents 

destruction of ‘self’ tissue. A breakdown in this learned self tolerance defines the 
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pathophysiology of the autoimmune disorders. Here we will focus on rheumatoid 

arthritis as an example of the autoimmune disorders. We do this firstly due to its 

relatively high prevalence – 552 per 100,000 in a Sardinian population (Sardu et al., 2012), 

the second highest prevalence autoimmune disorder reported by the authors after 

autoimmune thyroiditis, and 860 per 100,000 in a meta-analysis of studies in the USA 

(Jacobson, Gange, Rose, & Graham, 1997) the second most common reported after 

Graves disease. Secondly, rheumatoid arthritis is associated with a comparatively short 

time lag between onset and diagnosis – median time 36 weeks (Chan, Felson, Yood, & 

Walker, 1994) – which will effectively minimise undiagnosed cases in the population and 

thus improve the power of cohort studies and those relying on self-report. Indeed, in a 

cohort of 2458 pregnant women, deep phenotyping revealed a prevalence of 

undiagnosed rheumatoid arthritis of 0.24% (Spinillo et al., 2012). This contrasts to, for 

example, celiac disease, where authors have found that 95.6% of cases in a Netherlands-

based study were undiagnosed (Schweizer, von Blomberg, Bueno-de Mesquita, & 

Mearin, 2004).  Finally, although rheumatoid arthritis is associated with a relatively late 

age at onset – mean of 58.0 (Cooper & Stroehla, 2003; Doran, Pond, Crowson, O'Fallon, 

& Gabriel, 2002) – however the authors report a standard deviation of 16 years, 

producing wide estimated confidence intervals (95% CI = 26.6 – 89.4). This has the 

effect of leading to a relatively high incidence rate of rheumatoid arthritis per 100,000 

person years – 17 before the age of 16 and 23.7 thereafter – the highest incidence rate 

reported in a review of autoimmune disorder incidence rates (Cooper & Stroehla, 2003). 

These epidemiological properties – in addition to its well-studied genetic component, 

discussed below - make rheumatoid arthritis especially amenable to study via population 

cohort methods compared to other autoimmune disorders. 
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Psychiatric Disorders 

The psychiatric disorders are defined here as medical disorders – measurable and 

impairing deviations from normality – that affect an individual’s behaviour without a 

measurable physical aberration. The psychiatric disorders represent a substantial burden 

to societies worldwide, however their genetic components have only been intensively 

studied relatively recently. A recent report shows that MDD is the leading cause of 

disability worldwide (World Health Organisation, 2012).  

 

Epidemiological Relationships between Psychiatric and 
Autoimmune Disorders 
 

Schizophrenia and the autoimmune disorders 

There are a number of studies investigating the phenotypic overlap between 

schizophrenia and the autoimmune disorders. Benros et al present a detailed (table 1), 

investigating many of these epidemiological relationships in a Danish population cohort 

(Benros, Pedersen, et al., 2014). Despite the aggregate tendency towards comorbidity 

between schizophrenia (SCZ) and any autoimmune disorder, the authors find varying 

effects with different disorders. They find no evidence for a relationship between SCZ 

and ulcerative colitis, and an apparently protective relationship between SCZ and 

rheumatoid arthritis (RA). 

 

In a meta-analysis of previous literature, we demonstrate evidence that this protective 

effect of schizophrenia on RA is consistent across prior studies (Euesden, Breen, 

Farmer, McGuffin, & Lewis, 2015), (chapter 3). A number of explanations have been 

proposed for this relationship, most notably the well-established anti-inflammatory 

activity of antipsychotic medication.  
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MDD and the autoimmune disorders 

Odegaard's dictum (Odegaard, 1952) - that all schizophrenia sufferers eventually pass 

through a hospital - makes SCZ much more amenable to large population-based studies 

of its epidemiology, compared to MDD. Nevertheless, a few studies of MDD and its 

overlap with autoimmune disease have been conducted. In order to compare the overlap 

between schizophrenia and the autoimmune disorders with evidence for an overlap 

between MDD and the autoimmune disorders, we discuss these with reference to the 

disorders investigated in conjunction with SCZ above. Similar findings to Benros et al 

(2014) have been observed in multiple sclerosis (Patten, Beck, Williams, Barbui, & Metz, 

2003), type 1 diabetes (Anderson, Freedland, Clouse, & Lustman, 2001), ulcerative colitis 

- when preceding MDD onset by under 1 year (Kurina, Goldacre, Yeates, & Gill, 2001), 

Crohn's disease (also when preceding MDD by under a year, Kurina et al 2001) and 

seropositive rheumatoid arthritis (Dickens, McGowan, Clark-Carter, & Creed, 2002), 

who calculated a phenotypic correlation rather than an odds ratio, by meta-analysis 

(summarised in table 2).  

 

It is not immediately clear why there is limited research on the epidemiological patterns 

of disorders comorbid with MDD, when large record linkage studies in schizophrenia are 

frequently published. In part this may be due to the comparatively poor detection of 

MDD in primary care (Farmer & Griffiths, 1992; Lane, Shellenberger, Gresen, & Moore, 

2000). This in turn necessitates deep phenotyping of cases – to maximise power – and 

controls – to prevent misclassification. 
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Experimental evidence for Shared Pathways between 
Psychiatric and Autoimmune Diseases 

 

A natural extension of the above epidemiological results is an extension of the biological 

mechanisms responsible. It is often argued that the first evidence for an interaction 

between psychological and immune pathways came in 1982. Bovbjerg, Ader & Cohen 

investigated (1) the graft-host response - an immune response to donor tissue caused by 

non-self antigens stimulating cytotoxic T lymphocytes – and (2) classical conditioning - a 

form of implicit learning that is likely to be distributed across the synapses of the 

nervous system (Bovbjerg, Ader, & Cohen, 1982). By pairing a saccharine solution (a 

conditioned stimulus, CS) with injection of an immunosuppressant, Cyclophosphamide 

(CY, an unconditioned stimulus, US), rats developed a Conditioned Response (CR) to 

the CS, ultimately resulting in suppressed immune activity. Subsequent immune 

responses could be suppressed through the use of a CS, mimicking the 

immunosuppressant effect of CY. This important result - that immune responses can be 

modulated by psychological processes - provides a platform for understanding 

subsequent results regarding immune and autoimmune activity in MDD and SCZ. 

 

Immunity in MDD 

Herbert & Cohen demonstrated by meta-analysis that differential immune responses are 

a characteristic of MDD (Herbert & Cohen, 1993). The authors found reliable evidence 

for impaired immune activity (e.g. decreased lymphocyte proliferation in response to 

stimulation by a mitogen in vitro), and this has been reliably replicated in the two decades 

since. There is now an extensive body of literature investigating the pathophysiology of 

inflammation-related depression (A. H. Miller & Raison, 2016), with one proposed 

mechanism being the activation of the enzyme Indoleamine 2,3-dioxygenase (IDO) by 
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inflammatory cytokines, which catabolises tryptophan leading to a downstream depletion 

in serotonin (A. H. Miller & Raison, 2015) – indeed inflammation-related depression 

appears to dependant on the activation of IDO (O'Connor et al., 2009). In light of this, 

anti-inflammatory medication has been proposed as a treatment for inflammation-related 

depression 

 

The immune system has a number of integrated pathways for neutralising external 

threats – here we will focus on the cytokine system and the innate immune system and 

discuss evidence for systemic differences between MDD patients and controls in these 

pathways. Firstly we will consider the cytokine system, a family of intercellular signalling 

molecules released by CD4+ T-lymphocytes (helper cells) in response to stimulation by a 

protein identified as foreign - an antigen - in order to effect a downstream immune 

response. Secondly, we will consider elements of the innate immune system, the Pattern 

Recognition Receptors (PRR), that respond to stereotyped Pathogen Associated 

Molecular Patterns - that is to say proteins that form stereotyped parts of pathogen 

biochemistry and are therefore indicators of infection - and trigger the complement 

system. 

 

Cytokines in MDD 
Cytokines are signalling molecules released by an number of cells in the immune system 

that broadly fall into two classes - pro-inflammatory and anti-inflammatory. The pro-

inflammatory cytokines have a number of physiological roles, and many have been 

reliably associated with MDD. Interleukin-6 (IL-6) activates the Hypothalamic-Pituitary 

Axis (HPA) - a component of the stress response - and has been found at elevated levels 

in the serum of MDD patients (Alesci et al., 2005). IL-1 β has been found at increased 

concentrations in MDD patients versus controls (Schlatter, Ortuno, & Cervera-Enguix, 
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2004). In tandem with this, Anisman et al showed that IL-1β levels could actually 

predict HAM-D scores (a measure of MDD symptom severity) in MDD patients 

(Anisman, Ravindran, Griffiths, & Merali, 1999). Similarly, Tumour Necrosis Factor α

(TNF-α) has been found at elevated levels in MDD patients’ serum (Tuglu, Kara, 

Caliyurt, Vardar, & Abay, 2003). 

 

The Innate Immune System in MDD 
C-reactive protein (CRP) is a PRR that responds to phosphocholine, a marker of 

bacterial infection, forming part of the innate immune system. CRP has been found at 

elevated serum levels in MDD patients (Ford & Erlinger, 2004) and in male MDD 

patients (Danner, Kasl, Abramson, & Vaccarino, 2003). Mendelian randomisation is a 

method that uses genetic data to infer causality from phenotypic correlations. Wium-

Andersen et al apply Mendelian randomisation to the association between MDD and 

CRP levels; the authors argue that this relationship is actually merely correlational, with 

some shared risk factor leading to both increased risk of depression and increased CRP 

levels (Wium-Andersen, Orsted, & Nordestgaard, 2014b). Despite this, there is evidence 

that the CRP system is influenced by many other depression-related factors, including 

obesity, (Daly, 2013), CBT response, (Keri, Szabo, & Kelemen, 2014) and physical 

exercise (Eyre, Papps, & Baune, 2013). Furthermore, Wium-Andersen et al’s results 

should be viewed relatively sceptically – the authors present a negative result with no 

power calculations, suggesting their conclusions may be unsupported. Additionally, 

mendelian randomisation carries a number of limitations that must be adhered to strictly 

in order to ensure that results are interpretable (Davey Smith & Hemani, 2014). In 

summary, it is likely that studying the innate immune system will improve our 

understanding of the biological processes underlying the pathophysiology of MDD. 
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Immunity in Schizophrenia 

Whilst serological studies of MDD have focussed on the cytokines - signalling molecules 

released by many types of immune cell - serological studies of SCZ have focussed on 

antibodies. Antibodies – or Immunoglobulins (Ig) - are large protein complexes, released 

by B-lymphocytes, which fall into a number of categories denoting the specificity with 

which they bind antigens. Antigen is an operationalised term that defines proteins that 

antibodies bind to, and antigens expressed on the membranes of pathogens are 

important in eliciting an adaptive immune response. This binding leads to a number of 

downstream events (Porter, 1959) including marking invading cells for destruction via 

the complement system, which triggers the destruction of marked cells. One of the first 

studies to demonstrate a link between antibodies and SCZ (McAllister et al., 1989) found 

that CD5+ B-lymphocytes were elevated in the serum of SCZ patients at a level 

comparable with that observed in rheumatoid arthritis patients. CD5+ B-lymphocytes 

secrete Immunoglobulin M (IgM), the largest of the basic antibody families. Steiner et al 

found an elevated concentration of B-lymphocytes (using a less specific CD19+ assay), 

although the authors did not assay for CD5+ cells (Steiner et al., 2010). They authors also 

investigated T-lymphocyte levels and the CD4+/CD8+ ratio - a marker of immune 

regulation - however these results did not survive correction for multiple testing and will 

not be discussed here. Possibly the most compelling summary of the antibody literature 

in SCZ can be found work by Ezeoke et al (Ezeoke, Mellor, Buckley, & Miller, 2013), 

who demonstrated by meta-analysis that self-reactive antibodies for the N-methyl-D-

aspartate (NMDA) receptor are elevated in SCZ patients – summarised in table 3. This 

integrates with the B-lymphocyte literature above and the psychiatric nature of SCZ. The 

NMDA receptor is involved in the maintenance of learned behaviour within neural 

circuits (Bannerman, Good, Butcher, Ramsay, & Morris, 1995), and so it is possible to 
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tentatively infer a pathway from the cellular abnormalities observed in the serum of SCZ 

patients to the behavioural differences. 

Genetic Determinants of Common Disease 

Identifying the genetic contribution to common disease 

 
Statistical genetic techniques can be used to characterise biology. Genome-wide 

association studies (GWAS) aim to identify relatively common genetic variants associated 

with a given phenotype (Lewis & Knight, 2012). The most recently published GWAS of 

rheumatoid arthritis (Okada et al., 2014), the largest to date, was performed on 29,880 

RA cases, 73,758 controls and over 10 million loci studied. Such a large sample size 

provides high statistical power and increases the probability of identifying single 

nucleotide polymorphisms (SNPs) with only modest individual contributions to disease 

status; SNPs are polymorphisms at a single nucleotide, and are the genetic predictors 

used within GWAS. SNPs under investigation are usually restricted to those with a 

frequency in the population (Minor Allele Frequency, MAF) above some value, typically 

1%. Studying diseases with high heritability also increases the power of GWAS. 

Heritability is defined here as the proportion of variance in a trait attributable to genetic 

factors – and SNP heritability, a special case of this, is variance attributable to common 

SNPs, i.e. the heritability that can be identified through GWAS. Cases and controls are 

genotyped on a chip for approximately half a million common SNPs, and each SNP is 

tested in a univariate regression model for its prediction on case status. Due to the large 

multiple testing burden inherent in this paradigm, a conservative statistical significance 

threshold of α = 5x10-8 is typically applied (Dudbridge & Gusnanto, 2008). Furthermore, 

under natural selection, we implicitly expect genetic variants with a relatively high 

frequency in the population to have such minor effects on disease risk that they are 
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relatively invisible to selection. Due to these concerns amongst others, sample sizes in 

excess of the tens of thousands are usually required for GWAS. 

 

The genetics of autoimmune disorders 

 
Many autoimmune disorders have high heritabilities – for example, as estimated from 

twin studies, rheumatoid arthritis has a heritability of 53% (95% CI = 40-65%) in a UK 

sample (MacGregor et al., 2000). Most – but not all – of this heritability can be explained 

by haplotype sharing at the HLA region (Deighton, Walker, Griffiths, & Roberts, 1989), 

which is estimated to have a heritability of 37%. This is not reported with confidence 

intervals, however this is consistent with studies of common genetic variation genome-

wide excluding the HLA region. Stahl et al use GREML – discussed below – to estimate 

that rheumatoid arthritis has a SNP-heritability, i.e. heritability due to variants that can be 

identified by GWAS, of 32% (SE = 3.7%) (Stahl et al., 2012). The authors also find a 

SNP heritability for celiac disease of 33% (SE = 4.2%). Thus this high heritability of the 

autoimmune disorders has led to intensive investigation into their genetic determinants 

in order to develop more appropriate treatment for these chronic disorders. To date, 

four of the most widely studied autoimmune disorders are ulcerative colitis, Crohn's 

disease, type 1 diabetes and rheumatoid arthritis (UC, CD, T1D, RA). GWAS have been 

applied to these four disorders with considerable success, identifying between 41 and 101 

loci reaching genome-wide significance, in type 1 diabetes and rheumatoid arthritis 

respectively (Barrett et al., 2009; Okada et al., 2014). Consequently, this has led to an 

increased understanding of the biological pathways involved in these disorders. All four 

of these disorders are chronic, that is to say incurable and on-going, and are managed 

through a number of immunosuppressant drugs alongside sometimes radical lifestyle 

modifications. The economic burden of such phenotypes makes them natural targets for 
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medical research; it is hoped that an increased understanding of the biological pathways 

perturbed in these disorders will guide drug discovery and prophylactic initiatives.  

  

The genetics of rheumatoid arthritis 
The large number of validated loci reaching genome-wide significance for rheumatoid 

arthritis – 101 - allowed Okada et al to run a series of pathway-based analyses to 

understand these GWAS results in a biological context. By using epigenetic chromatin 

marks, Molecular Pathway Enrichment and Mouse Knockout Gene Networks, the 

authors demonstrate an enrichment of regulatory elements in CD4+ T-lymphocytes, and 

variation in genes expressed in T and B lymphocytes. These are fundamental parts of the 

immune system, and consolidate a model of the biological processes that are perturbed in 

RA. Secondly, the authors investigate polymorphisms in genes that are known drug 

targets of approved RA drugs. By annotating RA risk SNPs to nearby genes, and 

annotating approved RA drugs to genes, the authors demonstrate 3.7 fold enrichment 

for RA drug targets within RA risk genes. This approach is then extended to identify 

approved drugs for other disorders that may have an efficacy in the treatment of RA. 

Thus Okada et al demonstrate the utility of annotation and post-GWAS analyses to gain 

deeper insight into the biological pathways involved in in complex diseases and thus 

potential novel therapeutic approaches. 

 

Before the advent of the GWAS era, a number of ‘candidate genes’ – genetic variation 

that would be expected to contribute to risk of disease based on our understanding of 

the biological systems involved – were identified that increase risk of autoimmune 

disorders. T-cells, which co-ordinate and effect cell death in the active immune response, 

learn self-tolerance through a process called Thymic Selection, mediated by a class of 

protein called Human Leukocyte Antigens (HLA). Many HLA proteins are expressed on 
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the wall of the thymus and effect the identification and removal of any T-cells that might 

react to an individual’s own tissues. There are many different proteins that function in 

this way as HLA molecules, and variation in different genes has been associated with 

different autoimmune disorders. Rheumatoid Arthritis risk is increased by variation in 

the HLA-DRB1 gene, the most significantly associated risk allele being HLA-

DRB1*04:01 (Raychaudhuri et al., 2012); this variant also increases risk of type 1 

diabetes, as does the HLA-DQA1*03:01 allele (Pociot & Lernmark, 2016; Sanjeevi et al., 

1995). Variants in other genes coding proteins involved in T-cell activity have also been 

reliably associated with increased risk of autoimmune disease - such as PTPN22, which 

modulates the sensitivity of T-cells to thymic selection, and CTLA4, which codes a 

protein that modulates the activation of ‘killer’ T-cells by antigens identified as ‘non-self’. 

In this way, understanding of the pathophysiology of a disorder can target the discovery 

of novel genetic associations, and similarly the understanding of novel genetic 

associations can contribute to understanding biological pathways perturbed in disease. 

Since the advent of GWAS, many candidate gene findings have been shown to be 

spurious, and so, generally, the hypothesis-free nature of GWAS and its stringent 

significance threshold is now preferred for identifying the genetic components to disease 

risk. 

The genetics of psychiatric disorders  

 

Five psychiatric disorders have been the target of intensive GWAS investigation in recent 

years– Attention Deficit Hyperactivity Disorder (ADHD), Autism, Bipolar Disorder 

(BPD), Major Depressive Disorder (MDD) and Schizophrenia (SCZ). We focus on the 

latter two of these in this thesis. A recent report by the World Health Organisation 

shows that MDD is the leading cause of disability worldwide (World Health 
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Organisation, 2012); this is due to its comparatively early age at onset, impairment to 

work and the limited success of existing therapies. MDD is highly heritable (McGuffin, 

Katz, Watkins, & Rutherford, 1996) – with estimates from twin heritability ranging from 

0.48  to 0.75, based on varying assumptions about the population prevalence of MDD - 

and a substantial proportion of the heritability of MDD has been shown to result from 

the effect of common risk alleles (SNP heritability = 0.32, P < 10-3), (Lubke et al., 2012). 

Given that these estimates are significantly above zero, identifying risk alleles or risk 

profiles involved in the onset of MDD is feasible, and given the damaging consequences 

of MDD, it is a pertinent research question. Furthermore, a multitude of physical 

disorders are not only comorbid with MDD, but their prognosis is drastically 

exacerbated by such a comorbidity – e.g. cardiovascular disease: (Elderon & Whooley, 

2013; Garfield et al., 2014). 

 

Whilst MDD is the leading cause of disability worldwide, SCZ is amongst the leading 

causes of expense by healthcare systems, families and governments (Knapp, 1997). Costs 

carried in the USA by SCZ include $63 Billion spent annually by families on treatment 

and lost due to time out of work (Wu et al., 2005). SCZ, like MDD, has an early age at 

onset and is frequently chronic across the lifespan. Like MDD, it is associated with 

increased healthcare utilisation - many autoimmune disorders are comorbid with SCZ 

(most recently discussed by Benros et al 2014), and SCZ patients are far more likely to 

engage in risky behaviour such as heavy tobacco (McCreadie & Kelly, 2000) and cannabis 

(Green, Young, & Kavanagh, 2005) abuse. Furthermore, SCZ is associated with 

increased involvement with the criminal justice system, both as defendant (Large & 

Nielssen, 2011; Richard-Devantoy, Orsat, Dumais, Turecki, & Jollant, 2014) and 

prosecution (Fitzgerald et al., 2005). Therefore improving our understanding of the 
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biological processes behind this disorder and disorders comorbid with it is important in 

the management of a number of outcomes.  

The genetics of MDD 
To date, only one published study has identified loci reaching genome-wide significance 

that affect risk of Major Depressive Disorder (CONVERGE Consortium, 2015). The 

CONVERGE study sought to increase power to detect loci increasing risk of MDD by 

obtaining a more homogenous subgroup of patients via deep phenotyping. Cases were 

recruited based on gender – female only – and severity – recurrent cases only; the 

authors hypothesised that this would identify a more heritable form of MDD in which 

the effect of risk variants would be larger and so a GWAS cohort might be well-powered 

to detect them. The authors find two genome-wide significant variants, one each in the 

genes LHPP and SIRT1. LHPP has been previously associated with MDD from linkage 

in family studies (Neff et al., 2009), and codes for a poorly understood protein involved 

in post-transcriptional modification (Kee & Muir, 2012). SIRT1 is better understood, 

having a role in mitochondrial biogenesis, and may shed light on the pathogenesis of 

MDD. The authors of the CONVERGE study find that mitochondrial DNA levels are a 

predictor of number of stressful life events in a sample of MDD patients (Cai et al., 

2015). Thus the ‘hypothesis-free’ nature of GWAS can identify previously unconsidered 

biological mechanisms involved in disease pathogenesis. 

 

In addition to the results of the CONVERGE study, there are currently two unpublished 

studies that have identified loci reaching genome-wide significance in MDD. Power et al 

(in press) demonstrate that by obtaining deeper phenotype information on participants – 

in their case Age at Onset – it is possible to stratify participants and obtain a more 

homogeneous sample in which there is higher power to detect the genetic variants of 

small effect that one would expect to be involved in the pathophysiology of MDD 
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(Uher, 2009). The increase in power necessary to identify variants of small effect has also 

been achieved by the Psychiatric Genomics Consortium (PGC), who pool a large 

number of case-control cohorts investigating MDD (PGC-MDD in prep) and perform 

meta-analyses across these. As these two studies are currently unpublished, their results 

will not be discussed here in detail, other than to note that the small effect sizes that 

seem to underlie the effect of common genetic variation on risk of MDD requires a 

degree of innovation – such as relaxing the definition of MDD to self report cohorts to 

boost sample size in the case of PGC2, or stratifying based on age at onset to reduce 

genetic heterogeneity in the case of Power et al – in order to identify risk variants. 

 

The genetics of schizophrenia 
Genome-Wide Association Studies of schizophrenia have identified considerably more 

genetic risk variants than those in Major Depressive Disorder. The most recent Genome-

Wide Association Study identified independent association signals at 128 loci across 108 

genes; as the largest association study of a neuropsychiatric trait to date, the genetic 

architecture identified in the study of schizophrenia is likely illuminate the study of other 

psychiatric disorders (Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014). Many novel loci associated with schizophrenia in this study are in 

genes consistent with historical drug targets in schizophrenia – for example DRD2, 

which codes a type 2 Dopamine receptor subunit, is a target of many antipsychotics, 

such as haloperidol. Other identified loci validate a neuropsychiatric aetiology to the 

pathogenesis of schizophrenia, with genome-wide significant loci in the voltage-gated 

Ca2+ channel subunit genes CACNA1C, CACNB2 and CACNA1I, important for 

synaptic neurotransmission.  
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In addition to brain-expressed genes associated with schizophrenia, the PGC also 

identified variants suggesting an immune component to the aetiology of schizophrenia. 

Alongside identifying variants in brain-expressed genes, the authors identify a substantial 

enrichment of variants expressed in CD20+ B-lymphocytes. An involvement of immune 

function in the aetiology of schizophrenia has been a prominent finding in association 

studies; the most significantly associated risk variants for schizophrenia are in the Major 

Histocompatability Complex (MHC) between 26 and 33 Mb on chromosome 6, a 

genomic region that contains a high concentration of immune-related proteins. This is 

consistent with models of the biology of schizophrenia, which will be discussed below. 

 

Evidence for Genetic Overlap 
 

At the heart of the idea of genetic overlap is the idea of pleiotropy. Whilst a protein may 

perform a restricted role within a pathway, any deformity in this protein may result in a 

number of different downstream effects. If this deformity is caused by genetic factors, 

and downstream effects include symptoms of different diseases, this can constitute 

pleiotropy. 

Genetics of MDD and the immune system 

There have been a wealth of 'candidate studies', investigating association between 

polymorphism at a given base pair position or gene and a phenotype. Despite the 

extensive literature, which often produced replicable findings, not one of the candidate 

genes for MDD replicates in the most recent and higher powered GWASs for MDD 

(CONVERGE Consortium, 2015; Major Depressive Disorder Working Group of the 

Psychiatric GWAS Consortium et al., 2013). It is unlikely that considering the candidate 

gene literature (Flint & Kendler, 2014) will contribute to our understanding of the 
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genetic architecture of MDD. Furthermore, we were unable to identify any family-based 

studies investigating an association between family history of an autoimmune disorder 

and MDD in probands; such studies have met with considerable success in SCZ research 

(Benros, Pedersen, et al., 2014), and so there may be merit in conducting this 

investigation in the future. 

Genetics of SCZ and the Immune System 

The most robust genetic association with schizophrenia is within the MHC region on 

chromosome 6p. This region is responsible for encoding a number of cellular receptors 

involved in antigen presentation, important in the T-cell system. Recently, however, 

Sekar et al have localised this signal to the C4 genes, polymorphisms in which are 

associated with differential cortical pruning and thus related to the organic abnormalities 

seen in the post mortem brains of schizophrenia patients (Sekar et al., 2016). The authors 

find that this association is unrelated to classical HLA class I and class II genes, and thus 

is unlikely to relate to autoimmunity. Despite this, GWAS has identified schizophrenia 

risk loci across the genome – not just in the MHC region – and so this finding does not 

eliminate the possibility for genetic variation involved in schizophrenia also having an 

influence on immune phenotypes. From statistical genetic studies, evidence for this 

comes from pathway-based analyses of loci associated with schizophrenia, bipolar 

disorder or major depressive disorder – phenotypes often grouped together as ‘severe 

mental illness’ (Uher, 2014) – pooled to increase power. Pooling these phenotypes and 

meta-analysing pathways associated with risk alleles, O’Dushlaine et al find an 

enrichment for loci involved in synaptic function – as would be expected from 

neuropsychiatric phenotypes – but also in immune pathways, a finding that the authors 

note warrants further exploration (Network Pathway Analysis Subgroup of Psychiatric 

Genomics Consortium, 2015). 
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Furthermore, a family history of several heritable autoimmune disorders have been 

identified as risk factors for SCZ, including autoimmune thyrotoxicosis (Eaton et al., 

2006), T1D (Gilvarry et al., 1996), multiple sclerosis (Eaton, Pedersen, Nielsen, & 

Mortensen, 2010), and a plethora of others as reviewed by Benros et al (Benros, Eaton, 

& Mortensen, 2014). Thus there is evidence to postulate that some of the same genetic 

variants may influence risk of both SCZ and also several autoimmune disorders – 

although it is possible that shared environmental risk factors may be captured by studies 

of family history, and is an important caveat when interpreting these findings. 

. 

Introduction to Research Methods 
 

Statistical Genetics 

Complex disease genetics is the study of disorders with a genetic component to disease 

risk; crucially, this is comprised of many risk alleles, each of small effect. Alleles are 

measured as polymorphisms at single base pair positions, termed single nucleotide 

polymorphisms (SNPs). The most widely-used method to date for measuring an 

individual's genome-wide genetic variation is to use a genotyping chip, which genotypes 

– that is to say detects variation - at these SNPs. Widely used chips currently tag around 

500,000 SNPs genome-wide. Each of these is typically biallelic - i.e. can take one of two 

alleles - and autosomal SNPs are diploid - that is to say for every genotyped locus on 

chromosomes 1 to 22, an individual has two copies of each locus, one on each 

chromosome in a pair. For economical reasons, genotyping chips usually only tag alleles 

with a minor allele frequency (MAF) in a control population above a given threshold, 

typically about 0.5 - 1%, and data is usually cleaned to restrict SNPs to a similar 
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threshold, depending on sample sizes and thus statistical power. Alleles with a MAF 

above the cut-off threshold for a given study can be termed 'common alleles'. A 

fundamental challenge in statistical genetics, therefore, is to determine association 

between a large number of often correlated SNPs, genome-wide, and some trait, given 

that each of these SNPs is likely to have a very small contribution to disease risk if any at 

all 

 

Although the field of statistical genetics has a rich history before the advent of genome-

wide genotyping arrays, a substantial proportion of statistical genetic research focuses on 

the analysis of SNP data. 2007 is often stated as the year that the analysis of genome-

wide SNP data truly began to come into its own. The Wellcome Trust Case Control 

Consortium (WTCCC) published a landmark study on 7 complex diseases, using multiple 

univariate logistic regression to test association between ~500,000 genome-wide SNPs 

and each of 7 diseases (Wellcome Trust Case Control Consortium, 2007). This method 

was developed in the first successful GWAS (Klein et al., 2005), studying Age-related 

Macular Degeneration. The effect size of their risk allele, in the CFH gene, was large 

enough to detect in their sample of 146 individuals – an Odds Ratio of 7.4; most 

complex disease risk alleles have much smaller effect sizes – 1.1 to 1.3 - and so increasing 

the size of GWAS samples has proven a reliable way to improve the identification of risk 

alleles. There are also a number of statistical genetics techniques that have been 

developed to improve GWAS. Examples of this include Principal Component Analysis 

(PCA) and Imputation. PCA controls for heterogeneity between cases and controls, 

which might lead to identifying spurious associations (Price et al., 2006). Imputation 

leverages Markov-Chain Monte-Carlo methods to make a 'best guess' for missing 

genotypes - using this method, it is possible to genotype 500,000 variants directly but 

impute up to over 10 million variants, vastly improving resolution genome-wide 
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(Marchini, Howie, Myers, McVean, & Donnelly, 2007). Thus optimisation of the GWAS 

by novel methods and larger sample sizes demonstrate that this established technique has 

a future in identifying the genetic component to disease.  

