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Abstract

The standard model of cosmology, namely the ΛCDM model, is based on Einstein’s

theory of General Relativity (GR) with a Cold Dark Matter (CDM) content and

a positive cosmological constant Λ, in addition to ordinary matter and radiation

components. While it provides a paradigm in very good agreement with many

observations, from Big Bang Nucleosynthesis (BBN) to Cosmic Microwave Back-

ground (CMB), several questions remain open and various theoretical extensions

seem necessary in order to address them.

An extensively studied ingredient of the ΛCDM model is the inflationary sce-

nario, which solves some of the issues associated with the initial conditions that

the original hot Big Bang model cannot address, such as the homogeneity and flat-

ness problems. Furthermore, it fits very well with current data, in particular, the

spectrum of temperature anisotropies in the CMB. As we recall in Chapter 2, in

some scenarii, the end of inflation may lead to the formation of Cosmic Strings

(CS) or Cosmic SuperStrings (CSS), which can have a significant impact on some

observables, even though they have been proven not to be the main source of CMB

anisotropies. We focus on a particular phenomenological consequence of C(S)S,

Gravitational Waves (GWs), which are becoming an important tool to gather new

information on our universe. More specifically, energetic high frequency GW Bursts

(GWB) are thought to be emitted by cusps, which are points on C(S)S temporarily

reaching the speed of light. We investigate the occurrence of such phenomena in a

particular setup where a light string is stretched between two heavy, almost fixed

strings, as could appear in a C(S)S network. First, an analytical study allows us to

draw simplifying hypotheses, such as the periodicity of the non-interacting move-

ment of the string, and yields an effective rule to identify cuspy strings. In addition,

we implement these assumptions in a numerical simulation, which settles the free

parameter of this criterion. Also, the string and the network parameters are found

to influence strongly the average number of cusps and thus the amount of energy re-

leased in the form of GWB. In particular, both the analytical and numerical studies

demonstrate that the smaller the correlation length is (that is, the wavier the string
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is), the more cusps the string holds.

String/M-theory yields a large variety of scenarii and thus a large phenomenolog-

ical diversity, from inflation to Dark Matter (DM) candidates. It generally implies

additional dimensions and additional ingredients, such as scalar fields (often involved

with inflation) or extended objects (such as Cosmic SuperStrings). It can also pro-

vide a description of our universe, on which we focus in Chapter 3, in which all fields

but the graviton live on a (3+1) brane, itself embedded in a larger-dimensional bulk.

We consider a model where the bulk is populated with a gas of punctual, effectively

0-dimensional defects, which interact with our brane universe. Their collisions with

open strings attached to the brane generate a recoil velocity of such D0-branes, later

called D-particles. This additional vector field acts as a new content of the universe,

which from the low energy point of view behaves as a Dark Matter/Dark Energy

(DE) mixture. The modifications of the graviton equations of motion are related to

its squared field strength, which under certain circumstances condensate and plays

the rôle of an extra scalar field. This model, called the D-material universe, can

not only give a mechanism for the growth of large scale structure but, as we show

here, can also lead to a successful inflationary scenario, the condensate appearing

as the slowly rolling inflaton. Moreover, it provides an effective DM fluid which fits

restricted — by our model’s hypotheses — lensing data, thus diminishing the need

of conventional DM without overclosing the universe. Finally, this supplementary

ingredient alters the graviton propagation as it brings in an effective mass term and

affects the refractive index experienced by radiations. This study, which spans sev-

eral cosmological eras and covers several length scales, leads to constraints on the

free parameters of the model including the number density of D-particles and the

string scale.

Such analyses of models beyond the ΛCDM model may provide important in-

formation — alternative exploration routes as well as additional possible bounds on

the parameters — that would help us understand the dynamics of our universe.
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Chapter 1

Cosmology

1.1 Introduction

Cosmology is a comparatively new natural philosophy, a new science, compared to

others such as chemistry or astronomy. Its key questions remained metaphysical for

thousands of years before data could be collected that would make them a matter

of physics: a matter of numbers rather than images, a matter of theories rather

than myths, a matter of doubts rather than beliefs. Of course, many questions

remain unanswered, and some will potentially remain outside the reach of physics

and mathematics forever, but our collective intelligence has begun to lift the veil on

a tiny part of what the universe is.

Our story begins when stars are no longer considered as the remains of our

ancestors, when our galaxy is no longer seen as a spray of celestial milk across

the sky, and when explanations are found to interpret the nature of motion in the

cosmos. One could start with the Ptolemaic system or with Newton’s law of gravity

but here we will fast forward to the 20th century. The first tool needed to grasp the

nature of our universe is General Relativity (GR), for three key reasons. First, GR

explains what gravity really is, namely a consequence of the elasticity of spacetime,

and provides a means by which to quantify it. This is fundamental because gravity

is the main force acting at large scales. Secondly, GR suggests that spacetime could

expand or shrink and that it could have a shape and a curvature. It suggests that the

universe could start and begin, be open or closed, and that it could have boundaries

or be embedded into something larger. This was, of course, a difficult idea to accept

for almost everybody at the time it was proposed, Einstein included, but ultimately

the universe was unavoidably shown to be ‘not everlasting’ and ‘unsettled’. Finally,

GR imposes a speed limit, the speed of light in vacuum, for everything that exists

but, in particular, for any information travelling through the universe. This is the

1
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basis of causality but also allows us to see further back in the past when looking

further away from us. Space thus stores the memories of time.

Armed with this underlying theory, data has led to an exponential increase of

our understanding of the universe. The first set of data was composed of direct

observations of the sky using visible light, to which Galileo made a notable contri-

bution. Still, the most important advance may be that by Lemâıtre and Hubble

in the late 1920s [1, 2]. Their observations suggested that galaxies further from us

receded faster than those closer to us, which in turn led to the idea of an expanding

(and thus, contrary to the prevailing belief, non-static) universe. This was probably

the first time that the universe, as a whole, was the physical system being experi-

mentally studied. Thermodynamics implies that the universe, cold and diluted as it

is today, used to be warm and dense, so much so that it was nothing more than a

kind of a plasma of highly energetic particles. Then, during the expansion, cooling

and dilution of the universe, its contents became organised, first as atoms, then as

clouds of gas, and today as stars, galaxies, clusters, filaments and voids.

The second essential dataset for our current cosmology is the Cosmic Microwave

Background (CMB) radiation and the myriad information which has been extracted

from it in the last fifty years or so. When the universe was dense and filled with

highly energetic charged particles, photons were intensely interacting, being scat-

tered, absorbed, and reemitted almost continuously in their attempts to travel.

When the universe cooled down and diluted sufficiently for electrons and nuclei

to recombine into neutral atoms, radiation-matter interactions became significantly

less intense, so much so that the universe became transparent, freeing the photons

for an unfettered journey through space. The analysis of these photons shows that

the universe was almost exactly homogeneous and isotropic at that time, with its

temperature varying only by one part in 105. It also helps one to infer the energy

budget of the universe, i.e. what the content of the universe is. Currently, cosmolo-

gists consider space to be filled with about 68− 70 % Dark Energy (DE), 25− 27 %

Dark Matter (DM) and around 5 % ordinary matter, with a pinch of radiation. The

age of the universe (13.7 billion years old) and its overall curvature (the universe is

flat with a 0.4 % error range) can also be deduced from CMB analysis [3].

Today’s most promising directions come from precision measurements, gravita-

tional waves and neutrinos. The first of these requires the statistical analysis of

huge amounts of data (mostly in the infrared, visible and ultraviolet parts of the

electromagnetic spectrum) that is either currently available or soon to be. Years of

2
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observations give us an incredible amount of information to work with. The second

direction is the detection of vibrations of spacetime itself. These were predicted

by GR and only very recently directly observed [4] (although indirect evidence has

been obtained by studying compact objects inspirals). Their weak interactions with

matter and other kinds of radiation make them both extremely difficult and ex-

tremely interesting to detect, the latter because they would carry information which

would otherwise be unavailable. Similarly, neutrinos are extremely light, weakly

interacting particles of the Standard Model of particle physics and are produced in

many processes such as nuclear reactions occurring in stars. They remain for the

most part unaltered during their journey through space and thus would yield new

information were we able to detect them more efficiently and more accurately.

This detailed information is building up a story of the universe in which we live,

which is commonly (but wrongly) referred to as the Big Bang model, or more appro-

priately as the ΛCDM model. The former is due to the journalist Fred Hoyle who

chose it for popularisation in radio programmes in the 1950s. It portrays the universe

as hot and dense at the beginning (whatever this means), then rapidly expanding.

This Big Bang picture is misleading as the universe did not make any noise, did not

occur in an explosion and probably did not even start as a singularity, or “primordial

atom” (as Lemâıtre, who first mentioned such a theory, named it). Still, it is catchy

and thus the image has endured. The latter description, even though less fancy,

describes more accurately the reality we observe and adds several hypotheses on top

of the Big Bang model. The Λ refers to the cosmological constant or DE, which

today drives the expansion of the universe, acting as a negative pressure or vacuum

pressure (counting as 68− 70 % of the energy content of the universe), while CDM

stands for Cold Dark Matter. Everyday matter and, more generally, any (massive)

particle of the Standard Model of particle physics may interact not only gravitation-

ally but also through the weak and the strong nuclear forces and, more importantly

here, via the electromagnetic force; it is thus (directly) visible. On the other hand,

so-called Dark Matter interacts mainly gravitationally rather than strongly or elec-

tromagnetically, rendering it difficult to observe directly. Gravitational and CMB

analyses suggest, however, that DM contributes to somewhat more than a fourth of

the energy content of the universe, making it the second most important ingredient,

and leading to the denomination of what is considered as the standard model of

cosmology, as will be discussed later.
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CHAPTER 1. COSMOLOGY 1.1. Introduction

1.1.1 Cosmological solutions of General Relativity

As mentioned previously, GR is the underlying theory of most cosmological and

astrophysical models. Developed in the late 1900s and the 1910s, mainly by Albert

Einstein, but with early inputs from mathematicians and physicists such as Mar-

cel Grossmann, Tullio Levi-Civita, David Hilbert, Hendrik Lorentz and Willem de

Sitter, its field equation, named after Einstein, was published in November 1915 as1

Rµν −
1

2
Rgµν = Tµν (1.1)

where Rµν = Rα
µνα is the Ricci tensor, defined from the Riemann tensor2 and con-

taining the information about the local curvature of spacetime, R = gµνRµν is the

Ricci scalar, gµν is the local metric of spacetime used to compute the Christoffel

symbols Γαβγ, while Tµν is the stress energy (or energy momentum) tensor contain-

ing the information about the energy distribution in spacetime. The constant factor,
8πG/c4, has been omitted as we here use (reduced) Planck units.

Soon after, the cosmological hypothesis of a homogeneous, isotropic, expand-

ing universe was described by the Friedmann-Lemâıtre-Robertson-Walker (FLRW)

metric

ds2 = −dt2 + a(t)2 dΣ2 (1.2)

where a(t) is the scale factor and dΣ2 is the time-independent 3-dimensional uniformly-

curved space interval. It is often expressed using hyperspherical coordinates

dΣ2 = dr2 + Sk(r)
2 dΩ2 (1.3a)

where Sk(r) =


|k|−1/2 sin(|k|1/2 r) for k > 0

r for k = 0

|k|−1/2 sinh(|k|1/2 r) for k < 0

(1.3b)

with dΩ2 = dθ2 + sin2 θ dφ2 and k is the (dimension [L−2]) Gaussian curvature. The

use of this metric within the Einstein equations yields the Friedmann equations

ȧ2

a2
=

8πG

3
ρ− k

a2
+

Λ

3
(1.4a)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
(1.4b)

1Remark that the cosmological constant term, 1
2Λ gµν , was only introduced two years later.

2Rαβγδ = ∂δ Γαβγ + Γλβγ Γαλδ − (γ ↔ δ).
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CHAPTER 1. COSMOLOGY 1.1. Introduction

where G, Newton’s constant, has been reintroduced (while c is still taken to be

1), the overdot denotes a derivative with respect to time t, p and ρ respectively

denote the pressure and density of the fluid(s) filling the universe and Λ is the

cosmological constant. Note that while the second is often called the acceleration

equation, the first will sometimes be referred to as the Friedmann equation. The

continuity equation, given by

ρ̇ = −3
ȧ

a
(ρ+ p) (1.5)

and also often used in cosmological computations, can be derived from the Fried-

mann equations. It can also be found using the first law of thermodynamics if

one assumes adiabatic expansion of the universe, which is actually equivalent to

homogeneity in the cosmological principle.

In all these equations, ρ and p can be split into different components of the

energy content of the universe such as radiation (ρr and pr) and dust or cold (non-

relativistic) matter (ρm and pm). In addition, the cosmological constant term can be

rewritten as a DE density term using ρΛ = (8πG)−1 Λ. The main difference between

these components lies in their equation of state, that is, the equation relating ρ and

p, often parametrised by a dimensionless number w as

p = w ρ (1.6)

where w = 1/3 for radiation, w = 0 for dust and w = −1 for DE (that is, an effec-

tive cosmological constant fluid). Putting this equation of state into the continuity

equation and the Friedmann equation leads to the time evolution of the density and

the scale factor. Excluding the case w = −1, one gets

ρ = ρ0 a
−3(1+w) (1.7a)

a(t) = a0

(
t

t0

) 2
3(1+w)

(1.7b)

where the index 0 refers to the present day value of a quantity and it is usually

chosen that a0 = 1. This yields the usual dependence of the density of dust on the

scale factor ρm ∝ a−3 while due to redshift the radiation density scales as ρr ∝ a−4.

The time dependence of the scale factor thus reads, respectively, a ∝ t2/3 and a ∝ t1/2

for a universe dominated by such components. Alternatively, with the case w = −1,

DE exhibits a constant density and yields a ∝ eHt, that is, a de Sitter accelerated
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CHAPTER 1. COSMOLOGY 1.1. Introduction

expansion, where H ≡ ȧ/a is the Hubble parameter.

One can also express the density parameters in terms of the critical density.

The latter is defined as the density of a flat k = 0 universe, all components being

accounted for. The Friedmann equation yields

ρc ≡
3H2

8πG
(1.8)

while its current numerical value is about 5 atoms per cubic metre. Note that the

word ‘atom’ here refers to the hydrogen atom, that is roughly a proton. Density

parameters are dimensionless quantities defined, for each component or group of

components of the universe, as the ratio of its energy density to the critical density

ρc. They allow us to rewrite the Friedmann equation as

Ωtot − 1 =
k

H2a2
(1.9a)

where Ωtot = Ωr + Ωm + ΩΛ, or

H2

H2
0

= Ωr0 a
−4 + Ωm0 a

−3 + Ωk0 a
−2 + ΩΛ0 (1.9b)

where Ωk = 1 − Ωtot is the spatial curvature density parameter, from the energy

density due to global space curvature, and again the subscript 0 refers to today’s

universe.

1.1.2 The concordance model of cosmology

The knowledge that our universe is expanding, coupled with an understanding of

how a universe filled with such ingredients would expand depending on the rela-

tive abundance of each component, gives us the ability to rewind the history of the

universe from today’s observations. The models made by Lemâıtre and Hubble in

the late 1920s [1, 2] showed, as mentioned earlier, that the universe was not static

as Einstein and some of his contemporaries would have thought and preferred, but,

rather, was expanding. Indeed, Lemâıtre and Hubble’s measurements proved, by

observing many extragalactic objects and in particular their redshift, that they fol-

low an empirical law known as Hubble’s law, stating that the receding velocity is

proportional to the distance. The proportionality constant is H, the Hubble param-

eter, whose value today is about H0 ' 70 km s−1 Mpc−1 [5, 6], meaning that a galaxy
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CHAPTER 1. COSMOLOGY 1.1. Introduction

at a distance of 1 Mpc has a radial centrifugal velocity of around 70 km/s. Rather

than us occupying a special point at the centre of an expansion, it is understood

that a uniformly expanding universe would produce such an effect, the observed ve-

locity being due to spacetime between us and the galaxy being constantly stretched.

This leads to the definition of a cosmological redshift z, as the consequence of the

expansion of the universe on photon energy, following 1 + z ≡ a0/a; that is, z = 0

today (a0 = 1) and z grows for smaller a, for older times.

The behaviours described above lead to the following results: an expanding

universe filled with any amount of radiation and dust will eventually be dominated

by matter (since radiation is diluted more efficiently), and an expanding universe

also containing DE will eventually be dominated by this last component, which

gives a constant density regardless of the expansion. This is very important as

the rewinding of time starting from the current state of our universe, filled with

a mixture of all three, will give rise to eras dominated by one fluid dictating the

expansion rate, separated by eras of codominance, during which one component

slowly takes over another. The presence of matter, naively considered as the most

abundant ingredient of today’s universe, as well as radiation, yields to a matter-

radiation equality point somewhere around a redshift z ' 3300 [5, 6].

Unexpectedly, today’s data points to a universe filled with about 68.3 % of its

energy budget in DE, slightly less than 31.7 % in dust and about 0.01 % in CMB

photons. This means that the cosmological constant of our universe has recently3

become dominant, ending a matter dominated era (MDE) which lasted most of the

universe’s history and started after a radiation dominated era (RDE), itself lasting

about 6× 104 years. This knowledge comes from the analysis of the matter present

around us (in stars and galaxies, but actually mainly in the gas in between), giving

us a rough estimate of the matter density, as well as the detection and analysis of the

Cosmic Microwave Background (CMB). Its photons represent a major fraction of

the photons of today’s universe, allowing for an estimation of the radiation energy

density and thus of the baryon to photon ratio, currently estimated to N
(0)
b '

6× 10−10N
(0)
γ .

Predominantly, the CMB is the relic radiation emitted by the last scattering

surface which travelled almost without interaction and thus without alteration since

then — apart from the redshift due to cooling. When the universe cooled down

3‘Recently’ might sound slightly misleading since the equivalence between matter and DE oc-
curred about 3.5 to 4.5 billion years ago, but this corresponds to a redshift of only z = 0.4, which
is small on cosmological timescales.
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CHAPTER 1. COSMOLOGY 1.1. Introduction

enough so that electrons and protons were able to bind and recombine as neutral

hydrogen (and helium) atoms, photons were able to travel roughly unscattered in

a now quasi-transparent medium. The CMB thus yields all the information about

the content of the universe at that time. First, the CMB is a uniform blackbody

spectrum (up to an extremely high accuracy), giving the temperature of the universe

today to be T0 = 2.7255 K [3, 6] and confirming the general idea of an expanding

universe which was originally filled mainly with high energy radiation. Since the

temperature of an expanding universe filled with radiation4 is inversely proportional

to its scale factor and thus proportional to 1 + z, one can infer that the decoupling

occurred at a redshift z ' 1100 and a temperature Tdec ' 3000 K. The ratio

of baryons to photons obtained through CMB observations can also be used to

compute the abundance of primordial elements. Indeed, Big Bang Nucleosynthesis

(BBN) analysis shows that this ratio is the only parameter needed to predict a

4-helium mass fraction of about 0.25, for deuterium and tritium about 10−3 and

10−4 respectively, and for lithium about 10−9. Current observations yield very good

agreement with these estimations, especially regarding deuterium.

In addition, the CMB exhibits anisotropies whose amplitude is roughly a part

in 105 and whose angular size peaks for angles around θ ' 1◦ or multipole mo-

ments around ` ' 220 (where ` is the multipole moment in the spherical harmonics

decomposition5 of the signal), as can be seen in Fig. 1.1. Two main effects drive

the shape of the CMB power spectrum: Baryon Acoustic Oscillations (BAO) and

diffusion damping. The first is driven by the fact that the pressure of radiation,

which tends to erase overdensities, is in conflict with dust gravitational instability,

which tends to amplify overdensities. This conflict generates oscillations at various

scales, creating several peaks in the power spectrum. The fact that the universe did

not become instantaneously transparent is at the origin of the second effect, which

blurs the small scale anisotropies and results in an exponential damping in the large

multipole moment of the power spectrum.

A detailed analysis of the anisotropies and the power spectrum of the CMB

yields information on many aspects of our universe, in addition to a more accurate

4Indeed, Maxwell’s relations of thermodynamics tell us that
(
∂S
∂V

)
T

=
(
∂P
∂T

)
V

(where S is the
entropy, P the pressure, T the temperature and V the volume). For radiation, the equation of
state is given by P = 1

3ρ, where ρ is the energy density, which yields ρ ∝ a−4 but also U = ρV and

S = U+PV
T = 4

3
V
T ρ(T ). Using the aforementioned Maxwell’s relation, one gets dρ

dT = 4ρ(T )
T , leading

to ρ ∝ T 4 and hence T ∝ a−1.
5The coefficients C` of such decomposition are related to the plotted D` of Fig. 1.1 by D` ∝

`(`+ 1) C`.
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CHAPTER 1. COSMOLOGY 1.1. Introduction

Figure 1.1: CMB temperature power spectrum. The red line shows the best fit
ΛCDM theoretical spectrum while the blue dots and error bars give the actual
measurements and uncertainties (at 1σ). The lower panel shows residual with

respect to the best fit model. From the Planck Collaboration [6, Figure 1].

value of the Hubble constant, H0 ' 67.74± 0.46 km s−1 Mpc−1 [6]. The first peak’s

angular scale gives the curvature of the universe, which is flat up to 0.4 %, and

thus the total density parameter of the universe is constrained to 1.00 ± 0.02 [7].

The second and third peaks determine, respectively, the baryon density and the

DM density. Indeed, dust is actually divided into two components, one being the

usual Standard Model particles, well known and studied, while the other remains

largely unknown. This indefinite DM component can be inferred as being massive,

probably weakly interacting, stable or quasi-stable over billions of years, electrically

and colour neutral (no electromagnetic or strong interaction) and cold, meaning

non-relativistic — hence not carrying much kinetic or thermal energy compared

to its mass energy. The presence of DM is suggested by many other different and

independent experiments, at all scales and eras (for instance galactic rotation curves

and galactic dynamics, bullet cluster and gravitational lensing, structure formation

or BAO). It also emerges naturally from many ‘beyond the Standard Model’ theories
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CHAPTER 1. COSMOLOGY 1.1. Introduction

of particle physics (such as axions, in supersymmetry or string theories).

Finally, the pattern in the angular scale of the peaks is influenced by the type of

density perturbations. Any perturbation can be decomposed into a sum of adiabatic

modes — where the overdensity is evenly spread between components — and isocur-

vature modes — where a specific component overdensity is overall compensated by

other components under or overdensities. More explicitly, for each component of

the universe, say radiation and matter for simplicity, one can define the number

density NX in addition to the energy density ρX, with X ∈ (r,m), and the linear

(first order) perturbations with respect to their averaged value, δNX ≡ NX − 〈NX〉
and δρX ≡ ρX − 〈ρX〉. An adiabatic one is such that the ratios of each component

remain unchanged, thus leading to a perturbation of the total energy density and

thus of the curvature. This yields

δ

(
Nm

Nr

)
= 0 ⇔ δNm

δNr

=
Nm

Nr

, (1.10a)

leading, for the energy density, to

δρm

ρm

=
3

4

δρr

ρr

, (1.10b)

the prefactor coming out of the components’ equations of state. In contrast, isocur-

vature modes leave the geometry unchanged, that is, the total energy density un-

changed, and thus implies in our two-component example6

δρm + δρr = 0 ⇔ δNm

δNr

= −4

3

ρr

ρm

Nm

Nr

. (1.11)

The first peak has been measured to be around ` ' 220, indicating mostly adiabatic

initial perturbations, and in addition allows us to infer the flatness of the universe.

Indeed, all other things being equal, initial isocurvature modes would yield a peak

at ` ' 330 and subsequent peaks similarly shifted towards smaller angles, with their

amplitude also being modified. This rules out cosmic strings as the main source of

anisotropies — as they would mostly produce isocurvature modes — and supports

inflation — which is a de Sitter expansion period generating almost adiabatic per-

turbations. Furthermore, scale invariant expansion (such as de Sitter) lead to a flat

primordial power spectrum, as has been roughly measured in the CMB. One can

6In a case with n components, one can define n − 1 isocurvature modes with respect to each
but one component, which serves as reference.
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define the scalar spectral index ns as in Ps(k) ∝ kns−1, where Ps(k) is the scalar

power spectrum and k is the wave number (related to the multipole moment `).

It has been constrained to ns ' 0.968 ± 0.006 [6], where a perfectly flat spectrum

would yield ns = 1.

It is important to note that many additional effects have distorted or blurred

the spectrum anisotropies after the CMB photons were emitted. Three are worth

mentioning: the reionisation of the intergalactic medium, the Sunyaev-Zel’dovich

(SZ) effect and the Sachs-Wolfe (SW) effect. As mentioned previously, decoupling

occurred because the universe became neutral via the recombination of electrons and

nuclei, but today’s universe is mainly ionised. This reionisation occurred, according

to CMB analysis, around z ' 10 [5] at which point intergalactic space started

scattering the CMB photons, as well as altering the polarisation. This effect is not

significant anymore due to the very low baryon density but would have been quite

substantial in the past. The SZ effect is due to inverse Compton scattering, in

which high energy electrons of a hot cloud locally boost the CMB photons. The SW

effect is the redshift or blueshift of the CMB photons due to gravitational potentials

on their path. In fact, this effect would have also occurred on the last scattering

surface due to uneven distribution of energy, and this is called the non-integrated

SW effect. In contrast, the Integrated SW (ISW) effect occurred after z ' 1100,

on the line of sight, mostly in late eras. When the universe is dominated by DE7,

large enough gravitational wells may evolve significantly while photons are travelling

through them, since they are damped by the acceleration of the expansion of the

universe. Thus, photons are more blueshifted (respectively redshifted) when entering

an overdense (underdense) region than they are redshifted (blueshifted) when they

exit the same region, which has been smoothed out.

Careful analysis of CMB data has made it possible to tightly constrain the main

parameters of our model of the universe within the most concordant one, the ΛCDM

model. These parameters include H0, and thus the age of the universe, t0 ' 13.799±
0.021× 109 years [6], the energy budget of the universe, and the type of primordial

anisotropies, which are found to be mainly adiabatic.

7The effect is also happening when the universe is still affected in its evolution by radiation, just
after decoupling, but its effect is smaller and often integrated into the primordial CMB anisotropies,
that is, those imprinted on the CMB photons initially.
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CHAPTER 1. COSMOLOGY 1.2. Inflation

1.2 Inflation

So naively, the story is complete: the universe, which started as a hot dense patch

of spacetime, started to rapidly expand and thus cool down and dilute, until its

contents organised themselves into atoms and stars to form what we know today.

But more questions are raised from these answers. The first one that one could ask

is about what was before that. What led to what we see today? How come the

universe is so homogeneous? And flat? Is it naturally evolving towards such state?

These questions all boil down to what is known as the initial conditions problem(s):

if one can use the laws of physics to rewind back through time and explain the state

of the universe at some instant using knowledge about it at some later instant, when

do we stop doing so, why and what was the universe like back then?

1.2.1 Initial conditions

There are several unanswered questions (“problems”) which are connected to the

initial conditions of our cosmological history. Indeed, rewinding the history of the

universe following the known laws of physics in their validity limits, one might run

back up to a very small, very dense, very warm and surprisingly homogeneous,

isotropic universe. For instance looking at the CMB, which yields an almost unal-

tered photonic image of the early universe about 380 000 years after the so-called

“Big Bang”, one notes that our universe is homogeneous and isotropic with an accu-

racy of about 10−5. Even though we do not know all the details of the laws governing

the evolution of the early universe, it seems — considering General Relativity as a

valid background — that no phenomenon can reduce inhomogeneities in a deceler-

ating expanding universe, meaning that the further back in time one looks at, the

more homogeneous and isotropic it should be.

One can also assume that quantum effects (especially quantum fluctuations) do

not occur at scales below Planck scale, or at least do not have a dramatic role. Above

Planck scales, one can only say that it is likely they do have a large impact on the

physical properties and evolution of the universe. One can thus set the “initial”

time scale at around tini ∼ tPl ∼ 10−43 s. The key question now is: how was the

universe at that time? [8, Chapter 5]

A complete description of the early universe, that is, a complete set of initial

conditions, is given by two pieces of information, the energy density field and the

velocity (or energy flow) field. The issue with the first one comes out when looking
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at the size of today’s horizon ct0 ∼ 1028 cm and trying to compare it with the

“initial” horizon. Today’s universe is a patch of homogeneous, isotropic and causally

connected spacetime — it might even be a part of a larger homogeneous, isotropic

patch. It is the result of the expansion of a smaller (homogeneous, isotropic) patch,

smaller by a factor ai/a0, thus at least as large as

lh ∼ ct0
ai
a0

. (1.12)

When compared with the size of the causal region at the time lc ∼ cti, one obtains

the ratio
lh
lc
∼ t0
ti

ai
a0

(1.13)

that we would like to evaluate. Considering that primordial radiation dominates the

initial universe, its temperature is given by the Planck temperature TPl ∼ 1032 K.

This leads to
lh
lc
∼ t0
ti

T0

TPl

∼ 1017

10−43

1

1032
∼ 1028 (1.14)

which one should understand as the fact that the homogeneous, isotropic patch

that expanded into our current universe was at least 1028 times larger (in length)

than the causally connected patch at the time. This involves about 1084 causally

disconnected patches whose energy density was equal, up to 10−3 %. This is called

the homogeneity, isotropy problem.

To understand why this problem is also often called the horizon problem, one

needs to assume in addition that the scale factor follows a power law in time, that

is, that ȧ ∼ a/t. It yields
lh
lc
∼ ȧi
ȧ0

. (1.15)

Since we assumed that the universe has always been expanding with a decelerating

expansion — which ultimately means that gravity has always been attractive — the

ratio of rates of expansion has always been larger than 1, meaning that the scale

of the homogeneous isotropic patch has always been larger than the scale of the

causality patch.

Similarly, assuming that matter is evenly distributed and that its velocity follows

Hubble law (otherwise the matter distribution would quickly be spoiled), one can

evaluate the total energy of matter in a patch of spacetime. It is the sum of the

kinetic energy due to Hubble expansion EK and the (negative) gravitational potential

energy EP, and it is conserved. The kinetic energy is related to the square of the
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velocity, which itself is related to the expansion rate, leading to

Ei
K = E0

K

(
ȧi
ȧ0

)2

. (1.16)

Evaluating now the proportion of the total energy which lays in the kinetic form,

one has
Ei

tot

Ei
K

=
E0

tot

E0
K

(
ȧi
ȧ0

)2 =
E0

tot

E0
K

(
ȧ0

ȧi

)2

. 10−56 (1.17)

where we used the matter homogeneity and isotropy found previously to set a bound
ȧ0

ȧi
. 10−28. One should understand this as the fact that, in the early universe at

least, the absolute value of the gravitational potential energy of matter is almost

exactly equal to the kinetic energy of matter due to Hubble expansion, up to a pre-

cision of 10−54 %. Note as well that deviating from this cancellation would produce

either a rapid collapse of matter or a rapid dilution of matter. This problem is

known as the initial velocities problem or the flatness problem. To understand this,

one can use the Friedmann equation expressed in terms of the total cosmological

parameter: recall cosmological parameters are parameters of the ΛCDM model de-

fined as the energy density (total or of a certain component of the universe) scaled

by the critical energy density, where the critical energy density is the one such that

the universe is flat; it yields

Ωtot − 1 =
k

H2a2
(1.18)

where k is a measure of curvature and H ≡ ȧ/a is the Hubble rate. One thus has

Ωi
tot − 1 =

(
Ω0

tot − 1
) H2

0a
2
0

H2
i a

2
i

=
(
Ω0

tot − 1
) ȧ2

0

ȧ2
i

. 10−56 (1.19)

which in turn should be understood as the fact that the initial universe had to be

extremely flat (up to, again, 10−54 %) in order to obtain today’s flat universe.

Finally, one can also consider the (less dramatic) problem of the initial per-

turbations. Indeed, even though the universe at the time of the CMB was very

homogeneous and isotropic, one cannot avoid the fact that today’s universe con-

tains large scale structures, that are galaxies, clusters, filaments and large voids.

During the matter dominated era, though, the temperature anisotropies grow and

lead to density anisotropies. The problem is that they are too small, of the order

∆T ' 10−5 T , to explain the structures observed, which are such that ∆ρ ' ρ.
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Said differently, to explain the density anisotropies, one needs larger temperature

anisotropies than those observed or additional ingredients. These structures must

have been sourced by some inhomogeneities and anisotropies which are thus yet to

be explained in details by future models.

1.2.2 Inflationary phase

These two different problems, the horizon and the flatness problems, are thus driven

by the same ratio, that is, the ratio of the initial expansion rate by the present

one. For a universe where gravity is attractive, the expansion rate decreases un-

avoidably leading to this ratio being larger than one. We estimated it at 1028, see

Eqs. (1.14) and (1.15). A necessary condition to solve these issues is to set up a

period of time where gravity is repulsive: it would allow for an accelerated expan-

sion of spacetime, opening the possibility of a smaller ratio of expansion rates, to

order unity, allowing the universe to grow from a fully causally connected patch. It

would also explain the Big Bang by generating large velocities from small ones. As

already well-understood phenomena — such as nucleosynthesis and CMB — should

be maintained, this period of repulsive gravity and accelerated expansion, called

inflation, has to occur very early in the history of the universe and has to end up

smoothly into a decelerating phase.

Starting with a small patch of causally connected, homogeneous and isotropic

spacetime and inflating it, one can first look at the event horizon. Recall the event

horizon of an observer at time t is the set of points whose light emissions will ever

reach the observer in the future; its physical size is defined as

de(t) ≡ a(t)

ˆ t∞

t

dt̃

a(t̃)
(1.20a)

where t∞ is either finite or infinite. Proceeding to a change of coordinates t→ a(t),

dt→ 1/ȧ(t) da, one obtains

de(t) = a(t)

ˆ a∞

a(t)

dα

α̇ α
. (1.20b)

During inflation, this integral always converges — the event horizon always exists —

even if a∞ ≡ a(t∞)→∞, because ȧ grows with a, thus ȧ a ∝ a1+ε with ε > 0. This

is very important as it implies that whatever happens outside a patch of spacetime

of radius 2de(t) — for instance inhomogeneities — will never influence what happens
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in the (concentric) patch of spacetime of radius de(t).

Let us now study the particle horizon, which is the set of points from which an

observer can receive information at a given time t and whose physical size is given

by

dp(t) ≡ a(t)

ˆ t

ti

dt̃

a(t̃)
= a(t)

ˆ a(t)

ai

dα

α̇ α
(1.21a)

where ti is the origin of time, the time of initial state, and ai ≡ a(ti). In the case of an

accelerated expansion where a and ȧ grow (quickly), one can roughly approximate

the integral’s upper bound to infinity (as the additional bit is very small) and obtain

dp(t) ' a(t)

ˆ a∞

ai

dα

α̇ α
=
a(t)

ai

de(ti) . (1.21b)

Interestingly, the radius of the homogeneous patch rh(t), which at the beginning of

inflation is given by de(ti) as seen above, grows by a factor af/ai (the subscript f

referring to the end of inflation) such that

rh(tf) =
af

ai

de(ti) ' dp(tf) . (1.22)

Thus again homogeneity and isotropy are preserved on the patch throughout infla-

tion; its size matches the event horizon at the beginning of inflation and the particle

horizon at the end of it.

One could argue that inflation only simplifies the problem (by making the size of

the initial homogeneous patch smaller) but does not fully solve it. First, one should

recall that this homogeneous patch is now causally connected, which could explain

the homogeneity and isotropy. In fact, the hypothesis of homogeneity and isotropy

can be relaxed as inflation smoothes down inhomogeneities. Indeed, the physical

wavelength of a perturbation mode grows with a during inflation while the curvature

scale or Hubble radius, given by H−1, is approximately constant. Therefore, large

perturbation modes are getting larger than the Hubble radius and exit it, thus

making it more and more homogeneous — even though the perturbation amplitude

remains the same. Said differently, the contribution of the inhomogeneities to the

variation of energy density on the Hubble radius dims, their amplitude being roughly

constant. One would simply need to assume that the rate of expansion before

inflation ȧi is small compared to today’s ȧ0, so that these modes which exited the

Hubble radius at the beginning of inflation would not come back in today. CMB

analyses suggest a bound on the ratio ȧi/ȧ0 < 10−5.
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Finally, this last bound has interesting consequencies for the total cosmological

parameter Ωtot. Equation (1.19) yields

Ω0
tot = 1 +

(
Ωi

tot − 1
) ȧ2

i

ȧ2
0

(1.23)

meaning that flatness is no longer a problem as inflation also flattens the patch of

spacetime. Indeed, any initial deviation of Ωi
tot from unity is strongly suppressed

today, by a factor (ȧi/ȧ0)
2 < 10−10 — instead of any deviation being amplified,

meaning that one would need very fine tuned Ωi
tot to fit today’s observations. Ω→ 1

becomes a future attractor instead of being a past attractor. Note though that

quantum effects lead to very small deviations from this simplified behaviour.

Accelerated expansion via repulsive gravity thus solves both our initial value

issues, the horizon problem and the flatness problem. Let us review now quickly the

main ideas to achieve such acceleration.

1.2.3 Negative pressure

According to the second Friedmann equation (the acceleration equation), which

reads8

ä

a
= −4πG

3
(ρ+ 3p) , (1.24)

one requires ρ + 3p < 0 in order to observe accelerated expansion ä > 0. De Sitter

spacetime for instance, which is filled with a (DE) fluid following the equation of

state ρ = −p and thus satisfying ρ+ 3p = −2ρ < 0, yields an exponential expansion

but no smooth exit. Indeed, one always has

Ḣ =
ä

a
−H2 ⇔ ä

a
= H2 + Ḣ (1.25)

but the Hubble parameter H is constant in de Sitter universe (Ḣ ∼ 0), leading to

a constant positive acceleration of the expansion. To achieve a smooth exit from

inflation where ä becomes progressively negative, one needs a varying decreasing H

(Ḣ < 0) and the ratio |Ḣ|/H2 progressively becoming of order unity. Before this exit,

assuming a is almost exponential, one can safely suppose that H is approximately

constant during inflation and |Ḣ| � H2. We shall denote the Hubble parameter

during inflation by HI ' Hi ' Hf . One can also assume |Ḧ| < 2H|Ḣ| (meaning

8We here consider DE, absorbed in the total density ρ and pressure p, rather than a cosmological
constant term; hence formally Λ = 0.
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that H2 is varying more rapidly than |Ḣ|) and thus the duration of inflation can be

approximately given by

tf ∼
HI

|ḢI|
(1.26)

where the subscript I refers to inflationary era.

To evaluate tf , let us recall the constraints for a successful inflation are ȧf/ȧ0 &

1028 (to obtain a homogeneous, isotropic patch) and ȧi/ȧ0 < 10−5 (to avoid large

perturbation modes spoiling the homogeneity), yielding

af

ai

=
Hi

Hf

ȧf

ȧi

' ȧf

ȧ0

ȧ0

ȧi

> 1033 (1.27a)

An almost exponential expansion gives

af

ai

∼ eHItf (1.27b)

which, combined with the previous equation, leads to tf & 75H−1
I . This means

that inflation must last for at least 75 Hubble times, also called e-folds, in order

to produce a suitable universe. Using the estimation of tf given earlier on, one

has |ḢI|/H2
I < 1/75. To express this in the form of an equation of motion, one has

Friedmann equations

H2 +
k

a2
=

8πG

3
ρ (1.28a)

Ḣ − k

a2
= −4πG (ρ+ p) (1.28b)

whose ratio (in the flat case k = 0) yield

ρI + pI

ρI

< 10−2 . (1.28c)

This leads to the approximate equation of state

pI ' −ρI . (1.28d)

1.2.4 Slow-roll inflation

To realise this equation of state, the simplest model is to consider a scalar field ϕ

(named the inflaton) whose energy density and pressure can, in general, be written

18



CHAPTER 1. COSMOLOGY 1.2. Inflation

in terms of kinetic and potential terms as

ρ =
1

2
ϕ̇2 + V (ϕ) (1.29a)

p =
1

2
ϕ̇2 − V (ϕ) . (1.29b)

In order to satisfy the equation of state, this inflaton field must satisfy 1/2 ϕ̇2 � V (ϕ),

which in fact is a condition on the potential. Indeed, recall the conservation of

energy, which in relativistic cases reads dE = −p dV (with E the total energy, p the

pressure and V the volume), leads to a form of the continuity equation which yields

ρ̇ = −3H (ρ+ p) . (1.30a)

This, using Eq. (1.29), leads to

ϕ̈+ 3Hϕ̇+ V ′ = 0 (1.30b)

where V ′ ≡ dV/dϕ. Note that this is the equation of motion of a damped harmonic

oscillator. Assuming a large damping term, this leads to small velocities and a slow-

rolling regime, as in Ref. [9], characterised by a small kinetic energy compared to

potential energy, as required, and by a negligible acceleration term compared to the

damping term. The equation of motion thus reads

3Hϕ̇+ V ′ ' 0 (1.30c)

Similarly, Friedmann equation (setting k = 0 and 8πG = 1) gives

H2 =
1

3

(
1

2
ϕ̇2 + V (ϕ)

)
' 1

3
V (ϕ) . (1.31)

These two last equations, obtained under the approximations that 1/2 ϕ̇2 � V and

ϕ̈ � 3Hϕ̇, can lead us to two conditions on the potential. First, isolating ϕ̇ from

Eq. (1.30c) and using Eq. (1.31) to remove H, one obtains

ϕ̇2 '
(
V ′

3H

)2

⇔ ϕ̇2

V
' 1

3

(
V ′

V

)2

. (1.32)
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Enforcing (V
′

V
)2 � 1 thus results in the desired equation of state. Secondly, deriving

the equation of motion with respect to time and using again Eq. (1.31) leads to

|V ′′| '
∣∣∣∣3H ϕ̈

ϕ̇
+ 3Ḣ

∣∣∣∣ ⇔
∣∣∣∣V ′′V

∣∣∣∣ ' 1

3H2

∣∣∣∣3H ϕ̈

ϕ̇
+ 3Ḣ

∣∣∣∣ = 3

∣∣∣∣∣ ϕ̈

3Hϕ̇
+

Ḣ

3H2

∣∣∣∣∣ (1.33a)

where V ′′ ≡ d2V/dϕ2. In the last equality, the first term (of the right hand side)

is small compared to 1 — since the acceleration of the scalar field is negligible

compared to the damping term. Concerning the second term, deriving Eq. (1.31)

and reorganising it gives

Ḣ

H
' V ′ϕ̇

2V
⇔ Ḣ

3H2
' 1

3H

V ′ϕ̇

2V
' V ′

3Hϕ̇

1/2 ϕ̇2

V
. (1.33b)

Since 1/2 ϕ̇2 � V and |V ′| ' |3Hϕ̇|, this second term is small as well compared to

unity. Thus, enforcing |V ′′
V
| � 1 implies that our slow-roll assumptions are satisfied:

1/2 ϕ̇2 � V and ϕ̈� 3Hϕ̇ ' V ′.

One can thus look for potentials satisfying

ε ≡ 1

2
M2

Pl

(
V ′

V

)2

� 1 (1.34a)

η ≡M2
Pl

∣∣∣∣V ′′V
∣∣∣∣� 1 (1.34b)

where ε and η are called the slow-roll parameters and MPl is the (reduced) Planck

mass. Another constraint comes from N the number of e-foldings which, as men-

tioned previously, satisfies N & 75 (or rather 60 following different model-dependent

approximations). Using Eq. (1.27b), one has

N ≡
ˆ
H dt = − 1

MPl

ˆ ϕe

ϕi

V

V ′
dϕ . (1.35)

Finally, two constraints commonly used on the inflaton potential are given by exper-

imental bounds from CMB experiments in particular. The first one is a requirement

on ns the (scalar) spectral index. This parameter measures the deviation from scale

invariance (ns = 1), which is only achieved in exact de Sitter expansion. Theoretical

computations lead to the relation

ns = 1− 6ε+ 2η (1.36a)
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while current experimental bounds [10] yield

ns = 0.968± 0.006 . (1.36b)

The second one is constraining the ratio of the energy scale to the slope and is given

by the WMAP experiment [5, 11] as

(
V

ε

)1
4

= 0.0275MPl . (1.37)

Finally, some scenarii predict a non-vanishing tensor to scalar ratio r, which is

defined as the ratio of the tensor power spectrum to the scalar one, and is given in

the slow-roll approximation by

r ≡ Pt
Ps

= −8nt = 16ε (1.38)

where Pt is the tensor power spectrum and nt is the tensor spectral index.9 After

some controversy [6], the tensor to scalar ratio is constrained to r0.002 < 0.09,10

disfavouring models of inflation providing large tensor component participation to

the universe energy budget such as quadratic (V ∼ ϕ2) potential.

A scenario or a potential achieving ε � 1, η � 1, N ∼ 60, ns ' 0.968 and
V/ε ' (0.0275MPl)

4 is thus a valid, successful inflation scenario. Note that a small

ε will almost immediately confer a small enough r.

1.2.5 Some successful scenarii

Several generations of models have achieved, partially or fully, the general require-

ments of producing a universe which satisfies the data constraints. These include,

as a first motivation, the resolution of the horizon and flatness problem, that is, the

issue of initial conditions. As we have seen, this can be realised with a single scalar

field in a potential, but alternative models suggested several scalar fields or vector

and higher rank fields. In addition, inflation should end and should produce a hot

universe filled with today’s components, mainly matter particles and dark fluids.

Indeed, the energy in the form of the inflaton should be converted into hot particles

in a successful process called reheating.

9Similarly to the scalar spectral index, one has Pt(k) ∝ knt−1 or nt − 1 ≡ d lnPt
d ln k .

10Since the power spectrum is a function of the wavenumber k, one has to fix a scale to use data
constraints, which has been chosen in some analysis to be k0 = 0.002 Mpc−1.
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At first, the steepening of the potential due to the presence of a minimum V = 0

managed an exit and the oscillations of the inflaton led to its decay into other fields.

Note that its incomplete decay could interestingly lead to the inflaton participating

to the dark sector. Still, assuming the universe had to be in thermal equilibrium

at very high temperature previously to the inflationary era did not fully solved

the initial condition problem. Chaotic inflation, on the contrary, considered a field

which did not lay necessarily in the minimum of its potential and thus a universe

out of thermal equilibrium, but rather a random initial state which should lead to

the same post inflation universe. Very often remained the so-called η-problem,11

which was then solved by introducing a second scalar field or a phase transition to

end inflation. A first order phase transition, initially considered [12] for instance

by tunnelling from a false vacuum, generates bubble nucleation of true vacuum

universe, whose coalescence and collision can reheat the universe, but would either

not manage a graceful exit or generate different types of anisotropies. A second

order phase transition with a second scalar field (as in hybrid inflation) avoids the

bubble nucleation and may succeed in conforming with the data. More recently,

supersymmetric or string theory inspired models emerged, suggesting modifications

of General Relativity (GR) in higher energy scales within an effective theory of

gravity [13], and providing many possible scalar fields. On a different note, the shape

of the potential (namely exponential, power-law or any other specific description)

can be used to describe which specific model of inflation is considered.

The interest of an effective theory framework is double. First, one can ignore the

incompleteness of a theory and thus derive valid corrections to the known low energy

theory. This is what is done when quantising GR to obtain quantum corrections,

but also when modifying the Einstein-Hilbert action by hand, adding a priori some

terms. The many possibilities resulting from such modifications may well be invalid

or cause problems at higher energies, this does not affect the pragmatic, effective

reasoning leading to valid corrections at current energies. Indeed, no one really

expects such theories to consistently describe our universe up to the Planck scale, so

the possible phenomenological manifestations of the theory can be used to constrain

it or rule it out. The most well-studied set of such theories, known as f(R) theories

in which the linear Ricci scalar R is replaced in the action by any function f of it,

11The η-problem is due to chaotic inflation requiring large inflaton field values, (way) above the
Planck scale MPl. This can be seen as a large mass term for the inflaton and implies that the
quantum corrections from renormalisation procedures might disrupt the inflation process itself, by
introducing large yet ignored terms in the potential. The slow-roll is spoiled, generating a large
value for the parameter η.
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leads to a plethora of models, more or less constrained [14].

The second use lies in top-down approaches, where one knows a more UV com-

plete theory and builds up a low energy version of it to confront it to phenomenology.

The underlying theory, which may or may not be entirely formalised and well de-

scribed, leads to an action, which can then be expanded in the low energy limit

or simplified using additional assumptions. One can thus exploit this new effective

action to study some observables, regardless of the fact that it does not encompass

the whole theory or all the effects included in it. In this respect, a lot of work is done

these days to derive string theory low energy effective actions, in particle physics.

The point is to predict the future detections at the Large Hadron Collider if such

theory is valid, and in particular the properties of superpartners that could soon be

discovered. Similarly, string-inspired models of modified gravity are studied in order

to explain or predict the cosmological phenomenology, from inflation to DM, as we

will see further on.

One of the first attempts to realise all the features of successful inflation was

Starobinsky’s proposal [15], in which both the graceful exit and the initial condition

issue were satisfactorily addressed, as we will explore in some more details further

on. In addition, the realisation of hybrid models in extended theories, such as Grand

Unified Theories (GUTs), Supersymmetric (SUSY) GUTs and brane inflation, pro-

duce some interesting features and will thus be also addressed here.

Starobinsky inflation

In order to obtain a theoretically motivated source for our scalar field potential, one

may start from a modified Einstein-Hilbert action, treating GR and its extensions

as an effective theory. These so-called f(R)-models, where the Ricci scalar R is

replaced by any function f of R [16], yield

Sf =

ˆ
d4x
√
−g 1

2
M2

Pl f(R) , (1.39)

where g = det(gµν) and f is an arbitrary function of R. One can then perform the

transformation gµν → gE
µν = (1/f ′(R)) gµν , with f ′(R) = df(R)/dR. In this frame, the
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Einstein frame,12 the action reads

SE
f =

ˆ
d4x

√
−gE

(
1

2
M2

Pl R
E − 1

2
gEαβ ∂αχ∂βχ− V (χ)

)
, (1.40)

where the subscript E refers to the Einstein frame and the scalar field13 χ and its

potential V (χ) are defined as

χ =

√
3

2
MPl ln(f ′(R)) (1.41)

V (χ) =
1

2
M2

Pl

Rf ′(R)− f(R)

f ′2(R)
. (1.42)

One thus retrieves an action for the metric and a coupled scalar field, which can

lead to an inflationary phase.

