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Relative Genetic and Environmental
Contributions to Variations in Human Retinal
Electrical Responses Quantified in a Twin
Study

Taha Bhatti, MSc,1,2 Ambreen Tariq, MSc,1,2 Ting Shen, MSc,1,2 Katie M. Williams, FRCOphth,1,2

Christopher J. Hammond, MD, FRCOphth,1,2 Omar A. Mahroo, PhD, FRCOphth1,2,3,4,5

Purpose: To estimate heritability of parameters of human retinal electrophysiology and to explore which
parameters change with age.

Design: Prospective, classic twin study.
Participants: Adult monozygotic and dizygotic twin pairs recruited from the TwinsUK cohort.
Methods: Electroretinogram responses were recorded using conductive fiber electrodes in response to

stimuli incorporating standards set by the International Society for the Clinical Electrophysiology of Vision. These
parameters were extracted; in addition, photopic negative-response (PhNR; originating from retinal ganglion cells)
and i-wave components were extracted from responses to the photopic single flash. Parameter values were
averaged from both eyes.

Main Outcome Measures: Mean values were calculated for the cohort. Correlation coefficients with age
were calculated (averaging parameters from both twins from each pair). Coefficients of intrapair correlation were
calculated for monozygotic and dizygotic twins. Age-adjusted heritability estimates were derived using standard
maximum likelihood structural equation twin modeling.

Results: Responses were recorded from 210 participants in total (59 monozygotic and 46 dizygotic twin
pairs). Ninety-three percent were women. Mean age for the cohort was 62.4 years (standard deviation, 11.4
years). In general, response amplitudes correlated negatively, and implicit times positively, with age. Correlations
were statistically significant (P < 0.05) and moderate or strong (coefficient, >0.35) for the following parameters:
scotopic standard and bright-flash a-wave implicit times, photopic 30-Hz flicker and single-flash b-wave implicit
times, and PhNR and i-wave implicit times. Intrapair correlations were higher for monozygotic than dizygotic
twins, suggesting important genetic influences. Age-adjusted estimates of heritability were significant for all
parameters (except scotopic dim-flash b-wave implicit time), ranging from 0.34 to 0.85. Highest estimates were
for photopic single-flash a-wave and b-wave amplitudes (0.84 and 0.85, respectively).

Conclusions: This study explored heritability of retinal electrophysiologic parameters and included mea-
surements reflecting ganglion cell function. Most parameters showed significant heritability, indicating that genetic
factors are important, determining up to 85% of the variance in some cone system response parameters. Scotopic
responses tended to show lower heritability (possibly relating to greater rod system susceptibility to environmental
factors). Future studies can explore the identity of these genetic factors, improving our understanding of how they
shape retinal function. Ophthalmology 2017;-:1e11 ª 2017 by the American Academy of Ophthalmology. This is
an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Supplemental material available at www.aaojournal.org.
Impairments in function of retinal cell populations are an
important cause of global visual impairment: Diabetes and
inflammatory diseases frequently affect inner retinal
neurons; age-related macular degeneration and inherited
dystrophies affect outer retinal cells (photoreceptors, retinal
pigment epithelium, and transmission to bipolar cells); and
glaucoma, an important cause of sight loss worldwide, is a
disease of retinal ganglion cells. In addition, myopia,
whose prevalence is increasing worldwide, is now under-
stood to be driven largely by retinal mechanisms.1 Our
ª 2017 by the American Academy of Ophthalmology
This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Published by Elsevier Inc.
ability to image retinal anatomic features in vivo is
advancing rapidly, with high-resolution imaging of retinal
architecture widely available. This gives important infor-
mation on structure, but does not always correlate
completely with cellular function. Electroretinography,
which is used less widely, allows objective, quantitative,
noninvasive assessment of retinal function and can identify
dysfunction before cell loss. In addition, because the syn-
aptic pathways in the retina share features with excitatory
and inhibitory pathways elsewhere in the brain, retinal
1http://dx.doi.org/10.1016/j.ophtha.2017.03.017
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electrophysiologic recordings can yield insights
into pathogenetic mechanisms in neurologic conditions
ranging from migraine2,3 to schizophrenia4 and attention
deficitehyperactivity disorder.5