 

Many authors (Juran & Lazaridis, 2011) have claimed that we are now in the post-GWAS 

era - this leads to the second broad domain of statistical genetics and use of human SNP 

data. Aside from GWAS, there are a number of other analyses available on SNP data, 

many of which will be discussed below. Many post-GWAS methods leverage existing 

GWAS summary data in order to perform posterior analyses; other post-GWAS 

methods use SNP data to answer questions on the genetic architecture of a phenotype 

without ever performing an association study. Such techniques include Genome-

Relatedness-Matrix Restricted Maximum Likelihood (GREML), (Yang, Lee, Goddard, & 

Visscher, 2011), which will be covered below. GREML builds a matrix of genetic 

similarity across a large sample of unrelated individuals and then fits a mixed model to 

predict the proportion of variance in phenotype explained by variance in genetic 

similarity. This is an approximation for heritability as estimated by twin studies. Twin 

studies dominated human genetics prior to DNA based methods such as GWAS and 

linkage - therefore calculating SNP-heritability generates results that are comparable in 

interpretation with historic estimates and has found substantial popularity in recent years. 

 

Genome-wide association studies (GWAS) are limited to discovering common risk 

alleles, due to the coverage of most chips. Aside from this, the small effect sizes 

predicted in complex disease genetics mean that the primary obstacle in identifying all 

common variants associated with risk of a disease is one of power. That is to say, the 

likelihood of detecting an effect given the significance threshold used, the sample size 

used and the size of that effect. Small effect sizes require a large sample size in order to 



 30 

detect them. Therefore, it could be argued that the primary objective for complex disease 

genetics is the collection of large enough samples in order to detect the small effect sizes 

underlying disease risk. This can be seen directly in GWAS of schizophrenia, where 

progressive increases in sample sizes from 2009 – 2014 have generated increasing 

numbers of novel GWAS findings, from 3,322 cases and 3,582 controls identifying zero 

regions significantly associated with schizophrenia in 2009 (International Schizophrenia 

Consortium et al., 2009), to 9,394 cases and 12,462 controls identifying 7 SNPs in 2011 

(Schizophrenia Psychiatric Genome-Wide Association Study Consortium, 2011) and 

most recently 34,241 cases and 82,315 controls identifying 128 SNPs in 2014 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014).   

 

Whilst the identification of individual risk alleles at genome-wide significance is a power 

consideration requiring large sample sizes, there are many other statistical genetics 

techniques available for use with datasets that are underpowered. Even MDD datasets, 

which have yielded few SNPs reaching genome-wide significance to date, can be 

leveraged via a variety of methods in order to make meaningful inferences about the 

genetic architecture of MDD. Here we will outline methods that use genome-wide SNPs 

outside of a GWAS framework and discuss how they may be applied to dissect the 

genetic architecture of comorbid disorders, a central goal to our investigation of the 

psychiatric and autoimmune disorders. 

Polygenic Risk Scoring 

 
 The functional unit of genetic epidemiology is the probability of an individual i of 

disease, given a number of predictors x. This is Pr(yi = 1 | xi ). Our task is to identify 

predictors, xi, that have a genetic origin. This in turn illuminates the biology and 

epidemiology of a disease. Polygenic Risk Scoring, PRS, combines genotype data and a 



 31 

priori information about how these variants associate with a given disease, to produce a 

single measure per individual that captures the probability of an individual having a 

disease conditional on their genetics - a genetic risk profile 

 

The GWAS era has been fully fledged for almost a decade, and so a wide range of GWA 

studies’ results are now in the public domain. It is a simple task to download a list of 

genome-wide SNPs and their association with a given phenotype - summarised by a 

normalised association statistic and effect size – i.e. P-value and either natural logarithm 

of Odds Ratio or regression coefficient. When a large number of SNPs reach genome-

wide significance for a disease, we may construct a risk profile by summing an 

individual's risk allele count at each disease locus, each weighted by the effect size of the 

risk allele at this locus – this uses a method developed by Purcell et al (International 

Schizophrenia Consortium et al., 2009) and will be discussed in detail below.  

 

A large number of loci are involved in risk of complex traits, however a relatively small 

number (tens to hundreds) have been discovered at genome-wide significance - α = 5 x 

10-8 (Dudbridge & Gusnanto, 2008; Panagiotou, Ioannidis, & Genome-Wide Significance 

Project, 2012) – for a given trait.  This is due in part to statistical power. Formally, a P-

value is the probability of seeing the observed data or anything more extreme, under the 

null hypothesis – i.e. by chance. Many authors have sought to exploit the fact that this is 

a continuous measure, and therefore SNPs that are associated with a phenotype with a 

low but non-significant P-value are more likely to have a reproducible and robust effect 

on outcome than a SNP with a higher P-value. Given this, all SNPs from a GWAS – 

termed base in the PRS literature - can be ordered by P-value and selected based on some 

P-value threshold, PT. These can then be treated as if genome-wide significant to 

calculate a risk score using the protocol described above. We calculate risk scores in an 
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independent genotyped and phenotyped population – termed the target data - and 

calculate the prediction of risk score on phenotype at each threshold PT. We select the 

SNPs at the threshold that best predicts phenotype in the target dataset - this is a polygenic 

risk score. This can be thought of as an optimum trade off between signal - disease SNPs 

rejected due to low power and stringent α level - and noise - SNPs with a low P-value 

by chance and no role in disease aetiology 

 

A few methodological considerations are necessary when performing polygenic risk 

scoring (PRS). Firstly, as our risk model is additive on the log odds ratio scale, we will 

overestimate the effect of a particular risk variant if we include variants in high linkage 

disequilibrium (LD) with it. Therefore we clump SNPs in the base GWAS, using LD 

data as estimated in the target data, in order to obtain variants in approximate linkage 

equilibrium. For the same reason, authors frequently exclude the Major 

Histocompatibility Complex on Chromosome 6 entirely due to long range LD. As in a 

GWAS, it is necessary to adjust for population structure when testing the predictive 

value of polygenic risk score on disease status (Chen, Han, Hunter, Kraft, & Price, 2015); 

this can be performed using principal components. Finally, there are a number of 

methods for interpreting the predictive value of a PRS. The simplest is reporting the P-

value of this variable from a multivariate logistic model controlling for population 

structure. The model fit can also be expressed as a measure of the total phenotypic 

variance explained – that is R2 for continuous phenotypes, and Nagelkerke's Pseudo-R2 - 

a coefficient of determination for logistic regression transformed to fall between zero 

and one – for case-control phenotypes.  

 

Despite its development in 2009, the method of Polygenic Risk Scoring has only started 

to be widely used since the results of GWA studies have begun to be released publically 
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as the norm. This has led to a number of important papers applying PRS to illuminate 

our understanding of a number of behavioural phenotypes that had previously been 

hampered by power concerns. Power et al find that PRS for schizophrenia is a significant 

predictor of cannabis use, and arguing that these results support a model where a genetic 

predisposition to schizophrenia also predisposes individuals to try and use cannabis, 

rather than cannabis itself being a risk factor for schizophrenia – these findings may have 

important policy implications (Power et al., 2014). Secondly, Ruderfer et al use PRS for 

Schizophrenia to investigate the clinical dimensions amongst a cohort of bipolar disorder 

patients, finding that schizophrenia genetic risk significantly predicts manic symptoms 

but not negative, depressive or positive symptoms, thus illuminating the nature of the 

genetic overlap between schizophrenia and bipolar disorder (Ruderfer et al., 2014). 

Thirdly, a landmark study by Krapohl et al applied PRS for a large number of base 

GWASs to predict a large number of target phenotypes within the Twins Early 

Development Study (TEDS) data, with a focus on educational phenotypes (Krapohl et 

al., 2015). Although exploratory in nature, this study is important in that it represents a 

shift towards a more hypothesis-free approach to investigating the shared genetic 

relationships across multiple complex phenotypes. Thus, PRS can be used to dissect 

clinical heterogeneity in a sample, to infer causality to inform policy decisions and in an 

exploratory manner to identify patterns of genetic overlap within a well phenotyped 

cohort. 

 

In addition to these applications of the PRS method, there has been considerable interest 

in interpreting the theoretical considerations – including power and the interpretation of 

phenotypic variance explained – by a number of authors (Dudbridge, 2013; Lee, 

Goddard, Wray, & Visscher, 2012). Power in polygenic risk scoring is an important 

consideration, and can be shown to be a function of a number of factors – the threshold 
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PT used for PRS, the sample sizes of base and target samples, the P-value and variance 

explained for PRS on target phenotype, factors affecting ascertainment in base and target 

sample such as case control ratio and population disease prevalence, variance of marker 

effects in base and target sample and the number of markers used in PRS construction, 

and other factors which must be estimated and are not explicitly calculated when 

regressing PRS on phenotype, such as the covariance in marker effects between base and 

target sample, the proportion of the genome which is causal for a trait (typically denoted 

1-π0).  

 

The estimate for variance explained by PRS in a case-control target sample will not be 

immediately interpretable if the case-control ratio in the target sample is unequal to its 

ratio in the general population  – i.e. if cases have been over-ascertained relative to the 

phenotype’s population prevalence. Variance explained is dependant on the phenotypic 

variance – in the target sample, this is nk(1 – k) where n is the target sample size and k is 

the proportion of cases in the target sample. This will be maximised for fixed n when 

k=0.5, a typical case-control ratio in GWAS (Hong & Park, 2012). This artificial value 

for phenotypic variance in case-control studies gives an estimate of heritability that will 

not be immediately relatable to many epidemiological questions – heritability as estimated 

from a case-control cohort is termed heritability on the observed scale – often 

abbreviated to h2
o. Heritability on the observed scale can be transformed to a more 

interpretable estimate, heritability on the liability scale – often abbreviated to h2
l using a 

formula often referred to as the Robertson Transformation (Dempster & Lerner, 1950). 

This is h2
l = h2

o
 k (1-k) / z2, where z is the normal density function evaluated at the 

truncation threshold – i.e. φ(t) - that differentiates cases and controls on a normally 

distributed but unobserved continuum of liability – a linear combination of genetic and 

environmental risk factors – and can be estimated from a phenotype’s population 



 35 

prevalence. Heritability on the liability scale illustrates variance explained in the general 

population, accounting for the lower prevalence and thus lower variance. Lee et al have 

provided formulae for the transformation of these estimates on the observed scale to the 

liability scale, based on estimates of prevalence and ascertainment, and more recently, 

methods such as ABC (Stahl et al., 2012) and AVENGEME (Palla & Dudbridge, 2015) 

allow PRS estimates to be compared to traditional heritability estimates. These 

transformations are valuable in the interpretation of PRS results and their dissemination. 

Genomic Relatedness Matrix Restricted Maximum Likelihood 

GREML is a two-step method developed by Yang et al that can approximate the 

heritability of a phenotype (Yang et al., 2011). In the first stage, a Genomic Relatedness 

Matrix (GRM) is calculated using pairwise genetic similarity across a large sample of 

individuals, using SNP data. Individuals with unusually high relatedness (𝜋 > 0.05) are 

typically removed; these correspond to individuals who are closer relatives than 5th 

cousins, and so it is possible that the effects of shared environment could confound 

estimates. 

 

The GRM can be used to fit a mixed model to calculate the proportion of phenotypic 

variance attributable to genetic similarity. It is usual to covary for population structure 

more stringently than in GWAS, using 20 principal components. Heritability is estimated 

in GREML using only 'common' SNPs - depending on the QC protocol used, this may 

be those with MAF >5% or similar. Therefore, the GREML estimate of heritability is 

heritability attributable to common genetic variation; these are the same variants that are 

under investigation in GWAS, so GREML heritability gives an estimate for the genetic 

architecture of a disorder that can be studied via GWAS. 
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Summary 
 

Here we have demonstrated that there is substantial evidence for phenotypic correlation 

between many autoimmune disorders and two psychiatric disorders – schizophrenia and 

Major Depressive Disorder. We have presented evidence for immune-related pathways 

that seem involved in both Major Depressive Disorder (MDD) and schizophrenia (SCZ). 

These seem to segregate to being related to cytokines in MDD and antibodies in SCZ, 

although it is important to avoid binary distinctions in a field as interconnected as the 

mammalian immune system. SCZ genetics provides suggestive evidence for an 

autoimmune component to disease risk, however the same cannot be said of MDD, 

probably in part due to a lack of power (Flint & Kendler, 2014). Therefore our decision 

to use more sophisticated methods from statistical genetics to investigate the presence of 

shared risk factors seems well supported. 

 

Outline To Thesis 
 

In the following chapters, we investigate the questions posed above. Firstly, we explore 

the idea of ‘genetic overlap’ itself, in particular the method of Polygenic Risk Scoring 

discussed above, through the development of a novel software package and Polygenic 

Risk Scoring method, PRSice. We present this method alongside a more detailed 

explanation of the theoretical background to PRS and results from the application of 

PRSice, which is used throughout this thesis. We present three studies investigating the 

aetiological foundations of the overlap between the psychiatric and autoimmune 

disorders. Firstly, in a case-control study of rheumatoid arthritis, we investigate the role 

of schizophrenia genetic risk on rheumatoid arthritis status. Secondly, in a longitudinal 

population cohort, we use self report data on depression and autoimmune disorder onset 
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in order to compare the relative effects of genetic risk of depression and autoimmune 

disorder onset on subsequent hazard of depression – and the converse, the compare the 

relative effects of autoimmune disorder genetic risk and depression onset on subsequent 

hazard of developing an autoimmune disorder. Thirdly, within a clinical cohort of 

rheumatoid arthritis patients, we investigate the role of psychiatric symptoms, and 

depression genetic risk on the trajectory of patients’ rheumatoid arthritis severity. Finally, 

alongside the future directions arising from the results of these three studies, we present 

the development of a novel method for calculating genetic risk of a phenotype by 

leveraging evidence for genetic overlap between traits. 
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Tables 
 
Disorder OR in SCZ Patients 95% CI 
Any autoimmune Disease  
 

1.53  1.46–1.62 

Multiple sclerosis   1.57 1.29–1.90 
Type 1 diabetes   2.83  2.58–3.10 
Crohn’s disease   1.33 1.08–1.61 
Seropositive rheumatoid 
arthritis 

0.75 0.60–0.93 

Ulcerative colitis 0.99 0.84–1.16 
 
Table 1: Epidemiological relationship between SCZ and a selection of autoimmune 

disorders (Benros, Pedersen, et al., 2014) – these phenotypes have been selected as 

autoimmune disorders which have been well-investigated by Genome-Wide Association 

Study, and so whose relationships may be investigated further by statistical genetics 

 
 
Disorder OR for MDD 95% CI Study 
Multiple sclerosis   2.3  1.6-3.3 * Patten et al 
Type 1 diabetes   2.9,  1.6–5.5 Anderson et al 
Crohn’s disease   1.67  1.31-2.09 Kurina et al 
Seropositive 
rheumatoid arthritis 

 meta r = 0.21 P < 0 .0001 Dickens et al 

Ulcerative colitis  2.39  1.54-3.53 Kurina et al 
 
Table 2: Odds ratio for Major Depressive Disorder amongst autoimmune disorder 

patients relative to controls – i.e. a proxy for the overlap between depression and the 

autoimmune disorders in the same individuals, with values greater than one indicating an 

increased overlap than would be expected by chance. This approximates Relative Risk - a 

multiplier for Major Depressive Disorder prevalence amongst autoimmune disorder 

patients relative to controls - assuming a relatively low MDD prevalence around 10% 

(Viera, 2008). 

* Odds ratio from multivariate logistic regression adjusted for age and sex 
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Autoantibody P-value 
Dopamine Receptor P < 0.01 
GAD65 P = 0.52 
Gastric Parietal Cell P = 0.42 
NMDA P < 0.01 
Rheumatoid Factor P < 0.01 
Serotonin P < 0.01 
 

Table 3: Proportion of positive autoantibody titres in SCZ cases and controls, from 

meta-analysis, (Ezeoke et al 2013) 
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Abstract

Summary: A polygenic risk score (PRS) is a sum of trait-associated alleles across many genetic loci,
typically weighted by effect sizes estimated from a genome-wide association study. The application
of PRS has grown in recent years as their utility for detecting shared genetic aetiology among traits
has become appreciated; PRS can also be used to establish the presence of a genetic signal in under-
powered studies, to infer the genetic architecture of a trait, for screening in clinical trials, and can act
as a biomarker for a phenotype. Here we present the first dedicated PRS software, PRSice (‘precise’),
for calculating, applying, evaluating and plotting the results of PRS. PRSice can calculate PRS at a
large number of thresholds (“high resolution”) to provide the best-fit PRS, as well as provide results
calculated at broad P-value thresholds, can thin Single Nucleotide Polymorphisms (SNPs) according
to linkage disequilibrium and P-value or use all SNPs, handles genotyped and imputed data, can cal-
culate and incorporate ancestry-informative variables, and can apply PRS across multiple traits in a
single run. We exemplify the use of PRSice via application to data on schizophrenia, major depres-
sive disorder and smoking, illustrate the importance of identifying the best-fit PRS and estimate a
P-value significance threshold for high-resolution PRS studies.
Availability and implementation: PRSice is written in R, including wrappers for bash data manage-
ment scripts and PLINK-1.9 to minimize computational time. PRSice runs as a command-line pro-
gram with a variety of user-options, and is freely available for download from http://PRSice.info
Contact: jack.euesden@kcl.ac.uk or paul.oreilly@kcl.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The polygenic model of human phenotypes has long been

hypothesized, but only in recent years have the results from genome-

wide association study (GWAS) revealed that much of the genetic

basis for most complex traits comprises small effects of hundreds or

even thousands of variants. For clinical outcomes, this polygenic ef-

fect can be considered a genetic liability to disease risk. While pre-

diction of phenotype from an individual’s genetic profile is

compromised by this polygenicity, the application of polygenic risk

scores (PRS) has shown that prediction is sufficiently accurate for a

number of applications.

A PRS for an individual is a summation of their genotypes at

variants genome-wide, weighted by effect sizes on a trait of interest.

Effect sizes are typically estimated from published GWAS results,

and only variants exceeding a P-value threshold, PT, are included

(Dudbridge, 2013). Since even large GWAS achieve only marginal

evidence for association for many causal variants, PRS are usually

calculated at a set of P-value thresholds, e.g. PT ¼ 1" 10#5;

1" 10#4; . . . ; 0:05; 0:1; . . . ;0:5. A common application of PRS is to

test for shared genetic aetiology between traits. Here PRS on the

base phenotype are calculated, using GWAS results, in individuals

from an independent data set, and these are used as predictors of the

target phenotype in a regression (see Supplementary Note S1). This

technique was first applied by the International Schizophrenia

Consortium (2009), demonstrating that genetic risk for

schizophrenia (SCZ) is a predictor of bipolar disorder. This study

also acted as a proof-of-principle for PRS, showing that PRS based

on thousands of common variants genome-wide, including many

VC The Author 2014. Published by Oxford University Press. 1466
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with no effect and using effect size estimates from published GWAS,

can provide a reliable indicator of genetic liability. This has moti-

vated several other applications, including polygenic Mendelian

Randomisation (Hung et al., 2014), where causality of potential

intermediate phenotypes in a disease pathway can be tested (Ehret

et al., 2011), use of PRS as biomarkers, and the enrolment of clinical

trial participants according to risk (Hu et al., 2013).

Here we describe the first dedicated and fully automated soft-

ware package for the application of PRS - PRSice. PRSice has a

high-resolution option that returns the best-fit PRS, has a flexible set

of user options intended to capture current standard practices in

PRS studies and the different applications of PRS, and produces

plots for inspection of results. We also perform a simulation study

to estimate a P-value significance threshold for high-resolution PRS

studies.

2 Overview of PRSice

PRSice has been developed to fully automate PRS analyses, substan-

tially expanding the capability of PLINK-1.9 (Chang et al., 2014). A

key feature of PRSice is that it can calculate PRS at any number of

P-value thresholds (PT) and can thus identify the most predictive

(precise) threshold. It requires only GWAS results on a base pheno-

type and genotype data on a target phenotype as input (base and tar-

get phenotype may be the same); it outputs PRS for each individual

and figures depicting the PRS model fit at a range of PT. PRSice

allows users to include or remove SNPs in linkage disequilibrium,

handles genotyped and imputed data, and can calculate ancestry-in-

formative dimensions for use as covariates. These features integrate

R code with computations performed in PLINK-1.9 and extensive

bash scripts to minimize computational time. PRSice is a command-

line program that allows users to apply a large number of PRS,

under different parameter settings or across multiple base and target

traits. In addition to the standard approach, there is an option to use

summary statistics for the target as well as the base data, using the

gtx package (Johnson, 2013). For future updates of PRSice, see the

website: http://PRSice.info.

3 Results

Here we illustrate the use of PRSice to test for shared genetic aeti-

ology between traits. We first investigate the genetic relationship be-

tween schizophrenia (SCZ) and major depressive disorder (MDD),

both known to be complex and comorbid. We apply PRSice to repli-

cate the finding by Smoller et al. (2013) that SCZ PRS can predict

MDD status, using the RADIANT-UK MDD case-control data set

(Supplementary Note S2, Lewis et al., 2010). Applying PRSice, we

remove SNPs in linkage disequilibrium and include principal com-

ponents to control for population structure. We find significant evi-

dence that SCZ PRS predict MDD status, and under the approach of

only testing PRS at several broad P-value thresholds find the most

predictive threshold at PT¼0.05 (Fig. 1). Next we repeat the ana-

lysis using high-resolution PRS (Supplementary Note S3) and find

the most predictive PRS at PT ¼ 0:0265 (Fig. 2). The PRS at

PT ¼ 0:05 explains 1.5% of the variation in MDD (Nagelkerke R2;

P ¼ 1:3" 10#9) whereas the high-resolution best-fit PRS explains

2.1% (P ¼ 2:1" 10#12) and is based on 5252 fewer SNPs (12148

rather than 17400).

Next we apply PRSice to two tobacco-related phenotypes from

the TAG consortium (Thorgeirsson et al., 2013) and the RADIANT-

UK MDD data. These analyses reveal, for the first time, shared

genetic aetiology between the dichotomous trait ‘ever smoked’ and

MDD, but not between smoking consumption, as a quantitative

trait, and MDD (Supplementary Fig. S1). In the former, high-reso-

lution scoring again produces a substantially different best-fit PRS

than that from broad PT, in terms of model fit, significance and

number of SNPs included (Supplementary Fig. S1b).

Under high-resolution PRS in particular, multiple tests are

performed and so the P-value of the best-fit PRS will be inflated.

Therefore, we perform a permutation study utilizing the SCZ and

MDD data described above, and estimate an adjusted significance

threshold for the best-fit PRS of P¼0.004 (Supplementary Note

S4). Prior to a more extensive study, we suggest a more conservative

significance threshold of P¼0.001 if using the best-fit PRS for

association testing in PRS studies.

4 Discussion

Here we have described our PRSice software, illustrating its use with

three PRS studies. We have illustrated the potential benefit of ob-

taining the best-fit PRS and have estimated a corresponding signifi-

cance threshold. There is great potential for the future application of

PRS in genetics: for gaining insights into the genetic architecture of a

trait by comparing observed PRS with theoretical expectations

across a range of PT (International Schizophrenia Consortium,

2009), for assessing the genetic overlap of a trait(s) across popula-

tions, for use as biomarkers, as instrumental variables, or even to

provide evolutionary insights (Berg and Coop, 2014). The PRS ap-

proach, and PRSice software, could be extended to test the effects of

copy number variants, epigenetic markers and more. We believe
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Fig. 1. Bar plot from PRSice showing results at broad P-value thresholds for

Schizophrenia PRS predicting MDD status. A bar for the best-fit PRS from the

high-resolution run is also included

Fig. 2. High-resolution PRSice plot for SCZ predicting MDD status. The thick

line connects points at the broad P-value thresholds of Fig.1
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that PRSice can simplify PRS studies greatly, expand the application

of PRS and aid the implementation of best-practice in PRS studies.
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Supplementary Material 
 
PRSice: Polygenic Risk Score software 
Jack Euesden, Cathryn M. Lewis, Paul F. O’Reilly 
MRC Social, Genetic and Developmental Psychiatry Centre, King’s College London 

 
 
Supplementary Note 1: Polygenic Risk Scores applied between traits 
 
Polygenic risk scores are calculated across n individuals from the ‘target phenotype’ data 
set using a list of m SNPs, the genotypes of which have some effect (or not) on the ‘base 
phenotype’. The base and target phenotype may be the same, if assessing the shared 
genetic overlap of a phenotype between samples/populations. These genotype effects 
can be estimated from a univariate regression of base phenotype on each SNP, such as 
from a genome-wide association study (GWAS). In such a GWAS, for a SNP i, where     
i = 1, 2, ..., m, a P-value, Pi, is calculated for the association between the SNP genotypes, 
Gi,j = {0,1,2} for individual j where j = 1, 2, … , n, and the phenotype. Under the usual 
additive assumption made in GWAS, a corresponding effect size is estimated, by�i, for 
the effect of a unit increase in genotype, Gij, on the phenotype. 
 
SNPs are generally selected for inclusion in a polygenic risk score based on the degree of 
evidence, according to P-value, for their association with the base phenotype in a GWAS 
– SNP i will be included in a PRS if Pi is smaller than a threshold, PT. PRS are typically 
calculated at a number of different P-value thresholds, PT. 
 
At threshold PT, the PRS for individual j can be calculated as: 
 
 

!"#!!,! = ! !!!!,!
!

!!!
 

 
 
PRS, which we see here are based on effect size estimates relating to the ‘base 
phenotype’, are calculated across all individuals giving n scores per threshold, PT. The 
association between these PRS and the target phenotype can then be evaluated in an 
appropriate regression model (depending on the data type of the target phenotype,  
eg. linear regression if the phenotype is continuous).   
 
This can be repeated across q P-value thresholds, PT, and the model fit of the regression 
of target phenotype on PRS compared.  
 
In real data there is usually some missing genotype data, unless genotypes have already 
been imputed. PLINK-2 imputes any missing data according to mean allele frequencies.
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Supplementary Note 2: Data sets analysed  
 
Base phenotype data set 
In the main analysis we used the publicly available results from the largest Schizophrenia 
GWAS to date (Psychiatric Genomics Consortium (2014)) for the base phenotype data 
set. In the additional analyses on Smoking behaviour and MDD, we used GWAS results 
from the Tobacco and Genetics (TAG) consortium on two phenotypes as the base 
phenotype: the binary phenotype ‘ever smoked’ and the quantitative trait smoking 
consumption, as measured by average number of cigarettes smoked per day 
(Thorgeirsson et al. (2013)). In each case we removed any SNPs with poor imputation 
quality (info score < 0.7). 
 
Target phenotype data set 
We used genotype data from the RADIANT-UK consortium (Lewis et al. (2010)), a 
sample of 1624 depression cases and 1588 psychiatrically screened healthy controls, for 
the target phenotype data set for each PRS analysis. These were genotyped on the 
Illumina HumanHap 610 QuadBead Chip. Quality control was performed, removing 
individuals with missingness > 1%, abnormal heterozygosity, conflicting sex and 
reported gender and those of non-European ancestry or close relatedness based on 
principal components. SNPs with MAF < 1% and SNPs not in HWE (P < 1x10-5) were 
also removed. 
 
We used the first two eigenvectors calculated using EIGENSTRAT as ancestry 
informative dimensions, to adjust for population structure. Linkage disequilibrium (LD) 
was accounted for by selecting the SNP in the base phenotype data set with the lowest 
discovery P-value in a sliding window of 250kb, only retaining variants with a pairwise 
LD r2 < 0.1, according to LD calculated in the target data set. We performed high-
resolution scoring by testing every threshold between PT = 0.0001 and PT = 0.5 at 
increments of 0.00005. This produces 9999 thresholds.
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Supplementary Note 3: High-resolution polygenic risk scoring 
 
High-resolution polygenic risk scoring, as performed in PRSice, calculates PRS at a large 
number of evenly spaced P-value thresholds, between a minimum and maximum bound. 
For the analysis here, we use a lower bound of P = 0.0001 and an upper bound of P = 
0.5, and increments of 0.00005. This generates 9999 thresholds. Assuming that there are 
~100k SNPs in approximate linkage equilibrium with P < 0.5, 10 SNPs would be added 
per threshold if P-values were uniformly distributed across SNPs. In practice, GWAS 
results will be enriched for small P-values, due to association with the base phenotype 
and due to P-value informed clumping preferentially extracting SNPs with small P-
values. Therefore, the number of SNPs included at each threshold will decrease at larger 
P-value thresholds. This high-resolution approach enables us to identify the best-fit PRS 
to a high degree of approximation; the true best-fit PRS can only be identified by testing 
PRS at every possible PT, but we instead test them at high-resolution in order to reduce 
total computational time substantially with negligible loss in accuracy. 
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Supplementary Note 4: Multiple testing correction 
 
High-resolution polygenic scoring fits a large number of regression models, as described 
above, and so the ‘multiple testing problem’ should be addressed when evaluating the 
significance of the best-fit PRS. Currently, uncorrected alpha thresholds of 0.05 are 
routinely used to assess the significance of PRS. Under high-resolution a small number 
of SNPs are added to the model at each new P-value threshold. Thus, the resulting PRS 
is likely to be very similar to the previous, especially once a large number of SNPs are 
already included, so there is high correlation between the multiple tests performed. 
Therefore, a simple Bonferroni correction or similar for the number of tests performed 
will produce an overly conservative adjustment for the multiple testing. 
 