A specific example of such modified gravity induced inflation is called Starobinsky

inflation and follows from adding in the action a higher order term of the Ricci scalar

R, following quantum corrections considerations, yielding

SStaro =

ˆ
d4x
√
−g 1

2
M2

Pl

(
R +

R2

6M2

)
, (1.43)

where M is an additional mass scale. One obtains

χ =

√
3

2
MPl ln

(
1 +

R

3M2

)
(1.44)

V (χ) =
3

4
M2M2

Pl

(
1− e−

√
2
3

χ
MPl

)2

. (1.45)

One can notice that the effective potential is thus flat for large fields χ � MPl,

with value V ∼ 3/4M2M2
Pl, allowing for a long enough inflation era. The number of

e-folds is indeed N ' 3/4 e
√

2
3

χ
MPl ∼ 102 for χ of the order of a few MPl. Similarly, one

can compute the slow-roll parameters, obtaining ε ' 3/4N2 � 1 and η ' −1/N � 1,

thus yielding ns ' 1− 2/N. More accurately, N ' 60 implies χ ' 3.6 MPl and leads

to ns ' 0.967, r ' 0.0033. Starobinsky inflation thus passes all the theoretical and

experimental tests.

12The phenomenology of the two frames, namely the Jordan and the Einstein frames, are identical
since inflation in one frame is inflation in the other and the power spectra would be equivalent [17,
18].

13This χ is a field as long as f is not a linear function of R.
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Note that several models with theoretical motivations lead to a Starobinsky-like

inflation, the most well known of which being the Higgs inflation. In this case,

the inflaton field is played by the Standard Model Higgs doublet and the action

yields the usual “Mexican hat” Higgs potential as well as Higgs kinetic terms and

a coupling term between the Higgs field and the curvature R in the form h2R. The

main issue is that this coupling has to be unexpectedly large to obtain successful

inflation.

Hybrid and brane inflation

As mentioned, another type of inflation emerges from the use of several features

from different independent models, called hybrid inflation. The first attempt [19]

was to bring another scalar field in order to extend chaotic inflation, which remained

unsatisfactory due to its so-called η-problem, as well as solve the issue of the graceful

exit from first order phase transition. Indeed, one scalar field is slow-rolling, deter-

mining the duration of the inflationary era, to reach the bottom of its potential.

This modifies the landscape for the second scalar field, which in turn rolls (most

naturally rapidly) down its new potential. This triggering mechanism allows one

scalar field to be responsible for the energy scale at which inflation takes place and

thus for the expansion rate, while the other is determining the time scales. Said

differently, the dominant contribution to the potential comes from a field, which is

not slow-rolling but whose dynamics is set up by its interaction with the slow-rolling

field.

Keeping Einstein’s General Relativity as the background, one thus introduces

two scalar fields, here denoted as ϕ and σ, and the potential

V (σ, ϕ) =
1

4λ

(
M2 − λσ2

)2
+

1

2
m2 ϕ2 +

1

2
g2 ϕ2σ2 (1.46)

where one might want to consider σ as the (Standard Model) Higgs field. In the

rest of this section, we will thus call σ the Higgs while ϕ will be called the inflaton.

Interestingly, the effective mass of the Higgs is given here by (−M2 + g2ϕ2) while

the quartic term 1/4 λσ4 keeps the field from rolling to infinite values. The symmetry

is intact if ϕ > ϕc = M/g as the only minima for the Higgs field is attained for σ = 0

(effective positive mass squared). Alternatively, if ϕ < ϕc = M/g, the potential

exhibits its well known ‘Mexican hat’ shape, the symmetry is broken and the Higgs

field lies in its symmetry breaking minimum at σ =
√

1/λ (M2 − g2ϕ2) > 0.
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Dynamically, in the symmetric case (ϕ > ϕc), because the acceleration of the

Higgs is much greater than the inflaton’s (due to the quartic term), the Higgs will

quickly roll down to its minimum while the inflaton could remain large for a longer

time. Under the assumption that 1/2 m2ϕ2 � 1/4λ M4 (at least for ϕ . ϕc), the

evolution of the fields in the intact symmetry potential is driven by the vacuum

energy density term 1/4λ M4 rather than by the inflaton field (at least at the end

of this phase, some time before the phase transition). Friedmann equation and the

slow-roll assumptions (especially the form of ρ) imply that the Hubble parameter is

given by

H2 ' V

3M2
Pl

' M4

12λM2
Pl

(1.47)

and the universe in the symmetric phase exhibits an inflationary era (as in quadratic

chaotic inflation).

Once the inflaton reaches its critical value ϕc, a phase transition occurs since

the Higgs now has a negative mass term and should thus roll from σ = 0 to its new

minimum. The equation of motion for the inflaton, given by Eq. (1.30c), allows to

compute how ϕ varies from ϕc during one e-folding H−1 and thus the effective mass

of the Higgs. The latter thus rolls rapidly towards its minimum while the effective

potential for the inflaton is now becoming steep, allowing ϕ to rapidly roll down its

potential in a time small compared to an e-folding, under additional assumptions

such as M � 12m and
√
λ ∼ g. Inflation thus ends very quickly after the inflaton

field reaches its critical value.

Interestingly, so-called brane inflation is very similar to hybrid inflation but gives

a theoretical motivation for it. Indeed, string theory usually produces plenty of scalar

fields called moduli fields from geometrical considerations on the extra dimensions,

whether compactified or extended. These can play the role of the needed fields for

inflation, which would acquire a theoretical backing as well as providing some knowl-

edge on their evolution. One specific case of interest is realised by a brane-brane

system, that are (usually) 3 + 1 dimension objects evolving in a larger dimension

universe referred to as the bulk. The interactions lead to a potential parametrised

by the distance, in the extra dimension, between the branes, which plays the role of

the slow-rolling inflaton field. Inflation ends with the collision of the branes, whose

energy is then released and reheats the universe.

As we will see in more details in the following chapter, an interesting feature

of these sceanarii lies in the production of extended one-dimensional topological

defects called cosmic strings, whose cosmological consequences have been limited by
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the observation of adiabatic anisotropies but whose astrophysical phenomenology

exhibits several promising features.

1.3 Gravitational waves

Although some additional ingredients are needed to hold together all data on our

universe, General Relativity (GR) remains, so far, the backbone of cosmology. It

has been tested on local (Earth and Solar system) scales and in the weak limit

up to high accuracy, as well as less precisely on the high velocities and stronger

curvature limits, though not together. Still, one of the main predictions of GR

which remained without any direct evidence until very recently is Gravitational

Waves (GW). Fortunately, even before the extraordinary September, 14th 2015 and

December, 26th 2015 direct detections [4], compact binaries inspirals and period

shortening accounted for indirect proof of their existence, in particular since the

discovery and measurements of PSR 1913+16 by Hulse and Taylor14 from 1974

onwards [20]. In the decades to come, GW observations may provide remarkable

new insights of our universe.

1.3.1 The weak-field approximation

Recall [21, Chapter 10] the Einstein-Hilbert action yields the Einstein equations

Gµν = 8πGTµν (1.48)

where the gravitational constant 8πG has been reintroduced, and the Einstein tensor

and the stress energy tensor are defined as

Gµν ≡ Rµν −
1

2
gµνR (1.49a)

Tµν ≡ −2
1√
−g

δSm
δgµν

(1.49b)

with Sm the action describing matter.

Let us consider a perturbed metric gµν = ηµν + hµν with ηµν the flat metric and

14They received the Nobel Prize in 1993 for their discovery.
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|hµν | � 1 the perturbation of this flat metric. To first order in h, one thus has

Γλµν '
1

2
ηλα (∂µhαν + ∂νhαµ − ∂αhµν) (1.50a)

Rµν ' ∂αΓαµν − ∂νΓααµ

' 1

2

(
∂α∂µh

α
ν + ∂α∂νh

α
µ − ∂α∂αhµν − ∂µ∂νhαα

)
(1.50b)

R ' ∂α∂βh
αβ − ∂α∂αhββ (1.50c)

since the terms in ΓΓ would yield subleading terms, of order h2. Recall also that

for consistent expansions to first order in h, one has to raise and lower indices using

the zeroth order metric ηµν .

Now as in the electromagnetic case, one has some gauge freedom which needs to

be fixed. Considering the coordinate transformation

xµ → x′µ = xµ + ξµ(x) (1.51)

where ∂µξν = O(hµν) is the only restriction, the perturbation of the metric is trans-

formed following

h′µν = hµν − ∂µξν − ∂νξµ . (1.52)

To fix this gauge freedom, let us choose the harmonic gauge

gµνΓλµν = 0 (1.53a)

leading to

∂µh
µ
ν =

1

2
∂νh

µ
µ . (1.53b)

It is important to note here that if hµν does not satisfy Eq. (1.53b), one can consider

the coordinate transformation with ξν such that ∂α∂
αξν = ∂µh

µ
ν − 1

2
∂νh

µ
µ, which

leads to a field h′µν satisfying the gauge constraint. One can safely consider from

now on that the field hµν satisfies Eq. (1.53b). It yields

Rµν = −1

2
∂α∂

αhµν (1.54a)

R = −1

2
∂α∂

αhββ (1.54b)
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and hence to the field equation

∂α∂
αhµν −

1

2
ηµν∂α∂

αhββ = −16πGTµν . (1.55a)

Equivalently, one can work with a traceless field, constraining hββ = 0. Then,

the harmonic gauge is equivalent to the temporal gauge ∂µh
µ
ν = 0. It leads to R = 0

and to the field equation

∂α∂
αhµν = −16πGTµν , (1.55b)

which is a wave equation sourced by Tµν . One important solution is given by the

retarded potential

hµν(x, t) = 4G

ˆ
d3x̃

|x− x̃|
Tµν(x̃, t− |x− x̃|) . (1.56)

1.3.2 Polarisation modes

Let us first study the unsourced solutions, solutions of the equation

∂α∂
αhµν = 0 , (1.57)

interpreted as the plane waves coming in from infinity. They have the general form

hµν(x
α) = eµν e

ikαxα + e∗µν e
−ikαxα (1.58)

where eµν is the symmetric polarisation tensor and kµ is the wave vector. They must

satisfy

kµk
µ = 0 (1.59a)

kµe
µ
ν = 0 (1.59b)

for hµν to satisfy both the wave equation and the gauge constraint. Even with this

constraint, there is still some gauge freedom. Indeed, let us consider a coordinate

transformation with

ξµ(xα) = iξµ e
ikαxα − iξ∗µ e−ikαx

α

. (1.60a)

29



CHAPTER 1. COSMOLOGY 1.3. Gravitational waves

This leads to a change of the perturbation field hµν and the polarisation tensor eµν

as in

h′µν(x
α) = e′µν e

ikαxα + e′∗µν e
−ikαxα (1.60b)

e′µν = eµν + kµξν + kνξµ (1.60c)

with the gauge constraint still satisfied since kµe′µν = kµeµν + kµkµξν + kµkνξµ = 0

(with the first term being null due to the gauge constraint, the second one due to

the wave equation and the third one due to e′µν remaining traceless15).

One thus has different polarisation tensors, that is, different fields hµν , repre-

senting the same physical situation whatever the value taken by the field ξµ. Of the

10− 4 = 6 degrees of freedom left so far by the symmetry and gauge constraints, 4

are again to be removed due to this remaining gauge freedom. This leads to only 2

physical degrees of freedom.

To illustrate this, let us consider a wave travelling along the z-axis with a wave

vector

kµ =


k

0

0

k

 (1.61)

which immediately satisfies Eq. (1.59a). Equation (1.59b) yields

e00 + e30 = e10 + e13 = e20 + e23 = e30 + e33 = 0 (1.62a)

leading to only six independent degrees of freedom, chosen to be

e00, e10, e20, e11, e12, e22 (1.62b)

while the four redundant components are given by e33 = −e30 = e00, e13 = −e10,

e23 = −e20. In addition, using the coordinate transformation mentioned in Eq. (1.60a)

gives

e′00 = e00 − 2k ξ0 e′01 = e01 − k ξ1 e′02 = e02 − k ξ2 (1.62c)

e′11 = e11 e′12 = e12 e′22 = e22 (1.62d)

15Indeed, eµµ = 0 and e′µµ = eµµ+ 2kµξµ, leading to kµξµ = 0 if one still requires a traceless field
hµν .
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where e′µν and eµν should describe the same physical situation. This means that

only e11, e12 and e22 have a physical relevance. In other words, one can fix ξµ to

cancel out all the e′0µ components, leaving only three non-null components.

Finally, recalling we choose hµν traceless, one has e11 = −e22, yielding two phys-

ically significant components, here e11 and e12. They are the two polarisation modes

of gravitational waves. One has just

eµν =


0 0 0 0

0 e11 e12 0

0 e12 −e11 0

0 0 0 0

 . (1.63)

To characterise these two modes in more detail, let us perform a rotation about

the propagation direction. This leads to

e′µν = R α
µ R

β
ν eαβ (1.64a)

with R ν
µ =


1 0 0 0

0 cos θ sin θ 0

0 −sin θ cos θ 0

0 0 0 1

 (1.64b)

Considering only the significant components of eµν , this rotation yields{
e′11 = cos 2θ e11 + sin 2θ e12

e′12 = cos 2θ e12 − sin 2θ e11

(1.64c)

or

{
e′+ = e+2iθ e+ where e+ = e11 − ie12

e′− = e−2iθ e− where e− = e11 + ie12

(1.64d)

which means that one has two polarisation modes e+ and e−, of helicity ±2.

The energy carried away by these waves can be computed using Einstein field

equation Eq. (1.48), which we expand with respect to h up to order 2, yielding

T hµν '
1

8πG

(
1

2
ηµν h

αβR
(1)
αβ +R(2)

µν

)
(1.65a)

where again R ≡ ηµνRµν = 0 (to all orders in h) and where R
(i)
µν denotes the ith

order term in the expansion of Rµν with respect to h. The first order equation is

already satisfied by the full metric gµν = ηµν + hµν (leading to the gravitational
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waves), leaving only

T hµν '
1

8πG
R(2)
µν (1.65b)

In order to compute R
(2)
µν in its simplest form, the easiest is to average it over a

spacetime volume of typical dimension large compared to the wavelength, or simi-

larly to k−1, removing all terms proportional to e±2ikµxµ . In addition, one can use

the gauge constraints without any loss of generality,16 yielding the simple form

〈〈R(2)
µν 〉〉 =

1

2
kµkν e

∗
αβe

αβ (1.66)

and leading to

〈〈T hµν〉〉 =
1

16πG
kµkν e

∗
αβe

αβ . (1.67)

Performing again the coordinate transformation given in Eq. (1.60a), one obtains

e′∗αβe
′αβ = e∗αβe

αβ + 2|kαξα|2 (1.68)

describing again the same physical system and thus the same stress-energy tensor

〈〈T hµν〉〉. This confirms that the energy and momentum of the gravitational waves are

also determined by only two polarisation modes. One thus finally obtains the stress

energy tensor of a gravitational wave with wave vector kµ

〈〈T hµν〉〉 =
1

16πG
kµkν

(
|e+|2 + |e−|2

)
. (1.69)

1.3.3 Generation of gravitational waves

Let us now compute the energy emitted in gravitational waves from a system whose

energy-momentum tensor is known and can be decomposed in one Fourier compo-

nent, in a sum of Fourier components or in a continuum of Fourier components (and

16Indeed, if one performs a coordinate transformation which would give a field configuration not

satisfying the gauge constraint, the additional terms would actually cancel out in 〈〈R(2)
µν 〉〉, leading

to an unaltered 〈〈Thµν〉〉.
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thus expressed as a Fourier integral)

Tµν(x, t) = Tµν(x, ω) e−iωt + c.c. (1.70a)

=
∑
ω

Tµν(x, ω) e−iωt + c.c. (1.70b)

=

ˆ ∞
0

dω Tµν(x, ω) e−iωt + c.c. (1.70c)

where c.c. represents the complex conjugate. In the first case (only one Fourier

mode), the retarded potential takes the form

hµν(x, t) = 4G

ˆ
d3x̃

|x− x̃|
Tµν(x̃, ω) e−iω(t−|x−x̃|) + c.c. (1.71)

Let us now consider that the observer sits in the wave-zone, which is defined by

a distance to the source |x| large compared to the typical size of the source R, to the

(reduced) wavelength17 of the gravitational wave 1
ω

= T
2π

and to the mass angular

momentum18 ωR2. One can thus perform the following approximation

|x− x̃| ' |x| − x · x̃
|x|

(1.72)

which, up to first order, yields

hµν(x, t) = 4G

ˆ
d3x̃

|x|
Tµν(x̃, ω) e−iω(t−|x|+x·x̃

|x| ) + c.c. (1.73a)

= 4G
eiω(|x|−t)

|x|

ˆ
d3x̃ Tµν(x̃, ω) e−iω(x·x̃

|x| ) + c.c. (1.73b)

= eµν(x, ω) eikαx
α

+ c.c. (1.73c)

where we used the fact that |x| � 1
ω

to recognise the form of a plane wave, with a

wave vector

k0 = ω , k ≡ ωn̂ = ω
x

|x|
(1.74a)

17Here it is rather the (reduced) period, but since c = 1, these are equal.
18This simply relates to the typical angular velocity of the system being smaller than c = 1.

Indeed, we already have |x| � R, so assuming |x| � ωR2 is equivalent to assuming ωR < 1.
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and a polarisation tensor

eµν(x, ω) ≡ 4G

|x|

ˆ
d3x̃ Tµν(x̃, ω) e−ik·x̃ (1.74b)

≡ 4G

|x|
Tµν(k, ω) . (1.74c)

Note that since the stress-energy tensor Tµν satisfies a conservation equation

∂µT
µ
ν(x

α) = 0 ⇔ kµT
µ
ν(k

α) = 0 , (1.75)

the polarisation tensor defined above in Eq. (1.74b) satisfies the gauge constraint

Eq. (1.59b).

In order to compute the emitted power in the form of gravitational waves per

unit solid angle around the direction n̂, we can use the spacetime averaged value of

the energy flux vector in gravitational waves 〈〈T hi0〉〉, thus obtaining

dP

dΩ
= |x|2 n̂i〈〈T h i0〉〉 . (1.76a)

This stress-energy tensor of gravitational waves can be expressed, using Eq. (1.67),

in terms of the wave vector and polarisation tensor of the gravitational waves them-

selves, which in turn we can express in terms of the stress-energy tensor of the

system generating the gravitational waves, following Eqs. (1.74). This yields

dP

dΩ
=
|x|2

16πG
n̂i k

ik0 e∗αβe
αβ (1.76b)

=
Gω2

π
T ∗αβ(k, ω)Tαβ(k, ω) . (1.76c)

where the power emitted is expressed directly in terms of the stress-energy tensor

of the source of gravitational waves.

In the more general case, that is, when the emitting system’s stress-energy tensor

is made up of a sum of Fourier components, one has to consider the most stringent,

restrictive definition of the wave zone. This implies for instance that the longest

period has to be considered when assuming |x| � 1
ω

. In addition, the perturbation

field hµν will be a sum of plane waves, each with its own frequency. Consequently,

the power emitted is a double sum over the pulsation ω, but due to the average over

large spacetime volumes — large compared to the longest period — only the square

terms remain while the cross terms vanish. One obtains a sum, for each ω, of terms
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such as in Eq. (1.76c).

Similarly, in the case where the stress-energy tensor of the emitting system is

a Fourier integral, the perturbation field hµν is an integral over ω of a continuum

of plane waves while the power emitted in gravitational waves is a double integral

over, say, ω and ω′. Given that the definition of the wave zone becomes slightly more

difficult, due to ω running from 0 to ∞, let us compute the total energy emitted by

integrating over time. One has a term in

ˆ ∞
−∞

dt e−iωteiω
′t (1.77a)

which is exactly the Dirac delta function; it is thus replaced by

2π δ(ω − ω′) . (1.77b)

We obtain
dE

dΩ
= 2G

ˆ ∞
0

dω ω2 T ∗αβ(k, ω)Tαβ(k, ω) . (1.78)

Before going further, one might want to rewrite T ∗αβ(kµ)Tαβ(kµ) using only the

spatial components of the stress-energy tensor. One would need relations between

its various components, such as in the momentum space version of Eq. (1.75) which

yields

T0i = −k̂j Tji (1.79a)

T00 = k̂ik̂j Tji (1.79b)

where k̂ ≡ 1/ω k is the normalised wave vector. One obtains

T ∗αβ(k, ω)Tαβ(k, ω) = Λijlm(k̂) T ij∗(k, ω)T lm(k, ω) (1.80a)

with Λijlm(k̂) = k̂ik̂j k̂lk̂m + δijδlm − 2k̂j k̂mδil (1.80b)

which can then be used in Eq. (1.76c) and (1.78), and in what follows.

1.3.4 Quadrupole moment

Let us now use another approximation, namely that the angular velocities (so far

only assumed to be physical, that is, ωR < 1) are small ωR � 1. This is equiva-

lent to assuming that the typical radius of the source R is small compared to the
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wavelength of the gravity waves 1
ω

.

This approximation allows us to simplify the Fourier transform of the stress-

energy tensor Tµν(k, ω), defined in Eq. (1.74c), by a k-independent integral, yielding

Tµν(k, ω) ≡
ˆ

d3x̃ Tµν(x̃, ω) e−ik·x̃ '
ˆ

d3x̃ Tµν(x̃, ω) , (1.81)

since k · x̃ . ωR � 1. The Fourier transform of the conservation law given in

Eq. (1.79b) is

∂i∂jT
ij(x, ω) = −ω2T 00(x, ω) . (1.82)

Recall the quadrupole moment is defined by

Dij(ω) ≡
ˆ

d3x xixj T 00(x, ω) (1.83a)

Dij(t) ≡
ˆ

d3x xixj T 00(x, t) =

ˆ ∞
0

dωDij(ω) e−iωt + c.c. (1.83b)

After multiplying the conservation law by xixj, integrating over space and using

the approximation given in Eq. (1.81), one obtains the following spatial part of the

stress energy tensor

Tij(k, ω) ' −ω
2

2
Dij(ω) . (1.84)

This is very useful since the quadrupole moment of a system is quite simple to

evaluate as it depends only on the energy density of the system (not on the flux or

strain) and on the frequency mode ω (not on the wave vector).

The power per solid angle emitted for a single frequency is thus given by

dP

dΩ
=
Gω6

4π
Λijlm(k̂) D∗ij(ω)Dlm(ω) (1.85a)

which can be integrated over solid angle since the quadrupole moment is direc-

tion independent. Using spatial symmetries, one obtains the power emitted for a

monochromatic source

P =
2Gω6

5

(
D∗ij(ω)Dij(ω)− 1

3
|Dii(ω)|2

)
. (1.85b)

For a source which is a sum of discrete Fourier components, these are summed over

all the discrete modes to obtain the full power radiated. Similarly, for a source which
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is a Fourier integral, the energy emitted per solid angle is given by

dE

dΩ
=
G

2
Λijlm(k̂)

ˆ ∞
0

dω ω6D∗ij(ω)Dlm(ω) . (1.86a)

which can in turn be integrated over solid angle to yield

E =
4πG

5

ˆ ∞
0

dω ω6

(
D∗ij(ω)Dij(ω)− 1

3
|Dii(ω)|2

)
. (1.86b)

Note that even though we can choose hµν to be traceless, which leads to Tµν

traceless as well, we cannot say anything about Tii nor Dii. One should then be

careful when using the formulae above as they might be sensitive to specific choices.

1.4 Gravitational lensing

One might also want to look at lensing, which provides information about DM,

inhomogeneities of the universe and gravity itself.

Gravity, by deflecting trajectories or by bending spacetime, allows lensing effects

by massive objects. Even Newton’s law of gravity can explain the deviation of a

photon, allowing its mass to be infinitely small but not null. Indeed, the equivalence

principle, which states that the inertial mass and the gravitational mass are the

same, holds in both Newton’s and Einstein’s laws. It implies that the trajectory of

a test particle within the gravitational potential of a massive object does not depend

on this test particle’s mass, with the caveat that this mass should not be zero in

Newton’s formulation. Still, the two theories differ here on the angle of deflection

caused by a static mass, as we will quickly explain below to review the physical

processes at stake.

1.4.1 According to Newton

Recall Newton’s law of gravity

FG = −G Mm

r3
r (1.87)

where FG is Newton’s gravitational force, G is (Newton’s) gravitational constant,

being here reintroduced, M and m are the masses of the static (heavy) object and

of the test particle travelling in the former’s gravitational potential, r is the radial
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distance and r the radial centrifugal vector between the centres of mass. Associated

with the Newton’s second law of motion, which states

Σ Fext = ma , (1.88)

one obtains the acceleration of the test particle

a = −G M

r3
r (1.89)

which, again, does not depend on its own mass and is thus valid in the limit of an

almost massless photon. In spherical coordinates (r, θ, φ)19 and assuming — with

no loss of generality — that φ = π/2, the kinematics give

a = (r̈ − rθ̇2) ur + (rθ̈ + 2ṙθ̇) uθ (1.90a)

where the dot is a shorthand for derivation with respect to time and (ur,uθ,uφ)

is the direct orthonormal basis associated with the spherical coordinates (r, θ, φ).

These yield

rθ̈ + 2ṙθ̇ = 0 ⇔ d

dt

(
r2θ̇
)

= 0 (1.90b)

r̈ − rθ̇2 = −G M

r2
(1.90c)

The first equation implies that r2θ̇, the angular momentum, is a constant. Its

value can be determined at the closest approach to the heavy mass, denoted by r0,

recalling that ṙ = 0 at this point, meaning that the velocity is simply rθ̇. Assuming

that the velocity at the closest approach is equal to c (and neglecting all relativistic

considerations for now), one has L = r2θ̇ = r0c.

For the second equation, performing the change of coordinates u = 1/r gives

θ̇ = Lu2 and r̈ = −L2 u2 d2u
dθ2 .20 Hence the second of the above equations, Eq. (1.90c)

19Spherical coordinates with r the radial distance, θ the azimuthal angle and φ the polar angle.
20Using d2u

dθ2 = ü
θ̇2
− u̇θ̈

θ̇3
, u̇ = − ṙ

r2 and ü = − r̈
r2 + 2ṙ2

r3 , and L̇ = 2ṙrθ̇ + r2θ̈ = 0, one has

−L2u2 d2u
dθ2 = −r2θ̇2

(
ü
θ̇2
− u̇θ̈

θ̇3

)
= −r2

(
−r̈
r2 + 2ṙ2

r3 −
(−ṙ
r2

)
θ̈
θ̇

)
= r̈ − ṙ

L
dL
dt = r̈.
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yields

d2u

dθ2
+ u =

GM

(r0c)2
(1.91a)

⇒ u(θ) =

(
1

r0

− GM

(r0c)2

)
cos θ +

GM

(r0c)2
(1.91b)

where the cosinus prefactor has been determined using again the closest approach

since at this point u = 1/r0 and θ = 0. The resulting trajectory, given by

r(θ) =
(r0c)

2

GM

1

1 +
(
r0c2

GM
− 1
)

cos θ
, (1.92)

is, as anticipated, a conic section which in most cases turns out to be a hyperbola.

Note that parabolic and elliptic path can be obtained if the eccentricity, here equal

to r0c2

GM
− 1, becomes respectively equal to or smaller than 1, that is, for very large

mass M .

The deflection angle ∆θ is thus given by the difference of direction of the two

infinite limits of this hyperbolic path, up to π the angle obtained in case of no

deviation. Denoting by θ± the angles such that

lim
θ→θ±

r(θ) = ±∞ (1.93a)

⇒ θ± = ± arccos

(
1

1− r0c2

GM

)
' ±

(
π

2
+
GM

r0c2
+ ...

)
(1.93b)

This gives the (Newtonian first order approximation of the) total deflection angle

∆θ = (θ+ − θ−)− π ' 2GM

r0c2
. (1.94)

1.4.2 Following Einstein’s law

In Einstein’s description of gravity in which deflection is due to the deformation

of spacetime around the massive static object, the formalism is quite different and

one should consider the Schwarzschild metric. Note that here, an exactly massless

test particle behaves identically as an approximately massless one, such as the one

used in Newton’s description, and no discontinuity in the deflection angle occurs at

m = 0. Here too we will assume — without loss of generality — that φ = π/2. The
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metric is thus given by

ds2 = gµνdx
µdxν = −

(
1− 2GM

rc2

)
c2 dt2 +

(
1− 2GM

rc2

)−1

dr2 + r2 dθ2 (1.95)

yielding the null geodesic equation describing the path of a massless particle

0 = −
(

1− 2GM

rc2

)
c2 ṫ2 +

(
1− 2GM

rc2

)−1

ṙ2 + r2 θ̇2 (1.96)

where the dot is a shorthand for derivation with respect to the affine parameter of

the trajectory τ .

The conserved quantities that are energy and angular momentum, respectively

associated with the coordinates t and θ (and with the respective Killing vectors),

can be expressed as

E =

(
1− 2GM

rc2

)
c2ṫ (1.97a)

L = r2θ̇ . (1.97b)

Rewriting the geodesic equation using these quantities, one obtains

ṙ2

θ̇2
=
E2r4

c2L2
−
(

1− 2GM

rc2

)
r2 (1.98a)

⇒ dθ =

[
E2r4

c2L2
−
(

1− 2GM

rc2

)
r2

]−1/2

dr . (1.98b)

In order to obtain the deflection angle by integrating this out, one needs to

evaluate the ratio (L/E)2. First, one can use their definition, yielding

L2

E2
=

r4(
1− 2GM

rc2

)2

θ̇2

c4ṫ2
. (1.99a)

Using again the point of closest approach r0, for which ṙ = 0, and the geodesic

equation, which in such case states

0 = −
(

1− 2GM

r0c2

)
c2 ṫ2 + r2

0 θ̇
2 , (1.99b)
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one gets
L2

E2
=

r2
0(

1− 2GM
r0c2

)
c2
. (1.99c)

This can be introduced in Eq. (1.98b), which can also be rewritten using the

parity of the path with respect to r (the path from r → −∞ to r = r0 is the

symmetric as the path from r = r0 to r → +∞) and a change of variable u = r0/r,

yielding

∆θ + π = 2

ˆ 1

0

[(
1− 2GM

r0c2

)
− u2

(
1− 2GM

r0c2
u

)]−1/2

du . (1.100)

One can first integrate the limit for M → 0, which yields ∆θ = 2 arcsin(1)− π = 0

as expected; indeed, this is the deflection angle around a massless point, that is, in

flat spacetime. For a massive central object, one can expand the integrand for small

mass, that is, considering 2GM
r0c2
� 1. It yields

∆θ + π ' 2

ˆ 1

0

[
1√

1− u2
+
GM

r0c2

1− u3

(1− u2)
3/2

+O
(
G2M2

r2
0c

4

)]−1/2

du (1.101)

' 2

(
π

2
+

2GM

r0c2

)
(1.102)

⇒ ∆θ ' 4GM

r0c2
. (1.103)

The General Relativistic (first order approximation of the) deflection angle is thus

twice that from Newtonian’s law.

Note that it is again only depending on the ratio of the Schwarzschild radius of

the massive object 2GM
c2

by the closest approach distance r0, which is at least equal

to the size of the object. Following Newton’s law, the assumption that this ratio

would be small compared to 1 was de facto holding as otherwise General Relativistic

corrections would be needed. In the GR case, one could argue that this ratio could

approach 1 as the lensing object could a priori be anything and as r0 tend to be

close to the physical size of the object. In practice, this is not an issue since the

lenses are often clusters or galaxies which, even if they could host a black hole or

a very compact region in their centre, are surrounding this central densest region

with dust and gas, which prevent photons from reaching us unaltered.
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1.4.3 Another Dark Matter motivation

This deflection from a straight line was first verified, with some controversy on the

accuracy of the measurement, in 1919 during a Solar eclipse and subsequently in

multiple occasions with greater and greater accuracy. It is a very often used tool

to measure the mass of lensing objects which alter the position, the shape and the

number of images we receive from more distant objects, often galaxies or clusters.

It is also more recently used in microlensing, that is, the use of weaker deformations

of spacetime by lighter objects to detect and study them, which can be exoplanets,

dwarf stars, neutron stars or black holes for instance. Finally, current more extensive

surveys use lensing to measure, for different redshifts, the amount of massive cold

matter in space, providing maps of the universe that surrounds us.

Lensing is also a very useful tool regarding some still ongoing controversies on DM

and modified gravity models. Indeed, the measure of the rotation velocity of stars in

galaxies showed a discrepancy with what one would expect considering the amount

of visible matter (mainly stars but also hot gas) and the gravitational field it exerts.

The suggestion, first made by Fritz Zwicky in 1933 and then a lot more accurately by

Vera Rubin and Kent Ford from the 1960s, that some missing, invisible but massive

matter would generate the observed acceleration lasted, in different forms, over the

years. As in the search for an explanation of the irregular trajectory of Mercury,21

alternatives, such as MOdified Newtonian Dynamics (MOND), suggested that the

laws of dynamics and gravity have to be modified, at least on these scales. Studies

on larger scales, such as galaxy clusters, proved the presence of additional matter to

be able to explain at once these different phenomena, while lensing analyses helped

to measure with greater accuracy the gravitational presence.

The best example in this battle on DM and on the power of lensing is the Bullet

Cluster, a cluster of galaxies formed by the collision of two smaller ones. Indeed, this

kind of objects can be observed in three independent ways: the internal dynamics of

galaxies shows, using the Virial theorem,22 how much mass is gravitationally bound;

X-ray emissions by hot gas informs about the temperature and thus the pressure,

21At the end of the first half of the 19th century, both Uranus and Mercury had unaccounted
trajectories. In 1846, Urbain Le Verrier calculated the deviations of Uranus’ path and deduced
the position of Neptun, so far unknown, thus allowing its immediate discovery. He also thought
some missing matter, some missing mass was perturbing Mercury and looked for it for decades,
unsuccessfully. Indeed, the explanation was to be given by Albert Einstein who modified Newton’s
law of gravity with relativistic corrections, thus avoiding the need of a hidden mass.

22The Virial theorem states that, for a stable mechanical system made of many identical objects
interacting via conservative forces, the (average of the) kinetic energy is related to the (average of
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which, by balancing gravitational collapse, yields information about the mass there;

gravitational lensing studies on different scales allow to measure again the mass

profile, but assuming no prior knowledge on the dynamics. Interestingly, the Bullet

Cluster, because of its collision history, seems to exhibit a case where DM and

galaxies on one side, and baryonic matter in gas clouds on the other, split, due to the

almost non-self-interacting nature of the former and to the efficient electromagnetic

interactions in the latter. The (strong) lensing found two gravitational wells centred

around the galaxies, even though most of the visible matter lies in the gas, supporting

the presence of DM surrounding the galaxies. In addition, weak lensing analysis on

the substructure of the cluster proved that the DM lies on the outskirts of the cluster,

while the hot gas has been measured, using X-ray observations, to be in its centre.

What is currently known is that, if it exists, this DM has to be non-baryonic (i.e.

unknown), cold (non-relativistic), electrically neutral and colour neutral, heavy and

stable over cosmological timescales. As mentioned already, CMB precise measure-

ments as well as many additional data (from sky surveys and structure formation

analyses) not only confirm the need and the presence of DM, but also converge on

the proportions with respect to baryonic matter. Finally, many models beyond the

Standard Model provide promising candidates for DM particles, though so far with

no robust experimental evidence. Yet, since there is not always an independent way

to measure with similar accuracy the mass of the lens, alternatives to GR are still

reasonable explanations to soften, if not solve, these tensions between observations

and theories. Therefore, a vast amount of work is still being done on lensing in order

to provide more hints on the DM scenario or on alternatives and extensions to GR,

some of which are studied in what follows.

1.5 Extending General Relativity

General Relativity (GR) and the Standard Model provide a very solid background,

extremely well theoretically studied and phenomenologically tested. Still, our ex-

periences tell us that they cannot be unified as they are not complete from a high

the) potential energy. In the case of gravitational binding, one has

〈〈EK〉〉 = −1/2 〈〈EP〉〉 .

This theorem mainly allows, in systems where the potential energy cannot be evaluated accurately,
to use the knowledge of the kinetic energy, from temperature or dynamical considerations, to
determine some of the binding forces parameters, such as the gravitational mass.
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energy point of view. What is currently known about these two theories leads to

incompatibilities and unanswered questions in cosmology. These include the ini-

tial conditions problems (inflationary scenarii can displace or reduce this issue but

this is an extension), the baryon-antibaryon asymmetry, the cosmological constant

problem and the dark sector issues, and the details of the formation of large scale

structures in the universe.

Over the past centuries, there have been many attempts, successful or not, to

broaden the scope of theories, to extend them, to unify them, to gather all nat-

ural phenomena within one unique framework. As a result, many extensions of

GR have been studied in the last hundred years, the first of which being the five-

dimensional attempt to reconcile Maxwell’s electromagnetism with Einstein’s the-

ory. Similarly, the Standard Model arises from multiple unifications but plenty of

extensions have been suggested and studied, such as supersymmetry, which relates

bosonic and fermionic degrees of freedom, or additional dimensions as in string the-

ories. Today two main sets of theories remain as possibilities for a UV completion

of the laws of nature.

Unifications, these simplification processes in which a priori distinct phenom-

ena are found to be linked, are built up by finding a common cause or by reducing

the number of elementary bricks. Examples of the first mechanism include New-

ton’s understanding of falling bodies and celestial mechanics using one same law,

or Maxwell’s description of all magnetic and electric phenomena under one set of

rules. This idea used to try to unify the quantum and the relativistic worlds via the

quantisation of gravitational degrees of freedom led to23 loop quantum gravity and

sister theories such as the recent group field theory. However, we will focus here on

the alternative, namely string theories.

Indeed, looking for the second kind of unifications, namely the decrease in the

number of elementary ‘atoms’ (that are, literally, unbreakable, undividable), one

could go back as far as Aristotle’s attempt to use the well known four elements or

to the later preeminence of atomic theory, which led to Mendeleev’s periodic table

populated by about 60 different elements. More recently, the further developments

in the 20th century induced several breaking points of important reduction of the

number of fundamental building blocks: the introduction of the electron, proton and

neutron after the finding of many more chemical elements, then again the uncovering

of the quarks following the discovery of numerous hadrons, finally resulting in the

23Because a naive quantum version of GR suffers non-renormalisability, one needs to develop a
whole new theory in which this issue is addressed or a non-perturbative approach to quantum GR.
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whole Standard Model. Today’s elementary particle zoo was completed in the 2012

unearthing of the Higgs boson at the Large Hadron Collider, but many models

predict an increase to come. Interestingly, sometimes the unification process leads to

more fundamental elements to gather several phenomena under the same framework.

Indeed, the identification of symmetries at high energy and the explanation for their

low energy split come with the existence of additional particles, such as gauge bosons

in the electroweak symmetry and symmetry breaking. In the same way, additional

symmetries introduced in recent models might imply a larger number of elementary

particles, as in supersymmetry, where at least twice as many are needed.

Simultaneously, the 1960s have seen the development of string theory — or

should we say theories — in which all particles are the manifestation of a single

one-dimensional object, reducing the number of elementary brick for nature to a

symbolic 1 [22]. Since then, many issues and ideas came to lower and higher ex-

pectancies from this theory, which is now understood as M-theory, a 10 + 1 dimen-

sional theory populated by many objects (open and closed strings, branes of various

dimension...) and whose low energy 9 + 1 dimensional versions constitutes the five

known superstring24 theories. Depending on how one would lower the energy and

the dimension by 1, one obtains different theories populated by different entities,

providing a profusion of related models, which are all studied in various ways.

The specific features to justify our choices will not be covered in detail as this

alone would require many chapters. Still, here we will focus on some peculiar man-

ifestation of string theory where our 3 + 1 universe is confined on a brane, which

evolves within a (3+d)+1 dimensional bulk. First, our brane world cosmology leads

to brane inflation and thus to a network of cosmic strings, providing with specific

phenomenology, as in Chapter 2. In the second choice, the bulk is populated with

point-like particles interacting with our brane universe as will be studied afterwards,

in Chapter 3. In any case, Standard Model fields are open strings modes attached to

the brane and thus confined to it, while the graviton is a closed string propagating

in the whole bulk.

Finally, we will remind here that GR can be expressed, as any other theory,

in the language of effective field theories. This implies that the theory is known

to be incorrect at high energies (not UV complete) but follows known laws at low

energies (namely Einstein’s field equations) and some known corrections as energy

increases. As shown in Section 1.2.5, Starobinsky inflation is a typical example of

24Indeed, supersymmetry has been a key element in the development and survival of string
theories.
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such framework where low curvature leads to the usual Einstein-Hilbert action and

thus to GR, while larger curvatures produce correction terms which are yielding an

inflationary era. Similarly, string theories often give a UV motivation for additional

correction terms but until now the specifics are not fully known, which motivates

an effective theory approach.

46



Chapter 2

Branes and strings

Cosmic strings and superstrings, even though not anymore expected to be a key com-

ponent of our universe’s evolution, could be the next opening towards new physics,

beyond our standard models. They are believed to appear in many theories built

to complement our current understanding of the universe, whether additional sym-

metries or more fundamental descriptions. Their evolution would leave signatures,

enlightening on the specificities of the theories in which they come up. In particular,

because they are highly relativistic, due to their compactness as well as their veloc-

ities, they are thought to emit gravitational waves (GWs), constantly, thus forming

a stochastic background, as well as in bursts, potentially individually detectable.

In this chapter, we first present in Section 2.1, how such objects could be pro-

duced in the framework of brane world cosmologies, where our universe is not filling

the whole available spacetime but is rather a smaller dimensional object, itself evolv-

ing within a larger dimensional bulk. In particular, the inflationary period that could

result from brane collisions would almost generically generate a network of Cosmic

(Super)Strings (C(S)S), with properties depending on the details of the model. We

then discuss in Section 2.2, their properties, their evolution, the phenomenology they

would lead to and the main differences between strings and superstrings. Finally, in

Section 2.3 we focus on a specific setup in which a light string is stretched between

two heavy, almost fixed ones, and study its periodic evolution. In particular, we

evaluate the rate at which specific events, called cusps, during which a portion of

the string momentarily reaches the speed of light c = 1, occur. They are thought

to be important as they would emit large amounts of energy in the form of high

frequency GWs, which themselves have been, for already more than a decade, one

of the most promising new tools to study our universe.
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2.1 Brane world cosmology

2.1.1 Brane inflation

Following the string theory picture, the paradigm1 here admitted, as in Ref. [24],

is that of a stack of 3 + 1 dimension D-branes, one of which could play the role

of our universe, on which evolve the Standard Model fields seen as various modes

of open strings whose extremities lie on the branes. On the contrary, gravity and

additional scalar fields (such as the dilaton) are propagated via closed string modes

in the larger (3+d)+1 dimensional bulk, with d = 6. Depending on the specificities

of the model, one can allow this brane either to be a solitonic field theoretic brane

or a quantum state such as a D-brane, and the bulk can carry different manifold or

orientifold structures. Also, Dp-branes with larger dimensions could be present at

first, but the brane dynamics lead to their evaporation. In any case, the D3-branes

sit on top of each other in the lowest energy state but may start more generically in

any configuration.

In addition, let us denote by yA the interbrane distance in the d bulk directions,

or more basically by y either the norm of such d-vector or the distance in the one

extended dimension of concern here, potentially after a rotation. We also denote by

T3 the brane tension, that is, the brane energy density regarding the 3 brane space

dimensions. Furthermore, unless stated otherwise, we will assume that before the

beginning of inflation, the different geometrical scalar fields are stabilised via some

potential allowing a well of minimum energy, apart from the one driving inflation,

obviously.

In this section, the super- or subscript (4) refers to effective 3 + 1 dimensional

brane realisation of some quantity2 while (B) points to the (3 + d) + 1 dimensional

whole bulk ones. When necessary, parameters of the additional d dimensions are

denoted by (d).

Due to the propagation of gravity within the bulk, the effective experimental

(reduced) Planck scale M
(4)
Pl is related to the bulk fundamental one M

(B)
Pl by the

volume of the d additional (extended) dimensions V(d) ∼ Rd where R is the size of

such dimensions, following (
M

(4)
Pl

)2

=
(
M

(B)
Pl

)d+2

V(d) . (2.1)

1See Ref. [23] for a full review of String Cosmology, in particular chapters 4 and 5.
2Later on, because we only refer to the 3 + 1 dimension quantities, such as MPl, this clarifying

super- or subscript will no longer be necessary and will thus be omitted.
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Similarly, one can tune the (effective 3 + 1 dimension) cosmological constant Λ(4),

which arises from

Λ(4) = 2T3 + Λ(B) V(d) + V (y) , (2.2)

where Λ(B) is the bulk cosmological constant and V (y) is a potential due to the

brane-brane interactions. Several requirements are needed on the size of the ad-

ditional dimensions and their stabilisation, in order not to spoil already satisfied

features, such as Big Bang Nucleosynthesis (BBN), or not to overclose the universe,

for instance with the overproduction of some particles after inflation, but these tend

not to be very constraining [24].

From there, the evolution of the scale factor follows the Friedmann equations

and the distance y is now a dynamical field which plays the role of the inflaton ϕ.

Its energy density and pressure are, as seen in Eq. (1.29), described by the sum and

difference of kinetic and potential energy terms, where the potential is here the one

due to brane-brane interactions, namely V (y) ≡ V (ϕ). To see that it is indeed flat

apart around
(
M

(B)
Pl

)2
y ≡ ϕ = 0, we need to consider the possible mechanisms of

interactions.

First are the fields localised on the branes: when the branes are colocated, fields

from different branes communicate with each other and participate in the vacuum

energy; alternatively, when the branes are separated, the fields’ interactions are very

suppressed due to their confinement within the extremely thin (in the y direction)

volume of the brane and the contribution thus decays (at least) exponentially. Be-

cause the potential is assumed attractive, we will consider that the contribution to

the vacuum energy is negative; moreover, there must be some fine tuning from the

additional constant terms such as the brane tension in order to realise V (0) = 0,

which ends up being the usual cosmological constant issue, here left unresolved.

This results in a zero contribution when the branes coincide, due to the cancellation

of the brane tension with the negative energy from the interactions between fields

located on each brane, and a positive remaining contribution from the brane tension

alone when the branes are separated. This yields, denoting the effective thickness of

the branes y0, a term of the form T3(1− e−y/y0), or T3 (1− f (y/y0)) since in place of

the term e−y/y0 one could have any function f of y/y0 which decays faster for y > y0.

Additionally, several processes happening in the bulk can take part in the po-

tential. The exchange of bulk modes, whether massive or massless, induces as well

an interaction which is suppressed at large distances, yielding a term of the form

e−my y2−d (or log y if d = 2) where m is the (possibly null) mass of the field con-
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sidered. Finally, some strings can stretch between the branes, for instance seen as

confined flux tubes, exerting a restoring force of the form ky, but this linear term can

be ignored as k is proportional to the density of strings regarding the 3 dimension

space brane volume, which is exponentially increasing during inflation thus washing

out k.

Hence remains a potential of the form [24]

V (ϕ) ' T3

[
c1 − f

( ϕ
M

)
+ ϕ2−d (c2,i e

−ϕ/Mi + c3

)]
, (2.3)

where the constants c1, c2,i and c3 depend on the details of the model, as well as

the explicit form of the function f as long as it decays at least exponentially; the

masses Mi are related to the masses of the bulk modes mi via Mi =
(
M

(B)
Pl

)2
m−1
i ,

while M is a typical mass of the theory of the order of T
1/4
3 . Deriving now the slow-

roll parameters again yields constraints on the geometrical parameters of the theory

which remain weak [24], thus allowing generically a successful inflationary period.

Note that the collision of the two branes considered here leads to reheating since

the inflaton field, which is weakly coupled when the branes are separated, becomes

increasingly coupled to the brane fields as these get closer, while it remains almost

uncorrelated to the bulk fields, implying that the oscillations of the inflaton in its

minimum reheat mainly the brane, as it should. In another similar kind of models

where the set up is made of a brane-antibrane pair, developed after the KKLMMT

model [25], it is the annihilation energy which is released and transferred to the SM

particles, allowing for reheating.

Finally, it is interesting to recall that symmetries play an important role in

hybrid or brane inflation scenarii. Indeed, as we mentioned, hybrid inflation is led

by the inflaton field slowly rolling down a symmetry preserving (or normal phase)

valley and ends when it reaches values for which a secondary field, so far lying in a

false vacuum, is now out of equilibrium and rapidly shifts towards a new symmetry-

breaking vacuum expectation value (ordered phase). In the brane case, the presence

of two separate branes breaks the symmetry3 of the system which is restored once

the branes are overlapping. Alternatively, the gauge symmetries are present on each

3One can consider, for instance, either a Z2 symmetry on the brane, a translational invariance
or, in the case of a stack of coinciding branes, the permutation between each of them. The first
one means that, for an object approaching, crossing and then leaving the brane, the pre-crossing
stages are symmetric to the post-crossing ones, or alternatively that the brane acts as a mirror;
the existence of the other brane on one side only breaks this symmetry. The second symmetry is
broken in the direction of the branes separation while the third is broken by the one brane aside.
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brane as long as they remain separated, but only one symmetry group remains once

the branes coincide or annihilate, yielding a symmetry-breaking scenario of the form

G×G→ G where G is the gauge symmetry group.

As explored in the following section, these symmetries and symmetry breaking

interestingly lead to a rich phenomenology.

2.1.2 Strings formation

Phase transitions followed by Spontaneous Symmetry Breaking (SSB), occurring

during the early stages of the evolution of the universe, can lead to topological

defects [26]. While some, such as domain walls and monopoles, have to be avoided to

fit with the observations, as they would quickly dominate the energy of the universe

and spoil observations, cosmic strings, on the contrary, are not only acceptable but

could even turn out useful to explain some features of the universe. Still, recall it

has been shown that they cannot be the main source of anisotropies in the CMB,

inflation being now thought to be the main source as it produces adiabatic ones.

Cosmic Strings (CS) are false vacuum remnants, that is solitonic extended objects

containing a different phase than the rest of the universe, similarly to flux tubes

in type II superconductors. The energy they carry is thus related to the energy

scale of the symmetric phase, and hence of the symmetry breaking itself. They

are thought to be generic [27] in supersymmetric (SUSY) Grand Unified Theories

(GUT) frameworks where they are formed via the Kibble mechanism [28]. In this

process, the topology of the vacuum manifold M is determining the presence of

topological defects as well as their type.