Studies in monozygotic and dizygotic twin pairs allow
quantification of relative genetic and environmental
contributions to variance in phenotypic traits. If the
correlation of a phenotypic trait (or concordance of a dis-
ease) between monozygotic twins is higher than that be-
tween dizygotic twins, then the heritability (the proportion
of the variance attributable to genetic factors) can be
calculated (this is termed a classic twin study). Previous
studies have shown that genetic factors make an important
contribution to variance in retinal structure: macular
thickness, as assessed by optical coherence tomography,
has been estimated to have 81% to 85% heritability6;
macular pigment density and patterns, as determined
by 2-wavelength autofluorescence imaging, also are
significantly heritable.7e9 However, there have been no
large studies to date that directly explore heritability
of electrophysiologic parameters of retinal function.
A previous study in 42 twin pairs assessed aspects of
visual function psychophysically, finding that processes
involved in scotopic thresholds and adaptation may be more
affected by environmental factors.10 Such psychophysical
measurements relate to conscious perception, which is the
culmination of layers of retinal and higher neuronal
processing. This study aimed to quantify relative genetic
and environmental contributions to visual function at the
level of retinal cell signaling by measuring parameters of
retinal electrophysiology in a significantly larger twin
cohort. Correlations with age also were explored.

The International Society for the Clinical Electrophysi-
ology of Vision (ISCEV) sets standards for full-field elec-
troretinography,11 allowing assessment of generalized
retinal function. These recordings permit distinction
between diseases affecting rod and cone systems and also
between disease processes affecting transduction in the
photoreceptors and abnormalities of inner retinal
processing. In the present study, more than 100 healthy
twin pairs were recruited to undergo the full ISCEV
electroretinography protocol. The parameters measured, as
recommended by ISCEV, were a-wave and b-wave
amplitudes and peak times for all flash stimuli, as well as
amplitude and peak time of the photopic 30-Hz flicker.
Figure 1 shows example traces, with these parameters
labeled, as well as the likely cell populations from which
the labeled components are thought to arise.

A later negative component of photopic (light-adapted)
flash electroretinography, occurring 65 to 75 ms after flash
delivery, was identified 17 years ago as likely to be arising
from retinal ganglion cells; it was abolished by experi-
mentally induced glaucoma in macaques.12 It was termed
the photopic negative response (PhNR), and more than
100 publications since have explored features of this
component, in particular its possible usefulness in
evaluating dysfunction of the retinal ganglion cells in
assessment of glaucoma. In view of the potential future
clinical importance of this parameter, we identified the
component in recordings from our twin participants
2

(Fig 1) and explored its heritability in addition to
the ISCEV parameters listed above. An additional
electroretinography component just preceding the PhNR,
the i-wave, which may originate from the OFF pathway
distal to retinal ganglion cells,13 also was identified and
investigated.
Methods

Participants

Participants were recruited from the TwinsUK cohort, based at
St. Thomas’ Hospital, London. This cohort comprises approxi-
mately 12 000 adult twins (83% women) from the United Kingdom
who have volunteered to participate in research studies.14 Both
members of each twin pair attended together, and recordings
were performed consecutively, first on one twin and then the
fellow twin. In the case of 1 pair, the 2 twins attended on
separate days, but recordings were performed at the same time of
day. Participants were asked about any eye conditions before
recording. Pupils were dilated pharmacologically with mydriatic
drops (1.0% tropicamide and, in most cases, 2.5%
phenylephrine). Both members of each twin pair were given the
same dilating drops (i.e., if one twin received only tropicamide,
then so did the other twin).

Stimuli

Stimuli were delivered, and responses recorded, using the Diag-
nosys Colordome with Espion software (Diagnosys, Lowell, MA).
Stimuli corresponded to the ISCEV standard for full-field electro-
retinography.11 Participants underwent a minimum of 20 minutes
of dark adaptation before the delivery of scotopic flash stimuli
(white flashes, delivering 0.01, 3.0, and 10.0 cd s/m2 photopic
light). Participants underwent a minimum of 10 minutes of
light adaptation (to the ISCEV white adapting background of
30 cd s/m2 photopic light) before the delivery of photopic stimuli,
which included the 30-Hz flicker and the photopic single flash
(both 3.0 cd s/m2 photopic light). Stimuli were presented repeatedly
and responses were averaged. After the scotopic stimuli described
previously, and before the ISCEV light adaptation period, additional
flash stimuli were presented both in the dark and on a rod-saturating
blue background to explore additional parameters of photoreceptor
function (analysis not described here). Also, during the light
adaptation period, additional photopic flicker and flash stimuli
(corresponding to ISCEV standard photopic stimuli) were deliv-
ered. The responses to the flash stimuli delivered throughout this
period were used to extract the PhNR component.