We performed three permutation studies to estimate an appropriate significance 
threshold that controls the family-wise error rate at 0.05 and accounts for the multiple 
tests performed in a high-resolution PRSice analysis. We calculated PRS repeatedly at 
high-resolution, using the GWAS results on Schizophrenia from the Psychiatric 
Genomics Consortium as base data and RADIANT-UK genotype data on MDD as 
target data (see Supplementary Note 2), under the null hypothesis of no association with 
the target phenotype by permuting case-control status in the MDD data set. We used 
data from chromosome 19, which should reflect genetic data across the genome, and 
permuted MDD case-control status in the RADIANT-UK data set 10000 times. As 
above, we performed clumping on the SNPs to remove the effects of SNPs in LD and 
adjusted for population structure with two principal components.  In this way we 
obtained an empirical distribution for the P-value of the best-fit PRS. In order to 
understand the effect of sample size on this distribution, we repeated our permutation 
study in 1000, 2000 and 3000 individuals randomly sampled from the target data. These 
results indicated that an alpha threshold of 0.004 must be applied to high-resolution best-
fit PRS in order to ensure a false-positive rate below 0.05 (table S1). Prior to an extensive 
study to estimate a more reliable significance threshold for high-resolution PRS, we 
suggest a more conservative significance threshold of P = 0.001. 
 
 
 
 
Sample Size Empirical Significance Threshold 

1000 0.0042 
2000 0.0042 
3000 0.0046 
Table S1: Empirical significance thresholds calculated from permutation, estimating the 
required significance threshold to interpret the results of high-resolution scoring, across 
different target data set sizes.
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Supplementary Figure S1 
 
 
 
 

 

 
 

 
Figure S1a: ‘Ever smoked’: PRS using GWAS from 
the Tobacco and Genetics (TAG) consortium for ‘ever 
smoked’ as base phenotype data (N = 74053), and the 
RADIANT-UK MDD data as target phenotype data. 
SNPs in linkage equilibrium, adjusting for population 
structure using two principal components, show 
substantial evidence for shared genetic aetiology 
between smoking and MDD. 
 
 
 

Figure S1b: ‘Ever smoked’: High-resolution 
PRS for ‘ever smoked’ predicting MDD status 
(see Fig. S1a). The high-resolution best-fit PRS is 
at PT = 0.1115, while that based on broad 
thresholds on is PT = 0.2. 

 

 
 

 
Figure S1c. Number of Cigarettes Smoked per 
day: Genetic risk of smoking more cigarettes as a 
quantitative trait, predicting MDD. This demonstrates 
no evidence for shared genetic aetiology between the 
two phenotypes, since the P-value of best-fit PRS 
(calculated from the high-resolution PRS) is > 0.001 
(see Supp. Note 4). 

Figure S1d. Number of Cigarettes Smoked 
per day: High-resolution PRS for number of 
cigarettes smoked predicting MDD status. These 
high-resolution scores show that the results from 
the broad P-value thresholds of Figure S1c are 
not false negatives owing to the small number of 
thresholds considered. 
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The Relationship Between Schizophrenia and
Rheumatoid Arthritis Revisited: Genetic and
Epidemiological Analyses
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Epidemiological studies are inconsistent on the relationship
between schizophrenia (SCZ) and rheumatoid arthritis (RA).
Several studies have shown that SCZ has a protective effect on
RA,withRAoccurring less frequently in SCZcases thanwouldbe
expected by chance, whilst other studies have failed to replicate
this. We sought to test the hypothesis that this effect is due to a
protective effect of SCZrisk alleles onRAonset.Wefirst reviewed
the literature on the comorbidity ofRAandSCZandperformeda
meta-analysis.We then used polygenic risk scoring in anRA case
control study in order to investigate the contribution of SCZ risk
alleles to RA risk.Meta-analysis across studies over the past half-
century showed that prevalence of RA in SCZ cases was signifi-
cantly reduced (OR¼ 0.48, 95% CI: 0.34–0.67, P< 0.0001). The
relationship between SCZ genetic risk and RA status was weak.
Polygenic risk of SCZ explained a small (0.1%) and non-signifi-
cant (P¼ 0.085) proportion of variance inRA case control status.
This relationship was nominally positive, with RA cases carrying
more SCZ risk alleles than controls. The current findings do not
support the assertion that the relationship between RA and SCZ
is explained by genetic factors, which appear to have little or no
effect. The protective effect of SCZ on RA may be due to
environmental factors, such as an anti-inflammatory effect of
anti-psychotic medication or merely due to confounding limi-
tations in study designs. ! 2015 The Authors. American Journal of

Medical Genetics Part B: Neuropsychiatric Genetics published by Wiley Period-

icals, Inc.

Key words: Schizophrenia; Rheumatoid Arthritis; Comorbid-
ity; Autoimmune

INTRODUCTION
Rheumatoid arthritis (OMIM 180300) and schizophrenia (OMIM
181500) are, superficially, remarkably different disorders. They have
similar prevalences; rheumatoid arthritis (RA) has an estimated point
prevalence 0.6% [Helmick et al., 2008],whilst schizophrenia (SCZ)has
an estimated point prevalence of 0.46% [Saha et al., 2005]. Lifetime
prevalence for these disorders is substantially harder to measure,
especially RA due to its later age at onset, however estimates for the
lifetime prevalence of SCZ are as high as 0.72% [Saha et al., 2005].

Furthermore, bothSCZandRAshow familial patterns of aggregation–
heritability estimates for SCZ (0.81, 95% CI: 0.73–0.90) and RA (0.65,
95% CI: 0.50–0.77) are substantial [MacGregor et al., 2000]; [Sullivan
et al., 2003]. This implies a complex genetic aetiology, in which many
risk alleles of small effect size can aggregate in individuals to modulate
their risk of developing a disorder. Alongside its familial pattern of
aggregation, schizophrenia also shows an unusual aggregation of
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comorbidities with many autoimmune disorders, such as Sjögren’s
Syndrome (OMIM %270150) [Eaton et al., 2006].

The relationship between SCZ and RA is much less clear, with
many studies finding no evidence of a significant association
[Eaton et al., 2006]. Here we review the findings of such studies
in order to evaluate the veracity of this relationship. RA seems to be
protective for SCZ, with studies reporting an OR for RA status in
schizophrenia patients as low as 0.44 (95% CI 0.24–0.81). This
suggests a substantial protective effect of the disorder [Mors et al.,
1999]. This may be due to some risk factor for RA reducing
schizophrenia risk, or vice versa. In order to understand this better,
we apply a statistical genetics technique – polygenic risk scoring – to
dissect the genetic relationship between the two disorders.

We are interested in explaining this relationship on three levels.On
a genetic level, we are interested in the predetermined risk profiles
carried by various individuals throughout their lifetimes; specifically
the variance in disease status explainable by an individual’s risk allele
count. Secondly,we are interested in an epidemiological perspective –
to explain the pattern of disease status and onset amongst a popula-
tion, via a meta-analysis of studies investigating this. Finally we are
interested in an aetiological perspective – the interactionbetweenpre-
existing risk and modulating factors that act to precipitate disease
onset; we will examine aetiological and genetic data in order tomake
inferences on the aetiology of these two disorders.

RA is a joint disorder characterized by an elevation in levels of
immune activity (e.g. increased T-cell proliferation) accompanied
by painful, swollen, and ultimately, eroded and fused joints.
Converging evidence from pharmacology, serology and genetics
suggests that RA is an autoimmune disease. Its relatively high
prevalence has made RA amenable to high throughput genetic
studies, leading to the identification of, to date, 101 risk loci
[Okada et al., 2014], providing invaluable clues to its aetiology.
The strongest association for RA is in the Human Leukocyte
Antigen (HLA) region. The HLA genes are located in the MHC

region, on the short arm of chromosome 6 [Shiina et al., 2006], and
are involved in adaptive immune response.

Schizophrenia is a psychiatric disorder, characterized by auditory
hallucinations, delusions and disorganized speech. Historically,
theories of psychiatric aetiology have been rooted in a Cartesian
dichotomy, with disorders of the ‘mind’ predicted to have limited
physiological aetiologyorphenomenology [Kendler, 2012].Thishas
led to a number of environmental aetiologies proposed for schizo-
phrenia – for example an environmentwith a high level of expressed
emotion [Bebbington & Kuipers, 1994]. Despite this, there have
been a number of studies arguing for an immune component to the
aetiology of schizophrenia – this began with McGuffin et al 1978,
based on serological studies. More recently, genome-wide associa-
tion studies (GWAS) have identified genetic markers showing a
significant association with schizophrenia. These genetic markers,
Single Nucleotide Polymorphisms (SNPs) are studied across the
genome in order to fine-map regions associated with disease and
subsequently predict disease risk in other cohorts. Most robust
amongst these associations is a region in the HLA, which shows
strong association in all studies (Ripke, 2011; S.[Ripke et al., 2013].

Summary
Wetherefore sought toexamineevidence for anepidemiological link
between SCZ and RA by meta-analysis of studies investigating RA
amongst SCZpatients. Given the polygenic architecture of these two
disorders, we also investigated whether the genetic predictors influ-
encing SCZ risk had an atypical distribution amongst RA patients.

RESULTS
Meta-Analysis
After following a protocol specified below, we identified 10 studies
reported in 9 papers reporting the prevalence of rheumatoid arthritis

FIG. 1. Meta-analysis results. We identified 10 studies reported in 9 papers. Oken & Schultzer (a)compares schizophrenia vs other psychiatric
patients in Canada meanwhile Oken & Schultzer (b) compares asimilar sample in New York State. We present the RA prevalence (events) in
SCZ cases vs controls acrossstudies. W: weight for each study under random and fixed effects analysis.
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(RA) within a schizophrenia (SCZ) sample and a sample of controls.
We used the results of these studies to perform ameta-analysis (Fig. 1).
Under a fixed effectsmodel, SCZ status conferred an odds ratio of 0.57
(95%CI: 0.50–0.65,P< 0.0001)onRAstatus, andanodds ratioof 0.48
(95% CI: 0.34–0.67, P< 0.0001) under a random effects model,
showing a significant protective effect of SCZ on RA status. There is
statistically significant heterogeneity between studies (P¼ 0.0027) and
therefore a random effects model is the most appropriate analysis
approach.

These studies varied in their selection of controls – population
controls, non-schizophrenic psychiatric patient controls and non-
schizophrenic medical patients, and the most recent in a series of
studies on a Danish population register comparing SCZ patients
with population controls [Benros et al., 2013]. To maximise
comparability, a major challenge in all epidemiological work, a
number of studies use non-schizophrenic psychiatric patients as
controls. This allows the effect of schizophrenia to be studied in
isolation. Five of these studies are based in individual psychiatric
hospitals - [Mohamed et al., 1982] Mohamed et al., 1982;
[Ross et al., 1950]; [Pilkington, 1956]; [Oken & Schulzer, 1999]
Ross et al., 1950). Two use record-linkage methods [Baldwin,
1980]; [Osterberg, 1978] on international and Swedish
populations respectively. Finally two studies used general
medical disorder patients as controls [Allebeck et al., 1985];
[Chen et al., 2012].

All studies estimated nominally lower risks of RA in SCZ
cases compared to controls, and this relationship was statistically
significant in four studies [Baldwin, 1980]; [Chen et al., 2012];
[Benros et al., 2013]; [Osterberg, 1978], replicating the canonical
‘protective’ effect of SCZ on RA. It is notable that these four studies
are the largest included, all using record linkage databases and thus
the remaining 6 studies, which failed to find any significant effect,
may have been simply under-powered.

Polygenic Risk Scoring
We used published SCZ GWAS results (S.[Ripke et al., 2013] to
calculate polygenic risk scores (PRS) in 1,989 RA cases and 1,588
controls.We used a series of thresholds, pT, to select SCZ risk alleles
based on GWAS p-value, and calculated risk scores for each of
these risk allele sets (Table 1, Fig. 2a). SNPs associated with SCZ at
pT < 0.01 explain under 0.2% of the variance in RA status in the

independent test cohort (Fig. 2b). This relationship is not statisti-
cally significant (p¼ 0.085) and is therefore no stronger thanwould
be expected by chance. This is consistent with results using a
considerably smaller SCZ sample (3,322 cases, 3,587 controls) as
a discovery dataset [International Schizophrenia Consortium et al.,
2009]. Standardised polygenic risk scores for SCZ at pT < 0.01 are
approximately normally distributed, with no significant difference
(p¼ 0.063) in mean score between cases (0.028) and controls
(-0.035), (Fig. 2c).

Genetic Profile Risk Scoring
We calculated a measure of SCZ genetic risk in our RA cases and
controls using the panel of SNPs proposed by Ayalew et al, identifying
proxieswherenecessaryusingSNAP[Johnsonet al., 2008;Ayalewet al.,
2012]. AfterQC,weobtained genotypes, imputed genotypes or proxies
for257SNPs.SCZgeneticriskdidnotpredictRAstatus–afteradjusting
for population structure, P¼ 0.858. We further explored the relation-
ship between this panel of SNPs and RA, using SNP-based and gene-
based summary statistic analyses (supplementary 8), and demonstrate
that they do not show significant association with RA –SNP-based P-
value¼ 0.13, gene-based P-value¼ 0.604.

Direction of Effect
Wecompared thedirectionof effect of risk alleles for SCZandRAusing
published GWAS results for each [Stahl et al., 2010; Ripke et al., 2013].
Aftermerging, 170,998 and171,707SNPs remainedwhen clumpingby
RA P-value and SCZ P-value respectively, in order to obtain SNPs in
approximate linkage equilibrium.The lack of association between SCZ
alleles andRAalleleswas confirmed throughdirectionof effect analysis.
We found no evidence for the proportion of alleles with a shared
directionof effect betweenRAandSCZdeviating fromour expectation
under the null (Table II), using a Sign Test.

DISCUSSION

Our SCZ polygenic risk scores analysis has shown that variance in
RA status cannot be predicted or explained by burden of SCZ risk
alleles genome-wide. This is supported by an analysis of Genetic-
Profile Risk Scores. On considering the epidemiology of these two
disorders, this finding is consistent with the notion that there is no

TABLE I. Polygenic risk Scores for SCZ across thresholds and variance in RA status explained

Threshold, pT Number of SNPs Variance in RA status Explained, Pseudo R2 P-Value
0.0001 82 0.0001 0.563
0.001 299 0.0004 0.276
0.01 1,393 0.0010 0.085
0.05 4,451 0.0007 0.154
0.1 7,396 0.0000 0.799
0.2 12,431 0.0000 0.816
0.3 16,708 0.0000 0.863
0.4 20,634 0.0000 0.770
0.5 24,122 0.0000 0.751
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‘protective’ effect of SCZ on RA – one would not be predicted from
genetic data alone.Despite this, we have also demonstrated through
meta-analysis that the negative association between the two dis-
orders appears consistent across studies. Below we review the
epidemiological andgenetic evidencepresented above, andpropose
some aetiological theories to reconcile them.

Epidemiology
The protective effect of SCZ on RA is supported in our meta-analysis,
with an infrequency of RA in SCZ cases, which would not be predicted
by chance. The possible protective effect of institutionalisation on RA
status can be parsed from the effect of SCZ by looking at studies using

institutionalised controls. Rothermich & Philips studied a prison
population in order to investigate the protective effect of long term
institutionalisation; although they found no significant relationship
between RA and SCZ when using RA in prisoners as a control
population, they found nominal, but non-significant, evidence of a
protective effect of SCZ on RA onset [Rothermich & Philips, 1963].
This is consistent with equally underpowered studies using general
psychiatric samples as controls.

Genetics
Both SCZ andRAhave been associatedwith a number of risk alleles
at genome-wide significance. Converging evidence for a lack of

FIG. 2. (a)Variance in RA status explained by SCZ polygenic risk scores in an independent test cohort.Scores are calculated across cutoff
thresholds, pT. (b) Standardised polygenic risk score distribution at pT < 0.01 in RA cases (striped) and RA controls(grey). Dotted line - top
quantile (highest 5%) for SCZ risk amongst controls (standardised score > 1.57). 5.1% cases and 5.0% controls above this value. (c) SCZ risk
in highest quantile (top 5%) and lowest quantile (bottom 5%) for SCZ risk between RA cases and controls.
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shared genetic substrate between RA and SCZ comes from family
studies of the two disorders [Benros et al., 2013]. The authors
explored family history of SCZ (a proxy for SCZ risk allele burden)
as a predictor of RA, finding no evidence of a significant association
– the relative risk for family historyof SCZonRA riskwas 0.94 (95%
CI: 0.84–1.06).

Aetiology
The aetiologies of both rheumatoid arthritis and schizophrenia are
still topics of active research. Evidence for anautoimmune substrate
to schizophrenia has coalesced in recent years, driven by the
genome-wide significant loci in the Major Histocompatibility
Complex [Ripke., 2011; S.[Ripke et al., 2013]. This complements
work in serological analysis of SCZ patients, notably [McGuffin
et al., 1978], who found an increase in HLA-BW5 and a decrease in
HLA-AW29 and HLA-BW17 in serum of SCZ patients (McGuffin,
Farmer, & Rajah, 1978).

The association between SCZ and immune-related biomarkers
may be reconciled as autoimmune over-activity specific to a com-
ponent of the nervous system. A systematic review of blood protein
expression in SCZ patients found evidence of increased autoanti-
bodies for the N-methyl-D-Aspartate receptor (NMDA-R) [Ezeoke
et al., 2013],whichunderlies the formationof associativememoryby
mediating the strengthening of synapses [Bannerman et al., 1995].
An autoimmune pathology could therefore underlie damage to
neural tissue, and therefore networks, resulting in the cognitive
symptoms observed in schizophrenia [van den Heuvel et al., 2013].

Despite the plausibility of thismodel, we donot find evidence for
a genetic overlap between SCZandRA.This suggests that, if someof
the biological pathways involved in RA and SCZ are shared, it may
be environmental rather than genetic aberrations perturbing these.
Negative results must always be viewed cautiously in the context of
power, and we discuss this limitation below.

Effect of Medication
Weconsidered the epidemiological data on SCZ andRA in the light
of their respective ages at onset. SCZ has a mean age at onset of

around 26 years (95% CI 14.34 – 38.14) [Sham et al., 1994]. By
contrast, RAhas amuch later age at onset, with the peak age at onset
between 65–75 in men and 55–64 in women [Symmons and
Deborah, 2002]. We considered that, by age at onset for RA,
SCZ patients were likely to be medicated. If these two disorders
do share an aetiological basis, antipsychoticmedicationmay have a
prophylactic effect on RA onset later in life.

The epidemiological studies presented above, exploring the
relationship between SCZ and RA, do not stratify patients by
medication status. It is unlikely, however, that medication status
mediates the negative association. Chlorpromazine was first intro-
duced clinically in the early 1950’s, and clinical uptake of anti-
psychotics in the USA was gradual from the mid-1950’s to the
mid-1970 s [Shen, 1999]. Despite this, there is substantial evidence
that typical antipsychotics such as haloperidol may have an anti-
inflammatory role that may protect against RA. Synovitis and CRP
levels in RA patients has been observed to improve following
administration of haloperidol for acute mania in case studies,
and in blood cultures stimulated acute inflammation led to a
marked inhibition of the release of TNF a and IL1-b [Moots
et al., 1999]. These inflammatory cytokines have been directly
linked to RA [Elliott et al., 1995; McNiff et al., 1995]. Thus
schizophrenia patients taking haloperidol may be protected from
RA onset by the suppression of TNF-a and IL1-b levels.

Limitations
We identify four main limitations in our study. Firstly, as presented
above, SCZ and RA have substantially different ages at onset, and the
former is associated with substantially reduced life expectancy
[Crump et al., 2013]; thus many SCZ patients may die before age
at onset for RA. Many epidemiological studies above are unable to
adjust for age amongst SCZ patients— in a record linkage paradigm,
this data is not collected—and therefore we present unadjusted odds
ratios for all studies. A ‘harvesting effect’ may confound the negative
association between RA and SCZ [Sawchuk et al., 2013]; this is
unlikely to account for the entire effect, as individual population
registry studies, which collect sufficient data with sufficient power,
replicate the negative association after adjusting for age [Benros et al.,

TABLE II. Direction of Effect Sharing for SNPs in Approximate Linkage Equilibrium, Between SCZ and RA GWAS’s

Clumped By Threshold, p < N SNPs P, Pearson’s x2 Proportion SNPs in same direction
RA 0.01 5,063 0.670 0.492

0.1 35,795 0.569 0.503
0.2 61,785 0.238 0.502
0.3 83,174 0.241 0.502
0.4 101,328 0.199 0.503
0.5 117,664 0.152 0.503

SCZ 0.01 1,784 0.845 0.484
0.1 16,503 0.966 0.496
0.2 33,388 0.200 0.499
0.3 50,159 0.217 0.498
0.4 67,313 0.285 0.498
0.5 84,613 0.179 0.498
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2013]. Furthermore, work on the Swedish Population Register has
replicated the protective effect of SCZ on subsequent RA diagnosis
using Cox regression models and adjusting for age (Hazard Ratio¼
0.69, 95% CI¼ 0.59–0.80) [Sellgren et al., 2014].

Our RA cases and controls present a second limitation. They are
genotyped on different microarrays, so we can only use SNPs shared
across both platforms for calculating SCZ polygenic risk scores. As
polygenic risk scoring requires SNPs in approximate linkage equilib-
rium, the number of SNPs remaining inour test dataset for polygenic
scoring is similar to what would be expected when using a sample
genotyped on a single platform. Although our controls have been
screened forMajorDepressive Disorder (MDD,OMIM608516) and
are not a true population cohort, GWAS have been consistently
shown to be underpowered to detect risk variants associated with
MDD [MDDWorking Group of the Psychiatric Genomics Consor-
tium et al., 2013] and so this is unlikely to affect our results.

Power considerations are a persistent concern in polygenic risk
scoring. Calculation of power requires a series of assumptions to be
made on the underlying architecture of the diseases studied, such as
the correlation between genetic effects in the discovery and test
datasets. Power calculations (Supplementary 6) show it is likely that
we would have sufficient power to detect an epidemiologically
meaningful correlation in genetic effects – assuming genetic effects
at 1% of SNPs, we have 80%power to detect amodest genetic effect
correlation (magnitude¼ 0.078) at a¼ 0.05. Nevertheless, the
possibility that our polygenic scoring results are a false negative
is an important caveat.

Finally, as discussed above, RA and SCZ risk are both modulated
by genotype at HLA loci. We have modelled this influence to an
extent by including themost strongly associatedSCZrisk SNP in this
region in the calculation of polygenic risk scores. We estimated that
SCZ status is protective forRA statuswithOR¼ 0.48 (95%CI: 0.34–
0.67, P < 0.0001). The effect sizes of risk alleles in complex disease
genetics are substantially smaller than this - the most significant
MHC association with SCZ has an OR of 1.21 [Ripke et al., 2013].
Therefore it isunlikely thatSCZriskat theMHCalonecouldmediate
the epidemiological effect calculated in meta-analysis above

Summary
Despite the mounting evidence for an autoimmune aetiology in
schizophrenia, and epidemiological literature on the co-occur-
rence of these two disorders, we found no evidence for a shared
genetic substrate between rheumatoid arthritis and schizophre-
nia, although this could be due to lack of power in the current
samples. Epidemiological data may be confounded due to some
protective effect acting to prevent onset of RA in high-risk
individuals.

MATERIALS AND METHODS
Meta-analysis
We performed a systematic review and meta-analysis of studies
investigating the prevalence of RA within SCZ patients. This was
performed by searching Embase and Medline for articles published
between1945 andNovember 2013 containing the terms schiz$AND
rheuma$. We included only studies collecting data on RA within

SCZ cases and a sample of SCZcontrols.We restricted this to studies
using population samples, non-schizophrenic psychiatric patients
or other physical disorder patients.

We included all Journal Articles and retainedReviewsmeeting these
criteria.We then read thebibliographies of all reviews and included any
articles with relevant abstracts. Finally we read all articles extracted and
retained those containing epidemiological studies of RA and SCZ
prevalences, which also reported RA prevalences for SCZ controls.
We extracted the following data; study name, authorship and year, case
and control sample size, RA incidence in each of these populations and
selection criteria for controls.

We excluded case studies and studies that did not also collect
controls (see S3 for full details of method used). Literature search,
data extraction and quality assessment was performed in an un-
blinded manner by J.E. We combined studies and calculated meta-
analysis odds ratios under randomeffects and fixed effects using the
R package meta.

Genetic Data Used
As a SCZ discovery data set, we used the most recent publically
available results of GWAS of schizophrenia from ameta-analysis of
the PGC1-SCZ study and a Swedish cohort (S.[Ripke et al., 2013],
(full details of cohort in S5). This reported the p-value, odds ratio
and test statistics for 9,898,079 SNPs imputed to the 1000Genomes
project [Siva, 2008]. For the RA target study, we used RA cases from
the WTCCC study and controls from the RADIANT depression
study. These controls were not included in the discovery study and
therefore our discovery and test datasets are independent, as
required for polygenic risk scoring. This contained data on 1,999
cases and 1,588 controls.

TheWTCCCRAcases (n¼ 1,999)were collected acrossmultiple
UK studies co-ordinated by the Arthritis Research Campaign’s
Epidemiology Unit [Wellcome Trust Case Control Consortium.,
2007]. All cases satisfied the criteria for RA specified by the
American College of Rheumatology [Arnett et al., 1988].

The 1588 RADIANT controls were collected from the staff and
student body of King’s College London or recruited via theMedical
Research Council’s general practice research framework [Lewis
et al., 2010]. They were screened negative for a lifetime history
of any psychiatric diagnosis, using a modified version of the Past
History Schedule (P. McGuffin, Katz, & Aldrich, 1986) and all
reported to be of white European ancestry.

Cleaning Test Dataset
The RADIANT andWTCCC samples were genotyped on separate
platforms (Illumina 610 quad bead and Affymetrix 500 k respec-
tively), leading to a degree of attrition when merging datasets;
after merging, 70,130 SNPs remained. We performed detailed
quality control on the merged RADIANT-WTCCC dataset.
The final data set contained 1,989 RA cases and 1,588 controls
(table S1) with genotype data on 69,621 SNPs.

Cleaning Discovery Dataset
In thePGCand Swedish combined schizophreniaGWAS results as a
discovery dataset, we removed SNPswith an info score less than 0.7,
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indicating poor imputation quality and SNPs not present in the
cleaned test dataset. Finally, in order to obtain SNPs in approximate
linkage equilibrium, theHLA region (26–33Mb on chromosome 6)
was omitted, except for most significant SNP in this region
(rs2517611). We used P-value-informed clumping, extracting
SNPs based on linkage disequilibrium (LD) in HapMap2 CEU
samples.This left 24,126 independentSNPs inourdiscoverydata set.

Polygenic Risk Scoring
Polygenic risk scoringwas performed in the RA test data set, based on
SNPs extracted from the SCZ discovery data set meeting P-value
thresholds pT of 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. At each
threshold, pT, SNPs with SCZ association P-values below the thresh-
old were used to construct polygenic risk scores (PRS) for each
individual in the RA test data set by summing the number of risk
alleles at each SNPweighted by the natural logarithmof its odds ratio.

We then tested whether the SCZ PRS predicted variance in RA
disease state in a logisticmodel, regressing disease state on PRS plus
five ancestry-informative dimensions accounting for population
structure. The variance in disease state explained by this model was
calculated as Nagelkerke’s pseudo R2 (NR2). We report the differ-
ence inNR2 between thismodel and amodel based on the ancestry-
informative dimensions alone.

Genetic Profile Risk Scoring
Weused the panel of 542 SNPs reported by Ayalew et al, which have
been previously shown to serve as reliable predictors of SCZ status
within independent cohorts and cohorts of different ethnicity
[Ayalew et al., 2012], in order to construct genetic profile risk scores.
We imputedour cases and controls to 1000Genomes andperformed
stringent QC. Of the 542 SNPs listed by Ayalew et al, we obtained
genotypes or proxies with R2> 0.6 for 257. We calculated weighted
scores for SCZ genetic risk in our RA cases and controls using these
SNPs and the effect sizes reportedbyAyalewet al, andfitted a logistic
regressionmodel adjusting forpopulation structureusing5 ancestry
informative dimensions calculated on genotyped SNPs.

Direction of Effect
In order to assess for consistency of direction of effect for SNPs
between two schizophrenia and rheumatoid arthritis, we used
published GWAS data from each disorder [Stahl et al., 2010];
[Ripke et al., 2013]. We performed quality control for imputation
quality (as outlined above) and used P-value informed LD clump-
ing to obtain relatively independent SNPs, using the same protocol
above. For each clumpedGWAS,wemergedwithGWAS results for
the other disorder, extracted all SNPs below a particular P-value
threshold, and classified SNPs as having the same direction of effect
(both ORs > 1 for the same SNP allele), or different direction of
effect. Consistency of SNP effect was tested for using Pearson’s x2

statistics, commonly termed a ‘sign test’.
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Supplementary Materials: 

 

Supplementary 1: Cleaning Test dataset 

 

Firstly, in order to account for any possible issues arising from using data from two 

different platforms, we analysed the WTCCC control dataset, genotyped on the 

Affymetrix 500k (3004 individuals, genotyped by the WTCCC, drawn from UK blood 

donors and the 1958 birth cohort, (Wellcome Trust Case Control Consortium, 2007)). 

We merged this dataset with the RADIANT controls, tested for association between the 

two data sets and removed any SNPs with P < 10-5 for association from subsequent 

analyses. We also removed any SNPs with different physical positions between the two 

platforms, any SNPs with MAF < 0.05 in either control group, any SNPs with a 

difference in frequency > 0.15 between the two groups and any SNPs failing our general 

QC criteria outlined below. We removed any SNPs with genotyping rate < 0.99 or a P-

value for Hardy-Weinberg Equilibrium P < 5.7x10-7. We also removed individuals with 

missingness > 0.03.  This left 69,623 SNPs. Finally, we removed 10 SNPs reaching 

genome-wide significance (P < 5.7 x 10-8 which were not within 1 Mb of previously 

reported genome-wide significant loci for rheumatoid arthritis (Eyre et al., 2012), leaving 

69,613 SNPs. We tested for cryptic relatedness, however no pairs of individuals met our 

exclusion criteria (𝜋 > 0.2).   The genomic control λ value between controls on the two 

chips to 1.097 indicating good consistency (fig S1.a). 

