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Abstract

A complex interaction of environmental factors, stochastic events, and ge-

netic susceptibility can lead to cancer development. The aim of this thesis is to inves-

tigate the DNA methylome for cancer, cancer risk, and prediction potential. Studies

were performed in peripheral blood to explore systemic changes associated with can-

cer, and in skin for an in-depth view of total body naevus count, the strongest risk

factor for melanoma.

Peripheral blood DNA methylomes of 41 cancer-discordant female monozy-

gotic (MZ) twin-pairs were assessed for changes associated with any cancers. The

epigenome-wide association study (EWAS) identified one genome-wide significant

and several suggestive differential methylated positions (DMPs), three of these

showed predictive biomarker potential (near SASH1, COL11A2, and LINC00340 ).

Early breast cancer specific DNA methylation changes were identified in

peripheral blood obtained prior to diagnosis. The DNA methylomes were assessed

by two genome-wide DNA methylation techniques in a total of 28 breast cancer

discordant MZ twin-pairs. Three novel significant breast-cancer differential methy-

lated regions (DMRs) were identified (in MECOM, PCGF3, and near ELN ) that

were suggestive of predictive biomarker potential.

Skin DNA methylomes were investigated in association with the number

of naevi across the body in 322 female individuals. Three genome-wide significant

DMPs were identified in novel genes METRNL, C15orf48, and ARRDC1. Sugges-

tive results included CTC1 and RAF, which are known genes involved in naevi
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predisposition and melanoma progression. Approximately half of the 48 suggestive

DMRs were correlated with gene expression in cis.

Overall, DNAmethylation changes related to cancer, pan-cancer and breast

cancer specifically, as well as with the melanoma risk factor naevus count were

identified. These loci are excellent candidates for further research into their potential

as biomarkers or risk factor biological mechanisms in cancer.
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Chapter 1

Introduction

1.1 Epigenetics

The term epigenetics refers to mitotically and/or meiotically heritable

chemical modifications of the genome that occur without any underlying change

in DNA sequence, which establish and maintain cellular identity [1]. These are

the mechanisms by which a cell distinguishes itself from another by specific gene

expression profiles whilst having the same genome within all cells of an individual,

barring somatic mutations [2]. Epigenetic mechanisms generally include molecular

modifications to the DNA nucleotides themselves [3] and modifications affecting

the packaging and folding of DNA around proteins that form chromatin [4, 5]

(see Figure 1.1). Some consider various classes of non-coding RNAs (ncRNAs) an

additional epigenetic layer [6].

1.1.1 DNA Modifications

To date, various covalent chemical modifications of DNA have been iden-

tified. The most well-studied and abundant mark is termed DNA methylation

and comprises methylation at the carbon 5 position of cytosine (5-methylcytosine
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Figure 1.1: Overview of epigenetic layers. The base layer is seen at the top of

the figure comprising the various DNA modifications. The DNA is wrapped around a

histone octamer with two copies of each of the four core histones: H2A, H2B, H3, and

H4 and is locked in place by linker histone H1. This allows the formation of higher order

structure chromatin. The core histones can be exchanged with variants and modified at the

protruding tails resulting in a dynamic structure. Reproduced and adjusted from Aguilar

and Craighead [7] with permission of Nature Publishing Group.

(5mC)). The modification has been unofficially labelled as the "fifth base" of the

human genome and occurs predominantly at a cytosine followed by a guanine in

5’ to 3’ direction (CpG) dinucleotides. This preference for a palindromic sequence

enables propagation of this mark through cell division by enzymes recognising and

methylating, replicated hemimethylated DNA. Although rare and not as well un-

derstood, non-CpG methylation has been found at cytosines followed by nucleotides
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other than guanine [8] with prominent examples in the human brain [9] and human

embryonic stem cells (ESCs) [10].

Recently, additional modifications of DNA have been identified that are

products of the active demethylation pathways of 5mC. 5mC is established and main-

tained by DNA methyltransferases (DNMTs) and can be demethylated by passive

and active pathways [11]. Passive demethylation occurs when 5mC is not faithfully

maintained at replication and therefore is absent in the newly synthesised strand.

Active demethylation can be catalyzed by ten-eleven translocation methylcytosine

dioxygenase (TET) enzymes that produce 5-hydroxymethylcytosine (5hmC) as the

first step [12, 13]. These can then be further oxidized to 5-formylcytosine (5fC) [14]

and again to 5-carboxylcytosine (5caC) [15]. All of these modifications might also

have distinct biological functions of their own. The most studied is 5hmC that is

found to be substantially enriched in neurons of the central nervous system [16],

where it could play a role via methyl CpG-binding protein 2 (MeCP2) that can bind

to 5hmC [17].

1.1.2 Chromatin Modifications

Chromatin comprises DNA and histone proteins and provides a framework

for packaging the genome within the nucleus. The fundamental unit is the

multifaceted and highly dynamic nucleosome protein complex. It consists of 147

base pair (bp) of DNA wrapped in ~1.65 superhelical turns around a core histone

octamer comprising two molecules of each of the four core histones: H2A, H2B, H3,

and H4 [18]. Linker histone H1 binds at DNA entering and exiting the nucleosome

thereby "sealing" it in place. The DNA between each pair of nucleosomes is

consequently called linker DNA [19, 20]. This allows the formation of higher order

structure chromatin and represents a dynamic structure that regulates access to

DNA and reflects regulatory cues [4, 21]. The majority of histone modifications

are at the protruding tails, nevertheless a number have been recorded at the hi-
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stone globular domains interacting with other histones or DNA [22] (see Figure 1.2).

Figure 1.2: Overview of chromatin modifications. (a) Modifications of histone

tails such as by the addition of methyl (Me), acetyl (Ac), ubiquitin (Ub) and phosphate

(P) groups. (b) The nucleosome, 4 pairs of histone proteins wound by DNA that can

be methylated at the cytosines. (c) The positioning of nucleosomes on the genome is

dynamic and influences the accessibility of transcription factors to regions. Regulatory

proteins (orange, blue, red and purple) can bind to nucleosomes, DNA and transcribed

ncRNA. (d) Due to spatial configuration in the nucleus, there are interactions within and

between chromosomes, as well as between with nuclear structures. Reproduced from Keung

et al. [23] with permission of Nature Publishing Group.

Posttranslational modifications of the protruding histone tails are a key

player in nucleosome dynamics and thus the organisation and function of chromatin

[24]. The tails can be covalently modified at several places by numerous mechanisms
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such as acetylation, methylation, and phosphorylation [25]. Thus far, research

has highlighted the importance of modifications of several lysines (K) on the H3

tail. These associate with various functional elements in the mammalian genome.

For example, histone H3 lysine 4 tri-methylation (H3K4me3) for active promoters,

H3K4me1 and H3K27 acetylation (H3K27ac) for active enhancers, and H3K9me3

and H3K27me3 for constitutive and facultative heterochromatin respectively.

Chromatin marks have been summarised into functional "segments" using the

primary cell lines from the ENCODE project via a chromatin state segmentation

by hidden markov model (ChromHMM) and Seqway algorithms [21, 26]. These

include states annotated for example as active, weak, strong, poised, and repressed

chromatin.

1.2 The Epigenome

The collective of the epigenetic patterns across the genome is called the

epigenome. Compared to a static DNA sequence throughout life, the epigenome

represents a dynamic landscape. It is essential for development where it undergoes

specific changes at various stages in tidal-like waves to reset the epigenome [27–30]

and establishes and maintains tissue-specific cell states [2]. The epigenome shows

a continuum of change as cells mature [31]. Furthermore, throughout the lifetime

of an individual, modifications at identified ageing-related loci and random "drift"

have also been identified [32–36].

These epigenome changes throughout life are believed to be not only due to

intrinsic and stochastic factors, but also environmental effects [37]. The epigenome

can be influenced for example by prenatal and early postnatal environmental in-

fluences, such as maternal behaviour in rodents [38] and maternal diet in humans

[39, 40]. Its plasticity and its essential role in gene expression make it a prime can-
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didate to link environmental influences and changes in gene activity directly or in

combination with genetic risk factors, influencing penetrance and expressivity.

1.2.1 The DNA Methylome

The DNA methylome is the complete DNA methylation pattern in the

genome. In the human genome, the majority of CpGs are randomly dispersed and

between 70 to 80% are methylated [41]. The frequency of CpGs is much lower than

expected (at ~20% of its expected frequency) due to a high mutation rate for 5mC

[42]. A small proportion of CpGs ( ~7%) cluster at higher than expected frequency

in genomic regions of approximately 1 kilo base pairs (kb) known as CpG islands

(CGIs) [43]. CGIs predominantly occur at gene promoters, near transcription start

sites (TSSs), and first exons. They are thought to maintain their CpG content

because they generally remain unmethylated in the germline [44]. The remainder

of CGIs are split between intragenic and intergenic regions of the genome with the

potential to act as alternate isoform promoters [45–47].

Derived from this island terminology are CGI "shores" that are the 2 kb

flanking regions surrounding the CGI. These represent the boundaries of the CGIs,

which still have a higher CpG frequency than expected. Shelves are the 2 kb down

or upstream of the CGI shores and lead to "open sea" regions beyond. Generally,

the DNA methylome in healthy cells is relatively static and faithfully maintained

through cell division [48].

1.2.1.1 Defining Genomic Features

The DNA methylome behaves differently at defined genomic features based

on CpG density. A few genomic features of CpG density and level of DNA methy-

lation are highlighted in this section.
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CpG Islands

Approximately 70% of genes in the human genome have CGIs in their promoter

region and the majority remain unmethylated [49]. CGI methylation is typically

correlated with stable epigenetically repressed regions and is associated with a

range of biological processes such as genomic imprinting, X inactivation, and

suppression of transposable elements [1, 3]. Methylation of promoter CGIs can be

associated with stable repression of gene transcription, often at early developmental

genes [50]. In general, promoter CGIs of inactive genes do not typically acquire

DNA methylation but acquire tri-methatylation at H3K27 as a repressive mark [51]

(see Figure 1.3). As a result, less variability in DNA methylation is observed at

promoter CGIs than previously expected. This shifted the focus recently towards

CGI shores that show higher variability.

Figure 1.3: Genomic representative region of active and inactive genes. The

region shows an example of regulatory regions including a distal enhancer and proximal

promoters. The height of the bar represents the proportion of DNA methylation for the

region. Modified and reproduced from Schübeler [51] with permission of Nature Publishing

Group.

CpG Islands Shores

CGI shores are enriched for differentially methylated regions (DMRs) associated

with cancer-, tissue-, and reprogramming-specific changes [52–54]. Irizarry et al.
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[52] showed that in cancer, it was the shore regions that underwent significant

cancer-specific changes in DNA methylation, more so than CGIs themselves. This

highlighted a loss of strict boundaries at the flanking regions of CGIs that are impor-

tant events in cancer pathogenesis [52, 53]. CGI Shores also experience a tidal-like

change narrowing the regions in a lineage-specific manner in tissue differentiation

[54, 55] and these DMRs define tissue specificity better than changes solely based

on CGIs [56].

Low Methylation Regions

Throughout the genome CpGs in CpG poor regions, or "open sea", are typically

methylated. However, intermediate low levels of methylation with a mean of 30%

are also observed and have been mapped to specific genomic regions termed low

methylation regions (LMRs). These form a class of regulatory regions distal to

promoters with a moderate CpG frequency. LMRs are accompanied by enhancer

chromatin markers, such as H3K4me1, and act as enhancers for expression of asso-

ciated promoters. They are occupied by transcription factors and their presence is

required and sufficient to establish the low methylation state. Interestingly, LMRs

are also more dynamic in cell differentiation than CGIs [57].

1.3 Epigenome-wide Association Studies (EWAS)

Complex common diseases arise from the interplay of both genetic sus-

ceptibility and environmental factors with a risk that typically increases with age

[58]. This interplay between gene activity, environmental exposures, and genetics

is not fully understood and the epigenomic landscape may provide critical informa-

tion on the mechanisms of how environmental exposures influence penetrance and

expressivity of genes [59]. Epigenetic changes independent of genetic variation, or

"pure" changes, can influence disease risk, whilst those influenced by genetic varia-

tion could in theory also contribute to the “missing heritability” that is observed in
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many common complex diseases [60–62].

In recent years, larger population-based epigenome-wide association studies

(EWASs) have aimed to identify epigenetic differences at genomic regions associated

with a phenotype of interest. The DNA methylome is the most studied amongst

these and will be the focus here. Variations in the DNA methylome, or differentially

methylated positions (DMPs) and DMRs, are observed in a range of complex diseases

such as rheumatoid arthritis in whole blood [63], cancer in tumour tissues [64], and in

multiple sclerosis in brain tissue [65]. EWASs have also identified DNA methylation

variation associated with body mass index (BMI) [66], pain [67], and smoking both in

adults [68, 69] and in individuals born from mothers who smoked during pregnancy

[70]. In this section, DNA methylation interrogation methods will be discussed first,

followed by considerations for these studies that are markedly different compared to

genome-wide association studies (GWASs).

1.3.1 DNA Methylome Profiling Methods

Techniques for profiling of the DNA methylome are available that interro-

gate the DNA methylation state at a single base or regional level. Currently, three

main methods are used to capture 5mC: sodium bisulphite treatment, affinity enrich-

ment, and restriction enzymes [71]. All of these can be followed by high-throughput

array analysis or next (second) generation sequencing (NGS) (see Figure 1.4).

1.3.1.1 5mC Assessment

Sodium bisulphite chemically deaminates unmethylated cytosines to uracil

in denatured genomic DNA, whilst 5mC remains unaffected. When amplified using

polymerase chain reaction (PCR), the uracils are converted to thymines. This pro-

cess thus converts an epigenetic difference into a genetic difference, thereby enabling

detection.

Affinity enrichment uses either antibodies for 5mC or specific methyl
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binders such as methyl binding domain (MBD) proteins to bind methylated

fragmented (denatured) DNA. Antibodies that bind directly to methylated DNA

and are followed by immunoprecipitation are used for the methylated DNA

immunoprecipitation (MeDIP) strategy [72]. In contrast, in a MBD-based approach

the antibodies bind to the methyl binding protein [73].

Restriction endonuclease methods rely on methylation-sensitive restriction

enzymes (MRSEs) combined with methylation-insensitive restriction enzymes to

assess the DNA methylation status. MRSEs will generate fragments dependent

on methylation status that is compared to fragments of an isoschizomer that is

unhindered by methylation status for the same recognition site. Thereby it obtains

information about the methylation status at a single base level. A widely used pair

of restriction enzymes are the methylation sensitive HpaII and insensitive MspI

[74].

1.3.1.2 Comparison of Methods

Each method has its advantages and disadvantages with considerations

depending on coverage of the genome, costs, analysis methodology, and bias. For

example, array-based methods offer a cost-effective approach, but are limited in the

amount of CpGs across the genome and typically biased towards gene rich regions.

NGS based approaches offer the advantage of increased coverage, but are more costly

and can be biased towards CpG dense regions, with the exception of whole genome

bisulphite sequencing (WGBS).

To date, the most used technique is bisulphite conversion followed by array-

based analysis covering ~480,000 CpGs, the Infinium HumanMethylation450 Bead-

Chip (450k), and its predecessor the Infinium HumanMethylation27 BeadChip (27k)

covering ~27,000 CpGs. The 450k was discontinued early 2016 and is now replaced

by the Infinium MethylationEPIC BeadChip (EPIC) covering ~850,000 CpGs [75].
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Figure 1.4: Assay methods for 5mC. (a) Restriction enzymes showing the methylation

sensitive HpaII and insensitive MspI. (b) Bisulphite treatment that converts unmethylated

cytosines to uracils whilst leaving methylated cytosines unchanged. (c) Immunoprecipita-

tion of methylated DNA (here mCIP). An antibody is used on sonicated DNA to pull down

methylated regions. All of these methods can be followed with microarrays or sequencing.

Modified and reproduced from Schones and Zhao [71] with permission of Nature Publishing

Group.

Sequencing based approaches include the "gold standard", WGBS, that

interrogates every single base in the genome. This approach is the most expensive

and includes sequencing 70 to 80% of genome that does not contain variable CpGs

dinucleotides [41]. Methods that reduce the amount of starting material for NGS

and thus reduce costs, include methylated DNA immunoprecipitation sequencing

(MeDIP-seq) and reduced representation bisulphite sequencing (RRBS). MeDIP-seq

uses an antibody for 5mC to only capture methylated DNA fragments for sequenc-

ing and provides regional information. RRBS uses restriction enzymes to generate

genomic DNA fragments followed by bisulphite sodium treatment for sequencing

and provides a single base resolution.

The bisulphite conversion reaction can not distinguish 5mC from oxidised

variants, such as 5hmC. However, the abundance of 5hmC in the human genome is

relatively low and is more prevalent in certain tissues [76]. In recent years further
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methods have become available for identifying oxidised variants like 5hmC, such as

oxidative bisulphite sequencing (oxBS-seq) [77].

1.3.2 Considerations for EWAS

There are a number of considerations for EWAS designs due the dynamic

nature of the epigenome, cell specificity, confounders, and interpretation of results.

The DNA methylome varies throughout the lifetime of an individual, across different

cell types, lineages, and maturation states. Apart from recently developed single-cell

methods [78], the vast majority of DNA methylomes is profiled using a sample of

heterogeneous/mixed cells, resulting in a relative profile reflecting the composition

of the sample. The field of epigenomic epidemiology is rapidly refining its research

questions on these observed dynamics.

A direct result of the increasing knowledge of DNA methylomes across vast

numbers of different tissues and cell lines [2], is the importance of homogeneity in

samples. Most studies are based on whole blood samples owing to ease of accessi-

bility and the premise that a blood sample can reflect the health of an individual.

A blood sample however, is heterogeneous in its composition and therefore hetero-

geneous in the DNA methylomes present. Preferably, cellular heterogeneity should

be taken into account as composition between samples can lead to confounding such

as observed with inflammation and smoking for whole blood samples for example

[63, 79]. EWASs of a heterogeneous samples can use analytical frameworks that

can estimate proportions of cell types such as the Houseman algorithm for whole

blood samples assessed on array based platforms [80]. However, this should not be

standard practice if diseases or phenotypes are associated with differences in com-

position. The interpretation of results and its biological value should take this into

account. A hypothesis that investigates an in-depth biological view of a phenotype,

should ideally profile the DNA methylome in the cell type or tissue that is of greatest

biological relevance to the phenotype.
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In contrast with GWAS, EWAS results are not necessarily causal to the

phenotype. Epigenomic variation can indeed contribute to the pathogenesis (causal),

be a consequence of it (reverse causality), or a confounding variable [81]. When in-

terpreting the results, this is crucial to address if any inference can be drawn from

the results. With longitudinal cohorts this can be achieved by using samples that

are sampled before disease onset to determine if the changes precede it. Alterna-

tively, Mendelian-randomization using a genetic proxy or causal-inference tests can

be performed to test causal dependency [81, 82]. However, even in the absence of

such longitudinal data and causal inference analyses, these EWAS signals can still

be of interest in terms of their potential as biomarkers.

Each method of analysing the DNA methylome can have their own bias and

the data can be affected by technical confounders such as batch, plate, and/or array

that should be addressed in the downstream analyses. A randomised design is also

preferably implemented before any downstream profiling or analysis. Apart from

technical confounders, there are also biological confounders for DNA methylome

data such as age, gender, and genetic variation. These should ideally be taken into

account at the design stage as well as in the analysis.

Factors that can influence the power of an EWAS include effect size, num-

ber of individuals, and the multiple testing threshold for significance. These and

the aforementioned epidemiological considerations should all be taken into account

to optimise power to detect significant phenotype-associated epigenetic variation.

1.4 The Twin Model

For decades, classical twin studies have greatly contributed to complex

trait variation by disentangling genetic and environmental influences [83]. Human

identical, or monozygotic (MZ), twins arise from the separation of daughter cells of

a single fertilized ovum and thus have close to identical genomes. Non-identical, or
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dizygotic (DZ), twins arise from two independently fertilised ova and share on aver-

age 50% of segregating DNA sequence variation similar to normal siblings [84, 85].

Both MZ and DZ twin-pairs share early environment however, DZ twin-pairs have

a much-reduced genetic component that forms the basis of the classical twin design.

MZ twin-pairs have surprisingly high discordance rates for common complex disease

including metabolic disease, autoimmune disease, and cancer [86–90]. This differ-

ence is typically attributed to environmental influences, although this component

will include stochastic effects as well [91].

Epigenomic variation can be quantified and associated with discordance

between MZ twin-pairs in complex traits. Early studies using limited number of

CpGs showed that MZ twin-pairs have in fact more similar DNA methylomes than

DZ twin-pairs and that differences between MZ twin-pairs increase with age [33, 34,

92, 93].

1.4.1 The Discordant Monozygotic Twin Design for EWAS

The discordant MZ twin model should elucidate epigenomic variation in-

dependent of genetics or other confounding factors. MZ twin-pairs are an ideally

matched case-control study as they are matched for nearly all genetic factors, age,

cohort effects, and common early environment [94]. The advent of high-throughput

DNAmethylome techniques has driven an exponential rise in discordant MZ EWASs.

Differences in the DNA methylome of disease-discordant MZ twins have been iden-

tified at several new candidate genes in a range of tissues and complex diseases and

traits.

The majority of discordant MZ EWASs are in whole blood samples or

blood derived cells. A range of differences have been identified in blood samples

for complex diseases such as type 1 and type 2 diabetes [95, 96], bipolar disorder

[97], systemic lupus erythematous (SLE) [98], scleroderma [99], autism [100, 101],

and schizophrenia [102]. Furthermore, DNA methylome differences associated with
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traits and environmental factors have been identified such as smoking [103], obesity

in subcutaneous adipose tissue [104] and leukocytes [105], birth weight [106], and

pain sensitivity [67].

These studies have revealed DNA methylome changes broadly independent

of genome sequence variation in a large number of regions across the genome. Larger

consortia have now been set up with the purpose of collecting more samples of

discordant MZ twin-pairs and for meta-analyses across cohorts such as discordant

twin consortium (DISCOTWIN) [107].