Recording

Electroretinography recordings were made from both eyes using a
conductive fiber electrode (DTL-PLUS electrode; Unimed
Electrode Supplies Limited, Farnham, Surrey, United Kingdom)
placed consistently in the lower conjunctival fornix. Because
electrode position can affect amplitude of electroretinography
responses (Tariq A, et al., Invest Ophthalmol Vis Sci. 55[13], 2014;
ARVO E-Abstract 5121), the location was checked regularly
during recordings, and if necessary, the electrode was repositioned
into the fornix. The indifferent electrode was placed at the temple
and a ground electrode was placed on the forehead. These were
skin-surface electrodes (24-mm disposable ground electrodes;
Unimed Electrode Supplies Limited), placed after cleaning of the
skin with alcohol wipes.



Figure 1. Graphs showing example electroretinography responses from a single participant to International Society for the Clinical Electrophysiology of
Vision stimuli with labeling of parameters as well as their cellular origin. A, C, E, Averaged responses to white flashes delivered in the dark after 20 minutes
of dark adaptation: (A) 0.01 cd s/m2. (C) 3.0 cd s/m2, and (E) 10.0 cd s/m2. B, D, Averaged responses to stimuli delivered after 10 minutes of adaptation to a
30-cd s/m2 white background: (B) Response to 30-Hz flicker and (D) response to 3.0-cd s/m2

flash. Additional parameters (photopic negative response
[PhNR] and i-wave) are labeled in (D). Asterisks denote components whose amplitudes were found to have high heritability as estimated in this study.
*Denotes point estimate of heritability of more than 0.75, which was the case for scotopic b-wave amplitudes in response to the brighter flashes.
**Denotes heritability point estimates of more than 0.80, which was the case for photopic flash a-wave, b-wave, and i-wave amplitudes.

Bhatti et al � Heritability of Retinal Responses
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Table 1. Mean Parameter Values and Standard Deviations for International Society for the Clinical Electrophysiology of Vision Stimuli
for the Entire Cohort and Correlations with Age

Stimulus
Response
Component Parameter

Parameter Values Correlation with Age (Spearman)

Mean (Standard Deviation) No. Coefficient P Value

Scotopic dim flash b-wave Amplitude 184.6 (43.6) 206 �0.26 0.007*
Implicit time 97.9 (11.7) 206 0.28 0.004*

Scotopic standard flash a-wave Amplitude �145.4 (32.6) 206 �0.19 0.059
Implicit time 16.8 (2.4) 206 0.62 2.7 � 10�12*

b-wave Amplitude 262.4 (57.1) 206 �0.19 0.059
Implicit time 52.1 (3.3) 206 0.36 1.6 � 10�4*

b-to-a ratio 1.83 (0.30) 206 0.12 0.228
Scotopic bright flash a-wave Amplitude �172.3 (35.6) 205 �0.16 0.104

Implicit time 13.0 (1.1) 205 0.56 7.1 � 10�10*
b-wave Amplitude 272.5 (56.5) 205 �0.16 0.103

Implicit time 50.2 (4.0) 205 0.23 0.021*
b-to-a ratio 1.60 (0.23) 205 0.07 0.500

Photopic 30-Hz flicker Peak Amplitude 69.7 (19.3) 194 �0.21 0.031*
Implicit time 26.2 (1.4) 194 0.51 3.4 � 10�8*

Photopic single flash a-wave Amplitude �22.1 (5.5) 178 �0.23 0.032*
Implicit time 14.3 (0.64) 178 0.31 0.003*

b-wave Amplitude 95.0 (25.2) 178 �0.33 0.001*
Implicit time 29.3 (1.3) 178 0.53 1.0 � 10�7*

b-to-a ratio 4.34 (0.70) 178 �0.22 0.033*

The amplitudes are in microvolts and times in milliseconds. Some responses were excluded, for example because of noise artefacts, so the total numbers of
participants differed for some parameters and are given in the number column. For correlations with age, the Spearman correlation coefficient was used,
because tests for normality (Shapiro-Wilks) showed that most parameters were not normally distributed. Also, for age correlations, the mean parameter value
from both twins in each pair was included to avoid confounding because of intrapair correlation. Hence, the numbers included are approximately half of the
entire cohort. Correlations for amplitudes relate to magnitude (regardless of positive or negative sign), and hence a negative correlation for the a-wave or
b-wave indicates a smaller amplitude in older participants.
*P < 0.05 was regarded as statistically significant.
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Response Parameters

