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Abstract 

Schizophrenia is a poorly understood mental disorder, for which treatment 

options show variable efficacy and serious side effects. The aetiology of schizophrenia 

remains unclear, but genetics are known to make a large contribution to risk. It is 

expected that a third to half of the genetic variation contributing to risk is accounted 

for by common genetic variants. So far, large-scale genome-wide association studies 

(GWAS) have implicated 108 common genome-wide significant loci in susceptibility 

to schizophrenia. While analysis of larger cohorts will likely identify more common 

variants involved in susceptibility, the functional characterisation of individual risk 

loci is necessary to identify the risk genes and the functional effects associated with 

risk variation, potentially exposing novel drug targets. The functional characterisation 

of a risk locus, on chromosome 10q24, is presented in this thesis. As the best 

supported risk variants at the locus (rs11191419 and chr10_104957618_I) are non-

coding, risk alleles were hypothesised to alter the regulation of one or more genes in 

the region. Measures of allele-specific expression were used to investigate cis-

regulatory effects associated with the risk variants on the primary positional 

candidates BORCS7, AS3MT, CNNM2, and NT5C2 in the human brain. The risk allele 

of rs11191419 was found to be associated with increased allelic expression of 

BORCS7 and AS3MT, and with decreased expression of NT5C2. The risk allele of 

chr10_104957618_I was associated with decreased expression of BORCS7, AS3MT, 

and NT5C2. A RNA-sequencing pilot study was performed to identify transcripts 

produced by these genes in brain tissues where cis-regulatory effects associated with 

risk alleles were observed. This revealed RNA expression of RefSeq transcripts of 

BORCS7, AS3MT, and NT5C2, as well as of novel transcripts of AS3MT and NT5C2. 

Using immunohistochemistry, the cytosolic 5'-nucleotidase II, produced by NT5C2, 

was found to co-localise with neurons, glial cells and neuropil in the adult dorsolateral 

prefrontal cortex (DLPFC). Knockdown of NT5C2 in neural progenitor cells was found 

to alter expression of genes involved in the regulation of the cytoskeleton, cellular 

metabolism and AMPK signalling. These results suggest neurobiological mechanisms 

through which genetic variation on chromosome 10q24 confers risk to schizophrenia.   
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1.1. Summary 

Schizophrenia is a heterogeneous psychiatric disorder characterised by 

distorted emotional and cognitive processes. The class of drugs currently used for 

treatment, termed antipsychotics, was introduced over 60 years ago and is frequently 

associated with poor prognostics due to variable efficacy and severe side effects. 

Neurobiological research of schizophrenia has provided broad clues to its aetiology. 

A brief summary of such a vast literature is presented in this chapter, which include 

findings from studies of functional and structural neuroimaging, pathophysiology, 

neurochemistry and epigenetics. In its capacity to identify molecules and genes 

directly implicated in disease, genetic investigation revolutionised schizophrenia 

research. With the advent of ‘hypothesis-free’, large-scale genome-wide association 

studies (GWAS) and sequencing projects led by large international consortia, 

however, schizophrenia research has been taken to a whole new level. In the ‘post-

GWAS Era’, nevertheless, many obstacles hinder the interpretation of association 

signals, including linkage disequilibrium (LD), and tissue, time-dependent or long-

range cis-regulatory effects. Examples of how to circumvent these problems are 

discussed, which include coupling expression data with genotypic information using 

rather sophisticated genome-wide approaches, or more cost-effective, gene-specific 

methods. At the end of the chapter, a brief introduction is given to the genome-wide 

significant association signal on chromosome 10q24, the third most significant locus 

associated with schizophrenia in the most recent GWAS, for which the functional 

characterisation is the main objective of this thesis. The focal positional candidate 

genes at this locus are BORCS7, AS3MT, CNNM2, and NT5C2, all of which have 

putative roles implicated in neural function or neurodevelopment. 
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1.2. Schizophrenia 

Schizophrenia is a heterogeneous psychiatric disorder characterised by 

distorted cognitive and emotional processes that cause a combination of ‘positive’, 

‘negative’ and cognitive symptoms (Owen et al., 2016). Psychosis, the mostly 

acknowledged feature of schizophrenia, is a condition described by the term positive 

symptoms, which include the presence of delusions; the maintenance of beliefs 

despite contradictory reality or rational arguments; and hallucinations, which refers 

to sensing events that are not physically present. The negative symptoms of 

schizophrenia, on the other hand, refer to the lack of motivation or self-drive (termed 

‘avolition’), as well as the social withdrawal observed in patients. Cognitive domains 

such as working memory, word fluency and decision-making are also frequently 

impaired (Gur and Gur, 2010; Wong and Van Tol, 2003). These symptoms occur in 

heterogeneous combinations in patients (Joyce and Roiser, 2007), and therefore it is 

not rare to refer to this disorder as ‘the schizophrenias’ (Peralta and Cuesta, 2011).  

The life-time prevalence associated with schizophrenia ranges from 0.30%-

0.66% in the world population (McGrath et al., 2008), which makes it a relatively 

common disease. Symptoms generally appear during early adulthood or late 

adolescence, causing a financial burden to the public health system, patients, families 

and society in general. The disease is associated with unemployment rates as high 

as 90% (Kooyman et al., 2007; Mangalore and Knapp, 2007; Marwaha and Johnson, 

2004), decreased life expectancy, and is estimated to cost £11.8 billion per year only 

in England (Schizophrenia Commission, 2012). While no molecular or neuroimaging 

biomarkers have been yet identified, diagnosis is determined by medical interviewing. 

Guidelines for the diagnosis as per the latest version of the Diagnostic and Statistical 

Manual of Mental Disorders DSM-V (American Psychiatric Association, 2013) specify 

that the schizophrenia patient must present (1) two or more of the following 

symptoms: delusions, hallucinations, disorganised speech, grossly disorganised or 

catatonic behaviour, negative symptoms; (2) social/occupational dysfunction in 
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terms of work, interpersonal relations or self-care; (3) continuous sign of 

disturbances for over six months; (4) symptoms that are not associated with 

schizoaffective or mood disorders, or drug abuse. 

Current treatment options involve family intervention and cognitive 

behaviour therapy in conjunction with medication (Pilling et al., 2002). The drugs 

prescribed, termed antipsychotics, however, are known to mostly affect 

dopaminergic transmission and thus mainly improve positive symptoms (the 

psychosis component), showing variable efficacy and serious side effects, while 

negative, cognitive and affective impairments generally remain unaltered (Moller and 

Czobor, 2015). Antipsychotics are classically divided in typical (first generation) and 

atypical (second generation) drugs, although a recent study found no robust evidence 

to clinically support this distinction (Leucht et al., 2009). Side effects associated with 

typical antipsychotics such as fluphenazine, haloperidol and chlorpromazine, and 

atypical antipsychotics such as ziprasidone, risperidone and clozapine, generally 

include extrapyramidal effects, weight gain and sedation (Leucht et al., 2012), with 

some of these drugs tending to cause a few specific side effects more than others. 

Approximately a third of patients do not respond to the first prescribed treatment 

(Hasan et al., 2012), and another third does not respond to treatment at all 

(Ackenheil and Weber, 2004). In this context, understanding the molecular 

underpinnings of this disorder has the potential of exposing novel drug targets and, 

possibly, result in more effective disease management (Marino et al., 2008). As it 

will be discussed later, genetic association studies provide an unparalleled starting 

point for the study of schizophrenia aetiology, which may have large impact on 

treatment in the future. Nevertheless, earlier epidemiological, pathological, 

neuroimaging and neurochemical studies have been fundamental in exploring 

schizophrenia aetiology, and some of the landmark studies will be discussed in the 

following sections.  
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1.3. Neuroanatomy and neuroimaging in schizophrenia 

Studies using computed tomography, structural magnetic resonance and 

diffusion tensor imaging have repeatedly observed brain structure abnormalities in 

patients with schizophrenia and their first degree relatives, as compared to healthy 

subjects without family history of psychiatric illness. The most consistent 

observations are the enlargement of the lateral ventricles (central arrows in Figure 1) 

(Johnstone et al., 1976; Olabi et al., 2011; Wright et al., 2000), generalised 

anisotropy of the white matter (Lee et al., 2009; Mitelman et al., 2009; Nazeri et al., 

2013; Rametti et al., 2009), white matter abnormalities in the nucleus caudate 

(Takase et al., 2004), decreased overall brain size, and reduced cortical grey matter 

volume and weight (right arrows in Figure 1), more prominently in the medial 

temporal lobe, the superior temporal gyrus, and the insula cortex (Harrison et al., 

2003; Honea et al., 2005).  

The prefrontal cortex and the hippocampus are from far the most extensively 

studied brain regions in schizophrenia research, as abnormalities in these areas can 

explain symptoms due to their association with the limbic system (Bakhshi and 

Chance, 2015). Functional magnetic resonance imaging (fMRI) studies have indeed 

reported abnormal activation of the prefrontal cortex in schizophrenia subjects during 

working memory, emotion processing, word fluency and decision-making tests (Gur 

and Gur, 2010; Wong and Van Tol, 2003), as well as a generally increased activation 

of the hippocampal CA1 region in patients (Talati et al., 2014). Such reports of 

neuroimaging findings in association with disease are frequent (Adriano et al., 2012; 

Arnsten, 2013; Nelson et al., 1998; Zhou et al., 2015), but are not of diagnostic 

value as there is considerable overlap between healthy and affected individuals.  
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Figure 1. Coronal view of a control subject and a schizophrenia patient using magnetic 

resonance imaging (MRI). The central yellow arrows demonstrate the increased lateral 

ventricles in a chronic schizophrenia patient. The right-hand side arrows point to an area of 
thin cortex, a feature also associated with schizophrenia. Images obtained from the Harvard 

University Schizophrenia Project. 

 

 

 

There is currently intensive research being undertaken in the development 

of integrative and more sophisticated approaches for analysing neuroimaging data. 

These include the categorisation of subjects based on genetic data (Dima and Breen, 

2015; Dudbridge, 2013; Oertel-Knochel et al., 2015), the coupling of different scan 

methods by means of multimodal neuroimaging (Sui et al., 2015), and the use of 

machine learning algorithms for the detection of subtle changes in morphology or 

function (Sun et al., 2009; Yang et al., 2010). While a pathognomonic signature for 

schizophrenia is yet to be found (Moncrieff and Middleton, 2015), the development 

of more accurate analysis methods and more powerful scanners collectively hold a 

significant potential for neuroimaging as an emerging tool for diagnosis and for 

investigation of disease aetiology.  

 



21 
 

 

1.4. Pathophysiology of schizophrenia 

Markers of neurodegeneration are not distinctively observed in the 

schizophrenia brain (Weinberger, 1987). The anatomic deviations associated with 

schizophrenia are consequently not likely to be a product of neurodegeneration, and 

seem more consistent with issues in connectivity and plasticity (Cao et al., 2016). 

The observed macroscopic abnormalities in neuroimaging and pathological studies 

have been linked with cytoarchitectural changes, which include reduced number of 

dendritic spines (Figure 2), neurites, cell soma size and neuropil (Glantz and Lewis, 

2000; Lewis and Gonzalez-Burgos, 2008; Selemon and Goldman-Rakic, 1999; Walker 

et al., 2002), which collectively increase cortical density (Selemon et al., 1995). 

These data suggest abnormal neuronal connectivity in schizophrenia, supported by 

recent studies with human induced pluripotent stem cells (hiPSC), in which hiPSC-

derived neurons from schizophrenia patients were found to develop fewer synapses 

and neurites, as well as to display decreased levels of postsynaptic density protein 

95 (PSD95) and glutamatergic receptors (Brennand et al., 2011) when compared to 

neurons derived from healthy controls. Abnormal inhibition of the frontal cortex by 

GABAergic interneurons has also been hypothesised to play a role in schizophrenia 

(Nakazawa et al., 2012). 

 

 

Figure 2. Neurites from the 
prefrontal cortex of a healthy 

control and a patient. Stained with 

Golgi's method and analysed under 
bright field microscopy. Adapted 

from Glantz and Lewis (2000). A 

decreased number of dendritic 

spines has been detected in 
schizophrenia, hypothesised to 

account for the cortical thinning 

observed in patients, more recently 

replicated elsewhere (Konopaske 

et al., 2014). 
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The glutamatergic system, too, has been implicated in this disease, with 

transgenic rodents selectively lacking N-methyl-d-aspartic acid-type (NMDA) 

receptors in cortical and hippocampal interneurons displaying a vast range of 

molecular and cognitive characteristics that resemble schizophrenia (Belforte et al., 

2010). Additionally, oxidative stress has been found to be a plausible explanation for 

the establishment of schizophrenia symptoms, and preliminary clinical trials with N-

acetyl cysteine found that this antioxidant agent was associated with a significant 

improvement of cognitive symptoms in patients (Berk et al., 2008; Bitanihirwe and 

Woo, 2011). Another non-mutually exclusive hypothesis regards the role of 

neuroinflammation in schizophrenia, as post-mortem studies found elevated markers 

of neuroinflammation in the frontal and temporal cortices of patients (Fillman et al., 

2013; Radewicz et al., 2000). Considering that maternal infection is an apparent risk 

factor for schizophrenia (Khandaker et al., 2013), it is hypothesised that early-life 

exposure to certain pathogens has a long lasting local activation in the microglia 

caused by circulating pro-inflammatory cytokines, which have been additionally 

observed to alter early neural architecture (Monji et al., 2013). These inflammatory 

molecules are linked to GABAergic hypofunction in certain brain areas, which can 

subsequently affect glutamatergic and dopaminergic signalling. Parallel studies 

provided evidence to support the role of inflammation and synaptic connectivity in 

the pathophysiology of schizophrenia, such as the global gene expression profiling of 

post-mortem brains in case-control design studies, which implicate components of 

the immune system and of formation and myelination of synapses in schizophrenia 

(Hakak et al., 2001; Mirnics et al., 2000; Mirnics et al., 2006; Roussos et al., 2012). 

An enrichment for genes involved in the immune system and synaptic function has 

also been reported at loci implicated by genome-wide association studies of 

schizophrenia (Lips et al., 2012). Collectively, these data are consistent with 

abnormal connectivity, signalling and plasticity, as well as a possible immune 

component in schizophrenia (Bakhshi and Chance, 2015; Harrison and Weinberger, 

2005), corroborating the hypothesis that schizophrenia is a heterogeneous condition. 
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1.5. Neurochemistry of schizophrenia 

Dopamine is likely the most extensively studied neurotransmitter in 

schizophrenia, mostly due to early neurochemical findings (Reynolds, 2005). In the 

1950s, administration of derivatives of typical antipsychotics (phenothiazines) as 

tranquilisers led to the serendipitous development of the first antipsychotic, 

chlorpromazine, in that decade (Ramachandraiah et al., 2009). These drugs were 

found to act as dopamine receptor antagonists, with their capacity to ameliorate 

psychotic symptoms directly correlating with their binding to dopamine receptors 

(Seeman and Lee, 1975). It was also found that amphetamine, a strong stimulator 

of the dopaminergic system (an agonist of the trace amine-associated receptor 1, 

TAAR1), mimics positive symptoms in healthy individuals, and exacerbates these 

symptoms in patients (Carlsson 1978). Together, these observations led to the 

‘dopamine hypothesis of schizophrenia’ (Carlsson, 1978; van Rossum, 1966), which 

postulated that schizophrenia (or at least the positive symptoms of the disorder) 

arises from overactive dopamine function. These findings have been more recently 

supported by functional imaging studies, which have found hyperactive subcortical 

dopaminergic pathways in patients (Laruelle, 2000).  

The dopamine hypothesis alone, however, cannot explain all features of 

schizophrenia, such as the negative and cognitive symptoms. Pharmacological 

evidence for the implication of other neurotransmitters in this psychiatric disease 

soon came to place. The administration of NMDA receptor antagonists such as 

phencyclidine (PCP) and ketamine were found to temporarily trigger positive and 

negative symptoms in healthy individuals by altering glutamatergic transmission 

(Krystal et al., 1994; Lahti et al., 2001; Luisada, 1978). In a small clinical trial, 

sarcosine has been found to significantly improve negative symptoms in patients 

(Hashimoto, 2010). Sarcosine is known to inhibit glycine uptake, causing increased 

glycine bioavailability in the synaptic cleft, therefore allowing this amino acid to act 

as co-agonist to glutamate, modulating NMDA receptor activity. Gamma-

aminobutyric acid (GABA) was additionally implicated in schizophrenia pathology, 
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since it is intimately associated with glutamate transmission, although it is generally 

associated with inhibitory action to glutamatergic excitatory neurons. Decreased 

concentration of cortical GABA in patients has been observed (Perry et al., 1979), as 

well as decreased cortical glutamic acid carboxylase, a rate-limiting enzyme in the 

synthesis of this neurotransmitter (Bird, 1985; Curley et al., 2011). As mentioned in 

the previous section, decreased markers of GABAergic interneurons in the cortex and 

in the hippocampus have additionally been found in patients, supporting a role for 

altered GABA signalling in schizophrenia (Nakazawa et al., 2012; Reynolds, 2005). 

The role of serotonin in schizophrenia is based on evidence of abnormal levels of this 

neurotransmitter in blood and cerebrospinal fluid of patients (Bleich et al., 1988). 

Early post-mortem studies confirming increased dopamine receptors in the caudate 

nucleus of patients also showed reduced levels of serotonin receptors in the prefrontal 

cortex (Mita et al., 1986). Pharmacological studies with lysergic acid diethylamide 

(LSD), which binds to several G-coupled receptors including serotonin receptors, 

suggested a role for serotonin in schizophrenia, since this drug is known to cause 

hallucinations in healthy subjects (Nichols, 2004). These findings support the 

involvement of several neurotransmitter systems in schizophrenia neurobiology. 

1.6. Epigenetics of schizophrenia 

Epigenetic processes are essential for neural development and function. The 

epigenome describes the chemical modifications encoded ‘on top’ of the genetic 

material (hence the Greek prefix ‘epi’), which may be inherited or modified by 

environmental factors (Shorter and Miller, 2015). These chemical modifications alter 

the chromatin structure and therefore may modify access of transcription factors and 

polymerases to the DNA coiled in the nucleosome (the structural unit of the 

chromosome in eukaryotes). Chemical modifications may occur directly at the DNA 

level, for example with the addition of methyl or hydroxymethyl groups to cytosine 

bases (Kriaucionis and Heintz, 2009) or, alternatively, at the DNA-coiling proteins 

histones in the nucleosome, which can undergo the addition of methyl, acetyl, 

ubiquityl groups, etc. (Figure 3) (Tan et al., 2011).  
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DNA methylation is the most extensively studied epigenetic process, and is 

typically associated with transcriptional repression. DNA methylation differences in 

schizophrenia have been reported for a number of candidate genes, including BDNF 

(brain-derived neurotrophic factor), which encodes for a protein that supports the 

growth and differentiation of neurons (Wong et al., 2010); GAD1 (glutamic acid 

decarboxylase 67), which encodes the enzyme responsible for GABA synthesis 

(Huang and Akbarian, 2007); and RELN (reelin), which encodes a protein involved in 

cell-cell interaction and neuronal migration during brain development (Grayson et al., 

2005). In the first genome-wide study of DNA methylation in the major psychoses 

(schizophrenia and bipolar disorder), Mill and colleagues reported widespread 

changes in DNA methylation in the frontal cortex between patients and controls, 

including loci involved in glutamatergic, GABAergic function and brain development 

(Mill et al., 2008). Genome-wide studies have identified numerous genetic variants 

that are associated with DNA methylation (methylation quantitative trait loci; mQTL) 

in both the adult and developing human brain (Gibbs et al., 2010; Hannon et al., 

2016). Moreover, Hannon and colleagues found that risk variants identified in a large-

scale GWAS of schizophrenia (Schizophrenia Working Group of the PGC, 2014) were 

enriched for foetal brain mQTL, supporting a neurodevelopmental component to the 

disorder (Hannon et al., 2016). A role for acetylation of histones has also been 

implicated in schizophrenia, as expression of histone deacetylase 1 was found 

increased in the cortex of patients (Sharma et al., 2008). In addition, the Network 

and Pathway Analysis Subgroup of the Psychiatric Genomics Consortium (2015) 

found an enrichment for genes encoding histone methylases in genome-wide 

association signals from schizophrenia, depression and bipolar disorder cohorts 

combined.  
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Figure 3. Representation of two extremes of chromatin status in the nucleus, as dictated by 

epigenetic modifications. (a, open; b, closed) The DNA molecule (black line) is wrapped around 

histone octamers (purple). Methylation of cytosine residues (yellow dots) contribute to the 
chromatin state, and so do other chemical modifications on the histones, such as methylation 

(Me, yellow), phosphorylation (P, green) or acetylation (Ac). Histone deacetylases (HDACs, 

yellow) and histone acetyltransferases (HATs, green) are enzymes that modify epigenetic 

marks in histones. Proteins such as methyl-CpG-binding protein (MECP2, blue) can target DNA 

for deacetylation. Figure extracted from the review of Johnstone (2002). 

 

 

 

1.7. Environmental risk factors for schizophrenia 

Several pre- and postnatal chemical, biological and psychosocial stressors 

are known to increase risk for schizophrenia. Maternal infection (Blomström et al., 

2016), malnutrition (Kirkbride et al., 2012), stress (Khashan et al., 2008) and 

complications at birth leading to hypoxia (Hultman et al., 1999) increase the 

likelihood of the offspring to develop schizophrenia. Infection with pathogens such as 

Toxoplasma gondii (Torrey et al., 2012), or exposure to Cannabis (Radhakrishnan et 

al., 2014), migration (Cooper, 2005) and urbanicity later in life (Krabbendam and 

van Os, 2005), as well as childhood adversity (Varese et al., 2012), have also been 

reported as risk factors for the disorder. The fact that a genetically identical sibling 

of a schizophrenia patient has approximately 50% risk of developing this disorder 

emphasises a role for non-genetic factors in risk (Gottesman, 1991). 
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Although the biological processes driving these associations with 

schizophrenia remain unclear, some mechanisms have been proposed. For example, 

brain sections from rodents infected with T. gondii showed intense staining for 

dopamine, and this was associated with the expression of the parasite’s own tyrosine 

hydroxylase (enzyme that catalyses the tyrosine conversion to dopamine) in the host 

tissue, providing a rationale for the behavioural changes induced by the pathogen 

(Prandovszky et al., 2011). It is plausible that the host’s immune response is also 

involved in this process, as infection of rodents with T. gondii caused the release of 

interleukins (ILs) 12 and 18, interferon-gamma (IF-gamma) and tumour necrosis 

factor-alpha (TNF-alpha) (Silva et al., 2002). Some pro-inflammatory interleukins 

were also found to be increased in the serum of schizophrenia individuals, as 

compared to control subjects (Cazzullo et al., 1998; Maes et al., 1995). These 

studies, collectively, provide evidence for the role of the immune system and 

neuroinflammation in schizophrenia. Pathway analysis of the genetic loci implicated 

by GWAS in depression, schizophrenia and bipolar also revealed an enrichment for 

immune processes such as TGF (transforming growth factor) signalling and activation 

of B and T cells in these disorders, even after excluding MHC (major histocompatibility 

complex) signals from the study (Network and Pathway Analysis Subgroup of the 

Psychiatric Genomics Consortium, 2015). 

Finally, the environment can exert its detrimental effects in brain 

development and function by means of epigenetics, as methylation of DNA is known 

to play a role in neural plasticity and has been shown to elicit long-lasting effects in 

gene expression through generations (Levenson et al., 2006; Miller and Sweatt, 

2007). It is known, for example, that exposure of infant mice to stressed caretakers 

cause differential methylation of BDNF in the prefrontal cortex, which later on might 

cause abnormal expression of this important neurotrophic factor (Roth et al., 2009). 

These findings collectively suggest that there are many factors that contribute to risk 

for schizophrenia. 
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1.8. Genetic studies of schizophrenia 

Consistent with a large genetic component to schizophrenia, the risk of 

developing the disorder rises exponentially with the level of genetic relatedness to an 

affected individual (Gottesman, 1991). Thus, schizophrenia risk for a member of the 

general population jumps from 1% to approximately 50% for an individual whose 

genetically identical sibling suffers from schizophrenia (Figure 4). Moreover, a meta-

analysis of twin studies estimated the heritability of schizophrenia to be as high as 

81% (Sullivan et al., 2003). Although neurobiological research of schizophrenia has 

provided broad clues to its pathophysiology, the underlying molecular mechanisms 

involved in this mental disorder remain unknown. Additionally, neuropathological 

investigations have traditionally suffered from problems in distinguishing changes 

that reflect primary disease mechanisms from secondary manifestations of the 

illness, such as compensatory changes and effects of medication. Genetic studies, in 

their capacity to identify genes and molecules that play a direct role in susceptibility, 

are likely to provide valuable insight into schizophrenia aetiology (Bray, 2008; Bray 

et al., 2010; Harrison and Weinberger, 2005; Insel, 2009).  

 

 

Figure 4. Life-time risk of developing 

schizophrenia according to familial 

relationship to someone with the disorder. 

Compared with the general population risk 
of 1%, risk is approximately 50% where a 

monozygotic twin is affected. Extracted 

from Bray and Owen (2001). 
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1.8.1. Early findings 

Early molecular investigative tools to elucidate the role of genetic variants 

predisposing to schizophrenia included genetic linkage studies and positional or 

functional candidate gene association studies. Linkage studies provide a genome-

wide scan for susceptibility loci by investigating the co-segregation of chromosomal 

markers with the illness within families. This approach is able to identify chromosomal 

regions harbouring variants that make a large contribution to risk (e.g. the 

Huntington’s disease gene) (Gusella et al., 1983), but has showed limited success in 

identifying schizophrenia susceptibility loci (Sullivan, 2008). Genetic association 

studies, which usually compare allele or genotype frequencies between groups of 

affected ‘cases’ and unaffected ‘controls’, potentially allow identification of risk 

variants of weaker effect. ‘Functional candidate gene’ association studies of 

schizophrenia included analyses of variants within genes involved in 

neurotransmission and other neural functions thought to be disturbed in 

schizophrenia (e.g. DRD2, COMT, 5HT2A), but results were largely inconclusive 

(Sullivan, 2008). ‘Positional candidate gene’ association methods investigate 

association within regions implicated by linkage studies. These studies implicated 

genetic variation in several genes to schizophrenia susceptibility (e.g. DTNBP1 on 

chromosome 6p22 (Straub et al., 2002); NRG1 on chromosome 8p12 (Stefansson et 

al., 2002)), but none conclusively. More radical, ‘structural’ genetic variations have 

also long been implicated in schizophrenia risk, such as a chromosomal translocation 

between chromosomes 1q42 (affecting the gene disrupted in schizophrenia 1, DISC1) 

and 11q14, which co-segregates with schizophrenia and other mental illnesses in a 

large Scottish family (Millar et al., 2000), and large deletions on chromosome 

22q11.2, which cause velocardiofacial syndrome (Murphy et al., 1999). Nonetheless, 

these rare risk variants are rare even in cohorts of schizophrenia patients (<1%) and 

therefore they do not represent the biological causes of this disorder in their entirety 

(Bassett and Chow, 2008). 
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These early findings provided the first clues about the extremely polygenic 

and multifactorial nature of schizophrenia. It was only with the introduction of next-

generation sequencing (NGS), genome-wide association studies (GWAS) and the 

formation of large collaborative consortia that research into schizophrenia could 

identify numerous rare and common susceptibility variants, which are now known to 

collectively contribute to risk for disease (Fromer et al., 2014; Purcell et al., 2014; 

Ripke et al., 2013; Schizophrenia Working Group of the PGC, 2014). 

 

1.8.2. Common and rare variants in schizophrenia 

Genetic variation is often categorised into ‘rare’ and ‘common’ genetic 

variants, with rare alleles usually defined as those with population frequencies less 

than 1%. The association of rare and common variants to schizophrenia has been 

observed to overlap to some extent (Richards et al., 2016), suggesting that they may 

increase susceptibility through shared downstream pathways. These variants have 

also been observed to contribute to genetic susceptibility independently, which 

supports a polygenic risk model (Tansey et al., 2016). The identification of these 

classes of genetic variation in association with schizophrenia requires different 

methodological approaches. As discussed above, rare alleles are generally rare even 

within groups of affected subjects, but can be associated with large effect sizes 

(Vassos et al., 2010). The methods of choice for identifying rare variants currently 

include whole-exome/whole-genome sequencing studies and DNA microarrays. 

Although all these methods are considered genome-wide, microarrays limit the study 

to known variants, whereas sequencing is more expensive but allows the 

identification of novel variants. Rare variants can be subdivided into copy number 

variants (CNVs), defined as large genetic deletions or duplications frequently 

involving multiple genes, and rare single nucleotide variants (SNVs) associated with 

non-synonymous mutations that either impact protein structure or cause premature 

stop codons. The latter can be exemplified by the rare SNVs which cause loss of 

function in the schizophrenia susceptibility gene SETD1A (SET domain containing 1A) 
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(Singh et al., 2016), while the former includes CNVs at chromosomes 16p12.1, 

1p36.33, 1q21.1, 15q13.3 and 22q11.2, amongst others (Lichtenstein et al., 2009; 

Rees et al., 2014; Takata et al., 2013). Rare variants were found to collectively 

impact on components involved in neural plasticity, such as members of the 

postsynaptic density proteins, NMDA receptors, and the cytoskeleton, supporting 

their role in schizophrenia pathology (Hall et al., 2015).  

Common alleles, on the other hand, are associated with small effects on 

schizophrenia risk, with odds ratios typically < 1.2 (Bray and Hill, 2016). The method 

of choice for detecting common variants associated with a trait is through genome-

wide association studies (GWAS). In GWAS, the allelic frequencies from common 

polymorphisms identified through the International HapMap Consortium (2003) and 

the 1000 Genomes Project Consortium (2012) are tested for association with a trait 

using SNP (single nucleotide polymorphism) microarray chips. Next-generation 

sequencing, however, will likely replace microarray technology in these studies 

(Sharma et al., 2014). In any case, because of multiple testing and small individual 

effects contributing to complex traits, large-scale cohorts sometimes involving 

hundreds of thousands of individuals are required to provide statistical power for this 

sort of analysis. Moreover, as for most GWAS results, a large proportion of genome-

wide significant association signals, approximately 90% of the current 108 genetic 

loci implicated in schizophrenia, is non-coding and therefore hypothesised to impact 

on gene expression, producing effects that are not obvious to the protein structure 

(Schizophrenia Working Group of the PGC, 2014). Although common variants are 

individually associated with small effects in risk, they collectively account for a third 

to half of the genetic burden involved in schizophrenia (International Schizophrenia 

Consortium et al., 2009; Ripke et al., 2013).  
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In summary, schizophrenia is a highly heritable, polygenic and multifactorial 

condition. A range of common and rare variants are hypothesised to act in concert 

with pre- and postnatal biological, chemical and psychosocial stressors to dictate risk 

for this mental disorder, which can be represented in a threshold model (Figure 5). 