 

The primary criticism of our approach, using two different chips, would be the concern 

that between-chip differences, unaccounted for by covariates for ancestry, would lead to 
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spurious results. We tested this by investigating the genomic inflation, λ, after using 20 

dimensions accounting for population structure (calculated using MDS) to covary for 

effects of ancestry. We calculated dimensions in PLINK by first producing a set of 

genome-wide SNPs in linkage equilibrium. We removed the MHC (an area of high 

linkage disequilibrium) and pruned using a sliding window of 50bp, moving by 5bp, and 

removing SNPs which produce a variance inflation factor (VIF) greater than 2 within 

that window. This left 47,951 SNPs, which were used to calculate dimensions.  

 

We calculated 20 dimensions, and then regressed control group membership 

(RADIANT vs WTCCC1) on genotype plus increasing number of dimensions, noting 

genomic inflation for each model. The genomic inflation factor, a measure of population 

structure, calculated using the median chi-squared statistic, was λ = 1.0395 when using 

5 dimensions as covariates, indicating that there was minimal population structure which 

couldn’t be accounted for by the use of dimensions accounting for population structure. 

This is a critical justification for our rationale, as we rely on our ability to assume that 

differences between cases and controls in our test dataset are due to alleles differentially 

associated with RA, rather than simply physical differences genotyping chips used.  

 

This case-control analysis is also used to determine the number of eigenvectors necessary 

to account for population stratification between our case and control datasets. We used 

multi-dimensional scaling (MDS) to calculate eigenvectors for our merged dataset. MDS 

requires SNPs in linkage equilibrium. We therefore removed the MHC (26 – 33 Mb on 

chromosome 6, an area of high linkage disequilibrium), and pruned the remaining SNPs 

using PLINK-1.07 under the protocol outlined above - using a sliding window of 50bp, 

moving by 5bp, and removing SNPs which produce a variance inflation factor (VIF) 

greater than 2 within that window.  
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Fig S1:  
a. Genome-wide association between the controls used in the test dataset (from the 
RADIANT study) and the WTCCC controls. We were interested in removing SNPs 
differing substantially between the platforms these two groups were genotyped on. After 
cleaning, there was no substantial difference between the two groups 
 
b. GWAS of RADIANT controls vs WTCCC-RA cases. We have replicated the 
WTCCC’s original (2007) result, with a substantially associated region in the MHC on 
chromosome 6 
 
c. Manhattan Plot of association with RA for with SNPs in cleaned test dataset. P-values 
from logistic regression after using 5 dimensions to account for population structure 
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We calculated the first 20 dimensions that mapped identity by state across independent 

SNPs. The first two dimensions showed substantial deviation from expectation (fig S2), 

and so we removed individuals with a score on dimension 1 less than -0.06, or on 

dimension 3 less than -0.06. This produced a more conventional plot of all the first 4 

dimensions. We therefore had 1,989 cases and 1,588 controls remaining – this left 3,577 

individuals in our test dataset. 
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Fig S2: Axes of dimensions accounting for population structure; in all graphs, 
cases are in red, controls are in black, Europeans (CEU) are in green, Chinese 
(CHB) are dark blue, Japanese (JPT) are light blue and Yorubans (YRI) are 
purple. The complete RADIANT controls, Wellcome Trust Cases and 
HapMap2.3 samples are presented on the left column. We removed individuals 
with a score on dimension 1 less than -0.06, or on dimension 3 less than -
0.06.The remaining individuals are presented on the right column. 



 63 

This is broadly in line with the Principal Component plots that should be expected under 

a null assumption of no population stratification. We then ran a series of logistic 

regression models in PLINK adding increasing numbers of dimensions used as 

covariates. When using 5 dimensions as covariates, genomic inflation was λ = 1.095, 

indicating good control of ancestry or platform differences in the merged data sets. The 

results of this association test are presented as a Manhattan plot (fig S1.c). The 

individuals used in the test dataset are summarised below (table S1). 

 
 
 
RA Cases 

RA Controls Total 

Male Female Unknown Total Male  Female Unknown Total  
498 1491 0 1989 595 993 0 1588 3577 
 

 
 

Table S1: Distribution of sex and affection status in test dataset 
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Supplementary 2: Polygenic Risk Scoring excluding MHC SNP 

 
We repeated genome-wide polygenic scoring without the addition of any MHC-SNP. 
The results of this are below (table S2, fig S3.a). 
 
Threshold, PT

 Number of SNPs 
included  

Variance in RA 
status explained, 
Pseudo R2 

P-Value 

0.0001 81 0.0001 0.519 
0.001 298 0.0004 0.259 
0.01 1,392 0.0011 0.072 
0.05 4,450 0.0007 0.152 
0.1 7,395 0.0000 0.858 
0.2 12,430 0.0000 0.938 
0.3 16,707 0.0000 0.944 
0.4 20,633 0.0000 0.826 
0.5 24,121 0.0000 0.800 

 
 
The upper 5% tails of the distribution, which capture those with high SCZ PRS scores, 

had similar proportions of RA cases and controls (cases: 5.7%; 95% CI 4.6% - 6.7% 

compared to controls 5.0%, 95% CI 4.0% - 6.1%) and similar results were seen in the 

lower 5% tail (Figure S3.b).  These results suggest that genetic factors do not predict 

any epidemiological patterns of comorbidity between RA and SCZ. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table S2: Proportion of variance in RA status explained by polygenic risk score for SCZ 
calculated at different thresholds, PT, using SNPs genome-wide excluding the MHC-
region 
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We explored the logistic model regressing RA status on 5 dimensions accounting for 

population structure and standardised polygenic risk score (PT < 0.01) for schizophrenia. 

In this model, the beta for PRS was 0.06. That is to say, a two standard deviation increase 

in polygenic risk for SCZ has an odds ratio of 1.03 (95% CI: 0.997 – 1.068) for RA risk.  

 

S3.a b 

  
Fig S3. 
a. Variance in RA status explained by polygenic risk scores for SCZ calculated using 
different cut-off thresholds. 
 
b. Proportion of RA cases (lined) and RA controls (grey) in lowest SCZ risk quantile 
(standardized PRS <  -1.66) and in highest SCZ risk quantile (standardized PRS > 1.58). 
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Supplementary 3: Systematic Review and Meta-analysis 

 
 
We performed a single meta-analysis of all studies extracted above. In addition to 

analysing the full systematic review results, we subdivided studies by control population. 

To account for effects of long term institutionalisation and aid in sample collection, 

many authors used non-schizophrenic psychiatric patients as their control group – a 

meta-analysis of the incidence of RA between SCZ patients and these reference patients 

only is shown below (fig S4). The effect of SCZ on reducing RA incidence is preserved, 

indicating a main effect of SCZ, rather that psychiatric illness in general, driving this 

association. 

 

The negative association between SCZ status and RA prevalence remained statistically 

significant, random effects OR = 3.43 (95% CI: 0.163 – 0.720, P = 0.0047). There was 

significant heterogeneity between studies (P = 0.0019). 

 

 
 

 
Fig S4: RA prevalence (events) in SCZ cases and non-SCZ psychiatric patients. The 
original significant protective effect of SCZ on RA reported above was replicated here 
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Supplementary 4: Using PGC1 SCZ only as Discovery Dataset 

 
4.1 Cleaning Discovery Dataset 
 
In order to use the PGC schizophrenia GWAS results (table S3) as a discovery dataset, a 

few quality control procedures are necessary. We removed SNPs from the GWA results 

with an info score less than 0.7, indicating poor imputation quality. We then removed 

SNPs not present in the cleaned test dataset. Finally, in order to obtain SNPs in 

approximate linkage equilibrium, we used P-value and LD-informed clumping, extracting 

SNPs based on LD in HapMap2 CEU samples.  Specifically, we selected the SNP with 

the lowest P-value in each LD block of r2 < 0.1, length ≤250kb, leaving 23,150 

independent SNPs in our discovery data sets. 

 
 
SCZ Cases SCZ Controls Total 
Male Female Unknown Total Male  Female Unknown Total  
4,731 3,106 22 8,442 10,449 10,933 15 21,397 29,833 

 
 
 
 
 

 
4.2 Polygenic Scoring 

 

After all quality control, our final test dataset contained genotype data on 1989 cases and 

1588 controls. After removing the MHC region (26-33mb on chromosome 6), 23,301 

SNPs remained. We calculated the proportion of variance in RA status explained by 

these polygenic risk scores after removal of the MHC (table S4, fig S5a) 

 

We standardised polygenic risk score (PT < 0.05) for schizophrenia – the most predictive 

threshold (fig S5.b).  Standardised polygenic scores for SCZ risk were significantly 

higher in RA cases than controls (P = 0.0127). 

Table S3: Sample characteristics of PGC1 SCZ Study, used as discovery 
sample for PRS in this section 
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S5.a 

 
b 

 
Figure S5:  
a. Variance in RA status explained by polygenic risk scores for SCZ calculated using 
different cut-off thresholds. 
 
b. Distribution of standardized polygenic risk scores in cases (light grey) and controls 
(dark grey). 
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Threshold P-
value, PT 

Number of SNPs Additional variance 
explained  

P-value of Polygenic Risk 
Score  

0.001 276 0.000275 0.568 
0.01 1,274 0.000849 0.376 
0.05 4,059 0.00204 0.120 
0.1 6,880 0.00166 0.0160 
0.2 11,778 0.000929 0.0300 
0.3 15,955 0.00143 0.0440 
0.4 19,812 0.00154 0.0363 
0.5 23,301 0.00165 0.0302 
 
 

 
 

Table S4: Polygenic Scoring testing variance in RA status explained by SCZ polygenic 
risk scores, using PGC1 SCZ data only as a discovery dataset 
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Supplementary 5: PGC1 + Swedish Data – Sample Characteristics 

 
 
The PGC1+Swedish dataset contains summary GWAS results for a meta-analysis of two 

GWAS studies of schizophrenia. The first is the PGC1 SCZ results reported above (table 

S3) excluding the samples from Sweden – 8,832 cases, 12,067 controls. Secondly the 

authors performed GWAS of 5,001 cases and 6,243 controls. The results of this analysis 

are publically available via the PGC. https://pgc.unc.edu/Sharing.php and are analysed 

here as available on Feb 9th 2014. 

 
 
Swedish Sample 
Characteristics 

Cases Controls 

Proportion Male 0.595 0.512 
Median Age 54 (45 – 62) 57 (48-65) 
 

 
 

Table S5: Swedish sample characteristics. Meta-analysed alongside PGC1 results in 
order to produce Swedish+ PGC1 dataset. 
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Supplementary 6: Power Calculations for PRS 

 

We used the polygenescore software developed by Dudbridge to calculate power in our 

polygene scoring analysis of SCZ risk in RA cases (Dudbridge, 2013). We calculated 

power to detect shared risk alleles between RA and SCZ at our most predictive score 

threshold (PT < 0.01) in table S6b; this calculation takes the following parameters (table 

S6a). We repeat power calculations at an unselected cut-off threshold of PT<0.5 in table 

S6c in order to investigate the effect of selection bias at the most predictive threshold 

generating spurious results.  

 

We tested three values of potential correlations between genetic effect sizes, based on 

genetic pleiotropy work by Lee et al (Lee, Yang, Goddard, Visscher, & Wray, 2012). We 

calculated power at α = 0.05 for genetic correlations of 0.05, 0.1 and 0.15. We also test 

5 possible values for proportion of null-SNPs genome-wide, from 0 – indicating all SNPs 

are causal – to 0.99, as the effect of 100% non-causal SNPs cannot be calculated. We 

thus obtain 15 estimates for the power of our analysis. 
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Parameter Value 
Number of samples in discovery dataset 13,833 cases,  

18,310 controls 
Number of SNPs in analysis 69,621 
Number of samples in test dataset 1,989 cases, 

1,588 controls 
Variance in Discovery dataset explained by 
all genetic effects (GREML estimate from 
PGC 2013) 

0.26 

Variance in Test dataset explained by all 
genetic effects (GREML estimate from 
Stahl et al 2012) 

0.32 

Prevalence of SCZ 0.01 
Prevalence of RA 0.006 
Proportion Cases in Discovery 0.422 
Proportion Cases in Test 0.556 
 

 
Polygenic scoring to investigate genetic overlap between RA and SCZ has power ranging 

from 0.07 to 1.00 depending on the genetic architecture of the overlap between these 

two phenotypes, at α = 0.05. This indicates our study is well powered to detect 

pleiotropic effects of the same magnitude observed in other pairs of disorders – for 

example Dudbridge estimates a genetic effect correlation between SCZ and bipolar 

disorder of 0.706 (95% CI: 0.513-0.897), (Dudbridge, 2013), assuming a high proportion 

of SNPs are non-causal. 

 

 

 

 

 

 

Table S6a: Parameters used for polygenic risk scoring power calculations 
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 Proportion of null SNPs, i.e. those with no genetic effects 

on phenotypic correlation 

0 0.05 0.5 0.95 0.99 

Base-Target 

genetic 

effect 

correlation 

0.05 0.066 0.067 0.081 0.345 0.495 

0.1 0.117 0.120 0.177 0.878 0.974 

0.15 0.204 0.211 0.338 0.997 1.000 

 

Table S6b: Power for PRS to detect effects in our main analysis, calculated using 

polygenescore, assuming a number of different values for the correlation between genetic 

effects in discovery dataset (SCZ GWAS) and test dataset (RA GWAS), and a number of 

different values for proportion of null SNPs genome-wide 

 

 

 Proportion of null SNPs, i.e. those with no genetic effects 

on phenotypic correlation 

0 0.05 0.5 0.95 0.99 

Base-Target	

genetic	

effect	

correlation	

0.05	 0.164	 0.165	 0.167	 0.177	 0.179	

0.1	 0.498	 0.499	 0.507	 0.539	 0.544	

0.15	 0.835	 0.836	 0.844	 0.870	 0.874	

 

Table S6c: Repeating the above power calculations looking at PT<0.5 in order to 

validate concerns of selection bias on power calculations for best threshold 
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Finally, we used software provided by Dudbridge to demonstrate that, assuming 5% of 

SNPs have effects, we have 80% power here to detect a genetic effect correlation of 

0.090. Assuming 1% of SNPs have effects, we have 80% power to detect a genetic effect 

correlation of 0.072. These are much less than genetic effect correlations estimated for 

canonically pleiotropic conditions with similar epidemiological relationships – such as the 

estimated genetic effect correlation between SCZ and bipolar disorder of 0.706. 

Therefore, provided the proportion of null SNPs is high, we would have reasonable 

power to reject the null in the presence of a genetic effect in this analysis. 
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Supplementary 7: Direction of effect for SNPs within the MHC 

 
A study using FDR-informed SNP ordering recently demonstrated that SCZ-associated 

SNPs acted in the same direction as those associated with Multiple Sclerosis more 

frequently than would be expected by chance – evidence of pleiotropy (Andreassen, 

Thompson, & Dale, 2014). Furthermore the authors demonstrated that this effect was 

driven by SNPs in the MHC region. We therefore repeated our direction of effect 

analysis above, focusing specifically on SNPs within the MHC (26 – 33Mb on 

Chromosome 6).  

 

After correcting for multiple testing, none of the results of sign tests for shared direction 

of effect were statistically significant (table S7). Therefore these results are consistent 

with those above, demonstrating a lack of genetic association between RA and SCZ, and 

nominal evidence for shared risk alleles. 

 
Clumped By Threshold, P < N SNPs P, Pearson’s 

χ2   
Proportion 
SNPs in same 
direction 

RA 0.01 95 0.201 0.526 
 0.1 132 0.025 0.515 
 0.2 145 0.090 0.531 
 0.3 149 0.129 0.523 
 0.4 152 0.152 0.520 
 0.5 152 0.152 0.520 
SCZ 0.01 83 0.826 0.482 
 0.1 114 0.835 0.491 
 0.2 128 1.00 0.508 
 0.3 136 1.00 0.507 
 0.4 142 0.977 0.514 
 0.5 148 1.00 0.507 
 

 

Table S7: Shared direction of effect between independent SCZ and RA risk alleles in the 
MHC region, across published GWAS 
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Supplementary 8: Genetic Profile Risk Scoring 

 
SCZ genetic risk scores calculated using the panel of 542 SNPs proposed by Ayalew et al 

did not associate with RA status (Ayalew et al., 2012). We explored this further by 

investigating these SNPs within the most recent publically available RA GWAS (Stahl et 

al., 2010). Within an RA GWAS, the P-values for association with RA status were 

uniformly distributed (Kolmogorov-Smirnoff test P-value = 0.13). The SNP panel 

provided by Ayalew et al orders SNPs based on the genes they lie within. We therefore 

obtained this list of genes (n=42), and calculated gene-based P-values for rheumatoid 

arthritis using the summary data available from Stahl et al and the utility VEGAS (Liu et 

al., 2010). RA gene-based P-values were uniformly distributed across the 42 SCZ risk 

genes identified by Ayalew et al (Kolmogorov-Smirnoff test P-value = 0.604), indicating 

that genetic variation across these SCZ risk genes is not associated with RA status. 

 

Displayed on a Manhattan plot of our RA case-control data after imputation and QC, no 

GPRS SNPs or their proxies show a suggestively significant association (α = 5x10-5) 

with RA (supplementary figure 6). 
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Figure S6: Manhattan plot of imputed SNPs in RA case-control analysis. GPRS542 
SNPs and their proxies are highlighted in green. 
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Appendix – The Genetic Overlap between PGC2-SCZ 
and Rheumatoid Arthritis 
 

Introduction 

Following the publication of our investigation into the genetic overlap between 

schizophrenia (SCZ) and rheumatoid arthritis (RA) (Euesden, Breen, Farmer, McGuffin, 

& Lewis, 2015), there have been two notable developments that allow our study to be 

updated with higher power to reinforce our conclusions. Firstly, in our original study we 

constructed Polygenic Risk Scores for Schizophrenia using the PGC1+Swedish Genome 

Wide Association Study (Ripke et al., 2013). This GWAS is now superseded as the largest 

publically available Genome-Wide Association Study of Schizophrenia to date by the 

PGC2 study (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 

2014), whose sample characteristics are described below (Table A1). Secondly, we have 

demonstrated elsewhere (Euesden, Lewis, & O'Reilly, 2015) that the standard Polygenic 

Risk Scoring (PRS) approach used extensively by others, and in our initial investigation 

of SCZ and RA, may be improved upon by the use of a larger number of thresholds PT 

and any multiple testing burden offset through the use of a more stringent significance 

threshold of α = 0.001. Here we therefore present updated results from our study of 

SCZ and RA, using the PGC2 SCZ GWAS (Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014) for its higher power, and using PRSice with 

high-resolution scoring for its optimised detection of the most significant threshold for 

the construction of PRS. 
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Methods 

We used the same RA case-control sample from our original investigation (Euesden, 

Breen, et al., 2015) as a target data set. Our base sample is the PGC2 schizophrenia data, 

whose sample characteristics are below (Table A1). 

 

We implement high-resolution scoring in PRSice, at 10,000 thresholds, from PT=0.001 to 

PT=0.5 at increments of PT=0.0005. All scores are calculated using default clumping 

protocols in PRSice, with the Major Histocompatibility Complex removed. Scores are 

regressed on rheumatoid arthritis status at each threshold; these logistic models are 

adjusted for the first 5 MDS dimensions as calculated and reported previously (Euesden 

et al 2015). 

 

Dataset SCZ Cases Controls Individuals 

in Trios 

Total #GWAS 

Hits 

 European Asian Total European Asian Total    

PGC2 

 

32,405 1,836 34,241 42,221 3,383 45,604 2,470 82,315 128 

PGC1+ 

Swedish 

13,833  13,833 18,310  18,310  32,143 22 

PGC1 9,394  9,394 12,462  12,462  21,856 7 

 

 

Table A1: Sample characteristics of the PGC2 schizophrenia data used as base in this 

supplementary analysis.  As comparison, the PGC1 sample, presented in the 

supplementary materials to chapter 3 is included. These individuals are meta-analysed 

with a sample of 8,832 SCZ cases and 12,067 controls recruited from Sweden to give the 

final analytic sample of 13,833 SCZ cases cases and 18,310 controls that are used in the 

main analysis in chapter 3. The number of Genome-Wide significant loci identified in 

each study is also presented for illustration of the relative power of these studies 
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Results 

At the most predictive threshold, PT=0.3918, Schizophrenia PRS predicts rheumatoid 

arthritis case status with a P-value of 0.005. Whilst suggestively significant, this lies above 

our suggested α threshold of 0.001, which is necessary to adequately account for the 

multiple testing burden resulting from the use of 10,000 P-value thresholds for PRS 

calculation. Furthermore, as in our previous analysis, we find a nominally positive effect 

of SCZ PRS predicting RA case status.  For a 1-standard deviation increase in SCZ PRS, 

the odds ratio for RA is 1.11 (99.9% Confidence Interval – corresponding to α = 0.001 

– is 0.98 – 1.24), suggesting that it is unlikely that increased SCZ PRS is reducing risk of 

rheumatoid arthritis in the general population, or that this could contribute to the 

epidemiological relationship we have reported, which is in the opposite direction. These 

results are displayed below graphically (figure A1) and at a selected number of thresholds 

(table A2). 
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a) 

 
b) 

 
Figure A1: PRS for Schizophrenia predicting rheumatoid arthritis case-control status 

across thresholds. Results using high-resolution scoring are presented (a) as a bar chart  

and (b) as a point-plot with the results of PRS at a limited number of thresholds 

superimposed in green to demonstrate the increased resolution allowed by PRSice . 
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 PGC2 Data PGC1+Swedish Data 

PT P-value  Variance 

explained  

Number  

of SNPs 

P-value  Variance 

explained  

Number  

of SNPs 

0.001 0.2220 0.0005 771 0.276 0.0004 299 

0.05 0.0400 0.0015 5776 0.154 0.0007 4,451 

0.1 0.0225 0.0018 8695 0.799 0.0000 7,396 

0.2 0.0280 0.0017 13477 0.816 0.0000 12,431 

0.3 0.0119 0.0022 17316 0.863 0.0000 16,708 

0.3918 0.0049 0.0028 20446 NA NA NA 

0.4 0.0062 0.0026 20690 0.770 0.0000 20,634 

0.5 0.0126 0.0022 23652 0.751 0.0000 24,122 

 

Table A2: Results of SCZ PRS predicting RA case-control status at a select number of 

P-value cut-off thresholds including the most significant threshold of PT=0.3918. We 

present threshold, P T used to select SNPs for PRS construction, the P-value for SCZ 

PRS predicting RA Case-Control Status (α = 0.001 ), The variance in RA Case-Control 

Status explained by SCZ PRS (Nagelkerke’s Pseudo R2), and the number of SNPs (N) 

included in scores calculated at this threshold. No thresholds produce scores that are 

significant predictors of RA status at our suggested α threshold of 0.001. For 

comparison, results are presented alongside those obtained from the PGC1+Swedish 

data in chapter 3 – NB we do not present the results at PT=0.3918 in the 

PGC1+Swedish data as this is derived from high-resolution scoring. 

 

Discussion 

We find, in line with our previous analyses, that there is no evidence for a significant 

genetic overlap between schizophrenia and rheumatoid arthritis. This supports our 

previous assertion that the relationship observed in epidemiological cohorts may be 

driven by non-genetic factors, such as a harvesting effect due to the decreased life 

expectancy of schizophrenia patients, or an effect of medication whereby antipsychotics 

are reducing an individual’s risk of subsequently presenting with rheumatoid arthritis. 
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Abstract 

 

Background 

Depression and the autoimmune disorders are comorbid - the two classes of disorders 

overlap in the same individuals at a higher frequency than chance. The immune system 

may influence the pathological processes underlying depression; understanding the 

origins of this comorbidity may contribute to dissecting the mechanisms underlying these 

disorders. 

 

Method 

We used population cohort data from the National Child Development Study to 

investigate the ages at onset of depression and 23 autoimmune disorders. We used self-

report data to ascertain life-time history of depression, autoimmune disorders and their 

ages at onset. We modelled the effect of depression onset on subsequent autoimmune 

disorder onset, and vice versa, and incorporated polygenic risk scores for depression and 

autoimmune disorder risk. 

 

Results 

In our sample of 8174 individuals, 315 reported ever being diagnosed with an 

autoimmune disorder (3.9%), 1499 reported ever experiencing depression (18.3%). There 

was significant comorbidity between depression and the autoimmune disorders (OR = 

1.66, 95% CI = 1.27-2.15). Autoimmune disorder onset associated with increased 

subsequent hazard of depression onset (HR = 1.39, 95% CI = 1.11 – 1.74, P = 0.0037), 

independently of depression genetic risk. Finally, depression increased subsequent hazard 
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of autoimmune disorder onset (HR = 1.40, 95% CI = 1.09 – 1.80, P = 0.0095), 

independently of autoimmune disorder genetic risk.  

 

Discussion 

Our results show a bidirectional relationship between depression and the autoimmune 

disorders.  This suggests that shared risk factors may contribute to this relationship, 

including both common environmental exposures that increase baseline inflammation 

levels, and shared genetic factors. 
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Introduction 

 

An epidemiological link between psychiatric and autoimmune disorders has been 

observed for almost a century (Nissen & Spencer, 1936). The mechanism underlying this 

overlap is unclear, particularly in depression, one of the most common psychiatric 

disorders (Kessler et al., 2005).  

 

Several relatively small-scale clinical studies have explored the association between 

depression and specific autoimmune disorders. In rheumatoid arthritis, multiple sclerosis 

and the inflammatory bowel diseases, authors have robustly demonstrated an increased 

overlap between depression and autoimmune disorder diagnosis in the same individuals, 

above that expected from their prevalences (Dickens, McGowan, Clark-Carter, & Creed, 

2002; Kurina, Goldacre, Yeates, & Gill, 2001; Patten, Beck, Williams, Barbui, & Metz, 

2003). These relatively small clinical studies have been supplemented by a recent Danish 

population-based study, which reported that depression is associated with a significantly 

increased risk of subsequent autoimmune disease (IRR= 1.25, 95% CI 1.19–1.31) 

(Andersson et al., 2015). 

 

In addition to any clinical implications, investigating the relationship between depression 

and autoimmune disorders, and identifying the factors driving it, will inform theories that 

the aetiology of depression involves immune processes (Raison, Capuron, & Miller, 2006; 

Raison & Miller, 2013). In rheumatoid arthritis, low mood may predict subsequent 

worsening of symptoms in autoimmune disorder patients (Euesden et al, submitted). The 

aetiology and pathophysiology of depression is currently poorly understood, and current 

pharmacological treatments lack efficacy for mild to moderate depression (Fournier et 
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al., 2010). It is therefore of great clinical importance to identify the mechanisms 

responsible for the onset of depression, and leverage this information in future work 

such as the repositioning of pharmaceuticals. 

 

One approach to dissecting this relationship is to examine the relative ages at onset of 

the two disorders in order to infer elements of causality.  If one disorder consistently 

precedes another, it may reliably increase risk of the second.  This has long formed a 

criterion for establishing causality between two events, as first proposed by Hume and 

expanded on by others (Holland, 1986). If there is no clear trend in the order of disorder 

onset, there are two possible interpretations. Firstly, a shared environmental risk factor 

may increase risk of both disorders. Secondly, this relationship may be due to pleiotropy, 

common genetic risk factors increasing risk of both disorders, as is seen between 

depression and a number of other comorbid psychiatric disorders such as schizophrenia 

(Cross-Disorder Group of the Psychiatric Genomics, 2013).  

 

As far as we are aware, only one study has explored relative ages at onset in depression 

and the autoimmune disorders to date. Depression has been shown to elevate hazard of 

autoimmune disorder onset in a Danish population cohort, using confirmed hospital 

diagnoses to identify cases (Andersson et al 2015). This study design has the advantage of 

minimising ascertainment bias and any confounding effects of attrition.  However, 

relying on date of first clinical contact as an indicator of age at onset may estimate an 

artificially late age at onset, as there is typically a latency between depression onset and 

clinical diagnosis (Beiser, Erickson, Fleming, & Iacono, 1993).   

 

In this study, we use data from the National Child Development Study (NCDS), a large 

epidemiological cohort comprised of all children born in England, Scotland and Wales, 
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in one week of 1958. This sample has been followed up through their adult lives, 

providing data that allow the temporal analysis of onset of depression and autoimmune 

disorders.   In addition, the availability of genetic data on NCDS cohort members 

enabled us to examine the contribution of genetic risk to disease onset, alongside 

traditional epidemiological methods. Risk of both depression and almost all autoimmune 

disorders studied to date including type 1 diabetes, rheumatoid arthritis,ankylosing 

spondylitis, Crohn's disease, psoriasis, primary sclerosing cholangitis and ulcerative colitis  

are influenced by large numbers of common polymorphisms (Single Nucleotide 

Polymorphisms, SNPs) of small effect, which often act to increase risk of a number of 

phenotypes concomitantly (Bulik-Sullivan et al., 2015; Ellinghaus et al., 2016; Major 

Depressive Disorder Working Group of the Psychiatric GWAS Consortium et al., 2013; 

Okada et al., 2014; Wellcome Trust Case Control Consortium, 2007). We therefore 

investigated the role of these common genetic risk factors within a longitudinal 

population cohort in order to dissect environmental and genetic risk factors influencing 

the relationship between depression and autoimmune disorders. 
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Materials and Methods 

 

Sample 

We used data from the National Child Development Study (Power & Elliott, 2006), a 

sample of the 17,638 individuals born in Scotland, England and Wales in one week of 

1958. This cohort has been followed up on multiple occasions across childhood and in 

adulthood. We used self-report data from waves 5 (age 33), 6 (age 42) and 7 (age 46), 

collected in the years 1991, 2000 and 2004, along with genotype data derived from the 

biomedical survey undertaken in 2002-4, when cohort members were aged 44-45 years.  

Ethical approval was given by the South East Multi-Centre Research Ethics Committee.  