1.5 Cancer Epidemiology

Despite great global efforts in cancer research, cancer is still one of the

leading causes of death in industrialized societies, second only to cardiovascular

disease [108, 109] (see Figure 1.5). It is heterogeneous and encompasses a large set

of diseases all characterised by uncontrolled cell proliferation and loss of differen-

tiation. Human tumours arise through a multistep process and are defined by six

hallmarks: proliferative signaling, evading growth suppressors, resisting cell death,

enabling replicative immortality, inducing angiogenesis, and activating invasion

and metastatic pathways [110, 111]. This progression is driven by the interplay

between genetic mutations and epigenetic variation [112]. Highly penetrant genetic

variants have been identified in families with rare hereditary cancer syndromes

that account for 5-10% of all cancers [113–116], whereas contribution of common

inherited genetic variation in sporadic cancers cases is moderate. Concordance

rates of cancer among MZ twin-pairs are generally below 0.15. For the commonest

types, the contribution of the non-genetic component was estimated to be 60% to

70% [90]. Sporadic cancers have been associated with a number of risk factors by

epidemiological studies such as age, smoking, obesity, and alcohol consumption.

The epigenome is seen as the prime candidate for mediating or quantifying these
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risk factors.

Figure 1.5: One year cancer prevalence proportions per 100,000 individuals

including both sexes. All cancers are included except non-melanoma skin cancers data

from 2012. Reproduced from data source: GLOBOCAN project, part of International

Agency for Research on Cancer (IARC) [117].

1.5.1 DNA Methylome in Cancer

An aberrant DNA methylome, both in terms of global trends and promoter

specific marks, is a hallmark of cancer cells [118, 119]. This highlights the importance

of a functional DNA methylome in healthy cells. Changes in the epigenome appear

to affect more genes compared to genetic mutations and plays a pivotal role in

cancer [120]. This could be driven by the high level of somatic mutation in genes

that read and write the epigenome [121]. A global loss of DNA methylation is

observed in large blocks that cover over half of the genome that is accompanied

by gene silencing. Additionally, a gain or loss of DNA methylation can occur at

genes that can mimic genetic mutations [53, 122, 123]. This is all indicative of an

interplay of genetic and epigenetic variation that provide a growth advantage for
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cancer cells [124]. Some of these changes in DNA methylation can be observed in

early neoplastic tissues [125, 126] and even in healthy tissues as risk factor related

signatures [127].

1.5.2 DNA Methylome as Biomarker of Cancer

A complex combination of environmental factors, stochastic events, and

genetic variation can lead to cancer pathogenesis. Early diagnosis greatly improves

the odds of successful treatment and life expectancy. Thus, identifying individuals

at risk or early stages without an invasive or costly procedure is highly desirable.

One direction in cancer research is to quantify this combination and detect pre-

disease changes or states to use as systemic biomarkers. The DNA methylome

lends itself well for this considering its aberrant landscape in tumours itself, relative

stability in various sample conditions, and previous successes with complex disease

[128]. Deconvolution of plasma DNA methylomes of cancer patients also show more

contribution of DNA from cells of the primary cancer location as well as tumour

DNA [129]. DNA methylome markers have been established using non-invasive

tissues such as circulating DNA in plasma [130], serum [131], and urine [132] as well

as DNA methylation changes in sputum [133] or blood samples [134].

Blood sample tests are used to check the general health status of an individ-

ual using haematological measures. On this premise, peripheral blood or blood cell

types might contain specific or systemic changes that are associated with pre-disease

state, or the body’s response to (metastatic) cancer. Indeed, DNA methylation sig-

natures in peripheral blood have been not only associated with risk factors such as

smoking [69] and age [135] but also with cancer development at primary locations

including breast [136, 137], colon [138], bladder [139], and ovary [140].
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1.6 Thesis Outline

The overall aim of this thesis is to gain insight into DNA methylome differ-

ences in cancer discordant MZ twin-pairs as well as an in-depth view of the strongest

risk factor for melanoma. This leads to the following specific aims:

Cancer biomarker using MZ twin-pairs

The first aim is to examine evidence for a whole blood DNA methylation signature

common to multiple cancers using the discordant MZ twin design. To address this

I selected 41 MZ twin-pairs with blood samples taken within a 5 year time frame of

diagnosis and also explored DNA methylation stability over time.

The second aim is to identify a blood-based DNA methylation signature specifically

in breast cancer discordant MZ twin-pairs sampled up to 8 years prior to diagnosis.

Here, breast cancer discordant MZ twin-pairs were selected from two epigenome-

wide DNA methylation interrogation methods: 28 pairs profiled by the 450k and 26

pairs profiled by MeDIP-seq. The results were explored across platforms as well as

for stability over the years preceding diagnosis.

Integrative view of DNA methylome in skin tissue for naevus count

The third aim was to investigate DNA methylation variation in skin tissue associated

with total body naevus count, the strongest risk factor for melanoma. I assessed skin

DNA methylomes in 322 individuals for naevus count and examined gene expression

as well as genetic variants previously identified for naevus count and melanoma by

GWAS.
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Material and Methods

2.1 Subjects

All subjects included in this thesis are volunteer adult twins from across

the United Kingdom (UK) and registered at the United Kingdom adult twin reg-

istry (TwinsUK). The TwinsUK is hosted by the Department of Twin Research and

Genetic Epidemiology (DTR), King’s College London (KCL), and is based at St.

Thomas’ Hospital in London.

2.1.1 TwinsUK Cohort

The TwinsUK started in 1992 and now comprises approximately 12,000 MZ

and DZ twins within the age range of 18 to 103. It is largely female ( ~80%) and is

approximately evenly divided between MZs and DZs [141]. The twins in this cohort

are not selected for diseases and do not differ in means and ranges of quantitative

phenotypes to an age-matched population in the UK [142]. The primary research

focus of TwinsUK is epidemiology studies of complex diseases and healthy ageing

using multiple "omic" technologies.

43



Chapter 2 2.1. SUBJECTS

2.1.1.1 Biological Samples

The TwinsUK has built a substantial biobank of biological samples that

are continually donated to by the twins. Biological sample collections relevant to

this thesis include over 120,000 blood samples from approximately 8,000 twins [141],

and ~850 twins that have provided blood samples for generating lymphoblastoid

cell lines (LCLs) and undergone a punch biopsy for skin and adipose tissue under

the umbrella of the multiple tissue human expression resource (MuTHER) project

[143].

2.1.1.2 Phenotype Collection

About half of the registered twin-pairs attended a comprehensive clinical

visit with a substantial subset attending more than one follow-up visit over the last

two decades. During this visit various clinical tests, such as bone mineral density

scans, height, and weight, as well as biochemical assays were performed. Over 7,000

twins responded to at least one of the annual questionnaires to assess for conventional

epidemiological phenotypes [141]. All twins are linked with their National Health

Services (NHS) numbers to the Office for National Statistics (ONS) of England for

detailed mortality information as well as detailed cancer diagnosis if made by a UK

registered pathologist.

2.1.2 Ethical Approval

Written informed consent for multi-omic analysis from all subjects in the

TwinsUK cohort was obtained in accordance with Guy’s & St Thomas’ NHS Foun-

dation Trust Ethics Committee (EC04/015 - 15-Mar-04).
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2.2 Phenotype Selection

The selected and analysed phenotypes pertaining each subset are described

in detail within each chapter. The cancer classification system is described here.

2.2.1 Cancer Diagnosis

Detailed cancer diagnosis information used in chapter 3 and 4 was obtained

through record linkage with the ONS registry. This registry includes the World

Health Organization (WHO) diagnostic code system of disease classification: the

International Classification of Diseases (ICD)-10 [144]. Codes ranging from C00 to

C96 provide information on neoplasms. The most recent ONS record linkage is from

June 2015.

2.3 DNA Methylome Profiling

Two different methods were used to profile the DNA methylome in this

thesis. These included the widely used array-based method, 450k and a NGS based

method, MeDIP-seq. Peripheral blood DNA methylomes were analysed in chapters

3 and 4, and skin DNA methylomes in chapter 5.

2.3.1 Infinium HumanMethylation450 BeadChip (450k)

The DNA methylomes used in this thesis were selected from three larger

450k DNA methylation datasets profiled as part of previously funded research in the

TwinsUK cohort. Two of these included peripheral blood DNA methylomes that

were profiled at two different genomic centres; the Wellcome Trust Sanger Institute

and IDIBELL. The first comprised 957 samples of 915 unique individuals profiled

at the Wellcome Trust Sanger Institute and the second comprised 104 samples of 86

unique individuals profiled at IDIBELL. Part of this second subset was previously
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published in a breast cancer study [137]. Skin DNA methylomes were selected from

one larger dataset comprised of dissected skin tissue from 468 punch biopsies from

female twins as part of the previously published MuTHER project [145, 146].

2.3.1.1 Illumina 450k Probe Design

The array methodology is based on the sodium bisulphite conversion of

unmethylated cytosines to uracil and subsequently post-PCR to thymine. The array

then evaluates these C/T generated polymorphisms to quantify DNA methylation

with 12 samples per beadchip. The introduction of a new probe design (Infinium

II) to quantify DNA methylation drove the large increase in the number of cytosine

sites now measured on the 450k across the genome (485,764). However, the 450k

still contains the previous probe design (Infinium I) of its predecessor, the 27k, and

is a mix of these two probe designs: Infinium I ( ~30%) and Infinium II ( ~70%).

The Infinium I technology comprises two different probes on two separate

beads, with the 3’ end terminus of each probe designed to match either the methy-

lated or unmethylated allele. It is followed by a single base extension right after

the CpG dinucleotide, that is fluorescently labelled and measured separately for the

unmethylated and methylated probe sequences. The Infinium II uses one probe

type on one bead to detect methylated or unmethylated alleles. Here, the single

base extension of the probe determines the methylated or unmethylated state by

complementing either the C or T measured in green or red channels respectively

[147].

The DNA methylation levels are represented by betas, denoting the ratio

of the methylated signal over the denominator, being the sum of unmethylated and

methylated signals plus a constant of 100. This results in a beta value between 0,

not methylated, and 1, methylated (see Figure 2.1). Due to the biological nature

of the DNA methylome, the vast majority of probes measured possess a low or

high beta value and only few intermediately methylated sites. Therefore, the beta
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density plots per individual typically show a bimodal distribution with two peaks

close to 0 and 1. These bimodal peaks are slightly closer to 0 and 1 for Infinium

I than Infinium II (see Figure 2.2). The Infinium II is less sensitive to identify

extreme methylation values because of the single probe method that introduces a

binding competition for unmethylated and methylated cytosines [147].

beta =
Intensity(M)

Intensity(M + U) + 100

Figure 2.1: Beta value equation. Methylated cytosine (M) intensities over the sum of

both M and Unmethylated cytosine (U) plus a constant of 100.
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Figure 2.2: Density distribution of one sample per Infinium design.

2.3.1.2 Distribution of CpG Sites

The 450k contains 482,421 probes that target CpG dinucleotides in the

human genome distributed over all chromosomes. In terms of CpG density of the

targeted CpGs, 30.9% are in CGIs, 23% in CGI shores, 9.7% in CGI shelves, and

36.3% are isolated CpGs in the "open sea" [148]. The 450k covers at least one
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CpG site in 96% of all human CGIs [147]. Furthermore, 99% of reference sequence

(RefSeq) genes are screened on the beadchip, with CpG sites located across gene

regions in the following manner: 20.75% in promoter regions, 5% in 5’ untranslated

regions (UTRs), 32.30% in gene bodies, and 3% in 3’ UTRs (see Figure 2.3).

Approximately a quarter of the probes are located in intergenic regions [147]. A

minority, 0.85%, are interrogating ncRNAs [148].

Figure 2.3: Distribution of CpG sites on the 450k across gene regions. His-

tograms showing the percentage of cytosines covered by the 450k by their genomic loca-

tion. Reproduced and adjusted from Dedeurwaerder et al. [147] with permission of Future

Medicine Ltd.

2.3.1.3 Quality Control

Each of the DNA methylome datasets used in this thesis were assessed for

quality control (QC) as outlined below. The QC is performed within R with use

of additional packages from Bioconductor for reading the raw output file format of

Illumina when available (Minfi [149]).

Probe level QC

The data was read into R and the following five sets of probes were removed for

the main analyses that: 1) failed detection in one or more samples and/or had a

bead count less than 3 in >5% of samples (n = variable for each dataset, see details

in each chapter), 2) aligned to more than one location in the human genome with
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their 50 bp sequence (n = 17,764), 3) located on the sex chromosomes (n = 11,650),

4) harboured common genetic variants occurring in European Caucasians (minor

allele frequency (MAF) >1%) within 10 bp on the probe at the interrogated CpG

site (15,827), and 5) contained variants at any MAF at the interrogated CpG site

(11,236) based on data from the 1000 Genomes Project [150, 151].

Sample level QC

Samples were inspected visually for outliers across all CpG sites using boxplots (their

mean and median DNA methylation), beta density plots, and heatmaps. Known

intermediate methylated loci at established imprinted regions were also assessed

[152].

2.3.1.4 Sample Identification

The individuals from each DNA methylome data subset used in this thesis

were verified using their known genotype available from TwinsUK single nucleotide

polymorphism (SNP) array data (Illumina HumanHap300, HumanHap610Q, 1M-

Duo, or 1.2M-Duo custom arrays, see Section 2.5 on page 55). To this end, a sample

identifier was created and tested as described in this section.

The sample identifier uses the 57 autosomal quality control probes on the

450k that do not interrogate DNA methylation but interrogate common SNPs for

identification purposes. The beta value for these probes is calculated in the same

way as the rest of the beadchip and thus produces a value between 0 and 1 (see

Figure 2.1 on page 47). No further information is provided for the actual genotype

but it can be deducted from the equation that both values of 0 and 1 indicate a

homozygous state for the two alleles, whereas heterozygous individuals will average

around 0.5. These 57 SNPs are common and selected for sample identification

and have a average heterogeneity in the range of 0.41-0.5 (1000 Genomes data

phase 3). Consequently, the assumption was that the heterozygous state will be
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present enough and over enough SNPs, to provide adequate power to build a

sample identifier on only these two categories of either heterozygous or homozygous

genotype states (see Figure 2.5 on page 56 for an schematic overview).

The sample identifier was first tested and refined on the complete 450k

dataset profiled at the Wellcome Trust Sanger Institute. This comprised of 957

peripheral blood samples of 915 unique individuals described in section 2.3.1. Of

these, 927 samples were genotyped in the TwinsUK on SNP arrays and 30 were not

yet genotyped.

To evaluate the sensitivity of the sample identifier, all twins from the

TwinsUK with available genotype data, ~5,700 individuals, were used. The 57

autosomal SNPs were extracted with PLINK [153] and were recoded as 0 for

homozygous alleles and 1 for heterozygous alleles. For all 927 samples from the

450k, the 57 SNP control probes were selected and clustered into the three states

using k-means clustering: two homozygous ( ~0.1 and ~0.9) and one heterozygous

( ~0.5) state, later recoded to 0 and 1 respectively. Subsequently, the 57 allelic

states were matched per individual from the 450k to the 57 allelic states of all

~5,700 TwinsUK individuals from the SNP arrays. A match was defined per SNP

as either consistent homozygous (0) or heterozygous (1), while a mismatch was

defined as an inconsistent state (see Figure 2.4).

Figure 2.4: Possible allelic combinations per SNP and match calling.

The most number of matches ("best fit") across the 57 SNPs were recorded

for all 927 samples from the 450k. This resulted in a total of 94.7% that matched
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perfectly on all 57 SNPs (878 samples), i.e all allelic states for each SNP were

similar. A further 2.6% matched with more than 54 matches for the total of 57

SNPs (24 samples). This totaled 902 samples, of which 33 samples paired to a

different individual identifier. The vast majority (30) of these occurred in the first

profiling batch and paired with individuals not profiled on the 450k. This is most

likely due to sample mix ups described at the site. The remaining three occurred in

the second profiling batch and appear swapped on one 450k beadchip.

Next, the second most number of matches for these 902 samples were ex-

amined to assess specificity. Here a minimum of 12 mismatches was observed with

a mean of 15 mismatches. Thus, when there were little mismatches in the best fit

(<3), the second best fit showed sufficient difference across all 57 SNPs.

Lastly, 30 samples from the 450k who were not yet genotyped were

assessed to further check sensitivity as these should not match any genotype on file.

These were also matched to all ~5,700 individuals as described above. Here the

minimum of the least number of mismatches across the 30 samples was 14 with a

mean of 27.

To conclude, a high percentage of true matches ( ~97%) was observed in for

the sample of 927 with genotype data available as expected. There were no matches

observed for 450k samples that were not yet genotyped. Therefore it was concluded

that this method was sensitive enough to use as a sample identifier for the 450k.
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2.3.1.5 Peripheral Blood Cell Proportions

Cell type proportions were estimated directly on the beta values using the

method devised by Houseman et al. [80] for six blood cell types; CD8+ T cells,

CD4+ T cells, B cells, Natural Killer cells, granulocytes, and monocytes. This was

done for all peripheral blood DNA methylomes and are described in more detail in

the chapters pertaining to the selected subsets. Subsequently, pairwise correlations

between these proportions were assessed by Spearman’s Rank correlation to explore

the relationships between the proportions for downstream analyses.

2.3.1.6 Normalisation

The DNA methylomes were normalised using the intra-array normalisa-

tion, beta-mixture quantile dilation (BMIQ) [154], to correct for probe type bias in

chapter 3 and 5. BMIQ normalisation adjusts the beta values of Infinium II design

probes (70%) into the distribution characteristics of Infinium I probes. This makes

effect sizes of probes across the two types more comparable. In chapter 4, the beta

values were normalised using functional normalisation that removes technical vari-

ation using control probes [155]. Additionally, each probe was then standardised to

N(0,1) for downstream analyses.

2.3.1.7 Identifying Confounders

Per chapter, principal component analysis (PCA) was performed on stan-

dardised beta values (N(0,1) for each DNA methylome dataset. The first few prin-

cipal components (PCs) of each dataset were examined for the proportion of total

variance explained, and tested for associations with potential covariates for DNA

methylome data such as beadchip, sample position on the beadchip, age, batch

of profiling, phenotype of interest, BMI, smoking, bisulphite conversion efficiency

(when available), and estimated blood cell proportions [80] for whole blood samples.

The results are presented in each chapter.
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2.3.2 Methylated DNA Immunoprecipitation Sequencing

(MeDIP-seq)

The peripheral blood DNA methylomes in chapter 4 were selected from a

larger dataset of ~5,000 twins (the EpiTwin project) profiled by MeDIP-seq.

2.3.2.1 MeDIP-seq Design

MeDIP is an affinity enrichment that uses antibodies for 5mC to bind to

methylated fragmented and denatured DNA [72]. In MeDIP-seq only these frag-

ments (containing 5mC) are sequenced by NGS and provide regional information

on DNA methylation (DMRs) [156]. Thus in theory, this provides a genome-wide

coverage of potentially all methylated CpGs.

The design and workflow is shown in Figure 2.6. MeDIP-seq starts with

purified DNA that is fragmented by sonication. To increase the affinity of the anti-

body, these fragments are denatured. The denatured fragments are then incubated

with antibodies for 5mC. This is followed by immunoprecipitation with antibodies

with conjugated magnetic beads against the bound 5mC antibodies. The unbound

DNA is removed with the supernatant. The antibodies are then digested and the

DNA fragments are used for downstream NGS (see Figure 2.6) [72, 156].

After sequencing of the methylated DNA fragments, the reads are aligned

to a reference genome. For MeDIP-seq specific analysis, packages such as MEDIPS

[157] can be used for QC and generation of genomic windows, or bins, of DNA

methylation scores. Commonly this may be 500 bp windows with a window over-

lap of 250 bp. These scores include reads per million (RPM) per bin, that with

standardisation enables comparability between samples.

2.3.2.2 EpiTwin MeDIP-seq Dataset

The total EpiTwin MeDIP-seq dataset includes ~5,000 twins. All DNA

sample preparation, MeDIP reaction, and Illumina NGS was performed at BGI,
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Shenzen, China. The sample preparation and initial QC and alignment was per-

formed by BGI in collaboration with the DTR. This is described in detail for a

subset by Davies et al. [158] and is summarised below. Further details and QC

specific for the subset assessed is detailed in chapter 4.

Sample Preparation

DNA was fragmented using a Covaris sonication system and libraries for sequencing

were prepared from 5 µg fragmented genomic DNA. End repair, <A> base addi-

tion and adaptor ligation steps were performed using Illumina’s Single-End DNA

Sample Prep kit. The anti-5mC commercial antibody (Diagenode) was used to im-

munoprecipitate the Adaptor-ligated DNA, and the MeDIP resultant was validated

by quantitative PCR. The MeDIP DNA was then purified with ZYMO DNA Clean

& Concentrator-5 columns, followed by amplification using adaptor-mediated PCR.

Fragments between 220 and 320 bp were selected by gel excision followed by QC eval-

uation by Agilent BioAnalyzer analysis [156]. These libraries were then subjected

to highly parallel 50 bp single-end sequencing on the Illumina HiSeq platform.

QC and Alignment

Raw sequencing data passed initial QC using in-house scripts and FastQC [159]. An

average of 17 million uniquely mapped reads were obtained for each of the samples.

Alignment to hg19 was performed with BWA [160] and MEDIPS [157] was used

to calculate RPM scores in defined bin sizes of 500 bp with an overlap of 250 bp

across the genome. Further visual QC was performed in R via a correlation matrix,

hierarchical clustering, dendrogram, heatmap, and density plots. Batch effects were

assessed via PCA. The total number of bins was 12,382,723. This was later reduced

to autosomes only for further analysis (11,524,145).
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2.4 Gene Expression Profiling

Three tissues for transcriptome profiling were collected at the same clinical

visit for 856 healthy female twins from the TwinsUK by the MuTHER project as

previously described [146]. In short, punch biopsies (8mm) were done at photo-

protected area adjacent and inferior to the umbilicus of which subcutaneous adipose

tissue and skin tissue were dissected and stored in liquid nitrogen. LCLs were gener-

ated through Epstein-Barr virus (EBV)-mediated transformation of B-lymphocytes

from whole blood samples.