It is likely that many aspects of previous hypotheses of schizophrenia, including the 

dopaminergic, the glutamatergic, the GABAergic, and the neurodevelopmental 

hypotheses, play a significant role in schizophrenia aetiology, either in subgroups of 

patients or in particular time points during development. But only molecular studies 

will be able to confidently identify the abnormal processes ultimately driving 

symptoms. Finally, there is a considerable genetic overlap between schizophrenia 

and other psychiatric diseases, particularly bipolar disorder and major depression 

(Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013; Georgieva et 

al., 2014; International Schizophrenia Consortium et al., 2009; Lee et al., 2013). 

Thousands of genes and non-coding loci are estimated to contribute to risk 

(International Schizophrenia Consortium et al., 2009; Kiezun et al., 2012; Ripke et 

al., 2013), but molecular mechanisms underpinning such associations remain unclear 

for all these disorders. 

 

 

Figure 5. Representation of the threshold model of schizophrenia. Genetic susceptibility is 

dictated by rare and common variants, which interact with pre- and postnatal biological, 

chemical and psychosocial stressors in a multivariate threshold model of risk. It is plausible 

that genetic variation is also associated with individual response to different stressors, 

therefore contributing indirectly towards risk for disease. 
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1.8.3. Genome-wide association studies (GWAS) of schizophrenia 

and follow-up studies 

Genome-wide association studies are known as ‘hypothesis-free’ analyses 

because they test for association between a trait and common variants across the 

genome, rather than focusing on specific candidate genes. GWAS can investigate 

thousands of subjects in case-control design studies (such as for most diseases), or 

quantitative trait design studies (such as for characteristics like height or body mass 

index). Currently, SNP chips are used to investigate the status of approximately one 

million common genetic variants, for which genotype is further imputed to 

approximately 10 million common variants that contribute to individual differences. 

Comparing frequencies from so many variants necessitates multiple testing 

correction, for instance Bonferroni, which reflects the P-value of 0.05 corrected for a 

million independent tests (i.e. P < 5x10-8). Common variants are usually of small 

effect sizes, and therefore reaching this threshold of ‘genome-wide significance’ 

requires the analysis of large cohorts (McCarthy et al., 2008).  

The largest and most recent GWAS of schizophrenia, performed by the 

Psychiatric Genomics Consortium (PGC), analysed 150,064 individuals and implicated 

128 common variants distributed in 108 genomic loci in susceptibility to 

schizophrenia1 (Figure 6) (Schizophrenia Working Group of the PGC, 2014). Although 

the Network and Pathway Analysis Subgroup of the Psychiatric Genomics Consortium 

(2015) found an enrichment for biological processes involved in neuronal signalling, 

immune system and histone methylation in GWAS signals of schizophrenia, major 

depression and bipolar disorder combined, the contribution of individual signals to 

risk remain poorly characterised. It is likely that understanding their biological 

meaning will provide new opportunities for treatment.  

                                                           
1 This study was performed by the Psychiatric Genomics Consortium (PGC), for which the 

Schizophrenia Workgroup itself includes over 400 investigators from 40 countries. 

Source: www.med.unc.edu/pgc/pgc-workgroups. Accessed on 20th Sep 2016. 
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Figure 6. Regional association plot of the latest schizophrenia GWAS results, as presented by 

a Manhattan plot. The X-axis indicates genomic coordinates ranging from chromosome 1 to X. 

The Y-axis indicates the confidence of association by means of -log10P. The highest peak of 

association corresponds to the MHC locus on chromosome 6, followed by a hit on chromosome 
1 close to DPYD and MIR137, followed by an association signal on chromosome 10q24, main 

subject of this thesis. Figure extracted from the article “Biological insights from 108 

schizophrenia-associated genetic loci” (Schizophrenia Working Group of the PGC, 2014). 

 

One of the obstacles in interpreting individual GWAS signals is due to a 

phenomenon called linkage disequilibrium (LD), in which genotype at neighbouring 

variants correlate with each other within a population. This causes a significant 

proportion of the association signals to span large genomic regions (Bray and Hill, 

2016), with a notable example of this being the schizophrenia association signal on 

chromosome 6, at the MHC locus (Figure 6) (Schizophrenia Working Group of the 

PGC, 2014). This region has a complex genetic structure, containing 18 highly 

polymorphic human leukocyte antigen (HLA) genes, with linkage disequilibrium 

spanning over ~8 million bases over hundreds of immune and non-immune genes. 

In order to determine the true functional variants driving association with 

schizophrenia at this locus, Sekar et al. (2016) combined RNA-sequencing (RNAseq-) 

data with a range of sophisticated molecular tools and bioinformatic analyses to 

identify the underlying risk mechanisms. Association of complement 4 (C4) 

expression with genetic structure information was performed using digital PCR and 
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RNA-seq data from adult post-mortem brains. Expression of C4 was observed 

elevated in schizophrenia as compared to controls in several brain regions, and its 

knockdown in mice was found to cause deficits in synaptic pruning, a process 

hypothesised to be aberrant in schizophrenia (Feinberg, 1982). Sophisticated 

computational analyses of RNA-seq data revealed that the schizophrenia hit on the 

MHC locus is tagging at least three independent association signals at the locus, for 

which only one is responsible for driving expression of C4.  

Furthermore, approximately 90% of genome-wide association signals for 

schizophrenia are non-coding (Schizophrenia Working Group of the PGC, 2014), and 

therefore it is not obvious which genes are affected and how they are functionally 

altered (Barr and Misener, 2016). Cis-regulatory effects, in which functional risk 

variants alter the expression or splicing of transcripts encoded by the same 

chromosome strand on which they reside, have been studied using a variety of 

methods. These can be broadly divided into those which measure a gene’s overall 

expression and correlate this with genotype, and those which measure and compare 

gene expression arising from each parental chromosome (allelic expression). The 

former approach typically combines microarray or RNA-Seq measures of gene 

expression with genome-wide genotyping (GTEx Consortium, 2015; Myers et al., 

2008) to identify expression quantitative trait loci (eQTL), arbitrarily denoting those 

that are close to the gene (e.g. within 1Mb) as ‘cis-acting’ and more distant eQTL as 

‘trans-acting’. In the latter approach, allele-specific expression measures can be 

assessed on individual genes using qPCR (Chen et al., 2008; Udler et al., 2007) or 

single nucleotide extension (SNaPshot) (Bray et al., 2003a; Bray et al., 2003b) 

methods, or can be performed genome-wide utilising SNP arrays (Lo et al., 2003; 

Serre et al., 2008) or RNA-Seq (GTEx Consortium, 2015; Heap et al., 2010), 

specifically detecting cis-regulatory variation.  

The detection of cis-regulatory effects using SNaPshot primer extension, as 

will be further discussed in the next chapter, is achieved by coupling measures of 

allele-specific expression using single-nucleotide extension with genotypic 
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information at risk variants of interest. This method uses an expressed ‘reporter’ SNP 

in genes of interest, for testing allelic expression in individuals that are heterozygous 

for that variant, allowing the discrimination between the RNA molecules transcribed 

from each chromosomal copy. It has been previously used to assess potential cis-

regulatory effects of risk genotypes on a number of candidate genes for schizophrenia 

(Bray et al., 2003a). One of the advantages of using allele-specific measures, as 

opposed to methods based on a gene’s overall expression, is that it allows the 

accurate measurement of cis-regulatory effects while controling for trans-acting 

influences and environmental variables on gene expression, as these confounders will 

usually act upon both alleles to the same extent. 

Cis-regulatory mechanisms can be also specific to particular tissues or cell 

types, at precise time points. This occurs because functional risk variants enhancing 

or repressing transcription are most likely binding sites for transcription factors, for 

which their access is additionally subject to chromatin status (closed or open 

conformation; Figure 3), as dictated by DNA sequence and epigenetic markers. 

Nonetheless, time- and tissue-dependent cis-regulatory effects can be investigated 

by testing multiple samples that consist of different developmental time points, or 

different brain regions. As example, Hill and Bray (2012) observed reduced 

expression of ZNF804A in association with risk variants for psychosis in the second 

trimester foetal brain, but not in first trimester foetal brain or in the adult dorsolateral 

prefrontal cortex, substantia nigra or hippocampus. Alternatively, description of the 

signal can be achieved using single-cell RNA-sequencing or tissue microdissection. 

Additionally hindering the identification of causal susceptibility mechanisms, 

functional variants may impact specific transcripts of a gene, potentially novel, non-

annotated transcript variants (Bray and Hill, 2016). Genes typically encode for 

multiple transcripts, which may collectively exhibit different decay properties or 

target specific subcellular domains, or potentially produce different protein isoforms 

(Jung et al., 2012). In the case of ZNF804A, for example, Tao et al. (2014) found 

that the putative psychosis-related risk transcript of ZNF804A, ZNF804AE3E4, encodes 
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a novel protein of unknown function, which lacks the zinc-finger domain. In order to 

detect this novel transcript, Tao and collaborators used RNA-seq to guide the design 

of specific primers for rapid amplification of cDNA ends (RACE). Finally, the authors 

found in post-mortem tissue that this susceptibility transcript was less expressed in 

schizophrenia patients when compared to controls. 

Once a gene is implicated in risk, its product or expression levels can be 

investigated in different developmental points, brain areas or tissues by using publicly 

available databases, such as the Protein Atlas (www.proteinatlas.org), the Allen Brain 

Atlas (www.brain-map.org) and the Human Brain Transcriptome Atlas (hbatlas.org). 

Additionally, risk mechanisms can be simulated in vitro once their effect on the 

genetic target is identified (e.g. up- or downregulation). This can be pursued by 

specifically manipulating expression of the susceptibility genes by, for example, 

silencing them using RNA interference (RNAi), or overexpressing them by 

transfecting expression constructs into cellular models of interest. Consequently, risk 

mechanisms can be emulated in cellular models so that they may serve as drug 

screening platforms. Alternatively, transcriptomic changes associated with the risk 

mechanism may be analysed by microarrays or RNA-seq in order to identify biological 

pathways affected. The knockdown of ZNF804A full length, for example, was initially 

reproduced in neural progenitor cells (NPCs) to simulate the putative risk mechanism 

involving its decreased expression in schizophrenia during foetal development, which 

found genetic pathways involved in cell adhesion to be altered (Hill et al., 2012). In 

this context, the aim of this thesis is to functionally characterise one of the most 

robust genome-wide association signals of schizophrenia to date, located on 

chromosome 10q24. Some of these methods will be further discussed during the 

following chapters. 

 

 

 



38 
 

1.8.3.1. Chromosome 10q24  

Robustly associated with schizophrenia in previous studies (Aberg et al., 

2013; Guan et al., 2016; Ripke et al., 2013; Schizophrenia Psychiatric Genome-Wide 

Association Study, 2011), the chromosome 10q24 locus harbours the third most 

significant association signal to emerge from the largest GWAS of schizophrenia to 

date (Schizophrenia Working Group of the PGC, 2014). This locus is also genome-

wide significant for the five disorders of the Psychiatric Genomics Consortium 

combined (major depression, bipolar disorder, schizophrenia, attention deficit and 

hyperactivity disorder, and autism) (Cross-Disorder Group of the Psychiatric 

Genomics Consortium, 2013), suggesting that variation at this locus may contribute 

to risk to psychiatric diseases in general. As for most GWAS hits, the most 

significantly associated variants are non-coding (and therefore expected to impact 

on gene expression), and located in a region of strong LD that spans approximately 

400 kb, hindering the identification of the true susceptibility gene(s) (Figure 7). Risk 

SNPs at this locus (or variants in LD with them) have been associated with social 

cognition and morphometric brain differences implicated in schizophrenia (Ohi et al., 

2013; Ohi, 2015; Rose et al., 2014). However, the molecular mechanisms 

underpinning these events and their association with schizophrenia remain unknown. 

The focal positional candidates encompassed by strong linkage disequilibrium in the 

region include BORCS7 (BLOC-1 related complex subunit 7), AS3MT (arsenite 

methyltransferase), CNNM2 (cyclin M2) and NT5C2 (cytosolic 5'-nucleotidase II). 

None of these genes have a clear established role in neural function, but their 

hypothetical roles in the nervous system are described on Table 1.   
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Table 1. Predicted function of chromosome 10q24 genes in region of strongest LD. 

Gene 

symbol 

Name / 

synonyms 
Putative function Relevance 

Furthest  
taxon found 

(conservation) 

BORCS7  BLOC-1 related 

complex subunit 

7, C10ORF32 

Lysosomal 

function and cell 

migration (Pu et 
al., 2015)  

BLOC-1 has been 

implicated in 

neurodevelopment 
(Ghiani et al., 2010) 

Chordates 

AS3MT Arsenic 
methyltransferase 

Metabolism of 
arsenic 

compounds (Sumi 

and Himeno, 

2012) 

Arsenic poisoning 
associated with 

neurological deficits 

(Tyler and Allan, 2014) 

Chordates 

CNNM2 Cyclin and CBS 

domain divalent 

metal cation 

transport mediator 
2, cyclin 2 

Magnesium 

homeostasis in the 

kidneys (Stuiver et 

al., 2011) 

Mutations in the gene 

associated with 

seizures and abnormal 

brain development in 
hypomagnesemia 

(Arjona et al., 2014) 

Eukaryotes 

NT5C2 Cytosolic 5'-

nucleotidase II, 
cN-II 

Metabolism of 

intracellular 
purinergic 

nucleotides (Itoh, 

2013) 

Purinergic hypothesis 

of schizophrenia 
(Boison et al., 2012; 

Lara and Souza, 2000) 

Eukaryotes 

 

 

 

 

 

Figure 7. Regional association plot showing the linkage disequilibrium (LD) on chromosome 

10 in a 9 Mb-window frame. LD spans an area of approximately 400 kb, on locus q24, 

comprising of four genes: BORCS7, AS3MT, CNNM2 and NT5C2 (see Chapter 2, Figure 1, for 

a close up view on this region). Variants in linkage disequilibrium with the most significant 
variants at the locus are represented with the colour scale on the top left panel as function of 

r2. SNPs are represented as function of –logP of association with schizophrenia (Y-axis) and 

chromosomal location (X-axis). The figure was generated using Ricopili 

(www.broadinstitute.org/mpg/ricopili/). 
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In the following chapters, a series of methods in molecular biology, 

biochemistry, bioinformatics and tissue culture will be used to functionally 

characterise the genome-wide significant association signal on chromosome 10q24 

and schizophrenia. The specific aims of this thesis, therefore, are:  

- To determine cis-regulatory effects on chromosome 10q24 genes associated 

with genotype at risk variants by means of allele-specific expression 

measures (Chapter 2); 

- To perform a pilot RNA-seq project to characterise the expression of all 

transcripts from candidate chromosome 10q24 genes in brain tissues 

implicated in schizophrenia (Chapter 3); 

- To investigate expression from the protein encoded by one of the putative 

schizophrenia susceptibility genes in the adult human brain and in human 

neural progenitor cells (Chapter 4); 

- To reproduce this putative risk mechanism in neural progenitor cells, and to 

investigate its downstream effects on global gene expression by using 

microarrays, and applying gene ontology analysis and connectivity mapping 

in the resulting differentially expressed gene list (Chapter 5); 

- To present a summary of these findings, together with a discussion of potential 

implications and future perspectives for this study (Chapter 6). 
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Illustration extracted from the Walter-Eliza Hall, Institute of Medical Research website (video entitled “Sunshine and Vitamin D activation”, 00:55min).  

Representation of classical gene transcription. RNA (yellow) is transcribed using DNA (pink) as 
template. Regulatory non-coding sequences in DNA, such as promoters and enhancers, may 
contain cis-acting variants which alter DNA’s affinity to either trans-acting factors (red) or 
subunits of the RNA Polymerase complex (green and blue). The RNA Polymerase subunit 

responsible for synthesis is released and reads the information on the DNA molecule in order to 
produce RNA, while the remaining complex is disassembled. 

 

 

 

Chapter 2  

Altered cis-regulation of BORCS7, AS3MT, and NT5C2 in 

the human brain in association with schizophrenia risk 

genotypes on chromosome 10q24  
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2.1. Summary 

As sample sizes for genome-wide association studies (GWAS) increase, a 

growing number of common risk loci associated with schizophrenia have been 

identified. Most of these signals, however, cannot be immediately translated to 

susceptibility genes, and therefore the understanding of the risk mechanisms is 

hindered. This is the case for a region on chromosome 10q24, the third most 

significant finding from the largest GWAS of schizophrenia published to date, where 

extensive linkage disequilibrium (LD) and potential long range cis-regulatory effects 

prevent the interpretation of the GWAS signal. This chapter aimed to investigate the 

effect of genotype at chromosome 10q24 risk variants rs11191419 and 

chr10_104957618_I on the allelic expression of the positional candidate genes 

BORCS7, AS3MT, CNNM2, and NT5C2, all of which span the region of strong linkage 

disequilibrium at the locus. Measures of allelic expression were used to assess cis-

regulatory effects on these genes associated with heterozygosity for risk alleles, in 

the human foetal brain and in three regions of the adult brain. The results obtained 

indicate that the risk allele of rs11191419 is associated with a higher expression of 

the exonic ‘reporter’ alleles of BORCS7 and AS3MT, which reside on the same 

chromosomal strand in which the risk alleles are located, while the risk allele of 

chr10_104957618_I was found to partially counteract these effects. No significant 

effect of risk genotype was observed on the allelic expression of CNNM2. Both risk 

alleles, however, were found to be concordantly associated with decreased allelic 

expression of NT5C2, as the reporter allele carried on the same chromosome as the 

risk alleles was found reduced when compared to its allelic counterpart. These data 

suggest a complex pattern of cis-regulatory mechanisms affecting expression of 

multiple genes on chromosome 10q24, and provide functional evidence to support 

BORCS7, AS3MT, and NT5C2, as schizophrenia susceptibility genes at the locus. 

Note: The results presented in this chapter were first published in the American Journal of 

Medical Genetics B: Neuropsychiatric Genetics, in Mar 2016, entitled “Genome-wide significant 

schizophrenia risk variation on chromosome 10q24 is associated with altered cis-regulation of 

BORCS7, AS3MT, and NT5C2, in the human brain” (Duarte et al., 2016) (Appendix 1). 
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2.2. Introduction 

Amongst the first loci to emerge from large genome-wide association studies 

of schizophrenia, chromosome 10q24 is one of the most extensively replicated, and 

it harbours the third top genome-wide significant association signal in the latest study 

(Aberg et al., 2013; Guan et al., 2016; Ripke et al., 2013; Schizophrenia Psychiatric 

Genome-Wide Association Study, 2011; Schizophrenia Working Group of the PGC, 

2014). Variation at the locus is additionally genome-wide significant for the five 

disorders of the Psychiatric Genomics Consortium combined (Cross-Disorder Group 

of the Psychiatric Genomics Consortium, 2013), suggesting that it confers risk to 

psychiatric illness in general.  

The top risk variants at the locus are non-coding and located in a region of 

high linkage disequilibrium, hindering the identification of the actual susceptibility 

genes at the locus, and thus limiting its value for improving biological understanding 

of the associated disorders. Expression studies are therefore required to investigate 

the regulatory mechanism driving the genetic association signal. In this context, 

expressed single nucleotide polymorphisms (SNPs) can be used as ‘reporter’ SNPs to 

distinguish and relatively quantify RNA transcribed from each parental chromosome 

in samples of individuals that are heterozygous for the expressed polymorphism. The 

detection of the cis-regulatory effects associated with risk alleles is possible by 

correlating genotype at risk variants with measures of allelic expression in candidate 

genes (Bray et al., 2003a). As opposed to classic measures of gene expression like 

microarray and RT-qPCR, relative estimation of allele specific expression inherently 

controls for confounding effects such as RNA integrity, age of tissue and post-mortem 

delay, as these events would likely act upon both alleles to the same extent. 
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In this study, the positional candidate genes in the region of strong linkage 

disequilibrium on chromosome 10q24 (Figure 1) were screened for potential cis-

regulatory effects elicited by the risk variants. These genes include BORCS7 (BLOC-

1 related complex subunit 7), AS3MT (arsenite methyltransferase), CNNM2 (cyclin 

M2) and NT5C2 (cytosolic 5'-nucleotidase II). Measures of allelic expression were 

used in post-mortem tissue from second trimester foetal brains and three adult brain 

regions implicated in schizophrenia pathology (the dorsolateral prefrontal cortex, the 

hippocampus and the nucleus caudate) (Arnold et al., 2015; Callicott et al., 2000; 

Fillman et al., 2013; Galindo et al., 2016; Honea et al., 2005; Mita et al., 1986; 

Nelson et al., 1998; Takase et al., 2004), since regulatory mechanisms can be 

confined to specific brain areas (Buonocore et al., 2010; Gibbs et al., 2010; 

Ramasamy et al., 2014) or developmental stages (Hill and Bray, 2012; Tao et al., 

2014).  

 

 

Figure 1. Regional association plot showing high linkage disequilibrium on chromosome 
10q24. The strongest variants in association with schizophrenia are pinpointed (rs11191419 

and chr10_104957618_I) as per the latest GWAS (Schizophrenia Working Group of the PGC, 

2014). Variants in linkage disequilibrium with the most significantly associated variant are 

represented with the colour scale on the top left panel as function of r2. SNPs are represented 
by as function of –log P value of association with schizophrenia (Y-axis) by chromosomal 

location (X-axis). The figure was principally generated using Ricopili 

(https://www.broadinstitute.org/mpg/ricopili/) and taken from Duarte et al. (2016). 
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2.3. Methods 

2.3.1. Brain samples  

Post-mortem human brain samples from 116 unrelated adults were obtained 

from the London Neurodegenerative Diseases Brain Bank (UK). All subjects were free 

from psychiatric or neurological diagnosis at the time of death. Whole brain samples 

from 95 second trimester human foetuses (13-23 post-conception weeks) resulting 

from elective abortions were provided by the MRC Wellcome Trust Human 

Developmental Biology Resource (HDBR, University College London, UK). The 

mother’s consent for research, including genetic analysis, was obtained by the HDBR. 

Ethical approval was provided by The Joint South London and Maudsley and The 

Institute of Psychiatry NHS Research Ethics Committee (REF: PNM/12/13-102). 

Demographics are presented in Table 1 and the legend of Figure 8. 

 

 

  

2.3.2. Nucleic acids extraction (total RNA and genomic DNA) 

In order to genotype samples for schizophrenia risk variants and the reporter 

SNPs used in the allele-specific expression assay, genomic DNA (gDNA) was isolated 

from all samples using phenol/chloroform liquid-liquid extraction. Briefly, 

Table 1. Demographics from groups comparing cDNA allelic ratios from heterozygotes for risk 
variants versus respective gDNA ratios, as assayed per candidate gene.  

Sample 
Heterozygous for 

risk variant 
BORCS7 AS3MT CNNM2 NT5C2 

Adult  

DLPFC 

rs11191419  19M, 9F 

71.6 (18–92) 

6M, 2F  

70.9 (54–90) 

21M, 12F 

72.8 (18–96) 

20M, 11F 

74.5 (18–96) 

chr10_104957618_I 8M, 1F 
65.9 (18–88) 

8M, 1F 
67 (54–78) 

11M, 5F 
70.1 (18–96) 

10M, 4F 
71.3 (18–96) 

Adult 

Hippocamp. 

rs11191419  17M, 7F 

76.5 (54–96) 

5M, 2F 

79.9 (67–92) 

16M, 9F 

77.8 (54–96) 

13M, 10F 

78.9 (54–96) 

chr10_104957618_I 7M, 4F 
76.4 (54–96) 

3M, 2F 
78 (67–92) 

9M, 5F 
75.6 (54–96) 

7M, 6F 
77.5 (54–96) 

Adult  

Caudate 

rs11191419  12M, 10F  

77.9 (42–96) 

4M, 7F 

78.8 (55–92) 

18M, 12F 

75.6 (18–96) 

14M, 11F 

74.9 (18–96) 

chr10_104957618_I 4M, 4F  

81 (66–96) 

3M, 3F 

82 (69–92) 

7M, 5F; 

74.1 (18–96) 

7M, 5F 

74.1 (18–96) 

Foetal 
brain 

rs11191419  13M, 11F  
106.3 (91–153) 

7M, 10F 
105 (91–153) 

16M, 13F 
113 (91–161) 

10M, 10F 
107.7 (91–153) 

chr10_104957618_I 4M, 4F  
104.3 (91–133) 

5M, 3F 
107.4 (91–133) 

3M, 3F 
119.2 (93–154) 

4M, 3F 
111.4 (93–133) 

Obs.: Values represent number of males (M), females (F), average age (range). Age is in years for adult samples, and in post-

conception days for foetal samples. Adapted from Duarte et al. (2016). 
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approximately 100 mg of frozen brain tissue was homogenised after overnight 

incubation at 50ºC in 1 mL of extraction buffer (NaCl 100 mM, TrisHCl 10 mM, EDTA 

10 mM in 0.5% SDS in ultra-pure H2O, pH 8) containing 6 units of proteinase K 

(ThermoFisher Scientific, Waltham, MA, USA). The solution was centrifuged (4 min 

at 4000 rpm, room temperature) and the supernatant mixed with 1 mL 1:1 mixture 

of chloroform:isoamyl alcohol (24:1) and phenol in a new tube. The sample was 

centrifuged and the supernatant diluted in 1 mL of chloroform:isoamyl alcohol (24:1). 

After harvesting, the aqueous layer containing nucleic acids was moved to a new tube 

and mixed with cold ethanol for centrifugation and precipitation. Ethanol was 

removed and the sample was let to air dry for 15 min. The pellet was resuspended 

in nuclease-free water and absorbances were measured using a NanoDrop ND1000 

spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA).  

Total RNA was extracted by liquid-liquid extraction using Tri-Reagent 

(ThermoFisher Scientific). Approximately 100mg of frozen tissue was dissolved in Tri-

Reagent by mechanical agitation (4 M/s, 40 seconds) in a FastPrep-24™ (MP 

Biomedicals, Santa Ana, CA, USA), in tubes containing Lysing Matrix D (MP 

Biomedicals). These tubes contain chemically inert ceramic beads which macerate 

the tissue upon mechanic agitation. Resulting homogenate was further mixed with 

0.1 mL 1-bromo-3-phenolpropane per mL of Tri-Reagent used, and incubated at 

room temperature for 15 min. The aqueous phase was obtained upon centrifugation 

at 13.000 xg for 15 min at 4ºC, and mixed in a new tube with 0.5 mL isopropanol, 

molecular biology grade. This solution was centrifuged, the supernatant removed, 

and the pellet was washed three times with molecular grade 75% ethanol. Ethanol 

was removed, and the sample was let to air dry for 15 min. The pellet was 

resuspended in nuclease-free water and absorbances were measured using the 

ND1000 spectrophotometer. All reagents were purchased from Sigma (Sigma, St. 

Louis, MO, USA) unless stated otherwise. 
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2.3.3. DNAse treatment and cDNA synthesis 

RNA samples were treated with TURBO DNA-free kit™ prior to cDNA 

synthesis, according to the protocol provided by the manufacturer. Briefly, 10 µL RNA 

(approximately 4 µg) was incubated with 2 units of Turbo DNAse in 1x Turbo DNAse 

buffer at 37ºC for 30 min. Reaction inactivation was performed by incubation with 

DNase Inactivation Reagent for 5 min at room temperature, instead of heat-

inactivation, so that RNA was preserved from possible heat-induced degradation. The 

solution was centrifuged and the supernatant collected. This RNA did not yield a PCR 

product in the absence of a reverse transcription step. 

Because the allele-specific expression assay is expected to control for RNA 

concentration (Bray et al., 2003b), reverse transcription does not need to occur with 

identical amounts of RNA. Therefore, cDNA was produced with approximately 1 µg of 

DNA-free RNA using SuperScript III® Reverse Transcriptase kit, according to the 

manufacturer’s instruction. The reaction was performed in two steps that led to a 

final 20 µL volume reaction containing the equivalent cDNA, 5 µM random decamers, 

500 µM dNTPs, 5 mM DTT, 40 units RNaseOUT™ Recombinant Ribonuclease Inhibitor 

and 200 units of reverse transcriptase enzyme in 1x First-strand buffer. An initial 

mixture of RNA, random decamers and dNTPs was incubated at 65ºC for 5 min (to 

remove secondary structures in the RNA), cooled on ice, and the remaining 

components were added. The reaction was incubated in a GS4 Thermocycler (G-

Storm, Somerton, UK) for 5 min at 25ºC, 60 min at 50ºC, 30 min at 55ºC and 15 min 

at 70ºC, using a heated lid during the programme. The cDNA was diluted 1:7 and 

stored at -20ºC. Reagents were purchased from ThermoFisher Scientific. 

 

2.3.4. Polymerase Chain Reaction (PCR) and PCR clean-up 

Oligonucleotides were designed using Primer3 (Untergasser et al., 2012) and 

purchased from Integrated DNA Technologies (London, UK). Oligonucleotide 

sequences are shown on Table 2. PCR reactions were performed with HOT FIREPol® 

DNA Polymerase (Solis Biodyne, Tartu, Estonia) in 12 µL reactions containing 5-50 ng 

of cDNA or gDNA, 500 nM primers forward and reverse, 1× HOT FIREPol Buffer B1 



48 
 

containing 2.1 mM MgCl2, 200 µM dNTPs and 0.5 unit of HOT FIREPol Taq 

Polymerase. The reaction was incubated in sealed 96-well plates in a GS4 

Thermocycler (G-Storm) for 15 min at 95ºC (hot start), submitted to 35 cycles of 

95ºC for 40 sec, 60ºC for 30 sec, 72ºC for 40 sec, and a final elongation step of 

10 min at 72ºC, with a heated lid operating. Primers and nucleotides from PCR 

products were inactivated upon addition of 4 units of exonuclease I (ExoI) (New 

England Biolabs, Ipswich, MA, USA) and 1 unit of shrimp alkaline phosphatase (rSAP) 

(New England Biolabs). This reaction was incubated at 37ºC for 1 hour followed by 

an enzyme inactivation step of 85ºC for 15 min. 