Measures 

Autoimmune Disorders 

In wave 7 of the NCDS, participants were queried about their medical histories via 

telephone interview; disorders were stored as ICD-10 codes alongside self-reported ages 

at onset. We investigated the following 23 autoimmune disorders, pooling them to form 

a single autoimmune disease phenotype: Addison's disease, autoimmune haemolytic 

anaemia, autoimmune thrombocytopenia purpura, celiac disease, dermatomyositis, 

Graves' disease, Hashimoto's thyroiditis, idiopathic myocarditis, idiopathic pulmonary 

fibrosis, insulin-dependent diabetes mellitus, inflammatory bowel disease (Crohn’s 

disease and ulcerative colitis), multiple sclerosis, myasthenia gravis, pernicious anaemia, 

polyarthritis, psoriasis, rheumatoid arthritis, scleroderma, Sjogren disease, systemic lupus 

erythematosus, vitiligo, and Wegener's granulomatosis. We pool disorders in order to 

increase power due to many autoimmune disorders being rare individually, and to 

mitigate any biases introduced through possible misclassification within the autoimmune 
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disorders during interview. Participants were considered unexposed before autoimmune 

disease onset (or first autoimmune disease if a participant reported more than one), and 

exposed at age at onset and thereafter. All data were considered censored at age 46, the 

time-point of the most recent biomedical investigation.   

  

Depression 

We drew on three measures of depression onset in the main analysis. In wave 5 (age 33), 

participants were asked if depression had ever been a problem, and if so at what age it was 

first a problem. In wave 6 (age 42), participants were asked the age they had started 

feeling depressed. Finally, in wave 7 (age 46), psychiatric histories were taken alongside 

age at onset (Table 1). 

 

Participants were considered exposed from their earliest report of depression and 

exposed thereafter; as for the autoimmune disorders, reports of depression onset were 

censored at age 46. We took a number of steps to ensure the consistency in reports of 

age at onset across sweeps, and excluded any cases with inconsistent reports (see 

Supplementary 3.  

 

Genotyping 

Blood samples and consent for genotyping were collected in the course of the 

biomedical survey.  Genome-wide genotype data from a subset of NCDS participants 

were available from previous studies using five different genotyping chips.   Quality 

control was performed on each chip separately: SNPs were removed based on MAF < 

1%, Hardy Weinberg equilibrium P < 10-5, and missingness > 1%.  Individuals with 

missingness > 10% were removed. In our phenotype-cleaned data set, 5762 participants 
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were genotyped in total: 2896 participants were genotyped on the Illumina Immunochip, 

1271 on the Illumina 1.2M chip, 1456 on the Infinium Humanhap, and 139 on the 

Affymetrix v6 chip. 

 

Polygenic Risk Scores - Depression 

Polygenic Risk Scores (PRS) for depression for each genotyped NCDS participant were 

calculated using genome-wide results from the Psychiatric Genomics Consortium MDD 

study (Major Depressive Disorder Working Group of the Psychiatric GWAS 

Consortium et al., 2013).  PRS give a measure of genetic risk for each individual by 

summing the number of risk alleles carried, weighted by the natural logarithm of the 

odds ratio for each SNP as identified in GWAS.  PRS were calculated using PRSice, 

including SNPs reaching P-value threshold of  PT = 0.3, previously shown to produce a 

reliable predictor of MDD in independent samples (Major Depressive Disorder Working 

Group of the Psychiatric GWAS Consortium et al., 2013; Peyrot et al., 2014); (Euesden, 

Lewis, & O'Reilly, 2015). PRS were computed by genotyping chip and standardised to 

enable data to be pooled.   

 

 

 

Polygenic Risk Scores – Rheumatoid Arthritis 

Of publically available GWAS results for autoimmune disorders, rheumatoid arthritis 

(Okada et al., 2014) is one of the highest powered by both sample size - 29,880 RA cases 

and 73,758 controls - and the number of genome-wide significant variants identified 

(n=101).  The NCDS contributed 1,999 controls to the WTCCC study (Wellcome Trust 

Case Control Consortium, 2007) which is part of the RA GWAS meta-analysis; we 
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therefore removed the effect of these samples from the Okada GWAS summary 

statistics by performing an association study on the WTCCC rheumatoid arthritis cases 

and controls, and perform an inverse meta-analysis in order to obtain a GWAS summary 

statistics which can be used to calculate PRS in the NCDS – this cleaning of GWAS data 

is outlined in detail in supplementary section 4. 

 

The summary results from this adjusted RA GWAS meta-analysis were used to construct 

rheumatoid arthritis PRS for all genotyped NCDS individuals. To obtain the optimum 

SNP P-value threshold, we identified all NCDS rheumatoid arthritis and polyarthritis 

cases, and classified others as controls. We tested the ability of rheumatoid arthritis PRS 

to predict this case-control arthritis status at a number of SNP P-value thresholds. 

Logistic regression for case-control status was performed for each chip separately, and 

the PRS regression coefficient was meta-analysed across chips at each P-value threshold.  

This showed that the most predictive threshold was PT=0.001, consistent with the high 

power of the RA GWAS meta-analysis (Dudbridge, 2013).  RA PRS at this P-value 

threshold were standardised by chip and used in modelling below.  

 

Statistical Analyses 

All analysis, unless stated otherwise, was performed using R version 3.2.2 (R 

Development Core Team, 2008). We fitted Cox Proportional Hazards models to 

investigate the time-course of depression on autoimmune disorder onset and vice-versa, 

using Breslow’s method to estimate the baseline hazard function. In each case, the 

predictor variable is coded as a time-varying covariate; this is achieved by specifying 

multiple observations per individual, one before any exposure, one before any outcomes 

and a third thereafter.  Individuals were considered unexposed the year before reported 
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age at onset for a phenotype and exposed thereafter. For example in testing for the effect 

of depression on age at onset of autoimmune disorder, a participant reporting depression 

onset at age 20 and an autoimmune disorder at age 40 would be considered unexposed 

for depression until age 20, exposed for depression but not autoimmune disorder up to 

age 40, and then exposed for both depression and autoimmune disorder until age 46, the 

most recent point at which data was collected.  Models were fitted using autoimmune 

disorder as the event, coding by exposure to depression at different time points, and 

similarly using depression as the event, coding for diagnosis of autoimmune disorder.  All 

models were adjusted for gender as this is a strong predictor of both depression 

(Weissman & Klerman, 1977) and autoimmune disorder (Whitacre, Reingold, & 

O'Looney, 1999).  For each model, we tested the null hypothesis that the exposure 

(depression, autoimmune disorder) had no effect on the event (autoimmune disorder, 

depression).  Finally, PRS for MDD were incorporated into the Cox Proportional 

Hazards models in order to estimate the genetic contribution to hazard of depression – 

firstly in a univariate model investigating hazard of depression and secondly in a 

multivariate model adjusting for any effect of autoimmune disorder onset; we then 

incorporate the same procedure to test the effect of PRS for rheumatoid arthritis 

predicting hazard of autoimmune disorder onset, extending this to a multivariate case 

where the onset of depression is adjusted for. 
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Results 

Overlap between autoimmune disorders and depression 

After harmonisation across time-points and data cleaning, 8174 individuals (48% female) 

remained in our analytic sample. By age 46, 315 (3.85%,; 55.6% female) reported ever 

being diagnosed with an autoimmune disorder (an event-rate per 10,000 person-years of 

8.38), and 1499 (18.3%; 65.6% female) were positive for our measure of depression.   

Depression and autoimmune disorders co-occurred in the same participants at a higher 

rate than would be expected by chance (84 individuals, Odds Ratio = 1.66, 95% CI = 

1.27 – 2.15, Fisher’s exact test P = 1.92 x 10-4).  

 

Dissecting Directionality via Relative Ages at Onset 

 

The mean reported age at onset for autoimmune disorders was 33.2 years (SD=10.9), 

and for depression was 34.4 years (SD=6.3).  Reported ages at onset were not 

significantly different for men and women for autoimmune disorders (P = 0.105), and 

were significantly later in males than females in depression (P = 6.93x10-6). The ages at 

onset of depression and the autoimmune disorders are shown on histograms in figure 1, 

on the x and y axes respectively; ages at onset in individuals with both disorders are 

shown as points, with darker points indicating multiple individuals with the same 

combination of ages at onset.  

 

Cox Proportional Hazards models allow us to explore time-dependent changes in hazard, 

and to use time-varying covariates. We fitted Cox Proportional Hazards models treating 

autoimmune disorder as a time-varying covariate for depression onset, and depression 
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onset as a time-dependant covariate for autoimmune disorder onset. Autoimmune 

disorder onset increased the hazard of subsequent depression onset, with a Hazard Ratio 

of 1.39 (95% CI = 1.11 – 1.74, P = 3.7 x 10-3), adjusting for sex. We also found evidence 

for an effect of depression onset increasing subsequent hazard of autoimmune disorder 

onset (HR = 1.40, 95% CI = 1.09 - 1.80, P = 9.5x10-3), adjusting for sex. These results 

are displayed graphically as Kaplan-Meier curves (figure 2). 

 

Shared genetic risk 

 

To test for shared risk genes increasing hazard of both depression and the autoimmune 

disorders, we incorporated PRS from genotype data on subset of the NCDS sample (N 

= 5762). As individuals were genotyped on one of 5 chips, we verified that standardised 

Polygenic Risk Scores (PRS) for depression did not differ across chips (ANOVA F = 

0.57, P–value = 0.69). In a univariate model, MDD PRS was a significant predictor of 

depression hazard (HR = 1.09, 95% CI = 1.03 – 1.12, P = 5.3 x 10-3), and after adjusting 

for gender (HR = 1.08, 95% CI = 1.02 – 1.15, P = 9.1 x 10-3).  

 

Including autoimmune disorder onset and MDD PRS in a Cox model adjusting for 

gender, we found that both MDD PRS (HR = 1.08, 95% CI = 1.02 – 1.15, P = 8.7 x 10-

3) and autoimmune disorder onset (HR = 1.32, 95% CI = 1.01 – 1.72, P = 0.046) were 

significant, independent predictors of subsequent depression onset.  Although the 

smaller Ns in the genotyped sample reduced the statistical power of this model, the point 

estimate for the Hazard Ratio of autoimmune disorder status on depression onset was 

closely similar to that in the phenotypic analysis reported above. 
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For RA PRS, we confirmed that scores did not differ by genotype chip (ANOVA F = 

0.93, P-value=0.45), and that it predicted rheumatoid arthritis and polyarthritis case-

control status (P=0.005). In a Cox Proportional Hazards model adjusting for gender and 

depression onset, RA PRS predicted autoimmune disorder hazard (HR = 1.15, 95% CI = 

1.01 – 1.31, P = 0.03), with a nominally significant independent effect of depression 

status (HR = 1.31, 95% CI = 0.97 – 1.38, P = 0.08).  

 

Whilst the effect of depression onset predicting AD onset is not statistically significant 

when adjusting for RA PRS, it is likely that this is due to power concerns. Firstly, we 

demonstrate below that RA PRS does not predict depression status, and so it is unlikely 

that adjusting for RA PRS accounts for any effect of depression predicting AD onset. 

Secondly, the model adjusted for RA PRS has reduced power to detect modest effect 

sizes, a general principle of models with dichotomous outcomes and additional 

covariates predicting outcome but not exposure (Mefford & Witte, 2012). Thirdly, the 

hazard ratio for depression predicting subsequent AD onset estimated when adjusting 

for RA PRS (HR = 1.31) remained similar to the hazard ratio obtained before adjustment 

(HR=1.40). Thus our interpretation of the effect of depression predicting subsequent 

AD onset after adjusting for RA PRS as suggestively significant (P=0.08) appears broadly 

justified. 

 

We finally tested whether RA PRS predicted depression onset, and whether MDD PRS 

predicted AD onset. Neither of these associations were significant: HR = 0.99 (P=0.79) 

and HR = 0.97 (P=0.68) respectively. We repeat all of the above analyses using cluster 

robust standard errors in order to account for the effect of longitudinal dependence 

across observations. The results of these analyses are presented – in comparison with the 
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results of the above analyses – in supplementary 5 and table S3, and confirm that 

accounting for the effects of this dependence has little effect on our results.
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Discussion 

 

We explored the relationship between depression and autoimmune disorders up to mid-

life using epidemiological and genetic data. We replicated the finding that autoimmune 

disorders are frequently comorbid with depression, using a longitudinal national birth 

cohort and self-report data, which is increasingly used in the study of depression (Smith 

et al., 2013). We also demonstrated an effect of autoimmune disorder onset increasing 

hazard of subsequent depression onset; this effect was independent of the effect of 

genetic risk factors influencing hazard of depression. These results highlight the utility of 

a longitudinal approach to problems of medical comorbidities in epidemiology; our 

epidemiological results replicate those of Andersson et al (2015), and build on them by 

including individuals who had not sought specialist mental health care, but who had 

explicitly answered questionnaires on history and current status of depression, within a 

population-based sample. There are a number of alternative explanatory models for the 

observed findings 

 

Causative effect of depression on autoimmune disorders 

Longitudinal studies have shown that depression shows a two-way association with 

systemic inflammation (Matthews et al., 2010), which is a key component in the 

pathophysiology of autoimmune disorders, such as rheumatoid arthritis (Smolen, 

Aletaha, Koeller, Weisman, & Emery, 2007). Our finding that depression onset can 

increase subsequent hazard of autoimmune disorder onset is consistent with this model 

(Sheehy, Murphy, & Barry, 2006).  
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Causative effect of autoimmune disorders on depression 

The role of immune abnormalities in the pathophysiology of depression has been the 

focus of intense research for the past two decades (Miller & Raison, 2015). For example, 

experimental stimulation with pro-inflammatory cytokines and bacterial compounds, 

such as lipopolysaccharides (LPS), induces a cluster of symptoms overlapping with 

depressive symptoms in animal models and humans (Dantzer, O'Connor, Freund, 

Johnson, & Kelley, 2008; Musselman et al., 2001). Furthermore, anti-inflammatory 

medications appear to have antidepressant effects (Kohler et al., 2014). Our finding that 

autoimmune disorder onset can increase subsequent hazard of depression onset is 

consistent with these findings. 

 

Shared Environmental Factors 

Many behaviours associated with MDD, such as smoking (Bjørngaard et al., 2013) are 

also associated with autoimmune disorders such as rheumatoid arthritis (Pedersen et al., 

2006). Whilst there is little debate that smoking increases risk of RA (Di Giuseppe, 

Discacciati, Orsini, & Wolk, 2014), there is considerable debate as to the direction of any 

causal association between smoking and MDD.  Bjorngaard et al found no evidence for a 

causal effect in MDD but negative results in Mendelian randomisation studies are 

difficult to interpret. The large number of behaviours associated with MDD and the 

multifactorial nature of both MDD and many autoimmune disorders make it difficult to 

differentiate between autoimmune disorder risk factors caused by MDD, and common 

risk factors shared by both MDD and the autoimmune disorders, however temporal 

ordering may provide one route. There is robust evidence for an association between 

childhood maltreatment and both depression and the autoimmune diseases (Dube et al., 

2009; Nanni, Uher, & Danese, 2012) and immune abnormalities appear concentrated 



 103 

within a subgroup of depressed individuals with a history of childhood maltreatment 

(Danese et al., 2008); (Danese et al., 2011). Therefore, early life stressors may play a role 

in the comorbidity of these two outcomes. 

 

Shared Genetic Factors 

Inflammatory models of MDD would suggest a predisposition to higher inflammatory 

activity, similar to the inflammatory arthritis that precedes rheumatoid arthritis, in 

depression patients (Raison et al., 2006). Genetic risk of inflammatory over-activity may 

underlie the epidemiological relationship between these two families of disorders, 

however this conclusion would not be consistent with our results, as we found no 

evidence for genetic risk of rheumatoid arthritis increasing hazard of depression. Instead, 

we find evidence for independent effects of MDD genetic risk and autoimmune disorder 

onset on hazard of subsequent depression. 

 

We note that two separate causal mechanisms, one by which depression increases hazard 

of autoimmune disease and another by which autoimmune disease onset increases hazard 

of depression is a less parsimonious conclusion than the presence of a shared 

environmental risk factor. 

 

Clinical Implications 

Because depression can exacerbate systemic inflammation (Matthews et al., 2010) and 

symptoms of autoimmune disorders (Sheehy et al., 2006), assessment and treatment of 

depression in patients with autoimmune disorders is crucial. In addition, not all patients 

with depression benefit from currently available treatments (Fournier et al., 2010) (Nanni 

et al., 2012), and new treatments targeting patient subgroups with identified 
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vulnerabilities, such as immune abnormalities, could offer innovative, effective strategies 

(Kohler et al., 2014); (Raison & Miller, 2013). Finally, further investigations of shared 

pathways that may drive the observed comorbidity, including the roles of childhood 

maltreatment, can uncover key biological mechanisms (Danese & McEwen, 2012).  

 

Limitations  

Our findings need to be viewed in light of several limitations.  First, the low prevalence 

of the individual autoimmune disorders - although consistent with rates expected in 

community samples - required that we group them together into a single composite 

phenotype. Whilst it has the advantage of mitigating confounding due to 

misclassification within the autoimmune disorders and has increased power for 

modelling, this pooled autoimmune disorder phenotype prevented us detecting 

aetiologically distinct subgroups within autoimmune disorders.  It also precluded our 

investigating the role of the genetics of autoimmune disorders in depression onset, 

beyond the marker for genetic risk of rheumatoid arthritis used in the present study.   

 

A further limitation arising from our pooled autoimmune disorder phenotype is the 

difficulty in comparing reported prevalences by disorder. The event-rate for first 

autoimmune disorder in our sample is 8.38 per 10,000 person-years.  This is similar to 

the same event-rate (8.8) reported for any autoimmune-disorder hospitalisation by Dube 

et al (2009) between ages 19 and 44 and suggests that self-report is not leading to an 

over-reporting of medical history in our sample. 

 

A second limitation of this work is the reliance on self-report for indicators of both 

disease status and age at onset. Our confidence in the validity of our depression measure 
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comes from several sources. The prevalence of depression in our sample at 18.3% is 

consistent with previous reports in high-income countries, for example, Bromet et al 

(Bromet et al., 2011) report 14.6% (SD  = 0.2). The higher prevalence of depression in 

our sample may indicate that the repeated interviews minimise under-reporting of 

depression, as previously noted by Moffitt et al (Moffitt et al., 2010). As expected, we see 

later onset for depression in males, and a higher prevalence in females (Burke, Burke, 

Regier, & Rae, 1990; Van de Velde, Bracke, & Levecque, 2010). We note that our sample 

has a later average age at onset (34.4 years) than reported elsewhere (Kessler & Bromet, 

2013); if this reflected a systematic bias in our study, it would mask any causative effect 

of depression on autoimmune disorder onset, as depression onset would be reported 

artificially late in individuals with both disorders. Therefore, our depression measure 

appears to be reliable, and any possible systemic bias would not detract from our 

conclusions. 

 

Summary 

We have replicated, and built on, previous studies in finding a significant association 

between major depressive disorder and the autoimmune disorders in an unselected, 

population-based sample. Furthermore, we have found significant evidence for 

depression temporally preceding autoimmune disorders in some patients, and vice versa. 

This suggests a causal effect of MDD on autoimmune disorder onset, perhaps via some 

depression-associated behaviour such as diet, or an environmental risk factor shared 

between the two phenotypes, such as cigarette smoking. Finally, we have used genetic 

data to demonstrate independent effects of autoimmune disorder status and MDD 

genetic risk scores on onset of depression.  
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Tables and Figures 
 

 
Wave Age (year) Depression 

Measure 
Number of 
reported cases 
(% female) 

Number of 
new cases 
(% female) 

5 33 (1991) Age at which 
depression was first 
a problem 

390 (79.0%) 390 (79.0%) 

6 42 
(2000) 

Age first started 
feeling depressed 

1466 (66.1%) 1085 (61.5%) 

7 46 
(2004) 

ICD codes for 
medical disorders 
and self reported 
age at onset. F32, 33 
and 34 

101 (62.3%) 24 (37.5%) 

 
Table 1: Summary of depression metrics used to determine depression status and age at 
onset within the NCDS sample.  
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Measure Full Sample Genotyped Subsample 
Sample Size 8174 5762 
Female (%) 3919 (47.9%) 2902 (50.4%) 
Number depressed (%) 1499 (18.3%) 1067 (18.5%) 
Number (%) depression cases 
Female 

984 (65.6%) 736 (69%) 

Average depression age at onset 
(SD) 

34.4 (6.3) 34.4 (6.36) 

Average depression age at onset 
in women (SD) 

33.9 (6.54) 33.8 (6.62) 

Number with an autoimmune 
disorder (%) 

315 (3.85%) 226 (3.92%) 

Number (%) autoimmune 
disorder cases female  

175 (55.6%) 131 (58%) 

Average autoimmune disorder 
age at onset (SD) 

33.2 (10.9) 33.5 (11) 

Average autoimmune disorder 
age at onset in women (SD) 

34.1 (10.4) 34.4 (10) 

 
Table 2: Sample characteristics. Measures are presented separately for the full sample, 
and the subsample that have been genotyped – these are the participants used in the 
Polygenic Risk Score analysis. All controls are censored at age 46, so case status status 
denotes onset before this age, and age at onset is within individuals who have onset 
before this age. 
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Figure 1: Age at onset distributions for depression and any autoimmune 
disorder (AD). Participants with both disorders are shown as points, with 
darker points representing more individuals with this pair of ages at onset. 
Of 6 participants reporting age at onset for autoimmune disorders before 
age 10, 4 report celiac disease and two report polyarthritis 
 

 

 
 
a

 

b

 
Figure 2: Curves illustrating (a) age of onset of depression by reported autoimmune 
disorder status, and (b) age at onset for autoimmune disorders by reported depression 
status. These are Kaplan-Meier curves modified to show 1 - survival 
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Supplementary Materials 
 
 
 

Supplementary 1: Assessing evidence for non-random dropout 

 
We verified that attrition and data cleaning was not introducing bias into our sample. We 

obtained data at waves 0 – 7, harmonised based on identification number and performed 

the cleaning procedure as described in methods. In this sample, we investigated a 

number of variables as predictors of presence versus absence of individuals in a cleaned 

analytic sample using a multivariate logistic regression framework. 

 

We selected a number of biomedical predictors recorded at wave 3 (age 16) in order to 

test whether attrition is independent with respect to our outcome measures – these are 

‘Seen a Psychiatrist or Psychologist for Depression’, and some proxies for autoimmune 

disease – Diabetes, Psoriasis and Bowel Problems (the closest proxy to IBD available in 

the waves 0-3 data). We also selected a number of demographic variables – gender, 

general ability measured at age 11 and father’s social class. 
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 Estimate Std. Error z value Pr(>|z|) 
Intercept -1.03 0.10 -9.86 6.26x10-23 

General Ability Score 0.02 0.00 18.88 1.68x10-79 

Psoriasis -0.19 0.22 -0.86 0.39 
Diabetes 0.38 0.54 0.71 0.48 
Bowel Problems -0.09 0.12 -0.78 0.44 
Seen a psychiatrist for 
Depression 

-0.05 0.33 -0.14 0.89 

Female 0.22 0.04 6.06 1.38x10-9 

Father’s social class II 0.03 0.09 0.33 0.74 
Father’s social class III 0.04 0.10 0.38 0.70 
Father’s social class IV -0.08 0.09 -0.93 0.35 
Father’s social class V -0.10 0.09 -1.03 0.30 
Father’s social class VI -0.22 0.11 -1.97 0.05 
Father’s social class VII -0.32 0.12 -2.80 0.01 
 
Table S1: Predictors of attrition at wave 7 following data cleaning 
 
As expected from many prior studies, low general ability score in childhood, female 

gender, and low paternal social class did predict attrition (Matthews et al 2006). 

Importantly for the current analyses, however, the medical disorders were not significant 

predictors of attrition. These results indicate that attrition is random with respect to our 

outcome measures. 
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Supplementary 2: Prevalence of Autoimmune Disorders 

 
Below we have summarised the numbers of reported Autoimmune Disorders 

investigated in our sample, with data censored at age 46. 

 
Autoimmune Disorder Number of Cases ICD-10 Code 
Polyarthritis 163 M13 
Rheumatoid Arthritis 
(Seronegative) 

37 M06 

Crohn’s Disease 26 K50 
Multiple Sclerosis 25 G35 
Psoriasis 24 L40 
Ulcerative Colitis 12 K51 
Celiac Disease 11 K90 
Type 1 Diabetes 5 E10 
Sjogren Syndrome 4 M35 
Pernicious Anemia 3 D51 
Graves’ Disease 2 E05 
Pulmonary Fibrosis 2 J84 
Hashimoto’s 1 E06 
Scleroderma 1 L94 
Addison’s Disease 0 E27 
Dermatomyositis 0 M33 
Granulomatosis 0 M31 
Haemolitic Anaemia 0 D59 
Lupus 0 M32 
Myasthenia Gravis 0 G70 
Myocarditis 0 I40 
Rheumatoid Arthritis 
(Seropositive) 

0 M05 

Thrombocytopenia Purpura 0 D69 
Vitiligo 0 L80 
 
Table S2: Number of cases for each autoimmune disorder investigated, with ICD-10 
code used for classification 
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Supplementary 3: Determining age at onset of depression 

 

As outlined in the Methods section, we drew on reports from 3 study sweeps (waves 5, 6 

and 7) to identify age at onset of depression.  Not unexpectedly, we identified a small 

number of discrepancies in reporting across sweeps, and dealt with them as follows: 

Participants reporting a history of depression at wave 5 (age 33), but not at wave 6 (age 

42) were excluded. Participants reporting depression at waves 5 and 6, but with reported 

ages at onset that differed by more than 10 years were removed. Participants with no 

reported onset at wave 5, but reported onset at wave 6 before age 23 were removed. Any 

individuals reporting age at onset for depression before age 7 were reassigned onset at 

age 7.   

 

As a final step, we used 9 items from the Malaise Inventory, a tool to assess low mood 

(Rutter et al, 1970), to validate self-reported depression at wave 5 (Malaise items 2, 3, 5, 

9, 12, 14, 16, 20, 21). We removed any cases who scored zero on the Malaise Inventory 

data collected at age 33, but who reported depression onset between ages 30 – 36.  
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Supplementary 4: Preparing Data for Rheumatoid Arthritis Polygenic Risk 

Score 

 

In order to remove the effect of the WTCCC1 controls from the Okada et al (2014) 

GWAS, we first clean the WTCCC1 RA cases and controls using the following protocol. 

We first remove SNPs with minor allele frequency below 10% and Hardy-Weinberg 

Equilibrium P-value below 0.05, and individuals with missingness above 10%. We then 

remove SNPs with a genotyping rate below 99.5%. Finally, individuals with missingness 

above 1% on the remaining SNPs are removed. Following this protocol, 297,733 SNPs 

remain, and GWAS is performed on these cases and controls using logistic regression 

under an additive model. 

 

After merging with the Okada et al GWAS, we remove SNPs with an average posterior 

call rate (as determined by Chiamo) > 99.9%, and ambiguous SNPs (i.e. A/T and C/G). 

This leads to a total of 178,239 SNPs. 

 

We remove the effect of this GWAS using the formula below. This is a re-arrangement 

of the standard inverse variance weighted fixed effects meta-analysis formula, as 

presented elsewhere (Borenstein et al., 2009). 

 
Where a full GWAS contains only effects from GWAS A and B, and: 
 
β FULL is effect size from full GWAS 

βA is effect size from GWAS A 

βB is effect size from GWAS B 

SEFULL is standard error from full GWAS 

SEA is standard error from GWAS A 

SEB is standard error from GWAS B 
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Supplementary 5: Repeating Main Analysis with Cluster Robust Standard 

Errors 

In order to investigate the possible effect of longitudinal dependence of observations 

biasing our results, we repeat the main analyses here, accounting for any longitudinal 

dependence using cluster robust standard errors implemented in the survival package in 

R. The results are presented below as table S3, and show that omitting cluster robust 

standard errors in our main analysis biased estimates towards the null, therefore 

providing support for our conclusions. This is an expected result when calculating cluster 

robust standard errors for predictors with a negative intraclass correlation – this will be 

the case in our data, where individuals only contribute multiple rows if their disease 

status changes across the study period, thus inducing a negative intraclass correlation in 

these variables. 

 
  Main Analysis Using Cluster Robust 

Standard Errors 
  HR P-value HR P-value 
Predicting 
Depression 
Onset 

Autoimmune 
Disorder 
(unadjusted) 

1.39 3.71x10-3 1.39 3.16 x10-3 

 Autoimmune 
disorder 
(adjusted for 
Depression PRS) 

1.31 0.046 1.31 0.044 

 Depression PRS 
(adjusted for 
Autoimmune 
Disorder) 

1.08 8.73x10-3 1.08 8.17x10-3 

Predicting 
Autoimmune 
Disorder Onset 

Depression 
(unadjusted) 

1.40 9.55x10-3 1.40 6.65x10-3 

 Depression 
(adjusted for 
Autoimmune 
Disorder PRS) 

1.31 0.08 1.31 0.069 

 Autoimmune 
Disorder PRS 
(adjusted for 
Depression) 

1.15 0.03 1.15 0.041 

Table S3: Comparison of using cluster robust standard errors with the main analysis 
presented above.  
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ABSTRACT 
 
Introduction 

Reduced mental health is prevalent in rheumatoid arthritis (RA). Although longitudinal 

studies are limited, there is evidence that depression associates with worse disease outcomes. 

We evaluated reciprocal relationships between mental health, RA severity and genetic risks 

for depression over 2-years in a well-characterised cohort of RA patients.  

 

Methods 

We evaluated 520 early RA patients previously enrolled to two clinical trials. Mental health 

was measured using the SF-36 mental health (MH) domain and mental component summary 

scores (MCS). MCS/MH associations over two-years with disease activity (DAS28), 

disability (HAQ), pain visual analogue scale (VAS) scores, and a weighted genetic risk score 

(wGRS) for depression, were tested using linear mixed-effects and regression models. 