Stimuli were presented multiple times and responses were averaged
after rejection of traces contaminated by excessive noise or blink
artefact (criteria for trace rejection were similar to those described
previously15). The following 16 ISCEV parameters were recorded
for each eye (Fig 1): a-wave amplitudes and implicit times for
scotopic standard and bright flashes and for the photopic single
flash; b-wave amplitudes and implicit times for scotopic dim,
standard, and bright flashes and for the photopic single flash; and
peak amplitude and implicit time for the photopic 30-Hz flicker
response. Also, the b-waveetoea-wave amplitude ratio was
calculated for flash stimuli. Because the photopic responses are
lower in amplitude, with a relatively poorer signal-to-noise ratio,
greater numbers of responses were averaged (up to 60).

For extraction of the PhNR, the photopic single-flash response
was used. To improve the signal-to-noise ratio, traces were
averaged from additional flashes delivered during the light
adaptation period (these were after prior adaptation to the
rod-saturating blue background, and hence the retina was already
relatively light adapted). A total of 180 responses were averaged.
The PhNR was measured in 2 different ways: first, the amplitude of
the response measured at a fixed time (65 milliseconds) after flash
delivery was recorded as in previous investigations,16 and second,
the amplitude and timing of the trough after the i-wave was
recorded (Fig 1). These amplitudes were measured relative to the
preflash baseline. The ratio of the amplitude of this trough to the
b-wave amplitude also was calculated because this ratio has been
suggested to be less variable and potentially clinically more
useful.17 In addition, the amplitude and timing of the i-wave,
where identifiable, was recorded.
4

Heritability Analysis

For investigation of heritability, response parameters for right and left
eye were averaged for each participant and adjusted linearly for the
effect of age (because mean ages differed for monozygotic and dizy-
gotic pairs). Coefficients for intrapair correlation were calculated for
monozygotic and dizygotic twins. Heritability was calculated formally
for each of the parameters described above. These calculations were
performed with maximum likelihood structural equation twin
modeling as described previously,18 using the OpenMx package
(http://openmx.psyc.virginia.edu) in the R statistical computing
environment (http://www.r-project.org). In this method, the variance
of a trait is estimated by the contributions of some combination of 3
factorsdthe additive genetic component (A), the shared
environment (C), or the nonadditive genetic component (D)dand
the unique environment (E). Univariant ACE or ADE models were
executed with standardized path coefficients and expected variance
and covariance matrices. The goodness of fit of the full and reduced
ACE and ADE models were compared with the observed data. The
most parsimonious model to explain the observed variance was
selected using the Akaike information criterion; this was identified as
the AE model for most traits. Heritability was calculated as the
proportion of total variance of the trait (V) resulting from the
additive genetic effect (A) in the best-fitting model.

Correlations with Age

Coefficients of correlation with age were calculated for each
parameter. Because measurements from members of a twin pair are
likely to be correlated, averaged parameters per twin pair were
included for this calculation (so each pair was included only once).

http://openmx.psyc.virginia.edu
http://www.r-project.org


Figure 2. Plots of International Society for the Clinical Electrophysiology of Vision response parameters found to correlate significantly with age. Dashed
lines show a simple fit by linear regression. A, Scotopic standard flash a-wave implicit time. B, Scotopic bright flash a-wave implicit time. C, Photopic 30 Hz
flicker response peak time. D, Photopic standard flash b-wave implicit time.
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Ethical Approval

Participants gave informed consent. The study had local research
ethics committee approval and was conducted in accordance with
the tenets of the Declaration of Helsinki.

Literature Search for Previous Studies

We performed a literature search in the PubMed database (https://
www.ncbi.nlm.nih.gov/pubmed/; accessed February 28, 2017) to
identify any previous electroretinography twin studies (using
search terms including electroretinogram and twins).