Indeed, during a symmetry breaking of a group G to one of its subgroup H, one

should study the kth homotopy group πk(M) of the vacuum manifold M ≡ G/H,

which is classifying the topologically distinct mappings between the k-sphere Sk

and M. Non-trivial kth homotopy groups lead to d̄-dimensional defects, where

d̄ = 4−1−k (in a 4-dimensional spacetime). For instance a vacuum manifold made

of disconnected elements, thus whose 0th order homotopy group π0 is not trivial,

will induce 3-dimensional topological defects, namely domain walls; similarly, if M
is not simply connected, that is if it contains loops which cannot be continuously

shrunk to a point, then π1 is not trivial and CS (d̄ = 2) form; alternatively, if M
presents surfaces (respectively 3-spheres) which cannot be shrunk to a point, d̄ = 1

monopoles (d̄ = 04 defects, called textures) form.

4d̄ = 0 defects are punctual not only in all space directions but also in time, i.e. event-like.
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It is important to remark that while we are here going to study only local CS

from local, gauge symmetries, global CS can form as well. Their energy is contained

in much larger distances (of the order of the horizon) and they experience long-

range interactions. Besides, semi-local string interactions can lead to the formation

of Y-junctions, which are of interest in the following. Finally, note that defects

can be embedded in field theories with a trivial topology, but they are generally

unstable and will thus be ignored too; similarly, we will not discuss further the case

of superconducting strings, in which the electromagnetic gauge invariance is broken.

There exist a large variety of SUSY SSB scenarii depending on the large symme-

try group G of the theory at high energies, which can in principle be anything as long

as the Standard Model (SM) group GSM ≡ SU(3)C×SU(2)L×U(1)Y is satisfactorily

embedded in it — that is provides the representations and the phenomenology of the

SM particles. The inflationary paradigm is also contained in such scenarii since the

several intermediate SSBs provide scalar fields and superpotentials, which achieve all

necessary ingredients: a quasi-exponential expansion of the universe while it is in its

unstable, false vacuum state; a graceful exit into the current, stable or meta-stable

state; and the necessary reheating via the conversion of the false vacuum state’s en-

ergy into thermal energy, to generate the particle content of today’s universe.5 Two

types of hybrid inflation can be constructed, namely F-term and D-term inflations,

depending on the choice of supersymmetry-breaking terms in the superpotential.

While the former often leads to the so-called η-problem, where the inflaton field (as

well as any scalar field) gets a mass of the order of the Hubble parameter H during

inflation, the latter does not suffer from this issue but often requires the inflaton to

roll on superplanckian distances, implying the need of a supergravity description.

In any case, (F- or D-term) CS are generically formed at the end of inflation via the

Kibble mechanism.

Alternatives are quantum string-inspired versions, namely Cosmic SuperStrings

(CSS), for instance fundamental strings (F-strings) or one-dimensional Dirichlet

branes (D1-branes or D-strings). Recall that in the string inspired, brane world

framework, all SM particles are described as open strings ending on D3-branes6

while the graviton and some scalar fields are closed string modes also evolving in

the d − 3 remaining dimensions (with d = 6 for a 9 + 1 dimensional bulk). As we

5The detailed study of such scenarii allows to either rule out or constrain them, by requiring
successful inflation and production of particles with the observed properties, or by using CMB
measurements such as high multipole anisotropies and non-gaussianities.

6Actually, the D-branes can have any 3 ≤ p ≤ 9 dimension, the potential extra p̄ = p− 3 one(s)
being wrapped.
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mentioned already, of the many scalar fields describing the geometrical features of

the stack of branes (such as their distances), one can play the role of the inflaton.

The field slowly rolls due to weak, long distance interactions and the annihilation

or collision of the branes ends inflation.

Looking at the first case in more details, based on the explicit KKLMMT realisa-

tion [25], the production of CSS is due to what happens to the U(1) gauge symmetries

present on each of the Dp-branes before such annihilation. Indeed, the process can

be seen from a group point of view as a symmetry breaking U(1) × U(1) → U(1).

The Kibble mechanism applies to the remaining U(1), which is a linear combination

of the two initial U(1)’s and is coupled to the tachyonic field stretched between the

branes which becomes unstable when the branes annihilate. It implies the formation

of D-strings, or rather of D(p − 2)-branes where p is the dimension of the brane-

antibrane annihilating, with one of these p− 2 = 1 + p̄ dimensions being extended,

the additional p̄ ones being wrapped. Additionally appear fundamental F-strings,

which are the confined flux tubes of the U(1) symmetry which is broken, following

again the Kibble mechanism. Other similar brane inflation scenarii can also lead to

the formation of F- and D-strings [29, and references therein].

Finally, recall that stable bound states of F-strings and D-strings can be formed,

leading to the emergence of Y-junctions [30]. As we will see in Section 2.3, these

types of strings are thought to have generically cusps (points reaching temporarily

the speed of light), especially in the case of a string stretched between two junc-

tions [31].

Brane world cosmologies (via the multiple scenarii of symmetry breaking they

offer, in particular at the end of brane inflation) as well as supersymmetric GUT

thus suggest that one-dimensional topological defects could be a generic feature of

our universe. Each specific model would lead, for the strings and their network, to

peculiar properties and parameters’ values, as will be explored in the next section.

2.2 Cosmic strings and cosmic superstrings

Cosmic strings or superstrings have been shown to be at least generic — if not un-

avoidable — features of most cosmological descriptions [27, 29, 32]. As we have seen,

the former are solitonic, classical topological defects formed following the Kibble

mechanism [28] during the (potentially several) Spontaneous Symmetry Breakings

(SSB) which arise during the cooling history of our universe. The latter are ex-
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tended quantum objects appearing in the context of supersymmetric string theories

and brane inflation. Both are of interest for their genericity within some theoretical

background and for the numerous phenomenological consequences on astrophysical

and cosmological scales. In particular, networks of Cosmic (Super)Strings (C(S)S)

participate to the energy budget of the universe, modify locally the spacetime back-

ground and thus produce lensing effects which can affect the CMB anisotropies and

generate bursts of Gravitational Waves (GWs) during some specific phenomena [29,

33–40]. Their study is thus at the meeting point of cosmology and particle physics

and involves such large energy scales, unreachable otherwise, giving a unique window

of observations on the high energy symmetry breakings and the underlying theory

of the universe.

In the following sections, we will discuss the dynamics of the C(S)S and of their

network, as well as the common and different phenomenology emerging from CS and

CSS.

2.2.1 The Nambu-Goto action

C(S)S are studied in the regime where their typical length scale is large compared

to their thickness (but small compared to the Hubble radius) and therefore can be

considered in a good approximation as one-dimensional extended objects. They

thus span, through their evolution, a 1 + 1 dimensional worldsheet which can be

characterised by two parameters σa (a = 0, 1), with σ0 ≡ τ being time-like and σ1 ≡
σ being space-like, yielding xµ = Xµ(σa) = Xµ(τ, σ). Note that xµ relates to the

spacetime coordinates while Xµ is a 4-vector function of the worldsheet coordinates

which gives the four-dimensional equation of the worldsheet, but we might sometimes

interchange one another in this chapter.

The strings follow the Nambu-Goto action [41, Chapter 6], [26] given by

SNG = −µ
ˆ √
−gind d2σ , (2.4)

where µ ' M2 is the string tension (or linear mass density) and M is the energy

scale of the symmetry breaking leading to the formation of strings, gind ≡ det(gind
ab )

with gind
ab ≡ gµν x

µ
,ax

ν
,b the induced7 metric on the worldsheet (again a, b = 0, 1) and

d2σ = dσ1 dσ0 = dσ dτ .

Recalling that in this chapter, a dash denotes the derivative with respect to the

7For clarity, let us accept that gind ≡ gind and gab ind ≡ gind
ab , hence g−1

ind ≡ 1/gind.
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spacelike worldsheet coordinate X ′µ ≡ ∂Xµ/∂σ while an overdot is with respect to the

timelike one Ẋµ ≡ ∂Xµ/∂τ, the determinant of the induced metric can be rewritten

as

− gind = −(Ẋ)2 (X ′)2 + (Ẋ ·X ′)2 , (2.5)

where (Ẋ)2 ≡ ẊµẊµ and Ẋ ·X ′ ≡ ẊµX ′µ, these being 4-vectors.

Using g−1
ind dgind = gabind dgind

ab , one can vary the action with respect to the spacetime

coordinates xµ = Xµ(σa) to obtain the equation of motion for the string

Xµ ;a
,a + Γµλκ g

ab
ind X

λ
,aX

κ
,b = 0 , (2.6)

where Γµλκ is the Christoffel symbol8 (from the full, four-dimensional metric). Note

that here the covariant second derivative of the spacetime coordinates is

Xµ ;a
,a =

1√
−gind

∂a

(√
−gind gabindX

µ
,b

)
. (2.7)

Similarly, the string energy momentum tensor can be obtained by varying the action

with respect to the metric, yielding

T µν(xλ) =
µ√
−g

ˆ √
−gind gabind X

µ
,aX

ν
,b δ(x

α −Xα(σa)) d2σ , (2.8)

where δ is the (four-dimensional) Dirac function.

Choosing flat Minkowski spacetime as well as the conformal gauge

Ẋ ·X ′ = 0 and (Ẋ)2 + (X ′)2 = 0 , (2.9)

one can simplify the equation of motion to the two-dimensional wave equation.

Additionally fixing the time gauge σ0 = t, one can express the conformal gauge

constraints and the equation of motion as a set of equations for the 3-vector position

of the string, yielding

Ẋ ·X′ = 0 (2.10a)

(Ẋ)2 + (X′)2 = 1 (2.10b)

Ẍ−X′′ = 0 (2.10c)

8The Christoffel symbols are defined following Γµλκ ≡ 1/2 gµα (gαλ,κ + gακ,λ − gλκ,α).
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whose solutions are the superpositions of left- and right-moving arbitrary waves

X(σ, t) =
1

2
(X+(σ+) + X−(σ−)) , (2.11)

where we defined σ± ≡ σ ± t.
Note that the equations for the string can be easily interpreted as follows: the

velocity and thus the movement is always perpendicular to the string itself, the

(3-)velocity reaches 1 at singular points X′ = 0 and in its own frame, the string

acceleration is inversely proportional to the radius of curvature, meaning that a

curved region of the string will tend to straighten itself. Transposed to the left- and

right-movers, they imply
∣∣X′+∣∣2 =

∣∣X′−∣∣2 = 1, where here the dash is the derivative

with respect to the only variable, namely the lightlike σ±, as in X′± ≡ dX±/dσ±.

Therefore, the 3-vectors X′± lie on a unit (Kibble-Turok) sphere [42].

As we noticed already, some peculiar events might happen on the string, one

of them being cusps which are points reaching momentarily the speed of light in

vacuum. Indeed, Ẋ = 1 implies as we said X′ = 0, that is a null radius of curvature

and thus an infinite straightening acceleration, immediately reducing the velocity

below 1. In more details, one can look for the conditions for such event to occur in

terms of the left- and right-movers on the string, using

Ẋ(σ, t) =
1

2

(
X′+(σ+)−X′−(σ−)

)
. (2.12)

Now for a loop, the periodicity of the coordinates as well as the condition
∣∣X′±∣∣2 = 1

imply that X′+ and −X′− both describe closed loops on the unit sphere.9 So when

these two curves meet in X′+(σ
(c)
+ ) = −X′−(σ

(c)
− ), the velocity reaches c = 1, following

∣∣∣Ẋ(σ(c), t(c))
∣∣∣ =

∣∣∣∣12 (X′+(σ
(c)
+ )−X′−(σ

(c)
− )
)∣∣∣∣ =

∣∣∣X′±(σ
(c)
± )
∣∣∣ = 1 (2.13a)

for
(
σ(c), t(c)

)
≡
(

1

2

(
σ

(c)
+ + σ

(c)
−
)
,

1

2

(
σ

(c)
+ − σ

(c)
−
))

, (2.13b)

where the superscript (c) refers to the cusp.

Discontinuities might also be obtained following string interactions. Indeed, even

though not allowed in the zero-thickness description, field theoretic analyses, lattice

9As we will see further on in Section 2.3.1, additional periodicity or quasi-periodicity require-
ments also lead to such properties in the case of strings stretched between fixed junctions. For
infinite strings, X′± do not draw closed loops but do lie on the unit sphere.
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Figure 2.1: Three possible outcomes when strings intersect: (a) reconnect by
exchanging legs, (b) passively pass through each other or (c) entangle.

From [41, Figure 6.4].

simulations and string studies showed that under certain conditions, C(S)S of the

same type have a non-null probability of exchanging legs when they intersect each

other [26, 30, and references therein]. Indeed, the strings can either passively cross

each other, get entangled as in some cases discussed further, or reconnect, as shown

in Fig. 2.1. In the last case, the result of two strings meeting is thus two new strings

with a kink, that is a discontinuity in Ẋ and X′ where the strings intersected. It is

also possible to describe such event using the left and right movers description, in

which a kink is a discontinuity in X′± and thus leads to a gap on the curve drawn

on the unit sphere. It is not actually a closed curve anymore and cusps, somewhat

generic without any discontinuities [43], may become a lot easier to avoid. Note that

string and superstring self-interactions lead to the production of loops, playing an

important role in the evolution of the network, as well as the entanglement of two

superstrings which can lead to junctions.

After giving the mathematical description of C(S)S, under the assumption that

they can be treated as infinitely thin, one-dimensional objects, we will now focus on

their gravitational phenomenology.
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2.2.2 Phenomenology

C(S)S, because they carry an important energy density, can be substantial sources of

different kinds of radiation. Most of them, such as Ultra High Energy Cosmic Rays

(UHECR) and Gamma Ray Bursts (GRB), are model dependent because of the

different gauge or global symmetries strings are related to, each symmetry implying

different particle physics mechanisms and thus leading to different patterns in emis-

sions. In addition, the inflationary and symmetry-breaking scenario influences the

initial conditions of the network as well as its parameters, which themselves impact

its evolution. This variability adds up to the complexity of the possible observations

from C(S)S. However, this connection implies that any observation is shedding light

on the favourable models, offering a potentially vast window on the underlying laws

of nature, whether stringy or not. More importantly for us here and more gener-

ically is the gravitational emission. Indeed, because strings are relativistic, they

emit GWs, whether in the form of loops or wavy long strings, in particular in high

frequency bursts during three potential events: cusps, kinks, and reconnections or

junctions.

First, let us recall that a straight C(S)S produces no gravitational force on its

surrounding [41, Chapter 7], implying the local geometry is Minkowski, but still

significantly impacts the global geometry which is conical. Indeed, there is a deficit

angle in the azimuthal angle whose variations are limited from 0 to 2π (1− 4Gµ),

leading to specific lensing effects (with two similar images of a source) and discon-

tinuous Doppler shifts (driven by the sudden deviation of the course of the source

with respect to the observer as the string pass between them).

In addition, a network of strings can source the density anisotropies of the uni-

verse and hence the temperature anisotropies in the CMB, but as mentioned already,

this would mainly lead to isocurvature modes, with a different structure in the power

spectrum than the one observed, which favours adiabatic ones. C(S)S thus cannot

be the main source of initial density anisotropies and of seeds of structure formation

in the universe, while inflation has been shown to be very satisfactorily fitting the

data. Still, a string network could lead to interesting polarisation patterns as well

as high ` (that is small angular scales) contributions.

Finally, let us have a closer look at the GWs emissions from strings by first

assuming that the gravitational field due to strings in motion is weak enough so that

we can safely use the linearised Einstein’s equations, apart in some small patches of
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spacetime. Recall then that the GW equation is given by

∂α∂
αhµν = −16πGTµν , (2.14a)

whose retarded potential solution is

hµν(x, t) = 4G

ˆ
d3x̃

|x− x̃|
Tµν(x̃, t− |x− x̃|) , (2.14b)

while the energy momentum tensor of strings yields

T µν(xλ) = µ

ˆ (
ẊµẊν −X ′µX ′ν

)
δ(x−X(σa)) dσ (2.15a)

= −µ
ˆ
X
′(µ
+ X

′ν)
− δ(x−X(σa)) dσ , (2.15b)

where the first line has been obtained using the conformal and time gauge conditions

mentioned earlier in Eq. (2.9) and below, and the second one using the left- and right-

movers decomposition. Note that the brackets indicate a symmetrisation in the

indices, that is X
′(µ
+ X

′ν)
− = 1/2

(
X ′µ+X

′ν
− +X ′µ−X

′ν
+

)
. Also, the minus sign appearing

in front of the last line is consistent with positive energy density and depends on

the sign convention (that is, defining the null worldsheet coordinates as σ± ≡ t± σ
would have resulted in the opposite sign but the same physics).

Alternatively, using Fourier transform and Fourier decomposition [36], one can

express the energy momentum tensor in momentum space as

T µν(kλ) =
2µ

L

ˆ (
ẊµẊν −X ′µX ′ν

)
e−ikq ·Xd2σ (2.16a)

= −2µ

L

ˆ
X
′(µ
+ X

′ν)
− e−

i
2
kq ·(X++X−)d2σ , (2.16b)

where L ≡ E/µ is the average or invariant length of the (loop or piece of infinite)

string, with E is its energy in its centre of mass frame and µ the tension, while

we denote by kµq ≡ (ωq,kq) ≡ ωq (1,n) the wave 4-vector of the plane wave in

Fourier decomposition, defining the direction 4-vector nµ ≡ (1,n) and the frequency

ωq ≡ q ω̄ ≡ q 4π/L. Interestingly, one can separate the variables in the last formula
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after a change of variables (σ, t)→ (σ+, σ−), yielding

T µν(kλq ) = T µν(ωq, ωqn) =
µ

L
I

(µ
+ I

ν)
− (2.16c)

with Iµ± ≡
ˆ
X ′µ± (σ±) e−

i
2
kq ·X±(σ±) dσ± , (2.16d)

where we reintroduced the dependence on σ± for clarity.

Because cusps will be our main concern in terms of C(S)S phenomenology, let

us apply this result to this specific case. First, one can show that the direction of

highest energy emission is given by

lµ = (1,n(c)) ≡ X ′µ+ (σ
(c)
+ ) = −X ′µ− (σ

(c)
− ) . (2.17)

In addition, after shifting the worldsheet coordinates origin to the cusp σ
(c)
± → 0 as

well as the spacetime ones to the cusp too Xµ(0, 0) = Xµ
±(0) = 0, one can expand

the left- and right-movers and their first derivative around the cusp following

Xµ
±(σ±) = lµ σ± +

1

2
X ′′µ± σ2

± +
1

6
X

(3)µ
± σ3

± +O(σ4
±) (2.18a)

X ′µ± (σ±) = lµ +X ′′µ± σ± +
1

2
X

(3)µ
± σ2

± +O(σ3
±) (2.18b)

with higher order terms which will be ignored from now on and where the successive

derivatives in the expansion lµ ≡ ±X ′µ± , X ′′µ± and X
(3)µ
± are given at the cusp.

The conformal gauge conditions, also called Virasoro conditions, yield X ′2± = 0.

Differentiating this equation leads to X ′± ·X ′′± = 0 and to X ′± ·X
′(3)
± = −X ′′2± . Used

to compute the exponential contraction, these give

l ·X±(σ±) = −1

6
X ′′2± σ3

± . (2.18c)

Finally, it can be shown that the leading term in Iµ±, coming from the integration

of lµ e−
i
2
kq ·X± , is non-physical and can be gauged away [36], so should be removed.

In addition, the interesting part of the spectrum, for which the signal will not be

drowned in the stochastic background emitted by each and every part of the string

network [44], is the high frequency end, mainly produced by cusps10 and highly

relativistic regions of the string which are concentrated in a small patch around the

10Note that kinks and other specific points such as junctions, which mainly appear on CSS,
can also emit high frequency GW Bursts (GWBs), but we will not consider these in details here,
assuming that the cusps studied are far away from other emitting parts of the string.
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cusp. It is thus possible to ignore most of the string in the integral and focus on

a small interval around 0, as we will do numerically. On the contrary, one could

integrate on the whole string or even on R. These computations will anyway lead

to the same behaviour in the high frequency limit, which is of interest to us here.

Considering the latter, one can analytically compute the high frequency be-

haviour of the energy momentum tensor carried by GWs emitted by cusps on a

C(S)S and obtain [36]

T µν(ωq, ωqn
(c)) = − 47/3 π2

32/3 Γ(1/3)2

µ

Lω
4/3
q

eiωqt
(c) X

′′(µ
+

|X ′′+|
4/3

X
′′ν)
−

|X ′′−|
4/3

(2.19)

where Γ is Euler’s function and t(c) is the arrival time of the (centre of the) burst,

reintroduced by shifting the coordinate system back to the initial choice where the

cusp does not lie at the origin. Most importantly, this means that the energy

momentum tensor depends on the second derivative of the string position 4-vector

at the cusp (again, the dependence on σ
(c)
± has been hidden), on the tension and on

the length, that is, on the energy of the string (as one could expect). In addition, it

is proportional, for high frequencies, to the frequency to the power − 4/3.11

Slower points on the string are also producing GWs but they lead to a spectrum

which is suppressed in its high frequency part, compared to the cusp case. Indeed,

in the exponential part of the integrals (2.16d), the linear term in the σ± expansion

is cancelled due to the choice of the emission direction kµ = ±ωqX ′µ± (σ
(c)
± ). This

can be achieved simultaneously in both integrals only if X ′µ+ (σ
(c)
+ ) = −X ′µ− (σ

(c)
− ), that

is, at a cusp. In the case where the left- and right-movers derivatives X ′µ± are not

opposite to each other, one can only choose a direction of emission such that the

linear term is cancelled out in the exponential of at most one of the integrals, thus

leading, in the final expression for T µν , to a power of the frequency ωq larger (in

absolute value) than − 4/3. This means that the high frequency end of the spectrum

is dominated by cusps12 which produce Gravitational Wave Bursts (GWBs).

Still, one can wonder how the points around the cusp are participating in this

burst. Indeed, physically, the region immediately surrounding the “one” point reach-

ing the velocity of light is also highly relativistic, the left- and right-movers deriva-

tives are there very close to satisfying X ′µ+ (σ
(c)
+ ) = −X ′µ− (σ

(c)
− ) and the energy released

11Similar analytical computations on kinks lead to a power spectrum high end proportional to
the frequency to the power − 5/3 [36].

12We will here ignore other peculiar points which can also lead to GWBs, namely kinks and
junctions.
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in high frequency GW might as well be considered as a part of the burst. Let us

thus define pseudocusps as points travelling at a velocity very close to 1 but not

exactly, which will be present at least in the vicinity of cusps but a priori could also

appear irrespectively of those. Indeed, one can imagine a situation where the curves

described by X′+ and −X′− on the unit sphere would not cross each other but rather

come very close before moving apart: if they get close enough, the velocity could

reach almost 1 at its local maximum and this region of the string could emit a burst,

a priori weaker than an actual cusp’s burst but maybe strong enough to significantly

participate in the global high frequency emissions of the strings network. We will

come back to this issue in the following of this chapter, in Section 2.3.

2.2.3 Differences between strings and superstrings

Now that we have looked at the common properties of C(S)S, and in particular at

their common phenomenology, we will here review the main contrasting features

which distinguish these objects and the consequences these have on their evolution.

Cosmic Strings (CS) are solitonic, classical objects. Their tension is set by M the

energy scale of the phase transition which lead to their formation, µ ' M2. They

can, when of the same type, exchange legs and form kinks when intersecting each

other, and field theoretic computations have shown that pCS
rec the probability they

do so is close to unity, thus yielding an approximately null probability of passively

going through each other [26, 30].

In opposition, Cosmic SuperStrings (CSS) are extended, string theoretic, fully

quantum objects. Their reconnection probability depends on their type as well as on

the details of the model, such as the extra-dimensions compactification and moduli

stabilisation schemes or the superpotentials. Still, string perturbation computations

have shown that, in first approximation, these probabilities depend only upon two

parameters, namely the string tension or string coupling gs, and the scale of the po-

tential confining the strings within the extra-dimensions. For instance, fundamental

strings generically reconnect with a probability pFF
rec ∼ g2

s ∈ [10−3, 1], while D-strings

reconnection probability, even though more complicated, have been evaluated to be

within pDD
rec ∈ [10−1, 1] [26].

In addition, CSS present several distinct types13 which can form bound states

via entanglement, as in the case (c) of Fig. 2.1. Indeed, when two superstrings of

13In some more complicated models, there can also be several types of CS which would present
topological restrictions forbidding simple reconnections and allowing the formation of junctions.
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different type meet, they cannot exchange legs but form a junction, which might

then extend into a third type string. This leads to a composite (p, q)-string, made

of the entanglement of p F-strings and q D-strings, joining two Y-junctions where

three strings meet: the two initial strings and the new composite one. For example, a

(1, 1)-string could be formed at a Y-junction between an F-string and D-string. More

generally, a (p, q)-string meeting a (p′, q′)-string would form either a (|p−p′|, |q−q′|)-
string or a (p + p′, q + q′)-string; for instance, in the specific case where say q = q′

and p′ = p− 1, an F-string can be formed.

Similarly, the tension of CSS depends on the different parameters of the specific

string model considered, but in first approximation it is mainly given by the Regge

slope α′, which is often taken to be α′ ≡ M−2
s , and by the string tension gs. For

instance, in 10 flat dimensions, an F-string has roughly a tension µF ' 1/2πα′ ' M2
s/2π,

a D-string presents µD ' 1/2πα′ gs while a (p, q)-string shows µ(p,q) ' µF

√
p2 + q2/g2

s

in first approximation [26].

These string features are important as they directly impact the way the network

would evolve. A string network is allowed cosmologically (in opposition to monopoles

and domain walls) thanks to reaching a scaling regime, in which it is scale invariant

and can be described roughly by one parameter which grows with the horizon. This

description has been extended to a three scale model [45] in which three different

scales, all eventually scaling (that is growing with the horizon) are needed to describe

the network: the interstring distance ξ, related to the energy density of the string

network; the persistence length ξ̄, indicating the scale of direction correlation along

the string; and the small scale structure length ζ, giving the typical size of small

loops produced by self-intersection and sometimes referred to as the wiggliness. The

network is thus made of (eventually after a transient period) ‘infinite’ strings, of

length larger than the horizon, and sub-horizon loops. While the energy in the first

ones grows with time as their linear energy density µ is constant, the loops decay

due to GWs and particle emissions and thus take away energy from the network,

allowing for the system to scale. Numerical simulations14 [46] in FLRW background

have found the two first parameters to be of the same order while ζ ∼ 10−2 ξ, in

the scaling regime in radiation and matter dominated eras, as also explored in [47]

where gravitational backreaction have been considered.

The case of superstrings is somewhat similar but still more complex as the junc-

14Note that, unless stated otherwise, numerical simulations and even most analytical consider-
ations neglect gravitational backreaction, which is assumed to have a limited impact on the main
features of the networks and strings dynamics.
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tions and the bound states influence these results. Indeed, it has first been shown by

numerical simulations [48] that the CSS interstring distance scales as ξ ∝
√
pCSS

rec t

and that the CSS energy density may be higher than the CS one but at most by one

order of magnitude. In addition, the presence of long range interactions imposes the

bound states to be short lived, leading to two almost independent networks, in which

the small scale structure is enhanced by the temporary bound states. Alternatively,

in the absence of these long range interactions, that is, in an only locally interacting

network, the bound states play a more important role in the evolution [49]. Indeed,

bound states generate another loss mechanism which is actually responsible for the

scaling, as has been displayed in simulations [50]. Still, this numerical work shows

that whatever the initial conditions and whether with or without bound states,

the CSS network fully scales, that is, all its components (F-strings, D-strings and

possible bound states) scale.

It is also worth noting that the reconnection probability influences greatly the

amount of junctions and of kinks in the network. Indeed, once the scaling regime is

reached, the distance between infinite strings goes like p−1
rec, meaning that the crossing

of two strings goes like p−2
rec and thus the number of successful reconnections is about

p−1
rec. Hence more kinks but almost no junctions appear in CS networks, and few to

very few kinks or reconnections but possibly many junctions form in CSS networks.

In addition, as we mentioned earlier on in Section 2.2.1, the number of kinks might

influence the number of cusps on a string since the former are discontinuities in the

curves described by ±X′± on the unit sphere and the latter are crossing of these

curves. Globally, this has an implication in the amount of GWs emitted since cusps,

kinks, reconnections and junctions are important emitters of GW. Still, it has been

proven that the most important of those are cusps, mainly because of the frequency

dependence of the energy emitted [36], as shown for cusps in Eq. (2.19), cusps

which are present on both CS and CSS. Note on that point that while it is widely

acknowledged that CS generically present cusps, the question is still somehow open

for CSS as details of the extra-dimensions influence may not have been perfectly

understood [31, 51].

Additional thermodynamical considerations [26] have shown that this descrip-

tion, with infinite strings and loops, is valid for large enough energy densities in the

CS network ρ > ρH. The critical point, called the Hagedorn energy density ρH (re-

lated to the Hagedorn temperature), defines a phase transition where infinite strings

appear. Indeed, for very low energy densities ρ � ρH (and large enough reconnec-
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tion probabilities), long strings are very quickly chopped off in small sub-horizon

loops of typical size
√
µ and no infinite string remains at equilibrium. Increasing

ρ implies an increasing number of loops until the average distance between two of

them is about their average length, that is, for ρ ∼ ρH ' µ2. Then, infinite strings

become favourable at equilibrium, the energy density above ρH being allocated to

them. Any increase in ρ leads to no more small loops but to a very slow increase in

the number of long strings, which gather most of the energy density of the network.

The case of CSS is very similar as several tensions imply several Hagedorn energy

densities, that is, several transitions. This can easily be understood as the light, low

tension strings would be the first ones to be able, with the energy available, to form

stable infinite strings and thus to perform a phase transition, while heavier, larger

tension strings would remain in the gas of loops phase. Increasing the energy density

further would allow forming these heavier infinite strings at a second critical point,

thus allowing for all kind of strings and junctions.

After studying the formation processes of C(S)S in their different theoretical

framework and before closing with their distinctive features, we looked at the (com-

mon) equations describing their evolution and phenomenology. In particular, we fo-

cused on the GW emissions from cusps, these points temporarily reaching the speed

of light, highlighting the interest for these events regarding the high frequency end

of the GW spectrum.

2.3 Cusps and pseudocusps on strings between

Y-junctions

In this section [52],15 we study the occurrence of cuspy events on a light string

stretched between two Y-junctions with fixed heavy strings, during its periodic non-

interacting evolution. We consider the specific configuration of two equal tension,

heavy strings linked by a light string, which can easily be achieved for instance in the

gs � 1 limit, where µ(1,1) ' µF

√
1 + 1/g2

s ' µF/gs ' µD � µF. As explained in the

following, mainly in Section 2.3.1 and Appendix A, the conclusions drawn in such

case can be generalised to realistic strings configurations under certain circumstances

which we also discuss in such sections.

We first present an analytic study where, after looking at the periodicity require-

ments and symmetries on the string, in order to allow for a Fourier decomposition,

15The material of this section has been published in a very similar form in [52].
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we give a solid criterion to discriminate between cuspy and noncuspy string config-

urations. Our study then draws a link between waves and cuspy phenomena on the

string, where by cuspy phenomena we mean both cusps and pseudocusps. Recall

that the former are points on the string reaching temporarily the speed of light

c = 1. The latter are highly relativistic configurations close to cusps but reaching

a velocity between 10−3 and 10−6 below c. We then describe our numerical sim-

ulation, built to draw a specific string and to subsequently compute the number

of cusps and pseudocusps within a period of non-interacting evolution, in order to

test our analysis. This numerical investigation allows us to look at the correlations

between the string network’s parameters and the occurrence of cuspy phenomena

and we show that the presence of large-amplitude waves on the light string leads

to cuspy events. We then relate the occurrence of cuspy events to features like the

number of vibration modes on the string or the string’s root-mean-square velocity.

2.3.1 General set up

Recall that stable bound states of F-strings and D1-branes (or D-strings) can be

formed, leading to the emergence of Y-junctions [30]. These junctions can also

appear in the context of semi-local string interactions. These types of strings are

thought to have generically cusps, especially in the case of a string stretched between

two junctions [31], but more details are needed, as can be understood from the open

debate on this question [51]. Here, we start with a simplified and idealised version

of such a configuration in order to look at the parameters influencing the occurrence

and number of cusps.

The Y-junction configuration we will study is thus again made of two heavy

strings connected via a light string. Hence, without loss of generality, we consider

the heavy strings to be of equal tension.16 So in what follows, we have two tensions:

the tension of the heavy strings µh and that of the light string µ`.

We here consider the two heavy strings in the xz-plane, oriented along the z-axis

and then tilted by an angle ±Ψ with respect to the z-direction (see Fig. 2.2) and

spaced out by a distance ∆. The heavy strings are considered heavy enough to be

at rest at least for a time longer than the time scale of the light string’s movement.

This implies either that the heavy string’s tension is very large (at least two orders

of magnitude) compared to the light string’s one, or at least that the time scale of

16The formation of a junction depends on various parameters, such as the collision velocity and
the tensions. However, once the junction is formed, the tensions will not influence the dynamics [53].
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Figure 2.2: A light string stretched between two junctions with heavy strings.

the light string’s movement is short compared to the ratio of the light string’s length

to the heavy string’s velocity (with respect to the light string). In addition, since

the heavy strings can be considered as straight in the vicinity of the junction and

since the boundary conditions are what matter here, the heavy strings will be taken

infinitely straight. Note that even though the case studied here is not generic, the

conclusions are applicable to generalisations of this specific configuration as shown

in Appendix A.

The boundary conditions17 for a light string ending on two junctions with the

aforementioned heavy strings are given, for any t, by

Ẋ⊥ (t, 0) = X′‖ (t, 0) = 0 (2.20a)

Ẋ⊥ (t, σm) = X′‖ (t, σm) = 0 , (2.20b)

where again f ′(σ, t) = ∂σf(σ, t) and ḟ(σ, t) = ∂tf(σ, t) while the subscript ⊥ (re-

spectively ‖) indicates the projection along the directions orthogonal (parallel) to

the (local) end string. The spacelike worldsheet coordinate σ lies within [0, σm],

with σm the parameter length of the string, that is the maximal value for σ since

the minimal value is 0. Hence, projected on the space cartesian directions (x, y, z),

17It is important to note that while a non-null light string’s tension µ` 6= 0 would physically
lead to its length getting smaller, that is, to its centre of mass moving towards positive z (as in
Fig. 2.2), our study here focuses on the movement of the light string in the limit µ` → 0. Still, one
can extend our results to the case µ` 6= 0, µ` � µh, where µh is the heavy strings’ tension.
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the conditions (2.20), at any time t, read

Ẋy (t, 0) = 0 (2.21a)

Ẋx (t, 0) cos Ψ− Ẋz (t, 0) sin Ψ = 0 (2.21b)

X ′x (t, 0) sin Ψ +X ′z (t, 0) cos Ψ = 0 , (2.21c)

and

Ẋy (t, σm) = 0 (2.21d)

Ẋx (t, σm) cos Ψ + Ẋz (t, σm) sin Ψ = 0 (2.21e)

−X ′x (t, σm) sin Ψ +X ′z (t, σm) cos Ψ = 0 . (2.21f)

Following the usual approach [36], one imposes the conformal gauge conditions

(Ẋ)2 + (X ′)2 = 0 and Ẋ · X ′ = 0 and the temporal gauge σ0 ≡ τ = t, obtains

the equation of motion X′′ − Ẍ = 0 which is solved using the decomposition into

the left- and right-movers, X± (σ ± t), as in X(σ, t) = 1
2

(X+(σ+) + X−(σ−)), thus

leading to the system of boundary conditions

X ′+y (t) = X ′−y (−t) (2.22a)[
X ′+z (t)−X ′−z (−t)

]
tan Ψ = X ′+x (t)−X ′−x (−t) (2.22b)[

X ′+z (t) +X ′−z (−t)
] −1

tan Ψ
= X ′+x (t) +X ′−x (−t) , (2.22c)

and

X ′+y (σm + t) = X ′−y (σm − t) (2.22d)[
X ′+z (σm + t)−X ′−z (σm − t)

]
tan Ψ = −X ′+x (σm + t) +X ′−x (σm − t) (2.22e)[

X ′+z (σm + t) +X ′−z (σm − t)
] 1

tan Ψ
= X ′+x (σm + t) +X ′−x (σm − t) . (2.22f)

Note again that in Eqs. (2.22), t is a free variable, so it can be shifted (following

t→ t+ σm) or symmetrised (as in t→ −t).

Periodicity requirements

Applying the transformation t → t − σm to Eq. (2.22a) and combining it with

Eq. (2.22d) imply

X ′+y (−σm + t) = X ′+y (σm + t) , (2.23)

namely that X ′+y (σ+) (and hence X ′−y (σ−)) is 2σm-periodic.
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Denoting T ≡ tan Ψ, the sum and the difference of Eqs. (2.22b) and (2.22c), and

of Eqs. (2.22e) and (2.22f), respectively yield

X ′+z (t)

(
T − 1

T

)
−X ′−z (−t)

(
T +

1

T

)
= 2X ′+x (t) (2.24a)

X ′+z (t)

(
T +

1

T

)
−X ′−z (−t)

(
T − 1

T

)
= −2X ′−x (−t) , (2.24b)

X ′+z (σm + t)

(
T +

1

T

)
−X ′−z (σm − t)

(
T − 1

T

)
= 2X ′−x (σm − t) (2.24c)

X ′+z (σm + t)

(
T − 1

T

)
−X ′−z (σm − t)

(
T +

1

T

)
= −2X ′+x (σm + t) . (2.24d)

Redefining t→ t−σm in Eq. (2.24d) and t→ t+σm in Eq. (2.24c), and respectively

summing them with Eqs. (2.24a) and (2.24b), lead to

2
(
T 2 − 1

)
X ′+z (t) =

(
T 2 + 1

) [
X ′−z (2σm − t) +X ′−z (−t)

]
(2.25a)

2
(
T 2 − 1

)
X ′−z (−t) =

(
T 2 + 1

) [
X ′+z (2σm + t) +X ′+z (t)

]
(2.25b)

Finally, one can use Eq. (2.25b) along with a version of Eq. (2.25b) where one applied

the shift t → t − 2σm, to express the right-hand-side of Eq. (2.25a), leaving only

terms of X ′+z. We can rearrange it and perform once more the shift t→ t+ 2σm to

get the difference equation

X ′+z (4σm + t) = RX ′+z (2σm + t)−X ′+z (t) , (2.26)

where

R ≡ 4

(
tan2 Ψ− 1

tan2 Ψ + 1

)2

− 2 = 2 cos(4Ψ) , (2.27)

In order to show that the solutions of this equation are periodic (or quasi-periodic),

one can define ∀n
Xn(t) ≡ X ′+z (2nσm + t) , (2.28)

and shift Eq. (2.26) by t→ t+ 2nσm, ∀n, so that it reads ∀n

Xn+2(t) = RXn+1(t)−Xn(t) , (2.29)

with the case n = 0 being exactly Eq. (2.26). The general solution is (∀t, n)

Xn(t) = 2E(t) cos (4nΨ) + 2F (t) sin (4nΨ) , (2.30)
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where the constants (with respect to n) E(t) and F (t) are determined by the ‘initial

conditions’ (with respect to n), yielding18

E(t) =
1

2
X0(t) ≡ 1

2
X ′+z (t)

F (t) =
1

sin (4Ψ)

(
1

2
X1(t)− cos (4Ψ)E(t)

)
=

1

2 sin (4Ψ)

(
X ′+z (2σm + t)− cos (4Ψ)X ′+z (t)

)
.

Note that all this can be obtained for X ′+x as well.

If one can find m ∈ Z so that Xm(t) = X0(t), ∀t, then Xn(t) is m-periodic (with

respect to the integer index). In such case, one has X ′+z (2mσm + t) = X ′+z (t), ∀t,
implying that X ′+z (t) is 2mσm-periodic (with respect to the argument). So we want

to determine under which conditions the function Xn(t) is index-periodic, that is,

find m ∈ Z such that Xm(t) = X0(t), ∀t. From Eq. (2.30), it is clear that this occurs

for

4mΨ = 2kπ ⇔ m =
kπ

2Ψ
, (2.31)

where k ∈ Z. In such case, the function Xn is index-periodic: ∀t, X0(t) =

Xm(t) ≡ Xkπ/2Ψ(t); that is, the function X ′+z (t) is (kπσm/Ψ)-periodic: it satis-

fies, ∀t, X ′+z (t) = X ′+z (t+ kπσm/Ψ). Such solution m exists provided the angle Ψ

can be written as

Ψ =
π

2
Q , (2.32)

with Q ∈ Q.19 Thus, for a dense subset of angles in the range Ψ ∈ [− π/2, π/2],

X ′+x (σ+) and X ′+z (σ+) are L-periodic, where we denote by L ≡ 2mσm ≡ kπσm
Ψ

the

periodicity, and hence they can be decomposed in a Fourier series to simplify the

analysis.20

Concern over what happens for angles not satisfying Eq. (2.32) can be alleviated

by noting that although the functions X ′+x (σ+), X ′+z (σ+) are not periodic, they are

arbitrarily close to periodic, and this is sufficient for our requirements here, that is

18In the case where sin 4nΨ = 0, one has Xn(t) = 2E(t) cos (4nΨ), ∀n, and E(t) = 1
2X0(t) ≡

1
2X
′
+z (t). X1(t) = 2E(t) cos (4Ψ) is well defined and F (t) does not appear.

19As an example, let us assume that in our setup, Ψ = π
6 (i.e. Q = 1

3 ). Then, according to
Eq. (2.30), Xn(t) = 2E(t) cos (2nπ/3) + 2F (t) sin (2nπ/3), leading to X3(t) = 2E(t) cos (2π) +
2F (t) sin (2π) = 2E(t) = X0(t), ∀t. Xn is 3-periodic; X ′+z is 6σm-periodic.

20It is important to remark that, as one would naturally expect, the periodicity of E(t) and F (t)
is a consequence and not a hypothesis here. Indeed, assuming 4mΨ = 2kπ from Eq. (2.31), one has
Xm+n(t) = Xm(t+ 2nσm) = 2E(t+ 2nσm) cos(4mΨ) + 2F (t+ 2nσm) sin(4mΨ) = 2E(t+ 2nσm) =
X0(t+ 2nσm) ≡ Xn(t), ∀t, n, where we used Eqs. (2.30) and (2.28), and the definition of E(t).
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for our qualitative study. It might also be worth noting that the period can be large,

which might cause problems for our approximation, namely that the end strings are

static over one period — indeed, if the period is very long, the heavy strings cannot

be considered static over such a large time scale anymore.

Finally, recall this specific setup is considered for its simplicity. The conclusions

on the overall periodicity or quasi-periodicity, drawn from the above analysis, are

thought to be generic though, since the configuration choices made here leave the

string’s dynamical properties unchanged. In addition, we studied in the Appendix A

how these results on periodicity are modified in a more realistic and more complex

strings configuration, confirming our present results.

Symmetries

To proceed, let us focus on the symmetries between the two movers on the string.

Using Eqs. (2.22), we obtain

X ′−x (−t) =
1

1 + tan2 Ψ

((
1− tan2 Ψ

)
X ′+x (t)− 2 tan Ψ X ′+z (t)

)
(2.33a)

X ′−z (−t) =
−1

1 + tan2 Ψ

((
1− tan2 Ψ

)
X ′+z (t) + 2 tan Ψ X ′+x (t)

)
(2.33b)

X ′−y (−t) = X ′+y (t) . (2.33c)

Since X′−(σ − t) = X′(σ, t) − Ẋ(σ, t) we remark that X′−(−t) = −X′−(t), and then

writing the above set of equations in vector notation, we get

X′− (t) = T X′+ (t) , (2.34)

where the matrix T is defined by

T =

 −
1−tan2 Ψ
1+tan2 Ψ

0 2 tan Ψ
1+tan2 Ψ

0 −1 0
2 tan Ψ

1+tan2 Ψ
0 1−tan2 Ψ

1+tan2 Ψ

 =

 − cos (2Ψ) 0 sin (2Ψ)

0 −1 0

sin (2Ψ) 0 cos (2Ψ)

 . (2.35)

This matrix is diagonalised by a change of basis, such that the z-axis is parallel to

the σ = 0 end string. In this basis, we get

X′− (t) =

 −1 0 0

0 −1 0

0 0 1

X′+ (t) . (2.36)
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Thus, X′− (t) is simply given by a π-rotation of X′+ (t) with respect to the axis

parallel to the end string.

Note in particular that the square velocity of the string is

v.v (t, σ) =
1

2

[
1−X′+ (σ+) ·X′− (σ−)

]
(2.37)

=
1

2

[
1−

(
X
′‖
+ (σ+)

)2 −
(
X′⊥+ (σ+)

)2
]
, (2.38)

where X
′‖
+ and X′⊥+ are the components of X′+, parallel and perpendicular to the

(σ = 0) end string, respectively.

2.3.2 The probability of cusps and pseudocusps

Let us recall that cusps appear when the two curves X′+ and −X′− cross each other

on the unit sphere — remembering that |X′+| = 1 = |X′−| as a consequence of the

Virasoro condition. This is equivalent to defining cusps as points reaching, for some

instant t, the speed of light c = 1. Indeed, Ẋ(σ, t) ≡ 1/2 (X′+(σ+) − X′−(σ−)) =

X′+(σ+) = −X′−(σ−) in the case of cusps.

There is a similar event we will address, and we will refer to as a pseudocusp,

which occurs when the two curves X′+ and −X′− are very close (and we will see how

close, for instance around Eq. (2.54) in this section’s last subsection) to each other,

without however intersecting, as in Fig. 2.6a. Pseudocusps have to be considered

firstly because when trying to determine statistically the frequency of cusps, one

might not be able to assess very accurately whether two approaching curves actu-

ally cross each other or if they are simply nearby; similarly pseudocusps can also

arise if one tries to estimate the occurrence of cusps numerically because discretisa-

tion would generically generate grid approximations. In addition, being interested

in Gravity Waves (GWs) emitted by the string’s ongoing events such as cusps, it is

important to also compute the gravitational signals emitted from any highly rela-

tivistic region of the string.

In order to investigate the occurrence of cusps and pseudocusps on the string

over a periodic non-dynamical evolution and the influence of several parameters on

such occurrence, we will study the average positions and standard deviation of X′+

and −X′− on the unit sphere. We will then relate this probability to the string

and network’s parameters in order to determine the characteristics that can lead to

cuspy events. Note that in the following, a “cusp” refers to either an actual cusp or
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Figure 2.3: Cylindrical coordinates about the z-axis and the angles φi(z) for the

description of X′+ on the unit sphere. ∆+ ≡ 1
L

´ L/2
−L/2X

′
+x, as in Eq. (2.51b).

a pseudocusp.

Analytical considerations

Here we define the z-axis as the axis of rotation that relates X′+ and−X′−, namely we

align the z-axis with the X
′‖
+ . Then the vectors X′+ can be written in cylindrical-like

coordinates about this z-axis as in Fig. 2.3, and parametrised by z, yielding

X′+(z) =


(√

1− z2 cosφ1 (z) ,
√

1− z2 sinφ1 (z) , z
)(√

1− z2 cosφ2 (z) , −
√

1− z2 sinφ2 (z) , z
) (2.39)

for z ∈ [zmin, zmax] ⊂ [−1, 1]. The coordinates zmin and zmax are defined such that

the curve X′+ does not enter in the part of the sphere (respectively) below and

above such altitudes. Note that ∀z ∈ [zmin, zmax], there are at least two points on

the curve X′+, as explicitely written in the above equation, but potentially more

if the curve is not as simple. In wavier cases, as in Fig. 2.5b, one would need to

define φi(z), i ∈ {3, 4}, ∀z ∈ [zmin,2, zmax,2], and possibly more of such functions,

so that the whole curve is parametrised by z and described by anglular functions

73



CHAPTER 2. BRANES AND STRINGS 2.3. Cusps and pseudocusps...

(a) Double-valued (b) Quadruple-valued

Figure 2.4: Various X′+ curves parametrised by z. In the simplest case (left), X′+
is described ∀z ∈ [zmin, zmax] by a pair of angular functions φi(z), i ∈ {1, 2}, (as in
Fig. 2.3); each curve (solid and large-dashed) relates to one of these functions. If
the curve is wavier, one needs more functions to fully describe X′+, for instance

(right) φi(z), i ∈ {3, 4}, ∀z ∈ [zmin,2, zmax,2]; each curve (solid, large-dashed, small-
dashed and dotted) again relates to one of them.

φi(z), defined on some intervals inclued in [−1, 1]. Such zmin,j and zmax,j similarly

bound the extension of this part of the curve. In the following of this subsection,

we consider for simplicity the double-valued curve (where only φ1(z) and φ2(z) are

needed) as in Figs. 2.3 and 2.5a, without any loss of generality.

Cusps will appear whenever φ1 (z) +φ2 (z) = π, as represented in Fig. 2.5, which

shows a side view of the unit sphere and a top view of its upper-half. That is why

this is the condition we want to investigate. One has

〈X ′+x〉σ ≡
1

L

ˆ L/2
−L/2

dσ+X
′
+x(σ+)

=
1

2 (zmax − zmin)

ˆ zmax

zmin

dz
√

1− z2 (cosφ1 + cosφ2) (2.40a)

〈X ′+y〉σ ≡
1

L

ˆ L/2
−L/2

dσ+X
′
+y(σ+)

=
1

2 (zmax − zmin)

ˆ zmax

zmin

dz
√

1− z2 (sinφ1 − sinφ2) (2.40b)
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(a) Side view of the unit sphere (b) Top view of the upper half-sphere

Figure 2.5: Various views of the X′+ and X′− curves on the unit sphere, and the
angular description φi(z) in the case of a cusp. The condition φ1 (z) + φ2 (z) = π

is satisfied at the cusp, while φ1 (z) + φ2 (z) > π between two cusps.

where we used a change of coordinate, parametrising the curve with z as in Eq. (2.39),

and where we have dropped the explicit dependence of φi on z for notational sim-

plicity. Recall L is the periodicity of the X′+ loop, which needs not to be the string’s

invariant length L ≡ E/µ and can be different for each component.