RNA was extracted from the tissues and the Illumina Human HT-12 V3

BeadChips were used for transcriptomic profiling. Each sample had three technical

replicates. Probes with less than 3 beads were removed and remaining expression

signals were log2-transformed. They were normalised with quantile normalization

of the replicates of each individual followed by quantile normalization across all

individuals for each tissue.

The Illumina gene expression beadchips include 48,804 probes that target

approximately 25,000 annotated genes using RefSeq and the UniGene databases. It

provides a genome-wide transcriptome coverage also including splice variants.

2.5 SNP Genotyping

Genotyping of individuals of the TwinsUK was done using a combination

of Illumina HumanHap300, HumanHap610Q, 1M-Duo, or 1.2M-Duo custom arrays.

Imputation was performed with IMPUTE using the 1000 Genomes data phase 3

reference panel, as previously described [161]. Quality control genotype measures

included thresholds for minimum genotyping rate (>95%), Hardy–Weinberg equi-

librium (p >1.0 x 10-6), and MAF (>1%). The imputation quality score was >0.8

for SNPs used in the sample identifier (described in section 2.3.1.4) and >0.5 for

GWAS catalogue SNPs specifically in chapter 5.
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57 autosomal SNPsSNP Array 450k

Recode to homozygous (0)
& heterozygous (1)

k-means
clustering

Recode to homozygous (0)
& heterozygous (1)

Matching allelic states
across the 57 SNPs

Evaluating match
Allow extra mismatch
(up to four times)

All
matched?

Keep individual identifier
of SNP array

Compare individual identifiers

no

yes

Figure 2.5: Schematic overview of sample identification. The 57 SNPs were se-

lected for the known genotype (SNP array) and quality control probes on 450k. These

were then recoded to homozygous or heterozygous and assessed for a complete match of

all 57 SNP states and selected if 100% match for identification. If not they would be

matched again allowing one more mismatch each time and recorded for the least amount

of mismatches.
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Purified DNA

Sonication

Denature

Incubation with
Antibody for 5mC

Immunoprecipitation

Input DNA for NGS

Figure 2.6: MeDIP-seq design. Purified DNA is first fragmented by sonication dena-

tured to single strands. Next, the antibodies for 5mC are added followed by immunopre-

cipitation with antibodies with conjugated magnetic beads. The DNA not bound by 5mC

is removed with the supernatant. Finally, the antibodies are digested.
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Chapter 3

Pan-cancer Biomarkers in Cancer
Discordant Monzygotic Twin-pairs

3.1 Background

An area of recent interest is the identification of DNAmethylation biomark-

ers that can diagnose cancer in the early stages or identify individuals at risk in

non-invasive tissues, such as peripheral blood, serum, or plasma [128, 162, 163].

Whereas serum and plasma can capture free circulating (tumour) DNA, peripheral

blood will predominantly capture a DNA mixture from white blood cells. Therefore

in a tissue like peripheral blood, the DNA methylome could show systemic changes

in the body associated with cancer development or accrued cancer risk factors [37].

Changes in the DNA methylome in peripheral blood have previously been

associated with cancerous and pre-cancerous primary locations such as breast [136,

137], colon [138], bladder [139], and ovary [140]. DNA methylation variation has

also been associated with major risk factors for cancer such as smoking [68–70, 164,

165], age [33], air pollution [166], and BMI [66]. To date, no study has identified

DNA methylome changes in blood samples indicative for various primary locations,

or a pan-cancer biomarker. Cancer is a heterogeneous disease but shares charac-

teristics such as uncontrolled cell proliferation and loss of differentiation. Similar

changes can been observed across tumours in DNA methylome, the proteome, so-

matic mutations, and somatic copy number alterations [167–172]. Similarly, there
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may be also common systemic changes in individuals at risk or as a response to

cancer development. A blood-based DNA methylome biomarker that can predict

common cancers or cancer pathogenesis of different locations would be of great ben-

efit for current cancer screening methods. It could also add to our understanding of

common systemic changes associated with cancer pathogenesis.

The aim of this chapter was to investigate the DNA methylomes in 41

cancer-discordant female MZ twin-pairs and determine differences in DNA methy-

lation both at single CpG level, pan-cancer associated DMPs (pc-DMPs), as well

as at small regional level, pan-cancer associated DMRs (pc-DMRs). DNA methy-

lomes were profiled by the 450k of DNA from blood samples obtained up to five

years preceding or up to five years post-cancer diagnosis. The presence of DNA

methylation variation prior to diagnosis was assessed as well as biomarker stability

by using five additional twin pairs with blood samples obtained up to eleven years

preceding diagnosis. The top ranked results were followed up with replication and

transcriptomic analyses across three tissues to reveal potential biomarkers.
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3.2 Methods

3.2.1 Sample Selection

Discordant MZ twin-pairs for cancer were selected from one larger dataset

comprising 957 DNA methylomes of 915 unique individuals profiled at one centre,

the Wellcome Trust Sanger Institute (described in Section 2.3.1). Detailed cancer

diagnosis information by UK registered pathologists was accessed through record

linkage with the ONS. Discordance was defined as a case where one twin was diag-

nosed with a (first) single primary site malignant tumour within a five year window

of the blood sample extraction, while her co-twin was not diagnosed with any ma-

lignant tumour in the most recent records.

This resulted in 41 middle-aged (42 to 79 years of age with a median of

61) female cancer discordant MZ twin-pairs of European descent (see Table 3.1).

Individuals were excluded if they were diagnosed with blood and lymph related ma-

lignancies, skin cancers apart from melanoma (i.e. basal cell carcinoma and squa-

mous cell carcinoma), and premalignant and intraepithelial changes of the cervix.

The co-twin not diagnosed with cancer was cancer free in a period ranging from 4 to

21 years subsequent to the diagnosis of the affected co-twin (median = 10.3 years).

The 41 MZ twin-pairs included cancers at eight different primary locations: breast

(23 pairs), cervix (1 pair), colon (10 pairs), endometrium (1 pair), thyroid gland (1

pair), melanoma (3 pairs), ovary (1 pair), and pancreas (1 pair). The peripheral

blood DNA methylome twin-pairs can also be divided into those that were obtained

either preceding diagnosis (15 pairs) or post diagnosis (26 pairs).

Major risk factors for cancer pathogenesis were investigated in these 41 MZ

twin-pairs: smoking, BMI, and alcohol consumption. Smoking habits were assessed

from longitudinal questionnaires and divided into three categories: never smoked,

current smokers, and ex-smokers (stopped >3 years before blood sample collection).

29 MZ twin-pairs were concordant in smoking habit: 19 pairs were non-smokers,
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1 pair were current smokers, and 9 pairs were ex-smokers. The remaining 12

twin-pairs comprised 7 pairs including an ex-smoker and never smoker co-twin

and 5 pairs including an ex-smoker and current smoker co-twin (see Table 3.2).

In terms of BMI, the mean BMI of all individuals was 26.9 kg/m2. 21 out of 41

MZ twin-pairs had a greater BMI in the twin diagnosed with cancer compared

to her co-twin at time of blood sample. Overall the twin-pairs were very similar

in BMI and had a median within-pair difference of 1.7 kg/m2. Three pairs had a

difference large than 6 kg/m2, of which the higher BMI was concordant with cancer

diagnosis. Finally, self-reported alcohol consumption obtained from longitudinal

questionnaires showed no significant discordance within twin-pairs.

Table 3.1: Characteristics of 41 cancer-discordant MZ twin-pairs.

Selection Characteristic Mean Median Range

41 discordant twin-pairs Age at DNA extraction 61.7 61.1 41.5 78.7

Age at Cancer diagnosis 60.9 60.3 43.5 75.5

Cancer Free (yrs) 10.2 10.5 5.2 22.1

BMI* 2.5 1.68 0.1 10.5

82 Individuals BMI 27.3 26.3 20.4 40.6
* In absolute differences

Table 3.2: Smoking habits of 41 cancer-discordant MZ twin-pairs.

MZ twin-pair Never smoked Ex-smoker Current smoker

Concordant (number of pairs) 19 9 1

Discordant (number of pairs) 7 5

An additional analysis to assess the stability of DNA methylation differ-

ences over time used five extra female MZ twin-pairs (see Table 3.3). These pairs

had DNA methylomes available 5 to 11 years preceding cancer diagnosis (age range

38-65, median age 57) and were discordant for cancers at primary sites of the breast

(3 pairs) and colon (2 pairs). No within twin-pair differences were observed in smok-
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ing or alcohol consumption and their BMI ranged from 20.5 – 27.8 kg/m2 (median

within-pair difference of 0.6 kg/m2).

Table 3.3: Characteristics of additional 41 cancer-discordant MZ twin-pairs.

Selection Characteristic Mean Median Range

5 discordant twin-pairs Age at DNA extraction 54.3 56.6 38.1 65

Age at Cancer diagnosis 62.2 63.2 43.5 75.5

Cancer Free (yrs) 7.3 8.0 2.6 11.4

BMI* 1.3 0.6 0.3 2.7

10 Individuals BMI 24.1 23.3 20.5 27.8
* In absolute differences

3.2.2 Genome-wide DNA Methylation Data

Peripheral blood DNA methylomes were profiled with the 450k from

bisulphite-converted DNA in two batches of 24 and 68 samples. The array,

pre-processing, and QC procedures are described in detail in section 2.3.1.

In short, the summary is described of the quality control procedure and

results for the dataset used in this chapter. First probes were removed that: 1)

failed detection in one or more samples and/or had a bead count less than 3 in

>5% of samples (n = 3,325), 2) aligned to more than one location in the human

genome with their 50 bp sequence, 3) located on the sex chromosomes, 4) harboured

common genetic variants occurring in European Caucasians (MAF >1%) within 10

bp on the probe at the interrogated CpG site, and 5) contained variants at any MAF

at the interrogated CpG site [150, 151]. Therefore the remaining number of probes

used for this EWAS was 453,627.

The 41 MZ twin-pairs were verified with the sample identifier (see Sec-

tion 2.3.1.4) using the 57 autosomal control SNP probes and known genotype data.

The beta values were then normalized using the BMIQ method to correct for probe

type bias [154].

PCA was performed on standardised beta values (N(0,1)) per probe. The
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first 5 PCs combined explained 46.8% of the total variance. No nominally significant

association was identified between cancer status and the first five PCs. However,

significant associations were identified (p < 4.1 x 10-3) between the first five PCs

with all six estimated cell proportions: CD8+ T cells, CD4+ T cells, Natural Killer

cells, granulocytes, and monocytes [80], as well as with batch and beadchip.

3.2.3 Gene Expression Profiles

Gene expression profiles of LCLs, skin tissue, and adipose tissue from 283

healthy female individuals of European descent of the TwinsUK were obtained from

the MuTHER project [146] described in detail in section 2.4. Whole blood DNA

methylation in the same 283 healthy female individuals was profiled using 450k,

processing and quality control was similar as previously described in section 2.3.1.

3.2.4 Statistical Analysis

A general overview of the analyses performed in this chapter is shown in

Figure 3.1.

Global DNA Methylation Profiles

DNA methylome profiles of the 41 MZ twin-pairs were analysed for global differences

using unsupervised hierarchical clustering analysis with Euclidean distances and

complete linkage method. This was repeated using only the 1,000 most variable

CpG sites across these individuals, identified as the CpG sites with the greatest

standard deviations. Within MZ twin-pair genome-wide correlations were performed

using a Spearman’s rank test. This was compared to pair correlations of individuals

randomly assigned to another resulting in 41 new "twin-pairs". The random pairing

was repeated 100 times for two subsets; randomly assigned independent of cancer

status and randomly assigned but within their cancer status (i.e. healthy paired

with healthy and cancer affected paired with cancer affected). These groups were
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41 Cancer-Discordant twin-pairs

450k Profile

Global differences
Single CpG and

small regional differences

Hierarchical clustering DMPs DMRs

Replication analysis

Cancer risk factor
enrichment analysis

Gene Expression analysis

Figure 3.1: Schematic overview of statistical analyses. A general overview of the

analyses performed in this chapter.

then compared to the true twin-pair group and a two sample t-test was performed

for significant differences.

Pan-cancer Differentially Methylated Positions

The first EWAS was performed at single CpG sites to identify pc-DMPs. Prior to

this EWAS, the DNA methylomes were first individually adjusted for confounders.

To this end, a linear model was fitted on standardised beta values per probe

(N(0,1)) as the response variable and the first five PCs as predictors. These DNA

methylation residuals were then used to calculate within twin-pair differences
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that were determined consistently as cancer-affected twin minus healthy co-twin.

A one-sample t-test was performed on these within-pair differences to assess

significance of association. Computational approaches similar to the PC regression

applied here to adjust for cell heterogeneity and noise in large-scale epigenomic data

sets have already been applied and published in recent years [173–175]. Multiple

testing was taken into account by the use of a false discovery rate (FDR) of 10%

using the "qvalue" package in R, while suggestive results threshold was set at a

nominal p value of 1 x 10-5.

Another two EWAS were preformed to compare these results to two different

pipelines using other methods. First, a linear model was fitted on normalised

beta values per probe (N(0,1)) as the response variable and the estimated cell

type proportions of granulocytes, CD8+ T cells, and NK cells as well as batch

(two levels) as predictors. Again, these DNA methylation residuals were then

used to calculate consistently within twin-pair differences (cancer-affected twin

minus healthy co-twin) followed by a one-sample t-test to assess significance of

association. Second. an EWAS was performed with a computational approach

based on surrogate variable analysis (SVA) devised by Houseman et al. [173] termed

"RefFreeEWAS" using the paired design option: "PairsBootRefFreeEwasModel".

The top-ranked probe, still ranked first in all three methods, and the suggestive

probes had p-values <1 x 10-3 for all three approaches. The two computational

approaches based on PCA and SVA were the most similar as expected.

Pan-cancer Differentially Methylated Regions

Next, an EWAS was performed at small genomic regions to identify pc-DMRs.

These small regions were predefined and comprised at least 3 CpG sites that were

no more than 500 bp apart. To keep the paired structure of the data, differences at

single CpG sites within these regions were per MZ twin-pair determined on DNA

methylation residuals, similar to the DMP analysis. This was then compared to a
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group without DNA methylation differences using the "Bumphunter" package in R

[176]. The algorithm determines a p value based here on 1,000 permutations as well

as determining family-wise error rate (FWER) adjusted p value. Pc-DMRs were

identified as statistically significant at a p value <0.05 and at a FWER adjusted p

value <0.5.

Cancer Risk Factor Analysis

Known cancer risk factors, age and smoking, were assessed for enrichment in the

top ranked 500 pc-DMPs. To this end, previously published whole blood DMPs

associated with age [135] and smoking [69] were selected for enrichment analysis.

The enrichment analysis compared the occurrence of these age and smoking DMPs

within the top 500 ranked pc-DMPs against their occurrence in the remaining CpG

sites on the 450k (n = 453,127). A Fisher’s exact test was used to assess significance.

Gene Expression Analysis

Gene expression levels of three different tissues were assessed for association with

the most associated pc-DMPs and pc-DMR. For 283 healthy individuals, linear

mixed effects models were fitted on gene expression levels with age, BMI, batch,

concentration (skin tissue only) as fixed effects, and family and zygosity as random

effects. A similar linear mixed effects model was fitted on DNA methylation levels

in the same individuals with age, BMI, beadchip, position on the beadchip, and

granulocytes, monocytes, CD8+ T cells (estimated proportions) as fixed effects, and

family and zygosity as random effects. This was followed by a Pearson correlation

test on the DNA methylation and expression residuals from these models.

3.2.5 Genomic Annotation Analysis

All CpG sites included in this chapter were compared with annotations

for CpG density (CGI, shores, and shelves) from the UCSC track [177], RefSeq

genes (promoter, 5’UTR end, gene body, 3’UTR, intergenic), and functional genomic
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elements derived from ENCODE including ChromHMM state segmentation, DNase-

I hypersensitivity sites, and transcription factor binding sites (TFBSs) [178, 179].

For each annotation category an enrichment analysis was performed com-

paring the top 500 ranked pc-DMP probes to the remainder of CpG sites (n =

453,127). Subsequently, a Fisher’s exact test was performed to test significance. For

the ChromHMM state segmentation, all 15 states were assessed as well as collapsed

states with a single "promoter" and "enhancer" categories. The promoter category

comprised active promoter (state 1), weak promoter (state 2), and poised promoter

(state 3) and the enhancer category comprised strong enhancer (state 4 and 5), and

weak enhancer (state 6 and 7).

3.2.6 Replication Sample and Analysis

Sample Selection

An independent MZ twin-pair sample from the Netherlands Twin Registry (NTR)

with peripheral blood DNA methylomes and white blood cell counts was used for

replication of the top results [180]. A detailed official cancer diagnosis in this cohort

was similarly obtained through record linkage with the Netherlands Cancer Registry

(NKR). After this record linkage, 703 complete MZ pairs who took part in the NTR

biobank project remained. Discordant MZ twin-pairs were selected from this set with

similar criteria as for the DTR dataset described in section 3.2.1 (see Table 3.4).

This resulted in 9 cancer discordant MZ twin-pairs comprised of a mixed sex sample:

4 male and 5 female pairs. These included cancers at 6 different primary locations:

breast (3 pairs), meninges (1 pair), pituitary gland (1 pair), prostate (2 pairs),

rectum (1 pair), and soft tissue (1 pair).

Analysis

Replication of the 4 most associated pan-cancer DMPs was performed in the 9

cancer discordant MZ twin-pairs from the raw 450k output using a similar quality
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Table 3.4: Characteristics of 9 cancer-discordant MZ twin-pairs.

Selection Characteristic Mean Median Range

9 discordant twin-pairs Age at DNA extraction 55.7 55.5 34.6 71.9

Age at Cancer diagnosis 60.0 58.1 37.6 74.3

BMI* 2.7 2.8 0.3 6.0

18 Individuals BMI 26.2 26.3 19.2 33.0
* In absolute differences

control, normalisation and analysis pipeline as described for the discovery analysis

in this section. In addition, 3 of these pan-cancer DMPs were also available in 480

concordant "healthy" MZ twin-pairs (no cancer diagnosis between them) for which

blood samples were extracted at the same date. These three probes were provided

by Dr. Jenny van Dongen using her quality control and normalisation pipeline of

the complete NTR dataset. The normalisation used in this instance was functional

normalisation [155]. These were subsequently investigated for difference in variabil-

ity in DNA methylation at these sites in the healthy MZ twin-pairs compared to the

9 cancer discordant MZ twin-pairs. For this, absolute within twin-pair differences

in normalised beta values were calculated for all pairs and assessed for significance

using a Mann-Whitney U test between the groups.
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3.3 Results

3.3.1 DNAMethylomes in Cancer Discordant MZ Twin-pairs

Whole blood DNA methylomes were analysed for 41 female cancer dis-

cordant MZ twin-pairs. The individuals were diagnosed with cancer at a single

primary site and included cancers at: breast, cervix, colon, endometrium, thyroid

gland, skin (melanoma), ovary, and pancreas (see Figure 3.2 A). Overall variation

in DNA methylomes was first assessed using unsupervised hierarchical clustering

of unadjusted normalised DNA methylation levels. This revealed that the DNA

methylomes were not globally different and did not cluster according to cancer sta-

tus. Thirty-five of the 41 MZ twin-pairs (85.4%) clustered as a pair and the other

six MZ twin-pairs clustered according to the beadchip that they were profiled on

(see Figure 3.2 B). This highlights the influence of technical confounders for DNA

methylome data using the 450k and importance to account for these accordingly in

downstream analyses.

To further examine a cancer associated DNA methylation signature,

1,000 most variable CpG sites were selected using the highest standard deviations

and were again assessed using unsupervised hierarchical clustering. Now the

MZ twin-pairs clustered as twin-pairs and were even more similar with 100%

pairing. This indicates that these most variable probes are highly variable between

twin-pairs and therefore variation at these probes could likely be due to genetic

influences between the different MZ twin-pairs rather than cancer status. Likewise,

MZ twin-pairs have stronger within-pair correlations in their DNA methylome than

individuals paired at random or paired randomly within affection status category

(see Figure 3.2 C, p = 2.2 x 10-16) representing the strong influence of genetics

on these profiles. The average correlation within MZ twin-pairs (Spearman’s

rank correlation coefficient (rS) = 0.986) is comparable to previous estimated

genome-wide correlations in new-born twins, ranging from 0.98-0.99 (placenta, cord
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blood mononuclear cells, and human umbilical vascular endothelial cells) [181], 0.99

at 15 years (peripheral blood) [101], and 0.98 and 0.99 in middle-aged individuals

(peripheral blood, adipose tissue respectively) [143, 182].

Figure 3.2: Diagnostic characteristics and global DNA methylation profiles

of 41 cancer-discordant MZ twin-pairs. (A) Number of cases for each individuals

primary cancer location with blood samples obtained preceding (white) or after (black)

cancer diagnosis. (B) Dendrogram of unadjusted DNA methylomes depicting annotation

bars for affection status per individual, and primary cancer location as well as family

identifier that coloured per twin-pair. (C) Pair-wise correlation of DNA methylomes show

greater similarity within MZ twin-pairs compared to pairs of unrelated individuals, either

paired at random or within disease status.
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3.3.2 Pan-cancer Associated Differentially Methylated Posi-

tions (DMPs)

Next, differential DNA methylation levels at single CpG sites were analysed

epigenome-wide for pc-DMPs within the 41 MZ twin-pairs discordant for cancer

diagnosis. The DNA methylomes were adjusted prior to the analysis for the first

five PCs. These explained 46% of the variance across the 41 MZ twin-pairs and

were not associated with affection status (p >0.5), but were significantly associated

with beadchip, batch, and estimated blood cell type proportions of all six cell types

(see Section 3.2.2). The EWAS was then performed using a one-sample t-test on

the directional within-pair differences of the adjusted DNA methylation data.

One novel pc-DMP was identified at a FDR threshold of 10% for the in-

tergenic probe cg02444695 (p = 1.8 x 10-7, see Table 3.5 on page 74, and Figure 3.3

A). The adjusted DNA methylation levels at this pc-DMP were consistently higher

in the cancer-affected twins compared to the healthy co-twins. This directional dif-

ference was also observed in the normalised unadjusted DNA methylation levels at

an average of 0.7% within twin-pairs with a range of -0.9% to 3.0% (see Figure 3.3

B). The CpG is ~70 kb upstream of SASH1, which is the nearest gene. SASH1 is a

tumour suppressor that is linked to metastasis formation in different types of cancer

[183–185].