 

 

2.3.5. Single nucleotide primer extension (SNaPshot®) 

Genotyping of polymorphisms and the relative allelic expression were 

performed using SNaPshot® chemistry (ThermoFisher Scientific). The principle of 

single nucleotide extension applies to both cases, differing solely on the template 

used for the reaction (cDNA or gDNA). After PCR-amplifying a region of interest on 

the template, an extension primer that anneals just adjacent to the polymorphism of 

interest is extended by a single nucleotide using SNaPshot®. This reagent contains 

fluorescently labelled 2',3'-dideoxynucleotides (ddNTPs), which once incorporated 

cannot elongate due to the lack of a 3'-hydroxyl group, but provide a fluorescence 

signal for the incorporation.  

The SNaPshot® assay consisted of 10 µL reactions that contained 10% 

SNaPshot® mix (v/v), 1 µM extension primer (final concentration) and 20% template 

Table 2. Oligonucleotide sequences used in this study (Duarte et al., 2016). 

Variant MAF*  Usage 
Forward and Reverse primers 

(5’-3’) 

Extension primer  

(5’-3’) 

rs4917985 0.37 
Tag 
BORCS7 

F: TGTTGTAGTTCAGGTCTTCATTGA 
R: TGCCTTTTCAGATCCTTCACA 

TGCCTTTTCAGATCCTTCACATC 

rs1046778 0.31 
Tag  
AS3MT 

F: CAAGAAGCAGGAAAGGCATC 
R: TTGGCAATCTTTTTGCATGA 

GATCTTTTGCATAGCACCTT  

rs2275271 0.39 
Tag 

CNNM2 

F: CGGGAACGAAAGCAAGATT 

R: GTTGCTAGGAAACGGTGCAT 
TGTGGTGATATTTTAACCTTCATCTC  

rs3740387 0.40 
Tag  
NT5C2 

F: CTCCCAACCTCTTCCCACTG 
R: GGACCTCGTTTGTTCCTGTG 

CAGGAAATTACACACTGCCATGA  

rs11191419 0.36 
Risk SNP  
genotyping 

F: TGAATCTAGACACTTGGAAGAGG 
R: GAAGTTGAGGCGGGAGGAT 

CCACGCCCGGCTAATTTTTG  

ch10_104957618_I  0.08 
Risk indel 
sequencing 

F: GAGTTAGGATCGGGTGAGGG 
R: GTCCGGTCATAGCTCACTGA 

- 

*MAF = minimum allele frequency. 
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(v/v, clean PCR-product from cDNA or gDNA), diluted in ultra-pure water. The 

reaction was submitted to thermocycling in a GS4 Thermocycler (G-Storm) for 2 min 

at 95ºC and 30 cycles of 95ºC for 10 sec, 50ºC for 5 sec and 60ºC for 10 sec, with a 

heated lid during the programme. The SNaPshot product was diluted 1:4 in Hi-Di 

Formamide (ThermoFisher Scientific) for analysis in the ABI Genetic Analyzer 3130xl 

(ThermoFisher Scientific). Capillary electrophoresis coupled to a fluorescence 

detector enables the recording of peak heights representing the abundance of each 

fluorescently labelled allele, which can then be quantified using GeneMarker 

(SoftGenetics, State College, PA, USA). Examples of output from this allele-specific 

expression assay for a C/T polymorphism are given on Figure 2. 

Samples were first genotyped for the schizophrenia risk SNP rs11191419 

and for the reporter SNPs rs4917985, rs1046778, rs2275271 and rs3740387, which 

were used to tag BORCS7, AS3MT, CNNM2 and NT5C2, respectively (Table 2). There 

was no significant deviation from Hardy-Weinberg equilibrium in the distribution of 

genotypes in any case. The expressed polymorphisms were then used to infer allelic 

expression in heterozygotes for these reporter SNPs. Four technical replicates for 

each cDNA and gDNA sample were assayed for the reporter SNPs. Samples showing 

poor reproducibility between technical replicates (standard deviation / mean > 0.25) 

were excluded from analysis. For each plate, the average allele ratio from all gDNA 

samples was used as a correction factor, since this can be assumed to reflect a perfect 

1:1 ratio and can therefore control for inequalities in allelic representation inherent 

to the assay (Bray et al., 2003b).  

 

 

 

 

Figure 2. Example of genotyping output for a C/T polymorphism using SNaPshot. The reaction 

product was analysed in the ABI Genetic Analyzer 3130xl. Graphs were generated using 

GeneMarker (Softgenetics). Reactions can be performed using gDNA (for genotyping) or cDNA 

(for allelic expression quantification). Allelic expression can be calculated for heterozygotes for 
the reporter SNPs by dividing peak heights, as obtained from a SNaPshot reaction performed 

with cDNA. Y-axis: fluorescence intensity; X-axis: electrophoresis run time, in seconds. 
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2.3.6. Sanger sequencing (BigDye Terminator v3.1) 

Samples were genotyped for the schizophrenia risk indel ch10_104957618_I 

(rs202213518) using BigDye Terminator v3.1 (ThermoFisher Scientific), as primers 

designed for SNaPshot reaction contained unacceptable GC content and did not yield 

specific products. BigDye contains a mixture of dNTPs and fluorescent ddNTPs which 

enables the selective incorporation of chain-terminating 2',3'-dideoxynucleotides by 

a DNA polymerase during amplification. By analysing the reaction product under 

capillary electrophoresis coupled to a fluorescence detector it is possible to sequence 

short fragments of DNA. Sequencing was performed in both directions, and a 

consensus sequence was obtained. Briefly, clean PCR product (15%, v/v) was 

incubated with 5% Big Dye Mix (v/v) and 500 nM primer forward or reverse in 

1x BigDye buffer in a 10 µL reaction diluted with ultra-pure water. The reaction was 

thermocycled with a heated lid in the G-Storm GS4, with an initial temperature of 

96ºC for 1 min, followed by 15 cycles of 96ºC for 8 sec, 50ºC for 8 sec, 60ºC for 

90 sec, 5 cycles of 96ºC for 8 sec, 50ºC for 8 sec, 60ºC for 105 sec, 5 cycles of 96ºC 

for 8 sec, 50ºC for 8 sec and 60ºC for 120 sec, and a final 10ºC step for 10 min.  

The sequencing product was precipitated using EDTA 7.4 mM (final 

concentration) and ethanol 70% (v/v, final concentration) by incubation at room 

temperature for 15 min, protected from light. Samples were centrifuged at 2,500 xg 

for 30 min at room temperature and wells were washed with 70% ethanol. After 

centrifugation, DNA was re-solubilised in 10 µL HiDi™ Formamide (ThermoFisher 

Scientific), which prevents formation of secondary structures during the capillary 

electrophoresis. Samples were analysed in the ABI 3130xl Genetic Analyzer 

(ThermoFisher Scientific) and the resulting electropherograms were processed on the 

ABI Sequence Scanner Software v1.0 (Figure 3) (ThermoFisher Scientific). 
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Figure 3. Sanger sequencing electropherograms for genotyping the risk indel. A homozygote 
(double deletion, top) and a heterozygote (insertion A/deletion, bottom) for ch10_104957618_I 

(rs202213518) are shown. X-axis indicates electrophoresis time, and Y-axis represents 

fluorescence intensity. No homozygote insertion/insertion (A/A) was found (MAF=0.08). 

 

 

2.3.7. Association between schizophrenia risk alleles and allele-

specific expression  

Predicted haplotype frequencies were used to infer phase between reporter 

alleles and risk alleles of schizophrenia variants rs11191419 and ch10_104957618_I. 

Haplotypes were calculated by combining genotype data for risk variants and 

individual reporter SNPs from 116 adult and 95 foetal samples using Haploview 4.2 

(Barrett et al., 2005). Haplotype counts estimated that risk alleles would nearly 

always be carried on the same chromosome as one of the reporter alleles for all genes 

due to strong linkage disequilibrium in the region. Because cis-regulatory effects act 

on the same chromosome as the regulatory variant, inferring phase (i.e. haplotype) 

allowed for the detection of the effect (up- or downregulation), as described 

elsewhere (Bray et al., 2005). This initial assessment was performed by comparing 

allelic ratios observed in gDNA (where there is no allelic imbalance) versus allelic 

imbalance in cDNA from subjects that were heterozygous for a risk variant. Allelic 

ratios were calculated in heterozygotes for the reporter SNP that were additionally 

heterozygous at the risk variants, by dividing the abundance of the reporter allele 

generally in phase with the schizophrenia risk alleles by the abundance of the reporter 
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allele generally in phase with the non-risk alleles. Comparisons were performed by 

two-tailed t-tests, and P-values < 0.05, Bonferroni-corrected for 32 tests, were 

considered significant, although nominal significance is also reported.  

In samples that are heterozygous for the reporter SNP (due to the nature of 

this methodology) and additionally heterozygous for the risk variant (and thus double 

heterozygotes) it is necessary to determine phase between the risk allele and 

reporter alleles in order to determine whether the risk allele is associated with up- or 

downregulation of the gene. For these individuals, the frequency of the two possible 

diplotypes constructed from the two alleles of the reporter SNP and the two alleles of 

the risk variant was calculated, on the basis of predicted haplotype frequencies and 

the assumption of Hardy-Weinberg equilibrium, using the equations:   

Frequency diplotype 1 = 2 X frequency haplotype A X frequency haplotype B 

Frequency diplotype 2 = 2 X frequency haplotype C X frequency haplotype D 

The probability that an individual who is heterozygous at both the reporter SNP and 

the risk variant is carrying diplotype 1 (comprising haplotypes A and B) is therefore 

calculated by dividing the predicted frequency of diplotype 1 by the combined 

frequency of both possible diplotypes. In order to test if fluctuations in the allelic 

expression imbalance could be accounted for by genotype at the risk variants, the 

cDNA allelic ratio in samples that were heterozygous for a risk variant (where cis-

regulatory effects would cause differential allelic expression) was compared to that 

of cDNA from samples that were homozygous for that risk variant (where cis-

regulatory effects would act equally on both chromosome strands) (Bray et al., 

2003a; Bray et al., 2005; Hill and Bray, 2012). Given the low number of homozygotes 

observed for risk variant rs11191419, due to high r2 between this and the reporter 

SNPs, these analyses were restricted to comparisons between homozygotes and 

heterozygotes for the risk indel. Comparisons were performed by two-tailed t-tests, 

and P-values < 0.05, Bonferroni-corrected for 16 tests, were considered significant, 

although nominal significance is also reported. All tests, performed in SPSS 22.0, 

were tested under an unequal variance model if a significant difference in variance 

was found between groups using the Levene’s test (P < 0.05).   
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2.4. Results 

Cis-effects on the expression of BORCS7, as measured by allelic expression 

abundance of the reporter SNP rs4917985 (Figure 4), were associated with genotype 

at risk SNP rs11191419. The reporter C-allele was found on the same chromosome 

as (in phase with) the T- risk allele of rs11191419 on >99% of occasions in samples 

that were heterozygous for the reporter and for the risk variant. The expression of 

the C-allele of this reporter SNP was additionally more abundant than its allelic 

counterpart in all brain regions (DLPFC: 12%, hippocampus: 8%, caudate: 11%, 

foetal brain: 5%). The observed allelic imbalance in the DLPFC was significantly 

different from the 1:1 ratio observed in gDNA (P=0.001, Bonferroni corrected), but 

only nominally significant in other brain areas (P<0.05, uncorrected).  

The risk allele of the indel ch10_104957618_I (deletion) was predicted to be 

on the same chromosome as the reporter C-allele of BORCS7 on >99% of occasions, 

but heterozygosity at this variant was not associated with a significant effect on the 

allelic expression of BORCS7 in the assayed tissues. 

 

 

 

 

Figure 4. Allelic expression of 
BORCS7 in heterozygotes for the 

schizophrenia risk variants. The C/T 

ratio (Y-axis) represents the 

abundance of the reporter allele 
generally in phase with the 

schizophrenia risk alleles by the 

abundance of the expressed allele 

generally in phase with the non-risk 
alleles. The average cDNA ratio for 

each group is represented by short 

bars. The dotted line represents the 

1:1 allele ratio observed in gDNA, 
where no allelic imbalance occurs. 

The allelic imbalance observed in 

cDNA was compared to that of gDNA 
using two-tailed t-tests (*P< 0.05, 

uncorrected; **P<0.05, Bonferroni 

corrected for 32 tests). Extracted 

from Duarte et al. (2016). 
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Cis-regulatory effects on the expression of AS3MT, as measured by allelic 

expression abundance of the reporter SNP rs1046778 (Figure 5), was found 

significantly associated with SNP rs11191419 in the foetal brain. Nominally significant 

effects of both risk variants were also found in the hippocampus and caudate. The 

reporter T-allele was found in phase with the T- risk allele of rs11191419 on >94% 

of occasions, and was more abundant than its counterpart C-allele in all brain regions 

(DLPFC: 14%, hippocampus: 36%, caudate: 23%, foetal brain: 40%). The allelic 

expression imbalance in the foetal brain was significantly different from the 1:1 ratio 

observed in gDNA (P=0.00036, Bonferroni corrected), but only nominally significant 

in the hippocampus and caudate (P<0.05, uncorrected).  

The risk allele of the indel ch10_104957618_I (deletion) was predicted to be 

on the same chromosome as the reporter T-allele on >99% of occasions.  

Heterozygosity for the risk allele was associated with moderately increased 

expression of the linked reporter allele in all tissues (DLPFC: 7%, hippocampus: 24%, 

caudate: 14%, foetal brain 14%). The allelic expression imbalance in the 

hippocampus, caudate and foetal brain differed from gDNA only with nominal 

significance (P<0.05, uncorrected).  

 

 

Figure 5. Allelic expression of AS3MT 

in heterozygotes for the 

schizophrenia risk variants. The T/C 
ratio (Y-axis) represents the 

abundance of the reporter allele 

generally in phase with the 

schizophrenia risk alleles by the 
abundance of the expressed allele 

generally in phase with the non-risk 

alleles. The average cDNA ratio for 

each group is represented by short 
bars. The dotted line represents the 

1:1 allele ratio observed in gDNA, 

where no allelic imbalance occurs. 
The allelic imbalance observed in 

cDNA was compared to that of gDNA 
using two-tailed t-tests (*P< 0.05, 

uncorrected; **P<0.05, Bonferroni 

corrected for 32 tests). Extracted 

from Duarte et al. (2016). 
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Cis-regulatory effects on the expression of CNNM2, as measured by allelic 

expression abundance of the reporter SNP rs2275271 (Figure 6), did not show a 

strong association with any of the studied risk variants. The reporter A-allele was 

found in phase with the T- risk allele of rs11191419 on >98% of occasions, but unlike 

BORCS7 and AS3MT, cDNA allele ratios in heterozygotes for rs11191419 were close 

to the 1:1 ratio. A 5% decrease in the mean expression of the reporter A-allele was 

observed in phase with the risk allele, differing only nominally in the foetal brain 

(P<0.05, uncorrected). 

The risk allele of the indel ch10_104957618_I (deletion) was predicted to be 

in phase with the reporter T-allele on >99% of occasions, and was associated with a 

small (5%) decrease in its expression in the adult DLPFC, which was nominally 

significant (P<0.05, uncorrected). Allelic expression imbalance of CNNM2 in 

association with these schizophrenia risk variants did not survive Bonferroni 

correction in any region. 

 

 

 

Figure 6. Allelic expression of 

CNNM2 in heterozygotes for the 

schizophrenia risk variants. The A/G 
ratio (Y-axis) represents the 

abundance of the reporter allele 

generally in phase with the 

schizophrenia risk alleles by the 
abundance of the expressed allele 

generally in phase with the non-risk 

alleles. The average cDNA ratio for 

each group is represented by short 
bars. The dotted line represents the 

1:1 allele ratio observed in gDNA, 

where no allelic imbalance occurs. 
The allelic imbalance observed in 

cDNA was compared to that of gDNA 
using two-tailed t-tests (*P< 0.05, 

uncorrected; **P<0.05, Bonferroni 

corrected for 32 tests). Extracted 

from Duarte et al. (2016). 
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Cis-regulatory effects on the expression of NT5C2, as measured by allelic 

expression abundance of the reporter SNP rs3740387 (Figure 7), was found to be 

significantly associated with both risk variants in three adult brain regions, and 

nominally significant in the foetal brain. The reporter C-allele was found in phase with 

the T- risk allele of rs11191419 on >98% of occasions. The reporter C-allele was less 

abundant than its counterpart in all adult brain regions (mean DLPFC: 11%, 

hippocampus: 7%, caudate: 7%), with cDNA allele ratios in DLPFC and caudate 

differing significantly from the ratio observed in genomic DNA (respectively, 

P=2.01×10−5 and P=0.032, Bonferroni corrected), but only nominally significant in 

the hippocampus (P<0.05, uncorrected). 

The risk allele of the indel ch10_104957618_I (deletion) was predicted to be 

on the same chromosome as the reporter C-allele on >99% of occasions, which was 

found to be less represented than its allelic counterpart in all tested brain regions 

(mean DLPFC: 15%, hippocampus: 12%, caudate: 13%, foetal brain: 7%). Allelic 

expression ratios for NT5C2 in the DLPFC, hippocampus and caudate differed 

significantly from the ratios observed in genomic DNA (respectively, P=0.003, 

P=8.46×10−5 and P=0.0025, Bonferroni-corrected), but only nominally in the foetal 

brain (P<0.05, uncorrected). 

 

Figure 7. Allelic expression of NT5C2 

in heterozygotes for the 
schizophrenia risk variants. The C/T 

ratio (Y-axis) represents the 

abundance of the reporter allele 

generally in phase with the 
schizophrenia risk alleles by the 

abundance of the expressed allele 

generally in phase with the non-risk 

alleles. The average cDNA ratio for 
each group is represented by short 

bars. The dotted line represents the 

1:1 allele ratio observed in gDNA, 

where no allelic imbalance occurs. 
The allelic imbalance observed in 

cDNA was compared to that of gDNA 
using two-tailed t-tests (*P< 0.05, 

uncorrected; **P<0.05, Bonferroni 
corrected for 32 tests). From Duarte 

et al. (2016). 
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 In order to investigate whether genotype at the risk variant 

ch10_104957618_I could account for the observed cis-regulatory mechanisms, allelic 

expression imbalance for each gene was compared between heterozygotes and 

homozygotes for this risk variant. This investigation was performed only for the risk 

indel ch10_104957618_I, as the small number of homozygotes for rs11191419 

precluded this group from statistical analysis. Cis-regulatory mechanisms attributed 

to genotype at ch10_104957618_I (Table 3) included effects on BORCS7 in the adult 

hippocampus (P=0.016, corrected) and foetal brain (P=0.032, corrected), AS3MT in 

the foetal brain (P=0.032, corrected), and NT5C2 in the adult DLPFC (P=0.048, 

corrected). Additionally, the risk indel was found to be associated with a small 

reduction in the expression of BORCS7 and AS3MT, which was being increased by the 

risk allele of rs11191419, consistent with the observations in Figures 4 and 5. The 

risk alleles of rs11191419 and ch10_104957618_I were also found to largely account 

for the reduced expression of the reporter C-allele of NT5C2 in the DLPFC (mean 16% 

reduction), with homozygotes for these risk variants displaying allelic expression 

ratios close to the observed in gDNA (Figure 8).  The allelic expression ratios of NT5C2 

in heterozygotes for the risk variants statistically differed from homozygotes for the 

risk variants (P=0.007) and from gDNA (P<0.001). In other words, both risk variants 

exerted opposing effects on AS3MT and BORCS7, whereas they exerted concordant 

effects on NT5C2.  
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Figure 8. Effect of risk genotype in the allelic expression of NT5C2 in the DLPFC. Allelic 
expression ratios are shown in the DLPFC of adult subjects who are homozygous for both risk 

variants rs11191419 and ch10_104957618_I (6 males, 3 females, average age of 64 years), 

and heterozygous for both variants (9 males, 4 females, average age of 70 years). Sharp 

horizontal lines indicate mean allelic ratio. The dotted line represents the mean genomic DNA 
(1:1) ratio where no cis-regulatory effects operate. Allele expression ratio from subjects who 

are homozygotes for both risk variants do not differ from allelic ratio in genomic DNA, but 

differ significantly from the allelic expression ratio observed in heterozygotes for both variants. 

**P<0.01, ***P<0.001. Extracted from Duarte et al. (2016). 

 

 

Table 3. Average allelic expression of BORCS7, AS3MT, CNNM2 and NT5C2, according to genotype at the 

schizophrenia risk indel. 

Gene (expressed SNP)# 
Genotype 

ch10_104957618_I 

Adult 

 DLPFC 

Adult 

hippocampus 

Adult  

caudate 

Foetal  

whole 

brain 

BORCS7 (rs4917985) C/T Heterozygous 0.99 0.95 0.98 0.99 

 Homozygous 1.17 1.12 1.15 1.06 

 P het versus hom 0.006 0.001* 0.004 0.002* 

AS3MT (rs1046778) T/C Heterozygous 1.07 1.24 1.14 1.14 

 Homozygous 1.25 1.52 1.31 1.42 

 P het versus hom 0.235 0.187 0.034 0.002* 

CNNM2 (rs2275271) A/G Heterozygous 0.95 0.96 1.04 0.98 

 Homozygous 0.99 0.98 1.02 0.95 

 P het versus hom 0.095 0.629 0.527 0.342 

NT5C2 (rs3740387) C/T Heterozygous 0.85 0.88 0.87 0.93 

 Homozygous 0.94 0.95 0.93 0.99 

 P het versus hom 0.003* 0.014 0.072 0.016 

# Allele ratios at each expressed SNP were calculated by dividing measures of the allele generally in phase with the 
schizophrenia risk alleles by measures of the allele generally in phase with the non-risk alleles, as indicated.  
* P-values that survive Bonferroni correction for 16 tests. Uncorrected P-values < 0.05 are indicated in bold. 

Extracted from Duarte et al. (2016). 



59 
 

2.5. Discussion 

More than 90% of the schizophrenia susceptibility variants implicated by 

GWAS are non-coding, and are therefore likely to impact on gene expression 

(Schizophrenia Working Group of the PGC, 2014). These variants, however, 

frequently correlate in genotype with neighbouring variants due to LD, causing 

association signals to span multiple genes. For instance, the latest schizophrenia 

GWAS found 108 independent genomic loci to be associated with susceptibility. From 

these, because of linkage disequilibrium, 107 signals comprise of over 350 genes 

(Schizophrenia Working Group of the PGC, 2014), and one signal, at the MHC region 

on chromosome 6, spans over hundreds of genes by itself (Sekar et al., 2016). It is 

necessary, therefore, to couple measures of gene expression to these genetic 

findings, in order to resolve the association signals and expose potential risk 

mechanisms implicated in disease susceptibility (Bray and Hill, 2016). 

Chromosome 10q24 is the third most significant risk locus from the largest 

genome-wide association study of schizophrenia to date (Schizophrenia Working 

Group of the PGC, 2014), for which association with this disorder has been 

extensively replicated (Aberg et al., 2013; Ripke et al., 2013; Schizophrenia 

Psychiatric Genome-Wide Association Study, 2011). Schizophrenia risk SNPs at the 

locus (and variants in LD with them) have been associated with an index of social 

cognition and with brain morphometric differences implicated in schizophrenia (Ohi 

et al., 2013; Ohi, 2015; Rose et al., 2014), but the mechanisms driving association 

with the disease remain unknown. In this context, this chapter provides functional 

evidence to support BORCS7, AS3MT and NT5C2, as putative risk genes for 

schizophrenia. The two most supported risk variants can be found flanking the LD 

region (Figure 1), with risk variant rs11191419 located 2kb upstream of the 

transcriptional start site of BORCS7 (plus strand), and the risk indel 

ch10_104957618_I located 4.5kb upstream of the transcriptional start site of NT5C2 

(minus strand). More specifically, the indel is located in a H3-K27ac-marked region 

according to ENCODE (Chip-seq data), denoting a regulatory binding site for multiple 
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transcription factors. Findings from this chapter, in summary, suggest that both risk 

variants have converging cis-regulatory effects on NT5C2 by reducing its expression 

in several brain regions, but elicit opposing effects on the expression of BORCS7 and 

AS3MT. The risk allele of rs11191419 was found to be associated with increased 

expression of BORCS7 and AS3MT, while the risk allele of ch10_104957618_I was 

found to reduce their expression, partially counteracting the effect of rs11191419.  

The observed pattern of cis-regulatory mechanisms operating on 

chromosome 10q24 is consistent with the analysis of eQTL (expression quantitative 

trait loci) and cis-regulatory elements (CREs) reported by Roussos et al. (2014). The 

authors found that rs7085104 (which is in strong LD with rs11191419: r2=0.79) 

influenced expression of BORCS7, AS3MT, WBP1L and NT5C2 in a combined analysis 

of several brain eQTL databases. Consistent with data generated in this chapter, they 

also showed that BORCS7 (synonym: C10ORF32) and AS3MT are part of a single CRE 

unit, whereas NT5C2 was involved with at least 14 CREs.  

Overexpression of AS3MT in blood was found to be associated with genotype 

at rs7096169 (which is also in strong LD with rs11191419: r2=0.85) (Schizophrenia 

Working Group of the PGC, 2014). Moreover, differential methylation at several CpG 

islands spanning AS3MT was found to be associated with rs11191419 in human foetal 

brain (Hannon et al., 2016), consistent with regulatory mechanisms operating on this 

gene early in life. A recent study found an increased expression of BORCS7 and 

AS3MT in association with genotype at rs7085104 (which is in strong LD with 

rs11191419: r2=0.79) in several brain regions (Li et al., 2016), supporting the 

findings presented in this chapter. Furthermore, this risk SNP was observed to tag 

two other genetic variants at the locus, which are distinctively regulating expression 

of these genes: rs11441374, which drives expression of BORCS7; and a variable 

number tandem repeat (VNTR) in exon 1 of AS3MT, which regulates expression of 

this gene and of a new truncated transcript (AS3MTd2d3), that the authors propose as 

the true schizophrenia risk transcript of AS3MT. Interestingly, the novel risk 
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transcript produces a protein lacking the methyltransferase domain, suggesting that 

the encoded protein is not involved in arsenic metabolism.  

The cis-regulatory mechanisms operating on NT5C2, however, were 

associated with both risk alleles causing decreased expression of this gene in all brain 

areas assessed. This suggests that risk to schizophrenia on chromosome 10q24 is 

likely conferred via decreased expression of NT5C2 in multiple brain tissues or 

developmental time points. Strikingly, genotype at the risk variants accounted for 

the majority of cis-regulatory effects observed for this gene in the adult DLPFC 

(Figure 8), substantiating the choice for focusing on this gene in the next chapters. 

Li et al. (2016) did not observe an effect of rs11191419 on NT5C2 expression, likely 

because their eQTL-based approach is expected to be less sensitive for detecting the 

small cis-regulatory effects observed for this gene. In this chapter, regardless, it is 

noteworthy that there is a striking consistency of the effects of the risk alleles on 

BORCS7, AS3MT, and NT5C2, across brain tissues, which is particularly remarkable 

given that these analyses were subject to tissue availability and reporter allele 

frequencies. Moreover, a recent study suggested that the schizophrenia protective 

allele of rs11191548 (which is in strong LD with risk indel ch10_104957618_I: 

r2=0.82) disrupts binding of microRNA-206 to this variant, located on the 3’ UTR 

(untranslated region) of NT5C2, leading to increased NT5C2 transcript availability 

(Hauberg et al., 2016), and therefore corroborates our findings. 

Public databases indicate that BORCS7, AS3MT and NT5C2 are differentially 

expressed throughout different maturation stages of the human brain (Birnbaum et 

al., 2015; Kang et al., 2011). The cis-regulatory mechanisms operating on these 

genes during early development supports the neurodevelopmental hypothesis of 

schizophrenia (Murray and Lewis, 1987; Weinberger, 1987). Interestingly, these 

effects persist in several brain regions later in adulthood, which suggest that these 

might be important ongoing events. The functions of the assayed genes remain to be 

elucidated in the context of schizophrenia. BORCS7 was described recently as 

encoding the BLOC-1 related complex subunit 7 (diaskedin), which is implicated in 
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lysosomal function and cell migration (Pu et al., 2015). AS3MT encodes an arsenic 

methyltransferase, enzyme involved in metabolism of arsenic compounds (Sumi and 

Himeno, 2012). NT5C2, in turn, encodes the cytosolic 5'-nucleotidase II (or cN-II), 

which is involved in the metabolism of intracellular purine nucleotides such as IMP, 

AMP and GMP (Itoh, 2013), which therefore support the purinergic hypothesis of 

schizophrenia. Curiously, this theory covers several aspects of the disorder, including 

neurochemical findings, their association with positive and negative symptoms, and 

the developmental component of schizophrenia (Lara and Souza, 2000).  

This study does not exclude possible cis-regulatory effects elicited on genes 

other than those tested due to long range cis-regulatory effects, or developmental 

stage- or brain region-specific events. More brain regions could be analysed in order 

to provide a more comprehensive assessment. More sophisticated statistical analyses 

and study designs, for example summary data-based Mendelian randomization (SMR) 

(Zhu et al., 2016) and transcriptome-wide association studies (TWAS) (Gusev et al., 

2016; Pirinen et al., 2015; Smith et al., 2013), could be adopted to increase 

confidence that risk is operating through regulatory effects on particular genes. It is 

also possible that susceptibility to schizophrenia is conferred by specific or novel 

transcript variants of the implicated genes, as the allelic expression signals captured 

in this study are product of all transcripts containing the reporter SNPs. In this 

scenario, RNA-seq is the tool of choice for detecting all transcripts expressed in a 

given tissue, which can be further explored using other molecular tools such as rapid 

amplification of cDNA ends (RACE) or RT-qPCR (as performed in Tao et al., 2014). 

This chapter comprises the first ever published study to analyse cis-

regulatory mechanisms associated with schizophrenia risk variants on chromosome 

10q24 (Duarte et al., 2016). The risk polymorphisms were associated with altered 

cis-regulation of BORCS7, AS3MT and NT5C2, therefore suggesting these as putative 

risk genes for schizophrenia. The following chapters will investigate these 

mechanisms in more detail, with particular emphasis on NT5C2.   
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The 22 autosomal chromosome pairs and the sex chromosomes Y and X.  
Approximate location of cytoband 10q24 is indicated by an arrow. 

Image adapted from Schreck and Disteche (2001). 