Similarly, we can write

〈X ′+xX ′+x〉σ ≡
1

L

ˆ L/2
−L/2

dσ+ X
′
+x(σ+)X ′+x(σ+)

=
1

2 (zmax − zmin)

ˆ zmax

zmin

dz
(
1− z2

) (
cos2 φ1 + cos2 φ2

)
(2.41a)

〈X ′+yX ′+y〉σ ≡
1

L

ˆ L/2
−L/2

dσ+ X
′
+y(σ+)X ′+y(σ+)

=
1

2 (zmax − zmin)

ˆ zmax

zmin

dz
(
1− z2

) (
sin2 φ1 + sin2 φ2

)
. (2.41b)

The sum of Eqs. (2.41a) and (2.41b) leads to

〈X ′+xX ′+x〉σ + 〈X ′+yX ′+y〉σ =
1

zmax − zmin

ˆ zmax

zmin

dz
(
1− z2

)
= 〈1− z2〉z , (2.42)
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thus providing a direct relationship between 〈X ′+xX ′+x〉σ and 〈X ′+yX ′+y〉σ. Adding

Eq. (2.42) to the difference of Eqs. (2.41a) and (2.41b), we get

〈X ′+xX ′+x〉σ =
1

zmax − zmin

ˆ zmax

zmin

dz
(
1− z2

) [
2 cos2

(
φ1+φ2

2

)
cos2

(
φ1−φ2

2

)
− cos2

(
φ1+φ2

2

)
− cos2

(
φ1−φ2

2

)
+ 1
]
. (2.43)

Let us consider the simplifying assumption φ1 (z) ≈ φ2 (z). Note that this approxi-

mation can be easily satisfied when looking at the string with a probabilistic point

of view. Indeed, one can continuously deform the curve X′+ to get a symmetric

curve with respect to the (xz)-plane. If this transformation conserves the statistical

description of the curve, it does not change significantly the probability of the curve

to intersect its image under the π-rotation with respect to the z-axis. What should

be conserved in the transformation is only the proportion of the curve reaching a

certain distance to its mean position. It is possible to continuously deform our

curve maintaining such properties, especially if we are looking at a large population

of strings in which tiny variations on each string are smoothed over the number of

them.

Hence, Eq. (2.40a) becomes

〈X ′+x〉σ ≈
1

zmax − zmin

ˆ zmax

zmin

dz
√

1− z2 cos

(
φ1 + φ2

2

)
, (2.44)

whilst Eq. (2.43) reads

〈X ′+xX ′+x〉σ ≈
1

zmax − zmin

ˆ zmax

zmin

dz
(
1− z2

)
cos2

(
φ1 + φ2

2

)
. (2.45)

Let us note that if the string is straight,21 the curve described by X′+ is reduced

to a point at the x = 1 pole ; the further the string deviates from a straight line,

the further the X′+ curve will deviates from this pole. Only wavy strings could thus

generate a curve that spans further than the x > 0 half-sphere, that is further than

21It is interesting to note that our argument here holds for strings stretched between two fixed
points. In particular, a not so wavy string in such a configuration would present on the unit sphere
two curves for X ′±, each one centred on a different point lying on the x-axis (in our choice of frame),
such that 〈X′+〉σ = −〈X′−〉σ 6= 0, meaning they can avoid each other. On the contrary, a loop
must have these two curves centred on the centre of the unit sphere, with 〈X′±〉σ = 0, implying
that they cannot easily avoid each other as long as they remain continuous, that is as long as they
are no kinks on the string. Said differently, each curve cannot lie entirely on a half sphere in the
loop case [41, Chapter 6], while it can in the case studied here.
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the (φ1, φ2) ∈ [0, π/2[2 half-sphere. Thus, the right-hand-side of Eq. (2.44) is positive

and it becomes smaller and smaller for wavier strings without changing sign. The

condition we are interested in here is (φ1 + φ2) ≥ π, since this would indicate that

the curve described by X′+ on the unit sphere spans over more than a whole half-

sphere, implying a crossing with X′− by symmetry. Namely we would like to find

the parameters for which there is a high probability that exists a z ∈ [zmin, zmax]

such that φ1 (z) + φ2 (z) ≥ π, or equivalently such that

cos

(
φ1 (z) + φ2 (z)

2

)
≤ 0 . (2.46)

Noting that |zmin| ≤ 1 and zmax ≤ 1, we have 0 ≤ 1− z2 ≤ 1 for all z ∈ [zmin, zmax]

and hence we can rewrite the above condition as

√
1− z2 cos

(
φ1 (z) + φ2 (z)

2

)
≤ 0 . (2.47)

The average of this quantity is given by Eq. (2.44) and the fluctuations about this

average are given by Eq. (2.45). In particular, the standard deviation is

σ2

(
√

1−z2 cos((φ1+φ2)/2)) ≈ 〈X
′
+xX

′
+x〉σ − 〈X ′+x〉2σ . (2.48)

Thus, we have the average (which is positive) and the standard deviation of a quan-

tity, for which we want to calculate the probability to be somewhere negative. This

is likely to happen if the standard deviation is larger than a significant fraction of the

average. This means that the probability of the quantity of interest being negative

is significant when

α σ2

(
√

1−z2 cos((φ1+φ2)/2)) &
〈√

1− z2 cos ( (φ1 + φ2)/2 )
〉2

x
, (2.49)

with α being between 1 and 5. It corresponds to a few times the standard deviation

being larger than (or comparable to) the average. To illustrate the idea, let our

quantity X ′+x follow a gaussian distribution; then, for instance α = 2 would mean

that a string should present a significant number of cusps if Eq. (2.47) was satisfied

for about 2.5% of the points on the string — 2σ corresponding to a 95% confidence

level.

Thus, using Eqs. (2.44) and (2.48) we find that there is a significant probability
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of having cusps provided

〈X ′+xX ′+x〉σ &
1 + α

α

(
|∆|
σm

)2

=
1 + α

α
∆2

+ , (2.50)

where we have used that X′+ is periodic in L ≡ 2mσm (from Eq. (2.31) and below),

defined

∆ = (∆, 0, 0) ≡ X(σm, t)−X(0, t) (2.51a)

∆+ ≡
1

L

ˆ L/2
−L/2

dσ+X
′
+x (σ+) and ∆− ≡

1

L

ˆ L/2
−L/2

dσ−X
′
−x (σ−) , (2.51b)

and used the relations ∆+ = −∆− and ∆/σm = (∆+ −∆−)/2 = ∆+. This is a key

result as it gives a simple way to discriminate between cuspy and non-cuspy strings,

simple in the quantities to compute and in the physical meaning behind inequality

(2.50).

The prefactor (1 + α)/α lies somewhere between 1 and 2, the latter being too

conservative (it corresponds to α = 1, meaning there should be cusps only if more

than 15% of the curve satisfy Eq. (2.47)) and the former not constraining enough

(where α � 1, that is a very small fraction of the curve satisfying Eq. (2.47) is

sufficient to generate cusps along the string).

Remember that we have defined the z-axis so that the heavy string at the σ = 0

junction is aligned along this z-axis. Equation (2.50) implies a minimum distance

reached by the x-component of X′+ (and −X′−) from its average circle, defined as

the circle in the (yz)-plane whose center is at a distance ∆+ from the centre of

the sphere, on the x-axis. This equation can be also understood as implying a

boundary on how irregular the derivatives of the two movers have to be to generate

a substantial amount of cusps.

In order to make a link with the string network’s and the individual string’s

parameters, let us first recall that ∆ is the distance between the two ends of the

string, stretched between the two junctions. Rescaling ∆ by the parameter length

of the string σm, this gives the distance in the unit sphere between the two average

circles for X′+ and −X′−. At a fixed length, if ∆ increases, the two circles are

shifted away and the probability of having cusps decreases; at fixed ∆, if the length

increases, the cumulated length of the curve’s parts reaching the minimum distance

increases too so the number of cusps becomes larger. Hence, the number of cusps

is lower for straighter strings. Moreover, if the string has large-amplitude waves,
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the curves X′+ and −X′− deviate from their average position and the number of

cusps increases. Therefore, strings with large waves are expected to have more cusp

events. At a fixed length, if the curves have less large waves, they will exhibit a

larger amplitude and thus there will be more cusps. So, a long string with large-

amplitude waves should exhibit more cusps than a short straight string or a small-

scale structured string.

We want to stress again this is a qualitative analysis of a non-dynamical non-

interacting string with Y-junctions, whose aim is to estimate the number of cusp

events. Still, it is important to identify the relevant parameters in such setups and

to understand their influence. This will be done in more details in the following

analysis presented mainly in Section 2.3.3 and linked to some of the usual network

and string parameters [45] in its last subsection.

Pseudocusps and velocity

Let us recall that a pseudocusp is defined as a point at which the left- and right-

movers’ derivatives 3 -vectors X′+ and X′− are very close to each other, enough for

the point to be highly relativistic, but not exactly equal to each other. We define

σclos.
± = σclos. ± tclos. to be the null coordinates for which these two vectors are the

closest in this neighbourhood, and denote by θc the angle between the two vectors

at σclos.
± . We also denote

lµ = Ẋµ(σclos., tclos.) = 1/2
(
Xµ

+(σclos.
+ )−Xµ

−(σclos.
− )

)
(2.52)

and δµ = 1/2
(
Xµ

+(σclos.
+ ) +Xµ

−(σclos.
− )

)
, (2.53)

the half-sum and the half-difference between the left- and right-movers’ 4 -velocities,

respectively. Note that, despite what it looks like, we here call lµ the half-sum since

the vectors we are interested in are X ′µ+ and −X ′µ− .

The 4 -vector lµ is the 4 -velocity at the point of interest and it is a null vector

in the cusp case. In the case of pseudocusps, the time-component l0 is also equal to

1, but the norm of the 3 -velocity of the string at that point (σclos.
+ , σclos.

− ) equals

|li| =
√

1 + cos(θc)

2
≈ 1− θ2

c/8 ; (2.54)
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however, δµ is space-like, with δ0 = 0 in the time gauge, and

|δi| =
√

1− cos(θc)

2
≈ θc/2 . (2.55)

The angle θc can be thought of as measuring the softness of a relativistic part of the

string. The larger it is, the smaller the velocity and the softer the pseudocusp; for

θc = 0, the event is an actual cusp and the velocity reaches c = 1.

We would also like to roughly evaluate the number of pseudocusps statistically.

The problem has to be looked at using the unit sphere description along with the

mean and standard deviation of the curves drawn by X′+ (and −X′−). Let us first

recall that a pseudocusp is related to the X′+ curve approaching its symmetric coun-

terpart without crossing it, while a cusp is linked to the curve crossing its counter-

part. One can then define for each z the angle θ(z) ≡ π − (φ1(z) + φ2(z)) (or the

appropriate φi(z)), such that θ = 0 for cusps and θ < 0 between cusps. Every pair

of cusps and every pseudocusp is thus related to a local minimum of the angle θ:

if this minimum is positive, as in Fig. 2.6a, the string presents there a pseudocusp,

and if it is negative, as in Figs. 2.6b and 2.6c, there is a pair of cusps. In addition,

let us define a narrow pair of cusps as a pair for which the minimal angle reached

between the cusps is small (in the negative values), in opposition to a large pair of

cusps, for which the minimum reached is large (and negative). In the first case, the

curves cross each other and remain close before crossing back, as shown on Fig. 2.6b,

while on the second one, after the crossing, the curves spread far from each other

before coming back to their natural half-sphere, as in Fig. 2.6c.

In terms of the relative occurrence of cusps and pseudocusps, a narrow pair

of cusps should be almost as frequent as a pseudocusp, since the probability of

a small, positive minimum is almost the same as that of a small, negative one.

Thus, a string with cusps should also present pseudocusps. In addition, because

minima are more likely to be closer to the mean value of the distance, narrow

pairs should be more frequent than large ones. So one can naively think that there

should be a bit more than twice as many cusps as there are pseudocusps (roughly,

in addition to a few large pairs, as many narrow pairs as there are pseudocusps).

Still, this highly depends on the ratio of the standard deviation by the mean of X′+:

a large ratio leads potentially to many more large pairs of cusps than narrow ones

or pseudocusps. Even more importantly, these proportions are strongly influenced

by the definition of pseudocusps, namely by the velocity threshold for a piece of
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(a) Pseudocusp. θ & 0. (b) Narrow pair of cusps. θ . 0.

(c) Large pair of cusps. θ < 0.

Figure 2.6: Different cases of cuspy events and the associated local minimum of the
angle θ ≡ π − (φ1 + φ2) between the curves X′+ and X′−: (a) a pseudocusp, where
θ ’s local minimum is positive and small; (b) a narrow pair of cusps, where θ ’s local
minimum is negative and small; (c) a large pair of cusps, where θ ’s local minimum

is negative and large (in absolute value).
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string to be a pseudocusp: a low threshold gives many more pseudocusps for the

same number of cusps. Since our definition here is somehow arbitrary and would

need additional work to fix a sensible threshold with respect to the emission of

gravitational waves, no strong conclusion can be drawn from such considerations.

2.3.3 Numerical simulation

Method

We develop a simulation of the previously described configuration in order to check

the considerations made and to evaluate the occurrence of cusps and pseudocusps.

Our code depends on both the string network’s and the individual string’s param-

eters — namely ξ and ξ̄ — and is based on the following assumptions. Firstly, the

string’s ends are fixed on the heavy strings, being themselves insensitive to the mo-

tion of the light string and to any transfer of momentum, and chosen to be parallel

for simplicity. In addition, the quasi-periodic cases are neglected and the position

and velocity of the string at t = 0 are defined by a Fourier series (i.e. by the ampli-

tude of each mode). These amplitudes are all drawn in [−hm, hm],22 where hm is a

prefixed highest value, and the modes are the n first harmonics of the string (up to

n nodes). One has thus

X(σ, 0) =
σ

σm
∆ +

[
n̄x∑
k=1

cxk(hm) cos

(
2πk σ

σm

)
+ sxk(hm) sin

(
2πk σ

σm

)]
ex

+

[
n̄y∑
k=1

cyk(hm) cos

(
2πk σ

σm

)
+ syk(hm) sin

(
2πk σ

σm

)]
ey

+

[
n̄z∑
k=1

czk(hm) cos

(
2πk σ

σm

)]
ez , (2.56)

where ∆ = (∆, 0, 0), n̄i are random integers uniformly drawn in J1, nK and all cik(hm)

and sik(hm) yield random real numbers uniformly drawn in [−hm, hm]. n and hm

22A uniform distribution in the interval [−hm, hm] has been initially encoded. Note though that
there is a bias: indeed, too large amplitudes can sometimes lead to velocities temporarily above
c = 1 (depending on the amplitudes drawn). Still, the evolution equation implies that, if at t = 0
the velocity is well-behaved and below c = 1, it will remain so during the whole period. The
wrongly-behaved strings are dismissed, therefore distorting a posteriori the uniform draw within
the amplitude interval. It is also important to remark that this choice may affect the probability of
cusps and pseudocusps, as it may favour high frequencies in comparison to, for instance, Gaussian
distributions; still, this is not a problem as our goal here is to look at the influence of some
parameters on the number of cuspy events and not to deliver an exact prediction of this number.
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Figure 2.7: ξ̄ and ζ, two of the network’s length scales.

are input parameters of the simulation; they set up the oscillatory behaviour of the

string, fixing a limit to the highest frequency and to the amplitude reached in its

Fourier decomposition.

The parameter length σm and the interstring distance ∆ are also inputs in the

simulation. Indeed, to geometrically set up the system, one needs the end-to-end

distance; additionally, the parameter length of the string is related to the funda-

mental frequency and to how wavy or wiggly the string can be. Clearly, ∆ bounds

σm, since the string cannot be shorter than the distance between its end points; one

can also see that for σm → ∆ (and σm > ∆), the curves X′+ and −X′− get confined

away from each other in the pole regions and ultimately shrink to a point in the

case σm = ∆. Since we will be mainly interested in their ratio, we chose to fix ∆

by assigning to the end points invariable coordinate triplets while promoting σm as

one of the main parameters of the code.

The network’s parameters are often chosen to be ξ, ξ̄ and ζ, representing the

average interstring distance in the network, the coherence length scale (or large-scale

structure) and the wiggliness (or small-scale structure) ; see for instance, Ref. [45].

Equivalently, ζ is related to small wiggles and to edgy bends on the string, while ξ̄

characterises large-amplitude waves. We denote by ripple both of these variations

along the string, wiggles and wiggliness being related to the small-scale structure

and thus to ζ, while (large-amplitude) waves and waviness refer to the large-scale

structure, that is, to ξ̄. Fig. 2.7 gives a schematic representation of these ζ and ξ̄

length scales.

In our simulation, ∆ can be identified as the distance ξ23 between two heavy

23We here consider for simplicity an overall interstring distance ξ — and generally only one set
of parameters. As discussed in this section’s last subsection, one can also consider that the light
string and the heavy string networks have different characteristics, leading to the definition of ξlight
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strings, even though what matters here is the ratio ∆/σm. Note that this ratio could

also be related to the large- and small-scale structure since a longer string has to

exhibit more ripples, whatever the size of these ripples is. Here, there is no small-

scale structure strictly speaking since the number of modes is quite low. So the

wiggliness ζ is not defined and its influence is therefore not addressed. In addition,

there is no clear input for the large-scale structure and its characteristic length ξ̄

is to be linked with several other parameters such as the number and amplitude of

the vibration modes at t = 0 or during a period. A crude estimation could be a

fourth of a wavelength of the highest frequency mode present on the string, that is

ξ̄ ∼ σm/2n̄, where n̄ is the highest frequency mode on the string (and not the input

n, which is only a bound on the highest possible mode). One could also consider

the amplitude of the waves, for instance estimating the standard deviation of the

y- and z-components of the position of the string at t = 0. The geometric mean

of these two figures would represent even more accurately the characteristic size of

a wave on the string, taking into account the two directions of extension of such

large-amplitude waves.

Among the other ways to evaluate how wavy the string is, is to use the stan-

dard deviation of the x-component of the left- and right-movers’ velocities, namely

〈X ′+xX ′+x〉 − 〈X ′2+x〉 (and the same with X ′−x) since it quantifies how far and how

often the string goes away from a straight(er) position. Indeed, the straight line is

represented by a constant X′+ and −X′−, while a large standard deviation from this

pointlike curve means strong variations in the movers’ amplitudes and smaller radii

of curvature along the string.

Our simulation thus starts from these assumptions and parameters and a sig-

nificant number of different string configurations is simulated. Each string’s (non-

interacting) evolution is then computed over a period. The string is then decom-

posed in a large number of points and the period is decomposed in time lapses.

One can compute the norm of the velocity vector Ẋ(σ, 0), using the tangent vector

X′(σ, 0) and the Virasoro condition Eq. (2.10b) (which is thus automatically sat-

isfied). In order to completely fix the initial conditions, that is to fix the initial

velocity vector, we rotate it24 within the plane orthogonal to the tangent vector

X′, thus satisfying by construction the Virasoro condition Eq. (2.10a). To assure

continuity and periodicity, this rotation angle α(σ) is given by a Fourier decomposi-

tion: similarly to the initial position, a number of amplitudes are uniformly drawn

and ξheavy. In such a scenario, ∆ would be related to ξheavy only.
24Before rotation, the velocity vector is such that the boundary conditions are satisfied.
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in an interval [αm, αm] and one gets α(σ) =
∑n̄α

k=1 s
α
k (αm) sin

(
2πk σ
σm

)
. One has now

obtained X′(σ, 0) and Ẋ(σ, 0), ∀σ, and the equation of motion Eq. (2.10c) leads

to the decomposition X′±(σ) = X′(σ, 0) ± Ẋ(σ, 0), ∀σ ∈ [0, 2σm]. This yields the

complete (non-interacting) evolution of the string over a period of time. Note that

it is checked that the various constraints, such as the Virasoro conditions, are well

satisfied within the whole (t, σ) ∈ [0, σm]2 plane.

The number of cusps is found by analysing the curves on the unit sphere and

looking for actual crossings; the velocity is then computed and checked to reach

c = 1 within the numerical uncertainties — which are generally25 below 10−6. The

pseudocusps are all the other highly relativistic areas; here, we consider as “highly

relativistic” any velocity above 0.999 c. Note that pseudocusps velocities are in a

vast majority26 in the range [1 − 10−3, 1 − 10−6], helping to split between cusps

(1 − v < 10−6) and pseudocusps (10−6 ≤ 1 − v ≤ 10−3). Finally, it is checked that

pseudocusps correspond to configurations with a very small gap between the two

curves on the unit sphere; the angle θc between the two vectors X′+ and −X′− is

computed and its minimum found (within the grid approximation).

Even though our analysis is performed within a specific setup, our qualitative

results remain valid in the more realistic string configurations. The slow motion of

the heavy strings can be ignored as compared to that of the light strings, whilst

the periodicity can be safely considered as generic. The absence of a dynamical

analysis and interaction between strings, chosen for the simplicity of the computa-

tions, should not modify the way the network parameters influence the occurrence of

cusps and pseudocusps. In conclusion, our setup could represent a network of heavy

and light strings interacting at a time scale which is not too small compared to the

period of the light string’s movement. Hence, the correlation between the network

parameters and the occurrence of cuspy events should be valid independently of

whether our simplifying assumptions are relaxed or not. Appendix B presents some

example snapshots of a simulated string.

Description of pseudocusps

In the following, we call computed velocity the one from the simulation’s direct

evaluations, namely the highest velocity locally reached as it has been computed,

25About 10% of the cusps yield velocities outside a 10−6-wide band around 1, and 3% outside a
10−5-wide band.

26More than 80% of the pseudocusps’ velocities lies below 1−10−5 and about 90% below 1−10−6.
Figures are presented here for the computed velocity.
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Figure 2.8: Pseudocusps: theoretically estimated velocity versus computed velocity.
Note that 80% of the pseudocusps present a difference between the two velocities
below 10−4, meaning that it is represented here by a point in the red shaded area.

and theoretical velocity the value obtained using our model of pseudocusps, namely

the one we got using the approximation (1− θ2
c/8 + θ4

c/384) from Eq. (2.54).27 One can

note that the latter cannot be above 1. We obtain a very good agreement between

these two estimations of the strings’ velocity at the pseudocusps.

Figure 2.8 shows, for almost 4300 pseudocusps28 the computed velocity versus

the theoretically estimated one. The red line draws the equality case and one can

immediately note that vth ≤ vcp (except in very few cases almost not visible on this

plot). This is probably due to the methods used: in the first case, the velocity has

to be above 0.999 whereas in the second one it is always below 1. In addition, the

computed velocity is subject to quite a lot of grid and computational uncertainties

and can thus reach 1 (or even a higher value) fairly easily.29 Finally, more than 80%

present a difference between the two velocities which is below 10−4.

Note though that all these discrepancies are actually gathering on the same cases.

Indeed, among the 6% pseudocusps with theoretical velocity below 0.999 c, 80% give

a computed velocity above 1−10−6. Also, almost 60% of the pseudocusps presenting

velocities’ discrepancies larger than 10−4 have either an abnormally small theoretical

27The approximation used here takes into account one more term, even if it is very often in-
significant compared to the numerical uncertainties.

28About 8% of the almost 4700 pseudocusps studied here are not represented on this plot.
29We found almost 10% of the pseudocusps’ computed velocity above 1 + 10−6. Recall that our

uncertainties are generally of the order of 10−6.
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Figure 2.9: Number of cusps (red) and cuspy phenomena (blue) vs. ratio R(4.1) =
〈X′+xX′+x〉/1.24 ∆2

+ . The black dashed line standing at R = 1 is splitting the plane in
two parts: non-cuspy strings for low ratios and cuspy strings for high ratios.

velocity or an abnormally large computed velocity.

Occurrence of cusps and pseudocusps

In order to check if the criterion set up in Eq. (2.50) is actually discriminating

between configurations with cuspy phenomena and those without any cusp or pseu-

docusp, we simulated and studied a significant number of strings (237) within a

variety of parameters. From the X′+ and −X′− curves, we have calculated both the

number of cusps and pseudocusps and the mean and standard deviation of X′+ in

the x-direction. A very good agreement has been found between the presence of

cuspy phenomena and the completion of our criterion.

On Fig. 2.9 we plot the number of cuspy phenomena versus the ratio

R (α = 4.1) ≡
〈X ′+xX ′+x〉
α+1
α

∆2
+

∣∣∣∣
α=4.1

=
〈X ′+xX ′+x〉
1.24 ∆2

+

, (2.57)

where the constrain parameter α can take any arbitrary value. Here it has been a

posteriori fixed to 4.1 +0.7
−1.6. Recall that once α is fitted, we are expecting to have only
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strings with no cusps or pseudocusps for a ratio R(α) < 1, and strings with cuspy

phenomena for R(α) > 1. Phrased differently, we should have neither non-cuspy

strings with R(α) > 1, nor cuspy ones with R(α) < 1.

Note though that our statistical approach — both from the definition of the ratio

R(α) and from the number of strings considered — will probably lead to strings in

the tail of the distribution. Indeed, even with the most reliable choice of α, we are

expecting to find a small range of value around 1 for which there are both strings

with and without cuspy phenomena. If such an interval around 1 is not too large, this

is not in contradiction with our previous analysis and does not affect the coherence

of the results presented here.

Each simulated string is represented by two vertically aligned30 dots: we use the

red one to read on the vertical axis the number of cusps, and the blue one for the

number of cuspy phenomena (both cusps and pseudocusps). The shaded coloured

vertical lines are guides to read and have no physical meaning; it also helps to track

points whose vertical coordinate is off the plotted range. The choice of the value

of α and of where we divide the plane in two has to be discussed in view of the

results. Before getting into the details, one can notice that the chosen value indeed

fits with our set of points: on the left of the black dashed line standing at R = 1

are mainly non-cuspy strings, while on the right one we can almost only find cuspy

strings. In addition, as we foreseen the range in which one can find both behaviours

is restricted — roughly between 0.9 and 1.05. This means that strings satisfying the

inequality

R (α = 4.1) & 1 ⇔ 〈X ′+xX ′+x〉 & 1.24 ∆2
+ (2.58)

would generally present cusps, and vice-versa.

To be more accurate, let us zoom on what is happening around 0.9–1.1 and let

us discuss the ways to draw the limiting ratio. One may note that different rules can

be set up to cut the plane in two parts (one without and another one with cusps).

Firstly, one can decide to look at the highest ratio associated with a string presenting

no cuspy events in order to fix the separating ratio (let’s call it the Highest with No

Cuspy Events ratio, below the HNCE). One can also consider the string with the

lowest ratio and at least one cusp or pseudocusp (giving the Lowest With Cuspy

Events ratio, or LWCE). Remark that since the HNCE is higher than the LWCE,

there is a ratio interval in which we found both strings with and without cusps —

again, as was expected. Alternatively, one can choose to look at cusps only and

30Since the two dots stand for the same string, the ratio on the horizontal axis is the same.
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(a) Cusps only (b) Cusps and pseudocusps

Figure 2.10: Zoom around the low numbers of cuspy events. The vertical lines mark
where the different splitting rules divide the plane.

follow the same method, giving two other boundary ratios (namely the HNC and

the LWC, “C” standing for Cusp(s)). Note that these two new values are higher

than their cuspy phenomena counterparts as pseudocusps are more likely to happen

than cusps for borderline configurations. One thus gets four different ratio values

which can equally be considered as valid turning points. One also has two intervals

within which cuspy phenomena and cusps appear.

Depending on which rule one decides to apply, one gets a different line splitting

the plane, giving a different value for α. Again, this does not affect our conclusions

since we obtained quite close values, between 0.9 to 1.05.31 In each of the two in-

between intervals, we obtained strings with a small number of cuspy phenomena:

less than 4 cusps or less than 5 pseudocusps. Also, for larger ratios, we only get very

few strings presenting so few cuspy phenomena and these have all reasonably small

ratios. These results confirm the expected behaviour, apart from the exceptional

strings lying in the tail of the distribution and thus not giving the typical response,

which are within an anticipated range.

Figure 2.10 focuses on the bottom left corner of Fig. 2.932 and has been divided

into two plots: on the left and in red, Fig. 2.10a shows the number of cusps only

versus the ratio R(4.1) and on the right and in blue, Fig. 2.10b does the same for all

cuspy events. On each of them, two of the four aforementioned ratios are represented

31We decided to neglect the two strings (over 237) presenting exceptional behaviours: one with
no cusp and a quite high ratio — compared to the second-highest ratio for a string with no cusp —
and one with a very large number of pseudocusps but a low ratio and no cusp. They are thought
to be statistically irrelevant.

32Again, the shaded coloured lines connecting points are guides for reading and help to track
points off the plot.
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by solid coloured lines: two red lines for the LWC and the HNC on Fig. 2.10a and

two blue ones for the LWCE and the HNCE on Fig. 2.10b. Note that on Fig. 2.10a

is also displayed a blue dashed line marking the HNCE ratio (i.e., the highest of the

two ratios for all cuspy phenomena); it is lying roughly in the middle of the interval

considering cusps only (on the graph, the two solid red lines).

We would like to determine a value for the ratio which splits the plane into two

regions (without and with cuspy phenomena), knowing that in a small neighbour-

hood around this value one should expect to find irregularities, which we hope to

be sufficiently rare and small. One can see that the HNCE ratio satisfies our needs:

� on the left (i.e. for smaller ratios than the value of the HNCE) one can find

only strings with no or one cusp, and strings with at most five cuspy phenom-

ena — most of them presenting no cusp and no pseudocusp);

� on the right (i.e. for higher ratios) lies only strings with at least two cusps and

pseudocusps, most of them presenting more than three cusps and five cuspy

phenomena.

In addition, recall that our analytic work to find the ratio R(α) is identifying

cusps and pseudocusps (see Section 2.3.2), so the most meaningful turning point

values we found are the ones related to all cuspy phenomena (HNCE and LWCE).

Hence the choice we made at the beginning to set α = 4.1. It is important to notice

that while the number of pseudocusps depends on their a priori, arbitrary definition,

in particular on the threshold velocity (1−10−3), the value for α does not, as can be

seen from the values of the LWC and the HNC, which are within 5% of the HNCE.

Also, while Eq. (2.50) gives a solid criterion, there is room around R(α) = 1 for

slightly skewed strings lying in the tail of the distribution (strings with a few cuspy

events but for which R(α) . 1 or without any cuspy event although R(α) & 1),

but again this is due to the statistical treatment here and does not affect our main

result.

While the value of α depends on the sample used to fix it, what is crucial here is

that there is a value such that this ratio allows to discriminate between cuspy and

non-cuspy strings, and that this value somehow lies within 2.5 and 5 (corresponding

here roughly to choosing the threshold to be the HNC or the LWCE), whatever the

sample. More strings, implying more strings in the tail of the distribution, would

yield smaller LWC(E) and higher HNC(E). Still, one would fix a turning point

around the same values, for instance using a combination of these limits. Again,

the statistical point of view assumed here means that the tail of the distribution
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populates a zone around this turning point, without limiting its interest. Its precise

value is somehow arbitrary; whether it corresponds to the HNCE is not crucial, and

has to be decided a posteriori anyway.

We have thus set up here a quick and efficient method to discriminate between

cuspy strings and non-cuspy ones.

Number of cusps and pseudocusps

One can now try to find which parameters influence the number of cusps and pseu-

docusps on a string. As we have seen already, there is a strong dependence on the

interstring distance ∆ = ξ and the parameter length of the string σm — or rather on
∆/σm — as well as some important correlation with the mean squared x -component

of the string’s movers’ derivatives 〈X ′+xX ′+x〉 and 〈X ′−xX ′−x〉.
A few remarks first. Recall we study how the quantity of cusps or pseudocusps

is influenced by the parameters of the strings network. Therefore, we do not try

to compute the number of cuspy events in a real, physically accurate system. The

abundances obtained below should then be interpreted with respect to one another,

and not as absolute figures. In addition, our simulation choices, in particular the

spectrum of vibration modes at t = 0, seem to favour strings with a large number

of cusps. Indeed, a uniform distribution yield higher amplitudes for high frequency

modes than, say, a Gaussian distribution, thus favouring high velocity points. This

might explain, at least partly, the difference between the usual, analytic (loop) mod-

elling, with one to two cusps [43], and our simulation, with up to hundreds of cuspy

events. Another explanation might also be the understandable need, in analyti-

cal derivations, for simpler strings, as well as the different physical configurations

(namely loops). In fact, one could argue that this bias, yielding a whole gradation

from none to many cusps, allows for a more accurate investigation of the influence

of the strings network parameters.

In order to understand these relations in more detail, we first analyse the influ-

ence of the Fourier modes initially implemented in the string and found that only

the x-modes33 influence the number of cusps, both via the number of modes n and

their amplitudes A
(x)
k , k ∈ J1, nK. Indeed, the x-component of the string’s initial

position vector Xx(σ, t = 0) has been decomposed in n Fourier modes, with A
(x)
k the

amplitudes. On Fig. 2.11, we plot the root mean square of the amplitudes, that is

33The y- and z-modes are not found to be correlated to the number of cusps. The number and

amplitudes of these modes are only indirectly linked to those of the x-modes via
∣∣X′+∣∣2 = 1.
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Figure 2.11: Root mean square amplitude of the x-modes versus number of
x-modes. From red to purple, strings with 0 to between 120 and 1000 cuspy events.√

1
n

∑n
k=1(A

(x)
k )2, versus the number of modes; a colour gradient is representing the

strings grouped according to the number of cuspy events (from 0 in red to above 120

in purple). It is first obvious that more modes imply a lower RMS amplitude. This

is due to the physical constraint to have no supraluminal points on the string.34

In addition, one can note that a low number of x-modes imply a low number of

cusps, especially for low RMS amplitudes. Also, many modes generate strings with

statistically many more cusps. For a fixed number of modes, higher amplitudes are

associated with strings with more cusps, whereas at a fixed RMS amplitude, more

modes imply more cusps. This is to be expected for several reasons. First of all,

a higher RMS amplitude as well as more modes imply more energy in the string’s

vibrations. More energy means a higher average energy and favours highly relativis-

tic points. On a more specific point of view, these high amplitudes and numerous

modes imply large deviations from a straighter line, both for the physical string and

for the curves X′+ and −X′−. This implies a wavier string, hence more crossing on

the unit sphere.

34This constraint is enforced during the evolution of the string but has to be carefully checked
at t = 0.
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Figure 2.12: Number of x-modes versus root mean square velocity of the string.
From red to purple, strings with 0 to between 120 and 1000 cuspy events.

One can then study the correlation with the RMS velocity of the string, which

is related to what we just mentioned; we plot it on Fig. 2.12 the number of x-modes

versus the (time-averaged) root mean square velocity (along the string).35 Again,

a colour gradient is representing the strings grouped according to the number of

cuspy events (from 0 in red to above 120 in purple). One can first notice that the

RMS velocity reaches a maximum around 0.7–0.71. This is due to the Virasoro and

gauge conditions used on the finite string; indeed, it implies for the RMS velocity:

v2
rms ≤ 1/2 ⇔ vrms ≤ 1√

2
' 0.707 (the equality being realised for loops).

In addition to the previously studied correlation between the number of cuspy

events and the number of x-modes, there is a strong dependence on the RMS velocity

of the string, as expected. One can split the set of strings into four groups according

to their RMS velocity: below 0.58, between 0.58 and 0.67, between 0.67 and 0.69

and above 0.69. While the first subset of string shows no cusps or pseudocusps, the

last one contains almost all the strings with more than 120 cuspy events and almost

35We here call ‘RMS velocity’ the time average of the root mean square velocity computed along
the string, that is, on σ. Indeed, while one could have computed the full RMS velocity, as in
〈Ẋ2〉σ,t ∼

˜
dσ dt Ẋ2(σ, t), it made more sense to compute the time average of a quantity related

to the energy of the string, that is, the time average of the RMS velocity (along the string), as in
〈EK〉t where E2

K(t) ∼ 〈Ẋ2〉σ(t). Both are bounded by
√

1/2.
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Figure 2.13: Bar chart of the percentage of the strings within a CP subset whose
RMS velocity lies in each interval. Same colour representation as previously.

no string without any.

To be more explicit, for each subset of strings grouped according to the number

of cuspy events, Fig. 2.13 shows the percentage of strings in each interval of RMS

velocity. One can indeed notice that in the highest interval (that is for RMS velocity

above 0.69) one only finds a few of the strings without cusps or pseudocusps (about

8%) but most of the strings with more than 50 cuspy events (80 to 90% of them). We

also computed the average number of cuspy events in each of the four RMS velocity

subsets and obtained the results given in Table 2.1. There is again an interesting

RMS velocity range
Average number of

cuspy events per string
[0.50, 0.58] 0. ± 0.
[0.58, 0.67] 4.3 ± 1.5
[0.67, 0.69] 21 ± 3.9
[0.69, 0.71] 130 ± 16

Table 2.1: Average number of cuspy events per string,
within each range of RMS velocity.

correlation between the RMS velocity of the string, which is closely related to the

energy of the string, and the number of cusps and pseudocusps.
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Figure 2.14: Radius of curvature and its standard deviation. Same colour repre-
sentation. On each subgraph, the solid line marks the mean within the subset and

the shaded area represents 5 times the standard error.

Finally, and in order to return to a previously mentioned concern, one might want

to look at the correlation with the radius of curvature along the string.36 Indeed,

it can in turn be linked to the large-amplitude waves’ characteristic length since it

represents the average size of waves on the string; note though that it is several

times larger than the characteristic length since it also takes into account the flat

parts of the string between such waves.

With this in mind, we plot the standard deviation versus the (mean) radius of

36We are here dealing with the radius of curvature averaged along the string. For clarity, in the
following we call (mean) radius of curvature the time average of the already space-averaged radius
of curvature for each string separately; the standard deviation of the radius of curvature is then the
deviation during a period of time from this average. We thus end up with two figures per string.
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curvature for each string. We split up the set of strings according to the number

of cuspy events and also draw the superposition of all the subgraphs. Figure 2.14

shows, from top to bottom and from left to right, the ten subgraphs along with the

overall graph in the bottom left corner. For each separate subset has been computed

the mean and the standard error37 of the radius of curvature, showing how it evolves

with the number of cuspy events. They have been added via a solid line on the mean

and a coloured shaded area around it encompassing 5 times the standard error.

First of all, one can notice that the standard deviation grows almost linearly

with the mean radius of curvature, albeit with some dispersion at large values.

More interestingly, the radius of curvature is smaller for strings with many cusps:

this shows again the foreseen correlation according to which a wavier string presents

more cusps and pseudocusps. This can be seen from the overall graph, on which for

instance points with a radius of curvature larger than 200 have generally less than 5

cuspy events, most of them having none. It can also be deduced from the subgraphs

in Fig. 2.14. More precisely, the mean of each subset is decreasing with the number of

cuspy events: from 210 for non-cuspy strings to 75 for very cuspy ones. The standard

error is also decreasing, apart from the less populated subsets (for instance, subsets

of strings with 1 to 5 cusps and pseudocusps have larger standard errors than the

one for non-cuspy strings since the latter includes many more strings).

Correlation with the parameters of the network

As mentioned previously, we are mainly interested in two networks’ parameters:

the interstring distance ξ and the coherence length ξ̄. We have defined ∆ to be

the distance between the junctions, hence it could be considered as the interstring

distance (since it is the distance between two heavy strings) but physically, its

ratio with the parameter length is more relevant. In our simulation, the end-to-end

distance is fixed and the parameter length of the string plays a scaling rôle. Indeed,

it turns the ratio ∆/σm into our length parameter since it gives the sum of the

average vectors 〈X′+〉σ and 〈X′−〉σ — which is along the x-axis — in the unit sphere

description. We can thus associate the interstring distance with this simulation’s

parameters ratio

ξ ∼ ∆

σm
. (2.59)

37Here, the mean and the standard error are computed among the strings of the same subset
on the (mean) radius of curvature, giving us two figures for each subset. Note that we define the
standard error as σ√

Ns
where σ is the standard deviation in the subset and Ns is the number of

strings in this subset.
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In the case of a double network consisting of both heavy and light strings, each one is

associated with a set of parameters: ξlight, ξ̄light and ξheavy, ξ̄heavy. In agreement with

the configuration we are studying, our analysis does not take into account the light

string network’s interstring distance ξlight but only the heavy one’s via ξheavy ∼ ∆/σm.

The definition of the coherence length is more subtle for several reasons. First of

all, our simulation does not input directly a typical length apart from the minimal

wavelength of the vibrations on the string. Instead, random numbers are drawn

to define the string’s structure, implying that we need to compute the length scale

afterwards. In addition, in our numerical approach, one may use different ways to

define the characteristic size for waves and wiggles on the string and even different

definitions of large-amplitude waves.

Still, let us explore some of the possibilities, starting with the usual definition [45,

54] computing the correlation between two points along the string via

ξ̄ ≡
ˆ 2σm

0

dσ 〈X′+(σ) ·X′+(σ + δ)〉δ , (2.60)

where 〈. . . 〉δ is the average over δ ∈ [0, 2σm]. However because this computation

implies knowing the whole string’s motion and its decomposition in left- and right-

movers, it cannot be related straightforwardly to the string’s parameters. It is thus

of no use to us here and we need to define our persistence length differently.

In the search for different formulations, one could think of the radius of curvature.

This number defines for each string a condensed typical size of all the ripples on the

string during the whole period. Unfortunately, it takes into account the flat parts of

the string whose radius of curvature is obviously very large. This makes the strings’

radius of curvature difficult to use in order to define a specific length scale but still

allows us to notice some correlation: the number of cusps and pseudocusps grows

with smaller radii of curvature. This means that the information about the large-

amplitude waves is, at least partially, encoded in the radius of curvature even if we

cannot simply access it.

Let us use what seems to be the simplest and most reliable way to define a scale

for the large-amplitude waves on the string: the vibrations’ frequency. Indeed, the

modes set up on the string at t = 0 are stable and keep the same amplitude during

the evolution. Even if they can be hidden at a specific time by other frequencies

and not visible when looking at the string itself (or at its radius of curvature), they

are characteristic of the way the string vibrates. Moreover, this parameter can be
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easily controlled by the inputs of the simulation and also evaluated once the string is

drawn. The only remaining issue has to do with the number of the largest frequencies

to be accounted for. Obviously, we could not only use the lowest frequency, that

is, the largest wavelength, because it would not take into account the waves on the

string — especially in our case where the largest wavelength is fixed and equal to

twice the length of the string. We could use the highest frequency only and define

the large-amplitude waves characteristic length directly according to the associated

wavelength. This is not ideal though because there could be configurations where the

highest frequency mode’s amplitude is very small compared to that of the second

highest frequency. This would indeed distort the data by increasing the highest

frequency (compared to the physically relevant one), thus decreasing the interesting

length scale. In general, this definition would also be too sensitive to the high

frequency part of the Fourier decomposition and not enough to the whole spectrum.

One way to deal with this issue is to compute a length scale based on all the

wavelengths λk ≡ σm/k, taking each one into account according to their rank k and

to the associated amplitude Ak.
38 Different possibilities have been considered but

what seemed to be the most accurate and the simplest one is to use the average

wavelength λ̄. One has to note first that in order to keep the velocity below c = 1 at

all time, one needs to choose amplitudes such that Ak ∼ λk (under the simplifying

assumption that all modes carry roughly the same amount of energy). Keeping this

in mind, looking at
∑√

A2
k + λ2

k is equivalent to considering
∑
λk.

Hence, we define the coherence length in terms of the mean wavelength λ̄ ≡
2σmHn̄ / n̄, giving

ξ̄ ∼ λ̄

4
=
σmHn̄

2 n̄
' σm (ln(n̄) + γ)

2 n̄
, (2.61)

where n̄ is the highest frequency mode on the string (and again not the parameter n

of the simulation) and Hn =
∑n

k=1
1/k is the harmonic series. Recall Hn ' ln(n) + γ

with γ ' 0.577 and that the difference Hn− ln(n)− γ is larger than 10% of Hn only

for n ≤ 3, meaning that the approximation is sufficient for our estimation as soon as

n > 3. Finally, note that since the number of modes is quite low in our simulation

(at most 16 modes are taken into account), this cannot overlap with a definition of

the wiggliness ζ.

We have here estimated the two parameters of our strings’ network in terms

38Even if the amplitudes are drawn in a symmetric interval around 0, one of them being actually
null is statistically insignificant. This implies that the kth wavelength is of the form 2σm/k, recalling
that the fundamental excitation has no nodes and thus has a wavelength equal to twice the string’s
length.
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of two parameters of the simulation.39 As foreseen, the parameter length of the

string σm plays an important rôle, both for defining the interstring distance and the

coherence length. The number of modes seems like the most obvious and accurate

way to define a large waves length scale.

2.3.4 Conclusions and outlook

Gravitational waves (GWs), especially since they have been directly observed for the

first time [4], are at the centre of attention. They are the next tool for cosmology and

high energy astrophysics and should soon give us a stream of new data to analyse.

Similarly, cosmic strings are thought to be unavoidable in most of the cosmic scenarii

and should provide insight into the symmetry breaking they are remnants of or the

theory to which they belong.

In this chapter, after introducing how such strings would appear in Section 2.1

and their general properties in Section 2.2, we focused on a particular configuration

made of a light string stretched between two junctions with heavy strings in Sec-

tion 2.3. It is important to note that even if we considered simplifying assumptions,

the overall behaviour and the results should remain in more realistic configurations

as long as the end points of the light string can be seen as fixed during a period

of oscillation. We then looked at highly relativistic points since they are sources

of high frequency bursts of GWs. Such cuspy events appear on a string when the

left- and right-movers’ derivatives are temporarily equal (or approximately equal),

making them reasonably easy to identify. We split them into two classes: the ac-

tual cusps, resulting from crossings of the two movers’ derivatives curves and hence

reaching momentarily the speed of light c = 1, and the so-called pseudocusps, re-

sulting from a close approach between the two curves and hence reaching highly

relativistic velocities, typically below c = 1 by 10−3 to 10−6.

Since cuspy events emit large amounts of energy in the form of GW Bursts

(GWB), to estimate the signal that could be detected in the neighbourhood of the

Earth by ground- and space-based detectors, one needs to know how frequently

they occur. We have here aimed to quantify this and analyse it in terms of the

parameters characterising the string configuration as well as the string network,

through its parameters ξ and ξ̄ (but not ζ).

Our analytical approach allowed us to identify the symmetries of the problem.

39We used three parameters — ∆, σm and n̄ — but in fact ∆ is not a variable, leaving two
actual parameters.
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Indeed, because of the boundary conditions, the string moves (almost) always peri-

odically. In addition, on the unit sphere, the left- and right-movers’ derivatives are

related by a π-rotation with respect to the axis parallel to the heavy strings. This

simplifies the problem enough to evaluate the frequency of cusps and pseudocusps

on the string with respect to a few parameters.

We found that cusps should be frequent for strings satisfying (see Eq. (2.50))

〈X ′+xX ′+x〉σ &
1 + α

α

(
|∆|
σm

)2

,

where X+ is the left-mover on the string and X′+ its first derivative (with respect

to its only variable σ+), |∆| the end-to-end vector’s norm and x its direction (the

subscript x thus referring to the projection on the x-axis), σm the parameter length

of the string and α a parameter we subsequently estimated around α = 4.1 +0.7
−1.6. It is

important to notice that such cuspy strings should present many important waves.

We then used a simulation to get a statistically important number of strings

within a range of parameters, in order to check this behaviour. The set of 237

strings we obtained presents 8719 cusps and 4659 pseudocusps, i.e. slightly more

than half the number of cusps. We analysed the occurrence of cuspy events with

respect to several other features, confirming our analytical work and the general

behaviour of such strings.

In particular, we first checked that our characterisation of pseudocusps from the

minimal angle between the two curves on the unit sphere is relevant. For instance,

the velocity we obtained from this description is very close to the one obtained

directly from the simulation (within grid and computational inaccuracies). In ad-

dition, the presence of cusps and pseudocusps increases according to the inequality

Eq. (2.50), giving us an accurate tool to discriminate between cuspy and non-cuspy

strings. More importantly, it also depends on the number and amplitude of the

vibration modes in the x-direction; this confirms more directly the fact that the

wavier a string is, the more cuspy events it presents.

We also analysed the influence of the RMS velocity on the string: as one could

expect, the more energy there is in the string, the more cusps appear. This is

consistent with the fact that more vibrating modes imply more cusps, since both

indicate more energy. Finally, we found the radius of curvature along the string

is also correlated to the number of cusps and pseudocusps, favouring again the

mentioned behaviour (a smaller radius of curvature is equivalent to more waves,
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which are in turn linked to more cusps).

Expressing the usual network parameters in terms of our simulation’s param-

eters, we refined the link between the numerical description and the way Cosmic

(Super)Strings (C(S)S) networks are traditionally pictured. This should allow fu-

ture work, whether on GWs or on the interacting evolution of the network, to assess,

use and further continue this work.

Indeed, the next step from this work is to look at the importance of pseudocusps

in terms of GWB. Indeed, as we saw, the points around a cusp also reach highly rel-

ativistic velocities and the approximations made in order to obtain the − 4/3 slope in

the high frequency end of the GW power spectrum might still hold for neighbouring

points. Said differently, the whole region, around the cusp, which reaches velocities

within, say, 0 < 1 − v < 10−5, might as well significantly contribute to the GWB.

An important study would thus be to look at the way the slope evolves with the

velocity, in order to define more pragmatically what a cusp and a pseudocusp are.40

In addition, one could use this method to conduct a similar analysis on other

string configurations, namely loops or infinite strings — even though infinite strings

have no boundary conditions, making them harder to study in the unit sphere de-

scription. The interactions of cusps with different strings features, Y-junctions and

kinks for instance, could potentially modify their rate of appearance, directly or via

the dynamics of the string network.

Finally, as mentioned initially, the goal is to embed this work in a general accurate

prediction of the signal one could receive and detect in the Earth neighbourhood.

Considering, for instance, a specific brane inflation scenario, leading to a peculiar

CSS network, defined by an interstring distance ξ and a large amplitude wave scale

ξ̄, one could infer the average probability to have cusps and pseudocusps at a fixed

time. Adding the network cosmological evolution and dynamics, one could compute

the high frequency GWs emissions from such a network and thus the overall signal

received on Earth, to be compared to observations. This would be a very interesting

way to explore and constrain the underlying theory of the universe, whether string

theoretic or not.