Results

Responses were recorded from 210 participants in total
(59 monozygotic and 46 dizygotic complete twin pairs).
One hundred ninety-six participants (93%) were women. Two
hundred four participants (97%) were of white European ancestry.
Most participants (>90%) did not report any eye condition
expected to affect the electroretinography results. Eighteen par-
ticipants were noted to have the following: age-related macular
degeneration (4 individuals), diabetes (5 individuals), previous
retinal detachment (2 individuals), unspecified retinal problems
(2 individuals), glaucoma (3 individuals), and glaucoma suspect
(2 individuals). Mean age for the cohort was 62.4 years (standard
deviation, 11.4 years); the median age was 64.3 years. The
age distribution is shown in Figure S1 (available at
www.aaojournal.org). The mean ages for monozygotic and
dizygotic twins were 60.5 years (standard deviation, 11.2 years)
and 65.0 years (standard deviation, 11.1 years), respectively,
with monozygotic pairs being significantly younger on average
by 4.5 years (P ¼ 0.0044).
Mean International Society for the Clinical
Electrophysiology of Vision Parameter Values
and Correlation with Age

Table 1 shows mean ISCEV parameter values for the entire cohort
and their correlation with age. In all cases, amplitudes showed
negative correlations with age, whereas implicit times showed
positive correlations, consistent with older participants having
smaller and more delayed responses. However, most correlations
were weak. Correlations were statistically significant for the
following parameters: scotopic dim-flash b-wave amplitude and
implicit time; scotopic standard- and bright-flash a-wave and b-wave
implicit times; photopic 30-Hz flicker amplitude and implicit time;
and photopic single-flash a-wave and b-wave amplitudes (including
b-to-a ratio) and implicit times. Of these, correlations were moder-
ately strong (coefficient,>0.5) for the following: scotopic standard-
and bright-flash a-wave implicit times and photopic 30-Hz flicker
and single-flash b-wave implicit times. Figure 2 plots these
parameters as a function of age; from a simple linear fit, the
average increase in implicit time per decade was found to be 0.97,
0.54, 0.60, and 0.57 ms for the 4 parameters, respectively.
Intrapair Correlations and Heritability Estimates
for International Society for the Clinical
Electrophysiology of Vision Parameters

Table 2 shows coefficients of intrapair correlation for monozygotic
and dizygotic twins for each parameter. Correlations were
significant for all parameters in monozygotic twins and for most
parameters in dizygotic twins. Figure 3 depicts the correlations;
in all cases, correlations were higher for monozygotic twins.
Age-adjusted heritability was calculated, and estimates with 95%
5
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Table 2. Coefficients for Intrapair Correlation for Monozygotic and Dizygotic Twins and Estimates of Heritability for International Society
for the Clinical Electrophysiology of Vision Parameters

Stimulus
Response
Component Parameter

Monozygotic Pairs Dizygotic Pairs

Heritability (95% Confidence Interval)Coefficient P Value Coefficient P Value

Scotopic dim flash b-wave Amplitude 0.66 2.2 � 10�8* 0.21 0.164 0.64 (0.48e0.76)
Implicit time 0.41 0.0014* 0.19 0.217 0.12 (<0.01e0.34)y

Scotopic standard flash a-wave Amplitude 0.69 3.1 � 10�9* 0.37 0.011* 0.69 (0.55e0.79)
Implicit time 0.71 43 � 10�10* 0.51 2.6 � 10�4* 0.61 (0.39e0.75)z

b-wave Amplitude 0.79 1.7 � 10�13* 0.41 0.005* 0.79 (0.69e0.86)
Implicit time 0.48 1.4 � 10�4* 0.12 0.435 0.48 (0.27e0.65)

b-to-a ratio 0.75 1.43 � 10�11* 0.50 4.4 � 10�4* 0.69 (0.54e0.79)
Scotopic bright flash a-wave Amplitude 0.71 8.8 � 10�10* 0.29 0.054 0.71 (0.57e0.81)

Implicit time 0.72 3.5 � 10�10* 0.48 8.1 � 10�4* 0.57 (0.36e0.72)
b-wave Amplitude 0.76 1.8 � 10�11* 0.39 0.008* 0.77 (0.66e0.85)

Implicit time 0.42 0.0011* 0.21 0154 0.51 (0.30e0.67)z

b-to-a ratio 0.83 4.2 � 10�15* 0.43 0.003* 0.81 (0.71e0.88)
Photopic 30-Hz flicker Peak Amplitude 0.78 9.2 � 10�12* 0.37 0.019* 0.64 (0.49e0.76)

Implicit time 0.70 9.0 � 10�9* 0.53 4.5 � 10�4* 0.61 (0.40e0.75)
Photopic single flash a-wave Amplitude 0.81 1.7 � 10�12* 0.52 6.5 � 10�4* 0.84 (0.75e0.90)

Implicit time 0.48 46 � 10�4* 0.22 0.174 0.34 (0.08e0.55)
b-wave Amplitude 0.87 4.4 � 10�16* 0.50 0.001* 0.85 (0.76e0.90)