 

 

Chapter 3  

Chromosome 10q24 transcript characterisation in the 

human brain and neural cell lines  
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3.1. Summary 

In the previous chapter, schizophrenia risk variants on chromosome 10q24 

were found to be associated with cis-regulatory effects on BORCS7, AS3MT and 

NT5C2, in the dorsolateral prefrontal cortex (DLPFC), hippocampus, caudate and, to 

some extent, in the foetal brain. It remains unclear which transcripts of these genes 

are produced in these brain tissues, contributing towards the observed allelic 

expression imbalances. In this context, a pilot RNA sequencing (RNA-seq) study was 

designed to determine all transcripts produced by these genes in the adult DLPFC 

and the second trimester foetal brain. Manual analysis of junction reads provided 

evidence for novel splicing variants of NT5C2 and AS3MT, including the recently 

proposed schizophrenia susceptibility transcript AS3MTd2d3, in these brain samples. 

Given the underpowered nature of this pilot experiment, these non-annotated 

transcripts were not significantly detected, according to the Tuxedo pipeline. 

However, they were experimentally validated in multiple samples of the foetal brain, 

adult DLPFC and other adult brain areas using RTPCR and transcript-specific primers. 

No evidence for novel BORCS7 transcripts was observed, although expression of its 

RefSeq transcript NM_001136200 was found to be higher than the alternative 

NM_144591 in the RNA-seq data. Novel less expressed NT5C2 transcripts were found, 

which are denoted here as NT5C2d3, NT5C2e3.1 and NT5C2e3.1 d3. Expression of the 

NT5C2 transcript NM_001134373 was also found to be higher than expression of the 

alternative variant NM_012229. These data provide evidence to support the existence 

of novel transcripts of AS3MT and NT5C2, although RNA-seq data suggest that their 

full length counterparts are more highly expressed in the assayed brain regions. 

 

 

 

Note: Unpublished expression microarray data from neuronal differentiation in cortical and 

hippocampal neural progenitor cells were provided by Dr Timothy Powell, Dr Sandrine Thuret, 

Dr Gerome Breen, Dr Deepak Srivastava, Dr Nick Bray and Dr Greg Anderson.  
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3.2. Introduction 

One of the most robust signals to emerge from large scale schizophrenia 

genome-wide association studies (GWAS) is on chromosome 10q24 (Aberg et al., 

2013; Ripke et al., 2013; Schizophrenia Psychiatric Genome-Wide Association Study, 

2011; Schizophrenia Working Group of the PGC, 2014). In Chapter 2, the top risk 

variants at this locus were associated with altered cis-regulatory effects on the focal 

candidates BORCS7, AS3MT and NT5C2 (Figure 1). The methodology employed to 

assess these cis-regulatory events, however, precluded from identifying specific 

transcripts involved in the risk mechanism, as the allelic expression measurement 

was averaged for all transcripts containing the reporter SNPs. Cis-regulatory 

mechanisms may confer risk to schizophrenia via specific or non-annotated gene 

transcripts, as has been suggested for ZNF804A (ZNF804AE3E4) (Tao et al., 2014). 

Therefore, the objective of this chapter is to perform a pilot RNA-seq study to identify 

chromosome 10q24 transcripts produced in brain regions where cis-regulatory effects 

associated with schizophrenia were identified in Chapter 2.  

RNA-seq actually refers to high-throughput cDNA sequencing, and it is a 

powerful tool for transcriptome profiling. Several library preparation kits and various 

next-generation sequencing (NGS) platforms, using different chemistry sequencing 

methods, are commercially available. These include the Illumina HiSeq and MiSeq, 

Qiagen, SOLiD, Ion Torrent, Roche 454 (Goodwin et al., 2016), and also the more 

recent ‘third generation sequencing’ methods, capable of sequencing large stretches 

of DNA, such as the Oxford Nanopore Technologies, the Pacific Biosciences Single-

Molecule Real-Time and the Illumina Tru-Seq Synthetic Long-Read Technology (Lee 

et al., 2016). Furthermore, analysis of data produced by these platforms is currently 

subject of intensive research in Bioinformatics, and there is a plethora of tools 

available to suit user’s needs (Milicchio et al., 2016).  
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In this chapter, RNA-seq was performed using the Illumina HiSeq 2500 and 

the data was analysed using the Tuxedo suite (Trapnell et al., 2012). Briefly, Illumina 

paired-end reads were mapped to the reference genome using Tophat2/Bowtie2 (Kim 

et al., 2013; Langmead and Salzberg, 2012). The reads were assembled into 

transfrags (i.e. short transcribed fragments in the sequencing data) using Cufflinks 

(Trapnell et al., 2010), and these were assembled into transcripts using Cuffmerge 

(Trapnell et al., 2010). These results were used to direct the design of transcript-

specific primers for reverse transcription PCR (RT-PCR). This quick and robust method 

was used to validate RNA-seq findings and to investigate expression of relevant 

transcripts in multiple brain regions. This pilot study analysed an RNA sample from 

the post-mortem adult dorsolateral prefrontal cortex (DLPFC) and the second 

trimester foetal brain, where cis-regulatory effects on chromosome 10q24 were 

observed in association with genotype at schizophrenia risk variants.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. RefSeq transcripts on chromosome 10q24. Generated by IGV Browser (Broad Institute) 

using the genome built hg19. Chromosome 10 locus q24.32-33 is a region implicated in risk for 

schizophrenia, where linkage disequilibrium hinders the identification of the true schizophrenia 

susceptibility genes (Chapter 2, Figure 1). Although BORCS7, AS3MT and NT5C2 were implicated 
as putative schizophrenia risk genes in Chapter 2, it remains unclear which transcript(s) of these 

genes is(are) conferring risk for mental illness. 
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3.3. Methods 

3.3.1. Brain samples  

Human post-mortem dorsolateral prefrontal cortex tissue from a 54 year-old 

male subject (sample A130/09), free from psychiatric or neurological diagnosis at the 

time of death, was obtained from the MRC London Neurodegenerative Diseases Brain 

Bank at the Institute of Psychiatry, Psychology and Neuroscience, King’s College 

London (UK). Whole foetal brain sample from a 94 post-conception day female foetus 

(sample 15533) resulting from an elective abortion was obtained from the MRC 

Wellcome Trust Human Developmental Biology Resource (HDBR) at the Institute of 

Child Health, University College London (UK). The mother’s consent for research, 

including genetic analysis, was obtained by the HDBR. Validation of RNA-seq findings 

by RT-PCR was carried out on additional second trimester foetuses and adult 

dorsolateral prefrontal cortex, hippocampus and caudate (Table 1). Ethical approval 

for this study was provided by The Joint South London and Maudsley and The Institute 

of Psychiatry NHS Research Ethics Committee (reference PNM/12/13-102). 

 

Table 1. Demographics from samples used for RT-PCR. 

Tissue Mean age (range)* Males (M) / Females (F) 

DLPFC 78.3 (54-96) 1M / 3F 

Hippocampus 66 (54-89) 1M / 3F 

Caudate 64.5 (41-92) 2M / 2F 

Second trimester whole foetal brain 96 (93-104) 2M / 2F 

* The age of adults is given in years, and of foetuses in post-conception days. 

 

 

3.3.2. RNA extraction 

Total RNA was extracted as in Chapter 2. Briefly, approximately 100 mg of 

frozen tissue was dissolved in 1 mL Tri-Reagent (ThermoFisher Scientific, Waltham, 

MA, USA) with mechanical agitation at 4 M/s for 40 sec in a FastPrep-24™ (MP 

Biomedicals, Santa Ana, CA, USA) in tubes containing Lysing Matrix D (MP 

Biomedicals). The solution was mixed with 0.1 mL 1-bromo-3-phenolpropane and 

incubated at room temperature for 15 min. The sample was centrifuged at 13.000 xg 

for 15 min, at 4ºC, and the aqueous phase was transferred to new tube containing 

0.5 mL isopropanol. After centrifugation, the supernatant was removed, and the 
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pellet was washed three times with molecular grade 75% ethanol. Residual ethanol 

was removed, and the pellet was air dried for 15 min. The pellet was resuspended in 

nuclease-free water and absorbance ratios were calculated using an ND-1000 

spectrophotometer. All reagents, including the nuclease-free water, were purchased 

from Sigma, unless stated otherwise. 

 

3.3.3. DNAse treatment and RNA integrity 

Samples were treated with the TURBO DNA-free kit™, as described in 

Chapter 2. Briefly, 10 µL RNA (approximately 4 µg) was incubated with 2 units of 

Turbo DNAse in 1x Turbo DNAse buffer at 37ºC for 30 min. Reaction inactivation was 

performed by incubation with DNase Inactivation Reagent for 5 min. Samples were 

harvested and the supernatant was collected. This DNA-free RNA did not yield a PCR 

product in an agarose gel. For samples submitted to RNA-seq, RNA integrity was 

assessed using the Agilent RNA 6000 Nano Kit on an Agilent 2100 Bioanalyzer 

(Agilent, Santa Clara, CA, USA). The RNA integrity number (RIN) was >7 for both 

samples and their respective values were used to dictate the shearing step in the 

library preparation protocol.   

 

3.3.4. Library preparation and RNA sequencing 

The RNA-seq libraries were constructed using the TruSeq RNA Library Prep 

Kit v3 (Illumina, San Diego, CA, USA), according to the manufacturer’s instructions. 

This protocol generates a library of cDNA molecules with Illumina adapters ligated to 

each end, suitable for sequencing in Illumina platforms. First step of this process 

involved the depletion of ribosomal RNA (rRNA) from total RNA by using biotinylated 

target-specific oligos, and Ribo-Zero Gold rRNA Removal Beads that target 

mitochondrial and cytoplasmic rRNA. Depleted RNA was fragmented in a buffer 

containing divalent cations and incubated at high temperature for the period of time 

suggested by the manufacturer, according to sample’s RIN (degraded samples need 

less shearing time than more conserved samples). Fragmented RNA was submitted 

to first strand cDNA synthesis using reverse transcriptase, and, subsequently, second 
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strand synthesis using DNA Polymerase I and RNAse H for, respectively, cDNA 

synthesis and removal of the RNA strand. The polymerase adds an extra “A” 

nucleotide, which was later used for the ligation of paired-end adapters. The reaction 

product was purified and PCR-amplified using primers specific to the adapters. Quality 

of the RNA-seq libraries was assessed in an Agilent High Sensitivity DNA chip using 

the Agilent 2100 Bioanalyzer (Agilent), to determine obtained average fragment 

length (Figure 2). Sequencing was performed in single lanes of the HiSeq 2500 Ultra-

High-Throughput Sequencing System (Illumina), at the Exeter Sequencing Service at 

the University of Exeter. This sequencing technology relies on the high-throughput 

synthesis of DNA molecules that are complementary to templates in the library. Each 

added base releases a fluorescent signal that is detected by the sequencer. Raw 

FASTQ files were obtained and analysed as described in the next section. 

 

 

 

 

 

 

 

 

Figure 2. Capillary electrophoresis profiling of the RNA-seq libraries. Adult DLPFC (left) and 

whole foetal brain (right) samples were analysed in the Agilent High Sensitivity DNA chip using 

the Agilent 2100 Bioanalyzer. X-axis indicates the size of DNA fragments, Y-axis represents 

the fluorescence intensity (FU).  

 

 

3.3.5. Bioinformatic analyses 

3.3.5.1. Metrics and Quality Control 

Quality of the sequencing was initially assessed by FastQC (Appendix 2) 

(Andrews, 2010). Metrics for these samples were compatible with sequencing of RNA. 

High depth sequencing of libraries from DLPFC and foetal tissue generated 

167,943,560 and 153,548,265 reads, respectively. Raw reads were trimmed using 
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Trimmomatic v0.33 (Bolger et al., 2014) for removal of leading and trailing 

sequences with a phred-33 score below 15 (which means that allocated bases with 

calculated accuracy <97% were excluded), and for removal of Illumina universal 

adapters. Quality of the sequences was further scanned by a sliding window of four 

nucleotides to exclude sequences with an average phred score <15, and only reads 

with a minimum of 36 bases were kept. The number of reads mapped to the genome 

were 156,892,943 for the DLPFC sample and 148,043,166 for the human foetal brain 

sample, representing a removal of 6.6% (11,050,617 reads) and 3.6% (5,505,099 

reads) of poor sequences, respectively.  

 

3.3.5.2. Mapping reads and assembling transcripts  

Trimmed reads were aligned to the annotated reference human genome 

hg19 using TopHat v2.1.0 (Kim et al., 2013). Overall mapping of reads to the 

annotated reference genome were of 95.5% for the DLPFC sample and 94.7% for the 

foetal brain sample. TopHat was run using the average maximum inner distance 

between mate pairs as 500 bases (-r 500). Cufflinks (Trapnell et al., 2010) was used 

to assemble reads into transfrags using the genome build hg19 as reference. 

Cuffcompare (Trapnell et al., 2010) was used to mount transfrags into transcripts 

and to estimate transcript abundance by assigning FPKM values to each transcript. 

FPKM refers to “fragments per kilobase of exon per million fragments mapped” and 

is a unit of gene expression in RNA-seq analysis. Although units of FPKM are provided 

in the Results section of this chapter, it is important to refrain from comparing these 

values between samples, as this project is underpowered. Transcripts for which FPKM 

values were found within the first quartile of the RNA-seq data were considered not 

expressed. Junction reads were observed on the Integrative Genomics Viewer v2.3 

(www.broadinstitute.org/igv/). 
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3.3.6. Reverse transcription 

RNA samples from independent subjects were used to validate potential 

novel transcripts identified by RNA-seq. DNA-free RNA samples were reverse 

transcribed, PCR-amplified and analysed on agarose gels. Reverse transcription was 

performed as in Chapter 2. Briefly, DNase-treated RNA samples were converted to 

cDNA by using approximately one µg DNA-free RNA and SuperScript III® Reverse 

Transcriptase. The two-step reaction led to a final 20 µL volume reaction containing 

5 µM random decamers, 500 µM dNTPs, 5 mM DTT, 40 units RNaseOUT™ 

Recombinant Ribonuclease Inhibitor, 200 units of SSIII reverse transcriptase enzyme 

in 1x First-Strand Buffer and approximately one µg RNA. The initial mix containing 

RNA, random decamers and dNTPs was heated at 65ºC for 5 min and placed on ice 

for at least 1 min, when the remaining components were added. The reaction was 

incubated in a GS4 Thermocycler (G-Storm, Somerset, UK) with a heated lid for 

25 min at 25ºC, 60 min at 50ºC, 30 min at 55ºC and 15 min at 70ºC. cDNA was 

diluted 1:7 prior to use and stored at -20ºC. Reagents were purchased from 

ThermoFisher Scientific. 

 

 

3.3.7. Reverse transcription PCR (RT-PCR)  

Expression of the RefSeq transcripts of BORCS7 and NT5C2, as well as the 

novel transcripts of NT5C2 observed in the RNA-seq data, was qualitatively 

investigated in different samples of brain regions using RT-PCR. Transcript-specific 

oligonucleotides were designed using Primer3 (Untergasser et al., 2012), and these 

were purchased from Integrated DNA Technologies (IDT, London, UK) (Table 2). PCR 

amplification of cDNA was performed using the HOT FIREPol® DNA Polymerase (Solis 

Biodyne, Tartu, Estonia) in 12 µl reactions. These consisted of 6 µL cDNA (5-50 ng) 

with 1× HOT FIREPol Buffer B1, 2.1 mM MgCl2, 200 µM dNTP set and 0.5 unit of HOT 

FIREPol Taq Polymerase. The reaction was incubated for 15 min at 95ºC (hot start), 

35 cycles of 95ºC for 30 sec, 60ºC for 30 sec, 72ºC for 30 sec, and a final elongation 

step of 10 min at 72ºC.   
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Table 2. Oligonucleotides used for PCR-amplification.  

Gene 
Transcript 

(RefSeq) 

Forward oligonucleotides 

 5’-3’ 

Reverse oligonucleotides 

 5’-3’ 

Expected 

size in 

cDNA 

(bp) 

BORCS7 NM_001136200 AATGACATGTAAGAGTGCTGTAGGAC CCGGCCCTAACACAGAACTTT 168 

NM_144591 ACAACACATCTTCAATACCAGCAAG CGTATCTCCTCTGAGTTAATGTCATTC 119 

NT5C2 NM_012229 CCGAGGCGAATGGATCACTTG GCGCTGGAGCCGAGTTTC 84 

NM_001134373 CATATCTGCTGCATTCTGTAACCGA GTGCGCTGGAGCCGAATAC 83 

 d3 (new) CAAAGCTGAGCAACTCCTGG CGAGAAGCCTATCATCGTGTAC 110 

 e3.1 (new) TCCACAGTAAGCTCAAAACCAA ATACCCTTGCTGGAGAGCC 122 

 e3.1 d3 (new) GCTCAAAACCAAGGGACTCA AGAAGCCTATCATCGGAGAGC 115 

SDHA All transcripts TGGGAACAAGAGGGCATCTG CCACCACTGCATCAAATTCATG 86 

 

 

 

3.3.8. DNA gels and visualisation 

PCR products were visualised in ethidium bromide-stained agarose gels, 

which consisted of 2.5% (w/v) agarose (Apollo Scientific, Cheshire, UK) in 1x TAE 

buffer (40 mM Tris, 20 mM acetic acid, and 1 mM EDTA). Ethidium bromide 

10 mg/mL 0.001% (v/v) was added, and the solution was cooled in an 

electrophoresis bed for 40 min at room temperature. The gel was immersed in 

electrophoretic buffer 1X TAE, and aliquots of RT-PCR product were loaded with 

Orange G-based loading buffer (final concentration: 17 mg Orange G in 5% glycerol). 

Electrophoresis was run at 120 V for approximately 35 min. Gels were imaged in a 

GelDoc-It® Imager (UVP, Cambridge, UK) and recorded as TIF files.  

 

 

 

 

3.3.9. Other in silico analyses 

Expression of chromosome 10q24 genes was investigated in the public 

database Human Brain Transcriptome (http://hbatlas.org/) (Kang et al., 2011), 

which contains whole genome microarray expression data from different brain 

regions in different time points of development. Unpublished data obtained by 

collaborators using Illumina HumanHT-12 v4 Expression BeadChips were used to 

investigate the expression of BORCS7, AS3MT, CNNM2, and NT5C2 during in vitro 

neuronal differentiation. These studies examined the global gene expression profile 

of the cortical neural progenitor cells CTX0E16 submitted to a 28-day differentiation 

protocol (differentiation protocol detailed in Anderson et al. (2015)), and of 

hippocampal neural progenitor cells HPC03A/07 submitted to a 7-day differentiation 
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protocol (Powell et al. (2016), submitted). Differentially expressed genes were 

considered as those for which probe intensity significantly differed from the neural 

progenitor stage, at a false discovery rate cut-off (FDR)<0.05. 

 

 

3.4. Results 

3.4.1. Transcript discovery and microarray expression data 

Schizophrenia risk variants on chromosome 10q24 were found to be 

associated with altered cis-regulation of BORCS7, AS3MT and NT5C2 in Chapter 2. 

The pilot RNA-seq study presented in this chapter aimed at identifying the transcripts 

of these genes produced in brain regions where the putative risk mechanisms were 

observed. Briefly, all RefSeq transcripts of these genes were detected in two brain 

tissues, with the exception of the read-through BORCS7-AS3MT transcript (Table 3). 

The Tuxedo pipeline did not detect any novel transcript variants, but the manual 

inspection of exon junction counts in the RNA-seq data provided evidence to suggest 

the existence of less expressed transcripts of AS3MT and NT5C2. 

BORCS7 transcript NM_001136200 was found more expressed in the adult 

DLPFC (8x) and the foetal brain (nearly 100x) than NM_144591. These transcripts 

differ in the 3’ UTR (untranslated region), which could interfere with transcript decay 

or localisation. No evidence for novel transcripts was found in the RNA-seq data. 

Expression of BORCS7 in several brain regions was observed to peak at about one 

year after birth and to gradually decrease throughout adulthood (Figure 3A) (Kang et 

al., 2011). Similarly, expression of this gene was found to increase during 

neuronalisation of our in-house cortical (fold-change=1.46; FDR=0.01) and 

hippocampal cellular models (fold-change=1.12; FDR=3.22E-04). These data 

suggest that BORCS7 could be involved in early neuronal specialisation.  
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Table 3. Expression of chromosome 10q24 genes in the RNA-seq data. 

Genes Transcript 
FPKM* 

Adult DLPFC Foetal brain 

BORCS7 NM_001136200 2.35 3.95 

NM_144591 0.29 0.04 

BORCS7-AS3MT NR_037644    - - 

AS3MT NM_020682 1.42 4.79 

CNNM2 NM_199077 0.14 0.13 

 NM_017649 1.55 0.85 

 NM_199076 0.86 0.93 

NT5C2 NM_012229 1.41 3.57 

NM_001134373 6.43 9.76 

*FPKM = fragments per kilobase of transcript per million mapped reads. The cut-off value 

used to indicate expression of a given gene varies according to library size and sequencing 

depth. All FPKM values shown in this table indicate expression of all transcripts, which have 

been validated by RT-PCR on Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Expression of chromosome 10q24 genes in specific brain regions across life, 
according to microarray data from Kang et al. (2011). Signal intensity (log2) is given on the 

Y-axis, and age (days since conception) is given on the X-axis. A, BORCS7; B, AS3MT; 

C, NT5C2; D, CNNM2. Legend: neocortex (NCX), hippocampus (HIP), amygdala (AMY), 

striatum (STR), mediodorsal nucleus of thalamus (MD), cerebral cortex (CBC).   



75 
 

As for AS3MT, only the expression of NM_020682 was significantly detected 

in the RNA-seq data analysis. The manual inspection of junction reads, however, 

provided evidence for the existence of AS3MTd2d3, proposed by Li et al. (2016) as the 

putative schizophrenia susceptibility transcript (blue arrows, Figure 4). It is possible 

to extrapolate from the RNA-seq data presented in this chapter, based on counts of 

junction reads, that the full length transcript of AS3MT is more abundantly expressed 

than AS3MTd2d3. Exon junction counts for transfrags associated with AS3MTd2d3 

transcript (<5 counts) were sporadic when compared to the number of transfrags 

associated with full length AS3MT (approximately 200 counts) in the foetal brain 

sample, for instance. An accurate estimate of the relative expression of these 

transcripts, however, would require a more sophisticated analysis and the inclusion 

of additional samples. Nonetheless, overall expression of AS3MT was found to be 

maximal during foetal development, as opposed to adulthood, according to public 

microarray data (Figure 3B). Consistent with this, AS3MT expression in differentiated 

hippocampal neurons was significantly lower than at their neural progenitor stage 

(fold-change=0.87, FDR=4.52E-14), although this was not observed in the cortical 

cell line (fold-change=1.03, FDR=0.47). It is important to note that the microarray 

probe tagging AS3MT expression in these microarray studies (Illumina HT12 v4 

BeadChip) is specific to the most 3’ exon of this gene, and therefore it would not 

distinguish between expression from full length AS3MT or AS3MTd2d3. Nonetheless, 

these data suggest a potential role for AS3MT in early neural development.  
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The expression of the NT5C2 transcript NM_001134373 was found to be 

higher than its counterpart, transcript NM_012229, in the DLPFC (4x) and foetal brain 

(3x). Both NT5C2 transcripts seem to encode identical proteins, although NM_012229 

has an additional 5’ UTR region, which may indicate an additional level of regulation. 

Exon junction counts observed in the RNA-seq data (Figure 5) suggest the existence 

of a relatively common new exon between exons 3 and 4 of NM_001134373, or exons 

4 and 5 of NM_012229, which is simply denoted here as exon ‘exon 3.1’. Moreover, 

it was observed the existence of transfrags associated with transcripts in which 

exon 3 of NM_001134373, or exon 4 of NM_012229, referred here simply as ‘exon 3’, 

was absent. These data suggest the existence of novel transcripts of NT5C2: 

NT5C2e3.1 (contains exon 3.1), NT5C2d3 (lacks exon 3), and NT5C2e3.1 d3 (contains 

exon 3.1 and lacks exon 3). Based on junction reads counts, it appears that the full 

length transcripts of NT5C2 are more expressed than these novel variants. In the 

RNA-seq data from foetal brain, for example, junction count reads corresponding to 

transfrags of full length NT5C2 (approximately 300 counts) were more than 4x more 

abundant than transfrags associated with NT5C2e3.1 (around 70 counts), which in turn 

corresponded to almost double the number of junction reads associated with NT5C2d3 

and NT5C2e3.1 d3 (approximately 30 counts each). The unbiased quantification of 

expression of these transcripts, however, would require the inclusion of more 

samples, and validation using rapid amplification of cDNA ends (RACE) or qPCR, for 

example. Overall NT5C2 expression was found to be maximal during foetal 

development rather than in adulthood in several brain areas (Figure 3C), and was 

similarly increased in differentiating hippocampal neurons, as compared to their 

neural progenitor stage (fold-change=1.40, FDR=4.38E-20). No statistically 

significant change in expression of NT5C2 was observed for the cellular model of 

cortical neuronal differentiation CTX0E16 (fold-change=1.09, FDR=0.20), which 

possibly suggests that the gene might be involved in localised neuronal 

differentiation.  
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Expression levels of CNNM2 transcripts in the RNA-seq data is also reported 

(Table 3), although schizophrenia risk variation was not associated with cis-

regulatory mechanisms on this gene (e.g. Chapter 2, Li et al., 2016). Expression of 

this gene was not observed to vary during development (Figure 3D) (Kang et al., 

2011) or during neuronalisation of the cortical (fold-change=0.92, FDR=0.06) or 

hippocampal in-house cellular models (fold-change=1.00, FDR=0.35). 

 

 

3.4.2. Validation of transcripts in other samples of different brain 

areas 

Expression of the RefSeq transcripts of BORCS7 (NM_001136200 and 

NM_144591) and NT5C2 (NM_012229 and NM_001134373), as well as of the newly 

identified transcripts NT5C2d3, NT5C2e3.1 and NT5C2e3.1 d3, and of the housekeeper 

SDHA (succinate dehydrogenase complex, subunit A) was investigated in four 

samples each of foetal brain, and adult DLPFC, hippocampus and caudate (Figure 6). 

Samples analysed by RNA-seq were also included, represented by lanes #1 (DLPFC) 

and #13 (foetal brain). BORCS7 RefSeq transcript NM_1136200 was found to be 

expressed in all samples, although transcript NM_0144591 was not detected in some 

samples of DLPFC and hippocampus. Both NT5C2 RefSeq transcripts were detected 

in all samples, but as for the novel transcripts, only NT5C2e3.1 was found expressed 

in all samples, whereas NT5C2e3.1 d3 and NT5C2d3 were not. This is consistent with 

the observation of exon junction counts in the RNA-seq data, as junction counts 

associated with exon e3.1 were more abundant than junction counts associated with 

transcripts lacking exon 3 (NT5C2e3.1 d3 and NT5C2d3). Additional expression studies 

are warranted to investigate possible transcript-specific mechanisms driving risk for 

schizophrenia on chromosome 10q24, especially regarding NT5C2. Nonetheless, full 

length transcripts for all genes were observed as the most expressed messages.  
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Figure 6. Validation of RNA-seq findings by RT-PCR in different brain tissues. Expression of 

RefSeq transcripts NM_1136200 and NM_0144591 of BORCS7, and NM_012229 and 

NM_00134373 of NT5C2, alongside with the novel NT5C2 transcripts and a housekeeper gene 
(SDHA) was investigated in 16 brain samples. Arrows on the ladder column indicate the marks 

of 500bp and 100 bp. The right column indicates the expected size for each amplicon. 

Amplification with genomic DNA is also shown, as primers for NM_1136200 and SDHA were 

designed to amplify using cDNA or gDNA, while other primer sets were designed to span exon-

exon junctions and thus are cDNA specific. 
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3.5. Discussion 

The collection of RNA messages expressed at a specific time point or location 

may inform of biological mechanisms related to disease (Wang et al., 2009). In this 

chapter, RNA-sequencing was used to investigate chromosome 10q24 transcripts 

expressed in brain tissues where cis-regulatory effects associated with schizophrenia 

risk alleles were observed in Chapter 2. Annotated transcripts of genes putatively 

implicated in susceptibility to schizophrenia, BORCS7, AS3MT and NT5C2, as well as 

novel transcript variants of NT5C2 were detected in different brain areas implicated 

in schizophrenia, including the foetal brain and the adult DLPFC, hippocampus and 

caudate nucleus. Evidence to support the existence of AS3MTd2d3 in the adult DLPFC 

and in the second trimester foetal brain was also observed. 

This chapter arose from the interesting observations that genome-wide 

association signals may index cis-regulatory variants that affect specific gene 

transcripts (Li et al., 2016; Tao et al., 2014). The non-coding SNP rs1344704, for 

example, the first to exhibit genome-wide association with psychosis (O'Donovan et 

al., 2008) and schizophrenia (Riley et al., 2010; Schwab et al., 2013; Williams et al., 

2011; Zhang et al., 2011; Zhang et al., 2012), was associated with cis-regulatory 

effects on ZNF804A exclusively in the developing foetal brain (Hill and Bray, 2012). 

More recently, however, the cis-regulatory risk mechanism was suggested to alter 

expression of a specific transcript, termed ZNF804AE3E4 (Tao et al., 2014). As for 

chromosome 10q24, genotype at rs7085104 (which is in strong LD with rs11191419: 

r2=0.79) has been recently suggested to elicit cis-regulatory effects on a specific 

transcript of AS3MT, AS3MTd2d3 (Li et al., 2016). Interestingly, the full length 

transcript of AS3MT encodes a methyltransferase enzyme involved in arsenic 

metabolism (Sumi and Himeno, 2012), but AS3MTd2d3 does not encode the 

methyltransferase domain, and therefore its function remains unknown. This chapter 

therefore intended to determine the existence of potentially novel transcripts 

encoded in chromosome 10q24. 
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The small number of samples included in the RNA-seq analysis precluded the 

confident identification of any transcripts of AS3MT other than its full length variant. 

However, manual inspection of junction reads in the RNA-seq data provided evidence 

to support the expression of AS3MTd2d3 in the adult and foetal brains. The expression 

of the truncated version has been previously estimated to be approximately five-fold 

lower than the expression of full length AS3MT in healthy subjects (Li et al., 2016). 