A further three suggestive associations were observed (p <1.0 x 10-5) for

probes cg26079695 in COL11A2, cg27094856 in AXL, and cg21046959 in LINC00340

(see Figure 3.3 A and Table 3.5 on page 74). The CpG interrogated by cg27094856 is

in the fourth intron of AXL and the expression of this gene has been associated with

cancers of various primary sites and stages as well as being a therapeutic target for

antibody based therapies [186–188]. The CpG site at cg21046959 is located within

the long non-coding RNA LINC00340, which has been associated via GWAS and

epigenetically with both neuroblastoma and ovarian tumours respectively [189, 190].
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Figure 3.3: Pan-cancer EWAS results in 41 discordant MZ twin-pairs. (A)

Manhattan plot of EWAS results in which each point depicts the observed -log10 p value

per CpG site. (B) Association between MZ twin-pairs at the top-ranked CpG cg02444695

near SASH1. Normalised unadjusted beta values are shown of cancer-affected individuals

(left) and healthy individuals (right) with the lines connecting each MZ twin-pair.
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3.3.2.1 Top Pan-cancer DMPs in an Independent Sample

The four most associated pc-DMPs were assessed in an independent MZ

twin-pair sample from the NTR. A total of nine middle-aged cancer discordant MZ

twin-pairs were selected with the same criteria as the discovery samples, though the

NTR twins comprised both male (4) and female (5) twin-pairs. The MZ twin-pairs

were first analysed for replication in a similar fashion to the discovery EWAS. The

direction of association at three CpG sites was comparable, with the exception of

cg02444695 (see Table 3.5). However, no nominal significance (p <0.05) was reached

which could be due to the small size of the sample.

Furthermore, an extra 480 healthy MZ twin-pairs of the NTR were also

assessed for variability in DNAmethylation at these most associated CpGs compared

to the nine cancer-discordant pairs. The hypothesis behind these analyses was that

if the observed pc-DMPs were associated with affection status, less variation at

these sites would be expected in a healthy population. Three of the four top-ranked

probes (g02444695, cg26079695, and cg27094856) were available in the NTR cohort,

and the absolute within-pair differences in DNA methylation were compared for the

healthy and cancer-discordant groups of MZ twin-pairs (see Table 3.5 and Figure

3.4). Greater variation was observed in cancer-discordant MZ twin-pairs compared

to the healthy twin-pairs. At cg27094856 in AXL this was a significant difference

(p = 0.047), with a healthy median of 0.78% vs cancer median of 1.44% DNA

methylation within-pair difference. Additionally, a trend of potential difference was

observed at cg02444695 near SASH1 with a healthy median 1.48% vs. cancer median

2.32% DNA methylation difference (p = 0.091).
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Table 3.5: Top-ranked results of pan-cancer EWAS of 41 discordant MZ twin-pairs.

Discovery EWAS

n = 41

Replication

n = 9

NTR

Variability

n = 9 vs

n = 480

NTR

Prior to diagnosis

EWAS

n = 15

CpG
Position

(hg19)
Gene Location

Mean

difference*
p value

Mean

difference*
p value p value Rank

Mean

difference*
p value

cg02444695 Chr6:148950185 - - 0.70 1.8 x 10-7 -0.64 0.26 0.09 10 0.88 2.4 x 10-5

cg26079695 Chr6:33143273 COL11A2 Intron -0.67 3.3 x 10-6 -050 0.23 0.34 1518 -0.88 4.1 x10-3

cg27094856 Chr19:41732589 AXL Intron 0.56 3.4 x 10-6 0.02 0.96 0.05 3801 0.51 9.7 x 10-3

cg21046959 Chr6:22180833 LINC00340 Transcript -0.53 8.9 x 10-6 -0.43 0.37 - 407 -0.73 1.2 x 10-3

*The mean differences are calculated as cancer - unaffected co-twin using adjusted DNA methylation values.
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Figure 3.4: Variability at three top-ranked pan-cancer DMPs in 9 cancer dis-

cordant and 480 healthy MZ twin-pairs from the NTR. Histograms with density

overlay with median of absolute differences for 480 healthy MZ twin-pairs (blue) and den-

sity with median of 9 cancer discordant MZ twin-pairs (red). At (A) cg0244695 near

SASH1, (B) cg26079695 in COL11A2, and (C) cg27094856 in AXL.

3.3.3 Pan-cancer Differentially Methylated Regions (DMRs)

Next, small genomic regions encompassing multiple CpG sites associated

with affection status, pc-DMRs, were investigated in the sample of 41 MZ twin-pairs.

To this end, regions were defined to contain at least three CpGs no more than 500 bp

apart. At each region the DNA methylation difference at each CpG was determined

per MZ twin-pair (cancer affected twin minus healthy co-twin) using PC-adjusted

DNA methylation. Then, the peak-calling algorithm ’Bumphunter’ [176] was used

to identify pc-DMRs.

This analysis identified one suggestive pc-DMR at the TSS of TIMM44

that spans ~1 kb (chr19:8,008,080-8,009,137 (hg19), p = 0.01, Figure 3.5). The

peak of the region is formed by a single CpG, cg14044916 at chr19:8,008,850, and its

two neighbouring CpGs that exhibit higher DNA methylation in the cancer-affected
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twins. Cg14044916 was ranked 24th in the single CpG EWAS (p = 7.38 x 10-5).

The pc-DMR overlaps a 5’ CGI and this region shows active promoter evidence

from ChromHMM in various tissue cell lines of ENCODE [178, 179]. TIMM44 itself

has previously been associated with familial non-medullary thyroid carcinoma [191],

aggressive serous ovarian cancers [192] and breast cancer recurrence [193].

D
M

R

-2

-1

0

1

2

Ad
ju

st
ed

 B
et

a 
va

lu
es

Disease status
Cancer affected
Healthy

G
en

e 
Tr

ac
k

TIMM44

TIMM44

8008500 8008550 8008600 8008650 8008700
Chromosome 19

Figure 3.5: Pan-cancer DMR at TIMM44. Adjusted DNA methylation values at

each CpG site in the DMR and smooth (LOESS) lines are shown for individuals affected

by cancer (red) and healthy co-twins (blue). In the lower part of the figure is the genomic

position (hg19) of the RefSeq genetrack.

3.3.4 No Enrichment for Cancer Risk Factors Smoking and

Age

The 500 most associated CpGs were assessed for enrichment for two major

risk factors for cancer: age and smoking. For this purpose, published peripheral

blood DMPs for age and smoking were obtained and examined for co-occurrence of
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the pc-DMPs. Age enrichment analysis was performed using the age DMPs from

Steegenga et al. [135] and their combined table of age DMPs from eight prior studies,

7,318 of which were present in this data. Within the top 500 most associated pc-

DMPs, no enrichment was observed and only eight pc-DMPs were also associated

with age (p = 1). Smoking enrichment was assessed with published smoking DMPs

from the largest study to date with the 450k by Zeilinger et al. [69]. Out of these,

948 CpG sites were present in our data. Again no enrichment was observed in the

top 500 pc-DMPs (three CpGs, p = 0.089). Finally, none of the four most associated

pc-DMPs have been previously associated with smoking status or age.

The DNA methylome data used in these analyses was adjusted by using

the first five PCs. The PCs were not significantly associated with either age or

smoking alone, but they may still account for some of the variation attributed to

these factors. Subsequently, an EWAS was also performed on DNA methylome data

that was only adjusted for batch effects and cell counts (see Section 3.2.4). These top

500 results were similarly assessed and showed no enrichment for age and smoking

DMPs. Collectively, the pc-DMPs seem to indicate a more complex portrait of these

risk factors or disease biology in the peripheral blood DNA methylome.

3.3.5 Biomarker Potential: Analysis in Samples Obtained

Preceding Diagnosis

To assess biomarker potential for early diagnosis in this dataset, a subset

was selected of 15 MZ twin-pairs where the DNA methylome blood samples were

obtained up to five years preceding diagnosis (see Figure 3.2 A). A similar EWAS

adjusting for the first 5 PCs in these 15 MZ twin-pairs revealed additional pc-DMPs

including at the promoters of COX7C and U2AF1 in the 10 top ranked results

(see Table 3.6 on page 80). In particular, the CpG in COX7C (cg04533633, p =

3.0 x 10-6) is in the same region earlier identified by Marsit et al. [194], using the

27k, as one of the nine most significant loci in peripheral blood associated with
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cancer of the bladder. At this region, a similar direction of effect is seen with higher

DNA methylation in the cancer-effected individual. In U2AF1, recurrent somatic

mutations have been identified across tumour tissue as pan-cancer mutations. These

mutations were shown to induce changes in the transcriptome through differential

splicing [195].

The top-ranked pc-DMP identified in the main analysis of 41 MZ twin-

pairs, cg02444695, was now ranked tenth in this EWAS and thus still highly signif-

icant with same direction of effect (p = 2.40 x 10-5, see Table 3.6 and Figure 3.6

A). The three suggestive pc-DMPs of the main EWAS remained significant in the

subset EWAS of samples prior to diagnosis (see Table 3.5). In fact, for cg02444695,

cg26079695, and cg21046959 a greater DNA methylation residual difference was ob-

served within these MZ twin-pairs with blood samples obtained prior to diagnosis,

compared to the differences across all 41 MZ twin-pairs. The reduced significance

is likely due to the lower number of MZ twin-pairs included in this EWAS.

3.3.6 Pan-cancer Biomarker Stability Over Time

The four most associated pc-DMPs as well as the pc-DMP at COX7C

were investigated in depth to assess the relationship between blood sample collec-

tion in respect to diagnosis and DNA methylation differences. For the top-ranked

cg02444695 (near SASH1 ), the largest difference in DNA methylation is seen when

the blood was extracted around the year of diagnosis. Whilst for cg26079695 in

COL11A2 and cg21046959 in LINC00340, ranked second and fourth respectively,

the greatest differences were observed in samples obtained within the 5 year period

before diagnosis. The third ranked probe was the only one with greatest difference

after diagnosis (see Figure 3.6 B). The age of diagnosis and age at blood sample

extraction were not significantly correlated (p = 0.29, see Figure 3.6 C). Thus in-

creased variation with chronological age seem less likely to explain these pc-DMPs.

This is also illustrated in Figure 3.6 D for the most associated pc-DMP, that shows
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Figure 3.6: Differential DNA methylation at time of cancer diagnosis and age.

(A) Association between 15 MZ twin-pairs at the top-ranked CpG cg02444695 near SASH1

for samples obtained prior to diagnosis. Normalised unadjusted beta values are shown of

cancer-affected individuals (left) and healthy individuals (right) with the lines connecting

each MZ twin-pair. (B) Directional differences in adjusted DNA methylation values within

twin pairs at the four top-ranked pc-DMPs and cg04533633 (at COX7C ) represented by

smooth (LOESS) lines (see legend). (C) Years to diagnosis compared to age at blood

sample collection with a least squares regression fit line. (D) Unadjusted normalised DNA

methylation values at cg02444695 (near SASH1 ) in affected individuals (red) and healthy

co-twins (blue) at age of blood sample extraction with smooth (LOESS) lines.
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Table 3.6: Top-ranked results from the EWAS of 15 MZ twin-pairs prior to diagnosis.

EWAS prior to diagnosis

n = 15

Discovery EWAS

n = 41

CpG
Position

(hg19)
Gene Location Rank EWAS

Mean

difference*
p value Rank EWAS

Mean

difference*
p value

cg22786903 chr14:24912113 SDR39U1 TSS 200 1 -0.86 2.8 x 10-6 50680 -0.26 0.11

cg04533633 chr5:85913706 COX7C TSS 200 2 -0.75 3.0 x 10-6 279 -0.5 7.2 x 10-4

cg02272547 chr16:89634031 - - 3 0.82 5.0 x 10-6 390 0.45 1.0 x 10-3

cg07884474 chr20:2821816 VPS16 ;FAM113A Body;TSS 1500 4 -0.79 6.0 x 10-6 518 -0.36 1.4 x 10-3

cg04479472 chr7:1231443 - - 5 0.56 1.6 x 10-5 20627 0.21 0.05

cg27581871 chr16:542535 RAB11FIP3 Body 6 0.73 1.8 x 10-5 185567 0.13 0.41

cg14296488 chr21:44527812 U2AF1 TSS 200 7 0.69 2.0 x 10-5 1331 0.43 3.4 x 10-3

cg10305789 chr20:37434167 PPP1R16B TSS 200 8 -0.5 2.1 x 10-5 43093 -0.19 0.1

cg07178008 chr18:19445471 MIB1 3’UTR 9 -1.35 2.3 x 10-5 130784 -0.22 0.29

cg02444695 chr6:148950185 - - 10 0.88 2.4 x 10-5 1 0.7 1.8 x 10-7

*The mean differences are calculated as cancer - unaffected co-twin using adjusted DNA methylation values.
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stable differences across all ages.

Further investigation of early DNA methylation differences within MZ

twin-pairs included an extra five cancer discordant MZ twin-pairs with blood sam-

ples between 5 and 11 years preceding diagnosis. This revealed that there was not

a clear signal during these earlier years for the top associated CpGs. At cg02444695

particularly, a small reversed pattern is seen between 5 and 11 years compared to 5

year range preceding diagnosis. Concluding that the DNA methylation differences

can be observed up to five years before the official cancer diagnosis.

3.3.7 Functional Follow Up of Pan-cancer Differential Methy-

lation Results

Association with gene expression of the nearest genes was assessed for the

four most associated pc-DMPs and pc-DMR. To this end, 283 healthy female indi-

viduals were selected with peripheral blood DNA methylomes and transcriptomic

profiles from three tissues: LCLs, skin, and adipose. The correlation was assessed

between DNA methylation and the nearest available expression levels and identi-

fied two significant correlations (p <0.05, see Table 3.7). The first correlation was

observed at cg21046959 with the closest protein-coding transcript of PRL in LCLs,

~100 kb upstream of the CpG (r = 0.17, p = 4.5 x 10-3, see Figure 3.7 A). The sec-

ond correlation was observed at cg27094856 with expression of AXL in skin tissue (r

= -0.15, p = 0.01, see Figure 3.7 B). Both these two correlations were not observed

across all tissues. The CpG positively correlated to PRL expression was annotated

by ENCODE in heterochromatin in the GM12878 B-lymphocyte cell line. However,

it was annotated as an active promoter and weak enhancer in human embryonic

stem cell line (H1-hESC) and leukaemia cell line (K-562), respectively. The CpG

negatively correlated to the expression of AXL in skin tissue was annotated as a

strong enhancer in epidermal keratinocytes (NHEK) and as an inactive or poised

promoter in the GM12878 cell line.
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Next, the top 500 CpGs most associated with cancer affection status were

assessed for enrichment of functional annotations to test for systemic changes that

occur in individuals due to cancer pathogenesis. The top 500 CpGs were compared

to the remaining CpGs in the dataset (n = 453,127) and an enrichment was identified

for pooled enhancers from ENCODE (GM12878, p = 0.030, see Figure 3.7 C). State

7 "Weak enhancer" category by ChromHMM (p = 0.034) was the only one out of

the 4 states pooled together that was nominally significant itself in the enrichment

analysis. There was a trend towards depletion of DNA methylation in CGI shores,

repressed regions, and weakly transcribed regions, but these were not nominally

significant.
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Figure 3.7: Functional follow up of top-ranked pan-cancer DMPs. Adjusted DNA

methylation levels of peripheral blood compared to adjusted gene expression levels showing

a least squares regression fit for 283 individuals at (A) cg21046959 and ILMN_1809352

(PRL) in LCLs, and (B) cg27094856 and ILMN_1701877 (AXL) in skin tissue. (C)

Enrichment of genomic annotation categories within the 500 top-ranked pc-DMPs. The

difference in proportion of pc-DMPs compared to the remainder of probes in the genomic

annotation classes is depicted by the bars. Nominally significant results were obtained for

the "enhancer" category (p = 0.03).
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Table 3.7: Gene expression analysis of top ranked pan-cancer DMPs and DMR in 283 individuals.

LCLs Adipose tissue Skin tissue

CpG
Position

(hg19)
Gene Location

Nearest

transcript probe
Gene CpG distance r p value r p value r p value

cg02444695 Chr6:148950185 - - ILMN_2185984 SASH1
77 kb

upstream
-0.02 0.79 0.01 0.91 0.03 0.59

cg26079695 Chr6:33143273 COL11A2 Intron ILMN_2311456 COL11A2 - 0.04 0.46 0.07 0.21 0.09 0.17

cg27094856 Chr19:41732589 AXL Intron ILMN_1701877 AXL - 0.01 0.91 0.07 0.20 -0.15 0.01

cg21046959 Chr6:22180833 LINC00340 Transcript ILMN_1809352 PRL
106 kb

downstream
0.17 4.5 x 10-3 0.03 0.59 0.02 0.74

cg14044916 Chr19:8,008,850 TIMM44 TSS 1500 ILMN_1784031 TIMM44 - 0.02 0.75 0.05 0.44 0.04 0.55
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3.4 Discussion

This chapter investigated 41 cancer discordant MZ twin-pairs to identify

a pan-cancer differential DNA methylation change in peripheral blood independent

of host genetic variation. One epigenome-wide significant pc-DMP (FDR 10%) was

identified ~70 kb upstream of SASH1. A further three pc-DMPs were identified

that passed a suggestive significance threshold that were located within the genes

COL11A2, AXL, and in LINC00340. Three out of these four pc-DMPs showed the

greatest differences in twin-pairs sampled within 5 years prior to and around time

of diagnosis (pc-DMPs near SASH1, in COL11A2 and LINC00340 ). An additional

pc-DMP in the promoter of COX7C was identified in an EWAS using subset of DNA

samples obtained only preceding the cancer diagnosis. This pc-DMP was in the

same locus previously associated in peripheral blood samples with bladder cancer

[194]. Through a regional-based approach, one pc-DMR at the TSS of TIMM44

was also identified in the 41 MZ twin-pairs. No overall difference in DNA methy-

lomes was observed for affection status. Finally, MZ twin-pairs exhibited greater

within-pair correlation than when individuals paired at random, with correlation

levels similar to previous estimates in healthy MZ twin-pairs [93, 101, 143, 181, 182].

The most associated pc-DMP (cg02444695 near SASH1 ) had consistently

greater DNA methylation levels in the twin with cancer compared to the healthy

co-twin. Using unadjusted DNA methylation betas, this was quantified as a mean of

0.7% within a range -0.9% to 3.0% DNA methylation. The CpG site is in a weakly

transcribed region and ~500 bp upstream of a weak/poised enhancer identified by

ChromHMM in GM12878 B-lymphocyte cell line (LCLs). The nearest downstream

gene is SASH1 and its expression is associated in various different tumour tissues,

such as breast, colon, and bone, with increased metastasising ability and aggres-

sive tumour growth [183–185]. Indeed, a weak negative correlation at cg02444695

was identified between peripheral blood DNA methylation at cg02444695 and ex-
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pression levels of SASH1 in LCLs in 283 healthy individuals. It should be noted

that the transformation of lymphocytes to an unusually long life span by EBV can

cause less transcriptomic variability [196] and impact the DNA methylome in the

mature LCLs [197]. Nevertheless, consistent transcriptomic changes in LCLs have

been associated with smoking for example [198]. Near significant increased variabil-

ity of DNA methylation at this CpG was observed for an independent sample of

nine cancer-discordant MZ twin-pairs compared to 480 healthy MZ twin-pairs not

diagnosed with cancer to date. The pc-DMP did not directly replicate in these nine

twin-pairs, which may in part be due to the small sample size and/or gender com-

position of four male and five female pairs. The greatest within-pair difference of

DNA methylation was observed around the time of diagnosis. This differential effect

was detected specifically in samples preceding cancer diagnosis, early or prior can-

cer pathogenesis, and could reflect accrued risk factor exposures, systemic response,

or even surrogate changes. The observed difference was observed to be limited to

approximately five years prior to diagnosis.

One of the suggestive pc-DMPs, (cg27094856 in AXL), showed consistent

increased levels of DNA methylation in the twins with cancer compared to their

healthy co-twins. This was also observed in the independent sample of nine cancer-

discordant MZ twin-pairs although this was not nominally significant. There was,

however, a significant greater variability between the nine cancer-discordant MZ

twin-pairs compared to 480 healthy MZ twin-pairs not diagnosed with any type

of cancer. This pc-DMP is in the fourth intron of AXL and a region annotated

by ChromHMM as inactive or poised promoter in GM12878. AXL expression is

associated with therapy resistance, proliferation, and migration capacity as well

as a therapeutic target [186–188]. Transcriptomic analyses identified a negative

correlation between DNA methylation at this site with expression levels of AXL

in skin tissue only. The greatest differences in DNA methylation are observed in

samples obtained post diagnosis in which effects caused by treatment cannot be
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ruled out.

DNA methylation levels of another suggestive pc-DMPs, cg21046959 in

LINC00340, were decreased in the twins with cancer compared to their healthy co-

twins. A similar trend was found in the replication sample of nine discordant MZ

twin-pairs. This site was not available for the variability analyses performed on the

other CpG due to quality control for the entire sample performed by the NTR. The

CpG is positioned within the last intron of LINC00340 in a heterochromatin block in

GM12878, however this region is an active promoter in K-562, a leukaemia cell line.

LINC00340 itself has been implicated as a susceptibility locus for neuroblastoma as

well as showing hypermethylation at its promoter in clear cell ovarian tumours [189,

190]. Gene body hypomethylation coupled with hypermethylation at a promoter

are classically associated with lower expression, which fits with these findings [199].

Unfortunately, expression levels for were not available LINC00340, although the

nearest transcript of PRL showed a significant positive correlation in LCLs with

DNA methylation at this site. Conversely, PRL expression has been positively

associated with tumour progression across different cancer types [200–202]. Again,

the greatest differences were observed in the samples preceding diagnosis within 5

years, with minimal differences in the 5 years post diagnosis.