40We performed and will soon publish such analysis with M. Sakellariadou and M. Stott. It
turns out our a priori definition of pseudocusps holds very well when considering the slope of the
GWB power spectrum.
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Chapter 3

Modified gravity

String theory was first developed in the late 1940s and the 1950s, to explain the

behaviour of hadrons and therefore the strong force, before Quantum ChromoDy-

namics (QCD) emerged. Even though unsuccessful in this context, it appeared as

a theory of bosons in the 1970s, until supersymmetry was included to allow for the

description of fermions as well. The resulting theories were then understood, in the

middle of the 1990s, as duals to one another and as limits of a more fundamental

10 + 1 dimensional theory called M-theory. Despite the fact that it is still not fully

formalised due to its complexity, such theory is thought and hoped, at least to shed

light on the underlying laws of nature, but also to rise as a theory encompassing

every mechanism of the universe. An absolute necessity is to generate a rich phe-

nomenology from these models to demonstrate their ability to explain the known

and to predict the unknown.

In this chapter, we start in Section 3.1 by looking at the interest of string-inspired

models for gravity and cosmology. This is followed in Section 3.2 by an introduction

on the specific model we will focus on in the following, namely the D-material

universe. In particular, we present the contents of the universe and the resulting

low energy action along with the formalism. The equations of motion for each field,

the scalar dilaton field, the vector recoil velocity field and the graviton field, are

obtained, yielding the basis of the further investigations: in Section 3.3, we assume

spherical symmetry in the late Dark Energy (DE) dominated era to formulate a

lensing analysis; an inflation mechanism is provided in Section 3.4, in which the

field strength condensate into a slowly varying scalar field, playing the rôle of the

inflaton; finally, we examine in Section 3.5 the consequences of our extra fields on

the emergence of a graviton mass and on the refractive index to be considered for

radiation propagation.

These tests of the theory, taking place at several length scales and during various
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cosmological eras, provide multiple ways of constraining the parameters of the model,

such as the string scale Ms.

3.1 String-inspired models of modified gravity

About a century ago, in November 1915, Einstein published his equations describing

the entangled dynamics of the gravitational field and the curvature of spacetime on

one side with the energy and matter content on the other, leading to the extremely

successful General Relativity (GR) theory of gravitation. A rich history of experi-

ments and measurements have been used to verify this paradigm, on Earth, in the

Solar System and beyond, up to cosmological scales. In the recent decades, analyses

based on a Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe, which follows

Einstein equations in their homogeneous and isotropic form, and on the observations

of light from sources at cosmological distances from us, have given us important in-

formation on our universe, on its content, on its history. Precision measurements

of the Cosmic Microwave Background (CMB) and of its anisotropies [6], of Baryon

Acoustic Oscillations (BAO) and of high-redshift extragalactic type IA supernovae

revealed, under such hypothesis, the energy budget of our current universe, its evo-

lution, its properties such as its topology, down to epochs as early as inflation, which

occurred sometime between 10−36 and 10−32 s after the Big Bang [10].

Nevertheless, there are still many important issues that remain open or not un-

derstood at all, such as the nature of Dark Matter (DM) and Dark Energy (DE),

as well as their relative abundance, respectively 26% and 69% of the current energy

budget of the universe. Furthermore, the problem of the cosmological constant’s

magnitude, the origin and mechanisms of inflation, or the intrinsic nature of space-

time are some of the most challenging issues of cosmology and physics in general, so

far unresolved by the standard ΛCDM model. The dark sector has been attributed

to (yet undiscovered) particles that may exist in extensions of the standard model,

such as axions, supersymmetry, string theory, higher-dimensional field theories, etc.

Even though there are stringent constraints on the DM relic abundance from direct

and indirect (including collider physics) searches, there is still no concrete experi-

mental evidence of the existence of such particles.

In the late 18th century, Newton’s theory of gravity was extremely well verified by

both experiments on Earth and measurements of the trajectories of celestial objects,

but Uranus’ and Mercury’s orbits presented some discrepancies with the predictions.
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While the former case was resolved by Urbain Le Verrier in 1846 by introducing

new content to the universe, namely Neptun, a modification of the theory was to be

needed to understand the latter one, that is general relativistic corrections.

Similarly, the lack of direct experimental evidence prompted conjectures that a

DM component in the universe does not exist but, instead, the assumption that the

Newtonian gravitational equations describe the universe at galactic scales should be

relaxed: one may have a MOdified Newtonian Dynamics (MOND) at such scales [55].

MOND theories have been embedded in relativistic modified gravitational field the-

ories, where in addition to the graviton field, one has extra scalar and (constrained)

vector modes, the so-called Tensor-Vector-Scalar (TeVeS) theories of gravity [56].

The phenomenology of these alternative theories of gravity is, at present, contro-

versial, in the sense that at least the simplest models of TeVeS theory proposed

initially need significant amounts of DM to be compatible with some of the lens-

ing data, which is in contradiction with their original motivation as alternatives to

DM. Still, the situation of course is far from being conclusive. The cosmology of

TeVeS has also been developed and some interesting links of the vector fields of such

theories with large scale growth of the universe have been proposed, even though

of course their phenomenology is not yet as well studied as the standard ΛCDM

model. It should be noted, however, that there is no microscopic origin of the cur-

rently available modified gravity (TeVeS/MOND) models, based on some underlying

fundamental physics, and this is in our opinion a major drawback of all such models.

Alternatively, endeavours to quantise gravity, perturbatively and non-perturba-

tively, have somehow flourished into two competing ways leading to loop quantum

gravity on the one hand and string theories on the other. The latter are, so far, one of

the few candidates to be the ultimate, universal, complete theory of nature [22, 23].

Due to the complexity and to the lack of a complete, formal description of string

theory, an effective theory framework can be used [13] to study the low energy

corrections to General Relativity, which, even though unreliable at high energy

scale and thus UV incomplete, provide interesting results. These string-inspired

models of modified gravity are studied in order to explain or predict the cosmological

phenomenology. Indeed, as we know, the ΛCDM model completed by inflation, even

though so far extremely well verified by data [57], is not the final picture. It has

actually been fitted to explain the collected data with no given explanation, no

fundamental mechanism. On the contrary, string theories, because they bring in

supersymmetry and superpartners (candidates for DM), additional content in the
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universe such as scalar fields (candidates for the inflaton or DE) or extra dimensions

(possibly explaining the observed weakness of gravity with respect to the other

forces), are inspiring, from a more fundamental level. They propose microphysical

mechanisms from which the phenomenology we observe could emerge and their low

energy realisation at least partly merges with the ΛCDM model.

We will here focus on a specific string-inspired theory, a spacetime foam model,

in order to derive its phenomenology.

3.2 The D-material universe

Modified gravity models involving fundamental vector fields, but quite different

from TeVeS models, may appear as the low-energy limit of certain brane theories

of the type proposed in Refs. [58–60]. According to such spacetime foam models,

a 3 + 1 dimensional (Dirichlet) brane universe propagates in a higher-dimensional

bulk punctured by populations of D0-brane (D-particle) defects, which, depending

on the type of string theory considered, can be either point-like or compactified

higher-dimensional 3-branes wrapped around three cycles, thus appearing from the

point of view of an observer on the brane world as effectively “point-like” defects.

The relative motion of the D-particles with respect to the D3-brane leads, from the

brane point of view, to the former flashing “on and off” while they cross the latter,

yielding a spacetime foam structure, hereby the D-foam. The D-particles are only

weakly interacting among themselves, basically through gravitational interactions

since they are massive with masses Ms/gs (with Ms the string scale and gs . 1 the

weak string coupling), and thus behave more or less as a Dark Matter (DM) cosmic

fluid (sometimes termed D-matter).

They may also interact via topologically nontrivial string interactions with the

remaining content of the universe, namely two stacks of eight D8-branes, at rest in

their lowest energy (vacuum) configuration, open strings1 describing almost all fields

of the universe and whose ends lie on the D-branes, and gravitons propagating as

closed strings states in the bulk. These interactions with strings imply the splitting

of the initial string, the formation of transient string states (stretched between the

1In type IIA theory, where our D-particles are D0-branes, conservation laws forbid interactions
with electrically charged matter. In the more phenomenologically acceptable type IIB theory, where
D0-branes are not allowed and D-particles are D3-branes wrapped on three cycles, electrically
charged matter can interact nontrivially with D-particles but these are strongly suppressed with
respect to neutral ones and can thus be ignored. In any case, the model exhibits a natural bi-metric
structure.
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Figure 3.1: Representation of a D-particle spacetime foam model, in which our
universe D3-brane interacts with effectively punctual D-particles, by way of open

strings. In this particular model [58, 61], here given as an illustrative example, lies
a stack of D8-branes in an orientifold structure.

D-particle and the D3-brane) and therefore the deformation of the local spacetime

proportional to the momentum transfer during the non-elastic collision. Formally,

this means representing the resulting recoil fluctuations as mean-field vector excita-

tions of a stringy σ-model that describes the propagation of strings in cosmological

FLRW spacetime backgrounds, punctured by populations of fluctuating D-particles

(see the vertex operators Eqs. (C.9) and (C.12)). Figure 3.1 gives a schematic rep-

resentation of such a brane cosmology.

The recoil velocity of the D-particles during their interactions with the stringy

matter, which leads to a vector field, is thus the main ingredient responsible for the

appealing features of the D-material universe. Interestingly, the non-linear Born-

Infeld type dynamics of the D-matter recoil velocity vector field allows [61, 62] for

the formation of scalar condensates of the corresponding field strength 〈〈Fµν F µν〉〉
which is viewed as a homogeneous scalar field with a mild time-dependence, virtually

constant within a given cosmological era. Its value though differs in general from

era to era, hence at an inflationary era, due to the dense D-particle populations

as assumed in Section 3.4, the value of the condensate is much larger than the

one at late-time eras, like for redshifts z < 10, where the lenses of our analysis

and the astrophysical sources of the recently, for the first time directly, observed
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Gravitational Waves (GW) [4] are located.

Interestingly, the direction given by this recoil velocity of the D-particles locally

breaks Lorentz invariance, which is restored on average over small patches of the

brane, that is, over large populations of D-particles, because of the zero vacuum ex-

pectation value of such velocity field. The non-zero variances would, on the contrary,

lead to the interesting effects of the gauge field arising from such velocity field.

In Ref. [61] was put forward a proposal for the rôle such populations of D-

particles might play in our universe, viewed as a D-brane world, in regards to large

scale structure, that is, that the amount of required conventional DM is reduced. It

was argued that the fluctuations of the recoil velocity of (populations of) D-particle

defects, arising from their interaction with stringy matter, can provide the seeds for

the formation of galaxies, provided their densities are larger than a critical value.

It should be stressed that, since these models are based on string theory, their low

energy effective actions may contain phenomenologically realistic extensions of the

Standard Model, which include conventional DM candidates, such as neutralinos,

axions, etc. The point of view in Ref. [61] as in here, is that the D-particle recoil

velocity fluid may provide an additional component that play the rôle of a mixture

(as evidenced from the respective equation of state) of DM and DE components,

which was shown to be responsible for large-scale structure growth, in a remote

analogy with the rôle of the vector fields of TeVeS models.2 We here carry on this

approach by using such an additional component to study not only how the D-

particles recoil velocity field plays the rôle of DM in the late galaxy era, but also

how it can influence at a deeper level the propagation of radiation, as well as a

period of inflation in the absence of an inflaton field with a fine-tuned potential.

As we shall discuss in this chapter, we impose constraints on the density of the

D-particles on our brane world and fine tune the cosmological constant so that the

cosmic concordance model (Ωm, ΩΛ, Ωk) (in a standard notation), which best fits

the observations [6], is satisfied within experimental errors for the galactic era. The

spatial flatness Ωk = 0 is guaranteed in our brane world model by construction

(which is also consistent with our inflationary scenario), viewing our universe as a

spatially flat brane. In general of course, the evolution of the D-particle universe

could be very different from the standard ΛCDM model.

In the remaining of this chapter,3 closely following results published in [63]

2However, we should stress that our D-brane/D-particle cosmologies are unrelated to, and in
fact are very different from, TeVeS models in both their dynamics and spectra.

3This chapter, as we recall later on, follows closely the results and structure of Refs. [63] and [64].
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and [64], we first review, in Sections 3.2.1 and 3.2.2, the relevant formalism and give

the corresponding effective actions that describe the dynamics of the D-material

universe. Then, in Section 3.3, we elaborate further on the results of the previous

study on the galactic growth era and analyse the circumstances under which the

D-particle recoil velocity fluid may “mimic” DM in galaxies, via their recoil fluctu-

ations. A lensing phenomenology is presented for some samples of galaxies, which

previously were known to provide tension for modified gravity (TeVeS) models. Then

we discuss in Section 3.4 a cosmic evolution of the D-material universe by analysing

the conditions under which the late eras of this universe associated with large-scale

structure are connected to early epochs, where inflation takes place. We investigate

on whether, and under which conditions, inflation can be induced by dense popula-

tions of D-particles in the early universe, with the rôle of the inflaton field played

by the condensate of the D-particle recoil velocity fields under their interaction with

relativistic stringy matter. Finally, motivated by the recent breakthrough of the

direct detection of GW [4], we study their propagation in such a background in

Section 3.5. The modifications of the graviton equations are studied, leading to an

effective mass for the graviton. In addition, it is known [65] that the medium of

D-particles may induce a competing effect, namely a superluminal refractive index,

as a result of the gravitational energy of D-particles acting as a DM component.

We examine the relative importance of each effect and hence constrain the graviton

mass using observations. Additionally, Appendices C and D review some technical

aspects and other material of our approach.

3.2.1 Low-energy effective action

As discussed in Refs. [59, 61], the following four-dimensional (low-energy) effective

action expresses, in the string frame (with respect to the dilaton φ), the interaction

of stringy matter on the brane world of three large dimensions with a medium of

recoiling D-particles in the early universe4

Seff 4D =

ˆ
d4x

[
−
√
−g 1

4
Gµν Gµν −

T3

gs0

e−φ
√
− det (g + 2πα′F ) (1− αR(g))

−
√
−g e

−2φ

κ2
0

Λ̃ +
√
−g e

−2φ

κ2
0

R(g) +O
(
(∂φ)2)]+ Sm , (3.1)

4Recall that throughout this work, the following conventions are adopted: the metric signature
is (−,+,+,+), the Riemann curvature tensor is defined as Rαβγδ = ∂δ Γαβγ + Γλβγ Γαλδ − (γ ↔ δ)
and the Ricci tensor as Rµν = Rαµνα.
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where the second term on the right-hand-side is the standard Dirac-Born-Infeld

(DBI) action describing the dynamics of open vector fields on a D-brane world; Sm

denotes the matter action, describing the dynamics of matter and radiation particles

on the brane world; Gµν is a flux gauge field induced by the bulk geometry, one of

the many that in general exist in brane models, which is assumed condensed (〈. . .〉)
and whose importance will become clear later on, when discussing the cosmological

constant in Eq. (3.17b) as well as in the inflation analysis of Section 3.4; T3 is

the brane tension, a priori unconstrained; g = det(gµν) is the determinant of the

gravitational field gµν ; and gs0 is the string coupling for constant dilaton φ0.

For our purposes, the dilaton field φ is assumed constant, φ = φ0, implying that

the kinetic term, here O
(
(∂φ)2), can be overlooked. While dilaton stabilisation

can be difficult to deal with, it is not the focus of our work here, which has to do

with the vector field effects. Still, the equations of motion (in particular Eq. (3.22))

will provide consistency checks on this matter. In the presence of a dilaton, the

full string coupling is defined as gs = gs0 e
φ; for the rest of this work we assume

the phenomenological value g2
s0/(4π) = 1/20 that is gs0 ∼ 0.8, for which string

perturbation theory is valid.

The vector field Aµ (of mass dimension one, in our conventions) will denote the

recoil velocity field excitation during the string-matter/D-particle interactions and

has a field strength (of mass dimension two) given by

Fµν ≡ ∂µAν − ∂νAµ . (3.2)

We consider the recoil gauge field mainly confined on the brane world and hence its

dynamics are described by the Born-Infeld square root Lagrangian on the D3-brane

world, which includes a resummation over all powers of α′. Because of the physical

interpretation of the vector field as a velocity field, there is an additional constraint

which Aµ satisfies; as reviewed in Appendix C, see Eq. (C.18) (and discussed in

Ref. [61]), it basically arises from the standard relativity relation of a four velocity

uµuµ = −1 where the contraction is with the metric gµν

AµAν g
µν = − 1

α′
, (3.3)

where the right-hand-side arises from dimensional considerations. From now on, this

constraint will be implemented in the action via a Lagrange multiplier λ, in order to

be satisfied not only by the background configurations but also by the perturbations.
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The background configurations will be discussed in the following section, mainly

Eqs. (3.27) and (3.32); for more details, we refer the reader to Appendix C.

The quantity κ2
0 is the four-dimensional bulk-induced gravitational constant de-

fined as
1

κ2
0

=
V(6)

g2
s0

M2
s , (3.4)

where V(6) is the compactification volume in units of the Regge slope α′ of the string

theory describing the excitations on the brane world and

α = α′ζ(2) = α′
π2

6
, (3.5)

in the (open string/brane) model adopted here. The cosmological constant term

Λ̃ is induced in general by bulk physics [59] and it is a free parameter in the phe-

nomenological approach we follow here. Note that in certain models, it may even

be of anti-de Sitter type Λ̃ < 0.

Considerations on the vacuum energy

Before proceeding, we should remark for completeness that a basic assumption [61]

underlying (3.1) is that any mass contribution of the D-particle defects to the vacuum

energy density is considered subleading, compared to the recoil and other terms

present in (3.1). This is because, as discussed in Ref. [58], there are mixed sign

contributions to the brane vacuum energy induced by the open strings stretched

between the D-particle and the D3-brane and due to their interaction. The bulk D-

particle populations at various distances, near (less than the string scale) or further

(a few string lengths) away from the D3-brane world, yield, according to string

perturbation theory and for adiabatic motion of the D-particles (given by Gaussian

distribution in the velocities), an induced potential on the brane which is negative

and inversely proportional to r3 in the former case, and positive and proportional

to r in the latter one. Therefore, the overall potential can be tuned, by choosing

the (non-homogeneous) repartition of D-particles near and far from the brane, to

be of the sign and amplitude needed such that it “screens” the D-particle mass

contributions. Thus, while the total brane world’s vacuum energy is constrained by

the astrophysical data, the density of defects on the brane is not.

For future use, we also mention at this stage that the D-particle mass energy

density in the Einstein frame is independent of the dilaton φ. To see this, let us

110



CHAPTER 3. MODIFIED GRAVITY 3.2. The D-material universe

start from the corresponding expression in the string frame

ρstring
D−mass dens. =

Mse
−φ

gs0

N̄D

V(3)

(3.6)

where N̄D/V(3) is the number three-density of D-particles on the brane world and V(3)

is the proper three-volume. Above, we took into account that, since (3.6) refers to

a contribution on the brane world effective action, where open strings end, there

is a e−φ factor in front of the corresponding spacetime integral, which makes the

effective mass of the D-particle Ms/gs = e−φMs/gs0, given that the string coupling

is gs = gs0 e
φ. Upon passing into the Einstein frame (designated by a superscript ‘E’

in the appropriate quantities), that is, upon rescaling the spacetime metric by (in

four dimensions)

gE
µν = e−2φgµν (3.7)

the proper volume scales as VE
(3) = e−3φ V(3), and hence the energy density (3.6)

contribution to the four-dimensional action (3.1) becomes

ˆ
d4x
√
−g ρstring

D−mass dens. =

ˆ
d4x
√
−gE

Ms

gs0

N̄D

VE
(3)

≡
ˆ

d4x
√
−gE ρE

D−mass dens. (3.8)

that is independent of the dilaton φ. This will be used below, when we consider

constraints on the vacuum energy imposed by using the dilaton equations of motion.

Such terms escape these constraints. Note that in the Einstein frame, the mass of the

D-brane is fixed to Ms/gs0. Moreover, it is in this frame that the standard FLRW

form of the universe metric is assumed, implying the scaling ρE
D−mass dens. ∝ a−3,

where a is the scale factor, on account of the assumption of “weak- or no-force

condition” among D-particles [58].5 Thus, in general, taking into account their

5Numerically, if the contribution (3.8) was unscreened from bulk D-particle effects, it could
play the rôle of a DM energy density component. In such a case, and under the assumption that

today there are N̄
(0)
D D-particles, in natural units, in the brane world, we would have in terms of

the critical density today ΩD−matter =
M2

Pl

3H2
0

Ms

gs0MPl
N̄

(0)
D , where H0 is today’s value of the Hubble

parameter. If this were the dominant DM component, then, to avoid overclosure of the universe,

we should demand that ΩD−matter . Ω
(0)
m , where Ω

(0)
m ∼ 0.3 is the current value of the matter

density parameter, as measured by astrophysical data [6]. Thus we obtain the following upper
bound for today’s density of the D-particle populations on the brane world

N̄
(0)
D < 0.9

MPl

MD

H2
0

M2
Pl

, (3.9)

where MD = Ms/gs0. Given that H0/MPl ∼ 10−60, and Ms & 10 TeV, phenomenologically, we
observed that this bound is very stringent. However, as mentioned earlier, the presence of bulk
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scaling as a−3, one may absorb such subleading D-particle mass terms contributions

(3.8) into the ‘matter’ action Sm. Throughout this work we assume that the vacuum

energy is dominated until the current era by the D-particle recoil velocity effects

— which were shown to scale like a−3 after exit from inflation, as can be seen in

Eq. (3.34), or in Eq. (C.24) and the nearby discussion, as well as in Ref. [61].6

During inflation, as was discussed in [59] and as we shall review in Section 3.4, the

assumed high density of D-particles implies a constant density of D-particles on the

brane, which contribute crucially to a Starobinsky-like inflation driven by strong

condensate fields of the recoil velocities field strength 〈〈Fµν F µν〉〉.

3.2.2 Weak-field approximation and background

We next remark that the four-dimensional DBI action (on the D3-brane world) in

(3.1) can be expanded in derivatives, as appropriate for a low-energy weak-field

approximation7 compared to the string scale Ms = 1/
√
α′, as follows

det4 (gµν + 2πα′Fµν) = det4g
[
1 + (2πα′)2I1 − (2πα′)4I2

2

]
, (3.10)

where

I1 =
1

2
gµλgνρFµνFλρ , I2 = −1

4
εµνλρFµνFλρ . (3.11)

In the approach used in Sections 3.3 and 3.4, as discussed in the following of this

section, the “magnetic” field dual components for the recoil velocity field strength

D-particles, interacting via stretched open strings with the brane world, as well as the bound D-
particles, screen the D-particle mass to an effective one MD � Ms/gs0. In this case, much higher
densities on the brane world are allowed, as can be seen from the above considerations.

6In other scenarios, even those effects may be screened by the bulk D-particle populations
that accompany the D3-brane world in its travel through the bulk space, and in this way much
higher densities of D-particles bound on our brane universe can be allowed without overclosing the
universe. In fact, in such cases one may use the induced refractive index of the (dense) “D-foam”
medium at late eras in order to explain certain observed delays of the more energetic photons
compared to lower energy ones, from distant active celestial sources such as Gamma Ray Bursts or
Active Galactic Nuclei [65]. On the other hand, under the assumption adopted in the current work
that the recoil effects are dominant until the current era, one obtains as we shall see (in Eq. (3.50))
an upper bound for the allowed D-particle densities that is much weaker than the one required to
reproduced these delays.

7Such derivative expansions are appropriate for weak recoil fields, which is the case characteris-
ing the galactic eras of the universe, of interest to us when one consider the rôle of the D-particles
as providers of structure growth [61], as a DM component in the lensing analysis of Section 3.3
and as a medium altering the propagation of radiation as in Section 3.5. However, as we shall
discuss in Section 3.4, dense D-particle populations in the early eras can condense and induce
an inflationary era, which is characterised by strong recoil velocity fields. The latter necessitates
keeping the Born-Infeld square-root structure intact.
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are subleading, and thus for us I2 will not be considered further. This can be easily

understood once one considers a cosmological (almost homogeneous and isotropic,

slowly time-dependent) vector field background, yielding ∂iAj ' 0, as we will explic-

itly see later in this section. While this is true locally for the lensing analysis and

in a homogeneous universe, it is not on the cosmological scales where magnetic-like

and electric-like contributions are a priori of the same order. Still, these additional

contributions yield at most a factor8 2 and are thus ignored here. On the contrary,

in the computations of Section 3.5 (see for instance Eq. (C.12)), these additional

contributions are relevant because of space and time dependences of the vector field

Aµ, and turn out playing an important role.

Upon such derivative expansions, the resulting effective action on the D3-brane

universe, in the Einstein frame (3.7) (denoted by a superscript ‘E’), becomes

SE
eff 4D =

ˆ
d4x
√
−g

[
−T3 e

3φ0

gs0

− Λ̃ e2φ0

κ2
0

− 1

4
〈Gµν Gµν〉+

(
αT3 e

φ0

gs0

+
1

κ2
0

)
R

− (2πα′)2 T3 e
3φ0

gs0

F 2

4

(
1− α e−2φ0 R

)
+ λ

(
AµA

µ +
1

α′

)]
+ Sm , (3.12)

where the last term corresponds to the implementation of the vector field constraint

Eq. (3.3) using the Lagrange multiplier λ.

Also, from now on and throughout this chapter, we work with a constant dilaton

φ = φ0, thus removing the dilaton kinetic term. This assumption is consistent with

the dilaton equation of motion Eq. (3.22) derived from the action. In such case,

one may redefine the vector field Aµ so as to have canonical kinetic (Maxwell-type)

term, that is

Aµ → Ãµ ≡

√
(2πα′)2 T3 e3φ0

gs0

Aµ , (3.13)

which implies that the constraint (3.3) becomes

Ãµ Ãν g
µν = −4π2α′ T3 e

3φ0

gs0

= − 1

α′
J , (3.14)

where we defined

J ≡ (2πα′)2 T3 e
3φ0

gs0

. (3.15)

8This influences, for instance, the order of magnitude of the energy density to avoid overclosure
of the universe or the size of the condensate field leading inflation, which have no influence on the
constraints given in this work.
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Thus, from now on we shall be dealing with the action

SE
eff 4D =

ˆ
d4x
√
−g

[
−T3 e

3φ0

gs0

− Λ̃ e2φ0

κ2
0

− 1

4
〈Gµν Gµν〉+

(
αT3 e

φ0

gs0

+
1

κ2
0

)
R

− F̃ 2

4

(
1− α e−2φ0 R

)
+ λ

(
ÃµÃ

µ +
1

α′
J
)]

+ Sm , (3.16)

where F̃ is the Maxwell field strength for the field Ãµ given in Eq. (3.13) and λ is

now implementing the constraint (3.14). Notice that the first three terms on the

right-hand-side of Eq. (3.16) play the rôle of a cosmological constant

Λ0 ≡
T3 e

3φ0

gs0

+
Λ̃ e2φ0

κ2
0

(3.17a)

Λvac ≡ Λ0 +
1

4
〈Gµν Gµν〉 , (3.17b)

where Λ0 is the non-conformal part, and bulk gauge field condensates of the form

〈Gµν Gµν〉 are conformal scalar-like constant terms. Indeed, the full action driving

the dynamics of these bulk gauge fields is generically non-linear — for instance

via a Born-Infeld type term — in these string theory inspired models. While for

simplicity and readability we ignore the details of such dynamics, one can safely

assume it consequently forms a constant condensate, as shown in Ref. [62]. Note

that it can be assumed constant within a cosmological era for the same reasons our

vector field strength Fµν can, that is, due to the homogeneity of the universe on

large scales. The curvature prefactor can be identified with the (reduced) Planck

mass, as in
1

2
M2

Pl ≡
1

16π G
=
αT3 e

φ0

gs0

+
1

κ2
0

. (3.18)

A detailed study of the equations of motion and background solutions for the

recoil vector field have been discussed in Ref. [61] and will be reviewed below within

our approximations, as we shall need them to make our estimates of the D-particle

recoil velocity fluctuation effects on the galactic dynamics. The string origin of the

vector field and its construction from vertex operators, as assumed for our purposes

in this chapter, are reviewed in Appendix C. A complete low-energy action, keeping

all terms, as well as the equations of motion one can derive from it, are also given for

completeness, along with some basic properties and order of magnitude estimates of

the vector field.
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The graviton equation of motion obtained from Eq. (3.16), on assuming to first

approximation that terms involving ρΛ � F̃ 2 or derivatives of F̃ 2 can be neglected,9

is given by(
Rµ

ν −
δµν
2
R

)[
αT3 e

φ0

gs0

+
1

κ2
0

+
αe−2φ0 F̃ 2

4

]
− 1

2

(
1− αe−2φ0R

)
F̃ µλF̃νλ (3.19)

+
1

8
F̃ 2 δµν + λ ÃµÃν − λ

δµν
2

(
ÃαÃ

α +
1

α′
J
)

+
1

2
δµν Λvac =

1

2
T µν ,

where Tµν = −2 1√
−g

δSm
δgµν

is the matter stress tensor.

For future use we note that, by contracting the vector field equation of motion

obtained from Eq. (3.16)[
F̃νµ

(
1− α e−2φ0R

)];ν

+ 2λ(x) Ãµ = 0 (3.20)

(where the semicolon denotes covariant derivative) with Aµ, and then applying the

constraint (3.14), we obtain the following form for the (background value) of the

Lagrange multiplier field

〈λ(x)〉 =
e−3φ0 gs0

8π2α′ |T3|
Ãµ
[
F̃νµ

(
1− αe−2φ0R

)];ν

, (3.21)

which we shall make use in the next section when we estimate the recoil effects of

the D-particles on the universe dynamics during the galactic era. An important

point to note, which was the subject of discussion in Ref. [61] and which we only

mention here for completeness, is that the constraint term in Eq. (3.16) is vital in

coupling the recoil vector field perturbation to the density perturbations through

the 〈λ(x)〉ÃµÃν term in the respective stress-energy tensor obtained from Eq. (3.16).

Finally, before we embark on an estimation of the D-particle effects on the galac-

tic dynamics, we would like to comment on the physical importance of the constraints

imposed by the dilaton equation, which should be taken into account despite the fact

that the dilaton is considered to be constant in our analysis. The dilaton equation

of motion, obtained by varying the effective action (3.16) with respect to the dilaton

9This is because spatial derivatives yield terms proportional to spatial derivatives of the metric,
that is proportional to the Newtonian acceleration ζ ′ of a D-particle in the gravitational field of
the galaxy, while temporal derivatives yield terms proportional to the Hubble parameter today H0,
which are again suppressed compared with the terms that are kept. See below, Eq. (3.33).
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field φ and setting it to a constant value φ0 at the end of the variation, reads

3T3e
3φ0

gs0

+
2 Λ̃ e2φ0

κ2
0

− α

[
T3e

φ0

gs0

− e−2φ0 F̃ 2

2

]
R = 0 , (3.22)

where subleading terms, that is, dilaton kinetic terms, terms involving derivatives on

F̃ 2 or terms proportional to the Lagrange multiplier λ, are ignored (see Appendix C

for details). Taking into account [61] that for galactic scales the terms α F̃ 2R �
α T3eφ0

gs0
R� 3 T3e3φ0

gs0
, Eq. (3.22) can be well approximated by

T3

gs0

e3φ0 ' −2

3

Λ̃ e2φ0

κ2
0

, (3.23)

which justifies the hypothesis φ = φ0 assumed of this chapter.10 In addition, it

implies that the cosmological constant on the brane world Λ0, defined in Eq. (3.17a)

with positive tension T3 > 0 (as required for stability), is negative

Λ0 ' −
1

2

T3

gs0

e3φ0 < 0 . (3.24)

This anti-de Sitter type cosmological constant would not be phenomenologically ac-

ceptable in the current era, as it would contradict the CMB, BAO and gravitational

lensing data. This can be remedied by assuming that such terms cancel against dila-

ton independent contributions to the brane vacuum energy, coming from appropriate

combinations of the mass terms of D-particles bound to the brane world [59] as in

Eq. (3.8), and bulk gauge flux fields inducing condensates11 of the form appearing

in the action (3.1) — which as we shall argue in Section 3.4 play an important rôle

for inflation. In this way, during the galactic era, only a small positive cosmological

constant term survives, which plays no significant rôle on the galactic scale lensing

phenomenology, in accordance to observations. This assumption will be understood

in what follows in the sense that Λvac ≡ Λ0 + 1
4
〈Gµν Gµν〉 + . . . > 0, where . . . de-

note potential other bulk D-particle contributions to the brane vacuum energy, here

ignored. Therefore, Λvac is compatible with the bounds on the cosmological con-

stant Λ from observations in the context of the ΛCDM model [6]. Even though this

model provides several terms with opposite signs which can cancel out to leave the

10Using the more complete Eq. (3.22) would yield a constraint of the form ∂µ
[
F̃ 2R

]
= 0, which

is practically satisfied since Ṙ ' 0 even during inflation and we neglect derivatives of F̃ 2.
11These terms are thus treated as scalars in the derivation of the graviton equation of motion.
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appropriate small positive cosmological constant, it does not alleviate the need for

fine-tunning, and thus these effects will not be covered in more details here.

Background field

We can now discuss background field configurations which satisfy the equations of

motion (3.19), (3.20) and (3.22), obtained from the actions (3.1) and (3.16). We give

in Appendix C a more detailed set of equations, as well as string theory motivations

for the ansatz given here.

For the cosmological time scales we are interested in, in the inflationary analysis

or the graviton propagation (as in Ref. [61]), we consider the FLRW spacetime

metric backgrounds, using cosmic time t or the conformal time η

gFLRW
αβ dxαdxβ = −dt2 + a2(t)

(
dr2 + r2dθ2 + r2 sin2 θ dϕ2

)
(3.25)

= −a2(η) dη2 + a(η)2
(
dr2 + r2dθ2 + r2 sin2 θ dϕ2

)
. (3.26)

In such case, using Eq. (C.15), the dimensionful (dimension [mass]) cosmological

form of the recoil vector field Aµ and its field strength Fµν ≡ ∂µAν − ∂νAµ on the

D3-brane universe take the form

Ai ≡ −
1√
α′
a2(t)ui , F0i = − 2√

α′
ȧa ui , (3.27)

with ui (i = x, y, z) the spatial components of the D-particle recoil velocity and

where the overdot denotes derivative with respect to the FLRW cosmic time t and

α′ is the Regge slope of the string (of dimension [length]2).

However, when one considers local regions of spacetime, such as a galaxy, of

relevance to phenomenological tests of the model via lensing analyses, discussed in

Section 3.3, the spacetime background is assumed static and spherically symmetric

to a good approximation, of the form

gαβ dxαdxβ = −eν(r)dt2 + eζ(r)a2(t) (dr2 + r2dθ2 + r2 sin2 θdϕ2)

= −eν
(√

x2+y2+z2
)
dt2 + e

ζ
(√

x2+y2+z2
)
a2(t)(dx2 + dy2 + dz2) , (3.28)

where we kept track of the (small) universe expansion at the galactic era through the

dependence of the metric on the scale factor a(t); here r = r(x, y, z) =
√
x2 + y2 + z2

in terms of Cartesian coordinates.
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In such metrics, following Eq. (C.13), the recoil vector field can be well approx-

imated by12

Ai(~x, t) =
1√
α′
gij(~x, t)Y

j(t)Θ(t− tc)
∣∣∣
∝ui

=
1

α′
gij(~x, t)u

j

(
t
a(tc)

2

a(t)2
− tc

)
, (3.29)

where t > tc.

In constructing the local velocity field above, we took into account the non-

clustering effects of the D-particles, by maintaining their spatial trajectories as given

by the geodesics Y i(t) in the global case (C.13), but replacing the FLRW metric by

the local metric (3.28) and keeping the explicit time dependence of Y i(t). However,

for populations of D-particles in the neighbourhood of a galaxy, which are relevant

for the lensing phenomenology of Section 3.3, the impact time tc is of the same order

of magnitude as the cosmic time t of a galaxy of given redshift z

tc ∼
2

H0 [1 + (1 + z)2]
(3.30)

where H0 is the present value of the Hubble constant. Because we discuss redshifts

z � 10, this essentially amounts to setting a(tc) ∼ a0 = 1 in an order of magnitude,

since in galactic eras the expansion of the universe is assumed small. In addition,

the cosmic time t appearing there coincides with the time of observation, that is,

the present time t = t0.

The vector field Aµ in (3.29) also satisfies the constraint (3.3). It can then be

shown after detailed computations that, on account of the constraint, any terms ∂iAt

in Fti are subleading compared to ∂tAi, and thus from (3.29), (3.28) we conclude

that to a very good approximation

Fti(~x, t) '
1

α′
gij(~x, t)u

j

(
a2(tc)

a2(t)
− 2H(t) tc

)
, (3.31)

where H(t) ≡ ȧ(t)
a(t)

is the Hubble parameter at (cosmic) time t. As already mentioned,

for lensing measurements the time t is the time of observation, that is today t = t0,

for which a(t0) = 1 in our normalisation. Thus, using Eq. (3.30) and the fact that

for an expanding universe a(tc) = a0
1

1+z
, with z the redshift of the galaxy in the

12We ignore, as subleading, any term in the geodesics of the D-particle associated with the local
acceleration induced by the galactic mass to only keep the fluctuations of their velocity due to their
interaction with open strings representing galactic matter in our brane world. See Appendix C for
more details.
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neighbourhood of which we consider local populations of D-particles, we obtain from

(3.31)

Fti(~x, t) '
1

α′
gij(~x, t)u

j

[
1− 3(1 + z)2

(1 + z)2 (1 + (1 + z)2)

]
. (3.32)

In a similar manner, the “magnetic type” field strength components Fij are much

smaller than Fti as becomes clear from the expression

Fij = ∂iAj − ∂jAi =
1

α′
a2(t)

[
t
a2(tc)

a2(t)
− tc

]
∂[i

(
eζ(r)

)
uj]

= a2(t)
eζ(r)

α′
(
uix

j − ujxi
) ζ ′(r)

r

[
t
a2(tc)

a2(t)
− tc

]
, (3.33)

where i, j, k,m, n denote Cartesian spatial 3-coordinates, the prime in ζ ′(r) denotes

derivative with respect to r and [i...j] denotes antisymmetrisation in the respective

indices. We now notice that ζ ′(r) ∝ −M
r2 , M being the mass of the galaxy, is the

gravitational acceleration induced by the galaxy on a D-particle, which is negligi-

ble compared to the terms we keep here, thus implying (3.33) leads to suppressed

contributions in the dynamics as compared to the F0i terms, which we concentrate

upon from now on.

For late (galaxy formation) eras of the universe, we consider populations of

D-particles with fluctuating recoil velocities, which are assumed to be Gaussian

stochastic for simplicity

〈〈umun〉〉 = σ2
0(t) δmn , 〈〈um〉〉 = 0 , σ2

0(t) = a(t)−3 |β| , (3.34)

in order to macroscopically maintain Lorentz invariance in populations of D-particle

defects. Notice that here, ui are Cartesian coordinates, which is the reason we

previously were interested in expressing the local metric fluctuations in terms of

such coordinates. The transformation of the result to spherical polar coordinates is

straightforward.

3.3 Lensing phenomenology

In this section, we extend further the study of such models by discussing the rôle

that the D-particles can play in large structure and galaxy formation. We investigate

whether their effects can “mimic” and duplicate the effect of Dark Matter (DM) and

under which circumstances. Specifically, data from galactic lenses indicate a miss-
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match between the observed baryonic mass content of the galaxy and the strength

of the lensing it produces. This discrepancy is usually accounted for by the inclusion

of DM gravitational sources, however we would like to see if D-particles can play

a similar rôle. Their statistically averaged recoil velocities induce a modification

to the standard gravitational relation, enhancing such effect on these scales. This

mechanism might then compliment and enhance any DM component which may be

present.

For the current era, of relevance for lensing (and for the graviton propagation, as

in Section 3.5), the so-considered range of D-particle densities has to occur within

a reasonably small window, which also ensures perturbation growth and large-scale

structure but does not imply fine tuning of the model’s parameters. Moreover, as

we shall also study further on in Section 3.4.4, the age of the universe in our model

has to match the expected one from the ΛCDM model.

To discuss the phenomenology of our D-particle universe using galactic lensing

data, we use the action (3.16). We shall use the local form of the recoil vector field

Eq. (3.29), averaged at the end over populations of D-particles in the neighbourhood

of a galaxy. As mentioned previously, we also assume that at the local galactic level,

any contribution of the four-dimensional brane world vacuum energy Λvac is small (or

cancelled appropriately), of the order of the observed cosmological constant today,

so that it may be safely neglected to a first approximation when considering the

dynamics at galactic scales, as relevant for lensing.

3.3.1 The equations of motion

Let us now give an order of magnitude estimate of the various terms appearing in the

graviton equation (3.19), setting Λvac to zero, before we proceed with the detailed

lensing phenomenology. This will be useful in yielding a qualitative understanding

of the order of magnitude of the quantity |β|, defined in Eq. (3.34), needed for the

D-particle defects to play the rôle of DM candidates and providers of large scale

growth structures [61].

To this end, we first notice that, upon using classical backgrounds, which are

discussed briefly in Appendix C, the penultimate term on the left-hand-side of

Eq. (3.19) will vanish identically, due to the constraint (3.14) that such backgrounds

satisfy. In addition, on account of Eq. (3.21), the term on the stress tensor propor-

tional to the Lagrange multiplier λ yields terms proportional to derivatives of the

field strength, which are suppressed compared to the remaining contributions from
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the vector field (however the reader should bear in mind the aforementioned impor-

tant rôle of this term in coupling the perturbations of the vector field to the density

perturbations [61], thus leading to the growth of structure).

Moreover, as we discussed above, any spatial (“magnetic” type) components of

the field strength are locally subleading compared to the “electric” type ones F0i,

which, on account of (3.31), implies

F̃ tρF̃tρ = − a2(t) eζ(r)−ν(r) δjku
juk
J
α′2

(
a2(tc)

a2(t)
− 2H(t) tc

)2

, (3.35)

where the local metric that contracts the velocities is given by Eq. (3.28). For

a lensing galaxy at redshift z, we apply Eq. (3.32) for today’s observational time

(t = t0, a(t0) = 1)

F̃ tρF̃tρ = − eζ(r)−ν(r) δjku
juk
J
α′2
H(z)2 , (3.36)

with H(z) =
[

1−3(1+z)2

(1+z)2 (1+(1+z)2)

]
.

At this point we can take the statistical average of the velocities over populations

of D-particles in the neighbourhood of galaxies, as given in Eqs. (3.34), (C.24), which

yields

〈〈F̃ tρF̃tρ〉〉 = −J 3σ0(t)2

α′2
eζ(r)−ν(r)H(z)2 . (3.37)

We also have, in Cartesian coordinates too, the other components

〈〈F̃ ρ
µ F̃νρ〉〉 = J σ2

0

α′2


−3eζ−ν . . . . . . . . .

. . . −eζ−ν . . . . . .

. . . . . . −eζ−ν . . .

. . . . . . . . . −eζ−ν

 H(z)2 , (3.38)

where the . . . denote subleading terms of order either xi ζ
′

r
H(z), or xixj ζ

′2

r2 H(z)2,

which are ignored to a first approximation.

Einstein’s equations for the lensing system are best described in spherical polar

coordinates (t, r, θ, φ) to which the above quantities easily transform to. When

investigating the modified Einstein’s equations, the two components we will use to

find the differential equation system that defines ζ(r) and ν(r) will be the tt and θθ

components. In fact, the symmetry of the system we are analysing allows us to set
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θ = π
2
. Thus, the θθ component of F̃ µρF̃νρ will be given by

〈〈F̃ θρF̃θρ〉〉 = −J σ2
0

α′2
eζ(r)−ν(r)H(z)2 , with T θθ = T zz when θ =

π

2
. (3.39)

Hence, the components we will use in Eq. (3.19) will assume the form

〈〈F̃αβF̃αβ〉〉 ' −6J σ2
0

α′2
eζ(r)−ν(r)H(z)2 ,

〈〈F̃ tρF̃tρ〉〉 ' −3J σ2
0

α′2
eζ(r)−ν(r)H(z)2 ,

〈〈F̃ θρF̃θρ〉〉 ' −J
σ2

0

α′2
eζ(r)−ν(r)H(z)2 , (3.40)

with σ2
0(t0) ' |β| (cf. Eq. (3.34)).

Moreover, non-minimal terms in Eq. (3.19) of the form F̃ 2R are also suppressed

and ignored in our leading order estimates below. Taking the above considerations

into account and concentrating on the tt component of the graviton equation (3.19)

after taking statistical averages as in Eq. (3.34) and using Eq. (3.40), we approximate

it as follows (the observation time is set to today t = t0 with a(t0) = 1)[
1

κ2
0

+
αT3 e

φ0

gs0

+
α e−2φ0 〈〈F̃ 2〉〉

4

](
Rt

t −
1

2
R

)
+

1

8
〈〈F̃ 2〉〉 − 1

2
〈〈F̃ tρF̃tρ〉〉+ . . . =

1

2
T tt

⇒
[

1

κ2
0

+ J e−2φ0

24α′
(
1− 6π2 |β|H(z)2

)](
Rt

t −
1

2
R

)
+

3

4α′2
J |β|H(z)2 + . . . ' 1

2
T tt , (3.41)

where the . . . denote subleading terms, such as αe−2φ0 〈〈F̃ tρ F̃tρ〉〉R and terms con-

taining derivatives on F̃ . For ease of presentation above we also took into account

that for the lensing data eζ(r)−ν(r) = O(1), however for the full numerical calculation

presented in Tables 3.1 and 3.2, these terms were computed explicitly.

To model the lensing systems we shall be looking at, we take the energy momen-

tum tensor to describe an ideal pressureless fluid, thus

T tt = −ρ(r) , T ij = 0 . (3.42)

We hence observe from the right-hand-side of Eq. (3.41) that the recoil velocity
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field contribution to the tt component of the stress tensor has the right sign to be

interpreted as a positive energy density contribution.

The quantity
1

κ2
eff

≡ 1

κ2
0

+ J e−2φ0

24α′
(
1− 6π2 |β|H(z)2

)
(3.43)

plays the rôle of an effective inverse gravitational constant, which thus depends

on the statistical variance of the recoil field |β|. For the lensing analysis, |β| is

determined from Eq. (C.25) and Ms (the string mass) can take any value such

that Ms . 1018 GeV; however the assumption of non observation of large extra

dimensions in current particle accelerators (including the run II of LHC) means

that Ms & 104 GeV.

For concreteness, from now on we set the constant dilaton value to zero φ0 = 0.

We also note at this stage that, in the analysis of Ref. [61], the brane tension was

taken to satisfy
(2πα′)2 T3

gs0

= 1 . (3.44)

In such a case, J = 1 in Eq. (3.15). However, as we shall see in section 3.4,

one cannot obtain consistent inflation for brane tensions for which Eq. (3.44) is

adopted. On the contrary, for the case of consistent inflation (that is when we have

large fields, compared to the Planck mass scale) in which the D-material universe

evolution connects smoothly the galactic structure era to the inflationary era, one

needs J � 1. This will be the case of interest to us in the present study. Again

for concreteness, we consider for the remainder of the section that the brane tension

and the parameter κ0 (which is phenomenological in our construction) satisfy

κ−2
0 ∼

1

2
M2

Pl ∼
J
24
M2

s . (3.45)

The identification of the parameter κ−2
0 with half of the (square of the) four-dimen-

sional reduced Planck mass, M2
Pl = (16πG)−1, was chosen so as, on account of

Eq. (3.43), to have

κ−2
eff 'M2

Pl , (3.46)

given that the term proportional to β on the right-hand-side of Eq. (3.43) is relatively

suppressed for |β| � 1 (which is the case in late eras). This is desirable from the

point of view of not having significant variations of the gravitational constant, due

to the unobserved (so far) violations of the weak equivalence principle. The reader

should also notice that the choice Eq. (3.45) necessitates low string mass scales,
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Ms � MPl, as assumed in Ref. [61], if one requires J � 1 in order to satisfy the

criterion for a smooth connection of this era with inflation.13

Using Eq. (3.42), demanding the recoil vector field contributions to the stress

tensor to be at most of the same order of magnitude as the mass terms, and consider-

ing typical values of the mass density ρ(r) for lenses to be of order ρ(r) ∼ 10−119M4
Pl

(cf. Table 3.4 below), we obtain from Eq. (3.41) the following upper bound on the

parameter |β|

|β| ≤ 4

3
J −1 10−119 (H)−2

(
MPl

Ms

)4

∼ 10−120 (H)−2

(
MPl

Ms

)2

, (3.47)

on account of Eq. (3.45). For e.g. Ms ' 104 GeV (used as a concrete case in

Ref. [61]) and taking into account that H ∈ [−1, − 1/3], i.e. of O(1), for a redshift

range of interest z ∈ [0, 2], we observe from Eq. (3.47) that |β| ≤ 10−92.

However, as discussed in Ref. [61], there is a minimum |β|, i.e. a minimum

density of D-particles, that guarantees the existence of a growing model. The reader

should bear in mind that the normalisation of |β| in Ref. [61] was different from the

one used in the present study, since in there a dimensionless factor tc/
√
α′, where

tc is the time of contact of the string matter with the D-particle defect, had been

absorbed in the definition of the recoil velocity. More precisely, the relation between

the recoil velocity vMSY used in Ref. [61] and the dimensionless recoil velocity u used

here is

vMSY i = ui
tc√
α′

.

For the galactic era, of interest to us here, tc ∼ t0 ∼ H−1
0 and thus the relation

between the two |β| parameters, defined through Eq. (3.34) for the respective recoil

velocities, is given by

|β| ∼ α′H2
0 |βMSY| , (3.48)

with again the notation |βMSY| referring to definitions used in Ref. [61].