This would require that cis-regulatory effects specific to this novel transcript to be 

very large, in order to result in the effects on allelic expression of AS3MT observed 

in Chapter 2, in which both transcripts would have been indexed. While it is out of 

the scope of this pilot study to provide accurate measures of expression of specific 

transcripts, we found evidence which suggests that the expression of AS3MTd2d3 is 

much lower than that of AS3MT. Overall AS3MT expression was found to be decreased 

in several brain regions during adult life, and in the in vitro model of hippocampal 

neuronalisation, providing evidence to support the role of this gene in 

neurodevelopment.  

No evidence in the RNA-seq data was found to support the existence of novel 

transcripts of BORCS7, or the read-through BORCS7-AS3MT, in agreement with 

findings from Li et al. (2016). Expression of full length BORCS7 transcripts 

NM_001136200 and NM_144591, however, was confirmed in multiple foetal and 

adult brain samples. Moreover, BORCS7 expression was found to significantly 

increase during hippocampal and cortical neuronalisation, as well as after birth, and 

to gradually decrease throughout adulthood. The gene encodes a subunit of the 

BLOC-1 related complex, which is implicated in lysosomal function, cell migration and 

neurite outgrowth (Ghiani et al., 2010; Pu et al., 2015). The association of this gene’s 

allelic expression with schizophrenia risk variants may suggest that these processes 

may be affected in disease or disease predisposition mechanisms. 

NT5C2 encodes the 5’-cytosolic nucleotidase II, which is involved in the 

regulation of intracellular nucleotide and nucleoside pools (Bianchi and Spychala, 

2003), and therefore is relevant to the purinergic hypothesis of schizophrenia (Lara 
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and Souza, 2000). Overall NT5C2 expression is maximal during foetal development 

in several brain areas, and was found to be increased during hippocampal 

neuronalisation, supporting the role of NT5C2 in neurodevelopment. Expression of 

three novel transcript variants of NT5C2 was confirmed in different brain tissues 

(Figure 5). Some evidence was observed to suggest that full length NT5C2 is more 

abundant than its truncated counterparts, although the precise quantification of their 

expression would require a more sophisticated analysis and the inclusion of more 

samples. It is possible that the novel transcript variants may still encode the 

nucleotidase, as the nucleotidase domain is encoded further downstream from exons 

3 and 3.1, but more studies are warranted to elucidate their function.  

In summary, this chapter provided evidence which suggests that RefSeq 

transcripts of BORCS7, AS3MT and NT5C2, as well as the novel transcripts AS3MTd2d3, 

NT5C2e3.1, NT5C2e3.1 d3 and NT5C2d3, are present in multiple samples of brain tissue. 

They may be responsible for driving the cis-regulatory effects observed as putative 

schizophrenia risk mechanisms in Chapter 2. However, the expression of full length 

AS3MT and NT5C2 transcripts are much higher than the novel variants. This would 

require cis-regulatory effects specific to the truncated transcripts to be very large, in 

order to result in the effects on allelic expression observed for these genes in 

Chapter 2, where all their transcripts would have been indexed. An analysis including 

more samples is warranted to further elucidate the putative risk mechanisms on 

chromosome 10q24 driving association with schizophrenia.  
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Coronal view of the human brain. Illustration from the Sobotta's Human Anatomy Atlas (1908). 

 

 

 

 

 

Chapter 4 

Distribution of NT5C2 protein in the adult human brain 

and in human cellular models of neurodevelopment 
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4.1. Abstract 

Multiple cis-regulatory effects on chromosome 10q24 were detected in the 

adult and foetal brain in association with risk for schizophrenia, in Chapter 2. Of 

these, the decreased expression of NT5C2 in association with both schizophrenia risk 

alleles in the dorsolateral prefrontal cortex (DLPFC) was a prominent finding. This 

gene encodes the cytosolic 5'-nucleotidase II (NT5C2), a homotetramer hydrolase 

involved in the regulation of intracellular nucleotide and nucleoside pools. While 

NT5C2 is conserved from Prokaryotes to Eukaryotes with various degrees of sequence 

identity, determining the neural cell type(s) which express the enzyme in the human 

brain, and its distribution in neural progenitor cells (NPCs) may reveal clues of the 

physiological roles relevant to schizophrenia, associated with this enzyme. The 

objective of this chapter, therefore, is to examine the distribution of NT5C2 in the 

adult DLPFC and human neural stem cells. For this, NT5C2 expression was 

investigated in human NPCs derived from the foetal brain and from human induced 

pluripotent stem cells (hiPSC). The investigation was performed using fluorescence 

immunocytochemistry staining and visualisation under confocal microscopy, which 

revealed NT5C2 distribution spread throughout the soma and cellular processes of 

the NPCs. In the post-mortem adult DLPFC, NT5C2 expression was investigated by 

means of immunohistochemistry staining using 3,3’-diaminobenzidine (DAB) and 

Nissl. The enzyme was detected in neurons, glial cells and the neuropil, although glial 

cells for which NT5C2 staining was absent were also observed. These findings are in 

agreement with a ubiquitous occurrence of this enzyme given its widespread 

presence in the brain and NPCs, but cannot exclude a possible cell type-specific 

schizophrenia risk mechanism. 

 

 

Note: The neural progenitors derived from human induced pluripotent stem cells (hiPSCs) 

were kindly provided by Dr Carole Shum (Srivastava’s lab) in collaboration with Prof Price’s 

group. Immunohistochemistry was advised by Dr Marie-Caroline Côtel (Vernon’s lab) and 

Dr Claire Troakes (MRC Brain Bank). Images were obtained with the assistance of Dr Hemanth 

Nelvaga and Dr Marta Tarczyluk (Cooper’s lab).   
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4.2. Introduction 

The cytosolic 5’-nucleotidase II (NT5C2, or cN-II) is a widely expressed 

homotetrameric enzyme that consists of 561 amino acids. This enzyme catalyses the 

dephosphorylation of purine monophosphates, mainly inosine and guanosine 

monophosphate (IMP and GMP, respectively), and the transfer of phosphate groups 

between nucleotides and nucleosides (Cividini et al., 2015a). NT5C2 is critically 

positioned at the crossroad between de novo nucleotide synthesis and salvage 

pathways, acting as a key regulator for these processes and therefore controlling 

intracellular nucleotide and nucleoside levels (Hunsucker et al., 2005). NT5C2 is part 

of the family of 5’-nucleotidases, together with a membrane-bound extracellular 

enzyme (eN), a mitochondrial nucleotidase (mdN) and four other cytosolic enzymes 

(NT5C1A, NT5C1B, NT5C3 and NT5C3L) (Itoh, 2013). Their difference, besides 

subcellular localisation, relies on tissue-specificity and altered affinities for derivatives 

of nucleotide monophosphates (NMPs, such as IMP, GMP, AMP, etc.). These 

characteristics allow this family of enzymes to fine tune intracellular signalling 

molecules according to the metabolic needs of a particular tissue or cell type 

(Hunsucker et al., 2005).  

NT5C2 is encoded on chromosome 10q24, a genomic region robustly 

implicated in schizophrenia by large-scale genome-wide association studies (Ripke et 

al., 2013; Schizophrenia Psychiatric Genome-Wide Association Study, 2011; 

Schizophrenia Working Group of the PGC, 2014). In Chapter 2, decreased expression 

of NT5C2 in different brain tissues was associated with schizophrenia risk genotype, 

an event that was very noticeable in the adult DLPFC. In this brain region, the 

majority of cis-regulatory effects observed on NT5C2 could be accounted for by 

genotype at the top two risk variants at the locus, rs11191419 and 

chr10_104957618_I. Interestingly, the risk indel chr10_104957618_I is in linkage 

disequilibrium with rs12413409 and rs11191548 (r2=0.82 in both cases), genome-

wide significant association signals for body mass index and cardiac disease (Newton-

Cheh et al., 2009; Schunkert et al., 2011), suggesting that variation in the gene 

might have pleiotropic effects. 
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The distribution of NT5C2 in the nervous system, however, is poorly 

characterised. The objective of this chapter is to investigate the expression of this 

enzyme in the adult dorsolateral prefrontal cortex, a region that has been implicated 

in schizophrenia pathophysiology (Callicott et al., 2000; Galindo et al., 2016), and 

additionally in NPCs derived from the foetal brain and from hiPSCs, which recapitulate 

early stages of neural development. As expression of NT5C2 in the cortex has been 

described in the Human Protein Atlas (Figure 1) (Uhlen et al., 2015), this chapter 

focused on replicating these findings specifically in the DLPFC. Moreover, several 

human cellular models will be used in this chapter to explore immunostaining 

methods (western blotting, immunohistochemistry and immunocytochemistry), what 

will be important for the next chapter. These cell models include the human 

embryonic kidney cells HEK293T, the bone marrow SH-SY5Y cells, the NPCs derived 

from human induced pluripotent stem cells (hiPSCs) (Cocks et al., 2014; Shi et al., 

2012) and from the neuroepithelium of a second trimester foetal brain, the CTX0E16 

cell line (Anderson et al., 2015; Pollock et al., 2006). This investigation may implicate 

specific cell types associated with NT5C2 expression, which could be giving rise to 

the putative risk mechanism associated with schizophrenia in Chapter 2. 

 
Figure 1. NT5C2 immunohistochemistry of the cerebral cortex extracted from the Human 

Protein Atlas (http://www.proteinatlas.org/) (Uhlen et al., 2015) using the mouse monoclonal 
NT5C2 antibody (3C1). Quantification of cells positive for NT5C2 in this database showed 

expression of NT5C2 in over 75% of neurons and of the neuropil, with glial cells found to stain 

in 25-75% of accounted instances.  
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4.3. Methods 

4.3.1. Cell lines  

Antibodies used to detect NT5C2 protein were validated and tested in 

(1) the human embryonic kidney HEK293T cells, (2) the bone marrow SH-SY5Y cells, 

(3) the conditionally-immortalised cortical neural progenitor cells (NPCs) CTX0E16 

and (4) the cortical NPCs derived from human induced pluripotent stem cells (hiPSC) 

from a healthy individual. All cells lines were grown in Nunclon™ Delta Surface tissue 

culture flasks or plates (ThermoFisher Scientific, Waltham, MA, USA). HEK293T and 

SH-SY5Y cells were maintained at 37ºC with 5% CO2, in T75 flasks containing media 

that consisted of Advanced Dulbecco's Modified Eagle Medium/Ham's F-12 (Advanced 

DMEM/F-12) (ThermoFisher Scientific, Waltham, MA, USA) supplemented with 10% 

(v/v) Foetal Bovine Serum (ThermoFisher Scientific) and 2 mM GlutaMAX™ 

Supplement (ThermoFisher Scientific), fed every 2-3 days, and passaged using 

Accutase (Sigma, St. Louis, MO, USA) once 80–90% confluency was achieved. The 

conditionally immortalised neural stem cells CTX0E16 cells (Anderson et al., 2015; 

Pollock et al., 2006), which are further discussed in Chapter 5, were obtained from 

ReNeuron (www.reneuron.com) as part of a Material Transfer Agreement. These cells 

were maintained at 37ºC and 5% CO2, in T75 flasks previously coated with 1 μg/cm2 

Engelbreth–Holm–Swarm murine sarcoma basement membrane laminin (Sigma). 

The neural progenitor stage was maintained in reduced modified medium that 

consisted of DMEM:F12 with 15mM HEPES and sodium bicarbonate (Sigma), 

supplemented with 0.03% human serum albumin (GE Healthcare Life Sciences, 

Buckinghamshire, UK), 100 μg/mL apo-transferrin (Scipac Ltd, Kent, UK), 

16.2 μg/mL putrescine (Sigma), 5 μg/mL human insulin (Sigma), 60 ng/mL 

progesterone (Sigma), 2 mM GlutaMAX™ Supplement (ThermoFisher Scientific), 

40 ng/mL sodium selenite (Sigma), 10 ng/mL human fibroblast growth factor (FGF) 

(PeproTech, Rocky Hill, NJ, USA), 20 ng/mL human epidermal growth factor (EGF) 

(PeproTech) and 100 nM 4-OHT (Sigma). Cells were fed every 2-3 days and passaged 

using Accutase (Sigma) once 80–90% confluency was achieved. NPCs derived from 

hiPSC were obtained from keratinocytes of an apparently healthy individual and 
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grown in 6-well plates that had been previously coated with Geltrex (Life 

Technologies). The hiPSC lines were generated from primary keratinocytes as 

described elsewhere (Cocks et al., 2014), and their neuronal differentiation was 

stimulated by replacing E8 medium on confluent (>95%) hiPSCs with neuralisation 

medium (1:1 mixture of N2- and B27-containing medium, supplemented with 

5 µg/ml insulin, 1 mM l-glutamine, 100 µm non-essential amino acids, and 100 µM 

2-mercaptoethanol) supplemented with 1 µm Dorsomorphin (Sigma) and 10 µm 

SB431542 (Cambridge Bioscience, Cambridge, UK), as performed by Shi et al. 

(2012). At day 8, accompanied by the appearance of neuroepithelial cells, cells were 

passaged using Accutase (Sigma) and maintained in neuralisation medium only. 

Neuroepithelial cells were grown and passaged three times until neural rosettes 

(NPCs, ~day 18/19) were found. The NPCs were fed daily and passaged using 

Accutase (Sigma) once 80–90% confluency was achieved. 

 

4.3.2. Cationic lipid-mediated vector transfection  

For immunocytochemistry experiments, cells were grown on 13 mm 

coverslips coated on Geltrex (hiPSC-derived NPCs, n=1) or Laminin (CTX0E16 NPCs, 

n=1), which had been previously treated with 1M hydrochloric acid, 70% ethanol and 

pure ethanol in one hour washes each, followed by overnight sterilisation (180ºC) in 

a dry oven. Coverslips were placed in 24-well plates and approximately 10,000 cells 

were seeded per well the day before transfection. The next day, media was fully 

replaced by a final volume of 250 µL/well, and cells were transfected with plasmids 

for 24 hrs with the addition of 50 µL transfection solution/well previously incubated 

at room temperature for 45 min. This transfection solution consisted of 2% (v/v) 

Lipofectamine 2000 (ThermoFischer Scientific) and 1 µg DNA diluted in Opti-MEM 

Reduced Serum Media (ThermoFischer Scientific). In order to collect more protein for 

western blotting, HEK293T cells (n=3) were transfected in 6-well plates in a total 

volume of 2.5 mL per well, where 2 mL consisted of fresh medium plus 0.5 mL 

solution consisting of 1% (v/v) Lipofectamine 2000 and 2.5 µg DNA diluted in 
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Advanced DMEM/F-12. Plasmids used in this study included pEGFP-C3 (GeneBank ID 

U57607) and NT5C2-Myc-DDK (Origene ID RC200194). Water was used as a negative 

control in parallel with transfections in all experiments. 

 

4.3.3. Protein extraction and quantification 

Total protein was extracted from cell cultures by mechanical disruption of 

cells in RIPA Buffer (ThermoFisher Scientific) containing 1x Halt™ Protease Inhibitor 

Cocktail (ThermoFisher Scientific). Cell lysate was sonicated for 30 sec with a 50% 

pulse and incubated at 4ºC for 15 min. Samples were centrifuged at 14,000 ×g for 

15 min to pellet cell debris, and the supernatant was transferred to a new tube and 

stored at -80ºC. Protein extracts were quantified using the Pierce™ BCA Protein 

Assay Kit (ThermoFisher Scientific), where the reduction of copper by proteins in the 

solution in an alkaline medium is coupled to the colorimetric detection of cuprous 

cations (Cu1+) by bicinchoninic acid (BCA). Absorbance at 595 nm was estimated 

using 96-well plates in a Beckman Coulter DTX 880 Multimode Detector, and protein 

concentrations were estimated using a standard curve of eight serial dilution points 

of bovine serum albumin solutions.  

 

4.3.4. SDS-PAGE and Western Blotting 

Protein samples were diluted to 1x Laemmli sample buffer (Bio-Rad, 

Hercules, California, USA) containing beta-mercaptoethanol. Samples were loaded in 

15-well 4–20% Mini-PROTEAN® TGX™ Precast Protein Gels (Bio-Rad). 

Electrophoresis was run at 150 V for approximately one hour. Proteins were wet-

transferred to PVDF membranes for 90 V during 90 min. Membranes were blocked 

with Odyssey® Blocking Buffer (LI-COR Biosciences, Lincoln, NE, USA) for one hour 

and incubated overnight at 4ºC with primary antibodies diluted in blocking solution. 

Primary antibodies tested to probe NT5C2 were used at 1:200 dilutions and included 

the rabbit polyclonal ab96084 (Abcam, aa 108-332, Cambridge, UK) and the mouse 
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monoclonal M02-3C1 (H00022978-M02; Abnova, Taipei, Taiwan). The mouse 

monoclonal 9e10 Myc antibody (Evan et al., 1985) was used at 1:1,000 dilutions and 

was purchased from the NIH Developmental Studies Hybridoma Bank at The 

University of Iowa, USA. Following the overnight incubation of primary antibodies, 

membranes were washed three times for 10 min in TBS-T, and exposed to fluorescent 

secondary antibodies diluted 1:10,000 (Alexa Fluor 680 goat anti mouse, and Alexa 

Fluor 790 goat anti rabbit, ThermoFisher Scientific) for one hour. The membranes 

were washed three times again (10min each wash) and scanned using Odyssey® 

(LI-COR), where black and white images were acquired. 

 

4.3.5. Immunocytochemistry and image acquisition  

Fluorescently labelled cells were observed under confocal microscopy in 

order to investigate expression of endogenous NT5C2 and of overexpressed NT5C2-

Myc/GFP. After 24 hrs transfections with plasmids or negative control, cells were 

double fixed using 10 min incubations with 4% formaldehyde in Phosphate-Buffered 

Saline (PBS) (ThermoFisher Scientific) containing 4% sucrose, and then cold absolute 

methanol on ice. Cells were permeabilised and blocked with 2% normal goat serum 

(NGS) in PBS-T (PBS containing 0.1% Triton-X). Primary antibodies tested included 

the previously mentioned NT5C2 antibodies (1:200), the Myc antibody (1:750) and 

the chicken ab13970 GFP antibody (1:1,000). These were incubated overnight in 

blocking solution at 4ºC and washed three times (3x10 min) with PBS-T on the next 

day. Cells were incubated with fluorescent secondary antibodies (Alexa Fluor goat 

anti-chicken 488, goat anti-mouse 568, goat anti-rabbit 633, ThermoFisher 

Scientific) in blocking solution for one hour. Cells were washed for three times and 

stained with DAPI (1:50,000) during 5 min. Coverslips were mounted using ProLong 

Gold Antifade Mountant reagent (ThermoFisher Scientific) and kept protected from 

light. Fluorescently labelled cells were imaged in a Leica SP5 confocal microscope 

using a 63x objective. Settings including laser power, pinhole and smart gain were 

kept constant within experiments. These were taken as z-stacks containing 9 or 10 
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plans (z-step = 0.5μm), and exported to ImageJ (Schneider et al., 2012) where 

background subtracted images and maximum intensity projections were generated 

(Srivastava et al., 2011).  

 

4.3.6. Brain sections  

Human post-mortem dorsolateral prefrontal cortex sections embedded in 

paraffin were obtained from two subjects free from psychiatric or neurological 

diagnosis at the time of death, from the MRC London Neurodegenerative Diseases 

Brain Bank at the Institute of Psychiatry, Psychology and Neuroscience, King’s 

College London (UK). Samples included a 76-year-old female and an 80-year-old 

male. Ethical approval for this study was provided by The Joint South London and 

Maudsley and The Institute of Psychiatry NHS Research Ethics Committee (reference 

PNM/12/13-102).  

 

4.3.7. Immunohistochemistry and image acquisition 

Paraffin-embedded sections were deparaffinised and hydrated prior to 

immunostaining using 3,3’-diaminobenzidine (DAB) and Nissl stain. While DAB 

staining locates the protein of interest by means of immunoaffinity, Nissl 

counterstains the tissue by labelling RNA and DNA given their basophilic properties. 

Nissl stains strongly the granules of endoplasmic reticulum (ER) (called ‘Nissl 

substance’), which allow the distinction between neurons (which will strongly stain 

due to the high amounts of ER in the soma, associated with intense protein 

synthesis), glial cells (mostly DNA is stained, as there is less protein synthesis, which 

leads to lower staining intensity), neuropil (synaptically dense areas that are too thin 

to visualise and contain very low number of cell bodies) and capillaries (very distinct 

endothelial cells surrounding an empty space) (Paul et al., 2008). Briefly, samples 

were deparaffinised and hydrated in a serial wash consisting of absolute xylene 

(5 min, twice), 99% industrial methylated spirit (IMS) (2 min, twice), 95% IMS 
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(2 min), and 70% IMS (2 min). As DAB staining is given by the oxidation of 

diaminobenzidine by peroxidases bound to the primary antibody and producing 

colour, endogenous peroxidases were blocked prior to the immunostaining. For this, 

sections were incubated in methanol solution containing 0.8% (v/v) hydrogen 

peroxide. Sections were then washed in distilled water and submitted to an antigen 

retrieval step. This step ensures epitopes are exposed and therefore able to bind to 

the primary antibodies. Sections were immersed in a citrate buffer solution (pH 6) 

and microwaved for 6 min on high, and for 8 min on low power. Sections were 

blocked with 10% NGS in TBS during 20 min, and NT5C2 antibody M02-3C1 (Abnova, 

H00022978-M02) was added 1:200 in a 1% NGS solution in TBS. A section was 

incubated with water instead of primary antibody for use as negative control of 

staining. Sections were incubated overnight at 4ºC, and on the next day washed 

twice in TBS, for 10 min. Secondary antibody (biotinylated rabbit anti-mouse 

immunoglobulin) was added 1:100 for 45 min, and the sections were washed again. 

Avidin/biotinylated horseradish peroxidase complex Vectastain® (Vector 

Laboratories, Peterborough, UK) was used for amplification and detection of the 

signal, according to the manufacturer’s instruction. The sections were incubated for 

approximately 5 min with activated DAB solution (filtered and added 2 µL hydrogen 

peroxide per 5 mL of solution), and then washed in running tap water for 10 min. 

Slides were then sunk in a filtered aqueous solution of 0.5% cresyl violet containing 

10% glacial acetic acid for approximately 15 min, at 55ºC. Sections were dehydrated 

in a serial wash consisting of, successively, 70% IMS (2 min), 95% IMS (2 min), 99% 

IMS (2 min, twice), absolute xylene (5 min, twice). The slides were mounted using 

DPX Mountant for histology (Sigma). Bright field images were taken using the 5x and 

40x objectives, a Leica DMRB microscope, and the software AxioVision v4.8.2.   

 

 



94 
 

4.4. Results 

4.4.1. Validation of NT5C2 antibodies  

In order to investigate the role of NT5C2 in the nervous system, its 

distribution in the adult brain and in human cellular models is described in this 

chapter. For this, two commercially available antibodies for NT5C2, M02-3C1 and 

ab96084, were initially tested for specificity in western blots using extracts of 

HEK293T cells overexpressing an NT5C2 construct. This construct encodes the full 

length NT5C2 protein containing a C-terminal Myc-DDK tag, which should allow the 

co-localisation of immunostaining with multiple antibodies (for NT5C2 and Myc, for 

instance) (Figure 2). Single bands corresponding to the expected molecular weight 

of NT5C2 monomers (approximately 65 kDa) were detected using Myc and NT5C2 

antibodies in the cell lysates of HEK293T cells overexpressing the construct. These 

results support the specificity of these antibodies for the exogenously expressed, 

tagged NT5C2 protein. None of the NT5C2 antibodies, however, were able to detect 

endogenous amounts of the protein in the cortical neural progenitor cells CTX0E16, 

the bone marrow cells SH-SY5Y, or the human embryonic kidney cells HEK293T. This 

suggested that the antibodies for NT5C2 would require time-consuming 

troubleshooting of electrophoresis and/or blotting methods, since the expression of 

NT5C2 was detected by RT-PCR in RNA/cDNA derived from cultures from which 

protein extracts were obtained (data not shown). 

Expression of NT5C2 at the protein level, therefore, was additionally 

investigated in two homologous cellular models of neural development, the NPCs 

CTX0E16, derived from the neuroepithelium of a human foetus, and the NPCs derived 

from hiPSCs obtained from a healthy subject, using immunocytochemical 

approaches. While the antibody M02-3C1 produced a staining pattern that diffused 

through the soma and early processes, the ab96084 antibody stained puncta-like 

structures in the soma and processes (Figure 3). Although both patterns reflected a 

ubiquitous presence of NT5C2 in the cytosol, it was unclear which staining profile 

corresponded to the true staining of NT5C2. 
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Figure 2. Immunoblotting for NT5C2 and Myc in protein lysates from multiple cell lines. These 

cellular lysates were obtained from non-transfected (WT) CTX0E16, SH-SY5Y and HEK293T, 
and transfected HEK293T, exogenously expressesing Myc-tagged NT5C2. No NT5C2 antibody 

was found to be sensitive for the detection of endogenous NT5C2 under these experimental 

conditions, but both NT5C2 antibodies were able to detect exogenous NT5C2 (Myc-tagged). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Immunostaining for NT5C2 in NPCs using two antibodies. (A) hiPSC-derived NPCs, 

(B) CTX0E16 NPCs. Immunofluorescence images were taken using a confocal microscope. The 
M02-3C1 (Abnova) antibody resulted in a diffuse distribution of NT5C2, whereas the ab96084 

(aa 108-332) antibody stained puncta-like structures, suggesting they probe for different 

epitopes. Cellular processes are indicated by white arrows. 
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In order to address this uncertainty and to identify the most suitable 

antibody for NT5C2 immunostaining, hiPSC-derived NPCs were co-transfected with 

constructs encoding NT5C2-Myc and GFP. Examination of the immunostaining 

patterns obtained using the NT5C2 antibody ab96084 in parallel with antibodies for 

Myc and GFP (Figure 4A) revealed that ab96084 did not co-localise with exogenously 

expressed NT5C2-Myc, indicating its fluorescence signal to be unspecific. In parallel, 

similarly co-transfected cells were immunostained with NT5C2 antibodies M02-3C1 

and ab96084, and a GFP antibody (Figure 4B). The resulting images obtained 

demonstrated that the M02-3C1 antibody co-localised with endogenous and 

exogenously expressed NT5C2. Immunostaining patterns observed for exogenous 

and endogenous NT5C2 using the M02-3C1 antibody were identical, with the 

fluorescence signal found diffused through the soma and cellular processes 

(Figures 3, 4B, 5B).  

These findings were replicated using the CTX0E16 cells. Examination of the 

immunostaining pattern obtained using the NT5C2 antibody ab96084 in parallel with 

antibodies for Myc and GFP (Figure 5A) indicated that ab96084 was not suitable for 

immunocytochemistry staining. In parallel, similarly co-transfected cells 

immunostained with the NT5C2 antibodies M02-3C1 and ab96084, and a GFP 

antibody (Figure 5B), suggested that the M02-3C1 antibody successfully co-localised 

with endogenous and exogenously expressed NT5C2. The immunostaining patterns 

observed for endogenous and overexpressed NT5C2 using the M02-3C1 antibody in 

CTX0E16 cells were identical, with fluorescence diffused through the soma and 

cellular processes (Figure 5B). Collectively, these data suggest that the M02-3C1 

antibody is adequate for NT5C2 labelling in immunocytochemistry and western blot 

experiments. 
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Figure 4. Validation of NT5C2 antibodies using immunocytochemistry in hiPSC-derived NPCs. 
Confocal microscopy images of NPCs co-transfected with constructs encoding GFP and NT5C2-

Myc. (A) Co-localisation of staining for GFP with Myc (arrow), but not with ab96084 (NT5C2) in 

a co-transfected cell. In the composite, fluorescence signals associated with GFP (green), Myc 
(red) and NT5C2 ab96084 (yellow puncta) are overlaid. Individual channels are shown in black 

and white for better visualisation. (B) Co-localisation of staining for GFP with NT5C2 M02-3C1 

antibody, but not with NT5C2 ab96084 (aa 108-332, central arrow) in a co-transfected cell. A 

non-transfected cell is indicated by the upper right arrow. In the composite, fluorescence signals 
associated with GFP (green), NT5C2 M02-3C1 (red) and NT5C2 ab96084 (yellow puncta) are 

overlaid. These data suggest that the NT5C2 antibody M02-3C1 is adequate for immunostaining. 

  



98 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Validation of NT5C2 antibodies using immunocytochemistry in CTXOE16 NPCs. 

Confocal microscopy images of NPCs co-transfected with constructs encoding GFP and NT5C2-

Myc. These results are consistent with findings using the hiPSC-derived NPCs. (A) Co-

localisation of staining for GFP with Myc (mid arrow), but not with NT5C2 ab96084, in two co-
transfected cells. In the composite, fluorescence signals associated with GFP (green), Myc (red) 

and NT5C2 ab96084 (yellow puncta) are overlaid. (B) Co-localisation of staining for GFP with 

NT5C2 M02-3C1, but not with NT5C2 ab96084 (aa 108-332, upper arrows), in co-transfected 

cells. Non-transfected cells are indicated by the lower arrow. In the composite, fluorescence 

signals associated with GFP (green), M02-3C1 (red) and ab96084 (yellow puncta) are overlaid. 

These data support the NT5C2 antibody M02-3C1 as the most adequate for immunostaining in 

this study. 
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4.4.2. Visualisation of NT5C2 in the adult DLPFC  

The M02-3C1 antibody was used to interrogate the absolute expression of 

NT5C2 in the human DLPFC by means of immunohistochemistry using DAB and Nissl 

staining. Expression of NT5C2 was found to co-localise with neurons, glial cells and 

neuropil (synaptically dense region containing a relatively low number of cell bodies), 

consistent with the distribution of a ubiquitous enzyme. Moreover, staining of the 

neuropil is consistent with immunostaining of cellular processes of the NPCs. Some 

glial cells, however, did not co-localise with NT5C2 staining (Figure 6). Taken 

together, these data demonstrate that within the human DLPFC, pyramidal neurons 

express NT5C2, while a subset of glia cells express this protein. These data suggest 

that the NT5C2 protein could be differentially distributed through the cortex. 

Quantitative studies to identify whether pyramidal neurons of specific cortical layers 

or specific classes of glia cells express NT5C2 are warranted to clarify these findings. 