The second most associated and suggestive pc-DMP, cg2607969 in

COL11A2, had decreased DNA methylation in the cancer-affected twin compared

to the healthy co-twin. This direction of effect was also observed in replication MZ

twin-pairs, although, the CpG site did not show increased variability in the cancer

discordant pairs. Located in the gene body of COL11A2, COL11A2 has not been

linked to cancer yet. The strongest differences are observed within five years prior

to diagnosis.

The EWAS in a subset of 15 MZ twin-pairs with blood samples obtained

prior to diagnosis further identified differential DNA methylation at a CpG,
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cg04533633, in the promoter of COX7C. The same locus in peripheral blood was

earlier already associated with bladder cancer [194]. None of the MZ twin-pairs here

however were diagnosed with bladder cancer to date. This requires more follow up

to investigate if the pan-cancer effects here would extend to bladder tumours as well.

The regional analysis identified a pc-DMR in the promoter of TIMM44

that exhibits higher DNA methylation levels in the cancer-affected twins. It

overlaps a 5’ CGI and is annotated by ChromHMM as an active promoter in all of

the primary tissue cell lines of ENCODE. TIMM44 germline genetic variants have

been linked to familiar non-medullary thyroid carcinoma [191] and decreased DNA

methylation in one of its two intragenic CGIs has been found in aggressive serous

ovarian cancers [192]. Additionally, increased expression of TIMM44 is associated

in breast cancers with recurrence after chemotherapy [193]. This region is a good

candidate for further assessment with with higher regional resolution technologies,

such as targeted bisulphite sequencing.

One of the limitations of this study is the heterogeneous nature of cancer

spanning many tissues with varying aetiology. This heterogeneity has the potential

to mitigate distinct cancer type effects and thereby reducing the power to detect

true differential DNA methylation associations. On the other hand, pan-cancer sig-

natures in various biogoical processes as well as certain "driver" mutations observed

across cancer tissues [168–172] show that potential general systemic effects or even

surrogate effects could occur within individuals.

Another potential limitation is that even though blood is relatively

non-invasive and easy to obtain tissue, it is a very heterogeneous tissue. This

cellular heterogeneity is here captured by using PCs that are correlated with the

major estimated cell proportions. Nevertheless, this or any statistical approach

cannot fully correct the data for cell heterogeneity. The identified differential DNA
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methylation may also represent minor immune cell population shifts or even rare

cell subtypes that are not addressed by current method. For example, a rare cell

subtype in smokers that was the cause of the widely reproduced smoking-associated

differential DNA methylation at GPR15 in peripheral blood [79]. However, that

does not diminish the value as a biomarkers if cost-effective but only biological

interpretation of these results. More research is therefore needed to further

investigate the identified pc-DMPs in terms of their presence and their stability

over time in sorted blood cell types, in tumour tissues, and/or healthy tissue of the

primary tumour site. This could potentially show if these are surrogate changes or

due to a shared systemic response either to risk factors or cancer pathogenesis.

The pc-DMPs described in this chapter were not previously identified as age

or smoking DMPs, two major risk factors for cancer, nor was there an enrichment

of these risk factors in the top results. Thus, these are not biomarkers of age or

smoking. BMI differences within twin-pairs may potentially contribute to cancer

incidence, although only three twin-pairs comprised a cancer-affected twin that was

classified as obese (BMI range 30-40 kg/m2) with lower BMI measured in their

healthy co-twin.

The use of a discordant MZ twin-pair design has the potential to identify

changes in the DNA methylome that are independent of genetic variation or early

environment. Classically, differences found within MZ twin-pairs are attributed to

environmental variation. Recent publications have shown the impact of genetic

variants on DNA methylation and identified for example methylation quantitative

trait loci (mQTLs) and these could potentially interact with environmental expo-

sures [203] to increase variability.

This EWAS of 41 cancer-discordant MZ twin-pairs as discovery analysis

has good power to detect moderate to big effect sizes in DNA methylation, its
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strength being an ultimately matched case-control study [204]. However, peripheral

blood is a surrogate tissue and the heterogeneous disease might reduce this power

via reduced effect sizes. The power to detect the difference in DNA methylation

at the most associated pc-DMP was estimated to be 56% to reach a Bonferroni

cut-off (1.0 x 10-7)[205]. The replication sample of nine cancer-discordant MZ twin-

pairs provided 10% power to detect DNA methylation differences at the top-ranked

signal at nominal significance (p <0.05). Cancer discordant MZ twin-pair samples

are extremely rare world-wide, however they could still provide novel indications

whether similar effects are observed in an independent dataset despite the low power

as shown here for the replication dataset.
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3.5 Conclusion

This is the first EWAS for pan-cancer in peripheral blood obtained in a

five-year window around time of diagnosis. Furthermore, this is a discordant MZ

twin-design that is particularly powerful in detecting DNA methylation changes

independent of genetic variation. One significant pan-cancer pc-DMP and three

suggestive pc-DMPs as well as one pc-DMR, were identified in a sample of 41 MZ

twin-pairs. Three out of the four pc-DMPs showed greater DNA methylation differ-

ences preceding cancer diagnosis and indicate regions of interest for further research

into their potential as pan-cancer biomarkers.
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Chapter 4

Early Breast Cancer Biomarkers in
Discordant Monozygotic Twin-pairs

4.1 Background

Breast cancer is the most common cancer for women in the world with

53,354 new cases in 2013 in the UK alone [108, 206]. It comprises a heterogeneous

group of tumours composed of different molecular features, prognostic behaviours,

and responses to therapy [207–209]. Heritability of breast cancer was estimated

close to 30% by twin studies [210, 211], though only 5-10% of cases have a strong

inherited component. In familial breast cancer, a number of susceptibility genes

have been identified, the most important ones being BRCA1 and BRCA2. These

are high-penetrance genes that have a spectrum of mutations associated with life

time disease risks as high as 80% for breast cancer and 40% for ovarian cancer

[212]. Multiple common genetic variants have been associated with increased breast

cancer risk [213] and a subset of these have also been associated with increased risk

in BRCA1 and BRCA2 mutation carriers [214].

Early detection is vital for optimal prognosis, and biomarkers in easily ac-

cessible tissues are being investigated that can accurately diagnose breast cancer

and/or identify individuals at increased risk. The age-specific incidence rates rise

steeply from the age 30-34 to age 65-69 with approximately half of the cases in

the UK are diagnosed in women over the age of 65 (see Figure 4.1) [215]. Cur-
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rent screening in the UK, and other economically developed countries, involves a

mammography for sporadic cases between the ages of 50 to 70 and a more tai-

lored screening protocol for high-risk individuals. Mammography screening over the

last three decades has only minimally reduced the mortality rate and diagnoses of

advanced state of the disease whilst unfortunately increasing the number of over-

diagnosis [216]. Therefore, the need for improved and more effective screening of

breast cancer remains a priority.

Figure 4.1: Age-specific female breast cancer incidence rates in the UK. Repro-

duced from Cancer Research UK [215].

To date, several studies have identified changes in DNA methylomes in

peripheral blood samples associated with different types of cancer (discussed in

section 3.1). These include a number of studies that have identified global as well as

specific DNA methylation changes that are associated specifically with breast cancer

[134, 137, 217–222]. In this section, three most recent studies are highlighted that

identified DNA methylation changes prior to breast cancer diagnosis. Van Veldhoven

et al. [221] identified epigenome-wide DNA hypomethylation in peripheral blood

samples of breast cancer individuals compared to matched controls across three
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cohorts. The DNA methylomes were assessed by the 450k for a total of 750 incident

cases and matched controls. These results were validated by WGBS performed

by pooling 548 DNA samples from affected individuals into four pools of DNA,

as well as similar numbers for healthy matched controls. They observed that the

hypomethylation in breast cancer individuals was specifically observed in gene bodies

as opposed to CGIs. Yang et al. [222] also focused specifically on pre-diagnostic

blood samples, where samples were obtained within 5 years preceding diagnosis.

They compared 298 individuals diagnosed with breast cancer to 612 women who

remained cancer free for 1-7 years and identified 250 differentially methylated CpGs

assessed by the 27k. Thus far, one study has examined the potential of breast

cancer discordant MZ twin-pairs. Heyn et al. [137] used 15 breast cancer discordant

MZ twin-pairs from the TwinsUK cohort profiled by the 450k. They identified 403

differentially methylated CpG sites and determined via validation a candidate DMP

in DOK7 that acquires DNA methylation in the years before diagnosis in the breast

cancer affected individuals.

The aim of this chapter was to investigate breast cancer associated changes

in peripheral blood DNA methylomes that occur prior to diagnosis in the largest

sample of breast cancer discordant MZ twin-pairs to date. Here, DNA methylomes

of 28 pairs were first assessed by the 450k. To extend the DNA methylome coverage,

26 breast cancer discordant twin-pairs were also assessed by MeDIP-seq to inves-

tigate potentially all genome-wide methylated CpG sites. All blood samples were

obtained within 8 years preceding breast cancer diagnosis. The most associated

results, breast cancer associated DMPs (bc-DMPs) and breast cancer associated

DMRs (bc-DMRs), were explored for their location in the genome and for stability

over time, to reveal potential regions in the genome that can serve as breast cancer

biomarkers.

Chapter 4 4.1.0 94



Chapter 4 4.2. METHODS

4.2 Methods

4.2.1 Sample Selection

4.2.1.1 Breast Cancer Discordance Criteria

Similar to chapter 3, detailed cancer diagnosis information was obtained

through record linkage with the ONS. Breast cancer cases were identified by ICD-10

codes ranging from C50.1 to C50.91 and excluded C50.0 that describes malignant

neoplasm of nipple and areola (see Table 4.1) [144]. Discordance was based per MZ

twin-pair on one co-twin diagnosed with breast cancer within 8 years after blood

sample collection whilst her co-twin was never diagnosed with malignant tumour

development in the most recent records (June 2015).

Table 4.1: ICD-10 Breast cancer codes.

ICD-10 code Description

C50.1 Malignant neoplasm of central portion of breast

C50.2 Malignant neoplasm of upper-inner quadrant of breast

C50.3 Malignant neoplasm of lower-inner quadrant of breast

C50.4 Malignant neoplasm of upper-outer quadrant of breast

C50.5 Malignant neoplasm of lower-outer quadrant of breast

C50.6 Malignant neoplasm of axillary tail of breast

C50.8 Malignant neoplasm of overlapping sites of breast

C50.9 Malignant neoplasm of breast of unspecified site
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4.2.1.2 Sample Selection Per Platform

Breast cancer discordant MZ twin-pairs were selected from the TwinsUK

registry (see Figure 4.2) for wich peripheral blood DNA methylomes were profiled

by the 450k and/or by MeDIP-seq.

Breast Cancer
Discordance Criteria

TwinsUK

Platform450k MeDIP-Seq

Previously
analysed

Newly
profiled

Chapter 3
(Roos et al. [223])

Heyn et al.
[137]

13 pairs 26 pairs12 pairs 8 pairs

28 unique
MZ twin-pairs

26 unique
MZ twin-pairs

18 pair overlap

Figure 4.2: Schematic overview of sample selection. The numbers shown in this

flowchart represent the total number of MZ twin-pairs after extensive quality control that

were included in the downstream analyses.
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Selected Samples Profiled By the 450k

In total, 28 middle-aged female discordant breast cancer MZ twin-pairs of European

descent were selected, ranging from 21 to 78 years old at blood collection (see

Table 4.2). The co-twins not diagnosed with cancer were at least cancer free in a

period ranging from 2.6 to 17 years following diagnosis of her co-twin (median = 7.5

years). Of these 28 MZ twin-pairs, 13 were newly profiled at IDIBELL and had not

been included in published data to date. The remaining 15 unique MZ twin-pairs

included 12 pairs profiled at the Wellcome Trust Sanger Institute, previously

described in chapter 3 (9 pairs were included in the pan-cancer main analysis), and

8 MZ twin-pairs profiled at IDIBELL that were part of the samples published in

Heyn et al. [137] (see Table 4.3). There is an overlap of 6 MZ twin-pairs that were

aliquots from the same blood samples and subsequently profiled at both genomic

centres, leaving 15 unique MZ twin-pairs across these centres.

Table 4.2: Characteristics of 28 breast cancer-discordant MZ twin-pairs.

Selection Characteristic Mean Median Range

28 discordant twin-pairs Age at DNA extraction 58.5 59.3 20.6 78.7

Age at Cancer diagnosis 60.9 62.4 23.3 82.6

Cancer Free (yrs) 8.7 7.5 2.6 17

26 discordant twin-pairs BMI* 2.2 1.6 0.1 9.2

54 Individuals BMI 27.0 26.6 18.4 38.3
* In absolute differences.

Table 4.3: Distribution over genomic centres of 28 breast cancer discordant

MZ twin-pairs.

IDIBELL

(Barcelona)

Wellcome Trust

Sanger Institute (Hinxton)

Unique MZ

twin-pairs

Unpublished number of pairs 13 0 13

Published number of pairs 8 12* 15*

Total number of pairs 22 12 28
*3 MZ twin-pairs not included in main analyses.
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Major risk factors for cancer pathogenesis, smoking and BMI, were inves-

tigated in the 28 MZ twin-pairs. Smoking habits were assessed from longitudinal

questionnaires and individuals were divided into three categories: never smoked,

current smokers, and ex-smokers that stopped at least 3 years before blood sample

collection (see Table 4.4). 19 MZ twin-pairs were concordant in smoking habit: 9

pairs were non-smokers, 1 pair were current smokers, and 9 pairs were ex-smokers.

The remaining 9 twin-pairs comprised 6 pairs including an ex-smoker and never

smoker co-twin and 3 pairs including an ex-smoker and current smoker co-twin.

For 26 MZ twin-pairs BMI was measured during a clinical visit. The mean BMI

of all individuals was 26.9 kg/m2 and in 10 twin-pairs, the twin diagnosed with

cancer had a greater BMI compared to her co-twin. The mean and median absolute

within-pair differences were relatively small, 2.2 and 1.6 kg/m2 respectively. BMI

was not associated with cancer status in these individuals (p = 0.82).

Table 4.4: Smoking habits of 28 breast cancer-discordant MZ twin-pairs.

MZ twin-pair Never smoked Ex-smoker Current smoker Total

Concordant (number of pairs) 9 9 1 19

Discordant (number of pairs) 6 3 8 9

Selected Samples Profiled by MeDIP-seq

This selection included 26 middle-aged female discordant breast cancer MZ

twin-pairs, ranging from 23 to 79 years old at blood collection (median and mean

of 58 years) of European descent (see Table 4.5). Of these, 18 MZ twin-pairs have

also been processed with the 450k from the same blood sample. The co-twins

not diagnosed with cancer, were cancer free in a period ranging from 2.6 to 21

years following diagnosis of her co-twin. All these DNA methylomes have not been

published in a cancer related analysis before.

The major risk factors for cancer pathogenesis, smoking and BMI, were also
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assessed in these 26 MZ twin-pairs. 16 MZ twin-pairs were concordant in smoking

habit: 10 pairs were non-smokers, 1 pair were current smokers, and 5 pairs were

ex-smokers (see Table 4.6). The remaining 10 twin-pairs comprised 7 pairs including

an ex-smoker and never smoker co-twin, 2 pairs including an ex-smoker and current

smoker co-twin, and one pair comprised a current smoker and never smoker.

The mean and median BMI of all individuals was 26.5 kg/m2 and 26.6 kg/m2

respectively. In 16 twin-pairs, the twin diagnosed with cancer had a lower BMI

compared to her co-twin. The mean and median absolute within-pair differences

were similar to the 450k sample, 1.9 and 1.4 kg/m2 respectively. BMI was again

not associated with cancer status in these individuals (p = 0.68).

Table 4.5: Characteristics of 26 breast cancer-discordant MZ twin-pairs.

Selection Characteristic Mean Median Range

26 discordant twin-pairs Age at DNA extraction 59.1 60.0 20.6 78.7

Age at Cancer diagnosis 61.7 62.9 23.3 82.6

Cancer Free (yrs) 8.9 6.7 2.6 20.6

BMI* 2.0 1.5 0.1 7.8

52 Individuals BMI 26.3 26.5 18.4 35.2
* In absolute differences.

Table 4.6: Smoking habits of 26 breast cancer-discordant MZ twin-pairs.

MZ twin-pair Never smoked Ex-smoker Current smoker Total

Concordant (number of pairs) 10 5 1 16

Discordant (number of pairs) 7 2 1* 10
* Comprised a current smoker and never smoker.

4.2.2 Genome-wide DNA Methylation Data

4.2.2.1 Illumina 450k

Peripheral blood DNA methylomes profiled with the 450k from bisulphite-

converted DNA were pooled across two genome centres; IDIBELL (two batches of
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8 and 14 samples) and the Wellcome Trust Sanger Institute (two batches of 2 and

10 samples). The array, pre-processing, and quality control are described in detail

in section 2.3.1.

In short, probes were removed that: 1) failed detection in one or more

samples and/or had a bead count less than 3 in >5% of samples (n=2,297), 2)

aligned to more than one location in the human genome with their 50 bp sequence,

3) located on the sex chromosomes, 4) harboured common genetic variants occurring

in European Caucasians (MAF >1%) within 10 bp on the probe at the interrogated

CpG site, and 5) contained variants at any MAF at the interrogated CpG site [150,

151]. The remaining number of probes that wer included in the main EWAS was

431,673.

Furthermore, the 28 MZ twin-pairs were verified with the sample identifier

(see Section 2.3.1.4) using the 57 autosomal control SNP probes and known genotype

data. The beta values were then normalized using functional normalisation that

removes technical variation using control probes [155].

Cell type proportions were estimated using the method devised by House-

man et al. [80], for CD8+ T cells, CD4+ T cells, B cells, Natural Killer cells,

granulocytes, and monocytes. Pairwise correlations between these proportions were

subsequently assessed by Spearman’s Rank correlation and revealed that granu-

locytes were strongly correlated with all other cell types except monocytes (see

Figure 4.3).

PCA was performed on normalised beta values (N(0,1) per probe. The

first four PCs combined explained 43.3% of the total variance in DNA methylation.

No nominally significant association was observed between cancer status and the

first four PCs. Significant (p <0.01) associations with the first four PCs included:

Granulocytes, CD8+ T cells, Natural Killer cells, B cells, family ID, bead chip, as

well as centre and batch.

Chapter 4 4.2.2 100



Chapter 4 4.2. METHODS

Figure 4.3: Pair-wise correlations of estimated cell type proportions. The size of

the circles represents the strength of the Spearman’s Rank correlation. Only correlations

are shown with a p value <0.01.

4.2.2.2 MeDIP-seq

Peripheral blood DNA methylomes of the 26 MZ twin-pairs were profiled

with MeDIP-seq at BGI, Shenzen, China. The blood samples were profiled in six

batches of 8, 4, 25, 3, 8, and 4 samples. Apart from one MZ twin-pair, both twins

were included in the same batch. The 26 MZ twin-pairs on average had a coverage

of ~17 million unique mapped reads and were selected for further quality control.

The methodology and initial QC applied in this sample is described in detail in

section 2.3.2.

As described in section 2.3.2.2, bins comprised 500 bp sliding windows with

250 bp overlap covering the entire genome. The total number of atuosomal bins

was 11,524,145 across the genome. These were further investigated for regions of no

general coverage, defined here as zero reads. Per bin, the threshold of zero reads was
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set at 10% of individuals, i.e. no more than 5 individuals were allowed to have zero

reads per bin. This reduced the total number bins of to 5,055,534 for downstream

analysis. Although the method of MeDIP-seq infers that zero reads could indicate a

completely unmethylated region, true hypomethylated functional regions generally

still have low levels of methylation as seen in single CpG bisulphite sequencing DNA

methylome studies [10, 41]. Therefore regions with no reads are likely to be false

positive hypomethylated regions, taking also into account the coverage of uniquely

mapped reads. In this analysis of a relatively small number of individuals, the

random occurrence of more zero reads in either the case or control group can have

a strong impact. This restriction of no general coverage thus prevent that potential

findings will be driven by the (technical) artifact of low coverage.

Measured cell counts were available for a subset of 20 MZ twin-pairs, how-

ever within this subset, 11 pairs these were not from the same date of blood sample

collection.

4.2.3 Statistical Analysis

A general overview of the analyses performed in this chapter is shown in

Figure 4.4.

Global DNA Methylation Profiles

Genome-wide DNA methylation variation was analysed using unsupervised hierar-

chical clustering analysis with Euclidean distances and complete linkage method on

the 450k samples.

Breast Cancer DMPs

The DNA methylomes were first adjusted for covariates using a linear model fitted

on standardised beta values per probe (N(0,1)) and the estimated cell type propor-

tions of granulocytes and monocytes as well as centre and batch (four levels). The

residuals from this model were then used to calculate within twin-pair differences
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Breast Cancer-Discordant
twin-pairs

Platform450k Profile MeDIP-seq Profile

28 pairs 26 pairs

Single CpG and
small regional differences Small regional differences

DMPs DMRs DMRs

Comparison of results

Figure 4.4: Schematic overview of statistical analyses. A general overview of the

analyses performed in this chapter.

that were determined consistently as the residual of the cancer-affected twin minus

the residual of the healthy co-twin. A one-sample t-test on these differences was then

performed to assess significance. Epigenome-wide significance level was adjusted for

multiple testing by use of a FDR of 10% using "qvalue" in R and a suggestive results

threshold was set at a nominal p value of 1 x 10-5.

Breast Cancer DMRs by Illumina 450k

An EWAS was performed at small genomic regions to identify bc-DMRs similar to

described in 3.2.4 for pc-DMRs. Here, small regions were predefined and included

at least 2 CpG sites no more than 500 bp apart. To keep the paired structure of

the data, differences at single CpG sites within these regions were per MZ twin-pair

determined on DNA methylation residuals, similar to the DMP analysis. This was
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then compared to a group without DNA methylation differences using the "Bum-

phunter" package in R [176]. The algorithm determines a p value based here on

1,000 permutations as well as determining FWER adjusted p value. Bc-DMRs were

identified with a FWER adjusted p value <0.05.