It was shown in Ref. [61] that, for Ms ∼ 104 GeV, gs0 ∼ 0.1, growth of structure

due to the recoil velocity field is possible for

|βMSY| ≥ 10−3 ,

13If the latter is relaxed, one may consider more general cases, in which the string scale can be
as large as MPl [61] (in such a case the first two terms in Eq. (3.43) contribute more or less equally,
but the last one is still suppressed for small |β|).
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a value which is largely insensitive to the value of Ms ∈ [104, 1018] GeV. This implies

(for the |β| used here)

|β| ≥ 10−3

(
H0

Ms

)2

∼ 10−123

(
MPl

Ms

)2

∼ 10−95 , (3.49)

taking into account that H0 ∼ 10−60 MPl.

The analysis in Ref. [61] assumed a brane tension satisfying Eq. (3.44). As we

shall discuss in the next section, inflation can only be driven by large D-particle recoil

velocity condensates which occur for relatively large brane tensions T3 compared to

those satisfying Eq. (3.44). It would be therefore essential to repeat the growth-of-

structure analysis of Ref. [61] for such large values of T3.

Indeed, relaxing this condition and considering a wider range of values for the

tension does not affect the value that βMSY needs to take in order to ensure the

growth of structure. This is because the dominant terms in the equation governing

the growth of vector perturbations in Ref. [61] have a simple relationship with the

tension T3, such that it appears only as a scaling term. Thus, the vector field

associated with the D-particle recoil velocity excitation always enters a growing

mode for βMSY & 10−3, and T3 simply scales the result. As a consequence, by

appropriately scaling the initial size of the vector perturbations in the early universe,

any value of T3 can be made compatible with the growth of structure.

Using Eqs. (C.25), (C.26) in our semi-microscopic model for estimating |β|, we

obtain the allowed range of |β| and densities of D-particles. Denoting by N
(0)
D

and N
(0)
γ the current (dimensionful) number densities of D-particles and photons,

respectively, and considering Ms ∼ 104 GeV,14 we get

10−95 ≤ |β| ≤ 10−92 ⇒ 10−62 ξ̃−2
0 ≤ N

(0)
D

N
(0)
γ

≤ 10−59 ξ̃−2
0 , ξ̃0 < 1 , (3.50)

which serves as an indicative order of magnitude for the required densities so that the

D-matter recoil velocity fluid in this stringy universe can “mimic” DM in galaxies, in

the sense that its contribution to the energy density is of the same order as the mass

density of a galaxy. Upon comparing (3.50) with the upper bounds on the number

density of D-particles (3.9), obtained in the case where the screening of their mass

effects by the D-particles neighbouring the D3-brane world did not occur, the alert

14While the left-hand-side of the bound on |β| is independent of the string scale, the right-
hand-side is quadratic in MPl/Ms; but because the same dependence appears in Eq. (C.25), the
right-hand-side of the bound on N

(0)
D /N(0)

γ is string scale independent.
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reader can appreciate the significant increase in the allowed densities in our case,

without overclosing the universe.

In this latter respect some remarks are in order at this point. Although the rest

mass contributions of D-particles have been assumed to be neutralised to a large

extent by repulsive contributions from populations of D-particles in the neighbour-

hood of the brane world [61], it is worth mentioning that if the above upper bounds

on the present-era density of D-particles of (rest) mass Ms/gs0 are satisfied, then the

corresponding contributions to the brane’s vacuum energy (as seen by a comoving

observer, and assuming the D-particles bound on the brane and comoving with its

expansion) would be ρD−mass ∼ N
(0)
D Ms/gs0. Now, assuming that N

(0)
γ = 109N

(0)
b ,

where N
(0)
b is the current number density of baryons in the universe, and estimating

the baryon density by considering a common proton mass mp for all species of order

1 GeV, we obtain ρD−mass ∼ 10−48 ρ
(0)
b Ms/(gs0mp), with ρ

(0)
b the energy density of

the baryons in the present universe. For masses of Ms/gs0 ∈ [104, 1018] GeV, we

obtain that ρD−mass ∈ [10−44, 10−30] ρ
(0)
b , which means that the overclosing of the

universe is in fact not a problem at all.

3.3.2 The lensing system

After the above generic estimates, we now proceed with the detailed lensing phe-

nomenology. There are two spherical mass profiles which we use for the lensing

analysis. First, there is the Hernquist mass profile, which is used to model the

baryonic mass profiles of the galaxies we are looking at. It is described by

MH(r̂) =
Mr̂2

(r̂ + rh)2
. (3.51)

This definition uses the standard Schwarzschild radius parameter, r̂, which is related

to the radius parameter which appears in the metric system defined in Eq. (3.28)

through r̂ = eζ(r)/2 r. There is also a parameter, rh, which defines a scale for the

core of the mass distribution. This scale is derived from the observable half mass

radius Re. M denotes the total mass of the galaxy.

Second we use the Navarro-Frenk-White (NFW) profile [66], which is usually

applied to model the total DM and luminous matter contributions to a galaxy. It is
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described by

MNFW(r̂) =
M

Γ

[
ln

(
1 +
Cr̂
rvir

)
− Cr̂
rvir + r̂

]
, (3.52)

where Γ = ln (1 + C) − C
1+C , C is a concentration parameter, usually taken to be

around 10 based on computer simulations, and rvir is the virial radius, related once

again to the observable half mass radius Re.

The above mass profiles are used in the equations describing the deflection of

light in our system. The deflection of light in our metric (3.28) is given by

∆ϕ = 2

∞̂

r0

1

r

dr√
eζ(r)−ν(r) r

2
0

b2
− 1
− π , (3.53)

where r0 is the point of closest approach for the light ray and b is the observable

impact parameter of the light ray. They are related to each other through

b2 = eζ(r0)−ν(r0) r2
0 . (3.54)

The mass profiles implicitly appear in the above equations through the dependence

of ζ(r) and ν(r) on the density profile ρ(r), which is derived from the mass profiles.

Similarly, the tt and θθ equations of the graviton equation of motion Eq. (3.19), after

using Eqs. (3.34) and (3.40) but keeping the non-minimal terms of the form F̃ 2R and

the exact exponential structure eν(r)−ζ(r), and after some mixing and manipulations,

yield

−ζ ′′(r) =
4πG

α′

[
e−2φ0 8π3Gρ(r) +

3

α′

]
J |β|H(z)2 e2ζ(r)−ν(r)

+ 8πGρ(r) eζ(r) +
2

r
ζ ′(r) +

1

4
ζ ′(r)2 (3.55)

ν ′′(r) =
4πG

α′

[
e−2φ0 8π3Gρ(r) +

5

α′

]
J |β|H(z)2 e2ζ(r)−ν(r)

+ 8πGρ(r) eζ(r) +
1

r
[ζ ′(r)− ν ′(r)] +

1

4

[
ζ ′(r)2 − 2ν ′(r)2

]
, (3.56)

where any information about the mass profile lies in ρ(r). The limit β → 0 naturally

gives back the General Relativity equations. Solving these and using the data we

have for our lenses, for instance Q0142-100, yields the metric coefficients of Fig. 3.2.

We here give the deviation from ±1, that is, flat spacetime, which is naturally
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[exp(ζ (r)) - 1]

Figure 3.2: Profile of the deviation from 1 of the metric coefficients,
(−eν(r) + 1) ' (eζ(r) − 1), for one of our lens, namely Q0142-100.

retrieved at sufficiently large distances.

Finally, the lensing system is described by the thin lens equation, that is

β̂ = θ −∆ϕ(θ,M, b)
Dds

Ds

, (3.57)

where β̂ is the unknown true angular position of the source galaxy, θ is the observable

angular position of the source, Dds is the angular distance from the source to the

lens and Ds is the angular distance to the source. There are two unknowns in the

above equation, the deflection angle ∆ϕ and β̂, thus two images of the source are

needed and the data from both are combined to constrain the true values of these

parameters. Note that here we use a concordance cosmological model (Ωm,ΩΛ,Ωk) =

(0.3, 0.7, 0), since departures from it lead only to insignificant changes in our lensing

analysis.15 The lensing equation (3.57) is applied independently to the multiple

images of the background source, and solving it we obtain the actual position β̂ of

the source and the mass M of the lens.

To estimate the amount of DM in the system, the lensing mass is compared to

15As we have seen above, the density of D-particles can be constrained appropriately so that
the Ωm parameter lies within its best-fit value today. The cosmological “constant” contribution
can also be made small as we discussed previously, below Eq. (3.24). The flatness is of course
guaranteed by our brane-world construction.
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Salpeter IMF Chabrier IMF
% DM T3β for no DM % DM T3β for no DM

Lens zl in GR (×10−121M4
Pl) in GR (×10−121M4

Pl)
Q0142-100 0.49 0.4 ± 5.7 0.0072 ± 0.0960 47.9 ± 3.0 0.81 ± 0.05
HS0812+123 0.39 37.8 ± 2.2 0.66 ± 0.04 67.6 ± 1.3 1.2 ± 0.02
BRI0952-012 0.63 −6.3 ± 4.5 − 48.6 ± 1.8 0.73 ± 0.03
LBQS1009-025 0.88 64.7 ± 2.3 1.2 ± 0.04 81.7 ± 1.2 1.5 ± 0.2
B1030+071 0.60 59.7 ± 2.1 1.3 ± 0.04 78.5 ± 1.3 1.7 ± 0.3
HE1104-181 0.73 63.2 ± 1.6 1.1 ± 0.03 81.9 ± 0.8 1.5 ± 0.1
B1152+200 0.44 25.1 ± 3.5 0.63 ± 0.09 61.0 ± 1.2 1.5 ± 0.3
SBS1520+530 0.71 41.1 ± 3.4 0.83 ± 0.07 67.5 ± 1.8 1.4 ± 0.4
B1600+434 0.42 61.4 ± 1.3 1.2 ± 0.03 78.9 ± 0.5 1.6 ± 0.09
HE2149-275 0.60 60.7 ± 1.7 1.1 ± 0.03 79.7 ± 0.9 1.5 ± 0.2
Q0957+561A 0.36 76.7 ± 0.5 1.6 ± 0.01 86.9 ± 0.3 1.8 ± 0.06
Q0957+561B 0.36 77.4 ± 0.5 1.6 ± 0.01 87.3 ± 0.3 1.9 ± 0.06

Table 3.1: The best fit values of T3β to get near zero Dark Matter (DM) for a
galaxy using the Hernquist mass profile. Here Ms = 15 TeV and zl is the redshift

of the lensing galaxy. The DM requirements in standard GR gravity when
comparing the lensing mass to the stellar mass is also given. Error estimates arise

from errors on the stellar mass content of the galaxies, as presented in [70].

the stellar mass content of the galaxies. The stellar mass is calculated assuming

both a Salpeter [67] Initial Mass Function (IMF) and a Chabrier [68] IMF.16 The

IMF is defined as the distribution of stellar masses at birth, and for our purposes it

is relevant as it dominates the conversion of light into mass. It is usually assumed

to be a universal function, although there is some discussion about the exact form

of the IMF. For this reason our analysis presents two choices of IMF, a classical

Salpeter function, which consists of a single power law, therefore along the lines of

a claimed excess of low-mass stars; and a Chabrier IMF, which truncates the power

law with a lognormal distribution at the low mass end, resulting in systematic lower

values of the mass to light ratio. The stellar mass estimates for the two cases were

based on the results presented in Ref. [69]. The stellar mass is measured out to

some aperture radius, and the lensing total mass is truncated to this radius when

comparing the two values.

Comparing the lensing mass and the luminous mass of the galaxies allows us to

estimate the DM content of the galaxies. We can then alter the value of the key

parameter in the D-particle model, that is T3β, to give the best fit value of T3β for

16For details about the different IMFs used here and their meaning, we refer the reader to
Ref. [61].
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Salpeter IMF Chabrier IMF
% DM T3β for no DM % DM T3β for no DM

Lens zl in GR (×10−121M4
Pl) in GR (×10−121M4

Pl)
Q0142-100 0.49 −2.9 ± 5.8 − 46.2 ± 3.1 0.78 ± 0.05
HS0812+123 0.39 30.2 ± 2.5 0.53 ± 0.04 63.6 ± 1.4 1.1 ± 0.03
BRI0952-012 0.63 −3.0 ± 4.3 − 50.3 ± 1.7 0.75 ± 0.03
LBQS1009-025 0.88 66.9 ± 2.2 1.2 ± 0.04 82.8 ± 1.1 1.5 ± 0.02
B1030+071 0.60 61.3 ± 2.0 1.3 ± 0.04 79.4 ± 1.3 1.7 ± 0.03
HE1104-181 0.73 54.5 ± 2.0 0.99 ± 0.04 77.6 ± 1.0 1.4 ± 0.02
B1152+200 0.44 23.2 ± 3.6 0.58 ± 0.09 60.0 ± 1.3 1.5 ± 0.03
SBS1520+530 0.71 43.8 ± 3.3 0.88 ± 0.06 69.0 ± 1.7 1.4 ± 0.04
B1600+434 0.42 64.2 ± 1.2 1.3 ± 0.02 80.4 ± 0.4 1.6 ± 0.008
HE2149-275 0.60 58.8 ± 1.8 1.1 ± 0.03 78.7 ± 0.9 1.4 ± 0.02
Q0957+561A 0.36 74.9 ± 0.5 1.6 ± 0.01 85.8 ± 0.3 1.8 ± 0.006
Q0957+561B 0.36 74.3 ± 0.5 1.6 ± 0.01 85.5 ± 0.3 1.8 ± 0.006

Table 3.2: As Table 3.1, now with the NFW profile.

no DM to be required in these systems. Note that the purpose of this analysis is

not to show the lensing can be explained in the absence of DM, as DM candidates

come naturally with the string model we are working with. However, the results for

T3β shown in Table 3.1 and 3.2 represent the upper bound on the value of T3β in

these systems.

We examine a selection of lensing galaxies from the CfA-Arizona Space Telescope

Survey (CASTLES) [71] database. Given our 1-D lensing analysis, we are restricted

to only studying those lenses with 2 images only, as systems with quad images

require accounting for the ellipticity of the lens. We are also restricted to looking at

those galaxies for which there was high quality data for the luminous mass content.

We thus get the list of 11 galaxies for which we present results below. Note that

Q0957+561A and Q0957+561B are both a special case for which one galaxy was

lensing two separate sources simultaneously. The results for the Hernquist profile

are presented in Table 3.1 and the results for the NFW profile are given in Table 3.2.

Note that in the results, using the Salpeter IMF leads to a negative estimate for

the DM content of two galaxies, namely BRI0952-012 for the Hernquist and NFW

profile, and Q0142-100 for the NFW profile. This is a result of the form of the IMF,

which tends to systematically overestimate the contribution of low mass stars when

calculating the stellar mass of galaxies. We include both IMF’s for completeness

and also to show the weak dependence of our results on the specific IMF chosen,

but the Chabrier case is widely considered to be the most evidentially robust for
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precisely this reason [69]. In addition, as shown in [69, 70], one can note that the

errors given are due to the errors in the astrophysical data (namely, in the evaluation

of the stellar mass) and are, in the vast majority, within 10%. The numerical code

does not amplify nor reduce these errors. Finally, we would like to recall once more

that one can safely assume, between different lenses, a 10% variation of β due to a

slight inhomogeneity in the D-particles distribution.

Thus, given the allowed range of values for β in Eq. (3.50) for Ms = 15 TeV, we

would expect T3 to be approximately in the range 10−60M4
Pl . T3 . 10−57M4

Pl. This

result is actually largely insensitive to the value of the string mass scale Ms. The cor-

responding range of J (cf. (3.15)), for φ0 = 0, Ms = 15 TeV and phenomenologically

relevant values of the string coupling 8π2/gs0 = O(102) is then 1� 109 . J . 1012.

3.3.3 Numerical estimates of the modified contributions

We shall now examine some numerical results for different contributions of the gravi-

ton equation of motion, to allow a more intuitive understanding of the different

contributions arising from our model.

1

2κ2
0

+
αT3e

φ0

2gs0

(M2
Pl)

αe−2φ0〈〈F̃αβF̃αβ〉〉
4

(M−2
Pl )

4.0× 10−2 −5.8T3β × 1031

Table 3.3: Comparison of the values for the different contributions to κ−2
eff , defined

in Eq. (3.43). Note that the units in the second column are M−2
Pl since [T3] = M4

Pl.

(
Rµ

ν − 1
2
gµνR

)
1
κ2

0
(M4

Pl) ρ(r) (M4
Pl)

1
8
〈〈F̃ 2〉〉 − 1

2
〈〈F̃ tρF̃tρ〉〉

−4.9× 10−120 1.6× 10−119 5.8 T3β × 103

Table 3.4: Comparison of the values for the different contributions to the tt
component of the metric Eqs. (3.41), (3.42); evaluated for the lens HS0818+123, at

a distance of 15 kpc. Note that the final column is given in dimensionless form
since [T3] = M4

Pl.

Table 3.3 shows the values of the different contributions to κ−2
eff . The second term

will be of the same order as 1/8πG when T3β = 10−33M4
Pl. Thus, in order to ensure

that there is a negligible contribution from our model to the value of the effective

gravitational constant, we get an upper limit on T3β of 10−33M4
Pl, which is satisfied

considering our above estimates. However, more stringent upper limits on this value

come from other considerations, as shown in Eq. (3.50).
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In Table 3.4 we show the values of the standard GR terms and the modifications

coming from our model. The following can be seen: looking at the last item in

the table we can see that this will be of the same order as the GR contribution

only when T3β ' 10−123M4
Pl. Note that the above analysis can only provide a rough

understanding of the relative sizes of the contributions coming from different parts of

the model; a more accurate numerical analysis presented in Table 3.1 does not make

the same simplifications as the ones that have been taken here, and this accounts

for the difference in the calculated value of T3β and the one estimated above.

3.4 Inflation induced by D-particles

Another important aspect of D-particles outlined in Ref. [59] is the fact that they

may induce (slow-roll) inflation consistent with the latest cosmological data such as

the Planck survey [10], through condensation of their recoil velocity field. There are

two physically relevant cases, which depend crucially on the size of the string scale

involved. One pertains to large condensate fields, which may arise in the case of very

dense populations in the early universe, and we ensure a smooth connection, in the

sense of a cosmic evolution, between the weak condensates of the recoil velocity field

at late epochs of the universe relevant for galaxy and large-scale structure formation,

with the strong condensates induced by dense D-particle populations in the early

universe. This case, which we shall study in second in Section 3.4.3, is appropriate

for low string mass scales Ms compared to the Hubble scale. The first case pertains

to weak condensates, which are associated with string scales large compared to the

Hubble inflationary scale and will be studied in Section 3.4.2. We investigate to

see whether both cases can lead to consistent inflation, compatible with the Planck

data [6], before exploring the connection of successful inflationary period with the

late eras in the final Section 3.4.4 and after some common formalism.

3.4.1 Formalism

Before going to the specifics, it is useful to first introduce the reader to the pertinent

formalism. For the inflationary metric, the background recoil vector field assumes

the form (3.29) but with the term tc being dominant over the term (t a(tc)/a(t))2 as

a result of the exponential expansion of the universe and the fact that tc is of order
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of a few string time scales tc ∼
√
α′. The relevant background vector field is

Ai(t) '
1

α′
gij(t)u

j

(
a(tc)

2

a(t)2
t− tc

)
' − 1

α′
gij(t)u

j tc ∼ −
1√
α′
gij(t)u

j , t > tc ∼
√
α′ , (3.58)

and the metric gµν(t) is just the homogeneous and isotropic de Sitter FLRW metric

(3.25) with a(t) = a0 e
HI t and HI the Hubble scale during inflation, which is assumed

constant and of the following order of magnitude HI ∼ 10−5 MPl � H0 [6]. Thus the

recoil vector field is assumed homogenoeus and isotropic in agreement with standard

cosmology. This is a feature consistent with the assumption of dense populations of

D-particles in the early universe. As discussed previously, we can covariantise the

background, using Eq. (C.15), which satisfies the constraint (C.18). The “electric”

field strength corresponding to this case is given by Eq. (C.19) in Appendix C.

Due to the time dependence only of the (cosmological) background there are no

“magnetic” field components, Fij = 0.

We shall adopt a mean field approach, that is, a coarse-grained approximation,

in which we shall consider appropriate distribution functions over the D-particle

recoil velocities, thus treating the ensemble of particles and their properties (such

as their velocities) over a small patch of the universe. We consider distributions of

the stochastic Gaussian type (3.34), which preserve the rotational symmetry and

isotropy and homogeneity of spacetime (and are thus consistent with the cosmolog-

ical principle).

As we study later on in Section 3.4.3, inflation may be induced in case there

are very dense populations of D-particles in the early universe, leading to large

condensates of the respective velocity fields. In such a case, the full structure of

the Born-Infeld action (3.1) needs to be kept to describe inflation. Using Eq. (3.10)

we do observe that in the Minkowski spacetime, there is an upper bound on the

allowed value of the condensate of the “electric” field 〈〈Fµν F µν〉〉 = −〈〈E2a2(t)〉〉,
with F 0i ≡ Ei, otherwise the integrand of the square root becomes imaginary. This

is the problem of the maximal electric field in the Minkowskian Born-Infeld theory.

However, when we consider the dynamics of inflation, we necessarily work in a

finite temperature formalism, that is a Euclidean time, in order to account for the

(observer dependent) de Sitter temperature characterising the inflationary scenario.

In this case, the Euclidean Born-Infeld action does not have a bounded “electric”

field. Analytic continuation back to Minkowski spacetime can be performed at the
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end of the computations.

From Eq. (3.2), one can define a dimensionless covariant condensate in the FLRW

spacetime background described by the FLRW metric gij (3.25)

C(t) ≡ (2πα′)
2 〈〈Fµν F µν〉〉 = (2πα′)2 2 〈〈F0i F0j g

00 gij〉〉 = −8π2α′2 〈〈F0i F0j
1

a2
δij〉〉

= −32π2

(
H(t)

Ms

)2

〈〈uphys
i uphys

j δij〉〉 = −96π2

(
H(t)

Ms

)2

σ2
0 , (3.59)

where uphys
i = a ui is the D-particle recoil velocity in the comoving frame.

During inflation (approximately de Sitter spacetime background), there is a tem-

perature associated with this frame, the so-called Hawking-Gibbons temperature of

a de Sitter spacetime [72]

T =
H

2π
, (3.60)

associated with the observer dependent horizon of the de Sitter spacetime.

Depending on the relative magnitude of this temperature, we may have a rela-

tivistic or non-relativistic “thermal” motion of the D-particle ensemble. If MD =

Ms/gs0 is the mass of the D-particle, set by the string scale Ms = 1/
√
α′, then, for

the case where H ' HI �MD, that is when the string scale Ms � HI ' 1014 GeV,

we have T/MD � 1 and the thermal motion of D-particles may be considered rel-

ativistic. In such a case, and again considering the properties of an ensemble of

D-particles within a small patch of the universe, that is, using a coarse-grained

approximation, a Boltzman distribution of the form

ˆ
d3p f(p) ∼

ˆ
d3p e−p/T = 4π

ˆ
dp p2 e−p/T , p ≡ |p| �MD , (3.61)

may be assumed without loss of generality.

The physical velocity uphys
i = pphys

i /MD = gs0 pi/Ms is now assumed to undergo

this thermal distribution, because it is only in the physical (cosmological observer’s)

frame that such a (observer dependent) temperature can be defined, as explained

above. Thus, over such a patch, the variance 〈〈uphys
i uphys

j 〉〉 (since 〈〈uphys
i 〉〉 = 0) can
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then be computed on the basis of Eq. (3.61) to be of order

〈〈uphys
i uphys

j δij〉〉 =
1

M2
D

〈〈pphys
i pphys

j δij〉〉 =
g2

s0

M2
s

´
dp p4 e−p/T´
dp p2 e−p/T

∼ 12 g2
s0

(
T

Ms

)2

∼ 12 g2
s0

(
HI

2πMs

)2

, |p| � T , (3.62)

during inflation, and that it is approximately constant, decreasing with HI.

In the nonrelativistic case, that is, when the string scale Ms is much higher than

the inflationary scale HI, one has, still using the coarse-grained approximation, a

Maxwell distribution (Gaussian in the velocities) instead, with

ˆ
d3p f(p) ∼ 4π

ˆ
dp p3 e−p

2/ TMD , (3.63)

〈〈uphys
i uphys

j δij〉〉 =
g2

s0

M2
s

´
dp p5 e−p

2/ TMD´
dp p3 e−p2/ TMD

∼ 2 gs0

(
T

Ms

)
∼ 2 gs0

(
HI

2πMs

)
� 1 . (3.64)

It is important to notice that the correct treatment of a thermal distribution of

recoil velocities requires a Euclideanised spacetime, stemming from the replacement

of the time coordinate with a Wick rotated one, x0 → iτ , which is then identified

with the inverse temperature. In this sense, the (dimensionless) condensate of the

field strengths (3.59) then assumes the following form in an order of magnitude

estimate

CE(t) ∼ 96 (HI/Ms)
4 g2

s0 for Ms � HI (relativistic)

∼ 32π(HI/Ms)
3 gs0 for Ms � HI (non-relativistic), (3.65)

and notice that this Euclideanised condensate (indicated with the superscript ‘E ’)

is positive definite, so large values (much larger than one) are allowed, which would

otherwise have been excluded on the basis of the reality of the argument of the square

root of the Minkowskian Born-Infeld Lagrangian. This Euclidean path integral

was adopted by Hawking in his treatment of the thermal properties of the black-

hole horizon [73], and by Gibbons and Hawking [72] when discussed the de Sitter

temperature, which is of interest to us here.
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3.4.2 The fate of inflationary scenarii for small condensates

We next proceed to consider the possibility of D-particle recoil-induced inflation in

the case where the condensate is a weak field (that is, much smaller than 1), which

pertains either to the case when Ms � HI in Eq. (3.65) or to the case of arbitrary

string scales but with the brane tension satisfying Eq. (3.44), which was dismissed

in the lensing analysis.17 Weak condensates characterise the galaxy growth era [61],

and such situations cannot lead to inflation driven by the recoil velocity, as we will

try to demonstrate here. Nevertheless, in such a case, other moduli fields in string

theory, such as the dilaton (for large negative values), can drive a Starobinsky-type

inflation, as discussed in Ref. [59] and reviewed briefly in Appendix D.

The dynamics of small condensates is described by an appropriate weak-field

expansion of the Born-Infeld square root action of (3.1). For our purposes, it suffices

to keep terms up to quadratic order in the recoil field strength F 2, leading to the

effective action (3.12). The reader should also recall that we have fixed the brane

tension to (3.44) for convenience, which results in a canonical Maxwell kinetic term

for the recoil vector field. The latter satisfies the constraint (C.18). We also set

the dilaton field to zero φ0 = 0, since our primary purpose here is to examine the

possibility of a D-particle recoil driven inflation.

Using the condensation field

〈〈F 2〉〉 = −24σ2
0 ȧ

2 α′ = −24σ2
0 H

2
I M

2
s ≡ CM4 , (3.66)

(where CM4 ≡ 1/(2πα′)2 C(t) has dimension [mass]4, C(t) being defined in Eq. (3.59))

and ignoring any matter during the inflationary era, the effective action we shall

make use from now on reads

Seff 4D =

ˆ
d4x
√
−g
[
−Λ0 −

1

4
〈G2〉 − 1

4
CM4 +

(
1

κ2
0

+
αT3

gs0

+
α

4
CM4

)
R

]
. (3.67)

Recall that even though CM4 is here treated as a time-dependent scalar field in a

first approximation, it hides in fact a more complex (space- and time-dependent)

vector field structure, which turns out to be the kinetic term of our vector field Aµ.

As usual in inflationary considerations, we only consider the vacuum expectation

values of the fields, in order to derive their cosmological evolution and ignoring local

variations or quantum fluctuations. Any term containing derivatives of F 2 included

17See the discussion around Eq. (3.86) in the next subsection.
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at this level would end up subleading and can thus be, here again, safely ignored.

We define then the following constants

1

κ2
eff

=
1

κ2
0

+
αT3

gs0

, Λ0 =
T3

gs0

+
Λ̃

κ2
0

' 1

3

Λ̃

κ2
0

= fκ
Λ̃

κ2
eff

< 0 (3.68)

where for the (non-conformal) cosmological constant we used Eqs. (3.17a) and (3.23)

and defined fκ ≡ 1
3

κ2
eff

κ2
0

. We also define the scalar field

σ ≡ 1

4
ακ2

eff CM4 (3.69)

and we obtain

Seff 4D =

ˆ
d4x
√
−g 1

κ2
eff

[
−fκ Λ̃− D̃ − σ

α
+ (1 + σ)R

]
, (3.70)

where the constant term of dimension [mass]2, D̃ ≡ κ2
eff D ≡ 1/4 κ2

eff 〈〈Gµν Gµν〉〉, cor-

responds to a flux field condensate18 as well as potentially other dilaton-independent

terms such as the rest mass contributions of a population of D-particles on the brane

world to the vacuum energy density [59].19

Since we are concentrating here on the case of small fields σ � 1, this yields

σ =
1

4

π2

6

1

M2
s

κ2
eff

[
24σ2

0 H
2
I M

2
s

]
' π2 σ2

0

(
HI

MPl

)2

� 1 , (3.71)

where we used α = π2

6
1
M2

s
and 1

κ2
eff
'M2

Pl. Recalling HI ' 10−5MPl, one has

σ2
0 �

1010

π2
' 109 . (3.72)

Changing the metric gµν → gE
µν ≡ (1 + σ) gµν and defining

ϕ ≡
√

3

2
ln (1 + σ) (3.73)

∂µϕ =

√
3

2

∂µσ

1 + σ

18See Eq. (3.17b) and recall these flux gauge field condense due to the generic non-linearity of
their bulk dynamics, as in Ref. [62].

19See Eq. (3.8) as well as Eq. (D.10) in Appendix D.

137



CHAPTER 3. MODIFIED GRAVITY 3.4. Inflation induced by D-particles

leads to the following

R = (1 + σ)
[
RE + (∂ρϕ∂

ρϕ)
]

(3.74)

√
−g =

1

(1 + σ)2

√
−gE . (3.75)

We hence get the action

SE
eff 4D =

ˆ
d4x

√
−gE

1

κ2
eff

[
RE + (∂ϕ)2 − V (ϕ)

]
,

with V (ϕ) ≡ D̃ +
e−
√

2
3
ϕ

α
+

(
fκ Λ̃− 1

α

)
e−
√

8
3
ϕ , (3.76)

where the flux gauge term D̃ is conformal in four spacetime dimensions and thus

remains constant upon the change of frame. We note that, as in the large condensate

case of the following section, it is this field that drives inflation but the fluctuations

of the recoil velocity inflaton field ϕ are what leads to exit from it. In addition, one

can see the appearance from the curvature term of a kinetic term for our inflaton

field, confirming that it is a dynamic field even though it was not explicit previously

in actions (3.67) and (3.69).

Assuming σ � 1, then ϕ '
√

1.5σ � 1 and thus the field ϕ is also small.

Taylor expanding the exponentials around ϕ ∼ 0, one obtains that the effective

(inflationary) potential for small ϕ� 1 reads

V (ϕ) '

[
D̃ +

1

α

(
1−

√
2

3
ϕ+

1

3
ϕ2 +O(ϕ3)

)

+

(
fκ Λ̃− 1

α

)(
1−

√
8

3
ϕ+

4

3
ϕ2 +O(ϕ3)

)]

'

[
D̃ + fκ Λ̃ +

√
2

3

(
1

α
− 2fκ Λ̃

)
ϕ

+
1

3

(
− 3

α
+ 4fκ Λ̃

)
ϕ2 +O(ϕ3)

]
. (3.77)

We shall now proceed to demonstrate that a purely D-particle recoil driven slow-roll

inflation is impossible, in the case of weak condensate fields. To this end, one needs

to study the slow-roll conditions and the WMAP imposed constraints [5, 10]. More

precisely, the slow-roll parameters ε, η, ξ, the number N of e-folds, the spectral
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index ns and the WMAP normalisation [5, 10] read

ε ≡ 1

2
M2

Pl

(
V ′

V

)2

� 1 , (3.78a)

η ≡M2
Pl

(
V ′′

V

)
� 1 , (3.78b)

ξ ≡M4
Pl

(
V ′′′ V ′

V 2

)
� 1 , (3.78c)

N ≡ −
ˆ ϕe

ϕi

V

V ′
dϕ ' 60 , (3.78d)

ns ≡ 1− 6ε+ 2η ' 0.96 , (3.78e)( 1
κ2

eff
V

ε

)1/4

= 0.0275 MPl . (3.78f)

We note first that, as a result of the dilaton equation, the condition Eq. (3.24) is

imposed, implying that Λ̃ is negative and the coefficients of the linear and quadratic

terms in ϕ that are present in Eq. (3.77) are non-zero. This leads to nontrivial

slow-roll parameters, yielding

N =
V

V ′
∆ϕ ⇒ ε =

(∆ϕ)2

2N2
, η =

V ′′

V ′
∆ϕ

N
,

which, combined with the definition of ns, leads to

ns = 1− 6
(∆ϕ)2

2N2
+ 2

V ′′

V ′
∆ϕ

N
⇔ V ′′

V ′
=

3

2

∆ϕ

N
− N

∆ϕ

1− ns

2
. (3.79)

Since N ∼ 60 and ∆ϕ� 1, one has (1− ns)N/∆ϕ� 1 and ∆ϕ/N � 1. Hence, to

a good approximation, it gives

V ′′

V ′
' − N

∆ϕ

1− ns

2
⇔

2
3

(
− 3
α

+ 4fκ Λ̃
)

√
2
3

(
1
α
− 2fκ Λ̃

) ' − N

∆ϕ

1− ns

2

⇔ 1

α

(
−3 +

√
3

2

N

∆ϕ

1− ns

2

)
' −2fκ Λ̃

(
2−

√
3

2

N

∆ϕ

1− ns

2

)
. (3.80)

Since
√

3
8
N (1− ns) ∼ 1.5 and ∆ϕ � 1, the constant term in each bracket in the
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above equation is small and can be neglected. This yields

1

α

(
1.5

∆ϕ

)
' 2fκ Λ̃

(
1.5

∆ϕ

)
⇔ 1

α
' 2fκ Λ̃ ' 2κ2

eff Λ0 , (3.81)

leading to a positive Λ0, incompatible with Eq. (3.24), which is required by the

dilaton equation.

One is then led to the conclusion that no valid scenario exists for small field

inflation induced by D-particles alone.

3.4.3 Inflation for large recoil velocity condensate fields

Let us now concentrate on the low string scale case, where the condensate (3.65) is

large

Ms � HI ∼ 10−5MPl �MPl , (3.82)

where we used that the Planck data [6] point towards the fact that HI ' 10−5MPl.

In this case, one cannot expand the square root of the Born-Infeld action, but one can

approximate it by ignoring the constant inside, that is the (Euclideanised spacetime)

action (3.1) becomes (setting φ0 = 0 from now on)

Seff 4D '
ˆ

d4x
√
g

[
−1

4
GµνGµν −

T3

gs0

√
CE
2
− Λ̃

κ2
0

+
1

κ2
0

(
1 + κ2

0

αT3

gs0

√
CE
2

)
R(g)

]
, (3.83)

where α is given by Eq. (3.5) and the condensate is positive. Let us define the

dimensionless field

σ(t) ≡ κ2
0

αT3

gs0

√
CE(t)

2
> 0 , (3.84)

by means of which the action (3.83) becomes

Seff 4D '
ˆ

d4x
√
g

1

κ2
0

[
−κ

2
0

4
Gµν Gµν − Λ̃− σ

α
+ (1 + σ)R(g)

]
. (3.85)

Before going further, we should make some remarks regarding the magnitude of the

condensate field (3.84). First of all we observe that, if we were to follow the structure

formation analysis [61] mentioned in Section 3.3 using brane tensions that satisfy
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Eq. (3.44), the condensate field would be small σ(t)� 1 since

σ(t) ' gs0

2
√

3

(
HI

MPl

)2

� 1 , (3.86)

where we have used Eqs. (3.65) and (3.43) and the fact that Ms � MPl (cf.

Eq. (3.82)) to approximate M2
Pl ' κ−2

0 . As we saw in subsection 3.4.2, such weak

condensates cannot lead to slow-roll inflation.

Here we are interested in large field inflation, which, as we try to demonstrate

here, can be induced by large recoil velocity condensate fields σ(t)� 1. The latter

condition may be achieved if we relax again Eq. (3.44) and use large brane tensions,

namely
(2πα′)2 T3

gs0

≡ J � 1 . (3.87)

The reader should recall Eq. (3.15) where the parameter J was first defined. In

such a case, we obtain from Eq. (3.84)

σ(t) ' gs0

2
√

3
J κ2

0H
2
I '

gs0√
3
J
(
HI

MPl

)2

, (3.88)

which can be much larger than one. In this case from Eq. (3.43) we obtain that

M2
Pl = 1

κ2
0

+ J
24
M2

s and κ2
0 is a parameter independent from MPl. Without loss of

generality one can simply assume the relation (3.45), used in the previous section for

the lensing analysis, which is consistent with Eq. (3.82). In such a case one obtains

σ(t) ∼ 8
√

3 gs0

(
HI

Ms

)2

� 1 , (3.89)

during inflation. In the remainder of this subsection we shall stick to this case.

We now proceed to discuss how inflation is induced by such large condensates

and how one can show the induced inflation is of Starobinsky-type [59]. We first

redefine the metric in Eq. (3.85) as

gµν → g̃µν = (1 + σ)gµν . (3.90)

We also define a canonically normalised scalar field

ϕ(t) =

√
3

2
ln
(

1 + σ(t)
)
, (3.91)
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in terms of which the action (3.85) becomes

Seff 4D '
ˆ

d4x
√
g̃

1

κ2
0

[
R(g̃) +

1

2
∂µϕ∂

µϕ− κ2
0

4
GµνGµν

− e−
√

2
3
ϕ

α
−
(

Λ̃− 1

α

)
e−2
√

2
3
ϕ

]
, (3.92)

where we took into account the conformal nature of the flux gauge term in four

spacetime dimensions. We may assume now that the flux field condenses into a

constant one, because of the non-linearity of its dynamics, as in Ref. [62], and

contributes to the vacuum energy as

1

4
〈〈Gµν Gµν〉〉 ≡ D , (3.93)

as in the previous case. The last three terms in the Euclidean effective action (3.92)

define the Euclideanised (superscript ‘E ’) effective potential of the ϕ field in the

region of large values (defined with dimensions of [mass]2)

V E = −κ2
0D −

e−
√

2
3
ϕ

α
−
(

Λ̃− 1

α

)
e−2
√

2
3
ϕ . (3.94)

The reader should take notice of the relative sign of the potential compared to the

kinetic term of the scalar field in (3.92), as appropriate for a euclidean effective

action, which is just the effective Hamiltonian of the system. We should now ana-

lytically continue (3.94) back to the Minkowski spacetime. This implies that, apart

from the time being rendered a Minkowskian signature, x0 → it, the field ϕ acquires

an imaginary part √
2

3
ϕ→ ln(i|σ|) = ln|σ|+ i

π

2
=

√
2

3
ϕ̃+ i

π

2
, (3.95)

where now the field ϕ̃ is real.

Thus, from Eq. (3.94), and assuming that the flux condensate D is of “electric”

type so that under analytic continuation to Minkowski spacetime one has D → −D,

the potential acquires an imaginary part and is approximated by

V (ϕ) ' κ2
0D +

(
Λ̃− 1

α

)
e−2
√

2
3
ϕ̃ + i

e−
√

2
3
ϕ̃

α
. (3.96)
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Notice that the imaginary part of the potential is the only one appearing in the

analytically-continued effective action (3.92), given that the kinetic terms are real,

since the imaginary part of the ϕ field is constant in spacetime.

The presence of an imaginary part indicates an instability of the de Sitter infla-

tionary vacuum which is not an unwelcome fact. The field will roll down towards

smaller values of H2. Eventually, the condensate (3.65) will become smaller than the

Born-Infeld critical field and hence the imaginary part will disappear. In this regime,

one may expand the square root of the Born-Infeld action, as done in Ref. [61], to

obtain the effective action relevant for the radiation and matter eras.

The imaginary part of the potential gives by definition the width, or equivalently,

the inverse of the lifetime of the de Sitter vacuum, namely

τ = ~Γ−1 ∼ κ−1
0 α e

√
2
3
ϕ̃ (3.97)

which is sufficiently long (as compared to the reduced Planck time κ0) for any

positive value of ϕ̃ ∼
√

6 ln(HI/Ms).

The real part of the effective potential (3.96)

ReV (ϕ̃) = D̃ +

(
Λ̃− 1

α

)
e−2
√

2
3
ϕ̃ , D̃ ≡ κ2

0D , (3.98)

is of Starobinsky type, provided one can tune the flux-field condensate to be D̃ > 0

and such that the minimum of the potential occurs for the field value ϕ̃ = 0 and

corresponds to zero potential. The quantity Λ̃ is negative, as a consequence of the

dilaton equation of motion, and in fact can be tuned to the value given by Eq. (3.23)

in order to ensure continuity of the inflation phase with the growth era. Hence, the

coefficient of the e−2
√

2
3
ϕ̃ term is negative relative to D̃. Again, an important feature

of the approach here is that it is the gauge field flux condensate 〈GµνGµν〉 that induces

a de Sitter phase (positive, almost constant, vacuum energy), and hence inflation,

but it is the recoiling D-particles velocity vector field that induces a slowly rolling

scalar degree of freedom that allows exit from inflation.

Now, let us see how one can get slow-roll inflation in this case by evaluating the

conditions (3.78). For large condensate σ, one has

V (ϕ̃) = D̃ +

(
Λ̃− 1

α

)
e−2
√

2
3
ϕ̃ = D̃ − Ae−Bϕ̃ ,

V ′(ϕ̃) = AB e−Bϕ̃ , V ′′(ϕ̃) = −AB2 e−Bϕ̃ , V ′′′(ϕ̃) = AB3 e−Bϕ̃ , (3.99)
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where we defined the constants A ≡ −
(
|Λ̃|+ 1

α

)
> 0 and B ≡ 2

√
2
3
' 1.15. Hence

N ' D̃
AB2

eBϕ̃ (3.100a)

ε ' A2B2

2D̃2
e−2Bϕ̃ =

1

2B2N2
and η ' −AB

2

D̃
e−Bϕ̃ = − 1

N
(3.100b)

⇒ 1− ns = 6ε− 2η =
3

B2N2
+

2

N
(3.100c)

ξ ' A2B4

D̃2
e−2Bϕ̃ =

1

N2
(3.100d)(

1/κ2
0 V

ε

) 1
4

'

(
D̃
ε

) 1
4

= 0.0275 MPl (3.100e)

⇒ D̃ ' (0.0275)4 ε M4
Pl '

5.7× 10−7

2B2N2
M4

Pl (3.100f)

where the last equation comes from the WMAP constraint [5, 10]. So, as is standard

in Starobinsky-type inflation, the constant A is not constrained by the slow-roll

conditions (in our microscopic model, as we have already mentioned, we may tune

it to the value determined by Eq. (3.23) by demanding continuity of the inflationary

epoch to the galactic-growth era of the string universe). Thus, fixing ns fixes N

(and vice-versa). Indeed, one gets (from solving the second degree trinomial in N

from Eq. (3.100c) and choosing the positive solution)

N =
1

1− ns

(
1 +

√
1 +

3 (1− ns)

B2

)
. (3.101)

Planck 2015 analysis [10] gives ns = 0.968 ± 0.006 (68% CL, PlanckTT+LowP)

which is shifted towards higher values compared to earlier results, that gave a central

value ns = 0.965. The solid black line in Figure 3.3 shows N as a function of ns

for B = 2
√

2/3. The vertical blue shaded area corresponds to the 68% CL interval

for ns corresponding to the two central values ns = 0.965 and ns = 0.968, while the

horizontal shaded area in red shows the relevant interval for N . The black dashed

lines highlight the central values for ns and the corresponding values for N . One

notes the excellent fitting of the predictions of the model to the data.

If we adopt ns = 0.965, we get N = 57.7, leading to

ε ' 5.6× 10−5 � 1 , η ' −1.7× 10−2 � 1 , ξ ' 3.0× 10−4 � 1 (3.102a)
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N
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Figure 3.3: N as a function of ns from the potential 3.98. The vertical blue shaded
area corresponds to the 68% CL interval for ns around the central values ns = 0.965
and ns = 0.968, while the horizontal red shaded area shows the relevant interval for
N . The black dashed lines highlight the central values for ns and the corresponding

values for N .

and

D ' 3.2× 10−11 M4
Pl ⇔ D̃ ' 3.2× 10−11 M2

Pl , (3.102b)

showing that every constraint related to the slow-roll conditions is satisfied: N ∼ 60,

ε � 1, η � 1, ξ � 1, while the WMAP constraint on V/ε gives constraints on the

size of the potential.

The constant A and the value of the field ϕ̃ are not constrained at all so far

except in that their combination Ae−Bϕ̃ must satisfy

D̃ � Ae−Bϕ̃ , (3.103)

in order to ensure slow-roll. From Eq. (3.100a), we know

Ae−Bϕ̃ =
D̃

B2N
' D̃

1.5× 102
� D̃ , (3.104)

which confirms the consistency of our model.

Note that this result is not very sensitive to the value of B, especially to larger
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B. Indeed, even with B a hundred times larger, the curve is shifted down by less

than 1 unit meaning that N decreases by 1 e-fold. Lowering B would modify a bit

more our results but not much either, since with a B twice as small, N increases

by less than 2 e-folds while with a B four times smaller, N increases by less than 8

e-folds (reaching about 70 for ns = 0.968).

At this point it is worth making a few important remarks. The considerations

leading to Eq. (3.98) indicate the possibility of inflationary scenarios for the redefined

metric g̃µν through Eq. (3.90). Nevertheless, for a slowly rolling condensate σ(t),

as required during inflation, the original metric is also inflationary, up to a time

coordinate change. Indeed, let us denote by t̃ the cosmic time coordinate in the

g̃-metric. The latter during inflation corresponds to a line-element of the form

ds̃2 = dt̄2 − ã(t̄)2hij(x
k) dxidxj

= (1 + σ(t)) dt2 − (1 + σ(t)) a(t)2hij(x
k) dxidxj , (3.105)

in a standard FLRW notation, with σ � 1, and where

dt̃ =
√

(1 + σ(t)) dt '
√
σ dt , ã(t̃) =

√
(1 + σ(t)) a(t) '

√
σ a(t) . (3.106)

For a slowly moving σ field (almost constant), the two metrics differ by an overal

scale factor, and the corresponding Hubble parameters are related as follows (quan-

tities with a tilde pertain to the metric (3.90) and the coordinates (3.106))

H̃ ≡ 1

ã(t̃)

d

dt̃
ã(t̃) =

1√
σ

(
σ̇

σ
+
ȧ

a

)
' 1√

σ
H , (3.107)

since during inflation σ̇/σ � 1 and can be neglected in front of the H = ȧ/a term

(the overdot denotes time derivatives with respect to the cosmic time pertaining to

the initial metric gµν).

Taking into account (3.89) as a concrete example, for Ms � HI , we can estimate

H̃ ≡ HI ∼
1√

8
√

3 gs0

Ms

HI

H , (3.108)

from which it follows that the inflationary scale of the original metric is much higher

than HI, of order

H ∼
√

8
√

3 gs0
H2

I

Ms

� HI , Ms � HI . (3.109)
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The reader should bear in mind that above we matched the cosmological observa-

tions [6] on inflation with predictions made by the conformal rescaled metric g̃µν

(3.90), and therefore it is the scale H̃ that we call the “physical” Hubble scale

HI ∼ 10−5MPl used in observations [6]. For a smooth connection with the galaxy

data in this case we should use the action (3.92) with the metric (3.90), after the

inflaton decays, that is we should couple it to matter and radiation. At the end

of inflation the condensate of D-particles vanishes σ → 0 and the two metrics co-

incide. At the radiation era that succeeds the exit from inflation, the condensate

field σ is replaced by the weak field F̃µνF̃
µν and the action (3.16) describes now the

dynamics. Note that in the discussion in Section 3.3, the possibility of large brane

tension Eq. (3.87), which replaces Eq. (3.44), has been taken into account as shown

in Eqs. (3.45) and (3.47).20

Another important aspect is that the condensate σ(t) defined in Eq. (3.84), upon

the redefinition of the metric (3.90), can be expressed in terms of g̃µν as follows

σ = (1 + σ)2σ̃ (3.110)

where σ̃ is the condensate 〈〈FµνFαβ g̃µα g̃νβ〉〉, which, because it is a scalar, will

assume the same value if one passes onto the coordinates (3.106). For large σ � 1

one obtains from (3.110) σ ∼ 1/σ̃ � 1. In terms of the σ̃ field, the canonically

normalised inflaton field defined in Eq. (3.91) reads ϕ ∼ −ln(σ̃).

Finally, before closing this section, it is important to comment on the order of

magnitude of the statistical parameter σ2
0 ≡ σ2

0,infl (3.66) during the large-condensate

inflationary era with Ms �MPl = κ−1
eff . As we have already mentioned, this param-

eter is assumed constant during inflation, due to the fact that during that epoch

the brane world moves in a bulk region which is densely populated by D-particle

defects, in such a way that there is a large incoming flux of D-particles from the

bulk onto the brane compensating any potential dilution of their population on the

brane due to the brane-universe expansion. From Eqs. (3.62), (3.89) we estimate

σ2
0,infl

σslow−roll

' gs0

8π2
√

3
, (3.111)

20Otherwise, it would have quantitative consequences in the allowed range of the β parameter
and hence in the density of D-particles relevant in late eras. Therefore, one would need to consider
the parameter J |β| to match the DM in a galaxy — see for instance Eqs. (3.41) or (3.47) — thus
leading to much smaller upper bounds for the density of D-particles in order for them to mimic
DM through their recoil velocity field fluctuations.
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where σslow−roll = 8
√

3 gs0 (HI/Ms)
2. For Ms = O(104) GeV, we obtain σ2

0,infl =

O(1016).21

3.4.4 Estimates of the age of the D-material universe

Before closing this section we would like to make some crude estimates of the age

of the D-material universe t0 in the case where inflation is driven by strong conden-

sates of D-particle recoil velocities. It goes without saying that, without detailed

microscopic models it is not possible to find a precise connection of the value of

σ2
0 ' |β| during the galactic era with σ2

0,infl, which would allow for a precise estimate

of t0. Indeed, this would require knowledge of the bulk distribution of D-particles

from the moment of the exit from inflation until the current era. In our complicated

dynamical system, the equation of state of the pertinent cosmic fluid is not a con-

stant and depends on many factors, including the density profile of the bulk and

brane D-particles at any given era. Nevertheless, one can make some simplifying

assumptions, which allow us to make some estimates of the age of the D-material

universe in a phenomenological context.