 

 

Figure 6. Immunohistochemistry of the human DLPFC probed for NT5C2. Immunostaining was 

performed using 3,3′-diaminobenzidine (DAB) and the NT5C2 M02-3C1 antibody. Sections 

were counterstained for Nissl substance using cresyl violet. Representation of the negative 

control (no primary antibody) is shown on the left top panel. Magnification is displayed under 
scale bars. Orientation of the image is given by the upper arrow showing a cortical fold. Lower 

black arrows point to examples of neurons, neuropil and glial cells stained for NT5C2, and a 

white arrow point to an example of a glial cell where NT5C2 staining was absent. 
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4.5. Discussion 

In Chapter 2, cis-regulatory effects operating on NT5C2 in different brain 

tissues were attributed to genotype at the top risk variants associated with 

schizophrenia on chromosome 10q24. The majority of cis-regulatory effects for 

NT5C2 in the DLPFC could be accounted for by genotype at these risk variants. The 

DLPFC is implicated in pathophysiological abnormalities observed in schizophrenia 

(Callicott et al., 2000). In Chapter 3, evidence for the existence of less expressed 

transcripts of NT5C2 was found. The full length transcripts, however, seemed to be 

more highly expressed and thus potentially contributing more to the cis-regulatory 

effects detected in Chapter 2. As not much is known about the presence of NT5C2 in 

the human brain, its distribution in the adult DLPFC and in NPCs derived from cortical 

origin was investigated in this chapter. Briefly, the cytosolic 5’-nucleotidase II 

(NT5C2) was confirmed as ubiquitously expressed in the investigated tissues. 

The biggest issue with immunoaffinity-based experiments is the lack of 

antibody specificity, which has often led to wrong biological interpretations (Baker, 

2015; Gilda et al., 2015). Two commercially available antibodies for NT5C2 (the 

rabbit polyclonal Abcam ab96084 aa 108-332 and the mouse monoclonal Abnova 

M02-3C1) were tested for immunostaining of endogenous and exogenous NT5C2 in 

different cellular models, using western blotting and immunocytochemistry. Both 

NT5C2 antibodies were shown to specifically detect single bands in western blotting 

using cell lysates of HEK293T cells transfected with this construct (Figure 2). 

Endogenous NT5C2 production in SH-SY5Y, CTX0E16 or HEK293T cells, however, was 

not detected under the experimental conditions in this chapter. It is possible that this 

event reflects low protein concentration or low sensitivity of the antibodies, which 

would require time-consuming optimisation of electrophoresis and blotting methods, 

and possibly acquisition of new antibodies.  

Instead, neural progenitor cells derived from hiPSCs and from the human 

foetal brain (the CTX0E16 cells) were used to co-transfect plasmids encoding NT5C2-

Myc and GFP, so that these cells could be immunolabelled using antibodies for NT5C2, 
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GFP and Myc. These experiments revealed that the antibody M02-3C1 was the most 

adequate for NT5C2 staining, while it informed of the spatial distribution of 

endogenous and exogenous NT5C2 protein in the NPCs. NT5C2 localisation in these 

cell lines was observed to be dispersed throughout the soma and cellular processes, 

which suggests this is a ubiquitous cytosolic enzyme (Figure 3) (Weirich et al., 2008). 

Moreover, the M02-3C1 antibody was used to investigate the profile of expression of 

NT5C2 in the DLPFC. Neurons, glial cells and the neuropil were found to be positive 

for NT5C2 immunostaining, although some glial cells that do not express NT5C2 were 

also identified. Quantitative immunohistochemistry data for NT5C2 in the cerebral 

cortex performed by Uhlen et al. (2015) suggested that >75% of neuronal cells and 

the neuropil successfully co-localised with NT5C2 staining, whereas a slightly smaller 

proportion of glial cells, between 25-75%, was found to express NT5C2. This could 

indicate that the risk mechanisms driving association with schizophrenia could be 

arising from cells which more abundantly express NT5C2.  

Limitations of this study include the small sample size analysed, and the lack 

of a cell line or tissue that is known to constitutively not express NT5C2 (a negative 

control for staining). Investigating specific cell types involved in the cis-regulatory 

risk mechanism could be performed using single-cell RNA-seq or tissue 

microdissection or, alternatively, using quantitative immunostaining or fluorescence 

in situ hybridisation (FISH). Nevertheless, the results obtained support the use of the 

NT5C2 antibody M02-3C1 for in vitro or post-mortem immunolabelling, under the 

experimental conditions described in this chapter. In summary, this chapter found 

supporting evidence for the ubiquitous expression of NT5C2 in the central nervous 

system (Bianchi and Spychala, 2003; Itoh, 2013), in which neurons, neuropil and 

glial cells were found to co-localise with NT5C2 staining. Evidence in the literature 

that suggests that NT5C2 is more abundantly expressed in neurons rather than glial 

cells is partly supported by the present data. Further investigation is warranted, as 

this may have implications for the putative role of NT5C2 in risk for schizophrenia.  
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Rodent neural stem cells (left picture, by Maria Morell, University of Michigan) and a mature 

primary neuron (right picture, by Pooja Raval, King’s College London). The stem cells were 

stained for morphological (green) and nuclear (blue) markers, and the adult neuron was 

transfected and stained for green fluorescent protein (GFP). 

 

 

 

 

Chapter 5  

Global gene expression profiling of a neural progenitor 

cell line following NT5C2 knockdown 
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5.1. Abstract 

Genome-wide association signals for schizophrenia on chromosome 10q24 

were found to be associated with cis-regulatory effects on multiple genes at this 

locus, in Chapter 2. The risk alleles of rs11191419 and chr10_104957618_I were 

associated with decreased expression of NT5C2 in three adult brain areas involved in 

schizophrenia pathophysiology and in the foetal brain, implicating NT5C2 as a 

putative schizophrenia risk gene. Chapter 3 provided evidence suggesting that risk is 

more likely mediated via expression changes to full length NT5C2, while Chapter 4 

found endogenous expression of this protein associated with all major neural cell 

types in the adult DLPFC. In order to study the effects on global gene expression 

elicited by this risk mechanism, the downregulation of NT5C2 was reproduced in vitro 

using small interfering RNAs (siRNAs) in human neural progenitor cells (NPCs). Two 

independent siRNAs were found to effectively reduce NT5C2 at the transcript and 

protein levels, as observed by qPCR and immunocytochemistry. The knockdown was 

also confirmed by western blot via measurement of AMPK-alpha Thr172 

phosphorylation. The expression of 65 genes of known function was found to be 

significantly altered in association with the knockdown by the siRNAs. This gene list 

was enriched for GO and KEGG terms implicated in the regulation of cardiac muscle 

contraction and the actin cytoskeleton, as well as cancer (FDR<0.05). Enrichment for 

genes involved in the mitogen-activated protein kinases (MAPK) pathway was also 

observed at a more relaxed FDR threshold (FDR<0.1). Mean increased activation of 

MAPK signalling as function of phosphorylation of ERK1/2 was observed by western 

blotting, although this event was not statistically significant. The antipsychotics 

ziprasidone and fluphenazine were estimated by connectivity mapping to reverse the 

gene expression changes elicited by the knockdown in the NPCs. These data provide 

evidence of downstream mechanisms associated with the knockdown of NT5C2, 

potentially mediating risk to schizophrenia. 

 

Note: The microarray presented in this chapter was performed by Mr Sanghyuck Lee, from 

the the BRC IoPPN Genomics & Biomarker Core Facility at the MRC Social, Genetic & 

Developmental Psychiatry Centre (SGDP) at King’s College London. The microarray and 

pathway analyses were assisted by Dr Timothy Powell and Dr Gerome Breen from the SGDP. 
The Western blots to quantify ERK1/2 phosphorylation in cultures submitted to NT5C2 silencing 

were performed by Mr Iain Watson (Srivastava’s Lab).  
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5.2. Introduction 

The largest genome-wide association study of schizophrenia published to 

date identified 108 genomic loci associated with the disorder (Schizophrenia Working 

Group of the PGC, 2014), from which the third most significant locus is on 

chromosome 10q24. In Chapter 2, genotype at the top risk variants rs11191419 and 

chr10_104957618_I was associated with altered cis-regulation of multiple genes at 

the locus. The risk alleles, however, acted concordantly to decrease expression of 

NT5C2 in multiple brain tissues. In the DLPFC, for example, a brain region implicated 

in schizophrenia pathophysiology (Galindo et al., 2016), risk alleles were associated 

with a mean 16% reduction in the expression of NT5C2 (Chapter 2, Figure 8) (Duarte 

et al., 2016). Although novel transcripts of this gene were detected in the human 

brain, the full length variants were more highly abundant (Chapter 3), and thus more 

likely to contribute to the cis-regulatory mechanism observed. Immunostaining of the 

adult DLPFC (Chapter 4) found all neural cell types to co-localise with the cytosolic 

5'-nucleotidase II (NT5C2).  

The cytosolic 5'-nucleotidase II (NT5C2) is a soluble enzyme which cleaves 

inorganic phosphate from purine nucleotides such as inosine, adenosine and 

guanosine monophosphate molecules (IMP, AMP, GMP) (Itoh, 2013). It also catalyses 

the transfer of phosphate groups between nucleotides and nucleosides (Meyer et al., 

2013). As key regulator of intracellular nucleotide and nucleoside pools, NT5C2 might 

lend support to the purinergic hypothesis of schizophrenia (Hirota and Kishi, 2013; 

Lara and Souza, 2000; Yao et al., 2010). This hypothesis suggests that purine levels 

can affect glycine abundance in the synaptic cleft, which in turn modulates the effect 

of glutamate, subsequently affecting GABAergic and dopaminergic neurons, and thus 

changes to NT5C2 levels may potentially explain positive and negative symptoms of 

schizophrenia (Boison et al., 2012).  
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Although the knockdown of NT5C2 has been associated with cell death 

(Careddu et al., 2008) and changes to cellular proliferation in astrocytoma cells 

(Cividini et al., 2015b), and energetic mobilisation in muscle cells (Kulkarni et al., 

2011), its effects on the global gene expression profile of NPCs remain unknown. 

Moreover, the effect of NT5C2 knockdown on the global gene expression profile needs 

to be investigated in the context of schizophrenia, therefore using a relevant cellular 

model. The endogenous expression of NT5C2 was reduced in a neural progenitor cell 

line (CTX0E16) derived from the cortical neuroepithelium of a first trimester foetus 

(Anderson et al., 2015). With the use of small interfering RNAs (siRNAs), the transient 

knockdown of NT5C2 was achieved and the effects on the global gene expression 

profile were assessed using Illumina BeadChip microarrays. Gene ontology analysis 

and connectivity mapping methods were applied to the gene list for which significant 

expression changes were shared between two distinct, non-overlapping siRNA 

sequences targeting NT5C2. The objective of this chapter is therefore to identify 

downstream cellular effects associated with reduction of NT5C2 expression, which is 

associated with risk for schizophrenia.  

 

 

5.3. Methods 

5.3.1. Cell culture 

The neural stem-cell line CTX0E16 was used to investigate global gene 

expression changes caused by the knockdown of the schizophrenia susceptibility gene 

NT5C2. This cell line was kindly provided by ReNeuron (www.reneuron.com) as part 

of a Material Transfer Agreement. The cell line was derived from a 12-week old foetal 

brain, as detailed elsewhere (Anderson et al., 2015; Pollock et al., 2006). Briefly, this 

karyotypically normal cell line was obtained from the cortical neuroepithelium of a 

human foetus, and conditionally immortalised by genomic incorporation of the 

c-mycERTAM transgene. This construct acts as molecular switch to stimulate 

proliferation in the presence of 4-hydroxi-tamoxifen (4-OHT). Cells were maintained 

at 37ºC with 5% CO2, and routinely grown in Nunclon™ Delta Surface T75 tissue 

culture flasks (ThermoFisher Scientific, Waltham, MA, USA) coated with 1 μg/cm2 
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Engelbreth–Holm–Swarm murine sarcoma basement membrane laminin. Media was 

changed every 2-3 days, cells were passaged when 80-90% confluency was 

achieved, and cultures were maintained for between 13 and 20 passages. 

Proliferation was induced by maintaining cells in reduced modified medium 

(DMEM:F12 with 15 mM HEPES and sodium bicarbonate) supplemented with 0.03% 

human serum albumin (GE Healthcare Life Sciences, Buckinghamshire, UK), 

100 μg/mL apo-transferrin (Scipac Ltd, Kent, UK), 16.2 μg/mL putrescine, 

5 μg/mL human insulin, 60 ng/mL progesterone, 2 mM L-glutamine, 

40 ng/mL sodium selenite, 10 ng/mL human fibroblast growth factor (FGF) 

(PeproTech, Rocky Hill, NJ, USA), 20 ng/mL human epidermal growth factor (EGF) 

(PeproTech) and 100 nM 4-OHT. For immunocytochemistry, cells were grown on 

laminin-coated 13 mm coverslips, which had been previously treated with 

1 M hydrochloric acid, 70% ethanol and pure ethanol for one hour each, followed by 

overnight sterilisation (180ºC) in a dry oven. All reagents were purchased from 

Sigma-Aldrich (Gillingham, Dorset, UK) unless stated otherwise. 

 

5.3.2. Small interfering RNA (siRNA) in cultures 

Double-stranded RNA molecules (dsRNA) can be transfected into cells and 

converted into siRNA molecules owing to the endogenously expressed enzyme Dicer. 

The siRNA molecule associates with the RNA Induced Silencing Complex (RISC) and 

Argonaute2 to cleave and/or inhibit translation of specific messenger RNAs to which 

they pair with by complementarity (Whitehead et al., 2009). In this study, the 

Trilencer 27-mer NT5C2 siRNA kit (SR307908, Origene, Rockville, MD, USA) was used 

to transiently knockdown full length NT5C2, RefSeq transcripts NM_012229 and 

NM_001134373. dsRNA Resuspension Buffer (provided by the manufacturer) was 

used to solubilise the oligoribonucleotides, and the solutions were heated at 94ºC for 

2 min after resuspension. The kit contained three non-overlapping siRNA sequences, 

which included: siRNAs “A” (UGAGAAGUAUGUAGUCAAAGAUGGA, sense sequence) 

and “B” (ACAACUGUAAUAGCUAUUGGUCUTC, sense sequence), equally targeting the 

utter 5’ exon of both known NT5C2 transcripts, and siRNA “C” 
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(CAAAGACACUGACUACAAGCGGCAC, sense sequence), targeting exon 10 from 

NM_012229 and exon 9 from NM_001134373, according to the human genome build 

hg19. The new transcripts of NT5C2 detected in Chapter 3 are expected to be 

similarly silenced by these siRNA sequences. The corresponding dsRNAs were 

transfected in parallel with (1) a negative control (scramble sequence) (SR30004, 

sense: CGUUAAUCGCGUAUAAUACGCGUAT); and (2) a fluorescent reagent, the 

positive control BLOCK-iT™ Fluorescent Oligo (ThermoFisher Scientific) to provide 

estimates of transfection efficiencies into the CTX0E16 cells by using fluorescence 

microscopy. A million cells were plated into T75 flasks 24 hours before transfection 

(or 10,000 cells for 13 mm coverslips placed in 24-well plates, for the 

immunocytochemistry assays). Four biological replicates (n=4) were transfected with 

10 nM siRNAs in parallel with the controls. On the day of transfection, media was 

changed to reduced modified medium supplemented with all items with the exception 

of 4-OHT, so that proliferation was not artificially stimulated through c-Myc 

overexpression. Cells transfected with the positive control were manually counted in 

an Olympus IX70 microscope (10x objective) using bright field visualisation, a 

fluorescence source and a 568 nm filter to ascertain the level of transfection. Global 

gene expression was assessed only in the two siRNA conditions for which siRNAs 

yielded the best silencing in the transcript and protein level. 

 

 

5.3.3. RNA and protein extractions  

In order to extract total RNA and protein from each flask, cells were detached 

using Accutase, and the cell suspension was equally split into two tubes for 

harvesting. For total RNA extraction, one of the pellets was mechanically dissolved in 

1 mL Tri-Reagent (ThermoFisher Scientific), as described in the manufacturer’s 

protocol. Briefly, the resulting homogenate was mixed with 0.1 mL 

1-bromo-3-phenolpropane, and incubated at room temperature for 15 min. The 

homogenate was then centrifuged at 13,000 xg for 10 min at 4ºC. The supernatant 

was transferred to a new tube containing 0.5 mL isopropanol, and was incubated at 

room temperature for 10 min. After harvesting, the supernatant was discarded and 
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the pellet was washed three times with molecular grade 75% ethanol. The 

supernatant was discarded and the sample was let to air dry for 15 min. The pellet 

was resuspended in nuclease-free H2O, and absorbances were measured in a 

spectrophotometer ND-1000 (NanoDrop). For protein extraction, the pellet was 

manually disrupted in RIPA Buffer (ThermoFisher Scientific) containing 2x Halt 

Protease and Phosphatase Inhibitor Cocktail (ThermoFisher Scientific). The cell 

lysates were sonicated at 4ºC for three 30 sec pulses at 50% power, followed by 

30 sec rest steps between bursts. The lysate was incubated at 4ºC for 15 min and 

harvested at 13,000 xg for 15 min at 4ºC to collect for cell debris. The supernatant 

was collected and stored at -80ºC. 

 

5.3.4. DNAse treatment  

Total RNA samples were treated with TURBO DNA-free kit™ (ThermoFisher 

Scientific) prior to use, according to the protocol provided by the manufacturer. 

Briefly, 10 µL RNA (approximately 4 µg) was incubated with 2 units of Turbo DNAse 

in 1x Turbo DNAse buffer at 37ºC for 30 min. Reaction inactivation was performed 

by incubation with DNase Inactivation Reagent during 5 min. The resulting solution 

was centrifuged and the supernatant (DNA-free RNA) collected. This RNA did not yield 

a PCR product in the absence of a reverse transcription step. 

 

5.3.5. cDNA synthesis for quantitative PCR 

Reverse transcription was performed with 1.5 µg of DNA-free RNA using 

SuperScript III® (SSIII) Reverse Transcriptase (ThermoFisher Scientific). Briefly, the 

reaction was performed in two steps that led to a 20 µL final reaction containing 

1.5 µg RNA, 5 µM random decamers, 500 µM dNTPs, 5 mM DTT, 40 units 

RNaseOUT™ Recombinant Ribonuclease Inhibitor (ThermoFisher Scientific) and 

200 units of SSIII enzyme in 1x First-Strand Buffer. An initial mixture containing 

RNA, random decamers and dNTPs was heated to 65ºC for 5 min and cooled on ice 

for at least 1 min, when the remaining components were added to the reaction. The 

reaction was incubated on a GS4 Thermocycler (G-Storm, Somerton, UK) with a 

heated lid for 5 min at 25ºC, 60 min at 50ºC, 30 min at 55ºC and 15 min at 70ºC. 

The resulting cDNA was diluted 1:7 for the RT-qPCR reactions and stored at -20ºC. 
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5.3.6. Quantitative PCR (qPCR) 

Quantitative PCR was carried in 12.5 µl reactions consisting of 5 µL 

1:7 diluted cDNA, 1× HOT FIREPol EvaGreen qPCR Mix Plus (Solis BioDyne, Tartu, 

Estonia) and 200 nM primers using a real-time thermocycler MJ Research Chromo 4 

(Bio-Rad, Hercules, CA, USA) linked to an MJ Opticon Monitor analytic software (Bio-

Rad). The reaction programme consisted of a 15-min incubation at 95ºC and 40 

cycles of 30 sec at 95ºC and 30 sec at 60ºC. Duplicate qPCR reactions were 

performed, and standard deviation between cycle thresholds (CTs) for technical 

replicates was <0.5. The reactions yielded single melting curves when submitted to 

a 60ºC-95ºC temperature gradient. The oligonucleotides shown on Table 1 were 

designed using Primer3 (Untergasser et al., 2012), and were purchased from 

Integrated DNA Technologies (London, UK). All primer sets had PCR efficiencies 

calculated as determined by a standard curve of four pooled cDNA dilution points. 

The primers used for validating the microarray findings were designed to amplify 

close to the exon complementary to the microarray probes. Gene expression was 

estimated using the Pfaffl (2001) method, which takes into account CTs and 

efficiencies calculated for target and reference genes. Gene expression values were 

first normalised to B2M and RPL13A levels (see below), then averaged and compared 

to expression values at the scramble condition (negative control) using two-tailed t-

tests on GraphPad Prism 6 (GraphPad Software, La Jolla, CA, US). 

 

5.3.7. Housekeepers screening 

A screening for the most stably expressed housekeeping genes (HKs) upon 

knockdown of NT5C2 was performed in cultures submitted to all siRNA treatments. 

The tested HKs included B2M (beta-2-microglobulin), RPL13A (ribosomal protein 

L13a), ACTB (beta-actin), SDHA (succinate dehydrogenase complex, subunit A), UBC 

(ubiquitin C), GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and RPL30 

(ribosomal protein L30) (Table 1). The most stable housekeepers were selected using 

NormFinder (Andersen et al., 2004), which takes into consideration the expression 

stability between conditions, and PCR efficiencies inherent to each primer set. The 

most stable expression was observed for B2M and RPL13A, as shown in Figure 1  
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Table 1. Oligonucleotide sequences used for qPCR assays in this study. 

Target Forward 5’-3’ Reverse 5’-3’ Usage 

NT5C2 CTCCCAACCTCTTCCCACTG GGACCTCGTTTGTTCCTGTG NT5C2 expression 

ATG4B TACTCTGACCTACGACACTCTCC TGCTGTATTTTCTACCCAGTATCCA Validation microarray 

PSMC4 GTCCTATCCTGCCCTTCCAG GTGTGGCCTGGGATGATCT Validation microarray 

HNRNPA1 CGGAGTCTACCAATGCCGAA CAGAAAGGAGCAAGCTGACG Validation microarray 

TBCA AAATATGCGGCTTCCAACCTG AATGAGAGCTGAAGACGGTGA Validation microarray 

B2M TATCCAGCGTACTCCAAAGA GACAAGTCTGAATGCTCCAC Housekeeper screen (stable) 

RPL13A CCTGGAGGAGAAGAGGAAAGAGA TTGAGGACCTCTGTGTATTTGTC Housekeeper screen (stable) 

ACTB TGTGATGGTGGGAATGGGTCAG TTTGATGTCACGCACGATTTCC Housekeeper screen (unstable) 

SDHA TGGGAACAAGAGGGCATCTG CCACCACTGCATCAAATTCATG Housekeeper screen (unstable) 

UBC ATTTGGGTCGCGGTTCTTG TGCCTTGACATTCTCGATGGT Housekeeper screen (unstable) 

GAPDH GAAATCCCATCACCATCTTCCAGG GAGCCCCAGCCTTCTCCATG Housekeeper screen (unstable) 

RPL30 ACAGCATGCGGAAAATACTAC AAAGGAAAATTTTGCAGGTTT Housekeeper screen (unstable) 

 

 

 

 

 

5.3.8. Immunocytochemistry  

The validation of the NT5C2 antibody M02-3C1 was presented in Chapter 4 

(the monoclonal antibody M02, clone 3C1, H00022978-M02, Abnova, Taipei, 

Taiwan). In this chapter, this antibody was used to quantify the knockdown of NT5C2 

at the protein level using immunocytochemistry experiments in independent cultures. 

Figure 1. Expression stability of tested 

housekeeping genes, according to 

NormFinder. This analysis takes into 
consideration expression stability 

during the knockdown and the PCR 

efficiencies inherent to each primer set. 

B2M and RPL13A were chosen as 

reference genes for RT-qPCR assays. 
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Cultures were incubated with 10 nM siRNAs for 72 hours, after which cells were 

double-fixed using 4% formaldehyde in phosphate-buffered saline (PBS) containing 

4% sucrose for 10 min, at room temperature. Cells were then incubated with cold 

methanol for 10 min on ice. Fixed cells were permeabilised and blocked with 2% 

normal goat serum (NGS) in PBS-T (PBS containing 0.1% Triton-X). The antibody for 

NT5C2 (mouse, M02-3C1, 1:200) and for the morphological marker beta-3 tubulin 

(Abcam ab41489, aa 108-332, chicken, 1:500) were incubated overnight in blocking 

solution at 4ºC. On the next day, cells were washed for 10 min three times in PBS-T 

and incubated with fluorescent secondary antibodies (Alexa Fluor goat anti-mouse 

488 and goat anti-chicken 568, ThermoFisher Scientific) in blocking solution for one 

hour. Cells were washed again and stained with DAPI (1:50,000) for 5 min. Coverslips 

were mounted using ProLong Gold Antifade Mountant reagent (ThermoFisher 

Scientific), and stored at 4ºC protected from light. 

 

5.3.9. Confocal imaging acquisition and analysis 

Fluorescently stained CTX0E16 cell were imaged in a Leica SP5 confocal 

microscope using the 40x objective. Settings like laser power, pinhole and smart gain 

were adjusted during the imaging of the control, and were kept constant during the 

image acquisition. Images were taken as z-stacks containing 10 plans (z-step = 

0.5 μm) and exported to ImageJ (Schneider et al., 2012), where background 

subtracted images and maximum intensity projections were generated (Srivastava 

et al., 2011). The beta-3 tubulin channel was thresholded to delineate the cell soma 

and mark regions of interest (ROIs). All images were converted to greyscale, and 

corrected total cell fluorescence (CTCF) for NT5C2 was calculated as: 

CTCF = integrated density - (area x mean fluorescence of three background reads). 

Each condition was imaged in four fields of view (FOV) and CTCF values were obtained 

for 20 cells per FOV, in four biological replicates (approximately 320 cells/condition). 

Resulting CTCF values were compared in GraphPad Prism 6 using a one-way ANOVA. 
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5.3.10. Protein quantification and Western blotting 

Protein extracts were quantified using the Pierce™ BCA Protein Assay Kit 

(ThermoFisher Scientific), as described in the previous chapter. Briefly, this assay 

couples the reduction of copper by proteins in an alkaline medium, with colorimetric 

detection of cuprous cations (Cu1+) by bicinchoninic acid (BCA). Absorbance at 

595 nm was estimated using 96-well plates in a Beckman Coulter DTX 880 Multimode 

Detector. Protein concentrations were estimated using a standard curve of eight serial 

dilution points of bovine serum albumin solutions. Protein samples were diluted to 1x 

Laemmli sample buffer (Bio-Rad, Hercules, California, USA) containing beta-

mercaptoethanol. Approximately 5 µg total protein was loaded in 15-well 4–20% 

Mini-PROTEAN® TGX™ Precast Protein Gels (Bio-Rad). Electrophoresis was adjusted 

to 150 V for approximately one hour. Proteins were wet-transferred to nitrocellulose 

membranes for 100 V during one hour. The membranes were blocked with Odyssey® 

Blocking Buffer (LI-COR, Lincoln, NE, USA) or milk 5% in TBS-T for one hour, and 

incubated overnight at 4ºC with primary antibodies in blocking solution. Primary 

antibodies used include the MAPK antibody (ERK1/2 antibody #9102, 1:1,000 in 

Odyssey buffer, Cell Signalling Technology, Danvers, MA, US), phospho-MAPK 

(Phospho-ERK1/2 Thr202/Tyr204 antibody #9101, 1:1,000 in Odyssey buffer, Cell 

Signalling Technology), AMPK-alpha (AMPK-alpha D6 antibody sc-74461, 1:200 in 

milk blocking buffer, Santa Cruz Biotechnology, Dallas, TX, USA) and phospho-AMPK-

alpha (p-AMPK alfa1/2 Thr 172, sc-33524, 1:200 in milk blocking buffer, Santa Cruz 

Biotechnology). On the next day, membranes were washed three times for 10 min in 

TBS-T (20 mM Tris, 150 mM NaCl containing 0.1% Tween-20), and exposed to 

fluorescent secondary antibodies diluted 1:10,000 for one hour (Alexa Fluor 680 

goat-anti-mouse, and Alexa Fluor 790 goat-anti-rabbit, ThermoFisher Scientific). The 

membranes were scanned in an Odyssey (LI-COR) machine after three 10 min 

washes. Regions of interest corresponding to bands of total-/phospho-MAPK were 

drawn and quantified using the LI-COR® Odyssey® Software (LI-COR). Integrated 

intensity values for phosphorylated MAPK and AMPK members were normalised to 
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total kinase amounts, normalised to phosphorylation at the control condition, and 

analysed in a non-parametric analysis of variance using GraphPad Prism. 

 

5.3.11. Microarray 

The cultures for which a significant knockdown of NT5C2 was achieved and 

the control cultures treated with a scramble siRNA (siRNA A, n=3; siRNA B, n=4; 

controls, n=4) were submitted for microarray analysis at the IoPPN Genomics & 

Biomarker Core Facility, Social, Genetic & Developmental Psychiatry Centre, King’s 

College London, UK, in collaboration with Dr Gerome Breen’s group. Prior to 

microarray library preparation, RNA integrity was checked in all 14 samples using the 

Agilent RNA 6000 Nano Kit on the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, 

CA, USA) (RIN=10 for all samples) (Figure 2). Global gene-expression profiling was 

performed using the Illumina Human HT12 v4 BeadChip array (Illumina, Cambridge, 

Cambridgeshire, UK), according to the manufacturer’s instructions.  

Raw microarray probe fluorescence intensities were extracted from idat files 

using the GenomeStudio software. Spline normalisation and log2 transformation were 

applied to the data using the lumi Bioconductor package (Du et al., 2008) in RStudio. 

Probe intensities were analysed in a linear regression model to measure the effect of 

the siRNAs while correcting for variability between biological replicates and 

microarray batches. To limit spurious results, probes that were not detected in all 

samples with a detection threshold P < 0.05 were disregarded from the analysis. 

Differentially expressed genes (P < 0.05, uncorrected) showing the same direction 

of effect upon knockdown with two independent siRNA sequences targeting NT5C2 

were submitted to analysis of gene ontology and connectivity mapping. A 

hypergeometric probability was calculated to inform the probability of obtaining the 

resulting overlapping gene set from the differentially expressed gene lists in each 

siRNA condition, considering all genes expressed in the NPCs. Use of the overlapping 

gene set, as performed by Hill et al. (2012), is likely to remove the majority of off-

target effects associated with individual siRNA sequences. 
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Figure 2. Quality control for total RNA using BioAnalyzer. Representative image. 
Analysis was performed on DNA-free RNA samples obtained from CTX0E16 

cultures submitted to siRNA treatments A (n=3), B (n=4) and their respective 

controls, prior to microarray analysis.  