 
Results 

Poorer mental health associated with worse RA outcomes. Lower MCS scores (indicating 

worse mental health) were seen in patients with a greater genetic risk for depression (wGRS 

β=-1.21; P=0.013). Lower baseline MCS associated with lower 2-year improvements in 

DAS28 (β=-0.02; P<0.001), pain (β=-0.33; P<0.001), and HAQ (β=-0.01; P=0.006). Baseline 

MCS associated with changes in the swollen joint count (β=-0.09; P<0.001) and patient 

global assessment (β=-0.28; P<0.001), but not the tender joint count (P=0.983) and 

erythrocyte sedimentation rate (P=0.973). Only baseline pain VAS (β=-0.07; P=0.002) 

associated with 2-year changes in MCS. 
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Conclusions 

Reduced baseline mental health associated with lower improvements in disease activity, 

disability, and pain over two years, supporting current national guidelines recommending 

screening for depression in RA. Pain had a bidirectional relationship with mental health. 

Depression genetic risk had a significant association with mental health. 

 

Keywords 

Rheumatoid arthritis; mental health; disease activity; disability; pain; genetics. 
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1. INTRODUCTION 

Reduced mental health is prevalent in rheumatoid arthritis (RA), with major depression 

present in 16.8% of patients [1]. The cause of this excess burden of mental health impairment 

is uncertain. Comorbid depression also appears to have a detrimental impact on the disease 

course of RA, being associated with increased healthcare utilisation and costs [2] and 

representing an independent risk factor for non-suicide related mortality [3]. Determining the 

cause and effect of depression in RA is, therefore, a key research goal. 

 

Research in this area has mainly involved cross-sectional studies in patients with long-

standing RA. These identified associations between depression, and pain [4], disability [5] 

and arthritis disease activity [6]. Their cross-sectional nature, however, made it impossible to 

infer causality. Whilst longitudinal studies are limited, there is some evidence for a 

bidirectional effect with pain in patients with musculoskeletal disorders, whereby depression 

influences pain and vice versa [7, 8]. There is also some evidence that depression influences 

the subsequent disease activity of RA, with an analysis of established RA patients finding a 

slower rate of decline in disease activity over time in patients with a history of depression [9].  

 

Depression also has a substantial genetic component [10], with a recent mega-analysis of 

genome-wide association studies (GWASs) identifying multiple markers of suggestive 

association with major depressive disorder (MDD) [11]. The role of these in determining 

mental health in RA has not previously been evaluated. 

 

The aim of our study was to evaluate the relationship between mental health and disease 

activity, disability, pain, and genetic risk for depression over 2 years in a well-characterised 

clinical trial cohort of patients with early RA. The direction of any associations was tested by 
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examining the impact of baseline mental health on changes in disease activity, disability and 

pain, and vice versa. 

 

2. METHODS 

2.1 Participants 

We studied patients in the Combination Anti-Rheumatic Drugs in Early RA (CARDERA) 

cohort. It has been described in detail previously [12]. In brief, it comprises European 

ancestry RA patients enrolled to two multicentre randomised controlled trials (RCTs), 

CARDERA-1 and CARDERA-2 [13, 14]. Both recruited patients with early RA (<2 years 

duration) and active disease defined as three of ≥3 swollen joints, ≥6 tender joints, ≥45-min 

morning stiffness, or erythrocyte sedimentation rate (ESR) ≥28 mm/h. CARDERA-1 

recruited patients between 2000-2002; CARDERA-2 recruited patients between 2003-2010. 

CARDERA-1 randomised patients to receive either (1) methotrexate; (2) methotrexate and 

ciclosporin; (3) methotrexate and prednisolone; (4) methotrexate, ciclosporin and 

prednisolone. CARDERA-2 randomised patients to receive either (1) methotrexate or (2) 

methotrexate and anakinra. Follow-up was 2 years. The current analysis is restricted to the 

520 patients with baseline mental health data available.  

 

2.2 Disease Outcomes 

The following disease outcomes were captured. Firstly, disease activity (how active a 

patient’s arthritis is) was recorded using the disease activity score with 28-joint counts 

(DAS28). This composite score combines information on the number of swollen and tender 

joints (assessed by a clinician from 28 joint counts), the patient global assessment of disease 

activity (PGA, which involves a patient rating their overall disease activity on a 100mm 

visual analogue scale) and the erythrocyte sedimentation rate (ESR) in a mathematical 
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formula to give an assessment of RA activity ranging from 0 to 10. Lower scores indicate less 

active disease, with scores >5.1, <3.2 and <2.6 indicating high disease activity, low disease 

activity, and remission, respectively. Secondly, disability was recorded using the health 

assessment questionnaire (HAQ), a patient-completed questionnaire giving a score of 

function ranging from 0 to 3. HAQ scores of <1, 1-2, and >2 indicate mild, moderate, and 

severe disability, respectively. Thirdly, pain was recorded using a 100mm patient completed 

pain visual analogue scale (VAS). Fourthly, health-related quality of life (HRQoL) was 

recorded using the short form-36 (SF-36), which is described in detail below. In CARDERA-

1 the aforementioned outcomes were captured every 6-months. In CARDERA-2 they were 

captured at 0, 6, 12 and 24 months. 

 

2.3 Mental Health 

The SF-36 is a generic measure of health status, capturing HRQoL across 8 domains (four 

physical and four mental) [15]. These domains are scored 0-100, with higher scores 

indicating better HRQoL. They can be normalised, z-transformed and combined into mental 

and physical component summary scores (MCS and PCS, respectively) providing summary 

measures of overall mental and physical health, relative to a population mean score of 50 (SD 

10) [16]. 

 

We used the mental health (MH) domain score and MCS as measures of mental health in our 

analysis. Both have been used to screen for depression, with an MCS cut-off of 42 having a 

sensitivity and specificity of 74% and 81%, respectively for detecting depressive disorder 

[17]. They also associate with depression severity, both cross-sectionally and over time [18]. 
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2.4 Genotyping 

CARDERA patients were genotyped on the Illumina ImmunoChip array (described in detail 

previously [12]). Single nucleotide polymorphism (SNP) markers were removed that had 

>5% missingness, were duplicates, were not in Hardy-Weinberg equilibrium (HWE; 

P<0.00001), and had a minor allele frequency (MAF) <0.01. From 196,524 pre-QC markers, 

138,873 were available in the final dataset. Imputation was subsequently performed using 

IMPUTE2 [19] and the 1,000 Genomes Phase 1 integrated variant version 3 (March 2012) 

reference panel (variants filtered with a European MAF <0.01). Post-imputation SNPs were 

removed with low INFO scores (<0.7), MAF<0.05, HWE P<0.000001 and genotyping rate < 

0.1, resulting in 429,193 available markers.  

 

2.5 Genetic Risk for Depression 

The recent Psychiatric Genomics Consortium MDD GWAS mega-analysis failed to find a 

locus of genome-wide significance, likely reflecting limited power caused by the genetic 

architecture of MDD (small effect sizes of individual genetic variants) and the high 

prevalence of MDD, which increases the difficulty in recruiting large samples of screened, 

low risk controls [11]. We therefore tested a weighted genetic risk score (wGRS) combining 

loci of nominal association with MDD for an association with mental health in CARDERA. 

This approach is commonly used in studies of common polygenic disorders, whose genetic 

architecture comprises thousands of very small effect common alleles [20, 21]. We linkage 

disequilibrium (LD) pruned SNPs and used a P-value threshold (PT) to include SNPs in the 

wGRS with an MDD GWAS P-value below 0.05, representing nominal association. A 

continuous wGRS based on MDD GWAS results has been shown to predict depression in 

independent cohorts, with a PT of 0.05 demonstrated to generate a wGRS with the greatest 

effect on MDD risk [22]. After LD pruning and thresholding, 3,010 SNPs were included in 
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the wGRS. The wGRS was generated for each individual in CARDERA by calculating the 

number of nominally associated risk alleles they carried, weighted by the log odds ratio (OR) 

from the MDD mega-analysis, summed across SNPs. 

 

2.6 Statistical Analysis 
2.6.1 Associations with Mental Health 

Two different modelling approaches were used to evaluate the relationship between mental 

health, RA severity measures and genetic risk for depression. The first approach established 

whether mental health was associated with either RA severity measures or the wGRS for 

depressive disorder over time. This used a linear mixed-effects model, which incorporated 

either MCS or MH measured at each time-point as the response variable, regressed on the 

corresponding predictors (wGRS, DAS28 and its components, HAQ, or pain VAS) from each 

time-point. The inclusion of random effects of individual and time accounted for the within-

individual correlation structure of these variables over time. The following variables were 

tested for their associations with MCS: age, gender, disease duration, and rheumatoid factor 

(RF) status. Of these, only gender improved the model fit and was included as a covariate 

(Supplementary Tables A.1 and A.2). The wGRS was standardised to a z-score, in order to 

provide interpretable β-values. Examination of residuals from a model containing time, 

gender and treatment only confirmed a good model fit (Supplementary Figure A.1), and 

variance inflation factors calculated for each predictor ensured multi-collinearity between RA 

outcomes and DAS28 components was not an issue (Supplementary Table A.3). 

 

The second approach evaluated the direction of associations between mental health and RA 

severity, by testing if mental health at study baseline associated with 2-year changes in RA 

outcomes over time, or vice versa. This used linear regression models to look at the 

association between a) baseline MCS or MH and 2-year changes in RA severity measures, 



134 

and b) baseline RA severity measures and 2-year changes in mental health scores. These 

models included the baseline response variable score, treatment and gender as covariates. 

Examination of model residuals confirmed good model fits (Supplementary Figure A.1). 

 

2.6.2 Missing Data Imputation 

In the original CARDERA-1 trial missing data at each time-point had previously been 

imputed using last-observation carried forward (LOCF) analysis for study end-points 

(DAS28, HAQ and SF-36). In the original trial an observed case analysis had excluded a 

significant impact of the LOCF assumption [13].  In the original CARDERA-2 trial missing 

data were not imputed. For consistency in the current analysis we imputed missing, 

previously non-imputed CARDERA-1 data (SJC, TJC, ESR, PGA, pain VAS) and missing 

CARDERA-2 data using LOCF. The largest amount of missing data was seen for pain VAS 

(11% of observations missing across all time-points). We repeated our analysis with non-

imputed data only; this excluded a significant impact of the LOCF assumption 

(Supplementary Table A.4). 

 

2.6.3 Statistical Software 

Analyses were performed in the statistical environment R (R Foundation for Statistical 

Computing, Vienna, Austria), PRSice (version 1.2) [23], IMPUTE2 [19] and PLINK (version 

1.9)  [24]. 

 

2.7 Ethics, Consent and Permissions 

CARDERA-1 (South Thames Multi Centre Research Ethics Committee (REC) reference: 

MREC (1) 99/04) and CARDERA-2 (South East REC reference: MREC 02/1/089) were 
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ethically approved. Approval was obtained to genotype archived DNA (NRES Committee 

East of England – Essex REC reference: 11/EE/0544). All patients provided consent. 

 

3. RESULTS 

3.1 Patient Baseline Characteristics 

Most patients were female (69%; Table 1) and RF-positive (67%). Baseline disease activity 

was high (mean DAS28 5.88), disability moderate (mean HAQ 1.56) and disease duration 

short (mean duration 3.3 months). Baseline mental health was reduced relative to the general 

population (mean MCS score 40.6, which is 9.4 units lower than the general population 

mean). 

 
3.2 Disease Severity Associations with Mental Health 

In a gender and treatment adjusted linear mixed-effects model, DAS28 (P<0.001), HAQ 

(P<0.001) and pain VAS (P<0.001) significantly associated with MCS (Table 2). On average 

over two years MCS scores were 2.22, 6.07 and 0.14 units lower per unit increase in DAS28, 

HAQ and pain VAS scores, respectively. This indicates that over time, the higher a patient’s 

disease activity, disability and pain levels, the worse their mental health. In multivariate 

models all three disease severity measures retained a highly significant association with MCS 

(Table 2): HAQ (β=-3.88; P<0.001), DAS28 (β=-0.91; P<0.001), pain VAS (β=-0.05; 

P<0.001). Similar associations were seen with the MH domain. 

 

3.3 MDD Genetic Risk Score Associations with Mental Health 

A significant association was seen between the wGRS for depression and MCS (P=0.013) 

and MH (P=0.041) (Table 2). The association with MCS (P=0.033) but not MH (P=0.080) 

was retained in multivariate models including DAS28, HAQ and pain VAS as covariates. 
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Higher wGRS scores, which indicate a greater genetic risk for depression, associated with 

worse mental health (lower MCS and MH scores) over time (MCS β=-1.21; MH β=-1.37).  

Repeating the analysis with a linear mixed-effects model that incorporated a wGRS*time 

interaction term provided some evidence that genetic risk for depression also influenced the 

rate at which mental health improved over time, with a significant association seen between 

the wGRS*time term and MH (P=0.039; β=-0.83) but not MCS (P=0.330; β=-0.30). 

 

3.4 DAS28 Component Associations with Mental Health 

In a gender and treatment adjusted linear mixed-effects model all four DAS28 components ‒ 

SJC, TJC, ESR and patient global assessment (PGA) ‒ associated with MCS and MH scores 

when tested individually (Table 2). Higher scores in each DAS28 component associated with 

lower MCS and MH scores; this indicates that more active disease is linked with poorer 

mental health. On average over two years MCS scores were 0.32, 0.07, 0.13 and 0.27 units 

lower per unit increase in SJC, ESR, PGA, and TJC scores, respectively. In multivariate 

models including all 4 DAS28 components the TJC failed to retain a significant association 

with MCS (P=0.461) and MH (P=0.519). 

 

3.5 Direction of Association between RA Outcomes and Mental Health 

3.5.1 Association between Baseline Disease Severity and Changes in Mental Health 

The only baseline RA severity measure that had a significant association with two-year 

changes in both MCS and MH scores was pain VAS (Table 3). Higher baseline pain VAS 

scores (indicating greater levels of pain) associated with lesser increases in MCS and MH 

scores (indicating lower improvements in mental health over time). The increase in MCS was 

0.07 units less per 1mm increase in baseline pain VAS. A significant association between the 
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baseline TJC and 2-year changes in MH domain scores was also seen (P=0.023), although 

this variable did not significantly associate with 2-year changes in MCS scores (P=0.122). 

 

3.5.2 Association between Baseline Mental Health and Changes in RA Outcomes 

Baseline MCS and MH domain scores had significant inverse associations with two-year 

changes in DAS28 (MCS and MH P<0.001), pain VAS (MCS and MH P<0.001) and HAQ 

(MCS P=0.006; MH P=0.008) (Table 3). Lower baseline MCS and MH scores (indicating 

poorer mental health) associated with lesser improvements in DAS28, pain VAS, and HAQ 

scores over time. The effect sizes were, however, modest: per 10 unit increase in baseline 

MCS, the two-year reductions in DAS28, HAQ and pain VAS were 0.20, 0.10 and 3.30 units 

greater, respectively (Table 3). 

 

Dividing patients into octiles based on their baseline MCS and plotting the mean disease 

severity measure in each octile demonstrated the effect of baseline MCS on RA outcomes 

(Figure 1). Trends towards a) worse disease outcomes at each time point and b) lower 

improvements in disease outcomes over 2-years across increasing baseline MCS octiles were 

seen (Figure 1).  Over two years, mean DAS28, HAQ and pain VAS scores changed by -1.14, 

-0.23 and -8.11 units, respectively in the lowest MCS octile (group 1) and -1.94, -0.49 and -

18.49 units, respectively in the highest MCS octile (group 8). 

 

Examining individual DAS28 components revealed that baseline MCS and MH scores had 

significant inverse associations with two-year changes in the SJC (MCS and MH P<0.001) 

and PGA (MCS and MH P<0.001) but not the TJC (MCS P=0.983; MH P=0.226) and ESR 

(MCS P=0.973; MH P=0.355) (Table 3). This differential impact on DAS28 components is 

shown in Figure 2.  Over two years, mean SJC, PGA, TJC and ESR levels changed by -0.17, 
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-13.91, -8.02 and -11.98 units, respectively in the lowest MCS octile (group 1) and -4.69, -

20.46, -5.97 and -11.03, respectively in the highest baseline MCS octile (group 8). 

 

 

4. DISCUSSION 

Our study evaluated the relationship between mental health and disease activity, disability, 

pain, and genetic risk for depression over 2 years in a well-characterised clinical trial cohort 

of patients with early RA. It has three key findings. The first, and most clinically important, is 

that low mental health associated with poorer disease outcomes. In a repeated measures 

analysis, lower MCS and MH scores had significant associations with more active disease, 

increased disability and greater pain over two years; as MCS and MH scores increased over 

time DAS28, HAQ and pain levels fell. Lower baseline MCS and MH scores (indicating 

worse mental health) associated with a reduced improvement in disease activity and 

disability, suggesting that depression influences the degree to which RA improves over time. 

The relationship between pain and mental health appeared bidirectional, with baseline pain 

associating with lower improvement in MCS and MH domain scores and vice versa; this is in 

keeping with existing studies of musculoskeletal disorders [7, 8]. 

 

The second finding was that swollen, but not tender joint counts had a significant association 

with reduced mental health. In a multivariate model incorporating all four DAS28 

components, the TJC failed to retain a significant association with MCS and MH scores over 

time. In established RA patients attending routine clinics the opposite relationship appears 

true, with an analysis of the CORRONA registry reporting that a lifetime depression history 

associated with slower improvements in the TJC but not the SJC [9]. One explanation for the 

lack of association between MCS/MH scores and the TJC in CARDERA is that the short 
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disease duration of patients means the pain pathway sensitisation characterising fibromyalgic 

RA − which could be particularly influenced by mental health − is yet to occur. An 

explanation for the association observed between MCS/MH scores and the SJC is that 

overlapping pro-inflammatory cytokines, which are present in high levels in early active RA, 

play important roles in mediating both reduced mental health and RA activity. Whilst this 

hypothesis is supported by evidence that administering IL-1β and TNF-α induces depressive 

behaviour in mice [25] and that these cytokines are elevated in the serum of depressed 

patients [26, 27], it fails to explain why baseline mental health scores did not predict changes 

in ESR levels. Further research is required in other early active RA cohorts to confirm the 

generalisability of our results. 

 

Our third finding was that genetic risk for MDD had a significant influence on mental health.  

Although a recent large MDD GWAS mega-analysis (including 18,759 subjects) failed to 

find a locus of genome-wide significance, the authors’ noted that their study lacked power to 

identify individual genetic risk variants given the genetic architecture of this common disease 

[11]. We therefore tested a wGRS combining 3,010 SNPs of nominal association with MDD 

in the GWAS for its association with mental health in CARDERA. Whilst a significant 

association with lower MCS and MH scores was observed, it was substantially weaker than 

that seen with non-genetic factors. These findings support the notion that depression is a 

complex disorder with a modest, albeit important, genetic contribution comprising thousands 

of alleles of a small effect size. 

 

Our study replicates existing research that depression and pain have a bidirectional 

relationship. In CARDERA, baseline MCS and MH scores predicted two-year changes in 

pain VAS and vice versa. This finding has been documented in psoriatic arthritis, with 
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Husted et al identifying a small bidirectional relationship between MCS and pain in 394 

patients followed up for a mean of 7.5 years [7]. It has also been reported in patients with 

persistent back, hip or knee pain [8], back pain [28, 29] and pain from a variety of disorders 

[30]. The complex nature of pain makes it difficult to discern mechanisms by which this pain-

depression bidirectional relationship could occur. Possible mechanisms include: (1) low 

mood could impact on pain through promoting maladaptive coping strategies, especially 

catastrophizing (perceiving a situation to be worse than it is) [31]; (2) pain could impact on 

mental health through reducing daily activities [32] and reducing social activities [33]; (3) 

imbalances in shared neurotransmitters (serotonin and norepinephrine) in affective and 

nociceptive pathways could  contribute to both mood and pain [32]. Further research is 

required to better characterise the mechanisms underlying this complex relationship. 

 

Supporting our finding that mental health predicts disease outcomes over time, other studies 

have reported a detrimental impact of reduced mental health on DAS28-defined anti-TNF 

responses [34, 35]. This effect is highly relevant to stratified medicine in RA. Although in 

CARDERA, the impact of baseline MCS on improvements in disease outcomes over two-

years was modest, if considered alongside other poor prognostic markers, such as ACPA 

status [36], HLA variants [37], smoking and gender [38], it could provide clinically-useful 

prognostic information, guiding decisions on treatment intensity and facilitating a stratified 

approach to managing early RA patients. 

 

Our study has several strengths. These include its large size, recruitment from multiple 

centres spanning two clinical trials, the measurement of multiple disease outcomes in a highly 

standardised manner, and the short disease duration of RA (mean 3.3 months) leaving it well 

placed to examine the effects of mental health in very early disease. It also has several 
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weaknesses. As a secondary post-hoc analysis of existing RCTs, it did not test a pre-specified 

hypothesis according to a pre-determined analysis plan.  It evaluated a clinical trial cohort of 

severe RA patients, limiting its generalisability to patients seen in routine clinical practice. 

Additionally, we only evaluated European ancestry individuals; the relevance of our findings 

to other ethnic populations is uncertain. 

 

Current National Institute for Health and Care Excellence (NICE) guidelines for RA 

management recognise the importance of assessing for co-morbid depression, recommending 

this as part of an annual review process [39]. Our findings strongly support this 

recommendation in early RA. One unresolved issue is the impact of treating depression on 

the disease course of RA. Whilst we did not evaluate the impact of mental health therapies on 

RA outcomes, there is some evidence that psychological interventions (such as cognitive-

behavioural therapy (CBT), disclosure therapy and biofeedback), are useful adjunctive 

management tools in RA patients. Two systematic literature reviews have evaluated the 

evidence base for this. Astin et al reported significant pooled effect sizes for psychological 

interventions at reducing post-interventional pain, disability, and psychological status across 

25 trials [40]. Similarly, Dissanayake et al found evidence for the efficacy of disclosure 

therapy and CBT with maintenance therapy across 4 and 5 studies, respectively [41]. The 

evidence base is, however, limited with both reviews noting that available trials had 

methodological limitations. Further research is required to better define the impact of specific 

psychological interventions at improving disease outcomes in large, well-conducted clinical 

trials of RA patients. 
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5. CONCLUSIONS 

In this cohort of 520 early, active RA patients reduced mental health (captured using the SF-

36) associated with worse disease outcomes. Lower MCS and MH scores (indicating poorer 

mental health) significantly associated with more active disease, increased disability and 

greater pain over two years. Worse baseline mental health associated with lesser 

improvements in RA outcome measures, suggesting that depression influences the rate at 

which RA improves over time. A bidirectional relationship was observed between mental 

health and pain, replicating existing work in musculoskeletal disorders. Depression genetic 

risk had a significant, albeit modest impact on mental health. Our findings support current 

NICE RA management guidelines recommending the annual screening of RA patients for co-

morbid depression. Further research is needed to establish the impact of specific mental 

health management strategies on improving RA outcomes. 
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Table 1. CARDERA Genetics Cohort Baseline Characteristics 

Characteristic Summary Statistic 
Demographic Number (%) Female 358 (69%) 

Mean Age in Years (SD) 54.7 (12.6) 
RA Specific Mean RA Duration in Months (SD) 3.3 (4.9) 

Number (%) RF-Positive 350 (67%) 
Mean DAS28 (SD) 5.88 (1.29) 
Mean HAQ (SD) 1.56 (0.70) 

Mental Health Mean MCS (SD) 40.6 (14.1) 
Mean MH (SD) 61.0 (18.0) 

Treatment Number (%) Receiving MTX 159 (31%) 
Number (%) Receiving MTX and CIC 108 (21%) 
Number (%) Receiving MTX and Pred 102 (20%) 
Number (%) Receiving Triple Therapy 107 (21%) 
Number (%) Receiving MTX and anakinra 44 (8%) 

 
Cohort size used in analysis = 520 patients; SD = standard deviation; MTX = methotrexate; 

CIC = ciclosporin; pred = prednisolone; triple therapy = MTX, CIC and pred; RF = 
rheumatoid factor; DAS28 = disease activity score on a 28-joint count; HAQ = health 

assessment questionnaire; MCS = SF-36 mental component summary score; MH = SF-36 
mental health domain. A DAS28 of 5.88 indicates highly active disease. A HAQ of 1.56 

indicates moderate disability. An MCS of 40.6 is 9.4 units lower than that observed in the 
normal population (which has a mean score of 50.0 units). 
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Figure 2. Mean DAS28 Components Stratified by Baseline MCS Octile 
 

MCS divided into octiles (8 quantiles); mean scores with standard error bars for octiles 1, 4, 5 
and 8 plotted at each time point; to facilitate visual interpretation octiles 2, 3, 6 and 7 are not 

plotted, although the same trends are observed (Supplementary Figure 3).
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Table A.1. Selection of Modelling Covariates in Linear Mixed-Effects Model 
 

Variable	 Elimination	
Number	

P-Value	

RF-Positive	 1	 0.780	
Disease	Duration	 2	 0.354	

Age	 3	 0.286	
Treatment	 kept	 0.027	
Gender	 kept	 0.001	
Time	 kept	 <0.001	

 
A stepwise AIC was used to select modelling covariates that significantly predicted MCS 

scores over time within a linear mixed-effects model. After three iterations, only treatment, 
gender and time were significant predictors of MCS and were included as modelling 

covariates (treatment and gender as fixed-effects, and a random effect of time). 
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Supplementary Table A.2. Associations between Modelling Covariates and MCS 
in Linear Mixed-Effects Model 

Variable	 β	 SE	 P-Value	
Treatment	 Methotrexate	Monotherapy	 Reference	 Reference	 Reference	
	 Ciclosporin-Methotrexate	 -2.50	 1.37	 0.069	
	 Prednisolone-Methotrexate	 -0.32	 1.40	 0.818	
	 Methotrexate-Prednisolone-

Ciclosporin	
2.27	 1.37	 0.099	

	 Methotrexate-Anakinra	 1.52	 1.89	 0.421	
Gender	 	 3.35	 1.04	 0.001	
Time	 	 1.71	 0.31	 <0.001	

 

Model includes MCS as response variable and treatment, gender and time as 
explanatory variables. 
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Table A.3.  Variance Inflation Factors (VIF) for Predictors in Multivariate 
Linear Mixed-Effects Models 

 
A: VIF for RA severity metrics 

Variables	 VIF	
HAQ	 1.55	
DAS28	 2.01	
Pain	 1.76	
wGRS	 1.02	

 
Model includes MCS as response variable and treatment, gender, time, HAQ, DAS28, 

Pain VAS, and wGRS as explanatory variables. 
 
 

B: VIF for DAS components 
Variables	 VIF	

ESR	 1.12	
TJC	 1.51	
SJC	 1.41	
PGA	 1.51	

 
Model includes MCS as response variable and treatment, gender, time, ESR, TJC, 

SJC, and PGA as explanatory variables. 
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Chapter 6: PRSlice: A localised Polygenic Risk Score 
method 
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Abstract 
 

Biomarkers, biologically derived variables that have utility in predicting disease, are 

sought-after in many medical fields. Here we present a novel method for using DNA to 

calculate a biomarker for genetic risk of disease, building on the established method of 

Polygenic Risk Scoring. Our novel method outperforms conventional Polygenic Risk 

Scoring approaches when using the genetic risk for one disease as a predictor of another 

correlated trait. We propose that this method will have growing utility as the diversity of 

phenotypes interrogated using complex disease genetics methods increases. We validate 

our method through application to real data, and produce simulated data in order to 

interrogate the performance of the method under well-characterised scenarios of genetic 

overlap between pairs of correlated complex phenotypes. 
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Introduction 
 

Over the last five years, Polygenic Risk Scoring (PRS) has emerged as a dominant 

strategy for calculating genetic risk of a disorder in samples of genotyped individuals and 

has already been exploited across a range of applications (Dudbridge, 2013; International 

Schizophrenia Consortium et al., 2009; Power et al., 2015; Power et al., 2014; 

Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). In 

addition to identifying evidence for shared genetic aetiology between traits, PRS are 

valuable as variables to model the genetic component of disease risk, and can be used to 

predict disease risk and proxy the genetic contribution to liability within large 

epidemiological cohorts – as discussed in chapter 4 - or to explore the more subtle 

aspects of the genetic architecture of a trait, such as gene-environment interactions 

(Mullins et al., 2016; Peyrot et al., 2014). 

 

The standard PRS approach, as developed by Purcell et al (2009), has been widely 

applied with relatively little modification, in a diversity of scenarios. The aggregate effect 

of risk variants, as identified by a ‘base’ Genome-Wide Association Study (GWAS) are 

tested on phenotype in an independent genotyped sample termed the ‘target’ data. 

Variants are obtained in approximate linkage equilibrium by performing ‘linkage-

disequilibrium (LD)-informed clumping’ on the base data using LD information from 

the target data. This allows SNP effects in the base data to be considered to be additive.  

This ‘clumped’ base GWAS is used to prioritise variants with nominal association with 

the base phenotype, by ranking variants by P-value and selecting those below some P-

value threshold – usually denoted PT. A Polygenic Risk Score, PRS, is calculated at this 

threshold PT for each individual in the target data by summing each risk allele – that is, 

alleles with P<PT in the base GWAS – weighted by its effect size in the base GWAS – 

that is, beta – for a continuous outcome - or the natural logarithm of its odds ratio - for a 

binary outcome. PRS for each individual in the target data is then regressed on the target 

phenotype, to test the prediction of the PRS. This is iterated across a number of values 

for PT in order to determine the most predictive score, as performed by PRSice 

(Euesden, Lewis & O’Reilly, 2015), which can then be used for further analysis.  

 

More broadly, the aim of understanding the genetic architecture across traits has given 

rise to a number of methods – notably, LDpred and LD Score Regression. These 
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methods vary in both their requirements in terms of input and also in the interpretation 

of their results. LDpred (Vilhjalmsson et al., 2015) is developed from the assertion that 

the LD-informed clumping described above may be redundant as, given a plausible 

model for the expected distribution of causal effect sizes underlying observed GWAS 

results – such as an infinitesimal model – it is possible to shrink observed GWAS effect 

sizes, accounting for LD, in order to obtain GWAS effects to be considered independent 

and thus additive. The authors propose combining all SNPs genome-wide, weighted by 

these shrunken effect sizes, to produce a more accurate PRS, and demonstrate its 

performance in a number of real data and simulation-based scenarios, however the 

method is yet to be widely used. Secondly, LD Score Regression (LDSC) (Bulik-Sullivan 

et al., 2015), is a method that relies on a rearrangement of the formulae used for 

calculating heritability from kinship matrices (Yang, Lee, Goddard, & Visscher, 2011) to 

enable the same calculations to be performed on GWAS summary statistics in 

combination with an appropriate LD matrix. This method has an advantage over PRS in 

that it can be performed entirely using data that is typically released publically following 

the publication of a GWAS, however as it does not use individual-level data, it cannot be 

used to stratify at an individual level or predict risk, and has mainly been used to date to 

identify evidence for genetic overlap between pairs of disorders from GWAS summary 

data. Thus data availability and study aim may determine the preferred methodology for 

investigating genetic overlap. 