Implicit time 0.77 9.9 � 10�11* 0.57 1.6 � 10�4* 0.65 (0.47e0.78)
b-to-a ratio 0.73 2.0 � 10�9* 0.37 0.019* 0.79 (0.66e0.86)

For all but 3 parameters (listed below), the AE (additive genetic factors; unique environment) model provided the best fit.
*P < 0.05 was considered statistically significant.
yFor this parameter (scotopic dim-flash b-wave implicit time), the E model gave a marginally better fit, suggesting that the variance in this timing could be
attributable entirely to unique environmental factors including measurement error.
zFor these 2 parameters, the ADE model gave a marginally better fit, with heritability largely accounted for by (D) additive and dominant genetic factors.
The estimates of heritability were 0.61 (95% confidence interval, 0.39e0.75) and 0.54 (95% confidence interval, 0.34e0.69) for the implicit times of the
scotopic standard flash a-wave and scotopic bright flash b-wave, respectively.
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confidence intervals are shown in the final column of Table 2. In
most cases, the AE model provided the most parsimonious
fit. For 2 parameters (listed in the legend), the fit was marginally
better with the ADE model. Full details relating to goodness
of fit can be found in Table S1 (available at
www.aaojournal.org). Heritability was highest for photopic
single-flash a-wave and b-wave amplitudes.

Mean Photopic Negative Response and i-Wave
Parameter Values and Correlation with Age

Table 3 shows mean parameter values for the photopic negative
response (measured in different ways as detailed in “Methods”)
and i-wave. There appeared to be little change in
amplitudes with age, but implicit times for both parameters
correlated significantly with age, with older participants showing
increased delay (Fig 4). By linear regression, the increase
in implicit time per decade was 1.02 and 0.90 milliseconds for
PhNR and i-wave, respectively. Because the PhNR is expected
to be affected by glaucoma, means were recalculated after
exclusion of participants who reported having a diagnosis of
glaucoma or possible glaucoma (glaucoma suspects). Because
there were very few such participants (only 2% of the cohort),
the mean values were found to be unchanged (to the degree of
accuracy of the figures in Table 3).

Intrapair Correlations and Heritability Estimates
for Photopic Negative Response and i-Wave

Table 4 shows coefficients of intrapair correlation for monozygotic
and dizygotic twins (demonstrated graphically in Fig 5).
Age-adjusted heritability estimates are shown in the final
6

column. In all cases, the AE model provided the most parsimo-
nious fit. Data regarding goodness of fit are included in Table S1
(available at www.aaojournal.org). All parameters showed
significant heritability, with the lower limit of the confidence
interval higher than 50% for PhNR implicit time and
PhNRetoeb-wave ratio as well as for i-wave amplitude.

Results of Literature Search

Our literature search identified a single previous twin study of
electroretinography parameters.19 This study, published in 1960
(before the establishment of international standards for stimulus
parameters), reported findings from measuring b-wave
amplitudes in 14 twin pairs and found that variability between
twin pairs was greater than that within pairs and that this was
more so for nonidentical than identical twins, although no formal
heritability estimation was attempted.

Discussion

This study aimed to quantify genetic contributions to the
variance in parameters of retinal electrophysiologic function
by recording electroretinography responses to international
standard scotopic and photopic full-field stimuli in a cohort
of more than 100 twin pairs. All response parameters were
found to have higher intrapair correlations in monozygotic
compared with dizygotic twins, indicating an importance of
genetic factors. When heritability was estimated explicitly
by twin modeling, all parameters (other than the scotopic
dim-flash b-wave implicit time) showed significant

http://www.aaojournal.org
http://www.aaojournal.org


Figure 3. Bar graphs showing coefficients of intrapair correlation for monozygotic and dizygotic twins for International Society for the Clinical
Electrophysiology of Vision parameters. (A, scotopic stimuli; B, photopic stimuli). In labels to the bars, numbers without units refer to the standard flash
intensities in photopic cd s/m2. DZ ¼ dizygotic; MZ ¼ monozygotic.

Bhatti et al � Heritability of Retinal Responses
heritability, with point estimates ranging from 34% to 84%.
In addition, parameters relating to the photopic negative
response, originating from retinal ganglion cells and of in-
terest in relation to ganglion cell diseases including glau-
coma, showed high heritability, as did parameters relating to
the i-wave, a small peak in the photopic response waveform
shortly after the b-wave.