Breast Cancer DMRs by MeDIP-Seq

To identify bc-DMRs, within twin-pair differences were determined consistently as

cancer-affected twin minus healthy co-twin and a one-sample t-test was performed on

these data. Three different models were explored preceding the calculation of within

twin-pair differences: 1) standardised (N(0,1)) RPM, 2) standardised (N(0,1)) RPM

adjusted by batch in a linear model, and 3) for a subset of 20 MZ twin-pairs stan-

dardised (N(0,1)) RPM adjusted by batch and measured cell counts (lymphocytes,

neutrophils, monocytes, and eosinophils) in a linear model. The models are com-

pared in the results section (see Section 4.3.4) based on the genomic inflation factor,

λ, of the Q-Q plots using "GenABEL" in R [224].

The main results described in this chapter were based on the differences of un-

adjusted standardised (N(0,1)) RPM. Significance levels were adjusted for multiple

testing by use of a FDR of 5% using "qvalue" in R while suggestive results threshold

was set at a nominal p value of 1 x 10-7.

4.2.4 Genomic Annotation Analysis

Annotation of CpG sites and regions was peformed with respect to CpG

density (CGI, shores, and shelves), relative to RefSeq genes (promoter, 5’UTR end,

gene body, 3’UTR, intergenic), and functional genomic elements derived from EN-

CODE including ChromHMM state segmentation, DNase-I hypersensitivity sites,

and TFBSs [178, 179].
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4.3 Results

4.3.1 Peripheral Blood DNA Methylome Profiles

Peripheral blood DNA methylomes were analysed for global differences in

28 female breast cancer discordant MZ twin-pairs interrogated with the 450k. The

individuals were diagnosed with breast cancer only and provided blood samples

for analysis that were obtained up to 8 years preceding diagnosis. Unsupervised

hierarchical clustering of unadjusted normalised DNA methylomes was performed

to assess global variation between all individuals (see Figure 4.5). Individuals in all

but one twin-pair clustered together as pairs (96.4%), and thus did not show global

differences according to breast cancer status. There is a clear batch cluster for the

samples analysed at IDIBELL. Therefore, downstream analysis of the 450k DNA

methylome data included an adjustment for batch effects.

Figure 4.5: Dendrogram of 56 whole blood DNA methylomes. Annotation bars

coloured for affection status per individual, centre, batch per centre, as well as family

identifier (see legend).
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4.3.2 Breast Cancer Associated DMPs

DNA methylation levels at single CpG sites were analysed epigenome-wide

within the 28 female breast cancer discordant MZ twin-pairs to identify bc-DMPs.

Preceding the EWAS, the DNA methylomes were adjusted for estimated cell type

proportions of granulocytes and monocytes as well as centre and batch. The EWAS

was then performed by a one-sample t-test on the directional adjusted DNAmethyla-

tion differences within twin-pairs, that is breast cancer twin minus healthy co-twin.

No epigenome-wide significant bc-DMPs were identified, however, four novel bc-

DMPs were identified at a suggestive threshold of p <1.0 x 10-5 (see Figure 4.6 and

Table 4.7 on page 109).

Figure 4.6: Manhattan plot of breast cancer EWAS results. Each point represents

the observed –log10 p value at a single CpG-site. The suggestive threshold of 1 x 10-5 is

shown as a red striped vertical line.

The two most associated bc-DMPs passed a FDR threshold of 20%. These

included cg21446955 in ARHGAP24 (p = 4.5 x 10-7) and cg04165000 in GCLC (p

= 1.1 x 10-6). Cg21446955 resides right at the start of the 5’ UTR of ARHGAP24

and showed consistently lower DNA methylation levels in breast cancer-affected

twins compared to their healthy co-twins. The directional difference observed in

the normalised unadjusted DNA methylation had a similar direction of effect with
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a mean of -1.5% DNA methylation difference with a range of -3.9% to 1.0% (see

Figure 4.7). Opposite the effect observed here, knockdown of ARHGAP24 in triple

negative breast cancer cells results in enhanced invasion capacity [225] and shows

attenuated expression via ETS2 in breast cells carrying a mutation in p53 [226].

Cg04165000 is located in the body of GCLC that also showed consistently lower

DNA methylation levels in breast cancer-affected twins compared to their healthy

co-twins (mean of -1.5% in unadjusted DNA methylation within a range of -10.8%

and 3%, see Figure 4.7). GCLC is an essential enzyme for the tripeptide Glutathione

(GSH), one of the key players in the antioxidant defenses of the cell [227]. GSH

is required for cancer initiation and high levels are observed in many tumours to

increase the antioxidant capacity [227, 228].

A further two suggestive associations were determined for the CpG sites

interrogated by probes cg21069563 at the 5’ UTR of SLC41A3 (p = 3.7 x 10-6) and

cg25947845 in the gene body of MCF2L (p = 8.3 x 10-6). A similar direction of effect

was observed at both CpG sites of lower DNA methylation levels in breast cancer-

affected individuals compared to their healthy co-twins (see Figure 4.7). GWAS

results have identified a SNP in MCF2L to be associated with increased risk of

bladder cancer [229] and higher expression of MCF2L has been observed across dif-

ferent tumours [230]. Furthermore, gene body hypomethylation has been identified

in prostate cancer and in the surrounding tissue (adjacent and distant) compared

to tissue of healthy volunteers [231].
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Figure 4.7: Associations between MZ twin-pairs at four suggestive breast can-

cer DMPs. Normalised unadjusted beta values are shown of cancer-affected individuals

(left) and healthy individuals (right) with the lines connecting each MZ twin-pair.
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Table 4.7: Four top-ranked DMPs from EWAS of 28 breast cancer discordant MZ twin-pairs.

Rank CpG Position (hg19) Gene Location CpG density
Mean

difference*
P value

1 cg21446955 chr4:86,851,425 ARHGAP24 5’ UTR - -0.86 4.5 x 10-7

2 cg04165000 chr6:53,375,279 GCLC Body - -0.55 1.1 x 10-6

3 cg21069563 chr3:125,800,198 SLC41A3 5’UTR Shelf -0.53 3.7 x 10-6

4 cg25947845 chr13:113,718,045 MCF2L Body Shelf -0.66 8.3 x 10-6

*The mean differences are calculated as breast cancer - unaffected co-twin using adjusted DNA methylation values.

Table 4.8: Four top-ranked DMRs from EWAS of breast cancer 28 discordant MZ twin-pairs.

Rank Position (hg19) Gene Location
CpG

density

Number

of CpGs
Direction P value FWER

Direction

CpG sites

1 chr4:698,302-698,615 PCGF3 TSS 1500 Island 3 - 8.3 x 10-6 0.024 - + -

2 chr7:73,417,196-73,417,263 - - - 3 - 1.4 x 10-5 0.037 - - -

3 chr1:39,571,502-39,571,504 MACF1 Body Island 2 - 2.5 x 10-5 0.055 - -

4 chr5:39,425,137-39,425,449 DAB2 TSS 200 - 1st Exon Island - Shore 4 - 5.2 x 1--5 0.059 - - - -
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4.3.3 Breast Cancer Associated DMRs

Next, DNA methylation levels at small genomic regions were assessed for

association with breast cancer status in the 28 MZ twin-pairs to identify bc-DMRs.

Similar to methods described in chapter 3, regions were predefined to contain at least

two CpGs no more than 500 bp apart. At each CpG site within these regions, the di-

rectional within-pair difference in adjusted DNA methylation was determined using

the same adjusted DNA methylation data as described in the previous section 4.3.2.

Four bc-DMRs were identified after 1,000 permutations with "Bumpunter" [176]

(FWER <0.1, see Table 4.8). The two most associated bc-DMRs were identified at

a epigenome-wide significant FWER of <0.05.

The most associated bc-DMR overlaps a CGI ~1,500 bp from the TSS

of PCGF3 (p = 8.3 x 10-6, see Figure 4.9 A). The region is annotated as weakly

transcribed in the GM12878 cell line by ENCODE. It encompasses three single

CpG sites that show hypomethylation in breast cancer affected twins at two CpGs

that were independently nominally significant (p <0.05) (see Figure 4.8). PCGF3

belongs to the polycomb group proteins that when deregulated, contribute to the

pathogenesis of multiple cancers [232, 233].

The second ranked bc-DMR (p = 1.4 x 10-5) was identified ~20 kb up-

stream of its nearest gene ELN (see Figure 4.9 B). Located in a region annotated

as weak/poised enhancer in GM12878 by ENCODE, it spans three CpG sites that

are all hypomethylated in breast cancer affected twins (see Figure 4.8).

Two more bc-DMRs were identified in MACF1 (p = 2.5 x 10-5, see

Figure 4.9 C) and DAB2 (p = 5.2 x 10-5, see Figure 4.9 D). The first lies in a CGI

within the gene body of MACF1 and is again hypomethylated in breast cancer

affected twins (see Figure 4.8). The region is marked by active promoter states in

all ENCODE cell lines and spans two CpG sites. Somatic mutations in MACF1

itself have been observed in multiple cancers, including breast [234], and has been

indicated as a marker for survival prognosis [235]. The second is located over the
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TSS of DAB2 and partly overlapped a CGI. Except for the GM12878 cell line,

it lies within an active promoter (ENCODE) and is hypomethylated in breast

cancer affected twins (see Figure 4.8). DAB2 is a well known tumour suppressor

gene [236–238] and therefore does not directly link biologically with the observed

decreased DNA methylation at its TSS in this study.

Figure 4.8: Associations between MZ twin-pairs at four breast cancer DMRs.

Adjusted DNA methylation values at each CpG site in the DMR and smooth (LOESS)

lines are shown for individuals affected by breast cancer (red) and healthy co-twins (blue).
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Figure 4.9: Location of the four breast cancer DMRs in the human genome.

Figures obtained from UCSC Genome browser [239], displaying position in the genome

(hg19), CpG sites from the 450k, n-DMR (in light blue), RefSeq genes, CGI, transcription

factor ChIP data, DNase-I sensitivity sites, and ChromHMM genomic segmentation. (A)

At PCGF3. (B) ~20 kb upstream ELN. (C) At MACF1. (D) At DAB2.
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4.3.4 Breast Cancer Associated DMRs By MeDIP-seq

Regional DNAmethylation differences were investigated in 26 breast cancer

discordant MZ twin-pairs but now using a different method to interrogate the DNA

methylomes, MeDIP-seq. Again, a one-sample t-test on the directional differences

within MZ twin-pairs was performed. Preceding that, three different steps were

performed on standardised methylation values (RPM) per bin; 1) No adjustment, 2)

Adjusted for batch effects, and 3) Adjusted for batch effects and blood cell counts

of lymphocytes, neutrophils, monocytes, and eosinophils (in a subset of 20 MZ

pairs). The Q-Q plots of the observed -log10 p values for all three workflows are

shown in Figure 4.10. The genomic inflation factor, λ, was used to assess systemic

bias characterized by the extent to which the –log10 p values deviated from the

expected uniform distribution [240]. The standardised unadjusted DNA methylation

analysis results show the least systemic bias with a λnear 1. The other two models

have smaller λ’s and appear to over-correct demonstrated by the p-values below

the expected uniform distribution. When p values and ranking order was compared

across the three models, the most associated bins were very similar (see Figure 4.11).

Therefore the main results focus on the model with no adjustment prior to the

discordance EWAS on standardised methylation values per bin.

Figure 4.10: Q-Q plot of observed –log10 p values against the expected –log10

p values from the expected distribution per breast cancer EWAS. (A) No ad-

justment, (B) Adjusted for batch, and (C) A subset of 20 pairs adjusted for batch and

blood cell counts of lymphocytes, neutrophils, monocytes, and eosinophils.
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Figure 4.11: Three dimensional plot of observed –log10p values from three

EWASs. Each point depicts -log10 p value of the three models.

One novel bc-DMR was identified in MECOM (MDS1 and EVI1 complex

locus) at a FDR of 5% (chr3:168,887,751-168,888,250, p = 9.8 x 10-9, see Figure 4.12

and Figure 4.13). DNA methylation levels at this locus were consistently higher

in the breast cancer affected twins compared to their healthy co-twins. The RPM

scores at this locus have a median directional difference of 0.16 within a range of

-0.09 to 0.30 RPM (see Figure 4.14 A). The relationship was subsequently assessed

between date of blood sample collection and date of breast cancer diagnosis,

revealing a consistent pattern of difference spanning the 8 years to diagnosis (see

Figure 4.14 B). This bc-DMR also remained significant in the two other models

correcting for batch and measured cell counts; p = 7.1 x 10-5 and p = 3.8 x 10-6

respectively.
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Common genetic variation in MECOM predisposes individuals to myelo-

proliferative neoplasms [241] and somatic copy number variations (CNVs) of

MECOM have been long established in, but not limited to, ovarian cancers

[242–245]. Furthermore, isoforms of MECOM are implicated in transcription

regulation across the genome and the oncogenicity of ovarian cancer [246] as well as

being upregulated itself in metastatic breast cancer [247].

Figure 4.12: Manhattan plot of breast cancer EWAS by MeDIP-Seq. Each point

represents the observed –log10 p value at a single bin. A suggestive threshold of 1 x 10-7

is shown as a red striped vertical line.
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Figure 4.13: Location of the breast cancer DMR in the human genome. Figures

obtained from UCSC Genome browser [239], displaying position in the genome (hg19),

CpG sites from the 450k, bc-DMR (in light blue), RefSeq genes, CGI, transcription factor

ChIP data, DNase-I sensitivity sites, and ChromHMM genomic segmentation.

Associations between MZ twin-pairs at four breast cancer DMRs.

Figure 4.14: Association between MZ twin-pairs at the breast cancer DMR

in MEDCOM. (A) RPM are shown of cancer-affected individuals (left) and healthy

individuals (right) with the lines connecting each MZ twin-pair. (B) RPM are shown of

each individual according to the time the blood sample was obtained prior to diagnosis

and are coloured by disease status (see legend).
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4.3.5 Comparison of Results By Illumina 450k and MeDIP-

seq

Finally, the top ranked results of both methods were compared. Analysis

on DNA methylation interrogated by MeDIP-seq identified one bc-DMR inMECOM

that passed a FDR of 5%. Interrogation by 450k identified four bc-DMRs at PCGF3,

~20 kb upstream of ELN, MACF1, and DAB2 (FWER <0.1) as well as four sug-

gestive bc-DMPs at ARHGAP24, GCLC, SLC41A3, and MCF2L (p <1.0 x 10-5).

Both datasets and top results were overlapped with a window of 1 kb to include

adjacent bins or probes.

Increased genome-wide coverage is one of the strengths of MeDIP-seq and

accordingly the bc-DMR identified with MeDIP-seq is not profiled by the 450k. The

nearest probe is an isolated single probe with no others in its vicinity and lies ~3

kb downstream. It was was not significantly associated with breast cancer in the

single CpG site EWAS (p = 0.8).

Of the four bc-DMRs of the 450k analyses, only the top ranked bc-DMR

at PCGF3 overlapped bins available in MeDIP-seq data. This bc-DMR overlapped

two bins and also had three adjacent bins within 1 kb that all showed the same

direction of association with breast cancer that is, lower DNA methylation in the

breast cancer twin, but no nominal significance level was reached. The remaining

bc-DMRs at ~20 kb upstream of ELN, MACF1, and DAB2 had 7, 3, and 6 bins

available in the MeDIP-seq data respectively. The vast majority showed a similar

(negative) direction of effect as observed in the 450k, except two bins on the edge

of the 1 kb windows. None of these bins in the MeDIP-seq data reached nominal

signifance. Near nominal significance was observed at the bc-DMR ~20 kb upstream

of ELN with a bin ~450 bp downstream (p = 0.058) and a bin ~250 bp upstream

(p = 0.078).

The four most associated bc-DMPs of the 450k analyses were next consid-

ered. Apart from the top ranked result at ARHGAP24, the other three bc-DMPs
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overlapped at least one bin available in MeDIP-seq data. The differential DNA

methylation findings on both platforms showed the same direction of association

with breast cancer, that is, lower DNA methylation in the breast cancer twin, but

did not reach nominal significance level in the MeDIP-seq dataset. At the bc-DMP

in ARHGAP24, the nearest MeDIP-seq bin was 76 bp downstream of the 450k CpG

site. All were also hypomethylated in the breast cancer twin but again no nominal

significance level was reached with the strongest p value of 0.14.
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4.4 Discussion

Here, the largest sample to date of 28 breast cancer discordant MZ

twin-pairs were analysed for differential DNA methylation changes in peripheral

blood samples. DNA methylomes were assessed using two methods; 450k (28 pairs)

and MeDIP-seq (26 pairs). One epigenome-wide significant bc-DMR (<FDR 5%)

in MECOM was identified via MeDIP-seq. This region showed a consistent pattern

of higher DNA methylation levels in breast cancer affected individuals compared to

their healthy co-twins from 8 years to year of diagnosis. Four bc-DMRs in PCGF3,

~20 kb upstream ELN (at <FWER 5%), MACF1, and DAB2 (at <FWER 10%)

were identified via the 450k regional method analysis. The single CpG site EWAS

identified four suggestive bc-DMPs in or near ARHGAP24, GCLC, SLC41A3,

and MCF2L (p <1.0 x 10-5). Globally the MZ twin-pairs were more similar, with

respect to breast cancer affection status.

The novel identified bc-DMR in MECOM by MeDIP-seq had consistently

greater DNA methylation levels in the twin with cancer than the healthy co-twin.

In RPM, this is a difference of 0.16 within a range of -0.09 to 0.30 that is consistent

across the years to diagnosis. This region was also significant in the two other

EWASs correcting for batch and measured blood cell counts. The signal lies in the

first intron and upstream of MECOM isoform variants in a region that is annotated

as low signal heterochromatin in all cell lines of ENCODE except in HUVEC,

umbilical vein endothelial cell line, where it is annotated as a weakly transcribed

region. It is closely flanked by DNase-I sensitive sites as well as near various TFBSs.

This region is not targeted by the 450k and demonstrates the strength and need

for approaches with greater coverage than that available provided by the 450k and

other beadchips. MECOM itself is implicated various cancers. Common genetic

variation in MECOM increases the risk of myeloproliferative neoplasms [241] and

somatic CNVs in this gene that have been identified in ovarian cancers and other
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cancers [242–245]. In particular, isoforms of MECOM as well as the alternatively

spliced gene EVI1 located on the same strand within the transcript of MECOM,

are implicated in differential transcription and contribute to pathogenesis of ovarian

cancers [246] as well as metastatic breast cancer [247]. This bc-DMR within the

intron of MECOM could therefore contribute to driving certain isoforms that could

aid cancer pathogenesis.

Four small genomic regions were also identified via the 450k through a re-

gional method analysis. Of those, the most strongly associated bc-DMR overlaps

a CGI ~1,500 bp from the TSS of PCGF3. The region is annotated as weakly

transcribed in GM12878 by ENCODE and exhibits consistent lower DNA methyla-

tion levels in breast cancer affected twins compared to their healthy co-twins. This

region also showed the same direction of association in the two MeDIP-seq bins

that overlapped it, though these bins did not reach significance. PCGF3 is part

of the polycomb group proteins that are epigenetic regulators of transcription and

function in polycomb repressive complexes (PRCs) that can modify histones and

act to silence genes [248]. When deregulated, these contribute to the development

of various cancers [232, 233].

Another bc-DMR was identified in MACF1 overlapping a CGI in the first

intron and upstream isoform variants. It is located in a region that is annotated as

active promoter in all ENCODE cell lines and exhibits lower DNA methylation in

breast cancer affected twins compared to their healthy co-twins. A similar direction

of association was observed in two nearest bins in the MeDIP-seq dataset. Somatic

mutations in this gene have been identified in breast cancer among multiple other

cancers [234] and are also markers of survival prognosis [235].

The single CpG site analysis of the 28 breast cancer discordant MZ twin-

pairs identified four suggestive results that did not reach epigenome-wide signifi-
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cance. The most strongly associated bc-DMP was at the start of the 5’ UTR of

ARHGAP24 and had consistently lower DNA methylation levels in the twin with

cancer than the healthy co-twin. This was also observed in the nearest MeDIP-seq

bin 76 bp downstream, although no signficance was reached. The region is anno-

tated by ENCODE as low transcribed heterochromatin in GM12878 cell lines, but

also as active promoter in HepG2 (hepatocellular carcinoma cell line) and as a weak

enhancer in other cell lines such as epidermis, skeletal muscle, lung fibroblasts, and

embryonic stem cells (NHEK, HSMM, NHLF, and H1-hESC) indicating a region

that is different across tissues. Knockdown of ARHGAP24 in triple negative breast

cancer cells is associated with enhanced invasion capacity [225]. Furthermore, it

also shows reduced expression in breast cells with a p53 mutation via transcription

factor ETS2 [226].

The bc-DMP in the fifth intron of GCLC showed lower DNA methylation

values in the breast cancer affected twin compared to their healthy co-twins.

MeDIP-seq bins adjacent this bc-DMP showed a similar pattern. This CpG site lies

in a region annotated by ENCODE as weakly transcribed as well as transcriptional

elongation. GCLC is an essential enzyme for the tripeptide GSH, one of the pivotal

players in the antioxidant defense system of the cell [227]. Higher levels of GSH

are observed in many tumours and required for cancer initiation due to the toxic

conditions in tumours [227, 228].

This study used two different approaches of interrogating DNA methy-

lomes, the widely used 450k and MeDIP-seq that was used for the first time in

breast cancer biomarker analysis. In essence, MeDIP-seq is a whole genome ap-

proach and uses an antibody against DNA methylation to pull down methylated

DNA fragments for next generation sequencing that results in a regional quantifi-

cation of DNA methylation. The 450k on the other hand is a targeted approach to

a set of predetermined CpG sites that uses bisulphite treatment to identify DNA
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methylation that results in a single CpG site quantification of DNA methylation.

A comparison between the two by Clark et al. [249] determined an autosomal cor-

relation of DNA methylation values of 0.68. In differential methylation detection

by both methods however, there was not a high overlap of results; >64% of DMPs

identified by the 450k were covered by MeDIP-seq but not identified as DMRs and

vice versa although percentages are not clearly stated in the publication.