 

 

 

 

5.3.12. Gene ontology analysis and connectivity mapping 

The overlapping gene set was tested for enrichment of GO (Gene Ontology) 

and KEGG (Kyoto Encyclopedia of Genes and Genomes) terms using the GEne SeT 

AnaLysis Toolkit (Webgestalt) (Wang et al., 2013). A user-specific background gene 

set was used, which containing all expressed genes in all samples of NPCs with 

significant detection (P < 0.05). Gene ontology analysis may reveal biological 

processes implicated in the knockdown, and consequently events potentially 

associated with risk for schizophrenia. The overlapping gene list was also analysed 

by connectivity mapping using the Library of Integrated Network-based Cellular 

Signatures (LincsCloud) (http://apps.lincscloud.org/) (Vempati et al., 2014). At the 

time of analysis (Aug 2016), the database contained the expression profiles from 
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almost 80 human cell lines, including NPCs, following exposure to more than 20,000 

drugs and genetic manipulation of over 20,000 genes. As a catalogue of gene 

expression response profiles, the platform allows the identification of drugs estimated 

to reverse a an input signature provided by the user based on empirical evidence 

contained in the database. The output provided includes compounds and the 

associated connectivity scores. A positive connectivity score is given to a drug that 

empirically elicited a transcriptomic signature in the cells in the database similarly to 

the user-input signature, whereas a negative score is given to a drug associated with 

potential to reverse the query signature. There has been some promising evidence 

for drug repositioning in other fields of medicine using connectivity mapping (Lamb, 

2007). Although common risk mechanisms for schizophrenia (such as the 16% 

reduction in expression of NT5C2 associated with both risk variants in the DLPFC) are 

associated with small increase to disease susceptibility, it is possible that several risk 

mechanisms converge into similar changes to the global gene expression profile. 

Therefore, this analysis might provide clues about biological processes involved in 

schizophrenia and may expose drugs with potential to reverse them. The connectivity 

mapping results were filtered for the top 30 positive and top 30 negative connections 

in neural progenitor cells in order to keep only relevant compounds for the cellular 

model used in this study, but the top 400 connections are shown in Appendix 3.  
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5.4. Results 

5.4.1. Validation of the siRNAs  

In order to identify genes and genetic pathways affected by the 

downregulation of NT5C2, a transient silencing of this gene was performed using 

small interfering RNA (siRNA). Three siRNA sequences were initially tested for this 

purpose, and the samples treated with the two conditions that yielded the best 

knockdown were selected for global gene expression profiling using microarrays. 

First, transfection of the NPCs with the positive control reagent, BLOCK-iT™ 

Fluorescent Oligo, showed an incorporation of the red fluorescent oligonucleotides by 

90.9% of cells (±0.02, CI 95%; n=4) (Figure 3). This is slightly higher than the 

transfection efficiency observed by Hill et al. (2012) for CTX0E03 (approximately 

80%), which is a clonal population obtained from the same foetus as the CTX0E16 

line (Pollock et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. CTX0E16 transfected with BLOCK-iT™ fluorescent oligonucleotide 

(positive control of transfection). Cells were transfected using the N-TER™ 

Nanoparticle siRNA Transfection System. Efficiency of transfection was 
estimated to be 90.9% (±0.02, CI 95%) (n=4). Bright field images were overlaid 

with images captured using fluorescence and a 568 nm filter. 
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Expression of NT5C2 was assessed using RT-qPCR in all samples (n=4) for 

estimation of the knockdown efficacy associated with the three siRNA sequences in 

RNA samples that would be submitted for sequencing. siRNAs A and B were the most 

efficient in reducing NT5C2 transcripts in culture, yielding a reduction of 26.0% and 

19.6%, as compared to the control (two-tailed t-tests, P=1.18E-03 and P=1.09E-03, 

respectively) (Figure 4). In order to keep exclusively relevant samples for the 

microarray analysis, samples submitted to siRNA C and one culture transfected with 

siRNA A were dropped due to poor silencing.  

An independent immunocytochemistry assay using similar siRNA transfection 

conditions revealed the ability of siRNAs A and B to reduce NT5C2 at the protein level, 

as assessed by measures of Corrected Total Cell Fluorescence (CTCF) (Figure 5). 

siRNA A was associated with a reduction of 40% in NT5C2 immunostaining 

(P=1x10-5), whereas siRNA B was associated with a reduction of 37% in NT5C2 

labelling (P=4x10-4). This indicated that changes in the global gene expression profile 

caused by the knockdown of NT5C2 could be accounted for by reduced transcript and 

protein levels.  

                            NT5C2 expression (RNA) 

 

Figure 4. The effect of three siRNA sequences on NT5C2 RNA expression, as measured by qPCR. 

The CTX0E16 cells were treated with 10 nM siRNAs. siRNA A was associated with a 26% 
reduction (n=3), and B with a 19.6% reduction on overall NT5C2 expression (n=4), as compared 

to expression at the control conditions (dotted line). *** P<0.001, two-tailed t-test of Pfaffl 

normalised values for NT5C2 expression. 
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NT5C2 protein (ICC) 
 

Figure 5. NT5C2 siRNA conditions are associated 

with reduced protein levels, as measured by 

immunocytochemistry. Reduced immunostaining 

of NT5C2 was observed after 72-hours transfection 
with siRNAs A (40% reduction) and B (37% 

reduction) in CTX0E16 NPCs. (A) Representative 

immunocytochemistry images where ROIs can be 

visualised in the three channels (morphological 
marker Beta-3-tub, DAPI and NT5C2) for the three 

siRNA conditions (A, B and control). Scale bar 

represents 50µm. (B) Corrected Total Cell 
Fluorescence (CTCF) values were measured for 

approximately 320 cells per condition (n=4), 

normalised against the control for estimates of the 

knockdown, and given in percentage. 

*** P<0.001, one-way ANOVA, Dunnet-corrected. 

 

(B) 

 

(A) 
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5.4.2. Microarray results and validation 

Cultures in which NT5C2 expression was transiently knockdown were 

submitted for global gene expression profiling. More than 47,000 probes of the 

Illumina HT12 v4 chip, representing more than 20,000 genes, were used to 

investigate changes in global gene expression associated with this putative 

schizophrenia risk mechanism. A total of 12,774 genes were found to be expressed 

in all samples and conditions with a detection threshold p<0.05. From these, 881 

were differentially expressed in association with siRNA A (p<0.05, uncorrected), and 

741 in association with siRNA B (p<0.05, uncorrected), as compared to the control 

conditions (Figure 6). Differential expression was validated using qPCR for some 

genes (Table 2) in the overlapping set of 74 genes (Table 3), for which significant 

expression changes were shared by two siRNA sequences targeting NT5C2. This 

overlapping gene set is unexpected to be observed by chance, according to a 

hypergeometric probability (P=5.92x10-5), suggesting that a substantial proportion 

of these were genuinely associated with the knockdown. It is important to note, 

however, that the hypergeometric probability calculated is likely inflated since the 

present experiment deviates from the assumption of independent controls (as shared 

controls were used).  

Four genes from the overlapping gene set were chosen for qPCR validation 

based on size of effect and statistical confidence (Table 2). The ability to detect these 

changes by qPCR was tested in cDNA synthesised from the same RNA samples used 

for global gene expression profiling. Expression of PSMC4 (proteasome 26S subunit, 

ATPase 4) and HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1) was found to 

be significantly reduced according to both methods, in both siRNA conditions. 

Expression of ATG4B (autophagy related 4B cysteine peptidase), similarly, was 

decreased upon knockdown, but this difference was not significant upon treatment 

with siRNA A, according to qPCR analysis. Expression of TBCA (tubulin-specific 

chaperone A), however, was found to be increased as per microarray assessment, 

but decreased by qPCR measurement. TBCA was removed from further analysis, and 

the possible reasons for this discrepancy are presented in the Discussion.  
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Table 2. RT-qPCR validation of four gene expression changes associated with both NT5C2 

knockdown conditions. 

Gene 
Fold-change array P-value array Fold-change qPCR P-value qPCR 

siRNA A siRNA B siRNA A siRNA B siRNA A siRNA B siRNA A siRNA B 

ATG4B 0.79455 0.79126 0.00645 0.01411 0.73033 0.89265 0.18794 0.04843 

PSMC4 0.69212 0.79923 0.04311 0.04717 0.63005 0.86497 0.00570 0.01361 

HNRNPA1 0.74267 0.80920 0.00394 0.02055 0.62572 0.74492 0.00444 0.00001 

TBCA* 1.32271 1.21001 0.00409 0.02579 0.82561 0.90537 0.00805 0.10001 

*Discordant gene, removed from further analysis.  

Figure 6. Gene expression changes 
associated with siRNAs A and B targeting 

NT5C2 in the neural progenitor cells 

CTX0E16. The silencing observed upon 
transfection with siRNA A and B, as 

compared to control, were 26% and 19.6%, 

respectively. (A) and (B) Volcano plots 

showing the effects in gene expression 
caused by siRNAs A and B. The former 

caused a bigger change in global gene 

expression than the latter probably as 

function of different knockdown efficiencies. 
Probes in blue are those that significantly 

differ in expression at the control condition 

(P<0.05, uncorrected). (C) Venn diagram 

representing the overlapping gene sets in 
the context of the global gene expression. 

From the overlapping gene set of 74 genes, 

only 65 have a known function. 

 

874 
         

741 

74 

siRNA A 

siRNA B 

Total genes expressed 

12,774 

(A) Global expression changes associated with siRNA A             (B) Global expression changes associated with siRNA B 

(C) 
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Table 3. Genes differentially expressed (at P < 0.05) in association 

with the knockdown of NT5C2. 

Gene symbol 
siRNA A siRNA B 

P-value Fold-change P-value Fold-change 

FZD7 0.002 0.934 0.183 0.946 

RPL6 0.002 0.858 0.558 0.938 

PTPLAD1 0.003 0.967 0.043 0.934 

HNRNPA1 0.004 0.743 0.021 0.809 

TPM1 0.004 0.833 0.181 0.889 

CNIH 0.005 0.868 0.401 0.857 

LOC729799 0.005 0.977 0.014 0.936 

ATG4B 0.006 0.795 0.014 0.791 

ILF3 0.006 0.9 0.271 0.925 

DSTN 0.007 0.944 0.035 0.949 

LARP1B 0.014 0.83 0.87 0.982 

MEST 0.014 0.905 0.034 0.922 

MSMO1 0.014 0.849 0.006 0.83 

C21ORF66 0.016 0.951 0.862 0.995 

NSUN5 0.019 0.913 0.016 0.953 

NFX1 0.021 0.867 0.012 0.884 

LOC440589 0.022 0.817 0.034 0.893 

CLEC2D 0.024 0.929 0.809 0.991 

FBXO38 0.025 0.945 0.026 0.908 

GTF2I 0.027 0.805 0.049 0.861 

ACRC 0.032 0.935 0.027 0.936 

SLC15A4 0.032 0.825 0.646 0.977 

EZH2 0.035 0.916 0.408 0.945 

DLGAP5 0.042 0.797 0.31 0.858 

PSMC4 0.043 0.692 0.047 0.799 

CEP152 0.047 0.901 0.282 0.924 

RPL22 0.048 0.831 0.018 0.953 

ACTG1 0.049 0.785 0.031 0.774 

RAE1 0.049 0.948 0.027 0.936 

WDR4 0.049 0.967 0.029 0.819 

CYP27A1 0.002 1.071 0.015 1.035 

NUDC 0.003 1.106 0.007 1.168 

*TBCA 0.004 1.323 0.026 1.21 

DACT3 0.005 1.097 0.045 1.073 

PRDX1 0.005 1.298 0.03 1.194 

ATP6AP2 0.006 1.284 0.035 1.282 

KBTBD7 0.007 1.232 0.018 1.059 

CEND1 0.008 1.063 0.018 1.096 

PKM 0.008 1.197 0.033 1.194 

AHNAK 0.011 1.343 0.118 1.29 

ATXN1 0.011 1.153 0.044 1.116 

RABGAP1L 0.012 1.019 0.031 1.017 

ACTN1 0.013 1.142 0.041 1.175 

RHBDD2 0.015 1.229 0.023 1.115 

CMTM7 0.016 1.181 0.035 1.091 

PORCN 0.018 1.039 0.032 1.059 

HMGN1 0.020 1.259 0.006 1.167 

LOC150568 0.021 1.086 0.026 1.073 

TM9SF1 0.021 1.139 0.024 1.035 

PDP2 0.024 1.116 0.121 1.037 

P4HA2 0.025 1.08 0.007 1.078 

FOXO1 0.026 1.168 0.026 1.122 

PLCE1 0.028 1.151 0.005 1.082 

RDX 0.028 1.299 0.042 1.233 

CNOT1 0.031 1.091 0.032 1.187 

ECD 0.031 1.117 0.098 1.129 

MMS19 0.031 1.24 0.04 1.18 

TPM2 0.032 1.039 0.006 1.062 

C20ORF199 0.033 1.197 0.013 1.136 

HS.363526 0.034 1.141 0.005 1.068 

POLDIP3 0.035 1.236 0.424 1.108 

DNAJB12 0.037 1.051 0.012 1.046 

LOC646345 0.037 1.253 0.046 1.132 

C17ORF97 0.038 1.09 0.014 1.111 

CMTM4 0.038 1.242 0.004 1.04 

SLC38A9 0.038 1.064 0.002 1.062 
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Table 3: continued. 

TargetID 
siRNA A siRNA B 

P-value Fold-change P-value Fold-change 

MAPK1 0.04 1.103 0.025 1.075 

ATP5D 0.041 1.176 0.008 1.125 

C1ORF123 0.041 1.059 0.043 1.124 

TGFA 0.042 1.215 0.016 1.154 

VPS26B 0.042 1.215 0.027 1.152 

FBXO17 0.044 1.065 0.048 1.032 

FAM53C 0.046 1.235 0.001 1.193 

APPBP2 0.048 1.069 0.012 1.067 
Gene names in blue represent downregulation; in red, upregulation. Highlighted genes were not 
recognised as part of genetic pathways. *Gene excluded from analysis, as directionality in expression 
measured by qPCR was different from microarray assessment.  

 

5.4.3. Gene ontology analysis 

In order to explore the biological mechanisms associated with the 

downregulation of NT5C2, gene ontology analysis was applied to the overlapping 

gene set. The GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and 

Genomes) databases are major bioinformatic catalogues of genes and associated 

biological functions. From the full overlapping gene set of 74 genes differentially 

regulated by the knockdown, 65 genes of known function were assessed for 

enrichment for particular GO and KEGG terms. Several expression, localisation and 

gene-interaction modules functionally connect the genes on the overlapping gene 

set, supporting their association (Figure 7). The resulting terms showed redundancy 

(i.e. similar terms referring to the same subset of genes) and were thus grouped into 

similar categories. The GO terms significantly enriched within the differentially 

expressed genes associated with the knockdown (Table 4), at a false discovery rate 

cut-off (FDR) q<0.05, included cellular component terms related to: 

• thin muscle (GO:0005862, FDR=0.0174 / GO:0005865, FDR=0.0174),  

• contractile fibers (GO:0030016, FDR=0.0290 / GO:0043292 FDR=0.0325), 

• pseudopodium formation (GO:0031143, FDR=0.0290). 

 

Terms linked with the knockdown, with confidence FDR<0.1 included: 

• stress response (GO:0070302, P=0.0005 / GO:0032872, P=0.0005), 

• nuclear transport (GO:0051169, P=0.0011 / GO:0006913, P=0.0011), 

• activation of the mitogen-activated protein kinases (MAPK) 

(GO:0043408, P=0.0004 / GO:0032872, P=0.0005 / GO:0000187, P=0.0011 / 

GO:0000165, P=0.001). 



123 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Genetic network associated with the knockdown of NT5C2. Modules 

shown are of co-expression (purple, 64.7% of connections), physical interactions 

(pink, 23.1%), co-localisation (blue, 4.0%), genetic interactions (green, 3.4%), 

shared protein domains (yellow, 2.6%). NT5C2 is found well connected to 
members of this network in the very centre. Created with GeneMania 

(www.genemania.org).  
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Table 4.  GO terms enriched amongst differentially expressed genes following NT5C2 

knockdown in NPCs. 

C
e
ll

u
la

r
 c

o
m

p
o
n
e
n

ts
 

  
GO:0005862 

GO:0005865 

Muscle thin filament tropomyosin 

C=4;O=2;E=0.03;R=73.01;rawP=0.0003;FDR=0.0174 
 
Striated muscle thin filament C=4;O=2;E=0.03;R=73.01;rawP=0.0003;FDR=0.0174 

GO:0005865 Striated muscle thin filament C=4;O=2;E=0.03;R=73.01;rawP=0.0003;FDR =0.0174 
  
TPM1 tropomyosin 1 (alpha) 7168 ENSG0000014041

6 TPM2 tropomyosin 2 (beta) 7169 ENSG0000019846
7     

    

GO:0031143 Pseudopodium C=7;O=2;E=0.05;R=41.72;rawP=0.0009;FDR=0.0290 

  
ACTN1 actinin, alpha 1 87 ENSG0000007211

0 MAPK1 mitogen-activated protein kinase 1 5594 ENSG0000010003

0     
    
GO:0030016 Myofibril C=65;O=4;E=0.45;R=8.99;rawP=0.0010;FDR=0.0290  
GO:0043292 Contractile fiber C=72;O=4;E=0.49;R=8.11;rawP=0.0014;FDR=0.0325  
  
ACTN1 actinin, alpha 1 87 ENSG0000007211

0 TPM1 tropomyosin 1 (alpha) 7168 ENSG0000014041

6 TPM2 tropomyosin 2 (beta) 7169 ENSG0000019846
7 ACTG1 actin, gamma 1 71 ENSG0000018400
9     

    
GO:0030017 Sarcomere C=50;O=3;E=0.34;R=8.76;rawP=0.0048;FDR=0.0928 
  
ACTN1 actinin, alpha 1 87 ENSG0000007211

0 TPM1 tropomyosin 1 (alpha) 7168 ENSG0000014041
6 TPM2 tropomyosin 2 (beta) 7169 ENSG0000019846
7     

B
io

lo
g

ic
a
l 
p

r
o
c
e
s
s
e
s
 

  
GO:0043408 Regulation of MAPK cascade C=253;O=8;E=1.78;R=4.49;rawP=0.0004;FDR=0.0979  
GO:0000165 MAPK cascade C=296;O=8;E=2.08;R=3.84;rawP=0.0010;FDR=0.0979 

  
PTPLAD1 protein tyrosine phosphatase-like A domain 1 51495 ENSG0000007469

6 FOXO1 forkhead box O1 2308 ENSG0000015090
7 MAPK1 mitogen-activated protein kinase 1 5594 ENSG0000010003
0 TGFA transforming growth factor, alpha 7039 ENSG0000016323
5 FZD7 frizzled family receptor 7 8324 ENSG0000015576
0 PRDX1 peroxiredoxin 1 5052 ENSG0000011745
0 PLCE1 phospholipase C, epsilon 1 51196 ENSG0000013819
3 ATP6AP2 ATPase, H+ transporting, lysosomal accessory p2 10159 ENSG0000018222
0     

    
GO:0032872 Regulation of stress-activated MAPK 

C=95;O=5;E=0.67;R=7.48;rawP=0.0005;FDR=0.0979 GO:0070302 Regulation stress-activated kinase 
C=96;O=5;E=0.68;R=7.40;rawP=0.0005;FDR=0.0979   

PTPLAD1 protein tyrosine phosphatase-like A domain 1 51495 ENSG0000007469
6 FOXO1 forkhead box O1 2308 ENSG0000015090
7 MAPK1 mitogen-activated protein kinase 1 5594 ENSG0000010003
0 FZD7 frizzled family receptor 7 8324 ENSG0000015576
0 PRDX1 peroxiredoxin 1 5052 ENSG0000011745
0     

    
GO:0000187 Activation of MAPK activity C=66;O=4;E=0.46;R=8.61;rawP=0.0011;FDR=0.0979  
  
PTPLAD1 protein tyrosine phosphatase-like A domain 1 51495 ENSG0000007469

6 MAPK1 mitogen-activated protein kinase 1 5594 ENSG0000010003
0 TGFA transforming growth factor, alpha 7039 ENSG0000016323
5 PLCE1 phospholipase C, epsilon 1 51196 ENSG0000013819
3     

    
GO:0006913 Nucleocytoplasmic transport C=230;O=7;E=1.62;R=4.33;rawP=0.0011;FDR=0.0979 

GO:0051169 Nuclear transport C=232;O=7;E=1.63;R=4.29;rawP=0.0011;FDR=0.0979 
  
ATXN1 ataxin 1 6310 ENSG0000012478

8 HNRNPA1 heterogeneous nuclear ribonucleoprotein A1 3178 ENSG0000013548
6 DACT3 dapper, antagonist of beta-catenin, homolog 3  147906 ENSG0000019738
0 MAPK1 mitogen-activated protein kinase 1 5594 ENSG0000010003
0 RAE1 RAE1 RNA export 1 homolog (S. pombe) 8480 ENSG0000010114
6 FZD7 frizzled family receptor 7 8324 ENSG0000015576
0 PRDX1 peroxiredoxin 1 5052 ENSG0000011745
0     

* Legend: number of reference genes in the category (C), number of genes in the gene 

set and also in category (O), expected number in the category (E), Ratio of enrichment 

(R), p-value from hypergeometric test (rawP), and p-value FDR-adjusted (FDR). For each 

gene, its description, Entrez ID and Ensembl ID are given on the same row. 
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The KEGG terms significantly enriched within the differentially expressed 

genes associated with the knockdown (Table 5), at a FDR<0.05, included 

cardiomyopathy related pathways (5410, FDR=0.0149 / 5414, FDR=0.0149), as well 

as adherens junctions (ID 4520, FDR=0.0376), regulation of actin cytoskeleton 

(ID 4810, FDR=0.0432) and prostate cancer (ID 5215, FDR=0.0432). Enriched 

terms at FDR<0.1 included additional cardiovascular (5412 and 4260, FDR=0.0697) 

and cancer-related modules (5200, 5211 and 5214, FDR=0.0814).  

An enrichment of regulatory pathways related to the mitogen-activated 

protein kinases (MAPK) was observed amongst differentially expressed genes 

(FDR<0.1). Therefore, activation of MAPK signalling was investigated using western 

blotting to provide measures of increased activation of ERK1/2 (extracellular signal-

regulated kinases), members of the MAPK cascade, in association with the 

knockdown. Activation of ERK1/2 (p42/p44) was measured by quantification of 

phosphorylation at residues Thr202/Tyr204 (Figure 8A). Although a mean increased 

phosphorylation of MAPK-ERK1/2 was observed in comparison to the control 

(siRNA A: 60% increased phosphorylation; siRNA B: 25% increased phosphorylation; 

P>0.05, n=4), this difference was not statistically significant. Activation of the AMP-

activated protein kinase (AMPK), a key-regulator kinase of cellular metabolism and 

nucleotide pools, was also investigated. This analysis provided evidence of increased 

phosphorylation of AMPK-alpha at residue Thr172, associated with the knockdown 

(Figure 8B) (siRNA A: 40% increased phosphorylation; siRNA B: 65% increased 

phosphorylation; P=0.03, n=4). These results support a role for AMPK signalling as 

a potentially downstream cellular effect associated with the downregulation of NT5C2.  
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Table 5. KEGG terms enriched amongst differentially expressed genes associated with 

the NT5C2 knockdown. 

K
E

G
G

 p
a
th

w
a
y
s
 

  
5410 Hypertrophic cardiomyopathy (HCM) 

C=31;O=3;E=0.21;R=14.58;rawP=0.0011;FDR=0.0149 5414 Dilated cardiomyopathy C=33;O=3;E=0.22;R=13.70;rawP=0.0013;FDR=0.0149 
  
TPM1 tropomyosin 1 (alpha) 7168 ENSG0000014041

6 ACTG1 actin, gamma 1 71 ENSG0000018400
9 TPM2 tropomyosin 2 (beta) 7169 ENSG0000019846
7     

  
4520 Adherens junction C=52;O=3;E=0.35;R=8.69;rawP=0.0049;FDR=0.0376 
  
ACTN1 actinin, alpha 1 87 ENSG0000007211

0 ACTG1 actin, gamma 1 71 ENSG0000018400
9 MAPK1 mitogen-activated protein kinase 1 5594 ENSG0000010003
0     

  
4810 Regulation of actin 

cytoskeleton  C=125;O=4;E=0.83;R=4.82;rawP=0.0094;FDR=0.0432   
RDX Radixin 5962 ENSG0000013771

0 ACTN1 actinin, alpha 1 87 ENSG0000007211
0 ACTG1 actin, gamma 1 71 ENSG0000018400
9 MAPK1 mitogen-activated protein kinase 1 5594 ENSG0000010003
0     

  
5215 Prostate cancer C=65;O=3;E=0.43;R=6.95;rawP=0.0091;FDR=0.0432 
  
FOXO1 forkhead box O1 2308 ENSG0000015090

7 MAPK1 mitogen-activated protein kinase 1 5594 ENSG0000010003
0 TGFA transforming growth factor, alpha 7039 ENSG0000016323
5     

  
5412 Arrhythmogenic ventricular cardiomyopathy 

C=34;O=2;E=0.23;R=8.86;rawP=0.0212;FDR=0.0697   

ACTN1 actinin, alpha 1 87 ENSG0000007211
0 ACTG1 actin, gamma 1 71 ENSG0000018400
9     

  
4260 Cardiac muscle contraction C=34;O=2;E=0.23;R=8.86;rawP=0.0212;FDR=0.0697  
  
TPM1 tropomyosin 1 (alpha) 7168 ENSG0000014041

6 TPM2 tropomyosin 2 (beta) 7169 ENSG0000019846
7     

  
5200 Pathways in cancer C=210;O=4;E=1.39;R=2.87;rawP=0.0505;FDR=0.0814  
  
FOXO1 forkhead box O1 2308 ENSG0000015090

7 MAPK1 mitogen-activated protein kinase 1 5594 ENSG0000010003
0 TGFA transforming growth factor, alpha 7039 ENSG0000016323
5 FZD7 frizzled family receptor 7 8324 ENSG0000015576
0     

  
5211 Renal cell carcinoma C=52;O=2;E=0.35;R=5.79;rawP=0.0465;FDR=0.0814 
5214 Glioma C=45;O=2;E=0.30;R=6.70;rawP=0.0358;FDR=0.0814 

   
MAPK1 mitogen-activated protein kinase 1 5594 ENSG0000010003

0 TGFA transforming growth factor, alpha 7039 ENSG0000016323
5    

* Legend: number of reference genes in the category (C), number of genes in the gene set and also 
in the category (O), expected number in the category (E), Ratio of enrichment (R), p-value from 

hypergeometric test (rawP), and p value FDR-adjusted (FDR). For each gene, its description, Entrez 
ID and Ensembl ID are given on the same row. 
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Figure 8. Influence of NT5C2 knockdown on activation of MAPK and AMPK cascades. The 
transient knockdown of NT5C2 was associated with significant activation of AMPK 

signalling, and with increased mean activation of MAPK signalling, although the latter was 

not statistically significant. (A) Phosphorylation of MAPK (mitogen-activated protein 

kinases) at Thr202/Tyr204 of ERK1/2 (p42/p44). Increased mean activation of the MAPK 
signalling cascade was observed in association with the knockdown, but this event was not 

statistically significant. Mean phosphorylation was increased by 60% and 25% (n=4), as 

elicited by transfection with siRNAs A and B, respectively, when compared to the 

phosphorylation levels in the control condition (dotted line). (B) Phosphorylation of AMPK 
(AMP-activated protein kinase) at residue Thr172 was found increased upon knockdown of 

NT5C2 with two siRNA sequences. Densitometry quantification (top) of Western blot bands 

(bottom; A=siRNA A, B=siRNA B; CTR=control) represent phosphorylation at Thr172 

normalised by total AMPK, adjusted to basal AMPK activation in the control (dotted line). 
siRNA A: 40% increased phosphorylation; siRNA B: 65% increased phosphorylation; 
*P<0.05, non-parametric analysis of variance, n=4. 

(A) Phospho-ERK1/2 (MAPK-p42/p44) (Thr202/Tyr204) 

 

 

 

 

 

 

 

 

 

 

 

 

  

(B)                  Phospho-AMPK-alpha (Thr172) 
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5.4.4. Connectivity mapping 

Connectivity mapping was used to identify genes and chemicals that could 

elicit or reverse the effects on gene expression associated with the knockdown of 

NT5C2 in the neural progenitor cells. The top 30 positive and negatively correlated 

connections are shown on Table 6, but a more comprehensive list of the top 400 

connections is listed on Appendix 3. Interestingly, present amongst the top chemical 

compounds estimated to counteract the knockdown (highlighted in blue) are the 

antipsychotics ziprasidone and fluphenazine, atypical and typical drugs, respectively. 

Other chemicals in this list include drugs that could potentially be repurposed for 

schizophrenia treatment, such as anandamine, an endogenous cannabinoid (De 

Petrocellis et al., 1998); eplerenone, a steroidal drug used for protection against 

cardiovascular disease (Davis and Nappi, 2003); hippeastrine, an alkaloid compound 

active against tumours and angiogenesis (Cao et al., 2013); and tomelukast, used to 

block inflammatory response in asthma (Berger, 1999). 

Amongst top compounds expected to mimic the global expression signature 

elicited by the knockdown of NT5C2 (highlighted in red) include proscillaridin, an 

inhibitor of the Na+/K+ ATPase pump used for treatment of heart conditions and 

known to trigger cell death in glioblastoma cells (Denicolai et al., 2014); ritodrine, a 

drug used to delay premature labour, recently described as teratogenic (Boga 

Pekmezekmek et al., 2015); strophanthidin, an inhibitor of the Na+/K+ ATPase pump 

shown to increase glutamate-evoked intracellular Ca+2 signalling (Song et al., 2014); 

and menadione, a drug that induces Parkinsonian symptoms (Janda et al., 2015).  
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Table 6. Top connectivity mapping results for the NT5C2 knockdown signature in NPCs.  