 

As the application of PRS across scientific questions widens, its underlying methodology 

will require modification in order to address different questions optimally. Here we 

introduce one such modification for a particular application of polygenic risk scoring – 

that of the polygenic risk score as a biomarker. In several cases within complex disease 

genetics, researchers may wish to calculate a variable for individuals’ genetic risk of a 

trait, for example Major Depressive Disorder (Psychiatric GWAS Consortium et al., 

2013). However, this score may be underpowered; both because of heterogeneity in 

MDD and because even the largest published GWAS to date on MDD are based on 

relatively small sample sizes. We propose that it is possible to leverage our knowledge 

that MDD shares a number of risk alleles with Schizophrenia (Cross-Disorder Group of 

the Psychiatric Genomics Consortium, 2013; Cross-Disorder Group of the Psychiatric 

Genomics Consortium et al., 2013; Euesden et al., 2015) – which has been explored far 

more thoroughly by higher powered GWAS (Schizophrenia Working Group of the 
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Psychiatric Genomics Consortium, 2014) – and so use this information to calculate a 

better predictor for our phenotype of interest, in this example MDD.  

 

 

Materials and Methods 
 

Method 

First we split the genome into chunks, each 5 Mb in length. For each chunk, PRS is 

calculated in the normal way, calculating scores at a large number of thresholds, 

regressing each on phenotype in the target data, and selecting the score at the best 

threshold. This approach allows the most predictive threshold for each region to be 

selected, allowing a large number of variants to be included from some regions and few 

from others. 

 

PRS at all chunks are then sorted based on their P-value for association with the target 

phenotype. Scores are calculated by adding one chunk at a time, in ascending order of P-

value and testing the predictive value of each aggregated score on the target phenotype. 

The sum of chunks that maximally predicts target phenotype is identified and used as a 

new PRS tailored for predicting across traits that share genetic architecture. This 

protocol is outlined graphically in Figure 1, and as pseudocode in supplementary 3. 

 

Due to the large multiple testing burden implicit in this analysis, we propose calculating 

an appropriate alpha threshold empirically. This is achieved by running the above 

method over a large number of iterations, permuting case-control (or quantitative trait 

phenotype data) in the target data, and using the test statistic from regression of the most 

predictive score predicting target phenotype at each iteration to generate a null test-

statistic distribution. 

 

This method – which we call PRSlice – makes use of pre-existing bioinformatics 

software developed myself, PRSice (Euesden et al., 2015), which incorporates PLINK2 

(Chang et al., 2015). We also distribute software to reproduce our analysis protocol here, 

currently available on request as PRSlice_v0.02, which is optimised to run on a Sun Grid 

Engine. All other statistical analyses outlined here are performed in R version 3.2.2. 



 
 

168 

 

We hypothesise that PRSlice will outperform PRSice in situations where genetic 

correlation between traits is modest but not complete. PRSlice enables risk loci specific 

to a single phenotype to be discarded from the final risk score, whilst regions that do 

appear to have an effect to both phenotypes are retained. This has the effect of removing 

noise from the calculation of the new risk score. By contrast, as genetic correlation tends 

towards one, we hypothesise that the improvement due to PRSlice - which discards 

regions associated with base phenotype but not target phenotype – will be weaker as 

fewer regions are associated with base phenotype but not target phenotype. 

 

Application to real data 

We apply PRSice and PRSlice to 24 real data scenarios to compare their relative 

performance in predicting one phenotype using the PRS of another. These scenarios 

correspond to all possible combinations of 4 target phenotypes – MDD in the 

RADIANT and UK biobank samples, BMI and Ever-smoked in the Northern Finland 

Birth Cohort data – and 6 base phenotypes – PGC2 Schizophrenia (Schizophrenia 

Working Group of the Psychiatric Genomics Consortium, 2014), PGC1 MDD 

(Psychiatric GWAS Consortium et al., 2013), Global Lipids Consortium High-Density 

Lipids (HDL) and Low-Density Lipids (LDL) (Global Lipids Genetics Consortium et al., 

2013), GIANT Consortium BMI (Locke et al., 2015) and Tobacco and Genetics (TAG) 

Consortium ‘Ever Smoked’ (Thorgeirsson et al., 2013). The effect of the NFBC 

individuals, who are present in the GAINT consortium data, are removed using a 

method described elsewhere (Chapter 4, supplementary 4). We remove the effect of the 

RADIANT study from the PGC MDD GWAS by meta-analysing the other 8 PGC1-

MDD studies, as described elsewhere (Mullins et al., 2014). 

 

 Details on Target Data Sets 
The RADIANT Major Depressive Disorder (MDD) study (Lewis et al., 2010) is a case-

control data set comprising 1,624 cases and 1,588 controls. Cases are drawn from three 

studies focussing on recurrent MDD. Controls are psychiatrically screened. All cases and 

controls have been genotyped on the Illumina Human610-Quad BeadChip. 
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The Northern Finland Birth Cohort comprises a population cohort collected from 

individuals born in 1966 in Oulu, Northern Finland (Rantakallio, 1988). Of this sample, 

5402 individuals have been both genotyped on the Illumina Infinium 370cnvDuo array 

(Sovio et al., 2009), and phenotyped – however, completeness of phenotyping varies 

from measure to measure.  

 

The UK Biobank (UKBB) sample used here is from the first wave of genotyping 

released from this cohort, consisting of 117,310 individuals after quality control. This 

sample has been phenotyped on a wide range of measures, however under the limits of 

our current data application, we investigate depression exclusively as a target phenotype. 

Individuals were phenotyped for depression using the criteria described elsewhere (Smith 

et al., 2013). This sample was genotyped on two Affymetrix microarrays, the UK 

BiLEVE and UKB Axiom arrays. Genotype data is imputed to a combined reference 

panel of UK10K and 1000Genomes. Full data on quality control procedures are available 

(http://www.ukbiobank.ac.uk/wp-

content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf). 

Determination of Significance Threshold 

To determine the appropriate significance threshold likely resulting from a degree of 

overfitting, we first permute case-control status 100,000 times in the case of 

schizophrenia predicting MDD, calculating model fit of most predictive score at each 

permutation, allowing us to determine the appropriate alpha threshold to maintain a 

family-wise error rate of 5%. Due to the substantial running time of 100,000 

permutations, we test consistency compared to 10,000 and 1000 permutations. We apply 

1,000 permutations to the HDL GWAS predicting into the NFBC genotypes with 

phenotypes permuted. 

 

Simulation Study 

We also validate our method by comparing the improvement between prediction using 

our novel method to prediction calculated when using a standard approach to Polygenic 

Risk Scoring, using simulated data. We use HAPGEN2 (Su, Marchini, & Donnelly, 2011) 

to simulate genotype data under a White Western European LD structure, using the 

HapMap3, release 2, CEU genotypes for haplotype data (International HapMap 

Consortium, 2003).  
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We simulate base and target populations under three different genetic models. In the 

first, “same-trait”, the genetic architecture in both the base and target data is the same. In 

the second, “cross-trait different effects”, case, we simulate similar but non-identical 

genetic architectures in the base and target data sets. In the third case, “cross-trait subset 

of effects”, case, we simulate only a subset of the effects present in the base data in the 

target data, reflecting only a subset of loci being pleiotropic. In each scenario, we 

simulate 100 Mb genomes for 20,000 individuals in a base data set (10,000 cases, 10,000 

controls) and 2,000 individuals in a target data set (1,000 cases, 1,000 controls) using 

SNPs from HapMap3 release 2. We simulate 15 causal SNPs in the base data with effect 

sizes – i.e. proportion of phenotype variance explained - drawn from a distribution with 

parameters fixed to ensure heritability sums to a pre-specified value. Minor allele 

frequencies for all SNPs are derived from the HapMap data. Full details of this protocol 

are outlined in supplementary 2. 

 

Phenotypes in all simulated individuals are calculated as case-control traits, under a 

liability threshold model, calculated in GCTA (Yang et al., 2011). These base and target 

data are used to run simulations. We compare the relative performance of PRSlice and 

PRSice in predicting phenotype in each case, using the framework outlined in 

supplementary 2.  

 

In all cases, we use LD Score Regression (Bulik-Sullivan et al., 2015) to calculate the 

enetic correlation - rG - between base and target samples, and test relative PRSice and 

PRSlice performance as a function of this genetic overlap. 

 

Results 
 

Real Data Applications 

 

We apply PRSlice and PRSice to perform 24 real-data cross-trait analyses. The sample 

characteristics are summarised in Table 1. The results of applying the two methods to 

these data are summarised below (Table 2). 

 



 
 

171 

 

 Target Dataset and Phenotypes 

 RADIANT UKBB NFBC 

 MDD Depression BMI Ever Smoked 

N 3212 23,726 4594 4,699 

N cases 1624 8,074 NA 2996 

N controls 1588 15,652 NA 1703 

Mean (SD) NA NA 24.67 (4.21) NA 

 

Table 1: Sample characteristics across target cohorts 

 

We incorporate publically available data on the genetic correlation (rG) between pairs of 

disorders (Bulik-Sullivan et al., 2015), estimated from publically available summary 

statistics. This allows us to compare the performance of PRSlice versus PRSice against 

estimates of the underlying genetic architecture between pairs of disorders. We would 

expect PRSlice to perform best when the genetic correlation between traits is relatively 

low. We exclude pairs of disorders for which Bulik-Sullivan et al do not report significant 

evidence for a genetic overlap (P>0.05), and define the relative performance of the 

methods as PRSlice as –log10(PRSlice P-value) minus –log10(PRSice P-value). This 

measure circumvents concerns about the comparability of different pairs of phenotypes, 

as the influence of power on differences between scenarios will be mitigated. Absolute rG 

is associated in direction, but non-significantly, with reduced PRSlice power compared to 

PRSice (coefficient = -5.61, P=0.37). 
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3.2 Permutation Analyses 

The empirical alpha threshold appropriate for controlling the family-wise error rate at 

5% is broadly consistent across simulations (Table 3). Based on these results, we propose 

that an alpha threshold of P<10-12 is appropriate. 

 
Permutation scenario Number of Permutations Empirical Alpha 

Threshold for FWE = 
0.05 

Schizophrenia into 
RADIANT 

1,000 1.24x10
-11

 

Schizophrenia into 
RADIANT 

10,000 9.48x10
-12

 

Schizophrenia into 
RADIANT 

100,000 8.08x10
-12

 

HDL into NFBC 1,000 2.22x10
-12

 
 
Table 3: Empirical significance thresholds determined from permutations across null 
data 
 
 

Simulation Results 

In each of our 1000 simulations of same effects in base and target trait, and 1000 

simulations of different effects in base and target trait, we calculate the statistical power 

as the proportion of simulations in which the P-value for PRSice exceeds the calculated 

alpha empirical threshold for PRSice in that simulated data set, and the proportion of 

simulations in which the P-value for PRSlice exceeds the calculated alpha empirical 

threshold for PRSlice in that data set. This provides an indication of the statistical power 

of PRSlice compared to the standard PRS approach of PRSice.  

 

In the first, “cross-trait same effects” case, we found that, using PRSice, power was 

higher for cross trait (Table 4, χ2, P<10-16), and when using PRSlice, power was also 

slightly higher for same trait (Table 4, χ2 P-value=2.6x10-3).  

 

We consider correctly identified genetic overlap as an outcome and use logistic models to 

identify factors predicting this from our simulation results. In a multivariate model, both 

PRSlice vs PRSice (coefficient = 1.17, P=8.2x10-16) and Same trait vs Cross-trait 

(coefficient = 1.35, P<10-16) predicted improved power. A suggestively significant 
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negative interaction effect between these two predictors (coefficient = -0.57, P=0.079) 

suggests that the outperformance of PRSlice vs PRSice is larger in cross-trait scenarios.  

 

In the second, “cross-trait different effects”, case, in which the simulated target 

phenotype, under the cross trait case is less genetically related to the base phenotype, we 

again find PRSlice outperforms PRSice in the cross trait scenario (χ2 P-value <10-16), 

and again find more modest evidence for PRSlice outperforming PRSice in the same-trait 

scenario (χ2 P-value = 5.1x10-3). In a multivariate model, as described above, we find 

PRSlice and Same-phenotype scenarios are significant predictors of higher power, 

however we also find substantial evidence for a PRSlice*Cross-trait interaction term (β 

=1.39, P = 3.2x10-6) indicating PRSlice gives higher power in cross-phenotype scenarios. 

 

Method Genetic Architecture Cross-trait 
scenario 

Power (% 
correctly 
identified) 

PRSice Cross Trait Cross-trait 
same effects 

83.7% 
 Same Trait 95.9% 
PRSlice Cross Trait 95.0% 
 Same Trait 98.0% 
PRSice Cross Trait Cross-trait 

different 
effects 

58.3% 
Same Trait 95.7% 

PRSlice Cross Trait 92.2% 
Same Trait 97.9% 

 

Table 4: Relative power of PRSice and PRSlice under different simulated genetic 

architectures, when modelling cross-trait scenarios using different genetic effects 

 

 

Incorporating rG Estimates into Simulation Results 
 

Due to our simulation protocol, the genetic correlation between base and target 

phenotype, in the correlated trait scenarios, will not be fixed across different simulated 

data sets, and will thus vary. We use LDSC to estimate the actual genetic correlation 

between base and target in each of our 2000 simulated scenarios. In some cases, due to 

the relatively small sample sizes of our target data sets, the estimation was underpowered, 

but results from data sets in which these estimators could be accurately estimated 
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demonstrated that in cross-trait only simulations, PRSlice predicted a substantial increase 

in power (coefficient = 1.85, P=1.21x10-10) when adjusting for rG. However, PRSlice had 

no effect vs PRSice in same-trait cases when adjusting for rG (coefficient = 0.65, P=0.12).  

 

When investigating the “cross-trait different effects” subset of simulation results, with a 

lower genetic overlap between base and target data in the cross-phenotype case, we find 

consistent results. PRSlice predicted a substantial increase in power (coefficient = 2.08, 

P<10-16) when adjusting for heritability, with evidence for an interaction between ‘same 

trait’ and PRSlice predicting lower power (coefficient = -1.31, P=6.0x10-3) when 

adjusting for heritability, indicating that PRSlice has a greater improvement in power in 

cross-phenotype scenarios. These results are summarised below in Figure 4).  

 

Aggregating across all simulation results, we find base-target rG predicts improved power 

(coefficient = 2.12, P<10-16) as would be expected, and that when adjusting for rG 

PRSlice also predicts increased power versus PRSice (coefficient = 1.74, P<10-16). 

Furthermore, we find evidence for an interaction effect (coefficient = -0.65, P = 0.015) 

between using PRSlice and rG predicting power, indicating that PRSlice may outperform 

PRSice at lower values of rG. 

 

 

Discussion 
 

Polygenic Risk Scoring has a number of applications across medical and population 

genetics – these include, but are not limited to, identifying evidence for a polygenic signal 

in a GWAS (International Schizophrenia Consortium et al., 2009), identifying evidence 

for a shared genetic component between pairs of phenotypes (Power et al., 2015; Power 

et al., 2014) and as a biomarker to identify the effects of genetic risk within downstream 

modelling (Mullins et al., 2016; Peyrot et al., 2014). It is to this latter application that our 

method presented here is particularly tailored to. We have presented a novel method to 

improve the predictive accuracy of PRS when examining cross-phenotype scenarios.  

 

Our simulation framework demonstrates that PRSlice may outperform traditional 

polygenic risk scoring methods under scenarios of moderate but significant genetic 

overlap. By allowing the construction of PRS to account more fully for scenarios such as 
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allelic heterogeneity, or the preferential agglomeration of causal variants within particular 

regions, we are thus able to improve the predictive power of these scores. It is likely that 

this application will have a growing utility in the future as the asymmetry between 

phenotypes that have been well-studied by large genotyping efforts – such as 

schizophrenia or rheumatoid arthritis – and those that researchers may wish to predict in 

small cohorts, such as treatment response (Coleman et al., 2016), widens. 

 

Our new method suffers from a number of limitations. Firstly, it relies on a particular 

contingency – a well-powered base GWAS with a modest genetic correlation to the 

target trait of interest; this is not immediately identifiable in many cases, and requires 

either pre-existing evidence from the literature, or exploratory analyses via methods such 

as LD Score Regression to establish that the use of PRSlice is justified. Secondly, 

although we have provided a proposed significance threshold of α=10-12, the 

interpretation of scores generated using PRSlice is not necessarily straightforward, and 

thus we would recommend setting an alpha threshold via permutation for each use on 

different data. 

 

 

Summary 
Here we present a novel method for calculating PRS, optimised for a specific scenario in 

which PRS is being used as a biomarker, calculated from a GWAS for a trait with a 

moderate genetic correlation with the target phenotype of interest. This method, PRSlice, 

is publically available as software, and here we present its application to real data, provide 

an appropriate significance threshold, and demonstrate its value using simulated data. We 

propose that PRSlice will have greater utility in the future as the scenario for which it is 

developed becomes more commonplace. 
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Figure 1: Protocol used for PRSlice. The genome is split into 5Mb chunks (step 2), and 
PRS is applied at each 5Mb chunk using the standard approach to obtain best threshold 
and the P-value with which PRS predicts phenotype at this chunk (step 3). Chunks are 
ranked by the P-value with which they predict target phenotype (step 4) and score at best 
threshold is summed cumulatively – the prediction of this cumulative score is tested with 
the addition of each chunk (step 5). The optimum combination of chunks is obtained 
from this, and the scores at these chunks are summed to form the final PRSlice variable 
(step 6)
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a) 
 

 
 
b) 
 
 
 

 
 
 
 
Figure 2: Real data application. a) –log10 P-values for PRSice (upper panel) and PRSlice 
(lower panel). Effects in the same direction in base and target are positive values on the 
y-axis, effects in the opposite direction are negative values on the y-axis. Significance 
thresholds for PRSice (α = 10-3) and PRSlice (α = 10-12) are marked in red. b) Relative 
performance of PRSlice over PRSice (measured as –log10 P-value for PRSlice minus -log10 
P-value for PRSice) plotted against the reported genetic correlation between pairs of 
phenotypes as reported in Bulik-Sullivan et al (2015). Pairs of disorders that the authors 
do not find evidence for a significant genetic overlap between (i.e. P>0.05) are omitted 
here.
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a) 

 
b) 
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PRSlice: SCZ predicting MDD
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c) 

 
 
 
Figure 3: Selected region plots from real data application – SCZ predicting MDD in the 
RADIANT sample (a), and both HDL (b) and LDL (c) predicting BMI in the NFBC 
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a) 

 
b) 

 
Figure 4: Performance (i.e. power) of PRSice and PRSlice in simulated data, under two 
scenarios - same phenotype in base and target, and cross phenotype in base and target. 
We present results using “cross-trait same effects” with the same five chunks causal in 
both cases (a) and “cross-trait different effects” with only 2/5 chunks causal in the cross-
phenotype target data (b) 
 
 
  
 
 



 
 

183 

Bibliography 
 

Bulik-Sullivan, B., Finucane, H. K., Anttila, V., Gusev, A., Day, F. R., Loh, P. R., . . . 
Neale, B. M. (2015). An atlas of genetic correlations across human diseases and 
traits. Nat Genet, 47(11), 1236-1241. doi: 10.1038/ng.3406 

Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). 
Second-generation PLINK: rising to the challenge of larger and richer datasets. 
Gigascience, 4, 7. doi: 10.1186/s13742-015-0047-8 

Coleman, J. R., Lester, K. J., Keers, R., Roberts, S., Curtis, C., Arendt, K., . . . Eley, T. C. 
(2016). Genome-wide association study of response to cognitive-behavioural 
therapy in children with anxiety disorders. Br J Psychiatry. doi: 
10.1192/bjp.bp.115.168229 

Cross-Disorder Group of the Psychiatric Genomics Consortium. (2013). Identification 
of risk loci with shared effects on five major psychiatric disorders: a genome-
wide analysis. Lancet, 381(9875), 1371-1379. doi: 10.1016/S0140-6736(12)62129-1 

Cross-Disorder Group of the Psychiatric Genomics Consortium, Lee, S. H., Ripke, S., 
Neale, B. M., Faraone, S. V., Purcell, S. M., . . . International Inflammatory Bowel 
Disease Genetics, Consortium. (2013). Genetic relationship between five 
psychiatric disorders estimated from genome-wide SNPs. Nat Genet, 45(9), 984-
994. doi: 10.1038/ng.2711 

Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk scores. PLoS 
Genet, 9(3), e1003348. doi: 10.1371/journal.pgen.1003348 

Euesden, J., Lewis, C. M., & O'Reilly, P. F. (2015). PRSice: Polygenic Risk Score 
software. Bioinformatics, 31(9), 1466-1468. doi: 10.1093/bioinformatics/btu848 

Global Lipids Genetics Consortium, Willer, C. J., Schmidt, E. M., Sengupta, S., Peloso, 
G. M., Gustafsson, S., . . . Abecasis, G. R. (2013). Discovery and refinement of 
loci associated with lipid levels. Nat Genet, 45(11), 1274-1283. doi: 
10.1038/ng.2797 

International HapMap Consortium. (2003). The International HapMap Project. Nature, 
426(6968), 789-796. doi: 10.1038/nature02168 

International Schizophrenia Consortium, Purcell, S. M., Wray, N. R., Stone, J. L., 
Visscher, P. M., O'Donovan, M. C., . . . Sklar, P. (2009). Common polygenic 
variation contributes to risk of schizophrenia and bipolar disorder. Nature, 
460(7256), 748-752. doi: 10.1038/nature08185 

Lewis, C. M., Ng, M. Y., Butler, A. W., Cohen-Woods, S., Uher, R., Pirlo, K., . . . 
McGuffin, P. (2010). Genome-wide association study of major recurrent 
depression in the U.K. population. Am J Psychiatry, 167(8), 949-957. doi: 
10.1176/appi.ajp.2010.09091380 

Locke, A. E., Kahali, B., Berndt, S. I., Justice, A. E., Pers, T. H., Day, F. R., . . . Speliotes, 
E. K. (2015). Genetic studies of body mass index yield new insights for obesity 
biology. Nature, 518(7538), 197-206. doi: 10.1038/nature14177 

Mullins, N., Perroud, N., Uher, R., Butler, A. W., Cohen-Woods, S., Rivera, M., . . . 
Lewis, C. M. (2014). Genetic relationships between suicide attempts, suicidal 
ideation and major psychiatric disorders: a genome-wide association and 
polygenic scoring study. Am J Med Genet B Neuropsychiatr Genet, 165B(5), 428-437. 
doi: 10.1002/ajmg.b.32247 

Mullins, N., Power, R. A., Fisher, H. L., Hanscombe, K. B., Euesden, J., Iniesta, R., . . . 
Lewis, C. M. (2016). Polygenic interactions with environmental adversity in the 
aetiology of major depressive disorder. Psychol Med, 46(4), 759-770. doi: 
10.1017/S0033291715002172 



 
 

184 

Peyrot, W. J., Milaneschi, Y., Abdellaoui, A., Sullivan, P. F., Hottenga, J. J., Boomsma, D. 
I., & Penninx, B. W. (2014). Effect of polygenic risk scores on depression in 
childhood trauma. Br J Psychiatry, 205(2), 113-119. doi: 
10.1192/bjp.bp.113.143081 

Power, R. A., Steinberg, S., Bjornsdottir, G., Rietveld, C. A., Abdellaoui, A., Nivard, M. 
M., . . . Stefansson, K. (2015). Polygenic risk scores for schizophrenia and bipolar 
disorder predict creativity. Nat Neurosci, 18(7), 953-955. doi: 10.1038/nn.4040 

Power, R. A., Verweij, K. J., Zuhair, M., Montgomery, G. W., Henders, A. K., Heath, A. 
C., . . . Martin, N. G. (2014). Genetic predisposition to schizophrenia associated 
with increased use of cannabis. Mol Psychiatry, 19(11), 1201-1204. doi: 
10.1038/mp.2014.51 

Psychiatric GWAS Consortium, Ripke, S., Wray, N. R., Lewis, C. M., Hamilton, S. P., 
Weissman, M. M., . . . Sullivan, P. F. (2013). A mega-analysis of genome-wide 
association studies for major depressive disorder. Mol Psychiatry, 18(4), 497-511. 
doi: 10.1038/mp.2012.21 

Rantakallio, P. (1988). The longitudinal study of the northern Finland birth cohort of 
1966. Paediatr Perinat Epidemiol, 2(1), 59-88.  

Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014). 
Biological insights from 108 schizophrenia-associated genetic loci. Nature, 
511(7510), 421-427. doi: 10.1038/nature13595 

Smith, D. J., Nicholl, B. I., Cullen, B., Martin, D., Ul-Haq, Z., Evans, J., . . . Pell, J. P. 
(2013). Prevalence and characteristics of probable major depression and bipolar 
disorder within UK biobank: cross-sectional study of 172,751 participants. PLoS 
One, 8(11), e75362. doi: 10.1371/journal.pone.0075362 

Sovio, U., Bennett, A. J., Millwood, I. Y., Molitor, J., O'Reilly, P. F., Timpson, N. J., . . . 
Jarvelin, M. R. (2009). Genetic determinants of height growth assessed 
longitudinally from infancy to adulthood in the northern Finland birth cohort 
1966. PLoS Genet, 5(3), e1000409. doi: 10.1371/journal.pgen.1000409 

Su, Z., Marchini, J., & Donnelly, P. (2011). HAPGEN2: simulation of multiple disease 
SNPs. Bioinformatics, 27(16), 2304-2305. doi: 10.1093/bioinformatics/btr341 

Thorgeirsson, T. E., Gudbjartsson, D. F., Sulem, P., Besenbacher, S., Styrkarsdottir, U., 
Thorleifsson, G., . . . Stefansson, K. (2013). A common biological basis of 
obesity and nicotine addiction. Transl Psychiatry, 3, e308. doi: 10.1038/tp.2013.81 

Vilhjalmsson, B. J., Yang, J., Finucane, H. K., Gusev, A., Lindstrom, S., Ripke, S., . . . 
Price, A. L. (2015). Modeling Linkage Disequilibrium Increases Accuracy of 
Polygenic Risk Scores. Am J Hum Genet, 97(4), 576-592. doi: 
10.1016/j.ajhg.2015.09.001 

Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: a tool for 
genome-wide complex trait analysis. Am J Hum Genet, 88(1), 76-82. doi: 
10.1016/j.ajhg.2010.11.011 

 



 
 

185 

Supplementary Materials 
 

Supplementary 1: Generation of Data for Simulation Framework 

 

We use the following simulation procedure in order to test the performance of PRSice 

versus PRSlice in situations with known genetic architecture. 100Mb genomes are 

simulated using HapMap3 reference data to simulate LD in HAPGEN2. These 100Mb 

genomes can be considered comprised of 20 5Mb ‘chunks’. 

 

The effect sizes of 15 causal variants are chosen by drawing from a distribution 

generated using the formula below with parameters fixed to ensure 15 causal variants will 

explain a known total of variance explained, i.e. heritability. These 15 effect sizes are split 

into quintiles (i.e. five groups of three) based on effect size - very low, low, intermediate, 

high and very high - each group of three assigned to one of five 5Mb chunks randomly 

selected as being causal. The remaining 75Mb of the simulated genomes do not contain 

causal variants. Simulated phenotypes are derived from these simulated genomes using 

GCTA. 

 

We test the performance of our PRS methods under two simulated architectures. In the 

first architecture, effect sizes are the same for a given causal SNP in both base and target 

data; this simulates the effect of using a phenotype to predict the same phenotype in an 

independent sample. In the second architecture, the same 5 chunks are selected as 

containing the same causal variants in the base and target data, but the assignment of 

effect sizes to these SNPs - using the above categories very low, low, intermediate, 

high and very high - is randomised between base and target. This second architecture 

simulates the effect of different but correlated traits in the base and target data that show 

a degree of pleiotropy. 

 

We simulate 20,000 individuals in the base data (10,000 cases, 10,000 controls) and 2,000 

individuals in the target data (1,000 cases and 1,000 controls) for each of these two 

scenarios, fixing heritability at 15%, using the CEU European reference data from 

HapMap3 to model realistic haplotype information. 
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βi is the effect of SNP i on phenotype. We fix a known number of SNPs, n, to have an 

effect on phenotype, defined as ci = 1. These effects are defined as: 

 

 

𝛽! =  
0           𝑖𝑓 𝑐! = 0
𝑓 𝑖,𝑛  𝑖𝑓 𝑐! = 1 

 

and 

𝑓 𝑖,𝑛 =  
1

𝐴 + 𝑖
!

1
𝐴 + 𝑖

!
!!!
!!!

 

 

Where 

A = 0.6 

B = 0.8 

n = 15 

 

 

 

In the “cross-trait, different effects” subset of simulations, we simulate cross-trait data in 

order to reduce the genetic overlap between base and target. This may be less realistic, 

but the exaggerated non-overlap is intended to explore the performance of PRSlice when 

genetic overlap is low.  