When the results of both sets of analyses described in this chapter were

compared there was little to no overlap in the differentially methylated sites and

regions. Partly because the bc-DMR in MECOM did not have probes on the 450k

within its vicinity, and only one of the four bc-DMRs from the 450k data were

covered by reads in the MeDIP-seq data. When the bins adjacent to the 450k bc-

DMRs within 1 kb were included, the majority of bins the direction of association

was similar for the two technologies but the MeDIP-seq results did not reach nominal

significance. Three of the four bc-DMP were directly covered by reads in the MeDIP-

seq data. Again a similar direction of association was observed in bins overlapping

and near to the bc-DMPs.

This lack of direct overlap of significance was not unexpected and could

reflect these two different methods of quantification of DNA methylation that was

also observed by Clark et al. [249]. Nevertheless, the vast majority of adjacent and

overlapping bins to the 450k results did show a similar direction of association.

In the MeDIP-seq data there were several quality control and analysis

decisions that could impact the downstream results. One of these was based on the

exclusion of genomic regions where a very low number of unique reads was obtained

across individuals. The number of aligned reads suggested to cover the majority of

the methylated CpGs in the genome (80% of total CpGs) with at least one read is

~60 million [250]. Here, the coverage per sample is less with an estimate of ~17

million reads, covering close to 60% of the total CpGs with at least one read from the
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estimated curve of Taiwo et al. [250]. As a consequence, bins with no reads could

not be robustly interpreted as completely unmethylated and most likely would have

arisen from no coverage. The exclusion of these bins more importantly minimised

results that were driven only by the strong effects of MZ twin-pairs where one twin

had in fact no coverage whilst the co-twin had coverage. This conservative threshold

ensured only bins were analysed that were adequately covered by MeDIP-seq. This

has no impact on the bins included in this analysis, however, it could have excluded

bins that could have been true signals from the analysis.

The main MeDIP-seq results discussed here where from the model with

no adjustment prior to the discordance EWAS on standardised methylation values

per bin. This data was not further adjusted for technical effects and blood cell

composition as was performed for the 450k data. The reasoning of using the

unadjusted standardised RPM was determined by the use of genomic inflation

factor, λ, to measure systemic bias in the three EWAS pipelines. The use of λ may

not be ideal for measuring systemic bias, as an EWAS is not similar to GWAS,

nevertheless it is most used at this point in time to evaluate models. The analysis

on unadjusted standardised DNA methylation levels was also compared to analyses

adjusted for batch and for batch and measured cell counts (in a subset of 20 MZ

twin-pairs). The top ranked results were comparable across all three models. The

lower λ for batch adjusted values could be due the amount of levels (6) that for a

subset of bins does not perform well. The lower p values in the cell type corrected

data could reflect to the lower power due to a smaller sample size and because not

all measured cell counts were available from the same time point as the blood sample.

A more general limitation of the study is the complex heterogeneity of

breast cancer with varying pathogenesis. This in theory can dilute the power to

detect differences prior to diagnosis due to different aetiology of the subclasses of

breast cancer that might be captured differently in DNA methylomes. As mentioned
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in the previous chapter, potential general systemic effects or surrogate effects ob-

served in blood could occur across individuals [168–172]. By using MZ twin-pairs we

minimised the genetic variation known to have strong effects that influence the quan-

tification of DNA methylation by the 450k and more so in the MeDIP-seq dataset.

Here, the observed differences in DNA methylation may potentially be more prone

to environmental effects due to the exclusion of genetic differences.
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4.5 Conclusion

This study has used the largest sample to date of breast cancer discor-

dant MZ twin-pair peripheral blood DNA methylomes and targets the time window

before diagnosis. The analyses included both MeDIP-seq and 450k technologies to

assay methylomes, and therefore ensure a reasonable genome coverage of the breast

cancer peripheral blood DNA methylome using a combination of methylation pro-

filing approaches. Three epigenome-wide significant novel bc-DMRs were identified

in MECOM, PCGF3, and ~20 kb upstream of ELN. Furthermore, two suggestive

bc-DMRs and four suggestive bc-DMPs in MACF1, DAB2, ARHGAP24, GCLC,

SLC41A3, and MCF2L respectively, were identified. In all cases the signals are of

interest from a translational point of view as they are present before diagnosis and

are relevant for future prognostic and diagnostic studies. Further research into these

signals and their replication, could lead to the assessment of their potential to be

used as blood based biomarkers for breast cancer.
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Chapter 5

Higher Naevus Count Exhibits A
Distinct DNA Methylation Signature
in Healthy Human Skin

5.1 Background

Melanocytic naevi, commonly called moles, are benign lesions comprised

of a clonal proliferation of melanocytes. They are more common in light-skinned

populations [251]. The total number of melanocytic naevi1 counted across the entire

body is the strongest known risk factor for melanoma in Caucasian populations

[252, 253]. Melanoma is the ninth most diagnosed cancer in Europe with over

100,000 new cases in 2012, which amounts to 3% of all cancer cases (excluding non-

melanoma skin cancers) and its incidence rates are increasing [254, 255]. It is the

third most prevalent cancer of the skin and the most aggressive of these. In 20 to 40%

of cases melanoma arise from existing benign naevi, with the remaining majority

arising from new melanocytic lesions [256–258]. Naevi are vastly more common than

melanomas and therefore the number of naevi act as a marker of risk, considering

that the majority of naevi do not progress to melanoma [256]. New insights into the

biology of naevi and the predisposition factors that influence the skin’s propensity for

melanocyte proliferation, observed as the occurrence of increased number of naevi,

will ultimately improve the understanding of melanoma pathogenesis.
1In the remainder of this thesis this is shortened to "naevi" meaning melanocytic naevi.
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Human skin contains three defined tissue layers, the upper two layers

comprising the epidermis and dermis, and a deeper subcutaneous layer consisting of

fat and connective tissue, the hypodermis (see Figure 5.1 A). As the name suggests,

melanomas arise from melanocytes. These are melanin producing cells originating

from neuronal crest cells (melanoblasts). Generally melanocytes reside in the basal

layer of the epidermis with a ratio of one melanocyte to every 10 keratinocytes (see

Figure 5.1 B) [259]. Clonal proliferation of melanocytes gives rise to naevi which

can be congenital and occurs in approximately 1% of newborns [260, 261]. The

vast majority of naevi however, is acquired after birth. These naevi show distinct

histopathologic features [262] and are labelled as benign tumours of melanocytes.

5.1(A) Healthy skin

5.1(B) Melanocyte location

Figure 5.1: Simplified representation of healthy skin. (A) Three layers of healthy

human skin. (B) Zoomed in image of epidermis and dermis depicting the location of

majority of melanocytes. Both images were released by the National Cancer Institute,

part of the National Institutes of Health. Created by Don Bliss (Illustrator).
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Typically, naevi are acquired from birth until approximately 40 years of

age, in particular during early childhood, adolescence, and pregnancy, and thereafter

decrease in number [263]. Men and women have different patterns of distribution

of naevi across the body in Caucasian populations, with women having more naevi

on the arms and legs, whereas men tend to have more on the trunk [264, 265]. The

reason for this gender difference is still unclear and disputed. Proposed hypotheses

include differences in sun exposure habits or differences in melanocyte differentiation

in early embryogenesis between males and females [266]. There is also a correspond-

ing gender-specific difference observed in the location of the majority of melanomas:

on the trunk for men and on the legs for women [267].

The decrease in number of naevi after the age of 40 is delayed in individuals

at high risk of melanoma, who therefore display an altered senescence of naevi

[268]. Higher numbers of naevi have been associated with longer telomere length in

peripheral blood [269], as well as reduced (or lack of) sun damage as represented by

the occurance of solar keratoses [265, 270, 271]. This may indicate a difference in

senescence pathways between individuals, which is reflected in the number of naevi

and possibly could be detected in the skin itself.

A genetic basis for the number of naevi across the body has been

demonstrated by two GWASs with five associated SNPs to date, located in loci at

PLA2G6 (2), MTAP, NID1, and near C11orf74 [272, 273]. Moreover, the SNPs

in PLA2G6 have been replicated in these two separate studies. Total body naevus

count has also been shown to be a useful intermediate phenotype for melanoma as

the same SNPs have been identified to be associated with both traits at PLA2G6

and MTAP [272–275]. The phenotype variance explained by these SNPs however is

low, as observed for many complex traits studied in GWAS. The role of epigenetic

variation associated with the number of naevi has not been explored yet in healthy

skin or other tissues.
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In this chapter, DNA methylation variation in healthy human skin tissue

was investigated with total body naevus count for 322 female individuals. Variation

was explored at both individual CpG sites for total body naevus count associated

DMPs (n-DMPs), as well as small regions for total body naevus count associated

DMRs (n-DMRs). The DNA methylation results were further examined for gene

expression changes in the same skin tissue. Finally, GWAS SNPs associated with

naevus count or melanoma risk were analysed for influence on DNA methylation

levels in cis.
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5.2 Methods

5.2.1 Sample Selection

Individuals were selected from female twins from the TwinsUK, for whom

skin tissue DNA methylome data was available (468 samples). Trained dermatology

research nurses performed detailed total body naevi counts following a standardised

and reproducible naevus count protocol as described previously [276]. Total body

naevus count was the sum of all naevi > 2 mm across all sites of the body. In

total, 322 females were selected of which the skin biopsy samples were obtained on

average 9.7 years after examination within a range 6.5-11.9 years (see Table 5.1 and

Figure 5.2 A). Individuals were excluded that were diagnosed to date with cancers

of the skin. In total, this sample included 25 MZ twin-pairs, 65 DZ twin-pairs, and

147 unrelated individuals.

Table 5.1: Characteristics of 322 female individuals.

Characteristic Mean Median Range

Age 59.4 60.6 38.7 83.1

BMI 26.6 26 16.2 47.1

Naevus count 34.1 19 0 231

Time between biopsy and naevus count 9.7 9.8 6.5 11.9

These individuals were aged 39 to 83 years with a median of 60.6 years.

Smoking habits were assessed at time of the skin biopsy, similar to previous chapters,

from longitudinal questionnaires and divided into three categories: never smoked,

current smokers, and ex-smokers (stopped <3 years before skin biopsy). This re-

sulted in 159 individuals that had never smoked, 38 individuals were current smokers,

and 126 individuals were ex-smokers. Lastly, BMI ranged from 16.2 to 47.1 kg/m2

with a median of 26 kg/m2 (see Figure 5.2 B).
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Figure 5.2: Age and BMI at naevus examination. (A) Correlation of chronological

ages between naevus examination and skin punch biopsy. The blue line is the true least

squares regression fit whereas the green line is a perfect age match. (B) BMI at naevus

examination.

5.2.2 Genome-wide DNA Methylation Profiles

Skin DNA methylomes were profiled with the 450k from bisulphite-

converted DNA extracted from skin punch biopsies that were not co-located

with visible naevi, in two batches consisting of 82 and 245 samples. The punch

biopsies (8 mm) were taken from an area adjacent and inferior to the umbilicus

directly followed by mechanically dissection of the fat layer (hypodermis) before

snap-freezing. The beadchip, pre-processing, and QC are described in detail in

section 2.3.1.

In short, probes were removed if they failed detection in at least one sample

and with a bead count less than 3 in more than 1% of the samples (n = 18,208), if

the 50 bp sequence aligned to multiple locations in the genome, if the probes were

located on the sex chromosomes, and if the probes contained SNPs at MAF >1%

within 10 bp of the interrogated CpG site or at any MAF at the interrogated CpG

site. Therefore the remaining number of probes used for the EWAS was 415,909.

All probes containing the SNP exclusion criteria were included for the GWAS SNP

regional figures and are highlighted as such in figures and accompanying text.
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All individuals were verified with the sample identifier (see section 2.3.1.4)

using the 57 autosomal control SNP probes and known genotype data. Based on low

mean overall intensity signals (combined unmetylated and methylated values), four

individuals were excluded and the remaining 322 samples were normalised using the

BMIQ method to correct for probe type bias [154].

PCA on epigenome-wide profiles of the 322 individuals was performed us-

ing standardised beta values (N(0,1)) per probe. The first 3 PCs combined explained

36% of the total variance in these DNA methylomes and these PCs were assessed for

associations with likely confounders that included: beadchip, position on the bead-

chip, age, smoking status, BMI, and bisulphite conversion efficiency (as measured

by the 450k control probes). Strong associations (p < 1 x 10-20) were identified with

beadchip and bisulphite conversion efficiency.

5.2.3 Gene Expression Profiles

Gene expression profiles were obtained for a subset of 248 individuals from

the same skin tissue biopsies which were also profiled for DNA methylation as part

of the MuTHER project [146] described in detail in section 2.4. These profiles were

previously normalised with quantile normalization of the three replicates of each

individual followed by quantile normalization across all individuals.

This subset of 248 individuals had similar characteristics in age, BMI, and

proportionally similar distribution in smoking habits. The age range was 39 to 83

years of age with a median of 60.5 years. 127 individuals that had never smoked, 26

individuals were current smokers, and 95 individuals were ex-smokers. BMI ranged

from 16.2 to 47.1 kg/m2 with a median of 25.9 kg/m2. This subset comprised 14

MZ twin-pairs, 40 DZ twin-pairs, and 140 unrelated individuals. Slightly higher

proportions were observed of unrelated individuals (56% compared to 45%) and DZ

twin-pairs (32% compared to 25%) to the complete set of 322 individuals.

Chapter 5 5.2.4 132



Chapter 5 5.2. METHODS

5.2.4 Genotypes

Genotype data were obtained for a subset of 283 individuals of Caucasian

ancestry from the TwinsUK described in detail in section 2.5. In short, imputation

was performed with IMPUTE using the 1000 Genomes data phase 3 reference panel.

Quality control genotype measures included thresholds for minimum genotyping

rate (>95%), Hardy–Weinberg equilibrium (p >1.0 x 10-6), and MAF (>1%). The

imputation quality score was >0.5 for GWAS catalogue SNPs.

5.2.5 External Datasets

A publicly available epidermal and dermal DNA methylome dataset

profiled with the 450k from Vandiver et al. [277] was downloaded from the gene

expression omnibus (GEO) database with the accession code "GSE51954". This

comprised 20 unique individuals that underwent two skin biopsies each. These

were then mechanically separated into epidermis and dermis, resulting in a total

of 40 dermal and 38 epidermal DNA methylomes. VanDiver et al. described two

categories of 10 "younger" individuals (<35 years of age) and 10 "older" individuals

(>60 years of age). These two categories were also divided in sun exposed and sun

protected sites (see Table 5.2). Location of the biopsies was from the upper inner

arm (n = 20) for the sun protected sites and either the dorsal fore arm (n = 5) or

lateral to the eye (n = 5) for the sun exposed sites.

Table 5.2: Epidermal and dermal DNA methylome characteristics.

Age category Epidermis Dermis

Sun exposed Sun protected Sun exposed Sun protected

Younger individuals 9 9 10 10

Older individuals 10 10 10 10
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5.2.6 Statistical Analysis

A general overview of the analyses performed in this chapter is shown in

Figure 5.3.

322 Healthy female
skin biopsies

450k Profile Naevus count and
melanoma GWAS SNPs

DNA Methylation
Age analysis

Tissue layer analysis

Single CpG and
small regional differences

DMPs DMRs

Naevus count ~age
analysis

Melanoma
DNA methylation

signature enrichment

Gene expression
analysis

SNP ~DNA methylation
analysis

Figure 5.3: Schematic overview of statistical analyses. A general overview of the

analyses performed in this chapter.

Global DNA Methylation Profiles

PCA was performed on the 322 skin samples and 40 dermal and 38 epidermal samples

[277] downloaded from the GEO database. Within twin-pair correlations where

assessed for all available CpG sites in MZ twin-pairs, DZ twin-pairs, and randomly
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paired unrelated individuals using a Spearman’s rank test. To test for significant

differences in correlation between the groups, a two-sample t-test was performed.

DNA Methylation Age

An age prediction model (DNAm age calculator) has been developed by Hor-

vath [32] with high accuracy across a wide range of tissues for use with DNA

metylation, either profiled by the 450k or 27k [32]. Here, DNA methylation

age was calculated from beta values using this DNAm age calculator webpage

(https://dnamage.genetics.ucla.edu/) with the default setting “Normalize Data”.

Naevus Count DMPs

N-DMPs were identified by testing the association between naevus count and DNA

methylation levels at each individual CpG-site. A linear mixed effects model was

fitted on the standardised beta values per probe (N(0,1)) and total body naevus

count, age, BMI, smoking status, bisulphite conversion efficiency, beadchip, and

position on the beadchip were included as fixed effects predictors, and family and

zygosity were included as random effects. To assess for significance, an F-test was

used to compare this model to a null model without total body naevus count. The

significance level was adjusted for multiple testing by use of a FDR of 5% using the

"qvalue" package [278] in R, and a suggestive results threshold was set at a FDR of

10%.

Naevus count DMRs

N-DMRs were identified using the R package "Bumphunter" [176]. Genomic regions

for analysis were set using predefined criteria to require at least three consecutive

CpG sites with a maximum gap of 500 bp between the CpG sites. The input

DNA methylation levels at the included CpG sites were adjusted for the variables

used in the n-DMP analysis. The algorithm determines a p value based here on

1,000 permutations as well as determining FWER adjusted p value. N-DMRs were
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identified at a p value <0.01 and as epigenome-wide statistically significant at a p

value <0.01 and at a FWER adjusted p value <0.05.

Age Analysis

Association with age for n-DMPs were tested by using a linear mixed effects model

fitted on standardised beta values per probe (N(0,1)) with age, BMI, smoking status,

bisulphite conversion efficiency, beadchip, and position on the beadchip as fixed

effects, as well as family and zygosity as random effects. To assess for significance,

an F-test was used to compare this model to a null model without age.

Gene Expression Analysis

Gene expression analysis was performed across 248 individuals using gene expression

levels available for all genes within 20 kb of each CpG site from the observed n-

DMRs. Linear mixed models were fitted on gene expression data with age, BMI,

smoking status, batch, and concentration (fixed effects) and family and zygosity

(random effects) as well as the linear mixed model fitted for DNA methylation data

used for n-DMP analysis described as the null model. This was followed by a Pearson

correlation test on the residuals from these models.

Genetic Variation Analysis

Genetic association analyses of GWAS SNPs with DNA methylation variation in

cis were performed in a subset of 283 individuals using genome-wide efficient mixed

model association (GEMMA), which can account for differing degrees of related-

ness. For this, adjusted DNA methylation levels were used accounting for the fixed

covariates in the n-DMP analyses. For regional plots, all common SNPs in 100 kb

flanking regions of the GWAS SNPs were tested and LocusZoom [279] was used for

the regional figures.

Chapter 5 5.2.7 136



Chapter 5 5.2. METHODS

5.2.7 Genomic Annotation Analysis

All CpG sites included in this chapter were compared with annotations

for CpG density (CGI, shores, and shelves) from the UCSC track [177], RefSeq

genes (promoter, 5’UTR end, gene body, 3’UTR, intergenic), and functional genomic

elements derived from ENCODE including ChromHMM state segmentation, DNase-

I hypersensitivity sites, and TFBSs [178, 179].

For each annotation category an enrichment analysis was performed com-

paring the top 48 ranked n-DMPs to the remainder of CpG sites (n = 415,861).

Subsequently, a Fisher’s exact test was performed to test significance.
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5.3 Results

5.3.1 The Skin DNA Methylome and Tissue Layer Specificity

The dermis and epidermis have distinct DNA methylomes [277] due to their

distinct cell types. This study included skin tissue was obtained from peri-umbilical

punch biopsies from 322 healthy female individuals where the adipose and connective

tissue layer (hypodermis) was mechanically separated before freezing. To establish

the representation of the epidermal or dermal layer in these biopsies, these DNA

methylomes were compared to recently published DNA methylomes of separated

epidermal and dermal tissue from Vandiver et al. [277]. To this end, PCA was

performed on the epigenome-wide unadjusted DNA methylation levels of the punch

biopsy (n = 322), dermal (n = 40), and epidermal tissue (n = 38). The distinct

skin layers were captured by the first two PCs representing 55.6% of the variance

as previously reported [277]. The skin tissue biopsy DNA methylomes cluster with

the dermal layer DNA methylomes (see Figure 5.4 A), thus the biopsy represents

the dermis for the vast majority DNA methylation profiles measured.

The individuals in this sample included complete MZ (n = 25) and DZ

(n = 65) twin-pairs as well as unrelated individuals (n = 142). Within twin-pair

correlations of MZs and DZs were statistically stronger than correlation of unrelated

individual pairs on average (p = 1.95 x 10-5, see Figure 5.4 B) showing the influence

of genetic variation. The average MZ within-pair correlation in the skin DNA

methylomes (rS = 0.986) is similar to the average MZ twin-pair correlation in

peripheral blood described previously in chapter 3, as well as comparable to

previously genome-wide estimates [101, 143, 181, 182].
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Figure 5.4: Skin DNA methylome profiles and skin layer specificity. (A) The

first two principal components are coloured for dermal tissue (red), epidermal tissue (blue),

and for skin biopsy tissue (green, see legend). (B) Pair-wise correlation in DNA methyla-

tion profiles shows greater similarity within MZ and DZ twin-pairs compared to pairs of

unrelated individuals.

5.3.2 DNA Methylation Age Is Not Strongly Correlated

With Chronological Age

Recently, Horvath [32] developed an age prediction model with high accu-

racy across a wide range of tissues for use with either 450k or its predecessor the

27k [32]. Dermal tissue DNA methylomes from 20 individuals were included only

in the training set for the prediction model, nevertheless it was identified as one of

the tissues where the DNA methylation estimated age showed poor calibration with

chronological age with a reported correlation of 0.92 and error of 12 years (defined

as the median absolute difference between DNA methylation age and chronological

age) [32]. At present, the age calculator has not been applied to large samples of

primary skin tissue, and therefore its applicability for this tissue type was assessed

here on these data.
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In this large dermis sample of 322 individuals, the correlation between

chronological age and DNA methylation age was estimated at 0.78 (p = 2.2 x

10-16), which is lower than the original estimate of 0.92 from Horvath [32], along

with a smaller mean error of 6.1 years (see Figure 5.5). The DNA methylation

age calculator overestimated age in individuals younger than 50 and consistently

underestimated age in older individuals. This trend was also observed in the earlier

application in dermal tissue [277]. Furthermore, the slope of 0.57 indicates that the

overestimation of DNA methylation age and chronological age increases steadily

with age from age 47 and is likely to keep increasing in individuals older than

the individuals in this sample (that is, over 80 years of age). Further primary

skin tissue studies are needed to confirm this, but these results suggest that the

biological ageing is potentially represented differently in DNA methylomes from

skin tissue compared to the wide range of other tissues for which the age prediction

model works well.