With regard to ISCEV parameters, the highest heritability
was found for the photopic single-flash a-wave and b-wave
amplitudes, with point estimates of 0.84 and 0.85, respec-
tively. The photopic single-flash a-wave originates from
cone photoreceptors and cone-OFF bipolar cells20; the
photopic b-wave is shaped by synchronous changes in
current flows in ON and OFF bipolar cells. The finding of
greater heritability in photopic responses may suggest that
scotopic function is relatively more susceptible to
environmental influences, which may relate to greater
vulnerability of rod function in a number of disease
7



Table 3. Mean Parameter Values and Standard Deviations for Photopic Negative Response and i-Wave for the Entire Cohort and
Correlations with Age

Response
Component Parameter

Parameter Values Correlation with Age (Spearman)

Mean (Standard Deviation) No. Coefficient P Value

PhNR Amplitude at 65 ms �15.2 (4.2) 158 0.19 �0.097
Amplitude at trough �17.6 (4.8) 158 0.28 �0.013
Implicit time of trough 65.7 (7.0) 158 0.33 0.003*
PhNRetoeb-wave ratio 0.20 (0.06) 134 0.05 0.691

i-wave Amplitude 1.13 (5.54) 158 0.10 0.361
Implicit time 49.5 (2.1) 158 0.51 1.5 � 10�6*

PhNR ¼ photopic negative response.
Amplitudes are in microvolts (compared with baseline before flash) and times are in milliseconds. Correlations for amplitudes relate to magnitude
(irrespective of positive or negative sign) and hence a negative correlation indicates a smaller amplitude in older subjects.
*P < 0.05 was considered statistically significant.
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processes (e.g., the impairment of scotopic dark adaptation
that occurs in age-related maculopathy). The photopic
single-flash b-wave amplitude is altered in conditions
affecting the cone system, and intriguingly was found to be
reduced significantly in a recent study of individuals with
Figure 4. Scatterplots showing (A) photopic negative-response (PhNR)
implicit time and (B) i-wave implicit time against age (as derived from the
response to the International Society for the Clinical Electrophysiology of
Vision standard photopic flash). Dashed lines show a simple fit by linear
regression.

8

autism spectrum disorder.21 Autism spectrum disorder itself
has been shown to be significantly heritable.22

Estimates of heritability tended to be higher for response
amplitudes than for implicit times, with almost all amplitudes
having a lower limit of the 95% confidence interval for
heritability that exceeded 50%. This is intriguing because
implicit times tend to show less intersession and interlabor-
atory variability than response amplitudes,23 suggesting that
measurement error would be greater in amplitude
quantification rather than implicit time. Measurement errors
act as individual (i.e., unique) environmental factors in twin
studies, and so would reduce estimates of heritability. Thus,
the high heritability of response amplitudes compared with
implicit times lends weight to the notion that the former
may have greater genetic influence. Implicit time
heritability was relatively high for photopic flicker and flash
b-wave responses, consistent with the notion that both
parameters may derive from a common source (cone-driven
signals that originate in the inner rather than outer retina),
whereas the photopic flash a-wave implicit time heritability
was lower. The lowest implicit time heritability was for the
scotopic dim-flash b-wave implicit time. This signal, origi-
nating in rod-driven ON bipolar cells, is a somewhat slow
waveform, and the specific time of the peak can be highly
dependent on superimposed high-frequency noise. It is
possible that low-pass filtering or the fitting of a smooth curve
to the response may reduce this variability.

This study also explored changes in these parameters with
age. This is informative because it provides insight into how
retinal signaling processes may change with age and also in
defining what is considered to be normal in different age
groups, enhancing the usefulness of electroretinography in
detecting clinically significant abnormalities. Amplitudes
were correlated negatively with age and implicit times were
correlated positively with age, consistent with a reduction in
magnitude as well as a slowing of retinal electrical responses
with age. Inmany cases, the strength of the correlation seemed
to be greater for implicit times than for amplitudes, suggesting
that slowing with age may be more significant. During the
course of one’s lifetime, environmental factors may gain in
relative importance compared with genetic factors, although
the two are clearly interlinked; this may be consistent with
implicit times showing lower heritability, but stronger



Table 4. Coefficients for Intrapair Correlation for Monozygotic and Dizygotic Twins and Estimates of Heritability for Photopic Negative
Response and i-Wave