 

Base data is simulated with 15 causal SNPs, split evenly across 5 causal chunks, as 

outlined above. Of the 5 causal chunks in the base data, two chunks are selected at 

random to be causal in the target data. 6 effect sizes are selected from the effects in the 

base data to be assigned to these chunks. Thus, whilst trait heritability in the base data is 

15%, the heritability in the cross-phenotype target data will vary and may be substantially 

lower. We then investigate the relative performance of PRSice and PRSlice in same-trait 

and cross-trait scenarios using the protocol outlined above. 
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Supplementary 2: Comparison between PRSice and PRSlice 

 

 

We compare the relative performance of PRSice and PRSlice in our simulated data, 

generated in step 1, using the following protocol. Data is generated, the PRSice and 

PRSlice used to identify the most significant predictor – in the case of PRSice the most 

significant P-value threshold PT, in the case of PRSlice the optimum thresholding across 

chunks and optimum combination of chunks – for a given data set. We then permute 

phenotype in this data set, and run PRSice, and PRSlice, 1000 times each on these 

permuted data sets, in order to obtain a distribution of null P-values, 1000 each for 

PRSice and PRSlice respectively. The observed P-values for PRSice and PRSlice are then 

tested against their respective null-distributions in order to obtain an empirical PRSice P-

value and PRSlice P-value for a given simulation data set. Finally we repeat this protocol 

1000 times in order to obtain 1000 simulation-derived empirical P-values for PRSice and 

1000 simulation-derived empirical P-values for PRSlice. 
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Supplementary 3: Pseudocode Illustration of PRSlice Algorithm 

  
# Step 1 
Take GWAS with SNPs, genomic position of SNPs, reference 
allele and P-value and OR for association with base trait – Y1 
  
# Step 2 
Divide genome into n chunks 
  
# Step 3 
for i in 1:n 
  
  ##Step 3.1 Run standard PRS protocol on chunk i 
  for j in P-value threshold values (PT) – e.g. sequence from 
0-0.5 in increments of 0.001 
    Calculate PRSi,j for P < j for all individuals in target 
data 
    Build model for PRSi,j predicting target data phenotype Y2, 
glm1, Y2 ~ PRSi,j 
    Calculate P-value for PRSi,j predicting Y2 in glm1 
  Done 
  
  ##Step 3.2 Determine a number of variables   
  PT[i] -  The best threshold for predicting phenotype using 
only SNPs in chunk i 
  PvalPRS[i] – The P-value for SNPs in chunk i below PT[i] 
predicting Y2 
  PRSi – a vector of PRS values (i.e. PRSi,PT[i]) for every 
individual in the target data  
Done 
  
We now have minimum P value - PvalPRS[i] at optimum PT for 
every chunk i 
  
# Step 4 
Rank chunks by ascending order of PvalPRS and build an m x n 
matrix – where there are m individuals in the target data, and 
n chunks – PrsMat. Each column of PrsMat is PRS for every 
individual in the target data at a different chunk, columns 
are ordered by increasing values for PvalPRS 
  
# Step 5 
Produce a second m x n matrix CumPrsMat. Each column is a 
cumulative sum of all previous columns, with the first column 
being unchanged from PrsMat 
  
# Step 6 
for k in 1:n 
  Test cumulative score – CumPrsMat[,k] – predicting Y2 
  Store P-value from this model 
Done 
  
Find maximum value for k – this is the optimum combination of 
chunks and thresholds 
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Chapter 7: Discussion 
 

Epidemiological relationships, that is to say patterns of overlap or non-overlap of 

multiple phenotypes within individuals at rates above - or below – expectation based on 

their individual population distributions and prevalences, form the heart of this thesis. 

These relationships may frequently provide routes to understanding aetiological overlap 

between phenotypes, and by extension a route to understanding the pathophysiology of 

previously poorly understood disorders. This paradigm has a number of important steps. 

Firstly, one must verify that an observed epidemiological relationship is not confounded, 

and therefore not merely a spurious association. Secondly, one must draw inferences on 

the direction of causality between two epidemiologically overlapping phenotypes. Once 

these two have been established, and a true shared pathway between comorbid 

phenotypes seems likely, it is possible to leverage biological information to identify 

candidates for this pathway. Finally, when the biological mechanism behind a disorder 

has been elucidated, drug targets can be identified and novel treatment and prophylaxis 

investigated. 

 

In this thesis, we have applied the above paradigm to the study of the overlap between 

the psychiatric and autoimmune disorders. We have used three data sources to 

investigate the presence and direction of comorbidity – case-control genotype data, 

survey and genotype data from a population-based birth cohort, and fine-scale clinical 

data from an hospital-based outpatient cohort. We have used existing statistical genetics 

techniques to investigate the evidence for overlapping pathways between pairs of 

disorders, and have developed a novel method to improve this approach. The 

conclusions of these findings will be discussed below, alongside a review of future 

applications of the methods we have used. 
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Evidence for an Epidemiological Link between Psychiatric and 

Autoimmune Disorders 

 

We summarise the contents of three chapters below, in each case evaluating the strength 

of evidence for co-morbidity between psychiatric disorders – schizophrenia and 

depression – with autoimmune disorders, focussing on rheumatoid arthritis. Following 

this we discuss models for comorbidity consistent with our findings, and the implications 

of these models. Schizophrenia is arguably the best understood of the psychiatric 

disorders, from a genetic perspective, partly due to its higher heritability, partly due to 

the relative ease of phenotyping cases, and partly due to the absence of a need to screen 

controls, because schizophrenia has relatively low prevalence. These factors allow large 

case control cohorts to be collected, in turn generating more statistical power. 

Depression, by contrast, has been associated with the fewest genetic variants to date, 

however is the leading cause of disability worldwide. Thus we focus on these two very 

different psychiatric disorders in order to identify commonalities that might be 

extrapolated across the other psychiatric disorders. Rheumatoid arthritis is studied in 

particular as it is genetically well understood – associated with over 100 risk loci (Okada 

et al., 2014) – and clinically defined through a number of symptom dimensions. The 

poor prognosis of unmedicated rheumatoid arthritis (Fisher & Scott, 2001) also leads to 

increased healthcare utilisation, making the collection of detailed longitudinal data 

simpler than many other autoimmune disorders such as ulcerative colitis or celiac disease. 
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Schizophrenia 

 

We report data on the lack of evidence for a genetic overlap between schizophrenia and 

rheumatoid arthritis (Euesden, Breen, et al., 2015), (Chapter 3), however over the course 

of the last five years, epidemiological literature on the relationship between schizophrenia 

and the autoimmune disorders has grown substantially. In our meta-analysis of studies 

published prior to November 2013, we find evidence for an epidemiological overlap 

between schizophrenia and rheumatoid arthritis. Furthermore, the disparate ages at onset 

between these two phenotypes suggest the possibility of a temporal relationship, which is 

often considered a precursor to establishing evidence for a causal relationship. Authors 

consistently find that rheumatoid arthritis is less common amongst schizophrenia 

patients than would be expected based on its prevalence – often termed an inverse 

relationship. Since the publication of our meta-analysis, Sellgren et al have performed 

analyses with improved granularity able to use time-to-event models in order to make 

stronger inferences regarding the direction of causation between the two phenotypes 

(Sellgren, Frisell, Lichtenstein, Landen, & Askling, 2014). The authors find that 

schizophrenia onset reduces subsequent onset of rheumatoid arthritis with a Hazard 

Ratio of 0.69, (95% CI = 0.59-0.80) consistent with our results from meta-analysis. This 

study has the considerable benefit of being performed on a population-level national 

registry population (n = 5,981,124), collected in Sweden between 1932 and 1989, and 

defining both schizophrenia and rheumatoid arthritis using hospital contacts. Thus there 

is strong evidence for a temporal relationship between schizophrenia and rheumatoid 

arthritis, both from our work and subsequent analyses. 

 

Schizophrenia is the best-understood psychiatric disorder from a genetic perspective, 

with 128 genome-wide significant loci identified by GWAS; these alone explain 3.4% of 



 
 

 192 

variance in schizophrenia risk on the liability scale, and a Polygenic Risk Score for 

schizophrenia explains 18.4% of variance in schizophrenia at the optimum threshold 

tested by the authors (Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014). Therefore it is useful to consider the evidence for genetic factors 

responsible for the relationship between schizophrenia and rheumatoid arthritis. In our 

investigation of evidence for schizophrenia polygenic risk score (PRS) predicting 

rheumatoid arthritis case status, we use the PGC1 schizophrenia GWAS plus a 

subsample of Swedish genotypes (Ripke et al., 2013) as a base GWAS, and a target 

sample comprising rheumatoid arthritis cases from the WTCCC1 sample (Wellcome 

Trust Case Control Consortium, 2007) and controls from the RADIANT MDD study 

(Lewis et al., 2010), following rigorous quality control. This selection of controls is 

necessary, as the WTCCC1 controls are incorporated into almost every publically 

available GWAS data set, with the exception of PGC1-MDD. We find limited evidence 

for a significant relationship between schizophrenia and rheumatoid arthritis, with a 

nominally positive regression coefficient – which would indicate schizophrenia genetic risk 

increasing risk of rheumatoid arthritis, contrary to the epidemiological literature.  

 

Since the publication of our study, there have been three relevant pieces of literature 

investigating the same question. The first (Stringer, Kahn, de Witte, Ophoff, & Derks, 

2014) finds a strong effect of schizophrenia predicting RA, using very similar data to our 

study – the smaller and thus lower-powered PGC1 schizophrenia sample (Schizophrenia 

Psychiatric Genome-Wide Association Study, 2011) with the WTCCC1 controls 

removed as a base data set and WTCCC1 RA cases and controls as a target data set. The 

authors findings that schizophrenia PRS explains over 2% of variance in rheumatoid 

arthritis status, which is surprisingly large, as the proportion of variance in schizophrenia 

status explained by the PGC1 schizophrenia data in independent samples is, at most, 6-
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7% at the most predictive threshold tested (Schizophrenia Psychiatric Genome-Wide 

Association Study Consortium, 2011). A possible concern is that sample overlap between 

base and target samples may not have been fully accounted for, leading to an over-

estimation of the genetic overlap between these two traits. Alternatively, the results of 

this PRS analysis would indicate that the effects of environmental risk factors  - such as 

the effect of medication - in the negative comorbidity between rheumatoid arthritis and 

schizophrenia would be even stronger than discussed in chapter 3, in order to mitigate 

the effect of genetic risk factors acting in the opposite direction. Thus our conclusions 

on the effects of environmental risk factors being responsible for the negative 

comorbidity between rheumatoid arthritis and schizophrenia observed in cohort studies 

is consistent with the results of Stringer et al. 

 

Secondly, a study by Lee et al sought to validate a novel method to identify biological 

pathways responsible for phenotypes by investigating immune pathways related to 

schizophrenia (Lee et al., 2015). The authors build on the GREML method  - which 

partitions heritability into the component explained by common genetic variation and 

error – in order to partition heritability into a priori defined biological pathways based on 

their associated genomic regions. This method bears similarity to MultiBLUP (Speed & 

Balding, 2014), which performs a similar calculation in a biologically agnostic framework, 

dividing the genome by physical distance. Lee et al test a set of genomic regions 

annotated to CD4+ memory T-cells based on an a priori model of the genetic aetiology 

of rheumatoid arthritis, yielding 87,651 SNPs; the authors find that genetic variation 

across coding, regulatory, DNase I hypersensitivity and intronic regions predicts 

heritability in schizophrenia and rheumatoid arthritis in inverse directions. The method 

developed in this paper is of great use in dissecting the biological pathways involved in 

disease, however the selection of appropriate candidate pathways without introducing 
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bias and appropriately correcting for the implicit number of multiple comparisons 

introduced by selecting a candidate pathway is challenging.  It is unlikely that the stated 

effect size of the CD4 pathway on schizophrenia and rheumatoid arthritis could explain 

the strength of the epidemiological relationship seen, with a genetic correlation (rg) of -

0.046 (SE = 0.026) corresponding to a coheritability of -0.01 (P=0.036). Whilst this 

effect is non-zero, it is still not comparable to the epidemiological effect observed 

between these two disorders. Adding additional pathways to attempt to explain more of 

the epidemiological relationship between schizophrenia and rheumatoid arthritis would 

require increased multiple testing as more pathways with weaker priors would need to be 

added. 

 

The third study of note validates our previous conclusions. Pouget et al perform a 

complementary analysis to our own, using GWAS data from a number of autoimmune 

disorders to predict schizophrenia within the PGC2-SCZ genotype data, using a 

polygenic risk score framework. The authors find a number of interesting relationships 

between autoimmune disorders and schizophrenia, validating several epidemiological 

relationships, such as a significant overlap between psoriasis and schizophrenia. When 

investigating schizophrenia and RA, however, the authors do not find evidence for a 

genetic overlap, consistent with our own findings. These results were presented as part of 

a conference symposium and are not currently available in print (Pouget, 2015). 

 

The evidence for a genetic component to the epidemiological relationship between 

schizophrenia and rheumatoid arthritis is conflicted, with current literature finding a 

positive genetic correlation (Stringer et al., 2014), a negative genetic correlation in 

specific genomic regions (Lee et al., 2015) and no evidence for genetic correlation 

(Pouget 2015). In the context of this conflict, which will likely require further research to 
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disentangle, we did not find evidence in support of a genetic overlap. A number of 

explanations for this relationship have been proposed, and as non-genetic models they 

fall outside the scope of this thesis but will be discussed briefly. These include a 

protective effect of antipsychotic medication on rheumatoid arthritis. This theory is 

important, as anti-inflammatory medication such as tociluzimab – a TNF-α blocker – 

has already been trialled as an antipsychotic (B. J. Miller, Dias, Lemos, & Buckley, 2016). 

Evidence for the reverse – that anti-inflammatory medication may have an impact on 

psychiatric symptoms - is limited. There is evidence, however, that the burden of efficacy 

for an novel, repositioned, drug may be lower as it may have supra-additive effects when 

used within a combinatorial framework – for example, Choy et al find that aggressive 

combinatorial therapy is more effective than monotherapy in the treatment of 

rheumatoid arthritis (Choy et al., 2008). This suggests that the identification of novel 

pathways and drug targets within the autoimmune disorders may supplement and 

enhance existing therapies. Thus the value of verifying a non-genetic explanation for the 

relationship between pairs of disorders is still of great importance to the development of 

novel therapeutic strategies. 

Depression 

 

We investigate the epidemiological overlap between depression and autoimmune 

disorders in two very different cohorts. In a population-based cohort, the National Child 

Development Study, we use self-report data on depression to classify cases and controls, 

and investigate the prevalence of any autoimmune disorder – again based on self-report – 

amongst either group. We find an increased prevalence of any autoimmune disorder 

amongst depression cases, however individually low prevalences for each disorder 

impairs our ability for increased granularity. This is consistent with previous studies and 
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therefore provides good evidence for an epidemiological link between the two families of 

disorders that merits investigation into the direction of causality. 

 

Our second investigation into the overlap between depression and the autoimmune 

disorders focuses on rheumatoid arthritis (RA) within the CARDERA study, a cohort of 

early RA patients. Rather than looking at the impact of case status alone on mental 

health, we use a number of metrics for RA symptom severity, and use a dimensional 

mental health scale – the MCS. This allows finer resolution into the impact of symptom 

severity of mental health and vice versa. We supplement findings on a population level 

by finding that increased RA symptom severity is associated with poorer mental health. 

In the case of both autoimmune disorder case status and autoimmune disorder symptom 

severity, we find evidence that these factors can increase risk of depression, but also that 

depression and low mood can increase risk of autoimmune case status, and worse 

prognosis and disease progression amongst RA cases. 

 

Based on these findings, we propose considering comorbidity as driven by some shared 

risk factor as the most parsimonious solution. There is a wealth of literature arguing that 

a number of inflammatory markers are associated with Major Depressive Disorder 

patients relative to controls, including inflammatory cytokines (Maes, 1999; A. H. Miller, 

Maletic, & Raison, 2009). This parallels similar findings across many autoimmune 

disorders, including rheumatoid arthritis (Lubberts & van den Berg, 2001), Crohn’s 

disease (Strober, Zhang, Kitani, Fuss, & Fichtner-Feigl, 2010) and Systemic Lupus 

Erythromitosis (Yap & Lai, 2013), amongst others. Furthermore, many other risk factors 

for depression are also associated with systemic inflammation, such as stressful life 

events (Danese et al., 2009; Danese et al., 2008; Dube et al., 2009). 
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Stressful life events are a well-established risk factor for Major Depressive Disorder. 

Literature on this link classifies stressful life events (SLEs) into dependant and 

independent, based on their cause. Dependent SLEs are thought to be driven partly by a 

patient’s own behaviour, such as divorce or a change of job. Independent SLEs, by 

contrast, are defined by being caused by factors outside of a patient’s control, such as 

being the victim of violent crime. This distinction is relevant when considering the 

evidence for a causal link between depression and the autoimmune disorders, almost all 

of which represent chronic and severe sources of impairment, negatively affecting factors 

such as quality of life, mobility and diet.  

 

Mullins et al find that genetic risk of depression predicts number of dependent SLEs 

across depression cases and controls, but not independent SLEs (Mullins et al., 2016). 

Considering autoimmune disorders as a form of independent stressful life event - 

occurring independently of genetic risk of depression - aids the interpretation of our 

finding that depression genetic risk and autoimmune disorder status independently affect 

risk of depression in a population cohort. 

 

Understanding the epidemiological relationships between phenotypes occurs at the level 

of the individual, whereas a study of the relationship between aetiological factors, such as 

inflammation levels and stressful life events, occurs at a molecular level. Here we term 

these to be more distal and more proximal respectively. Our findings above give merit to 

the investigation of an abnormal inflammatory profile as a causative agent in the 

epidemiological overlap between depression and the autoimmune disorders, however 

further work is required, investigating more proximal measures, in order to draw more 

definitive conclusions. Polygenic Risk Scores can be calculated using proximal 

phenotypes, such as individual differences in cell-surface receptor expression in the 
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immune system (Roederer et al., 2015), CRP levels (Dehghan et al., 2011) and personality 

traits (de Moor et al., 2012; Genetics of Personality Consortium et al., 2015; van den 

Berg et al., 2014); as data on these more proximal phenotypes becomes publically 

available, it will be possible to investigate evidence for a shared inflammatory profile 

between depression and autoimmune disorders at a population cohort level, and with 

autoimmune disorder symptom severity within clinical samples., where deeper 

phenotyping is possible  

 

Leveraging Genetic Risk to Understand Aetiology, Prognosis and 

Treatment 

 

Above we have presented the results of analyses that identify future research areas in the 

study of the psychiatric and autoimmune disorders. Of particular merit may be the 

antipsychotic effect of anti-inflammatory medication and the effect of systemic 

inflammation as a shared risk factor for a number of adverse outcomes later in life. 

Below we summarise the importance of using proximal phenotypes in the study of 

disease – in terms of aetiology, prognosis and treatment – and summarise ways in which 

genetic data can be used to determine a more useful proximal phenotype. 

Proximal Phenotypes 

 

A proximal phenotype, or endophenotype, biomarker, can be defined as a measurable 

biological trait, often requiring the use of a measuring instrument to detect, which is 

associated with disease risk without being defined itself as a disease. Examples of this 

would include urine glucose tolerance as a proximal phenotype for diabetes (Conn, 1940) 
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or a dimensional measure of neuroticism as a proximal phenotype for depression. We 

use the term proximal phenotype rather than endophenotype or biomarker, as the terms 

‘more proximal’ and ‘more distal’ allow a greater appreciation for the dimensional nature 

of these traits and their relative importances, whereas biomarker and endophenotype 

imply that traits are either pathological or not - the reality is likely substantially more 

nuanced. This can be illustrated in the case of hypertension. Hypertension can be defined 

as resting systolic blood pressure above 140mm Hg, resting diastolic blood pressure 

above 90mm Hg, or both (Poulter, Prabhakaran, & Caulfield, 2015). This is a relatively 

arbitrary threshold, based on a large body of clinical evidence, however it may be 

inappropriate across different ethnicities and lifestyles. Hypertension is thus classified as 

a disease, not an endophenotype, however higher systolic blood pressure is associated in 

turn with a higher risk of chronic kidney disease (Krzesinski & Cohen, 2007) – i.e. it is an 

endophenotype or biomarker. Thus we believe it is more useful to describe this 

relationship as hypertension being a more proximal phenotype than chronic kidney 

disease, with systolic blood pressure being more proximal, biological factors affecting 

blood pressure - such as blood lipid levels - as yet more proximal, and the genetic factors 

affecting lipid levels as more proximal still. 

 

More proximal phenotypes may be more useful than more distal phenotypes in the study 

of aetiology, prognosis and treatment of disease; regardless it is highly likely that they 

have been understudied compared to more distal phenotypes and thus merit at least 

equal consideration. Many of the most proximal phenotypes are continuous measures, 

providing increased resolution to make clinical judgements between patients. Secondly, a 

single more distal phenotype is likely to be influenced in a multifactorial way by multiple 

more proximal causes. This necessarily suggests that very similar clinical presentations 

may be differentiated by understanding their multifactorial causes. This in turn may 
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inform improved selection of treatment regimes – this is ‘personalised medicine’. A 

substantial level of clinical heterogeneity has long been believed exist within multiple 

sclerosis (Lassmann, Bruck, & Lucchinetti, 2001), however only recently, incorporating 

genetic data, have these assertions been vindicated (Brynedal et al., 2007), and further 

study may inform the implementation of personalised treatment regimes. 

Genetic Proximal Phenotypes 

 

Under the biometric model (Galton, 1877), arguably all measurable biological traits have 

a multifactorial genetic origin – this is likely to be the case in particular for normally 

distributed traits as the central limit theorem suggests an aggregate effect across Bernoulli 

distributed genotypes. Individual alleles of small effect may thus be responsible for inter-

individual variation in more proximal phenotypes – such as triglyceride level and 

neuroticism – as well as the intensively studied disease phenotypes, and we propose that 

understanding the genetic architecture of these more proximal traits would be of 

particular merit. The simplest way to achieve this would be to perform genome-wide 

association studies (GWAS) on each more proximal phenotype individually, however the 

diversity of more proximal phenotypes makes this prohibitively expensive and 

impractical. Below, we discuss ways to leverage genetic information and methodological 

novelty in order to construct better proxies for proximal phenotype-based risk of disease. 

 

Pleiotropy – a scenario in which a given allele affects the expected values of more than 

one trait - is almost ubiquitous across human genetics. This is due to a number of factors 

including the way the concept of a trait is itself is defined. Medical disorders have 

traditionally been defined based on their phenomenology rather than their underlying 

aetiology – particularly as aetiology was often unknown at the time of definition. This 
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can be seen in the distinction between schizophrenia and bipolar disorder, which was 

first proposed by Kraepelin (Kraepelin, 1913); prior to this the two phenotypes were 

classified together. This dichotomy illustrates how a multifactorial phenotype is by 

definition a combination of proximal causes, and so overlap in risk factors - and thus 

pleiotropy and comorbidity - is inevitable between diseases. It is also possible that 

ubiquitous pleiotropy is a fundamental by product of evolution by natural selection; 

proteins perform multiple roles within an organism (Gould & Lewontin, 1979) and the 

catabolites – the downstream chemical products - of biological pathways frequently feed 

into multiple pathways in turn (Krebs, 1938; Krebs & Eggleston, 1938; Krebs, Salvin, & 

Johnson, 1938). Thus a number of genetic methods can exploit the pleiotropy between 

two disorders – something often manifested in comorbidity – in order to create a black-

box metric for the aggregate risk conferred across more proximal but unmeasured – 

indeed unidentified – proximal phenotypes. 

 

Polygenic Risk Scores as Proximal Phenotypes 

 

As introduced above, the biometric model predicts that normally distributed traits will be 

influenced by many alleles of individually small effect. Some proportion of these can be 

identified at genome-wide significance by an adequately powered GWAS. Authors have 

previously found that a further number of risk-associated alleles may be included in a risk 

model by relaxing the genome-wide significance threshold from the typically used α = 

5x10-8 to include variants with nominal association (International Schizophrenia 

Consortium et al., 2009). The weighted sum of thus identified risk alleles an individual 

carries is termed a Polygenic Risk Score (PRS), and is used extensively in this thesis as 

well as in the field of genetic epidemiology generally.  
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In discussing the idea of more proximal phenotypes, we consider that diseases are human 

constructs, representing the aggregate deviation from normality of one or several more 

proximal phenotypes. This assertion has direct relevance for GWAS and thus the 

construction of PRS and can be demonstrated by techniques such as pathway analysis, 

which cluster the significant regions from GWAS based on annotation to more proximal 

biological pathways. In the psychiatric disorders, where aetiology is still a source of active 

debate, this approach has proved a useful hypothesis-generating method – Breen et al 

(Network Pathway Analysis Subgroup of Psychiatric Genomics Consortium, 2015) 

cluster significant regions from schizophrenia, finding enrichment for variants involved 

in histone methylation, immune and neuronal/neurotrophic pathways and the synapse. 

Thus an appreciation that genetic risk of a more distal disease phenotype can be seen as 

an aggregate effect of polymorphism affecting a number of more proximal phenotypes 

informs the construction of more accurate polygenic risk scores. 

 

Our first improvement to PRS (chapter 2) (Euesden, Lewis, & O'Reilly, 2015) indirectly 

exploits this fact. By optimising the computation of PRS through the development of the 

PRSice software program, we enable users to calculate the most predictive threshold at 

which to calculate PRS for a given pair of disorders, and for a given level of statistical 

power as determined by factors such as sample size and quality of phenotyping. We 

validate the increased predictive accuracy seen using PRSice, calculating PRS for 

depression cases and controls using GWAS data for schizophrenia, ever smoked 

cigarettes, and number of cigarettes per day. We find that schizophrenia genetic risk 

significantly predicts depression status, in line with previous findings (Cross-Disorder 

Group of the Psychiatric Genomics Consortium, 2013), and we report for the first time 

that genetic risk of ever smoking cigarettes also predicts depression status. This is 
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relevant to the notion of proximal phenotypes, as it suggests that some underlying 

biological pathways are influencing depression, tobacco use and schizophrenia. 

Furthermore, the exact proteins and genes involved in the pathway do not need to be 

known in order to perform useful prediction of phenotypes, and further downstream 

analyses such as stratification of cases. It is adequate and useful to consider the shared 

genetic risk between disease phenotypes as a means to calculate PRS and thus use this 

score as a proximal phenotype to measure risk of related traits. 

 

The goal of these cross-trait methods is to exploit the existence of shared biological 

proximal phenotypes between disorders in order to predict genetic risk of a trait more 

accurately. Implicit in this is the idea that the shared genetic component between two 

genetically overlapping disorders will be at least nominally associated in a well powered 

GWAS of either, however will not necessarily contribute to the most significant 

associations in either GWAS. For this reason we develop a second method, PRSlice, 

which leverages the existence of a relatively small number of well powered GWASs for 

some traits, and a number of other disorders which overlap with these, in order to 

develop a novel biomarker for traits that have not yet been intensively studied by GWAS 

(chapter 6). By applying this approach to simulated data, where the genetic architecture 

can be reliably controlled, we find that PRSlice appears to outperform PRSice in 

scenarios where genetic correlation, rG between base and target is modest but non-zero. 

We therefore propose that this may be used in scenarios predicting a target phenotype 

using a well-powered base GWAS on a different but correlated trait. 
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Future Directions 

 

A number of future projects arise from work presented within this thesis. Within the 

study of schizophrenia and rheumatoid arthritis, the source of the epidemiological 

relationship has not yet been identified; verifying whether medication plays a role in this 

relationship will be important. Furthermore, it is possible that phenotypic and thus 

genetic heterogeneity within either RA or schizophrenia is masking a true effect of 

‘negative pleiotropy’, and in this case deeper phenotyping on base (GWAS) and target 

samples will be instructive, as will incorporating methods explicitly designed to identify 

latent heterogeneity such as BUHMBOX (Han et al., 2016). 

 

The hypothesis that inflammatory processes play a role in the overlap between 

depression and the autoimmune disorders may be elucidated further by using genetic risk 

scores that explicitly measure these proximal phenotypes. This is not possible in our 

analysis of the NCDS, as these individuals are included as controls in almost all publically 

available GWASs, with the notable exception of the PGC1-MDD GWAS, which we use 

here but is likely underpowered to identify any shared genetic component across 

depression and correlated phenotypes. We propose using other GWAS (base) 

phenotypes, such as CRP level – a proximal phenotype of inflammatory activity – in 

order to dissect the epidemiological relationship we observe further. 

 

Alongside future directions in epidemiology, we also note the merit of investigating the 

effect of therapies for depression amongst RA patients. Cognitive Behavioural Therapy 

(CBT) has already been shown to improve the prognosis of RA patients over time 

(Evers, Kraaimaat, van Riel, & de Jong, 2002). Investigating CBT alongside 
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antidepressants, and their relative contribution to different components of poor mental 

health and different components of RA disease severity would be instructive in the 

management of this damaging and co-occurring phenotype. Furthermore, data on 

genetic risk may be incorporated in order to identify latent heterogeneity across patients. 

 

Finally, there have been a range of novel methods investigating improvements to the 

calculation of genetic risk over the course of the last three years, and there are a range of 

future directions depending on the required scientific question and the available data. 

One such method we propose is an alternative to PRSlice, in which the genome is 

chunked into regions annotated to biological pathways rather than by physical distance. 

Genomic regions can be annotated to particular pathways, using publically available 

resources such as Gene Ontology (GO) and the Gene Set Enrichment Analysis (GSEA) 

Canonical Pathways library. The best threshold within each pathway is then determined 

separately, much like PRSlice. This allows us to leverage the considerable and growing 

understanding of the biological function of genomic regions in order to gain an insight 

into the biological causes of disease pathophysiology. Whereas PRSlice may be more 

sensitive to partially overlapping sets of risk variants between disorders showing some 

degree of genetic correlation, this method could be extended to explicitly prioritise 

biological pathways and thus drug targets for downstream trials. This method – Pathway 

PRS - is currently under development by our group (Ruan, Breen, & O'Reilly, 2015). 
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Conclusions 

 

The pathway from identifying overlapping phenotypes with epidemiological methods to 

explaining the causes of this overlap by exploiting models of genetic risk forms the heart 

of this thesis. This is a relatively novel approach, partly due to the novelty of genetic risk 

models with adequate predictive accuracy. Applying these improved genetic risk scores 

to old epidemiological puzzles can add understanding to aetiology, and within a clinical 

setting add to understanding of prognosis and treatment. We have applied this paradigm 

to the overlap between the psychiatric and autoimmune disorders, finding little evidence 

for shared genetic components between schizophrenia and rheumatoid arthritis, and a 

body of supporting evidence for an inflammatory aetiology to depression, in line with 

other literature. Furthermore, we have developed two new methods to calculate more 

accurate markers for genetic risk, and proposed novel ways in which these might be 

applied in the future.
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