Overall rank Perturbant Class Cells Exposure Dose Connectivity score 

476221 ziprasidone Chemical NPC 24 h 10 µM -0.4975 

476187 CHIR-99021 Chemical  NPC 6 h 10 µM -0.4862 

476110 OXCT1 Gene NPC 96 h 1.5 µL -0.4729 

476096 TCIRG1 Gene NPC 96 h 1.5 µL -0.4710 

476005 fluphenazine Chemical NPC 24 h 10 µM -0.4622 

475935 APHA-compound-8 Chemical NPC 24 h 10 µM -0.4580 

475905 NCAPD2 Gene NPC 96 h 1.5 µL -0.4564 

475866 anandamide Chemical NPC 24 h 10 µM -0.4538 

475853 TIAM1 Gene NPC 96 h 1.5 µL -0.4532 

475821 PAF1 Gene NPC 96 h 1.5 µL -0.4515 

475811 UBAP1 Gene NPC 96 h 1.5 µL -0.4508 

475812 PHF15 Gene NPC 96 h 1.5 µL -0.4508 

475808 BRD-K31302860 Chemical NPC 24 h 10 µM -0.4507 

475783 TCFL5 Gene NPC 96 h 1.5 µL -0.4494 

475764 CIAPIN1 Gene NPC 96 h 1.5 µL -0.4486 

475719 GTPBP8 Gene NPC 96 h 1.5 µL -0.4466 

475720 DNAJB12 Gene NPC 96 h 1.5 µL -0.4466 

475616 BRD-K69569876 Chemical NPC 24 h 10 µM -0.4431 

475537 AP1B1 Gene NPC 96 h 1.5 µL -0.4401 

475518 BRD-K33164466 Chemical NPC 24 h 10 µM -0.4397 

475375 PUF60 Gene NPC 96 h 1.5 µL -0.4352 

475362 KDM3A Gene NPC 96 h 1.5 µL -0.4348 

475321 STK10 Gene NPC 96 h 1.5 µL -0.4337 

475262 EPHB4 Gene NPC 96 h 1.5 µL -0.4324 

475058 eplerenone Chemical NPC 24 h 10 µM -0.4276 

475030 hippeastrine Chemical NPC 24 h 10 µM -0.4271 

474986 tomelukast Chemical NPC 24 h 10 µM -0.4263 

474928 TIAM1 Gene.cgs NPC 96 h 1.5 µL -0.4254 

474857 TRIB3 Gene NPC 96 h 1.5 µL -0.4241 

474832 CLASRP Gene NPC 96 h 1.5 µL -0.4237 

113 F-1061-0166 Chemical NPC 24 h 10 µM 0.4953 

140 BRD-K66902379 Chemical NPC 24 h 10 µM 0.4917 

146 ritodrine Chemical NPC 24 h 10 µM 0.4903 

181 BRD-K56994829 Chemical NPC 6 h 10 µM 0.4865 

198 WZ-3105 Chemical NPC 24 h 10 µM 0.4835 

233 PEPD Gene.cgs NPC 96 h 1.5 µL 0.4801 

275 MD-II-008-P Chemical NPC 24 h 10 µM 0.4766 

325 ER-27319 Chemical NPC 24 h 10 µM 0.4728 

345 SB-431542 Chemical NPC 24 h 10 µM 0.4718 

358 A-443644 Chemical NPC 24 h 10 µM 0.4711 

453 GSK-1070916 Chemical NPC 24 h 10 µM 0.4655 

509 BAZ1B Gene NPC 96 h 1.5 µL 0.4623 

514 PQ-401 Chemical NPC 24 h 10 µM 0.4622 

562 AURKA Gene NPC 96 h 1.5 µL 0.4604 

566 CCDC90A Gene NPC 96 h 1.5 µL 0.4603 

619 AS-601245 Chemical NPC 24 h 10 µM 0.4584 

680 FZD5 Gene NPC 96 h 1.5 µL 0.4566 

738 BRD-K31290914 Chemical NPC 24 h 10 µM 0.4545 

769 BRD-K31553917 Chemical NPC 24 h 10 µM 0.4537 

789 proscillaridin Chemical NPC 24 h 10 µM 0.4528 

793 SLC35A3 Gene NPC 96 h 1.5 µL 0.4527 

844 strophanthidin Chemical NPC 24 h 10 µM 0.4514 

862 EPB41L4B Gene NPC 96 h 1.5 µL 0.4510 

875 HDAC3-selective Chemical NPC 24 h 10 µM 0.4506 

900 BRD-K92993117 Chemical NPC 24 h 10 µM 0.4499 

915 RRP8 Gene NPC 96 h 1.5 µL 0.4495 

929 LY-303511 Chemical NPC 24 h 10 µM 0.4492 

950 MAPK1IP1L Gene NPC 96 h 1.5 µL 0.4487 

955 STMN1 Gene NPC 96 h 1.5 µL 0.4486 

998 menadione Chemical NPC 24 h 10 µM 0.4475 

*The top 400 connections is listed on the Appendix 3. Compounds predicted to reverse the knockdown 
signature are shown in blue, and those predicted to mimic the knockdown signature are shown in red.  
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5.5. Discussion 

Chromosome 10q24 is currently the third most significantly associated locus 

to emerge from large-scale GWAS of schizophrenia (Ripke et al., 2013; Schizophrenia 

Psychiatric Genome-Wide Association Study, 2011; Schizophrenia Working Group of 

the PGC, 2014). As observed in Chapter 2, the schizophrenia risk alleles are 

associated with reduced expression of NT5C2 in several brain regions. Reproducing 

this putative risk mechanism in a relevant cellular model was intended to expose 

downstream cellular pathways. The CTX0E16 cells have previously been shown to 

differentiate into action potential-firing, cortical glutamatergic cells (Anderson et al., 

2015), substantiating their choice for this study.  

Following transfection with the Trilencer 27-mer siRNA sequences specific for 

NT5C2, siRNA A showed the highest NT5C2 silencing efficacy at the transcript and 

protein levels (26% and 40%, respectively), followed by siRNA B (19.6% and 37%) 

and siRNA C (where no silencing was observed) (Figures 4 and 5). Overall NT5C2 

expression at the RNA level was assessed by probing exons common to all transcripts 

using qPCR, which would capture the expression of the novel variants detected in 

Chapter 3. The increased knockdown efficiency of siRNA A as compared to that of 

siRNA B was noted in the microarray results, in which the latter caused the differential 

regulation of 741 genes, while the former impacted expression of 874 genes (a 

difference of 133 genes). Nonetheless, the overlapping gene set of 74 nominally 

significant genes, for which directionality of effect was concordant upon transfection 

with two independent siRNAs, was found to be more than expected by chance, 

according to a hypergeometric probability. Such study design, as performed by Hill 

et al. (2012), potentially reduces off-target effects associated with individual siRNA 

sequences.  

From the overlapping gene set, four were chosen for validation by RT-qPCR. 

As microarray probe intensities can be affected by complementarity and fluorescence 

artefacts, qPCR was used to confirm differential expression of selected genes. 

Accordingly, expression of ATG4B (an autophagy related protein), PSCM4 
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(proteasome ATPase subunit) and HNRNPA1 (heterogeneous nuclear 

ribonucleoprotein A1) was found decreased during the knockdown of NT5C2, as 

measured by microarray probe intensities and qPCR, supporting the microarray 

findings (although the decrease in ATG4B expression elicited by siRNA A treatment 

did not reach statistical confidence in the qPCR validation). However, assessment of 

TBCA (tubulin folding cofactor A) expression in association with the knockdown 

produced discrepant results by qPCR and microarray, and therefore the gene was 

removed from further analysis (and, moreover, it was not attributed to any GO or 

KEGG terms). In general terms, microarrays provide a high-throughput workflow that 

is more affordable than RNA-seq, for instance, but background noise and eventual 

lack of reproducibility associated with microarray experiments raise a pertinent issue 

for molecular biologists, who have to find a balance between cost, and cohort and 

effect sizes (Jaksik et al., 2015). Microarrays provide a powerful means for global 

gene expression analysis in large sample sizes, where noise in individual probes in 

specific samples become diluted, but for smaller sample sizes, RNA-seq is more likely 

to provide accurate measures due to its increased sensitivity. The lack of specificity 

in microarrays, therefore, is likely the reason for the discrepancy observed. The single 

probe tagging TBCA on the Illumina HumanHT-12 v4 BeadChip was found to match 

other two pre-mRNAs in the genome, with 100% and 98% identity upon BLAST 

alignment. Moreover, NT5C2 is also not amongst the differentially regulated genes 

upon siRNA treatments, although the knockdown was highly significant by qPCR. As 

observed by microarray probe intensities, the reduction of NT5C2 expression elicited 

by siRNAs A and B was estimated to be 5% (P=0.10) and 9% (P=0.41), contrary to 

the highly significant 26% and 20% reduction associated with these siRNAs, as 

compared to the control, when assessed by qPCR (P<0.001 for both comparisons). 

The overlapping gene set, in which the effect on gene expression was shared 

between two independent siRNA sequences, was then submitted to gene ontology 

analysis and connectivity mapping methods. KEGG terms associated with the actin 

cytoskeleton and adherens junctions were significantly over-represented in the 
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overlapping gene set associated with NT5C2 knockdown. Similarly, knockdown of the 

putative schizophrenia susceptibility gene ZNF804A was found to alter expression of 

genes involved in cellular adhesion, a process important for neural plasticity (Hill et 

al., 2012). Moreover, the knockdown of NT5C2 implicated terms involved in heart 

muscle contraction and cardiomyopathy (Tables 4 and 5). Noteworthy, chromosome 

10q24 is also genome-wide significant for blood pressure (Newton-Cheh et al., 2009), 

coronary artery disease (Schunkert et al., 2011), fat accumulation (Hotta et al., 

2012) and body mass index (Wen et al., 2014). It appears that variation in NT5C2 

might be associated with pleiotropic effects. The schizophrenia risk indel rs11191419 

on chromosome 10q24 is in strong LD with rs12413409 (r2=0.82), which shows 

genome-wide significant association with coronary artery disease (Schunkert et al., 

2011), and rs11191548 (r2=0.82), which shows genome-wide significant association 

with blood pressure (Newton-Cheh et al., 2009), for which risk alleles are associated 

with increased susceptibility to all such conditions. The comorbidity between 

schizophrenia and cardiac disease is well documented (Hou et al., 2015; Jindal et al., 

2005). Schizophrenia patients show a reduction in life expectancy from 10-20 years, 

which is associated with natural causes, but especially with cardiovascular disease 

(Owen et al., 2016). Patients are three times more likely to die of sudden death 

(Jindal et al., 2005), and show 30% higher risk of dying of coronary heart disease 

(Hennekens et al., 2005), as compared to a member of the general population. It is 

possible, however, that patients frequently suffer from cardiac conditions as they 

may adopt lifestyles which predispose to obesity and increased risk for hypertension, 

smoking, insulin resistance and diabetes (Hennekens et al., 2005). Nonetheless, 

genetic mutations implicated in multiple diseases are not rare, with one example 

being the genetic variants in CACNA1C (calcium channel, voltage-dependent, L type, 

alpha 1C subunit). Mutations in this gene were initially implicated in cardiac deficits 

and mental retardation in Timothy’s syndrome (Liao and Soong, 2010). Recently, 

however, variants in CACNA1C have been robustly associated with risk to several 
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psychiatric conditions, including schizophrenia, bipolar disorder and major depression 

(He et al., 2014). 

Interestingly, the genes involved in cardiac contraction significantly affected 

by the knockdown of NT5C2 include TPM1 and TPM2, which encode isoforms of 

tropomyosin. More than 40 isoforms of tropomyosin have been found, produced by 

four genes (TPM1-4). These isoforms have been suggested to participate at the 

cytoskeleton in several tissues, at time- and location-specific occasions (Gunning et 

al., 2008). Curiously, products of TPM3 and TPM4 have been found in the postsynaptic 

density region (Guven et al., 2011). Moreover, the connectivity mapping analysis 

predicted at least two cardiac steroids, strophanthidin and proscillaridin, inhibitors of 

the Na+/K+ ATPase (Denicolai et al., 2014; Song et al., 2014), to be associated with 

a similar transcriptomic signature as the one elicited by the knockdown of NT5C2 in 

NPCs. Inhibition of the Na+/K+ ATPase by these drugs (or by hypoxia, an event 

relevant to schizophrenia during neurodevelopment) is expected to cause 

intracellular accumulation of Ca2+ (Gusarova et al., 2011), which in muscle cells may 

trigger contractions, but in nervous cells might disrupt action potentials.  

Pathways related to cancer were also found over-represented in association 

with the knockdown of NT5C2. This was supported by connectivity mapping, which 

indicated drugs with antitumour properties such as anandamide (De Petrocellis et al., 

1998) and hippeastrine (Cao et al., 2013) to counteract the putative schizophrenia 

risk mechanism associated with the decreased expression of NT5C2. The literature, 

however, contains contradictory findings regarding susceptibility to cancer in 

schizophrenia patients. In a cohort of 59,233 schizophrenia individuals in Sweden, 

for example, Ji et al. (2013) reported decreased incidence of cancer in patients and 

their unaffected relatives. In a cohort of 29,996 schizophrenia individuals in Finland, 

however, Lichtermann et al. (2001) found increased incidence of cancer in patients, 

and decreased risk in relatives. The heterogeneity intrinsic to both conditions hinders 

the investigation of common genetic grounds between these disorders, while this 

comorbidity might be additionally explained by lifestyle.  
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As for potential downstream mechanisms associated with the transient 

knockdown of NT5C2 in the neural progenitor cells, gene ontology analysis suggested 

the activation of the mitogen-activated protein kinases (MAPK) signalling. MAPK 

pathways have been implicated in various processes that are relevant to 

schizophrenia, including neural plasticity, cellular proliferation, differentiation, cell 

death and neuronal function (Meloche and Pouyssegur, 2007; Roux and Blenis, 2004; 

Stephan et al., 2009; Thomas and Huganir, 2004). The members of the MAPK 

cascade constitute a conserved family of serine/threonine protein kinases. The 

kinases RACK1, FYN and CDK5, for example, were found over-represented in the 

post-mortem DLPFC of schizophrenia patients (Funk et al., 2012). Activation of MAPK 

signalling has also been observed increased in the cerebellar vermis and thalamus of 

schizophrenia patients, but not in other brain regions, suggesting that its abnormal 

regulation in schizophrenia might occur in specific brain areas (Kyosseva et al., 1999; 

Kyosseva et al., 2000; Kyosseva, 2004). The ubiquity of MAPK signalling molecules, 

and their ability to integrate external stimuli to different neurotransmitter systems, 

grants this pathway a privileged connection with such a heterogeneous condition that 

is schizophrenia (Funk et al., 2012). Although the mean increased phosphorylation 

at Thr202/Tyr204 from MAPK-ERK1/2 was observed on the knockdown, this event 

did not statistically differ from controls (Figure 8). It is possible that downstream 

effects associated with NT5C2 knockdown might be exerted by other members of the 

MAPK signalling, such as the ones encoded by the other MAPK genes that were 

observed to be differentially expressed by the silencing. Activation of another 

signalling cascade, the AMP-activated protein kinases (AMPK), was also investigated 

in NPCs subject to NT5C2 knockdown, as the cytosolic 5’-nucleotidase II has been 

hypothesised to regulate intracellular nucleotide and ribonucleotide pools (Itoh, 

2013). Increased phosphorylation of AMPK-alpha at residue Thr172, indicating 

activation of AMPK signalling, has been previously observed to be associated with the 

knockdown of NT5C2. Interestingly, gene expression profiling of neurons derived 

from schizophrenia patients’ hiPSCs showed altered expression of components of 
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cyclic AMP pathways (Brennand et al., 2011). In human and rodent skeletal muscle 

fibres, moreover, knockdown of NT5C2 has been observed to cause activation of 

AMPK, and to trigger a series of energy mobilisation events (Kulkarni et al., 2011). 

AMPK has additionally been observed to activate MAPK-p38 in the ischemic muscle 

heart (Li et al., 2005). The role of these kinases in the downregulation of NT5C2 in 

neural tissue, as a putative risk mechanism for schizophrenia remains unclear. 

As for the connectivity mapping analysis, promising evidence to support its 

use for advancing therapeutics in other fields of medicine has been found (Lamb, 

2007). Although common alleles implicated in risk for psychiatric diseases are 

typically associated with small effects, it is possible that these converge onto shared 

downstream cellular pathways, which in turn could be targeted by repositioned drugs. 

Interestingly, the connectivity mapping analysis suggested the typical antipsychotic 

fluphenazine and the atypical antipsychotic ziprasidone as the top chemical 

compounds predicted to counteract the NT5C2 knockdown in NPCs (Table 6). As 

these antipsychotics bind to multiple targets, it is possible that some of these will 

trigger changes in the intracellular purine nucleotide levels. Many other drugs were 

additionally suggested to reverse the transcriptomic signature associated with the 

knockdown, and more studies are warranted to investigate their ability in doing so. 

Results obtained in this chapter suggest a potential role for NT5C2 in mediating risk 

for schizophrenia and cardiac disease, possibly by alterations to AMPK signalling. 

While gene ontology analysis and connectivity mapping methods seem far from 

entirely capturing the complex nature of schizophrenia, they may shed light into 

biological processes implicated in disease and potential drugs to be used to 

counteract them. While these findings need further validation and replication in vitro 

and in vivo, it is hypothesised that the functional characterisation of several risk 

mechanisms for schizophrenia may expose converging molecular pathways involved 

in risk, which may expose novel drug targets. This is particularly promising in a field 

where nearly the same antipsychotic drugs prescribed in the 1950s are still used 

today despite severe side effects and variable efficacy (Kapur and Mamo, 2003).  
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Drawing from an unknown artist, supposedly found in a psychiatric institution. 

 

 

 

 

Chapter 6 

Discussion 
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6.1. Summary of findings  

Genome-wide association studies have provided an unparalleled starting 

point for the study of common risk mechanisms associated with schizophrenia. 

Increasing GWAS cohorts have so far implicated 128 common variants, spread over 

108 genetic loci, in risk for schizophrenia. As for most GWAS, however, implicated 

risk variants are mostly non-coding and therefore hypothesised to impact on gene 

expression by means of cis-regulatory effects, potentially elicited on rather distant 

targets (long-range cis-regulatory effects). The identification of the causal risk 

mechanisms is additionally hindered by phenomena such as linkage disequilibrium, 

location- and developmental stage-dependent cis-regulatory effects, or transcript-

specific mechanisms. Their identification, however, may expose shared downstream 

effects associated with disease, and consequently novel drug targets for treatment.  

In this context, the main objective of this thesis was to functionally 

characterise one of the earliest and most robust genome-wide association signals to 

emerge from large-scale GWAS of schizophrenia, located on chromosome 10q24 

(Ripke et al., 2013; Schizophrenia Psychiatric Genome-Wide Association Study, 

2011; Schizophrenia Working Group of the PGC, 2014). Its association with 

schizophrenia has been replicated elsewhere (Aberg et al., 2013; Guan et al., 2016), 

and variation at the locus has been suggested to contribute to risk to psychiatric 

conditions in general, including depression, bipolar disorder, attention-deficit 

hyperactivity disorder and autism (Cross-Disorder Group of the Psychiatric Genomics 

Consortium, 2013). Risk variants at this locus have additionally been implicated in 

morphometrical changes in brain areas (Ohi et al., 2013; Ohi, 2015) and in indexes 

of social cognition (Rose et al., 2014) putatively affected in schizophrenia. The 

molecular mechanisms underpinning these events, however, remain unclear. 

The non-coding schizophrenia risk variants on chromosome 10q24, 

rs11191419 and chr10_104957618_I, were found to elicit multiple cis-regulatory 

effects at this locus (Chapter 2). Such cis-regulatory effects were found to be 

operating on BORCS7, AS3MT, and NT5C2, in different brain tissues implicated in 
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schizophrenia: the developing foetal brain, and the adult dorsolateral prefrontal 

cortex, hippocampus and caudate (Duarte et al., 2016). In general terms, the risk 

allele of rs11191419 was associated with increased expression of BORCS7 and 

AS3MT, and with reduced expression of NT5C2, while the risk allele of the indel 

chr10_104957618_I was found to be associated with reduced expression of all these 

in all brain tissues. Corroborating these findings, Li et al. (2016) found that risk 

genotype at rs7085104 (which is in LD with rs11191419: r2=0.79) was associated 

with increased expression of BORCS7 and AS3MT in several brain areas. The authors 

note, however, that rs7085104 is actually in LD with other variants at the locus 

distinctly driving expression of these genes: a variable number tandem repeat 

(r2=0.94), which is regulating expression of the putative schizophrenia risk transcript 

of AS3MT (AS3MTd2d3), and rs11441374 (r2=0.70), which is driving expression of 

BORCS7. As for NT5C2, corroborating the results presented in Chapter 2, Hauberg et 

al. (2016) found that the risk allele of rs11191548 (which is in LD with the indel 

chr10_104957618_I: r2=0.82) provides a binding site for miRNA-206 located in the 

3’ UTR of this gene, and is therefore associated with reduced NT5C2 transcript levels. 

NT5C2 was further explored in the next chapters since both risk variants on 

chromosome 10q24 were found to concordantly reduce its expression in multiple 

brain areas. 

Methodological limitations in Chapter 2 precluded the identification of specific 

transcripts of BORCS7, AS3MT, or NT5C2 that were subject to the cis-regulatory 

mechanisms associated with schizophrenia. Therefore, the second aim of this thesis 

was to investigate, in Chapter 3, which transcripts of these genes were expressed in 

the adult DLPFC and the foetal brain, which were contributing to the allelic expression 

mechanism detected previously. The pilot RNA-seq study suggested that RefSeq 

transcripts of these genes were the main variants produced in these brain tissues, 

although novel, less expressed transcripts also exist. These novel transcripts include 

the putative schizophrenia susceptibility transcript AS3MTd2d3 (Li et al., 2016), as well 

as the novel NT5C2 variants, NT5C2e3.1, NT5C2d3, and NT5C2e3.1 d3. The new NT5C2 
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transcripts were experimentally confirmed in different brain areas. The RNA-seq data 

provided evidence to suggest that the full length transcripts of NT5C2 and AS3MT 

were more highly abundant than the novel variants, and therefore more likely to 

contribute to the cis-regulatory signal observed in Chapter 2. More studies are 

warranted, however, to validate these findings. In any case, the sequence encoding 

the nucleotidase domain was not expected to be affected in the new transcripts 

according to analysis of protein motifs (Pfam) in the UCSC Browser. It is possible that 

these novel transcripts provide differences in the amino-terminus of the protein, 

perhaps affecting turnover or its affinity for regulatory molecules. 

The role of NT5C2 in the nervous system was unclear prior to this study. 

Therefore, its distribution in the adult DLPFC and in NPCs was investigated in 

Chapter 4. The 5’-nucleotidase cytosolic II, enzyme encoded by NT5C2, was found to 

be dispersed through the soma and cellular processes of the NPCs, and was 

additionally found in neurons, neuropil and glial cells in the adult DLPFC. It is possible 

that NT5C2 is differentially distributed according to cell type in this brain region, as 

a previous study suggested that this enzyme is more abundantly expressed in 

neurons rather than glial cells, at least in the cerebral cortex (Uhlen et al., 2015).  

The final objective of this thesis, in Chapter 5, was to investigate the global 

gene expression changes associated with the decreased expression of NT5C2 in NPCs, 

as a proxy for modelling a putative schizophrenia risk mechanism in vitro. The siRNA-

mediated transient knockdown of NT5C2 was confirmed by means of immuno-

cytochemistry and qPCR, and therefore the effects on global gene expression were 

likely to be a consequence of reduced protein and transcript levels. The knockdown 

affected the expression of 65 genes of known function, which revealed enrichment 

for GO and KEGG terms related to the actin cytoskeleton, heart muscle contraction 

and cancer, at an FDR<0.05. Strikingly, genome-wide significant signals for coronary 

artery disease, rs12413409 (Dichgans et al., 2014; Schunkert et al., 2011; Takeuchi 

et al., 2015), and for blood pressure, rs11191548 (Newton-Cheh et al., 2009), are 

in strong LD with the schizophrenia risk variant rs11191419 (r2=0.82), with major 
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alleles associated with increased risk for all these conditions and with reduced 

expression of NT5C2, suggesting that genetic variation in this gene is associated with 

pleiotropic effects. Gene ontology analysis additionally revealed an enrichment for 

the activation of the mitogen-activated protein kinases (MAPK) signalling, at an 

FDR<0.1. Given the pivotal role of MAPK signalling in neural plasticity, cellular 

differentiation and cell death (Meloche and Pouyssegur, 2007; Roux and Blenis, 2004; 

Stephan et al., 2009; Thomas and Huganir, 2004), activation of MAPK signalling in 

association with the knockdown was assessed by Western blotting, as function of 

phosphorylation of ERK1/2 (p42/p44) at the residues Thr202/Tyr204. The knockdown 

was associated with increased mean phosphorylation at these residues, but this event 

was not statistically significant – although it is possible that other members of the 

MAPK cascade are involved instead. Phosphorylation at Thr172 of AMPK-alpha, 

however, which is a member of the AMP-activated protein kinases (AMPK) signalling 

cascade, was significantly associated with the knockdown. Activation of AMPK 

signalling in human and rodent skeletal muscle fibres, for which expression of NT5C2 

had been transiently reduced, has been previously reported (Kulkarni et al., 2011). 

Moreover, AMPK and MAPK signalling cascades are likely to cross-talk, as AMPK 

signalling has been found regulate activation of p38-MAPK in the ischemic heart 

muscle (Li et al., 2005). Finally, connectivity mapping was applied to the gene set 

implicated in the knockdown, which predicted fluphenazine and ziprasidone, 

respectively typical and atypical antipsychotics, as top ranked drugs for reversing the 

transcriptional effects of NT5C2 knockdown in NPCs. Many other drugs were 

additionally suggested to reverse the transcriptomic signature associated with the 

knockdown, and more studies are warranted to investigate their ability in doing so. 

It is possible that other risk mechanisms for schizophrenia may affect AMPK or MAPK 

signalling. Therefore, it will be fundamental to validate these findings in further in 

vitro and in vivo studies, and to establish a phenotype associated with the knockdown 

to investigate the effect of the drugs predicted by connectivity mapping in reversing 

it.  
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6.2. Implications of findings 

This thesis represents the transitioning of schizophrenia research to the 

‘post-GWAS Era’. The hypothesis-free genome-wide association studies provided a 

valuable starting point for the investigation of schizophrenia aetiology, by exposing 

common genomic loci involved in risk. The cis-regulatory effects associated with the 

schizophrenia risk alleles on chromosome 10q24 have been suggested to impact on 

the expression of BORCS7, AS3MT, and NT5C2, which has been replicated by other 

groups (Hauberg et al., 2016; Li et al., 2016), although other genes at the locus 

might also be affected via long-range cis-regulatory effects. The identification of 

downstream biological mechanisms associated with risk conferred via genetic 

variation altering NT5C2 expression has the potential to improve knowledge of 

disease aetiology, and to expose novel drug targets. The global gene expression 

changes caused by decreased levels of NT5C2 was therefore recapitulated in vitro 

using neural stem cells. Evidence for the involvement of processes associated with 

the cytoskeleton, cellular metabolism, cellular adhesion, and the AMPK signalling 

cascades were observed, but the exact mechanisms underpinning these events 

remain unclear. This study supports, nonetheless, the purinergic hypothesis of 

schizophrenia (Lara and Souza, 2000). Interestingly, allopurinol (an agonist of 

adenosine) has been shown to improve symptoms associated with schizophrenia 

(Lara et al., 2001) and cardiac disease (Kelkar et al., 2011).  

It is estimated that hundreds of rare and common genetic variants play a 

role in schizophrenia susceptibility (Bray and Hill, 2016; Lee et al., 2012; Roussos et 

al., 2014; Tansey et al., 2016). The functional characterisation of a single locus of 

small effect obviously cannot capture the complexity of this debilitating disease. 

However, it is plausible that groups of risk alleles and environmental cues might 

converge onto hub pathways, which may be impaired in specific brain regions, in 

peculiar time points of development, or in subgroups of patients. There are several 

implications for diagnosis, prevention and treatment of schizophrenia associated with 

this idea, raising the necessity for the characterisation of individual risk mechanisms.  
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6.3. Future directions 

Further experiments that could build on the work in this thesis include: 

- Quantifying specific NT5C2 transcripts in a case-control design study, to 

investigate the association of specific transcripts with disease. This could be 

performed using publicly available RNA-seq data.  

- Determining a quantifiable cellular phenotype associated with the knockdown 

of NT5C2 in NPCs, e.g. via markers of proliferation or neuronalisation by 

means of high throughput image screening (e.g. using the Cell Insight®, 

ThermoFisher Scientific). 

- Investigating the ability of fluphenazine, ziprasidone and other drugs predicted 

to reverse the transcriptional effects of NT5C2 knockdown in reversing the 

physiological phenotype associated with NT5C2 silencing. 

- Further exploring the role of AMPK signalling in mediating risk for schizophrenia, 

as well as its role in maintenance or regulation of the cytoskeleton and 

metabolic processes.  
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6.4. Concluding remarks 

Schizophrenia is a complex disorder which is associated with hundreds of 

common and rare genetic risk variants which act in concert with environmental 

factors to dictate risk to disease. By describing individual risk mechanisms, it may be 

possible to improve diagnosis, treatment or prevention options for susceptible or 

affected individuals in the future. In this thesis, schizophrenia risk alleles on 

chromosome 10q24 were found to be associated with cis-regulatory effects on 

BORCS7, AS3MT and NT5C2 in the human brain. All RefSeq transcripts of these 

genes, as well as novel variants of AS3MT (AS3MTd2d3) and NT5C2 (NT5C2d3, 

NT5C2e3.1, NT5C2e3.1 d3) were detected by RNA-seq in the adult DLPFC and in the 

foetal brain. RefSeq and novel transcript variants of NT5C2 were experimentally 

validated in several other brain samples. The expression of the previously annotated 

transcripts was higher than the novel variants, suggesting that they provide a larger 

contribution towards the allelic expression signal associated with risk observed in 

Chapter 2. The localisation of the enzyme produced by NT5C2, the 5’-cytosolic 

nucleotidase II, was investigated in the adult DLPFC and in neural progenitor cells. 

NT5C2 was found to be dispersed through the soma and cellular processes of NPCs, 

and it was also observed in all neural cell types in the adult DLPFC. Finally, the risk 

mechanism associated with the downregulation of NT5C2 was reproduced in vitro 

with the use of small interfering RNAs in cultures of human neural progenitor cells. 

The regulation of biological pathways related to cytoskeleton, cellular adhesion and 

metabolic processes, including differential activation of AMPK signalling, were 

suggested to be altered by the knockdown of NT5C2. Further studies are warranted 

to confirm these findings, which may improve our understanding of the aetiology of 

schizophrenia and might expose novel drug targets. 
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Appendix 1. Duarte et al. (2016). Paper on the identification of the putative 

schizophrenia risk mechanisms on chromosome 10q24. 
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Appendix 2: RNA-seq metrics from raw FASTQ files (FASTQC) 
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Appendix 3: Top 400 connectivity mapping hits 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



183 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



184 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



185 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



186 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



187 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



188 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



189 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



190 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



191 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