To this end, we first recall that in the case of complete dominance of the classical

recoil velocity condensates, based on statistical populations of D-particles whose

dynamics is governed by a Born-Infeld action of the vector field alone, the equation

of state of the recoil velocity fluid would be w = −1/3 [61]. This is the limiting case

(from above) for which acceleration of the universe occurs. From the corresponding

Friedmann equation, that would lead to a linearly expanding universe with the

cosmic time, a(t) ∼ t, which is not physical. However, the D-material universe’s

Lagrangian is much more complicated than a simple Born-Infeld fluid. The presence

of matter as well as non-minimal couplings of the Born-Infeld factors with spacetime

curvature (cf. Eq. (3.1)), alter the situation drastically and one expects, as already

mentioned, a time (redshift) dependent equation of state for the total fluid, D-

particles and matter strings, wtot(z), whose form is currently difficult to estimate

without detailed knowledge of the density profile of the bulk D-particles.

Matter domination era in our case includes contributions to the stress tensor

coming from the recoil velocities of the D-particles bound on the brane world, as a

consequence of their interactions with string matter. Matter dominance, therefore,

does not exclude the possibility that the contributions of the recoil velocity fluid to

the total energy density of the universe are of the same order of magnitude as the

21Notice that for large condensates the restriction (3.72) does not apply.

148



CHAPTER 3. MODIFIED GRAVITY 3.4. Inflation induced by D-particles

corresponding matter energy density during the galaxy formation era, that is with

redshifts z & 1, which corresponds to the upper bound in the inequality (3.47). On

the other hand, for the current era, i.e. redshifts z . 10−2, current data indicate a

cosmological constant dominance, wtot(z ' 0) = −1. If we make the (considerable)

simplification that there is a depletion of bulk D-particles from the exit of inflation

era until the galaxy formation era, and if we assume a simple power scaling of the

energy density of the total fluid ρtotal with the scale factor of the universe as

ρtotal ∼ a−3(1+wtot) (3.112)

with wtot approximately constant, then, from the Friedmann equation, we would

obtain the following time dependence of the scale factor on the cosmic time

a(t)m + D−part. rec. fl. ∼ t
2

3(1+wtot) . (3.113)

Then, assuming that Eq. (3.34) is valid from the galactic era all the way back to

the exit from inflation epoch, we obtain that, for a given moment t in the history

of the D-material universe, the statistical variance of the D-particle recoil velocities

behaves as

〈〈uiui〉〉 ≡ σ2
0(t) =

|β|
(a(t)/a0)3

(3.114)

where a0 ≡ a(t0), with t0 the universe age, is today’s value of the scale factor, which

is re-instated here to be linked with and allow the estimation of t0.

At the exit from inflation, at cosmic times t = tinfl, the variance is assumed to

have the value σ2
0,infl. Since we are interested in an order of magnitude estimate of

the universe age, we are at liberty to ignore the short duration of the late de Sitter

accelerating phase of the universe, and assume the scaling (3.112) for the statistical

fluctuations of the recoil velocities from the inflationary era until practically today

t = t0. Then, from Eq. (3.114), we obtain

σ2
0,infl a(tinfl)3 ∼ |β| a3

0 . (3.115)

Using the upper and lower bounds for |β| given in Eqs. (3.47) and (3.49), so that

the recoil velocity fluid either mimics the DM in galaxies (upper bound) or at least

is responsible for inducing growth of structures in the universe (lower bound), we
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obtain the following allowed range for the D-material universe age(
1060 gs0

π

HI

MPl

H
)1+wtot

.
t0
tinfl

.

(
1061.5 gs0

π

HI

MPl

)1+wtot

⇒ 1054.5 (1+wtot) .
t0
tinfl

. 1056 (1+wtot) , (3.116)

where in the last line we used thatHI ' 10−5MPl, gs0 ∼ 0.8, π ∼ 100.5 andH = O(1).

Using that in conventional cosmology one estimates that exit from inflation occurs

at times tinfl ∼ 1012 tPl, where tPl is the Planck time (10−45 s), we observe that the

age of the universe in units of Planck time is estimated to be

1066.5 (1+wtot) .
t0
tPl

. 1068 (1+wtot) . (3.117)

If we insist that the age of the D-material universe t0 is in agreement with the

corresponding ΛCDM model estimates from Planck data [6], i.e. t0 ∼ 1060 tPl, then

in case the upper bound (3.47) is satisfied — that is when the D-particle recoil

velocity fluid mimics DM in the galaxies, as far as lensing is concerned — we obtain

for the equation of state wtot = −0.095. On the other hand, for the lower bound

case (3.49) to be satisfied — that is when the fluid of recoiling D-particles induces

growth of structures in the universe, but falls short of reproducing the lensing effects

of DM in galaxies — one obtains wtot = −0.115.

These values are not far from the pure Born-Infeld equation of state w = −1/3

for classical condensates [61]. However, given that w = −1/3 is the maximum

value for inducing acceleration in an Einstein universe, that satisfies the positive

energy conditions, i.e. w > −1, we observe that in the matter dominated era

the D-material universe decelerates, as it should be. As discussed in Refs. [61,

62], quantum fluctuations of the recoil velocity condensates that satisfy Born-Infeld

dynamics, when they are dominant, can lead to an accelerating almost de Sitter

phase, with an equation of state near to p ' −ρ. To match with the current

universe phenomenology, according to which the universe today appears to be in

a de Sitter-like phase, one is led to the conclusion that quantum fluctuations of

the weak condensates, that characterise the current era, dominate over the classical

statistical effects. This is plausible in the low temperatures of the current universe.
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3.5 Gravitational radiation

The Gravitational Wave (GW) signals — GW150914 and GW151226 — detected

by Advanced LIGO (aLIGO) [4], based on the effects of the distortion of spacetime

on the arms of the 4-km-wide interferometric devices, opened a new window on the

universe and thus on fundamental laws governing it. The foreseen extended network

of terrestrial interferometers combined with eLISA, the first GW observatory in

space, may eventually detect even quantum aspects of gravity, or at least falsify

quantum gravity models which entail Lorentz Invariance Violation (LIV) for which

there are already stringent restrictions from various sources.

The D-material universe [58, 60] is one microscopic LIV model which evades

such constraints. The interaction, for instance of a photon with the population of

such D-particles, crossing or being confined on our brane-world, leads to time delays

proportional to the energy of the incident photon. This effectively yields a linear

modification of the corresponding dispersion relation, suppressed though, not by

the Planck scale but by an effective mass scale inversely proportional to the linear

density N lin
D (z) of the defects encountered in the path of the photon [65]

E = p

(
1− p

MQG

)
where MQG =

MPl

N lin
D (z)

, (3.118)

MPl = 2.4 × 1018 GeV is the four-dimensional (reduced) Planck scale and z is the

cosmic redshift. Notice that the dispersion relation (3.118) is always subluminal for

specifically stringy reasons. The bound MQG ≥ 1.22MPl on the Quantum Gravity

(QG) scale can be thus interpreted as an upper bound on the linear density of defects

N lin
D (z), which, in an inhomogeneous D-material universe, depends in general on the

redshift.

In the presence of D-particle ensembles, both the pattern of emission and the

propagation of GW will in principle be modified. The modification of the GW

emission pattern due to the presence of D-particles in the region of the collapsing

black holes may be expected to be negligible in the sense that the ensemble of

massive D-particles will behave as matter in the presence of the spiralling black hole

system, and the gravitational pull they will exert on the black holes will be very

weak to affect the formation of the giant black hole and the subsequent emission of

GW.

However, this is not the case for the velocity of propagation of gravitons in the

medium, far away from the black hole source, which will be affected in two ways,
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discussed in the following. Firstly, the propagation speed of GW will be reduced as

compared to the massless case (subluminal propagation), due to the development of a

mass, as a result of the (gravitational) interaction with the recoil velocity condensate

field. Secondly, the presence of Dark Energy (DE) density in the universe, either

as a result of the recoil kinetic energy of the D-particles or due to additional Dark

Matter (DM) species in the universe (that may co-exist with the D-particles), will

also induce a superluminal contribution to the group velocity of gravitons. Current

observations, including GW interferometry, can provide restrictions to such effects

in a way that will be the topic of our discussion here.

In the following, we first discuss the effect of the induced graviton mass due to

the D-matter “medium”, then we look at the refractive index effects as a result of

the finite energy density of D-particles and other species of DM in the universe, and

finally we study the phenomenology of these effects using results from the recent

aLIGO GW detection and observations involving Ultra High Energy Cosmic Rays

(UHECR). Our analysis leads to constraints on the parameters of the model, in

particular lowering significantly the maximal allowed magnitude of the string scale

itself, under some natural assumptions.

3.5.1 Induced graviton mass

One of the most important rôle of the D-matter recoil field condensate arises from

its effects on the graviton equation of motion where, along with a modification in

the gravitational constant in the string frame description, it contributes to a mass

term for the graviton, leading to an additional polarisation mode. We shall discuss

this issue next, while later on in this section we shall discuss the implications of the

current bounds on the graviton mass in terms of the D-particle density and mass

Ms/gs that enter the respective formulae.

Theoretical considerations

Our discussion starts with the effective (low-energy) action of Eq. (3.16), describing

the interaction of the vector recoil velocity field Aµ with the graviton, in the Einstein

frame, after considering φ = φ0 and weak recoil fields
√
α′Aµ � 1 as appropriate
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for late eras of the universe. Recall it yields

SE
eff 4D =

ˆ
d4x
√
−g

[
−Λ0 −

1

4
〈Gµν Gµν〉+

(
1

2
M2

Pl +
αe−2φ0 F̃µνF̃

µν

4

)
R

−1

4
F̃µνF̃

µν + λ

(
ÃµÃ

µ +
1

α′
J
)]

+ Sm , (3.119)

with, in particular

J ≡ (2πα′)2 T3 e
3φ0

gs0

,
1

2
M2

Pl ≡
αT3 e

φ0

gs0

+
1

κ2
0

, Λ0 ≡
T3 e

3φ0

gs0

+
Λ̃ e2φ0

κ2
0

. (3.120)

Moreover, the reader should recall that, under the appropriate assumptions, the

dilaton equation of motion leads to Λ0 < 0, which is an anti-de Sitter type cosmo-

logical constant and is thus not phenomenologically acceptable in the current era.

To remedy this fact we assume that contributions from the bulk, such as 1
4
〈Gµν Gµν〉,

fine tunes the negative cosmological constant to an acceptably small positive one

Λvac in the current era, as in Eq. (3.17b).

As mentioned in previous sections and discussed in detail in Appendix C (see also

Ref. [61] and references therein), the vector field excitation describing the D-particle

recoil presents two types of contributions:

(i) “Electric type”, associated with the linear recoil momentum excitations, de-

scribed by Eq. (C.9). They correspond, in our later era cosmological background, to

vector field excitations Ãi with a target-spacetime field strength (after the impact)

of the form

F̃0i = Ei = M2
s giju

j , (3.121)

where Ei denotes the “electric” field, as given in Eq. (C.20).

(ii) “Magnetic type”, associated with non-zero angular momentum of the re-

coiling D-particles, described by Eq. (C.12). These here imply a target-space field

strength with spatial components

F̃ ij = −εijk Bk = M2
s ε
ijkgk` u

` ⇒ Bk = M2
s gk` u

` , (3.122)

where Bi denotes the “magnetic” field, as in Eq. (C.21).

Although in the gravitational lensing analysis of Section 3.3 we have ignored

the angular momentum contributions, which as we show again, for instance in

Eq. (3.127) or below Eq. (3.130), would not change the order of magnitude of our
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conclusions, nevertheless for the purpose of our present analysis, which is to study

GW propagation in the D-material universe in the (low-temperature, compared

to the inflationary epoch) galactic era, such contributions shall play an important

rôle for the stability of the vacuum. Recall for the (unstable) inflationary high-

temperature phase, such contributions are negligible as found in Section 3.4 and

thus the conclusions obtained above remain valid.

The graviton equation of motion obtained from the action (3.119) reads

(
Rµν −

gµν
2
R
)[1

2
M2

Pl +
αe−2φ0 F̃ 2

4

]
=

1

2
T rec
µν −

1

2
gµν Λvac +

1

2
Tm
µν , (3.123)

where from now on we use the short-hand notation F̃ 2 = F̃µνF̃
µν . Note that Tm

µν de-

notes the stress tensor of conventional matter, including DM other than D-particles,

and T rec
µν is the recoil velocity contribution

T rec
µν = F̃µα F̃

α
ν − gµν

F̃ 2

4
. (3.124)

The latter resembles of course the corresponding stress tensor of electrodynamics,

but here the vector field Ãµ is the recoil velocity field, which satisfies the constraint22

ÃαÃ
α +

1

α′
J = 0 .

A few remarks are in order here. Recall the dynamics of the vector recoil field Ãµ

in the action (3.119) is much more complicated than the lowest-order weak-field

expansion given above. Actually, as discussed in Ref. [61], detailed string theory

considerations imply that there is a Born-Infeld term, whose perturbative expansion

yields the Maxwell kinetic term in the action (3.119). Such non-linear square root

interactions may be responsible for the formation of condensates of the recoil velocity

field, following the discussion in Ref. [62], which was adapted to the D-matter case

so far. Therefore, as we assumed so far, F̃ 2 can condense, forming a scalar-like field,

22This is the only effect of the Lagrange multiplier field λ. Indeed, as the analysis of earlier
sections and of Ref. [61] has demonstrated, any terms in the equations of motion involving the field
λ become — upon its expression, via the equations of motion, in terms of the other fields in the
Lagrangian — proportional to terms with gravitational-covariant derivatives acting on F̃ , which
are negligible under our assumptions here.
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which is at most time-dependent at cosmological scales. In addition, we have

σF (t) ≡ 〈F̃ 2〉 = 〈〈F̃ 2〉〉+ 〈F̃ 2〉q , (3.125)

where 〈〈. . .〉〉 denote classical condensates, due to the statistical nature of the recoil

velocity field in macroscopic D-particle populations in the universe, whose magni-

tude has been estimated above, while 〈. . .〉q denotes quantum vacuum effects [62],

associated with the full Born-Infeld dynamics of the vector field, which cannot be

computed at present. Since our point here is to study GW propagation from sources

at redshifts z < 10, as is the situation characterising the recent discovery reported in

Ref. [4], where z ∼ 0.09, we consider short enough scales for which σF is practically

constant, thus suppressing all its derivatives. Of course between cosmological eras

the value of σF changes, in particular at the inflationary era, where strong conden-

sates of the field σF are needed to drive inflation. For the matter-dominated era, of

interest to us here, σF can be safely assumed to be weak.

In a mean-field approximation, one may first consider (3.123) with the stress

tensor of the recoil field averaged in the sense of (3.125). If we consider equal strength

electric and magnetic contributions, given respectively by (3.121) and (3.122), then

we get

σF = 〈F̃ 2〉 = 2 〈F̃0i F̃0j〉 g00gjk + 〈F̃ik F̃j`〉 gijgk` . (3.126)

For the classical statistical averages, we have

〈〈F̃0i F̃0j g
ij〉〉 = M4

s 〈〈uiujgij〉〉 > 0 ,

〈〈F̃0i F̃0j g
00gij〉〉 = −M4

s 〈〈uiujgij〉〉 < 0 ,

〈〈F̃ik F̃j` gijgk`〉〉 = 2M4
s 〈〈uiujgij〉〉 > 0 , (3.127)

and hence, on account of (3.126), we recover the equipartition theorem for the

classical condensates of the vector field we are familiar with from ordinary electro-

dynamics, according to which the classical condensate vanishes, namely

〈〈F̃ 2〉〉 = 0 . (3.128)

Note again that this is neither happening in the lensing framework, where the metric

form implies subleading “magnetic” type field with respect to the “electric” one, nor

in the inflation regime, where the cosmological principle (homogeneity and isotropy,

hence a space-independent metric) implies no “magnetic” field. We thus have for
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the appropriately averaged recoil stress tensor (3.124)

〈〈T rec
µν 〉〉 = 〈〈F̃µα F̃ α

ν 〉〉 −
1

4
gµν 〈〈F̃ 2〉〉 , (3.129)

which, on account of Eqs. (3.127), (3.128), leads to

〈〈T rec
00 〉〉 ≡ ρclass

rec =
1

2
〈〈EiEi〉〉+

1

2
〈〈BiB

i〉〉 =
M4

s

a2(t)
〈〈uiujδij〉〉 , (3.130)

The reader should notice that ρclass
rec is of the same order of magnitude as the recoil

energy density considered Section 3.3, where only “electric” type Ei fields were

considered (the result is larger by a factor of 2) and hence the lensing phenomenology

conclusions remain unchanged whether these “magnetic” contributions are included

or not.

The quantum fluctuations of the recoil velocity field are significant in the low

temperature, galactic eras and for those we have, as dictated by the isometry struc-

ture of the FLRW cosmological spacetime [62]

〈F̃0α F̃
α

0 〉q =
ãt(t)

4
g00 ,

〈F̃iα F̃ α
j 〉q =

ãs(t)

4
gij ,

σF = ã = 〈F̃ 2〉q =
1

4
(ãt + 3 ãs) > 0 , (3.131)

where ãt = ãt(t) and ãs = ãs(t). Note that we assume the positivity of the quantum

condensate ã, so as to be able to use such condensates as providers of zero-point

(vacuum) energy of de Sitter type [61, 62]. The corresponding contribution to the

recoil stress tensor is then

〈T rec
00 〉q = −1

4
(ã− ãt) g00 ,

〈T rec
ij 〉q =

1

12
(ã− ãt) gij . (3.132)

Another important point we wish to make is that in the current work we view any

vacuum energy contribution, including those obtained from the bulk dynamics, as

microscopic, due to the (quantum) dynamics of fields of the underlying string theory,

and hence related to the stress tensor (right-hand-side of the (low energy) Einstein

equations (3.123)), rather than geometric in origin thereby related to the left-hand-
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side. In the latter case one would have to deal with (anti) de Sitter spacetimes, since

those are the maximally symmetric spacetimes about which one expands, in which

case the concepts of the graviton mass and the refractive index, upon which we

shall concentrate here, become more complicated. For our purposes in the current

analysis we take the point of view that there should be always a flat limit of the left-

hand-side of the Einstein’s equations, since the result of any cosmological constant

type term is due to some sort of condensate (either bulk field or recoil D-particle

fluctuations). This allows for a conventional definition of GW and massive graviton

effects in the GW propagation, which will be the focus of our attention in what

follows.

With the above in mind, one can then expand the metric around its (non-flat23)

unperturbed cosmological value gµν = g
(0)
µν +hµν , where the background g

(0)
µν takes into

account the presence of a (space-independent, field-induced) “cosmological constant

type” vacuum energy and |hµν | � 1. Working, as appropriate for GW analysis, in

the transverse traceless (TT) gauge, for which

∂µh
µ
ν = 0 , hαα = 0 , hµ0 = 0 , (3.133)

the perturbed Einstein tensor becomes24

Rµν −
1

2
gµνR = −1

2
∂2hµν . (3.134)

In the TT gauge, the only non-zero contributions to the recoil stress tensor to first

order in the metric expansion (indicated by the superscript ‘(1)’) are the spatial

ones

〈〈F̃iα F̃ α
j 〉〉(1) = 〈〈F̃ik F̃j` hk`〉〉 = M4

s εikmεj`n 〈〈um un〉〉hk`

= δj[i δk]`
1

3
σ2

0 h
k` = −1

3
σ2

0 hij , (3.135)

where we used hij = hji and σ2
0 = M4

s 〈〈umung
(0)
mn〉〉, as well as [61]

M4
s 〈〈umun〉〉 =

1

3
σ2

0 g
(0)
mn '

1

3
σ2

0 δmn ,

23The expanding four-dimensional metric is not flat, even though the space slicing is flat.
24Our conventions are (−,+,+,+) for the signature of the metric, and Rµν ≡ Rαµνα ≡ ∂αΓανµ−

∂νΓααµ + ΓααβΓβνµ − ΓανβΓβαµ.
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since for the galactic era g
(0)
mn = a2(t) δmn ' δmn.

Recalling that the zeroth order (in the metric expansion) equation of motion is

satisfied and taking into account Eqs. (3.124), (3.127), (3.128), (3.131) and (3.135),

one obtains a first-order equation of motion for the spatial perturbations hij in the

TT gauge (3.133) of the form

∂2hij − κ2
eff

[
1

3
M4

s 〈〈umun g(0)
mn〉〉 −

1

12
(ã− ãt) + Λvac

]
hij = 0 ,

where
1

κ2
eff

≡ 1

κ2
0

+
αT3 e

φ0

gs0

+
αe−2φ0 σF

4
. (3.136)

Assuming that the condensate σF is small and that Λvac is also small as compared

to M4
Pl, then to leading order in σF and Λvac, one may replace from now on κ2

eff by

2M−2
Pl . Hence, Eq. (3.136) is just the equation of motion of a massive graviton, with

mass squared

m2
G(t) 'M−2

Pl

[
2

3
M4

s 〈〈umunδmn〉〉 −
1

6
(ã− ãt) + 2ρΛvac

]
, (3.137)

where ρΛvac ≡ Λvac.25

One can remark that should we explicitly write perturbations for the vector field,

of the form Aµ + δAµ with |δAµ| � |Aµ|, or similarly uµ + δuµ with |δuµ| � |uµ|,
the first additional term in Eq. (3.136) would be of the form 〈〈um δum〉〉 = 0 since

〈〈uµ〉〉 = 0 as in Eq. (3.34) (and u and δu are completely uncorrelated), while the

next one would read 〈〈δum δum〉〉 which is subleading and can thus safely be ignored.

There is therefore no doubt concerning the physical interpretation of Eq. (3.136) as

a true graviton mass.

The mass is real, provided the right-hand-side of Eq. (3.137) is positive, otherwise

the graviton would appear tachyonic.26 Fortunately, this can be easily guaranteed

by assuming either small quantum corrections compared to the statistical classical

terms or that the condensates ã and ãt are both positive. The latter assumption is in

line with attempts [62], in the context of Born-Infeld electrodynamics, to associate

such quantum condensates with positive (de Sitter type) contributions to the vacuum

energy. We shall thus make this assumption in what follows.

25Note indeed that our Λvac is of dimension of an energy density, as one can see in the ac-
tion (3.119) or in the definition given below in Eq. (3.120).

26Causality is defined with respect to the front velocity so is not in jeopardy. In addition, our
theory is embedded in a UV complete, causally valid theory.
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In this latter respect, from Eqs. (3.127) and (3.132), we observe that the recoil

energy density, including quantum condensate contributions, reads

ρfull
rec = M4

s 〈〈uiujδij〉〉+
ã− ãt

4
> 0 . (3.138)

We now impose the requirement that the upper bound of ρfull
rec should not exceed the

matter energy density ρΛCDM
m of the ΛCDM model. For the value of ρΛCDM

m we take

here the benchmark point [6]

ρΛCDM
m = 0.3 ρ0

c = 0.9H2
0 M

2
Pl = 9× 10−121 M4

Pl , (3.139)

with ρ0
c the current-era critical density and H0 ∼ 10−60MPl the present-day Hubble

rate. Hence we obtain

0 < ρm ≡ ρfull
rec + ρDM+b ∼ ρΛCDM

m , (3.140)

and
M4

s

a2(t)
〈〈uiujδij〉〉+

ã− ãt

4
. ρΛCDM

m , (3.141)

where ρm is the total matter energy density of the universe, including D-matter

as well as (conventional) DM and baryonic matter (denoted together as ρDM+b)

contributions, which, according to Section 3.3, would imply that the recoil veloc-

ity contributions in the D-material universe would be compatible with the ΛCDM

model.

If the upper bound in the inequality of (3.141) is saturated, then D-matter pro-

vides the dominant component of DM. The reader should recall though that the

Born-Infeld form of the recoil velocity vector field Ãµ studied so far in this work

and in Ref. [61] provide a dark fluid which also contributes to DE, hence recoiling

D-matter should be viewed as a mixed DE/DM model.

In this respect, the condition (3.140) also ensures that the total energy density

of the D-material universe, including vacuum energy contributions

ρtotal = ρm + ρΛvac , (3.142)

is of the order dictated by the current data [6], i.e. close to the critical density.

Thus, the conclusions of Section 3.3 that D-matter can play the rôle of DM in

galactic lensing measurements remain valid, given that the order of magnitude of
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the contributions to the recoil energy density does not change by the inclusion of

“magnetic” field (3.122) components in the Born-Infeld fluid describing the recoil

excitations of the D-particles.

Let us make a short remark on the order of magnitude of the allowed density

of D-particles in the D-material universe [61]. We recall that in the galactic era,

following Eq. (C.24), one has the following estimate for the statistical (classical)

component of the recoil velocity condensate

〈〈uiujδij〉〉 ∼
N

(0)
D

N
(0)
γ

ξ̃2
0 |pphys|2

M2
s

g2
s0 , (3.143)

with ξ̃0 < 1 an order O(1) parameter, that describes the momentum transfer during

the scattering of a D-particle with an open string representing radiation (which

is assumed to be the dominant species with which the D-particles interact). The

quantity pphys is the “physical” average 3-momentum of a photon as observed by a

comoving cosmological observer in the FLRW universe, assumed to be a thermalised

CMB photon at T = 2.7 K, hence |pphys| ' 3kB T ' 7.2× 10−4 eV ' 3× 10−31 MPl.

By N
(0)
D and N

(0)
γ we denote the (dimensionful) number densities of D-particles

and photons, respectively, in the current era of the universe; note that N
(0)
γ = 4 ×

10−97 M3
Pl [6]. In deriving (3.143) we assumed N

(0)
γ � N

(0)
D , so that N(0)

D /(N(0)
γ +N

(0)
D ) '

N
(0)
D /N(0)

γ is the probability of interaction of D-particles with the CMB photons that

constitute the most dominant species for the recoil of D-particles in the medium.

We also note that the analysis of Ref. [61] and of Section 3.3 implied a lower

limit to the density of D-particles, as a result of the requirement that the D-matter

can enhance the growth of large-scale structure in the universe. In fact, if we ignore

(assuming them as subleading) the quantum corrections in Eq. (3.138), then, in view

of the inequality (3.141), we get the following bounds on the statistical condensate

〈〈uiujδij〉〉 defined in (3.143)

10−123 M
2
Pl

M2
s

. 〈〈uiuj δij〉〉 . 10−120 M
2
Pl

M2
s

, (3.144)

which lead to the following bounds on the D-particle density N
(0)
D

10−123 M2
Pl

g2
s0 ξ̃

2
0 |pphys|2

.
N

(0)
D

N
(0)
γ

. 10−120 M2
Pl

g2
s0 ξ̃

2
0 |pphys|2

, (3.145)
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which turn out to be independent of Ms

6× 10−159 ξ̃−2
0 M3

Pl . N
(0)
D . 6× 10−156 ξ̃−2

0 M3
Pl . (3.146)

These estimates are affected if the quantum fluctuations ã, ãt to the condensate σF

are included. Unfortunately, lacking a microscopic theory of stringy D-particles we

cannot estimate the magnitude of the quantum condensates ã, ãt entering the mass

(3.137) and hence we can only discuss below some phenomenological bounds coming

from experimental constraints on the graviton mass. At any rate for the galactic

eras of relevance to us today we assume that the quantum fluctuations are of the

same order as the statistical condensate.

Phenomenological constraints on induced graviton mass and implications

for the D-material universe

To discuss effects of matter in the GW propagation, let us first remark that the

relativistic dispersion formula for massive gravitons ω2 = k2 +m2
G (in natural units),

leads to the subluminal group velocity (denoted by a subscript ‘g’)

vmass
g =

∂ω

∂k
=
k

ω
=

1

vmass
p

= nmass
G ' 1− m2

G

2ω2
, (3.147)

assuming mG � ω, where nmass
G denotes the index of refraction of GW due to the

graviton mass and vmass
p is the corresponding phase velocity (which is larger than

unity, without conflict with causality, as the phase of the wave does not carry out any

physical information). For two gravitons with frequencies ω and ω′, the difference

in group velocities is thus

∆vmass
g =

m2
G

2

∣∣∣∣ 1

ω2
− 1

ω′2

∣∣∣∣ . (3.148)

The induced dispersion in the GW, taking into account the cosmic expansion (red-

shift z) of a standard ΛCDM universe, leads to differences in the observation times

of GW components of two different (low) frequencies ω and ω′, emitted with a time

difference ∆te at the source [74]

∆tmass
o = (1 + z)

[
∆te + (1 + z)D m2

G

2

(
1

ω2
− 1

ω′2

)]
, (3.149a)

161



CHAPTER 3. MODIFIED GRAVITY 3.5. Gravitational radiation

where

D =

ˆ ze

zo

dz̃
1

H0

(1 + z̃)−2√
Ωm(1 + z̃)3 + ΩΛ

, (3.149b)

with D ≡ (1 + z)D = (1 + z)
´ to
te
a(t) dt the proper distance, a(t) the scale factor

(in units where today a0 = a(to) = 1) and where the subscipt o (e) pertains to

observation (emission) quantities. In the standard ΛCDM fiducial cosmology [6],

which we assume here again, we have (Ωm,ΩΛ,Ωk) = (0.3, 0.7, 0).

Assuming for simplicity that the two gravitons where emitted simultaneously

(∆te ' 0) one may get from (3.149a) a lower bound for the graviton mass to be

detectable by interferometric GW devices with time-difference sensitivity ∆ts and

ω′ = ξ ω, given by

m2
G ≥

ξ2

|1− ξ2|
2 ∆ts ω

2

(1 + z)2D
. (3.150)

The aLIGO measurements [4] achieve a very good time-frequency coverage for a

broad range of signal morphologies by having the analysis repeated with seven fre-

quency resolutions ranging from 1 Hz to 64 Hz in steps of powers of two, correspond-

ing to time resolutions

∆taLIGO
s = 1/2 (∆ωaLIGO

s )−1 ∈ [7.8× 10−3, 5× 10−1] s . (3.151)

The clusters at different resolutions overlapping in time and frequency are then

combined into a trigger that provides a multi-resolution representation of the excess

power event recorded by the detectors. The minimum of the right-hand-side of the

inequality (3.150) is obtained for the minimum value of the time resolution possible,

that is in our case ∆taLIGO
s ∼ 7.8×10−3 s, and the minimum value of ξ. Theoretically,

if ∆ω = 0 could be measured experimentally, then the experiment would have infinite

sensitivity to measure the graviton mass; however the minimum possible detectable

frequency difference is the frequency resolution given by Eq. (3.151), which for the

lower limit on ∆ts considered, leads to ∆ωaLIGO
s ' 64 Hz. With these values, for

gravitons in the aLIGO frequency detection range27 ω ' 100 Hz ' 4× 10−13 eV '
1.7×10−40 MPl emitted at a distance of 410 to 440 Mpc (corresponding to a redshift

z ' 0.09 and hence D = 0.08H−1
0 [4], with H0 ' 10−60MPl), we get

mG & 4.6× 10−50 MPl ' 1.1× 10−22 eV , (3.152)

27While the two available detections allow us to constrain gravitons with frequencies ω ' 100 Hz
and ω ' 400 Hz, we use here the former because it yields stronger bounds. In any case, considering
the latter would only slightly change the numerics and not the qualitative conclusions of this work.
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in order for the graviton mass to be observable by aLIGO. If the time and frequency

resolution improves in future interferometric networks, leading to improvements of

the signal to noise ratio ω∆t smaller than 1/10, value which characterises aLIGO [4],

then the sensitivity to the graviton mass will increase.

Assuming a standard ΛCDM cosmology, the LIGO collaboration performed a de-

tailed statistical analysis [4] during the observation of GW by the black-hole merger

event GW150914, and found no significant signal up to Compton wavelengths of

order λaLIGO
q = h/maLIGO

G > 1013 km , implying an upper bound on the graviton

mass

maLIGO
G < 1.2× 10−22 eV ' 5.0× 10−50 MPl (aLIGO) , (3.153)

which is in perfect agreement with the analytical bound (3.152). It can be used

in our model to bound the condensate effects responsible for the induced graviton

mass (3.137).

Before doing so, let us discuss first some additional effects of the D-particle

“medium” on the propagation of GW in the D-material universe. As we shall argue

in the next section, D-matter may induce a refractive index for graviton propagation,

which leads to additional constraints, beyond the ones discussed due to the induced

graviton mass.

3.5.2 Other effects on graviton propagation in the D-material

universe

In addition to the mass induced effects, graviton propagation in the D-material

universe (which includes also conventional DM components) is also affected by re-

fractive index effects in the medium of D-particles. Given the low-frequency regime

(ω ∼ 100 Hz) of GW of relevance to the LIGO observations, we expect (and shall

verify explicitly below) that any stringy effect of the D-foam on the GW propaga-

tion — in general expected to increase with frequency, being proportional to some

positive power of it — is negligible. This leaves the low-energy point-like field theory

interactions of GW with the environment of matter (including DM) scatterers in the

universe as the dominant source of induced refraction for low-frequencies.

Refractive index of gravitons

If GWs propagate in a medium of matter scatterers with density ρm, then they

will experience an induced refractive index, arising from the coordinate dependent
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gravitational potential corrections to the Newtonian metric, as demonstrated long

ago in Ref. [75]. To estimate such effects, it suffices to consider the approximate

situation in which all matter is assumed to be concentrated in a “thin” spatial layer

of thickness ∆z, through which GW pass. Such layers modify the gravitational

Newtonian potential felt by GW. To lowest order in ω, for massless gravitons, the

index of refraction is larger than unity for ρm > 0 and of the form

0 < nDM
G − 1 ' 2π Gρm

ω2
=

ρm

4M2
Pl ω

2
� 1 , (3.154)

to linear order in the gravitational potential induced by matter. Here, ρm is the (4-

dimensional) matter density (including DM and D-matter) (see Eq. (3.139)); we took

that the (4-dimensional) gravitational constant is 8π G = M−2
Pl and the frequency

range which we are interested in is ω ' 100 Hz. In our case, the recoil contribution of

the D-material universe is included in ρm which is then expressed as in Eq. (3.140).

Equation (3.154) implies that the phase velocity of GWs, vDM
p = 1/n, is subluminal

while the group velocity, vDM
g , is superluminal for low ω. Indeed, to obtain the latter,

one can use the derivative of the refractive index with respect to ω

1

vg

= n+ ω
dn

dω
, (3.155)

which, in the case of a medium with refractive index given by n− 1 = χω−2 with χ

a constant (as we have here), leads to

1

vg

= n− 2χω−2 = 1− χω−2 ⇒ vg ' 1 + χω−2 > 1 , (3.156)

if χω−2 � 1. Hence, the superluminal group velocity for massless gravitons propa-

gating in the DM and D-matter medium, yields here

vDM
g ' 1 +

ρm

4M2
Pl ω

2
' 1 + 10−41 , (3.157)

where we considered again ω ' 1.7× 10−40 MPl.

This will lead to time differences in the arrival times of two gravitons with

frequencies ω and ω′, using Eq. (3.149a) and replacing the term 1/2 m2
G by ρm/4M2

Pl,
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yielding

∆tDM
o = −(1 + z)

[
∆te + (1 + z)D ρm

4M2
Pl

(
1

ω2
− 1

ω′2

)]
, (3.158)

with (1 + z)D the proper distance from the GW source to the observer as in

Eq. (3.149b). Note that the relative minus sign in Eq. (3.158), as compared to

Eq. (3.149a), is due to the fact that ∆tDM
o now denotes an advance rather than a

delay due to the superluminal nature of the graviton group velocity.

Some comments are in order here regarding the superluminal nature of the group

velocity (3.157). This was to be expected by the corresponding case for light propa-

gation in a nontrivial vacuum. The graviton excitations find themselves in a negative

(as compared to the trivial flat spacetime empty vacuum) gravitational energy den-

sity ρ = −ρm < 0 environment (as a result of the attractive gravitational potential

of the scatterers exerted on the graviton “particles”). Indeed, in such nontrivial vac-

uum with an energy density ρ, the group velocity of massless photons or gravitons,

after taking into account vacuum polarisation effects, deviates from 1 by an amount

vg − 1 ∝ −ρ = +ρm > 0. The (low-frequency) superluminal GW velocity is not

in conflict with causality, since no physical (i.e. observer independent) information

can be transmitted, given that the results pertain to a specific frame (Robertson

Walker); moreover, it is the high-frequency limit that would be of relevance.

Refractive index of photons

It should be remarked at this point that (3.157) is similar in form to the refractive

index of a photon in Quantum ElectroDynamics (QED) passing through a gas of

charged particles, upon making the substitutions that yield the gravitational inverse

square law from the corresponding Coulomb force law. More precisely, one must

replace the charge density by the mass density of scatterers, set the charge per unit

mass equal to 1 and replace the constant 1/4πε0 (where ε0 is the permeability of the

vacuum) by the opposite of the gravitational constant, namely −G. Note that this

minus sign is crucial, in that it implies a subluminal group velocity for photons due

to vacuum polarisation effects.

Thus, for photons in a flat spacetime, scattered of a density of free (non-interac-

ting) charged particles, we may write the induced index of refraction (in natural
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units where ε0 = 1) as28

nvac. pol.
γ = 1− q2e2 ρ̃

2m2 ω2
+ . . . (3.159)

with respectively ρ̃ > 0, m and qe the mass density, mass and charge of the charged

particles. The . . . indicate subleading positive contributions coming from polaris-

ability of the scatterer, which are either constant or proportional to positive powers

of ω2.

It should be noted that the expression (3.159) is generic and may incorporate

milli-charged DM candidates that may exist in some models of particle physics

but not in the majority of phenomenologically relevant ones. If we ignore such

milli-charged DM candidates, then it becomes clear that the photon polarisation

refractive index effects are subleading compared to the ones induced by the scat-

tering of photons off (neutral) DM, which is the dominant candidate by several

orders of magnitude. For instance, the dominant source of charged scatterers in the

universe are protons, for which the corresponding cosmic energy density, that is the

baryon density, is two orders of magnitude smaller than the DM density; the ΛCDM

parameters today read Ωb/ΩDM ' 2.2× 10−2 [6].

Hence, for all practical purposes, we only consider the effects on the photon

refraction of the weak gravitational potential induced by the matter density ρm,

which, according to Ref. [75], are negligible. That is, to linear order in the weak

gravitational potential at hand, the refractive index of photons with low-frequencies

should be considered as that of the vacuum

nDM
γ ' 1 , (3.160)

28This is obtained from the standard expression following the optical theorem, according to
which the index of refraction is expressed in terms of the coherent forward scattering amplitude
for a photon with polarisation λ as

n(ω) = 1 +
2πN

k2
fλλ(0) ,

where N is the number density of the scatterers, m denotes their mass, k is the wave-vector of
light (equivalently k may be replaced by the frequency ω of photons assumed massless) and in the
framework of a quantum field theory model

fλλ(0) =
1

8πm
Mλλ(k, k′ → k, k′) ,

with the overall phase of the field theory amplitude Mλλ fixed by the optical theorem, relating
the total scattering cross section to the imaginary part of fλλ(0).
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upon ignoring vacuum polarisation effects. In this sense, at the low-frequency regime

we are interested in, the photons behave as light-like particles.

Purely stringy effects of D-matter

We should remark at this point that, in the context of the D-particles foam, there

are also terms in the refractive index that scale linearly with the frequency ω, which

arise from the nontrivial interactions of the D-particles with the photons, viewed as

open strings, that can be captured by the D-matter defects. Such terms stem from

the stringy uncertainty principle, ∆t∆x ≥ α′, and can be computed by considering

string scattering amplitudes of open strings, representing the photons, off a D-

particle background [65]. Taking into account the cosmic expansion, the induced

delays of photons with observed frequencies ω due to these purely stringy effects are

of the form

∆tD−foam
o '

ˆ z

0

dz̃ C
(N

(0)
D )1/3

M2
s

ω

H0

(1 + z̃)√
Ωm(1 + z̃)3 + ΩΛ

, (3.161)

where C < 1 is some fudge factor, entailing information on the momentum transfer

of the incident string on a D-particle during the scattering, while N
(0)
D is again to-

day’s D-particle number three-volume density, which in principle should read ND(z)

and depend on the redshift for inhomogeneous D-particle foam models, but for our

purposes here is considered z-independent for small z < 10 and thus is identified

with today’s value. Note that this effect is also valid, in a first approximation, for

closed strings such as gravitons which, by hitting the D-particle, would open and at-

tach to the brane and thus act in a similar way. This computation is thus applicable

to the case of gravitons.

3.5.3 Gravity wave phenomenology of the D-material uni-

verse

In this section we shall compare the various refractive index effects (3.149a), (3.158)

and (3.161) against the current GW phenomenology. The aim is to derive constraints

on the string scale within the context of the D-material universe.

It can be readily seen that the stringy delays (3.161) are subleading (by at several

orders of magnitude, thus negligible) compared to the ω−2 terms in (3.158), for the

low frequencies we are interested in this work and the very small D-particle number
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densities N
(0)
D (3.144) required so that the D-matter fluid acts as DM in the universe,

as in Section 3.3. Indeed, one has

∆tD−foam
o . 1.4× 10−1 M−1

Pl � |∆t
DM
o | = 8.4× 1014 M−1

Pl , (3.162)

as can be seen from (3.158) for GW frequencies of order of 100 Hz and where we

used Eq. (3.146) to get N
(0)
D . 6×10−156 ξ̃−2

0 M3
Pl . 6×10−154 M3

Pl with say ξ̃0 ∼ 0.1,

and Ms & 10−15 MPl.

Constraining the condensate using experimental bounds on the graviton

mass

Once the stringy effects are ignored, one is left with two competing effects on GW

propagation: (i) delays (compared to the propagation in vacuum) due to the induced

graviton mass (3.149a) and (ii) advances due to the propagation of gravitons in the

weak gravitational potentials induced by D-matter and DM distributions (3.158).

In principle, as already mentioned, the above effects (3.149a) and (3.158) will lead

to a modification of the pattern of the GW signal, due to induced dephasings of

the various frequency components comprising the signal. We shall here discuss the

conditions under which the mass effects are dominant, in which the graviton group

velocity would be subluminal.

By comparing the two cases (3.149a) and (3.158), we conclude that the graviton

would have a subluminal propagation velocity if and only if its mass is larger than

a critical minimal value

mG ≥ mc
G =

√
ρm

2M2
Pl

' 7× 10−62 MPl ' 2× 10−34 eV , (3.163)

where we assume the ΛCDM value given in (3.139) [6] for the matter density.

Equations (3.137), (3.138), (3.141) and (3.157) lead to the following remarks:

� (A) If quantum fluctuations are sub-dominant as compared to statistical ef-

fects, mass effects dominate over the energy density induced refraction, and

subluminal graviton velocities in the D-material universe are attained. In such

a case, the induced mass of the graviton is (in units of MPl) of the order of the

critical density of the universe, which in the current era is by several orders of

magnitude smaller than the sensitivity of aLIGO/Virgo, or even pulsar timing

experiments [76] which give the strongest limit to date (cf. Eq. (3.169) below).
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� (B) If recoil quantum fluctuations are taken into account, much larger graviton

masses are allowed.29 Indeed, in such a case, the refractive effects of Eq. (3.154)

due to a medium of matter scatterers with density ρm reduce the effective mass

of the graviton, to be constrained by experiments, to

0 < (meff
G )2 ≡ m2

G −
ρm

2M2
Pl

(3.164)

=
1

M2
Pl

[
1

6
M4

s 〈〈uiujδij〉〉+ 2ρΛvac − ρDM+b

2
− 7

24
(ã− ãt)

]
,

where we remind the reader that ρDM+b denotes any conventional matter con-

tent of the D-material universe, including both (ordinary) baryonic matter and

(conventional) DM. Equation (3.164) is a necessary and sufficient condition

for positivity of (meff
G )2 (that is a condition for dominance of mass effects over

the refractive index ones). The reader should bear in mind that in (3.164),

2ρΛvac − 1
2
ρDM+b > 0, as a result of the ΛCDM cosmic concordance in the

current era.

Now, in what follows, we shall make the assumption (as a special but quite

indicative case), that 0 < ã < ãt, which is required for consistency of (3.141) if one

assumes, as we do here, that

M4
s 〈〈uiujδij〉〉 � ρΛCDM

m . (3.165)

The positivity of the condensates is a mild assumption we make, following Ref. [62],

where such quantum condensates have been argued to provide DE contributions.

Thus, the importance of non-zero quantum condensates lies on the fact that their

presence allows a much larger induced graviton mass than the critical density of the

universe. Indeed, on requiring further

ãt ∼ ã+ 4M4
s 〈〈uiujδij〉〉 , (3.166)

we see that (3.141) is guaranteed even with the assumption (3.165), and hence the

conclusions of Section 3.3 remain unchanged.

Note that the presence of the symbol ∼ instead of equality in (3.166) indicates

a small but non-zero difference between the left- and right-hand-sides of the above

29Nevertheless, the stringy effects (3.161), that grow linearly with the GW frequency ω, are still
subleading, for the very low-energies we consider here, compared with the mass and refractive
index effects, that are inversely proportional to the square of ω.
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equation of order of the critical density of the universe, which is the same order as

the total (observed) energy density today ρtotal as in Eq. (3.142). One may solve

Eq. (3.166) by assuming (as an indicative example) that in the current era of the

universe

ã ∼M4
s 〈〈uiuj δij〉〉 ⇒ ãt ∼ 5ã , (3.167)

implying that the induced effective mass of the gravitons (3.164) can be much larger

than the total energy density of the D-material fluid, namely

(meff
G )2M2

Pl '
4

3
ã+ 2ρΛvac − ρDM+b

2
∼ 4

3
M4

s 〈〈uiujδij〉〉

� {ρΛvac , ρDM+b} , (3.168)

for ã� {ρΛvac , ρDM+b}, assumed in Eqs. (3.165) and (3.167). Thus, in this example,

the effective mass of the graviton is of the same order as the mass (3.137) induced

by the dominant “magnetic” field condensates. It is important to remark that here

one should no longer assume the range (3.144), since the quantum effects are the

ones responsible for ensuring the satisfaction of the upper bound (3.141).

The most stringent current bounds on the mass of the graviton are given by

pulsar timing experiments [76], which are stronger than the bound (3.153) from

aLIGO’s direct detection of GW [4]. They give

meff
G < 8.5× 10−24 eV = 3.5× 10−51 MPl (pulsar)

meff
G < 1.2× 10−22 eV = 5.0× 10−50 MPl (aLIGO) . (3.169)

If quantum effects are ignored, in case (A) above, the induced mass is of the order

of the current critical density of the universe and hence cannot be constrained by

the current limits. However, in case (B), assuming for concreteness example (3.167),

then (3.168), (3.169) imply

ã < 9.2× 10−102 M4
Pl (pulsar)

ã < 1.9× 10−99 M4
Pl (aLIGO) , (3.170)

namely the upper bounds are much larger values (by several orders of magnitude)

than the ΛCDM critical density.
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Gravitational Cherenkov radiation

The subluminal nature of the graviton in the case considered above implies other

effects, independent of the GW aLIGO observations, which may constrain further

the string scale in our model. We will thus investigate gravitational Cherenkov

radiation [77], namely the emission of a graviton from a highly relativistic particle,

propagating with a velocity almost equal to that of the speed of light in vacuum.

Such a process is kinematically allowed, provided the graviton group velocity is less

than the speed of light in vacuum. We will therefore examine under what conditions,

if at all, such an effect exists in the D-material universe. In the affirmative case,

following Ref. [77] and using Ultra High Energy Cosmic Rays (UHECR), we shall

impose constraints on the lower allowed bound of the graviton propagation speed.

For electrically charged particles, the D-matter medium looks transparent [65],

on account of gauge invariance properties. This is the case of the UHECR, which

therefore can propagate in the D-matter medium, for which (3.163) is satisfied, with

a speed higher than that of (low-frequency) gravitons, and therefore gravitational

Cherenkov radiation is kinematically allowed [77]. As a result, cosmic rays will lose

energy. The observation of the most energetic cosmic rays, with energies 1020 eV,

implies then stringent constraints on the lower bound of the propagation velocity

of such subluminal low-frequency gravitons. According to the analysis in Ref. [77]

and depending on the assumptions on the origin (galactic or extragalactic) of the

UHECR, one obtains the bounds

0 < 1− vg < 2× 10−15 for UHECR of galactic origin

0 < 1− vg < 2× 10−19 for UHECR of extragalactic origin (3.171)

in units of the speed of light in vacuum. From (3.147), upon substituting mG by

meff
G (3.164), we then obtain the bounds

(meff
G )2 < 4× 10−15 ω2 for UHECR of galactic origin

(meff
G )2 < 4× 10−19 ω2 for UHECR of extragalactic origin (3.172)

which, in the example (3.167) leading to (3.168) and for the frequency range of the
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GW of aLIGO [4], that is ω ' 100 Hz ' 1.7× 10−40 MPl, yields

ã < 8.7× 10−95 M4
Pl for UHECR of galactic origin

ã < 8.7× 10−99 M4
Pl for UHECR of extragalactic origin . (3.173)

Thus, if UHECR are of extragalactic origin, then the bounds on the minimal value

of the (subluminal) graviton propagation speed obtained as a consequence of the

gravitational Cherenkov radiation, are at best of the same order of magnitude as the

bounds (3.169), otherwise (namely, for UHECR of galactic origin) the corresponding

bounds are several orders of magnitude weaker.

3.6 Conclusions and outlook

In this work we built upon previous discussions on the potential rôle of the recoil

velocity fluctuations of D-particle (effectively point-like) defects in brane universes,

by presenting a cosmic evolution of the so-called D-material universe. The latter is

a brane world which is punctured by populations of D-particles and propagates in

a bulk space with varying densities of such defects. Their string interactions, with

(open and closed) string modes representing matter and radiation on the brane

world, generate a recoil velocity, which can be promoted to a dynamic field once

related to the local spacetime deformations. In the early stages of the universe, one

may encounter dense populations of bulk D-particles, which imply a dense popula-

tion of D-particles bound to the brane world. For low string scales Ms compared

to the Hubble scale and for sufficiently large brane tensions compared to M4
s , the

recoil velocity fluctuations lead to the formation of large condensate scalar fields

which can safely be assumed homogeneous and slowly time varying. The careful

analysis of the potential emerging from our model shows that such large scalar field

can drive slow-roll Starobinsky-like inflation and yield a successful exit. In the case

of large string scales compared to the Hubble scale, or smaller brane tensions of the

order of M4
s , the resulting condensates are small and cannot drive inflation. In such,

inflation might be induced by other mechanisms, for instance it may be driven by

large negative values of a slowly rolling dilaton field.