Response
Component Parameter

Monozygotic Pairs Dizygotic Pairs Heritability
(95% Confidence Interval)Coefficient P Value Coefficient P Value

PhNR Amplitude at 65 ms 0.49 9.19 � 10�4* 0.33 0.0511 0.55 (0.31e0.72)
Amplitude at trough 0.58 3.92 � 10�5* 0.47 0.0037* 0.65 (0.45e0.78)
Implicit time of trough 0.74 1.87 � 10�8* 0.40 0.0146* 0.74 (0.56e0.84)
PhNR/b-wave 0.81 1.74 � 10�9* 0.41 0.0233* 0.69 (0.52e0.80)

i-wave Amplitude 0.81 3.84 � 10�11* 0.48 0.0030* 0.83 (0.72e0.89)
Implicit time 0.74 1.86 � 10�8* 0.56 3.65 � 10�4* 0.62 (0.40e0.76)

PhNR ¼ photopic negative response.
*P < 0.05 considered statistically significant.
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correlation with age. Previous studies also have identified
different normative ranges for different age groups for ISCEV
parameters,24 and the findings of the present study are broadly
consistent with the previous trends identified. This study
gives estimates of change per decade in the more strongly
age-correlated parameters. However, it should be noted that
this is somewhat simplistic, assuming a monotonic linear
variation with age, where the true relationship may be more
complex. Cursory visual inspection of the data plotted in
Figures 2 and 4 also may suggest that a relatively flat or
shallow relationship with age exists in younger age groups,
and this becomes more steep in older decades, together with
an increasing variability in older age groups.

The present study also investigated additional parameters
of the photopic single-flash response (not currently defined
by ISCEV) that may be of increasing interest. The b-wave is
followed by a small peak, termed the i-wave, and a subse-
quent trough (whose full waveform is probably interrupted
Figure 5. Bar graphs showing coefficients of intrapair correlation for parame
monozygotic (MZ) and dizygotic (DZ) twins (as derived from the response to the
photopic flash).
by the i-wave peak), termed the PhNR. The i-wave is
thought to originate in the so-called OFF system somewhere
distal to the retinal ganglion cells, whereas the PhNR seems
to come from the retinal ganglion cells themselves.13

Different stimuli for eliciting the PhNR have been
described, in terms of characteristics of both stimulus
(duration, intensity, and spectral composition) and
background (intensity and spectral composition).16 This
study used the standard ISCEV photopic single flash
(a 3.0-cd s/m2 photopic white flash delivered on a
30-cd s/m2 photopic white background through a
pharmacologically dilated pupil). It has been suggested
that optimal stimuli for PhNR quantification are those
stimulating 1 cone type on a background with minimal
cone adaptive effects, such as a red flash on a blue
background.16 Our study provides a normative range in a
large cohort for the PhNR and i-wave as derived from the
standard photopic white flash. The mean and standard
ters relating to the photopic negative response (PhNR) and i-wave for
International Society for the Clinical Electrophysiology of Vision standard
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deviations are given in Table 3. Implicit times showed
significant positive correlation with age. Intrapair
coefficients of correlation were greater in monozygotic
than dizygotic twins, and significant heritability was
demonstrated. Point estimates of heritability of PhNR
amplitudes were slightly higher when this was normalized
to the b-wave. Previous studies have suggested that
normalizing to the b-wave may reduce the variability in
this parameter,25 and the finding of greater heritability
would support this (because this could result from reduced
measurement error). Interestingly, the i-wave amplitude,
although its precise origin is not clear, had a high
estimated heritability of 83% (Fig 5).

Some limitations of the study deserve mention. The rela-
tive homogeneity of the cohort demographics (mostly women
and those of Northern European descent) may make the
findings less generalizable to wider populations and other age
ranges. Some age ranges were overrepresented, and so the
age-related correlations should be interpreted in light of this;
it is possible that a study recruiting, from the outset, equal
numbers of participants across different age groups would
reveal stronger or more significant correlations. In addition,
although participants were asked about eye problems, all
participants did not undergo a full dilated eye examination,
and so some retinal pathologic features that may affect elec-
troretinography responses might have been undetected.

In summary, our study has shown that multiple parameters
of retinal electrophysiologic function, as recorded by elec-
troretinography in both scotopic and photopic conditions, are
significantly heritable, with up to 85% of the variance being
attributable to genetic factors in some cases. Future studies
may explore the identity of the genetic factors shaping retinal
function, which would enhance our understanding of retinal
signaling in health and its alteration in disease.
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