As (the cosmic) time lapses, the universe exits from a bulk region of such dense

D-particle populations, inflation ends and the universe enters a radiation dominated

era, with power-law expansion of the scale factor in cosmic time. In such a case, the
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recoil velocity fluctuations of the D-particle diminish with the inverse cubic power of

the scale factor. The pertinent condensates are weak. At such late eras of the uni-

verse, it has been shown that the recoil velocity fluctuation fluid may “mimic” Dark

Matter (DM) in a way compatible with lensing phenomenology. Of course, given

that the underlying string theory contains its own particle DM candidates, our find-

ings here should be interpreted only as suggesting that the recoil velocity component

might be the dominant one in agreement with current lensing data. Certainly, given

that this assumption implies only upper bounds for the pertinent densities of D-

particles, the picture of a multicomponent DM where both conventional particle

and D-particle candidates might play an equal rôle in DM composition cannot be

excluded at present. The density of D-particles at a given era in the history of

the D-material universe is in a sense a free parameter in our low-energy treatment,

although this can be actually controlled by performing numerical simulations of the

evolution of a dense population of D-particles in colliding brane scenarios (whereby

the collision implies the initial Big-Bang-like cosmically catastrophic event [58]).

This is not feasible at present.

In addition, we considered the effects of the recoiling D-particles on the propa-

gation of GW. For the low-energy regime of interest for GWs observed by aLIGO,

which was the focus of our attention here, the main effect is an induced effective

mass for the graviton, given by (3.137), which, depending on the magnitude of the

D-particle recoil velocity fluctuations, can be much larger than the vacuum energy

and DM density, and hence can be bounded by pulsar timing or aLIGO measure-

ments. As the magnitude of such quantum fluctuations cannot be determined theo-

retically at present, due to uncertainties in the underlying dynamics of the collection

of D-particle defects that require going beyond the current perturbative analysis in

brane/string theory, such studies can only be phenomenological at present, and this

is what we concentrated upon in this work.

One of the most important features of a massive graviton is that it is subluminal

as compared to photons, due to a negligible refractive index effect for the low-energy

regime of interest to us here. In that case, gravitational Cherenkov radiation may

impose additional constraints, in particular if one considers Ultra High Energy Cos-

mic Rays (UHECR) of an extragalactic origin. As we have shown, one gets upper

bounds on graviton masses comparable (in order of magnitude) to those obtained

from aLIGO interferometric measurements of GW, but still weaker than those ob-

tained from pulsar timing data. Certainly, Cherenkov radiation bounds may improve
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in the future (once higher energies can be probed). Of course, if Lorentz violation

due to the D-particle populations is significant, then the optical transparency of

the high-energy universe may be further affected, modifying the above discussed

bounds.

We feel stressing once more the point of view taken in this part of our work as far

as the effects of recoil velocity condensates on the GW propagation are concerned.

Any such effects contribute to the so-called vacuum energy and in the context of

our D-material universe, such contributions were assumed as being due to the stress

tensor of string matter rather than the geometry. This allowed us to treat any such

effect as corrections on top of a virtually flat spacetime FLRW background, where

a mass for the graviton can be defined. We hope that the D-material universe as a

concept is an interesting one, especially because it seems that the model is capable

of passing all of the current phenomenological challenges, including the effects of the

medium on the GW, but also lensing phenomenology on challenging sources and a

consistent, successful inflationary era.

Before closing, we should point out that there are some important predictions of

the D-material universe, given that the refractive indices of the D-particle medium

are dominantly affecting photons and gravitons. In the early universe, where the

density of D-particles is significantly higher than that of the current era, one expects

that such Lorentz-violating effects of the D-foam impact significantly the propaga-

tion of primordial GWs. In our inflationary phenomenology above we assumed

standard analysis of the cosmological perturbations in order to match the slow-roll

parameters to the data, and in particular the tensor-to-scalar ratio. In the actual

situation, where the dynamics of the densely populated medium of D-particles is

properly taken into account, one may have non-trivial effects on this ratio, which

might lead to observational signatures. This is an open issue that would be inter-

esting to pursue in the future.

A final comment concerns the production of D-particles, in case their masses are

less than 7 TeV, in the run II of the Large Hadron Collider (LHC) and their potential

detection. The production of neutral D-D pairs, from decays of (for instance) highly-

energetic off-shell Z0-bosons, is a rare but possible event at LHC. The neutral defect

pairs should manifest themselves in a way similar to ordinary particle/antiparticle

DM pairs at colliders. However, the D-particles have an additional peculiar property,

which implies non conventional ways of detection since their presence results in a

deficit angle in the neighbouring spacetime. Once therefore a D-particle is produced
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(in a pair with its antiparticle) in a collider, the colliding Standard Model particles

in the beam will find themselves in the environment of a spacetime with a deficit

angle, leading to locally maximal scattering amplitudes under some circumstances

and thus to peculiar scattering patterns (“Newton-like rings”) around the trajectory

of the defect. This specificity makes the detection of such pair possible in ATLAS

and CMS LHC experiments, or even in the MoEDAL LHC experiment [78], which

is the seventh LHC recognised experiment, dedicated to the detection of highly

ionising avatars of new physics, including the aforementioned D-matter. In view of

the interesting cosmological properties of D-matter, outlined in the present work,

producing it at LHC, if it exists and is sufficiently light, would further enhance the

opportunities of studying its peculiar properties and unravel its brany structure.

This in turn, may result in a better understanding of fundamental properties of

brane theory itself.
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Chapter 4

Conclusions and perspectives

Studies of our universe have revealed it to be extremely homogeneous and isotropic

(up to a part in 105), very flat (within a 0.4% margin) and currently in accelerated

expansion (for at least 3 to 4 billion years) [6]. Still, the mechanisms leading to

such a state are not fully understood. Inflation explains why it is so uniform and

flat but a plethora of models compete to deliver the most sensible and accurate

inflationary era. The energy budget of the universe is mainly divided into three

components: about 70% Dark Energy (DE), 30% matter (out of which a seventh

is conventional baryonic matter while the rest is made of Dark Matter (DM)) and

a pinch of highly relativistic species (mostly photons and neutrinos). However, the

nature of the dark sector (DM and DE) is not completely understood and again a

large variety of models describes possible origins, compositions and behaviours for

such fluids.

Moreover, the standard ΛCDM model as well as the theories on which it is

constructed — such as General Relativity (GR) and the Standard Model of particle

physics — are all effective theories, known to be valid only at low energy densities. A

UV complete description which would encompass all phenomena of nature is still to

be written. Two candidates which are currently being most seriously considered are

non-perturbative quantum gravity and string theory. Still, many corrections, either

ad hoc or suggested by a higher energy picture, can be added to the known models.

The study of their self-consistency, as well as a comparison with the available (or

foreseeable) data, yield information about the favoured models and their parameter

space.

Detailed analysis of the Cosmic Microwave Background (CMB) and statistical

studies of surrounding sources in the whole electromagnetic spectrum have led us to

our present state of understanding. New advances will be achieved by reaching ever

greater precision in such investigations but also through the use of additional tools
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such as Gravitational Waves (GWs). While their existence was long inferred by

indirect effects, the first direct detections occurred only very recently [4] and com-

plementary data should soon be available to explore as yet unreachable phenomena.

For instance, isolated events are shedding light on compact objects binaries, col-

lapsing supernovae and other extremely violent processes. Knowledge of their inner

mechanisms and their abundance, as well as of the properties of GWs themselves,

could emerge from such studies. On the other hand, investigations of the GW back-

ground, similar to the CMB, could enlighten us about the nature of inflation and

the very early universe. Likewise, the stochastic superposition of individual sig-

nals from the multiplicity of local sources could reveal additional cosmological and

astrophysical information.

With this in mind, our work here has focused on two specific models and their

phenomenological consequences. In Chapter 2, we studied peculiar events produc-

ing GW Bursts (GWB) in a network of cosmic strings. As presented in Section 2.1,

these networks are thought to be generic in many scenarii which include some Spon-

taneous Symmetry Breaking (SSB) and/or certain types of supersymmetric or string

theory inflation. Indeed, the Kibble mechanism [28] is responsible for the creation

of topological defects, which are confined regions in which the normal phase sur-

vives in an ordered phase background. Under certain circumstances regarding the

symmetries, these defects can be linear, namely Cosmic Strings (CS). Alternatively,

some string-inspired models, in which our universe is a brane evolving within a

larger-dimensional bulk and where inflation is related to brane collisions, can also

lead to the quantum equivalent, namely Cosmic SuperStrings (CSS). The properties

and parameters of such strings depend on the model they emerge from, but can be

studied, as we do in Section 2.2, from an effectively one-dimensional perspective,

that is, following the Nambu-Goto action given in Eq. (2.4). It is interesting to

notice this common framework for CS and CSS, even though their formation, and

thus some of their parameters and their evolutions, might be different.

One exciting feature of such linear objects is called a cusp, and this corresponds

to a region of the C(S)S momentarily reaching the speed of light c = 1. The

interest in such events lies in the GWB emitted at that point, whose high frequency

spectrum has been analytically examined [36]. Our work in Section 2.3 focused on

such events from a light string stretched between two heavy, almost fixed strings,

as could appears in C(S)S networks. We investigated in particular the rate of such

phenomena. Doing so numerically, we also saw some potentially important relatives
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to cusps emerging, called pseudocusps, where the velocity reached was very close to

1 but still a bit (say 10−5) below. An analytical criterion allowing us to discriminate

between cuspy and non-cuspy strings was found, Eq. (2.50), and compared to our

simulations, confirming several of our intuitions. For instance, we found that the

wavier a C(S)S is, the cuspier it will be, and that there could be on average as

many pseudocusps as they are cusps, in order of magnitude. The actual number

of cusps being very model- and parameter-dependent, and our setup being specific

even though quite realistic, we can only give the overall trends and not definite rates

of occurrence.

Still, we would like to stress that our study led not only to a better understanding

of cuspy events with respect to their GWs emissions, but also of the frequency of

such phenomena and their occurrence rates relative to the main parameters of string

networks [45]. This opens up possibilities for future work on several fronts. Firstly,

the GW spectrum of pseudocusps could be studied in order to derive the dependence

of the high frequency behaviour on the local velocity. This would provide a more

informed choice for the relevant points regarding GWBs (as the threshold used here

was somewhat arbitrary and mainly motivated by the limits on numerical accuracy).

The incidence of cusps and pseudocusps could also be studied for additional string

configurations, such as loops, strings between moving junctions or strings with kinks.

Once this is determined, dynamical evolutions of C(S)Ss and networks could be

simulated, taking into account properties such as the expansion of the universe

and the scaling of the network, the string interactions, and the local features (for

instance kinks, junctions, and zipping). Such model dependent analyses would refine

our knowledge of the number of cuspy events on a more realistic, complete network.

We could thus obtain multiple predictions of the high frequency GW signal one could

expect on Earth. We believe that this would allow a better understanding of future

detections, both stochastic backgrounds and potential single events, in addition to

providing more accurate constraints on a large range of high energy models.

We discussed in Chapter 3 a specific (string inspired) brane world scenario, that

is, a model where our lower-dimensional universe evolves in a larger-dimensional

bulk. The graviton is seen as a closed string and is also located in the bulk, while

other fields are open strings whose extremities end on the branes. The key fea-

ture of this model, as detailed in Section 3.2, is the presence of a foam of effectively

point-like D-particles in the bulk, either as D0-branes or as three-times-compactified

D3-branes, depending on the string background. Their interactions with our uni-
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verse brane and its contents, namely open strings, generate a vector recoil velocity

field. This influences the graviton equations of motion, Eq. (3.19), mainly via extra

content terms due to the squared field strength. These can be interpreted differently

depending on the hypotheses adopted and were shown to lead to various astrophys-

ical and cosmological consequences.

As we showed in Section 3.3, this recoil velocity field can form a condensate in

late eras of the universe and act as a DM fluid, thus reducing the need for other

types of DM, although it generically appears in such string-inspired models. We

detailed under which circumstances this condensate can fully replace the need for

alternative DM, relying on a lensing analysis and relating our constraints to the ones

previously obtained in the context of large scale structure growth [61]. We would

emphasise, once more, however, that we do not seek via this model to eliminate the

need for DM, but rather to partially relax the current bounds. Looking back to

the early universe in Section 3.4, we then studied the inflationary era and produced

a successful scenario in which the condensate, which is homogeneous and slowly

varying in time, plays the rôle of the inflaton scalar field. Two limits are studied,

one in which the condensate is weak (in the case of large string scale with respect

to the Hubble scale during this era) which turns out to be unsatisfactory, and the

second where it is large (with small string scale) which fulfils all the requirements

for inflation. The constraints of this scenario were then tested with respect to the

late era limits, and the age of the universe was computed for overall consistency.

An alternative scenario for the former, deficient case was also given, where the

dilaton field induces the inflationary era. Finally, driven again by the late direct

detections [4], we studied in Section 3.5 the propagation of GW in such a modified

theory and obtained a mass for the graviton. Additional effects, such as refractive

ones, both on the graviton and the photon, were studied and compared, in order

to constrain the parameters of our model. It is important to note that for such

analysis, the so far neglected “magnetic” type field strength of our vector recoil

velocity field plays an important rôle, as well as the quantum fluctuations of the

condensate. Still, this is consistent with the previous sections; each setup implies

different hypotheses such as homogeneity or time independence, leading to different

leading and subleading terms in the equations and thus to different physical effects.

Our analysis provides multiple tests of this D-material universe model, spanning

several eras as well as several space scales, which consistently fits the current data

and solves several outstanding problems of the ΛCDM model. Let us stress that this
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scenario provides microphysical interpretations for the introduction of additional

terms in the equations, and thus proves to be not only experimentally successful

but also theoretically well motivated. Still, the lack of a better string theoretic

understanding limited our ability to produce a detailed analysis of the quantum

fluctuations of the condensate. These are necessary to relax some assumptions,

refine the underlying mechanisms and further constrain the model. In addition, a

full comparison to the CMB temperature and polarisation anisotropies, regarding the

GW and photon propagations, could yield additional limits on the model parameters.

Our inflationary era could produce specific signatures, such as GW signals or effects

on the tensor-to-scalar ratio, distinguishing foam models from other brane world

scenarii. Finally, the presence of D-particles in our immediate surroundings could

be indirectly observed in particle detectors such as the Large Hadron Collider (LHC),

for example, by the spacetime angle deficit they create locally.

Finally, a word on the theories which were investigated. For us, their appeal lay

in the fact that they provide immediate phenomenological consequences, as well as

being strongly theoretically motivated. The link between hypothesis and observable

outcome is unambiguous, allowing us to disprove a theory, however beautiful, and

whatever the amount of time and energy that has been spent to develop it. This

is at the heart of the necessary and productive conversation between theoretical

and experimental research. The following famous quote from Richard Feynman [79,

Chapter 7, p. 156] conveys well these views, as well as the tough truth about the

theorist’s task:

In general we look for a new law by the following process. First we
guess it. Then we compute the consequences of the guess to see what
would be implied if this law that we guessed is right. Then we compare
the result of the computation to nature, with experiment or experience,
compare it directly with observation, to see if it works. If it disagrees
with experiment it is wrong. In that simple statement is the key to
science. It does not make any difference how beautiful your guess is. It
does not make any difference how smart you are, who made the guess,
or what his name is – if it disagrees with experiment it is wrong. That
is all there is to it.

The true goal is to fail one’s own theory, to force it to confront the reality of obser-

vations, to constrain it, until there is no parameter space left.

With these ideas in mind, this thesis has sought to push further on the limits of

the theories it presents. It is hoped that future work will build upon this one, in
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cosmic strings, in dark matter, in the early universe, in such a way as to carry on

this fruitful dialogue between theory and reality.
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Appendix A

Generalised configuration of

strings between Y-junctions

We here extend our initial strings’ configuration detailed in Section 2.3.1, in order to

show that the quasi-periodicity of the movement of the light string is indeed generic.

A.1 Coplanar heavy strings with various angles

In this section, we choose different angles at the two junctions and denote Ψ0 (re-

spectively Ψm) the angle between the z-axis and the heavy string at the σ = 0

(respectively σ = σm) junction. In addition, by setting the upper half-plane to be

the symmetric of the lower half-plane, one forms a (π−2Ψ0) (respectively (π−2Ψm))

angle along the heavy string. Note that here, the two heavy strings remain coplanar

and orthogonal to the y-axis, as shown in Fig. A.1.

One can then define S0 = sign(X ′z(0, t)) and Sm = sign(X ′z(σm, t)) the signs of

the z-component of the light string’s velocity at each end. These both take the value

±1 depending on whether we consider the z ≶ 0 half-plane, respectively. They allow

us to write in a compact way all the boundary conditions coming from Eqs. (2.20),

giving

Ẋy (t, 0) = 0 (A.1a)

Ẋx (t, 0)− S0 tan(Ψ0) Ẋz (t, 0) = 0 (A.1b)

S0 tan(Ψ0) X ′x (t, 0) +X ′z (t, 0) = 0 , (A.1c)

and
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y

Y0 Ym
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z

Figure A.1: A light string stretched between two junctions with heavy strings.
Here the upper-half plane is symmetric to the lower-half plane and each heavy
string forms a different angle with the z-axis. The heavy strings are coplanar.

Ẋy (t, σm) = 0 (A.1d)

Ẋx (t, σm) + Sm tan(Ψm) Ẋz (t, σm) = 0 (A.1e)

Sm tan(Ψm) X ′x (t, σm)−X ′z (t, σm) = 0 , (A.1f)

leading to the system of equations

X ′+y (t) = X ′−y (−t) (A.2a)[
X ′+z (t)−X ′−z (−t)

]
S0 tan Ψ0 = X ′+x (t)−X ′−x (−t) (A.2b)

X ′+z (t) +X ′−z (−t) = −
[
X ′+x (t) +X ′−x (−t)

]
S0 tan Ψ0 , (A.2c)

and

X ′+y (2σm + t) = X ′−y (−t) (A.2d)[
X ′+z (2σm + t)−X ′−z (−t)

]
Sm tan Ψm = −X ′+x (2σm + t) +X ′−x (−t) (A.2e)

X ′+z (2σm + t) +X ′−z (−t) =
[
X ′+x (2σm + t) +X ′−x (−t)

]
Sm tan Ψm

(A.2f)

replacing Eqs. (2.22). Manipulating Eqs. (A.2b) and (A.2c) allows us to express

X ′+x(t) and X ′−x(−t) in terms of X ′+z(t), X
′
−z(−t) and polynomials of (S0 tan Ψ0),

and thus X ′+x(2σm + t) after a shift t → 2σm + t. Replacing in Eqs. (A.2e) and

(A.2f), one gets two equations involving X ′+z(2σm + t), X ′+z(t), X
′
−z(−2σm − t) and

X ′−z(−t), and combination of (S0 tan Ψ0) and (Sm tan Ψm).
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Shifting the variable t→ 2σm+ t, one gets four equations involving six variables:

X ′+z(4σm + t), X ′+z(2σm + t), X ′+z(t), X
′
−z(−4σm− t), X ′−z(−2σm− t) and X ′−z(−t).

One can then use three of them to eliminate the three X ′−z variables — namely

X ′−z(−4σm − t), X ′−z(−2σm − t) and X ′−z(−t) — to obtain an expression similar to

Eq. (2.26)

X ′+z (t) = −RX ′+z (−2σm + t)−X ′+z (−4σm + t) , (A.3)

where

R ≡ −2 cos (2S0Ψ0 + 2SmΨm) , (A.4)

and similarly for X ′+x.

This expression is very similar to the one we obtained in the initial setting, which

we can retrieve by setting Sm = 1 = S0 and Ψ0 = Ψm. In addition, this equation

also reveals that the functions X ′+x and X ′+z are periodic for a dense subset of angles,

otherwise quasi-periodic; one simply needs to replace 2Ψ by Ψ0±Ψm. This justifies

our initial simpler choice.

A.2 Non-coplanar heavy strings

In this section, we choose to modify the initial configuration by rotating the σm-end

string in the plane containing the y-axis, as shown on Fig. A.2. In other words,

one rotates the string around the axis which is perpendicular both to the initial

position of the string and to the y-axis, that is the axis directed by the vector

(cos Ψ, 0 , sin Ψ).

This rotation generates a coupling between X ′+y and the other components of X′+,

namely X ′+x and X ′+z, contrarily to previous cases. Indeed, the boundary conditions

at σ = 0 remain the same while the ones at σ = σm become

− sin Ψ sin Φ
[
X ′+x (2σm + t)−X ′−x (−t)

]
+ cos Φ

[
X ′+y (2σm + t)−X ′−y (−t)

]
+ cos Ψ sin Φ

[
X ′+z (2σm + t)−X ′−z (−t)

]
= 0 (A.5a)[

X ′+x (2σm + t)−X ′−x (−t)
]

+ tan Ψ
[
X ′+z (2σm + t)−X ′−z (−t)

]
= 0 (A.5b)

sin Ψ cos Φ
[
X ′+x (2σm + t) +X ′−x (−t)

]
+ sin Φ

[
X ′+y (2σm + t) +X ′−y (−t)

]
− cos Ψ cos Φ

[
X ′+z (2σm + t) +X ′−z (−t)

]
= 0 (A.5c)

replacing Eqs. (2.22d) to (2.22f). These are significantly more complicated than

previously and imply that one needs to manipulate more equations to obtain a
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Figure A.2: A light string stretched between two junctions with heavy strings.
Here the σ = σm end string has been rotated in the plane containing the y-axis

by an angle Φ. The two heavy strings are no longer coplanar.

relationship similar to Eq. (2.26). In the end, this coupling generates a 3rd order

equation for X ′+x and X ′+z instead of the 2nd order one that is Eq. (2.26).

We believe that the conclusion on the periodicity, obtained in the previous string

configurations, is still valid in this general setup, basically since the energy density

per unit length remains constant (no emission has been incorporated). Indeed,

the energy being constant implies that any damping or amplification in one of the

components of the signal along the string is linked to some compensation somewhere

else in the system.

In the previous situations, if, for instance, the energy of the y-component was

null at the beginning, it remained that way; similarly, an energy loss in the x-

component would be balanced by a gain in the z-component, and vice versa. In

our non-coplanar situation, one needs to take into account all three components in

a very entangled and more complex way. This suggests that a loss of energy in,

say, the z-component can be balanced by an amplification in the y-component, for

instance. Indeed, at the σ = σm junction, this kind of transfer can happen since

all three modes are coupled. In addition, it is believed that the damping in the

z-direction could be seen as a source term in the x- and y-directions, linked to a

general conservation of energy density and implying a globally periodic movement.
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More precisely, the 3rd order equation is of the form

X+,n+3 − R̄X+,n+2 + R̄X+,n+1 −X+,n = 0 , (A.6)

where R̄ depends solely on the angles; it gives solutions of the form

X+,n = Aen + eun (B cos vn+ C sin vn) , (A.7)

where A, B and C are constants depending on the initial conditions (i.e. on

X+,0, X+,1 and X+,2) and u and v depend directly and solely on R̄. Taking A

to be non-zero gives unphysical solutions since one needs to keep in mind that

X ′+y = ±
√

1− (X ′+x)
2 − (X ′+z)

2.1 One would get large values for X ′+x and X ′+z as

n grows, giving a negative value for (1 − (X ′+x)
2 − (X ′+z)

2). Similarly, one cannot

understand physically the exponential prefactor eun unless there is a mechanism to

either suppress this factor or reverse it after some time. Indeed, let us divide this in

three cases: if u is null, one obtains a periodic motion; if u > 0, we find ourselves in

the case described previously, that is unphysical complex values for X ′+y; finally, if

u < 0, one would have a situation where X ′+z = 0 = X ′+x and all the energy lies in

X ′+y, which is unrealistic as well. A mechanism suppressing or reversing this pref-

actor would imply a balance between each component through time, which again

makes sense physically.

Generally, it is believed that the rotation of the σ = σm string should not change

the global understanding of the movement of the light string, meaning that what

was considered as consistent in the coplanar case should remain valid here.

1Indeed, recall X′2+ = 1 = (X ′+x)2 + (X ′+y)2 + (X ′+z)
2.
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Snapshots of the strings simulation

We present in Fig. B.1 some snapshots of a string simulated using our code. The

chosen parameters here are such that ζ ∼ ∆/σm = 0.25 and ζ̄ ∼ 2 since 4 modes

have been implemented on the string. Finally, we use here a rescaled time t′ ≡ t/σm,

meaning that t′ = 1 after a half of the period. Note though that using symmetries,

one can deduce how the string is behaving in the second half of the period from the

string’s position during the first half. Finally, note that Ψ = 0.
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Figure B.1: Snapshots of a simulated light string (in blue) stretched
between two junctions with fixed heavy strings (in red).
t′ = t/σm is the rescaled time. ζ ∼ ∆/σm = 0.25 and ζ̄ ∼ 2.
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Appendix C

Background field considerations in

the D-material universe

Here, we discuss background field considerations which satisfy equations of motion

obtained from the actions (3.1) and (3.16).

Equations of motion

Let us first give the detailed equations of motion one gets from the low-energy, weak-

field1 action in which we include a dilaton kinetic term as well as derivatives of the

vector field strength. The action, in such case, yields [61]

SEeff 4D =

ˆ
d4x
√
−g

[
−T3 e

3φ0

gs0
− Λ̃ e2φ0

κ2
0

− 1

4
〈Gµν Gµν〉+

(
αT3 e

φ0

gs0
+

1

κ2
0

)
R

− F̃ 2

4

(
1− αe−2φ0R

)
+ λ

(
ÃµÃ

µ +
1

α′
J
)

−3α e−2φ0

2
gµν ∂µF̃

2 ∂νφ+O
(
(∂φ)2

)]
+ Sm , (C.1)

where the last two terms are the ones ignored in Eq. (3.16) and in our main compu-

tations. The first term contains derivatives of the dilaton and of the squared field

strength, and leads to an additional set of terms in the graviton equation of motion,

of the form (
3α e−2φ

4

)[gµν
2
∇2F̃ 2 −∇µ∇νF̃

2 − 2∇2
[
F̃ λ
µ F̃νλ

]]
. (C.2)

1As in action (3.16), we use here the renormalised vector field Ãµ, following Eq. (3.13).
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Hence the full graviton equation of motion reads2

(
Rµν −

gµν
2
R
)[αT3 e

φ0

gs0
+

1

κ2
0

+
αe−2φ0 F̃ 2

4

]
+
gµν
2

Λvac (C.3)

+
gµν
8
F̃ 2 − 1

2

(
1− αe−2φ0R

)
F̃ λ
µ F̃νλ −

gµν
2
λ

(
AαA

α +
1

α′
J
)

+ λ ÃµÃν

+
3α e−2φ0

4

[gµν
2
∇2F̃ 2 −∇µ∇νF̃

2 − 2∇2
[
F̃ λ
µ F̃νλ

]]
=

1

2
Tmµν .

Again, assuming the squared field strength is almost constant (homogeneous and

isotropic on cosmological scales, and slowly time varying) leads to Eq. (3.19).

In the vector equation of motion, extra terms would be proportional to derivatives

of the dilaton field φ, which is taken (exactly) constant. Unlike the approximation

∇F̃ 2 ' 0, the assumption φ = φ0 is considered to be exact, meaning that terms of

the form ∂µφ or ∇2φ are negligible in front of any other kind of subleading term.

The vector equation of motion thus gives, as already stated in (3.20)[
F̃νµ

(
1− α e−2φ0R

)];ν

+ 2λ(x) Ãµ = 0 , (C.4)

where again the semicolon denotes covariant derivative. Note that the Lagrange

multiplier, obtained by contracting the above equation by Ãµ and using the con-

straint (3.14), is given in Eq. (3.21) as

〈λ(x)〉 =
e−3φ0 gs0

8π2α′ |T3|
Ãµ
[
F̃νµ

(
1− αe−2φ0R

)];ν

. (C.5)

It is subleading as it yields derivatives of F̃µν and R.

Finally, the dilaton equation of motion is affected by both additional terms in

the action above. While the kinetic term O ((∂φ)2) is ignored in the end, we feel

the need to give some details on the computations arising from the first additional

term of the action. Denoting

SFφ ≡
ˆ

d4x
√
−g
[
−3α e−2φ0

2
∂µF̃ 2 ∂µφ

]
, (C.6)

2Once more, we assumed the condensate of bulk gauge fields of the form 〈GµνGµν〉 to be scalar-
like when deriving this equation of motion.
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which we vary with respect to the dilaton field, we obtain

δSFφ =

ˆ
d4x
√
−g
(
−3

2
α

)[
e−2φ ∂µF̃ 2 ∂µ(δφ)− 2 δφ e−2φ ∂µF̃ 2 ∂µφ

]
=

ˆ
d4x
√
−g
(
−3

2
α

)[
e−2φ ∂µF̃ 2 ∂µ(δφ)− e−2φ

(
δφ∇2F̃ 2 + ∂µF̃ 2 ∂µ(δφ)

)]
=

ˆ
d4x
√
−g
[

+3α e−2φ

2
∇2F̃ 2

]
δφ , (C.7)

where, between the first and the the second line, we used an integration by part on

the second term.3 The dilaton equation of motion (once we assumed φ = φ0, only

removing the kinetic term) thus yields4

3T3e
3φ0

gs0

+
2 Λ̃ e2φ0

κ2
0

− α

[
T3e

φ0

gs0

− e−2φ0 F̃ 2

2

]
R

−3α e−2φ0

2
∇2F̃ 2 + λ

3

α′
J = 0 , (C.8)

which, assuming again ∇λF̃µν ' 0 (and hence λ ' 0), gives back Eq. (3.22).

Vertex operators

As discussed in detail in Ref. [61] and references therein, the D-particle recoil fluc-

tuations are in general represented by a vector mean-field excitation of a stringy

σ-model that describes the propagation of strings in cosmological FLRW spacetime

backgrounds, punctured by populations of fluctuating D-particles, with two types

of contributions:

(i) “Electric type”, associated with the linear recoil momentum excitations, de-

scribed by σ-model world-sheet boundary (∂Σ) deformations of the form

Vlin. mom. =
1

2πα′

ˆ
∂Σ

dτ gik Y
k(τ) Θε(X

0) ∂nX
i

=
1

2πα′

ˆ
∂Σ

dτ gik u
kX0 Θε(X

0) ∂nX
i , (C.9)

with Θε(X
0) a regularised Heaviside function, describing the impact (and impulse)

of the matter string on the D-particle at a time X0 = 0 and ∂nX
i the normal world-

3Using the notation
´
uv′ = [uv]−

´
u′v, we here chose u = δφ ∂µF̃ 2 and v′ = −2 e−2φ ∂µφ.

4Recall the definition of J in Eq. (3.15). It leads to the (subleading) term containing the
Lagrange multiplier.
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sheet derivative, where X i are σ-model fields obeying Dirichlet boundary conditions

on the world sheet, and τ is a σ-model field obeying Neumann boundary conditions

on the world-sheet, whose zero mode is the cosmic target time. The path Y i(τ) may

be identified with the geodesic equation of a massive D-particle in the spacetime de-

scribed by the metric gij. One can rewrite X0 = t−tc and use cosmic time t, tc being

the impact time. The quantity ui is the D-particle recoil velocity emerging from the

inelastic interactions and gij = a2(t)δij are the spatial components of the metric for a

(spatially flat) Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe, with scale

factor a(t), we assume here, as dictated by the current astrophysical/cosmological

data [6]. For the galactic eras we are interested in in the lensing analysis of Sec-

tion 3.3) and in the graviton propagation study of Section 3.5, one can assume

a(t) ∼ 1. The vertex operators (C.9) satisfy a (logarithmic) conformal algebra5 on

the world-sheet, hence they are consistent string deformations.

Upon a T-duality transformation (which exchanges Neumann and Dirichlet bound-

ary conditions), assuming it to be an exact symmetry of the underlying string theory,

we observe that the “impulse” vertex operator on ∂Σ (C.9) corresponds to that of

a covariant vector (gauge) field6

Vlin. mom. =
1

2π
√
α′

ˆ
∂Σ

dτ Aµ ∂τX
µ , (C.10)

where ∂τ denotes tangential world-sheet derivative. The vector field has spatial

components [61]

Ai =
1√
α′
gik Y

k(t) Θε(t− tc) . (C.11)

(ii) “Magnetic type”, associated with σ-model deformations corresponding to

non-zero angular momentum of the recoiling D-particles, described by the world-

sheet boundary vertex operators

Vang. mom. =
1

2πα′

ˆ
∂Σ

dτ εijk u
kXjΘε(X

0) ∂nX
i , (C.12)

5From a world-sheet viewpoint, the Heaviside function is an operator, which is such that the
impulse/recoil operator (C.9) satisfies a logarithmic conformal algebra on the world-sheet of the
string, which is the limiting case between conformal theories and general renormalisable two-
dimensional theories, that can be classified by conformal blocks. For the purposes of this work, we
shall work with X0 > 0, that is, t > tc, so that the Heaviside function can be set safely to one.

6There is an Abelian gauge symmetry associated with the vertex (C.10) due to the fact that,
upon a U(1) target-space gauge transformation, with parameter θ(Xα(σ, τ)), under which Aµ →
Aµ + ∂µθ(X), the vertex remains unchanged, since

¸
∂Σ

∂µθ(X) ∂τX
µ =
¸
∂Σ

d
dτ θ = 0, recalling the

boundary of a boundary is zero by construction.
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with εijk the antisymmetric symbol in three-space dimensions. As is the case of

the “impulse” linear momentum vertex operators (C.9), the operators (C.12) also

satisfy a (logarithmic) conformal algebra on the world-sheet of the string.

These “magnetic type” contributions are either subleading, due to symmetric

metric conditions used in some parts of the lensing analysis of Section 3.3 or in

the homogeneous isotropic cosmological background of the inflationary era in Sec-

tion 3.4. Alternatively, they can be of the same order than the “electric type” ones,

for instance in the galactic scales of the matter dominated era, as used in the gravi-

ton propagation analysis of Section 3.5. Still, they have been sometimes ignored for

simplicity in our estimates as they would at most add a factor 2, thus not changing

our conclusions.

Background configurations

Let us now look in more details at the form the vector field takes. For a FLRW

background with a power-law scale factor a(t) ∼ tp relevant for the matter dominated

era we are interested in some parts of this work (see as well [61]), and for times large

compared to the moment of impact tc for any given D-particle, one has

Y i(t) ' vi

1− 2p

(
t
a2(tc)

a2(t)
− tc

)
+ . . . ' − vi

1− 2p
tc t� t0 , (C.13)

which, on account of Eq. (C.11), implies the cosmological form of the recoil vector

field Aµ and its field strength Fµν on the D-brane given in Eq. (3.27), that is

Ai ≡ −
1√
α′
a2(t)ui , F0i = − 2√

α′
ȧa ui , (C.14)

having absorbed irrelevant numerical factors into the definition of the recoil velocity

and restored the correct dimensionality via appropriate powers of
√
α′.

The temporal component of the covariant vector field A0 cannot be fixed in

this approach, given that the target time coordinate satisfies Neumann boundary

conditions on the world-sheet, and as such ∂nt(σ) = 0 and thus does not appear in

the original vertex (C.9) in the Dirichlet picture. As in Ref. [61], and for the case

of cosmological spacetimes only, we have covariantised the vector background by

considering the temporal component of the (T-dual) vector field to be such that the
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four-vector field Aµ (of mass dimension one) assumes the form

Aµ = − 1√
α′
gµν(t)u

ν , (C.15)

where uµ = dxµ/dτ is a (dimensionless) four-velocity, thus satisfying the time-like

constraint (in our convention)

uµ uν gµν = −1 . (C.16)

Recall that in this approach, the recoil velocity field uµ is elevated to a dynamical

one, as a part of a dynamical gauge background field in the D-particle recoil process.

That is to say, upon T-duality, the vertex operator (C.9) is related to the gauge

potential deformation Ai = uiX
0 Θ(X0) (where one can assume, without any loss of

generality, the time axial gauge A0 = 0). The interaction of neutral matter with the

background of the recoiling D-particle is described in average by such new dynamical

vector field degrees of freedom, associated with the back reaction of the D-matter

on spacetime.

The cosmological FLRW spacetime have the conformally flat form (in conformal

time η coordinates, cf. (3.26))

gµν = a2(η) ηµν , (C.17)

where a(η) is the scale factor as a function of the conformal frame. In view of

Eqs. (C.16) and (C.17), the vector field (C.15) appears to satisfy the constraint

AµAν g
µν = − 1

α′
, (C.18)

since gµν = a−2(η) ηµν for the FLRW metric in conformal time frame. Since the

left-hand-side of (C.18) is coordinate-frame independent, the constraint (C.18) also

characterises the FLRW time frame (3.25). Note that in conformal time η, the prime

here meaning derivation with respect to η, the field strength (C.14) becomes

F0i = − 2√
α′
a′ ui . (C.19)

Thus, the cosmological background appears to break (spontaneously) the stringy

gauge symmetry, leading to a massive vector field. This has been taken into account
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in this work (as in Ref. [61]), whenever the global (cosmological) background (C.15)

is used, like, for instance, in the Section 3.4 where we shall consider its role in an

inflationary era of this string/fluctuating-D-particle universe.

Under such conditions, the vertex operators (C.9) correspond to vector field

excitations Ãi with a target-spacetime field strength (after the impact, that is, for

t > tc) of the form

F̃0i = Ei = M2
s giju

j , (C.20)

where Ei denotes the “electric” field, while the vertex operators (C.12) imply a

target-space field strength with spatial components

F̃ ij = −εijk Bk = M2
s ε
ijkgk` u

` ⇒ Bk = M2
s gk` u

` , (C.21)

where Bi denotes the “magnetic” field. This leads to the form of the field strength in

the cosmological picture of the late eras, as considered in the graviton propagation

of Section 3.5.

Numerical estimations

The reader is invited at this stage to notice the presence of the (inverse cube of the)

scale factor in Eq. (3.34), which plays a rôle in the cosmological evolution between

eras (see Section 3.4.4) and arises from the fact that the statistical fluctuations

are proportional to the cosmic density of defects at a global scale [61], with a(t)3

denoting the proper volume in a FLRW universe. In a semi-microscopic treatment,

this scaling of σ0 can be justified by noting that essentially

〈〈uiujgij〉〉(t) ∼ V −1
D

ˆ
D
P uiuj gij , (C.22)

where gij(~x, t) is the metric (3.28), D is a spatial domain (with (proper) three-volume

VD) upon which the (statistical) average over D-particle populations is considered

at any given moment in cosmic time t, and P = ND

Nγ
is a probability of recoil of

a D-particle under its interaction with low-energy cosmic photons, assumed to be

the main contribution for the generation of the recoil field, with ND, Nγ the corre-

sponding number densities of D-particles and photons respectively. The quantity ui

is the spatial recoil velocity arising from a single scattering event of a photon with a
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D-particle. It is proportional to ∆pi the momentum transfer during the scattering

ui =
∆pi
Ms

gs0 =
ξ̃0 pi
Ms

gs0 =
ξ̃0 p

phys
i

a(t)Ms

gs0 (C.23)

with ξ̃0 < 1 is a spacetime local constant “fudge” factor (hence independent of the

universe’s expansion), characteristic of the microscopic theory, and pphys denotes

the “physical” momentum observed by a cosmological observer who is comoving

with the Hubble flow for an expanding universe with scale factor a(t). The quantity

Ms/gs0 is the mass of a D-particle, with Ms = 1/
√
α′ the string scale and gs0 . 1

the string coupling, assumed weak so that string loop perturbation theory (and thus

world-sheet formalism of recoil) is valid. From Eqs. (3.28), (C.22) and (C.23), and

taking into account the scaling with the scale factor a(t) of the densities of the (non

interacting among themselves) D-particles, ND = N
(0)
D a−3(t), and the photons (ra-

diation) Nγ = N
(0)
γ a−4(t), with the superscript (0) denoting present-day quantities,

we obtain

〈〈uiujgij〉〉(t) ∼
1

a3(t)

N
(0)
D

N
(0)
γ

ξ̃2
0 |pphys|2

M2
s

g2
s0 , (C.24)

with |pphys|2 the square of the amplitude of the physical spatial momenta, computed

with the time-independent part of the spatial metric (3.28) with a2(t) factored out.

Comparing (C.24) with (3.34) we obtain an estimate for |β| at late (galactic) epochs

of the universe

|β| ∼ 1

3

N
(0)
D

N
(0)
γ

ξ̃2
0 |pphys|2

M2
s

g2
s0 . (C.25)

We remind the reader that Eq. (C.25) relies on the assumption that the dominant

contributions to the recoil velocity field and its statistical fluctuations come from

scatterings of D-particles with the abundant background of cosmic photons, taken

for concreteness to be mostly CMB for the galactic era. In this case |pphys| denotes

an average energy Ē of such photons as observed in the present day, i.e. Ē(eV) =

1.24/λ(µm), with λ(µm) a typical wavelength of the CMB photon, λ ∼ 1.9 mm.

This yields

ĒCMB =
√
|pCMB

phys |2 ∼ 7× 10−4 eV . (C.26)

We now remark that the a(t)−3 dependence of σ0 in (3.34) is over and above any

inhomogeneities that may characterise local populations of D-particles in the neigh-

bourhood of galaxies we shall concentrate upon in our lensing analysis. The latter

may be incorporated in a mild dependence of σ0 from galaxy to galaxy, which, as we
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show in Section 3.3, may arise from uncertainties in cosmological measurements. It

is also understood that the statistical averages above, leading to Eqs. (3.34), (C.25)

and (C.26) are only applied at the end of the pertinent computations.

At this point, we should make the following remark. The quantum fluctuations

about such averaged quantities over populations of D-particles can be described in

terms of the low-energy string effective action Eq. (3.1). The nonlinear Born-Infeld

dynamics encoded in this action might then be responsible [62] for the formation of

quantum condensates of the recoil velocity field that characterise the early universe

epoch, which are distinct from the statistical averages (3.34) that correspond to the

classical part of a condensate 〈〈Fµν F µν〉〉 of the D-particle recoil velocity field. In

our considerations in this work, the inflationary epoch of Section 3.4 is characterised

by very dense populations of D-particles, and as such one may consider the clas-

sical, statistical effects as dominant, while the quantum fluctuations are explicitly

expressed and necessary in our graviton propagation analysis of Section 3.5.
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Inflation for small condensates of

the D-material universe

Although small condensate inflation induced by the D-particle population alone,

with a zero dilaton, is not a viable scenario, as we have seen above, nevertheless one

may [59] obtain Starobinsky-type inflation induced by the dilaton in a slow-rolling

regime where the dilaton assumed large negative values. In this case, a crucial rôle is

played by the D-particle small condensates in assisting this inflation in the sense of

providing the means for a potential minimum towards which the dilaton field (which

plays here the rôle of an inflaton) rolls slowly. The details have been presented in

Ref. [59] and will not be repeated here, however, for completeness, we shall outline

below the main features.

In the case of a non trivial dilaton φ, a convenient starting point is the σ-model-

frame effective action (3.1), expanded (for small condensate fields) up to quadratic

order in F 2 recoil field strength

Seff 4dim '
ˆ

d4x
√
−g

[
−T3 e

−φ

gs0

− Λ̃ e−2φ

κ2
0

−D −As +

(
αT3 e

−φ

gs0

+
e−2φ

κ2
0

)
R(g)

− (2πα′)2 T3 e
−φ

gs0

F 2

4
(1− αR(g)) +O

(
(∂φ)2

)]
, (D.1)

where D are dilaton independent flux condensates in the brane, defined previously

(cf. (3.93)), and

As ≡
Ms

gs0

e−φN str
D , (D.2)

with N str
D the (dimensionfull) proper space density of D-particles in the string frame,

is a contribution to the brane vacuum energy due to the (rest) mass of the D-particles
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(cf. Eq. (3.6)).

Upon considering vacuum condensates in a Hartree-Fock approximation, i.e. re-

placing FµνF
µν by the condensate field in the presence of a dilaton 〈〈FµνF µν〉〉 ∼

CM4(t), such that one can define the dimensionless condensate field σ(t, x)

σ(t, x) ≡ 1

4
ακ2

eff

(
e−2φJ

)
CM4(t) , (D.3)

where one recalls the definition of J as in Eq. (3.15), the effective ation (D.1)

becomes [59]

Seff 4dim '
ˆ

d4x
√
−g e

−2φ

2κ2
eff

[
(1 + 2σ(xµ))R− 2

α
σ(xµ)

− 2κ2
eff

(
2B̄ + e2φD

) ]
+ . . . (D.4)

where α = π2/6 α′ as before, the . . . denote dilaton derivatives, which are subleading

terms in the slow-roll inflationary phase we are interested in here, and where we

have defined 1
2κ2

eff
≡
(
αT3eφ

gs0
+ 1

κ2
0

)
' 1

2
M2

Pl along with

2B̄ ≡ T3 e
φ

gs0

− |Λ̃|
κ2

0

+ e2φAs , (D.5)

which is an effective vacuum energy and is almost a cosmological constant for slowly

rolling φ(t) ' φ0 large and negative. The reader should recall at this stage that

the dilaton equation imposes the condition (3.23), which allows us to express the

parameter |Λ̃| in terms of the brane tension T3 > 0.

We next pass into the Einstein frame, denoted by a supersctipt E, by redefining

the metric [59]

gµν → gE
µν = (1 + 2σ(t, x)) e−2φ0 gµν , (D.6)

in which case the field σ(t, x) becomes a dynamical scalar degree of freedom. We

define a canonically-normalised scalar field ϕ(t, x)

ϕ(t, x) ≡
√

3

2
ln (1 + 2σ(t, x)) , (D.7)
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so that the action (D.4) becomes

SE
eff 4dim =

1

2κ2
eff

ˆ
d4x
√
−gE

[
RE + gEµν∂µϕ∂νϕ− V (ϕ)

]
+O

(
gEµν∂µϕ∂νφ0, g

Eµν∂µφ0 ∂νφ0

)
, (D.8)

with the effective potential V (ϕ) in the inflationary regime of large negative values

of φ0 given approximately by [59]

V (ϕ) '
[

1

α

(
e
√

2
3
ϕ − 1

)
+ 4κ2

effB̄E

]
e2φ0 e−

√
8
3
ϕ + 2κ2

eff D , (D.9a)

where 2B̄E ' −T3 e
φ0

2 gs0

+ e2φ0 AE , (D.9b)

with AE the Einstein frame (D.6) (dilaton-independent) vacuum energy correspond-

ing to the σ-model-frame quantity As (D.2) (cf. Eq. (3.8))

AE ∼ Ms

gs0

e−φ0 NDM
3
Pl (D.10)

where ND is the number density of D-particles per (reduced) Planck three-volume

on the brane world (assumed more or less constant during inflation [59]).

It is important to note that, in order to arrive at Eq. (D.9a), we took into account

the conformal nature of the flux condensate term in the four-dimensional spacetime

action
´
d4x
√
gD (under rescalings of the form (D.6)), and have ignored terms that

are more than quadratic in the vector potential. Moreover, as already emphasised,

for our purposes here we concentrate on the slow-roll phase of the dilaton field φ0,

so any potential-like terms with dilaton time-derivative factors are ignored. In this

approximation, we do not need to worry about the cross-kinetic terms ∂µφ0∂
µϕ,

which can, in any case, be eliminated by a further redefinition (mixing) of the fields

ϕ and φ0 [59].

From the discussion in Ref. [59], an extra factor
√

2 needs to be absorbed into

the dilaton normalisation in order to obtain a canonical kinetic term for this field,

yielding finally

1

2κ2
eff

V (ϕ) =
1

α 2κ2
eff

(
e
√

2
3
ϕ − 1

)
e−
√

8
3
ϕ e
√

2φ0

− T3

2gs0

e−
√

8
3
ϕ e

3√
2
φ0 +AE e−

√
8
3
ϕ e2

√
2φ0 +D . (D.11)
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For weak condensates ϕ� 1, where the approximations in this work hold, and large

negative values of the dilaton φ0, the reader will recognise in (D.11) the Starobinsky-

like form of the effective potential for the dilaton-driven inflation providedA+D > 0.

This can fit the Planck data [6] due to the very small value of the tensor-to-scalar

ratio r predicted by this class of theories.

By minimising the effective potential (D.11) with respect to the condensate field,

for fixed large negative values of the dilaton φ0, we observe that the minimum occurs

for ϕ ' 0 (as required for consistency) provided that

AE ' T3

2gs0

[
3gs0

π2

M2
s M

2
Pl

T3

e
− 1√

2
φ0 + 1

]
e
− 1√

2
φ0 . (D.12)

Taking into account (D.10) with the rescaled dilaton φ0 → φ0/
√

2, we have from

(D.12)

N̄D ∼
T3

2Ms M3
Pl

[
3gs0

π2

M2
s M

2
Pl

T3

e
− 1√

2
φ0 + 1

]
(D.13)

for the (dimensionless) number of D-particles on the brane world during the dilaton-

driven inflation area.

If we adopt the standard relation (used in Ref. [61]) (2πα′)2 T3 = 1, that is

4π2 T3 = M4
s , which is consistent with weak condensate fields ϕ, as we have seen

previously, then one obtains

N̄D ∼
1

8π2

(
Ms

MPl

)3
[

12 gs0

(
MPl

Ms

)2

e
− 1√

2
φ0 + 1

]
. (D.14)

Now for Ms ∼ 1016 GeV � HI ∼ 1013 GeV, gs0 ∼ 0.8 and nominal values of the

dilaton field in the range |φ0| ∈ [1, 10] (with φ0 < 0), we obtain N̄D ∈ [10−4, 10−1].

Higher densities can be obtained for larger brane tensions T3. Thus, we observe

that, even for the weak recoil velocity condensate fields case, during slowly-rolling

dilaton-driven inflation, the density of D-particle defects must be much higher than

then corresponding one in the galactic era. This is a rather generic feature of the

D-material universe.
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