Figure 5.5: DNA methylation age calculator in skin. Correlation of chronological

age and estimated DNA Methylation age. The black striped line indicates a perfect pre-

diction, the blue line is the true least squares regression fit.
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5.3.3 Total Body Naevus Count Associated DMPs

The skin DNA methylomes of 322 female individuals were analysed

genome-wide for association with total body naevus count at single CpG sites, with

the aim of identifying n-DMPs. A linear mixed-effects model was fitted regressing

normalised DNA methylation levels on fixed effects (age, BMI, smoking status, chip,

order on the chip, and bisulphite conversion efficiency) and random effects (family

relatedness and zygosity). This EWAS identified three DMPs associated with total

body naevus count at a FDR of 5%. A further 45 n-DMPs were identified at a

moderate threshold of FDR 10% (see Figure 5.6 A, Table 5.3, and Supplementary

Table S1). These 48 n-DMPs were subsequently assessed for enrichment of CpG

density (CGI, shores, and shelves) and ChromHMM state segmentation from

ENCODE to remaining number of CpG sites (n = 415,861). Taken together,

these 48 n-DMPs were enriched for strong enhancers (state 4) in the epidermal

keratinocytes (NHEK) cell line (p = 0.03). Additionally, these n-DMPs were also

enriched for CGI shores (p = 0.04) and depleted for "open sea" regions (p = 2.2 x

10-3).

The three epigenome-wide significant n-DMPs are shown in detail in Fig-

ure 5.6 B. These include the most associated n-DMP, cg06244240 (p = 2.1 x 10-8,

FDR 5%), within a CGI shore ~6.5 kb downstream of METRNL, a gene involved

in glial cell formation that is expressed in healthy skin [280]. The next n-DMP

(cg06123942, p = 2.2 x 10-7) resides within the 5’CGI promoter of C15orf48, a gene

that has reduced transcript levels in squamous cell carcinomas [281]. Lastly, the

n-DMP, cg25384157 (p = 3.1 x 10-7), is within a CGI shore ~1.5 kb upstream of

the TSS of ARRDC1, one of the negative regulators of the Notch signalling pathway

[282]. This highly conserved pathway is implicated in melanocyte differentiation and

is differentially expressed in melanoma [283, 284].

In addition, the n-DMP ranked fourth, cg11297934 (p = 1.2 x 10-6), is

located ~200 bp upstream of the TSS of proto-oncogene RAF1 (otherwise known
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as CRAF ). This is a member of the RAF family, which also includes BRAF, in the

MAPK/ERK pathway. BRAF is mutated in approximately half of all melanomas

[285] and is a frequent (driver) mutation in other cancers [286].

Figure 5.6: Naevus count EWAS results in 322 female individuals. (A) Man-

hattan plot of the EWAS results where each point represents the observed –log10 p value

at a single CpG-site. The FDR thresholds of 5% and 10% are depicted as black and red

striped vertical lines respectively. (B) Panel plot showing the three top-ranked signals for

cg06244240 (left), cg06123942 (middle), and cg25384157 (right) using normalised unad-

justed beta values per individual. The lines depict a least squares regression fit between

DNA methylation and total body naevus count.
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Table 5.3: Most associated DMPs from naevus count EWAS in 322 individuals.

Rank CpG Position (hg19) Gene Location CpG density Beta St. Error P value FDR

1 cg06244240 chr17:8,1058,948 - - Shore 0.0052 9 x 10-4 5.5 x 10-8 5%

2 cg06123942 chr15:45,722,795 C15orf48 5’UTR Island -0.0074 0.0014 2.2 x 10-7 5%

3 cg25384157 chr9:140,499,131 ARRDC1 TSS 1500 Shore 0.0063 0.0012 3.1 x 10-7 5%

4 cg11297934 chr3:12,705,868 RAF1 TSS 200 Island -0.0046 9 x 10-4 1.2 x 10-6 10%

5 cg14762973 chr2:187,714,067 ZSWIM2 TSS 200 Island 0.0069 0.0014 1.49 x 10-6 10%

Table 5.4: Most associated DMRs from naevus count EWAS in 322 individuals.

Rank Position (hg19) Gene Location
CpG

density

Number of

CpG sites

DNA

methylation
P value

Direction

CpG sites

1 chr9:140,499,132-140,500,813 ARRDC1 TSS 1500 - Body Island 7 + 2.5 x 10-5 + + - - - + +

2 chr10:14,647,154-14,647,530 FAM107B Body Shore 3 + 2.5 x 10-4 + + +

3 chr19:44,285,297-44,285,568 KCNN4 TSS 200 - 1st Exon - 3 + 2.9 x 10-4 + + +

4 chr17:8,129,997-8,130,356 CTC1 3’UTR Shelf 3 - 6.3 x 10-4 - - -

5 chr15:26,915,414-26,915,752 GABRB3 Body Island 3 - 8.3 x 10-4 - - -
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5.3.4 Total Body Naevus Count Associated DMRs

Next, differentially methylated regions encompassing multiple CpG sites

associated with total body naevus count, n-DMRs, were investigated for the 322

individuals. Here, 48 n-DMRs were identified after 1,000 permutations by Bum-

pHunter (p <0.01) on adjusted DNA methylation levels (see Table 5.4 and Supple-

mentary Table S2). These were then examined regarding their genomic context with

a focus on the top five ranked regions.

The most associated n-DMR overlaps a 5’ CGI promoter of ARRDC1 (p

= 6.8 x 10-5, FWER adusted p = 0.05, see Figure 5.7 A). This region encompasses 7

single CpG sites that include the n-DMP cg25384157 that passed FDR 5%, as well

as three more CpG sites with a similar direction of effect (p <0.05). Also identified

was an n-DMR spanning three CpG sites within a CGI shore in the 5’ promoter of

an alternative isoform of FAM107B (p = 2.5 x 10-4, FWER adjusted p = 0.25, see

Figure 5.7 B). FAM107B is expressed in various tissues and is down regulated in

multiple cancers [287].

Two more n-DMRs were also identified with the single CpG site EWAS

(FDR 10%) and show consistent direction of effect in their neighbouring CpG sites

within the n-DMRs in KCNN4 (5’ promoter and TSS, p = 2.9 x 10-4, see Figure 5.7

C), a potassium channel, and GABRB3 (first intron, p = 8.3 x 10-4, see Figure 5.7

E), a GABA receptor. Lastly, a n-DMR was identified in the 3’ UTR of CTC1 and

comprised of three CpG sites consistently negatively associated with total body nae-

vus count (p = 6.3 x 10-4, see Figure 5.7 D). It is also 2 kb upstream of LINC00324

and lies in a region marked by active promoter states (ChromHMM in multiple EN-

CODE cell lines including NHEK). CTC1 is part of the CTS complex that protects

telomeres from degradation.
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Figure 5.7: Location of the top five ranked naevus DMRs in the human genome.

Figures obtained from UCSC Genome browser [239], displaying position in the genome

(hg19), CpG sites from the 450k, n-DMR (in light blue), RefSeq genes, CGI, transcription

factor ChIP data, DNase-I sensitivity sites, and ChromHMM genomic segmentation. (A)

At ARRDC1. (B) At FAM107B. (C) At KCNN4. (D) At CTC1. (E) At GABRB3.
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5.3.5 Total Body Naevus Count and Age

Due to the intricate relationship between total body naevus count,

melanoma risk, and age, DNA methylation levels were explored at the 48 n-

DMPs for a direct association with age, adjusting for the same covariates as

previously described. In this sample of 322 individuals, the age range was

between 39-82 years old, which is approximately the age when naevi start and

continue to involute steadily and linearly. Indeed, a negative correlation of -0.21 (p

= 7 x 10-5, see Figure 5.8 A) was observed between total body naevus count and age.

Figure 5.8: Total body naevus count and age associations. (A) Age at naevus

count vs total body naevus count with a least squares regression fit. (B) Heatmap of top

48 ranked n-DMPs coloured by – log10 p values of age association and naevus association.

Overall, the 48 n-DMPs had lower p values in the EWAS for naevus count

compared than the direct association with age (see figure 5.8 B). Two n-DMPs,

cg25343280 and cg21068480, ranked 16 and 17, did show slightly stronger associa-

tions with age than total body naevus count. Moreover, no nominally significant

associations were detected with age (all p > 0.05) at 28 out of the 48 n-DMPs,

including ARRDC1 (p = 0.57) and RAF1 (p = 0.43).

As expected, an opposite direction coefficient was identified at these age

Chapter 5 5.3.5 146



Chapter 5 5.3. RESULTS

associated DMPs considering the negative correlation between age and total body

naevus count. Of the top 10 ranked n-DMPs, six did not show any association with

age (p > 0.05) and the remaining four did not show stronger associations with age.

This suggests that the majority of n-DMPs are not directly associated with age.

5.3.6 Naevus Count DNA Methylation Signature Is Enriched

for Melanoma Associated DNA Methylation Variation

Healthy tissue DNA methylomes can show risk-factor related signatures

similar to what has been observed in malignant tissue [127]. Tumour associated

DNA methylation changes can also derive from a continuum of maturation states

reflecting the normal stages in development [31]. Therefore, the 48 n-DMPs were

assessed for enrichment within the DNA methylome changes previously identified

in melanoma tumour tissues from two EWAS that compared DNA methylomes of

melanoma to either normal skin, melanocytes, or naevi [288, 289].

To date, the most extensive DNA methylome study in melanoma compared

the DNA methylomes of melanocytes from three healthy donors and 27 metastatic

melanomas, using methylated-CpG island recovery assay sequencing (MIRA-seq).

They reported 3,113 hypermethylated regions in melanomas and only 4 hypomethy-

lated regions, as would be expected with a CGI targeted approach. Of the 3,113

hypermethylated regions, 2,039 included at least one CpG site that was also profiled

in the 322 individuals analysed in this chapter. These 2,039 regions with increased

DNA methylation in metastatic melanomas were further explored for CpG sites that

were identified in this chapter as positively associated to total body naevus count (p

<0.05). In total, 13.4% (274 regions encompassing 406 CpG sites) were identified as

also positively associated to total body naevus count (p <0.05). If only CGIs were

considered within these 2,039 regions, enrichment was observed for CpGs identified

as positively associated to total body naevus count (Fisher’s p = 6.33 x 10-6).

The second EWAS by Koga et al. [289] also used a genome-wide based
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approach by targeting DNA methylation of 24,103 RefSeq promoters to examine

the DNA methylomes of normal skin, naevi, and advanced melanoma. They identi-

fied differential promoter methylation at four genes and two of these, THBS1 and

TNFRSF10D (hypermethylated in advanced melanoma), were also identified to be

positively associated to total body naevus count in this dataset (p <0.05).

5.3.7 Total Body Naevus Count DMRs Correlated With

Gene Expression

The 48 n-DMRs were examined for associations with gene expression in cis

in a subset of 248 individuals that also had transcriptomic data available from the

same skin punch biopsy. For 27 n-DMRs, gene expression levels were available of 36

genes (64 expression probes) that were within a 20 kb window. Individual CpG sites

with a similar direction of effect in the EWAS as the n-DMR were selected to rep-

resent the n-DMP. Subsequently, DNA methylation and expression levels both were

adjusted for similar biological covariates as well as technical covariates (depending

on the data), and compared using Pearson correlation.

At twelve unique n-DMRs, DNA methylation levels at individual CpG sites

were correlated with the expression of fourteen unique genes (p <0.05, see Table 5.5).

This included the n-DMR at KCNN4 where one of its three CpGs on the edge in the

first exon was positively correlated with DNA methylation (cg15977816, r = 0.19, p

= 2.9 x 10-3). This site is ranked 6th in the EWAS n-DMP results. Additional n-

DMRs that have more than one CpG site in the region correlated with one of more

gene expression probes of the same gene include n-DMRs at: MED11, C14orf50,

FAM64A, KRT86, TTC15, and C6orf27.
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Table 5.5: Significant correlations of naevus count DMRs with expression levels.

Rank Position (hg19) Gene Location
DNA

methylation
Transcript Gene Correlation P value

3 chr19:44,285,297-44,285,568 KCNN4 TSS 200 - 1st Exon + ILMN_1709937 KCNN4 0.19 2.9 x 10-3

13 chr2:4,600,947-4,601,053 - - + ILMN_1692706 DCUN1D2 -0.14 0.033

17 chr1:151,693,222-151,693,261 C1orf230 TSS 1500 - ILMN_1681234 TNRC4 0.13 0.037

19 chr8:82,633,130-82,633,568 ZFAND1 TSS 200 - Body - ILMN_2087989 ZFAND1 0.14 0.025

33* chr17:4,634,804-4,634,804 MED11 TSS 200 - 1st Exon - ILMN_1762639 MED11 0.19 2.6 x 10-3

35* chr14:65,016,591-65,016,602 C14orf50 TSS 200 + ILMN_2153916 HSPA2 -0.13 0.047

37*** chr17:6,347,533-6,347,533 FAM64A TSS 1500 - ILMN_2415292 AIPL1 -0.18 5.5 x 10-3

39 chr16:28,565,199-28,565,206 CCDC101 TSS 200 - ILMN_1810560 P8 0.13 0.035

42 chr22:39,712,694-39,712,730 RPL3 ;SNORD83A Body; TSS 1500 + ILMN_1653927 SNORD83A 0.13 0.034

46* chr12:52,695,412-52,695,515 KRT86 TSS 200 - ILMN_1801442 KRT81 -0.19 3.2 x 10-3

47* chr2:3,471,345-3,471,345 TTC15 Body + ILMN_1693317 TTC15 -0.14 0.024

48* chr6:31,743,928-31,743,952 C6orf27 Body + ILMN_1696601 VARS -0.18 5.5 x 10-3

* Multiple CpG sites associated with multiple transcript probes of same gene, **one CpG site associated with multiple

transcript probes of same gene, or *** multiple CpG sites associated with one transcript probe; the strongest association is shown

for the n-DMR.
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5.3.8 Impact of GWAS SNPs for Naevus Count or Melanoma

Risk on DNA Methylation in cis

SNPs identified via GWAS for association with total body naevus count or

melanoma risk were also investigated for their impact on DNA methylation levels

in cis for a subset of 283 individuals. Four out of five SNPs associated with total

body cutaneous naevus count [272, 273] and all 23 unique SNPs associated with

melanoma risk from the GWAS catalogue [290] had at least one CpG site within a

100 kb window of the SNP. To account for differing degrees of relatedness, mixed

linear models were performed to test for genetic association between the SNP variant

and DNA methylation levels. The multiple testing threshold was set at p < 1.0 x

10-5 which is comparable to an EWAS performed using the 450k where all CpG sites

were assessed with common genetic variants (MAF >1%) within a 100 kb window

(p <8.6 x 10-4) by Grundberg et al. [143].

Altogether thirteen GWAS SNPs were associated with DNA methylation

levels at CpG sites in cis in skin tissue (p < 1 x 10-5, see Table 5.6). These included

three out of the four SNPs from naevus count GWAS results: rs2284063 in the

second intron of PLA2G6 (cg25457927, p = 3.5 x 10-38), rs738322 in the first intron of

PLA2G6 (cg25457927, p = 1.7 x 10-49, see Figure 5.9 A), and rs3768080 in the tenth

intron of NID1 (cg18765906, p = 6.4 x 10-14, see Figure 5.9 B). The remaining ten

SNPs associated with DNA methylation were from melanoma risk GWAS results and

these variants located in or near the genes: MC1R (2 SNPs), MX2 (see Figure 5.9

C), TERT/ CLPTM1L (see Figure 5.9 D), PLA2G6, CASP8, ACTRT3, ASIP,

CDC91L1, and ARNT/ SETDB1/LASS2ANXA9/ MCL1/ CTSK. Of the most

associated CpG sites per thirteen SNPs, six CpG sites were in active promoters or

enhancers in NHEK cell line [178]. None of the associated CpG sites were epigenome-

wide significant in the EWAS of single CpG sites or of small regions. However, nine

were nominally significant (p <0.05) including PLA2G6 which is associated with

both naevus count and melanoma risk by GWAS [272, 274].
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Subsequently, all common SNPs (MAF >1%) in 100 kb flanking regions of

these thirteen GWAS SNPs were investigated for influence on the same CpG sites.

The PLA2G6 GWAS SNPs (rs738322) is part of a large linkage disequilibrium (LD)

block that spans over the promoter sites of both PLA2G6 and MAFF. In this case

the significant CpG site (cg25457927), ~2 kb upstream of MAFF, in fact showed a

much stronger association with other SNPs within this block (p < 1.0 x 10-100) (see

Figure 5.9).

For eight of these thirteen SNPs, the Genotype-Tissue Expression Project

(GTEx) also identified expression quantitative trait loci (eQTLs) in skin tissue

(sun or not sun exposed) and/or in transformed fibroblasts. In total, these eQTLs

were associated with the expression 16 genes, seven at which DNA methylation

variation was also associated at the same gene with the same SNP; CASP8

(rs1301693), MAFF, PLA2G6, TMEM184B, and BAIAP2L2 (rs2284063, rs738322,

and rs6001027), SPATA33 (rs258322), MX2 (rs45430), and CDK10 (rs4785763).

Figure 5.9: Genetic locus regions for GWAS SNPs and DNA methylation vari-

ation in cis shown on the following four pages. Per page, a panel plot comprises

three figures each. (Top) Regional plot of 100 kb flanking regions around the GWAS SNP

of interest indicated by a striped black line and each point is a CpG with its -log10 p value

on the y-axis. Each point is coloured according to occurrence of genetic variants on the

probe sequence shown in the legend. (Middle) The middle boxplot shows the strongest

associated CpG site for each genotype using normalised unadjusted DNA methylation lev-

els. (Lower) Plot of same region generated by LocusZoom [279] showing all SNPs in the

region against the strongest CpG site.
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5.9(A) rs738322 identified for cutaneous naevi.
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5.9(B) rs3768080 identified for cutaneous naevi.
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5.9(C) rs45430 identified for melanoma risk.
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5.9(D) rs401681 identified for melanoma risk.
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Table 5.6: Strongest CpG association per GWAS SNP.

Begin of multi-page Table

Trait rs Position (hg19)
Reported

Genes
CpG Beta P value Gene Location

CpG

density

Distance

to SNP (kb)

Melanoma rs401681 chr5:1,322,087 TERT ; CLPTM1L cg06550200 0.783 2.6 x 10-50 CLPTM1L Body - -3.5

Cutaneous naevi rs738322 chr22:38,569,006 PLA2G6 cg25457927 0.851 1.7 x 10-49 - - Shelf -26.4

Melanoma rs45430 chr21:42,746,081 MX2 cg22778903 -0.711 1.9 x 10-42 MX2 5’UTR - 4.4

Melanoma rs6001027 chr22:38,545,619 PLA2G6 cg25457927 0.843 1.3 x 10-38 - - Shelf -49.8

Cutaneous naevi; rs2284063 chr22:38,544,298 PLA2G6 cg25457927 0.834 3.5 x 10-38 - - Shelf -51.1

Melanoma

Melanoma rs7412746 chr1:150,860,471 ARNT ; SETDB1 ; cg15448220 0.662 1.4 x 10-32 SETDB1 TSS1500 Shore -37.4

LASS2 ; ANXA9 ;

MCL1 ; CTSK

Melanoma rs258322 chr16:89,755,903 MC1R cg05714116 -0.728 5.5 x 10-14 CDK10 TSS1500 Shore 3.3

Cutaneous naevi rs3768080 chr1:236,179,869 NID1 cg18765906 -0.374 6.4 x 10-14 NID1 Body - 4.5

Melanoma rs4785763 chr16:90,066,936 MC1R cg08547343 -0.346 1.0 x 10-9 CENPBD1 ; 5’UTR; Island 28.1

AFG3L1 TSS200

Melanoma rs910873 chr20:33,171,772 CDC91L1 cg01901788 -0.441 1.8 x 10-6 MAP1LC3A TSS1500 Shore 25.9

Melanoma rs13097028 chr3:169,464,942 ACTRT3 cg27020690 -0.289 2.0 x 10-6 - - Island -17.4

Melanoma rs13016963 chr2:202,162,811 CASP8 cg24599065 -0.23 2.1 x 10-6 CASP10 3’UTR - 69

Continuation of Table on next page
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Continuation of Table 5.6

Trait rs Position (hg19)
Reported

Genes
CpG Beta P value Gene Location

CpG

density

Distance

to SNP (kb)

Melanoma rs228437 chr6:134,898,456 ASIP cg24504307 -0.355 9.2 x 10-6 - - - -64.7

Melanoma rs3219090 chr1:226,564,691 PARP1 cg18764804 0.24 6.2 x 10-4 PARP1 TSS1500 Shore -32

Melanoma rs1031925 chr3:51,379,274 DOCK3 cg09456445 -0.315 8.5 x 10-4 DOCK3 3’UTR Shore -41.1

Melanoma rs1722784 chr1:150,961,869 ANXA9 cg07479786 0.261 8.9 x 10-4 ANXA9 3’UTR - -6

Melanoma rs16953002 chr16:54114824 FTO cg01083598 -0.169 7.2 x 10-3 - - Island -41.2

Melanoma rs35390 chr5:33955326 SLC45A2 cg01990593 0.689 8.8 x 10-3 ADAMTS12 Body Shore 65

Melanoma rs1801516 chr11:108175462 ATM cg08954307 -0.249 9.8 x 10-3 ATM Body - -59.3

Cutaneous naevi rs4636294 chr9:21747803 MTAP cg03724238 -0.128 0.013 - - Island 51.1

Melanoma rs4698934 chr4:106139387 TET2 cg08530497 -0.195 0.037 TET2 Body - -15.9

Melanoma rs1847134 chr11:89005253 TYR cg25941151 -0.153 0.041 TYR TSS200 - 94.3

Melanoma rs7023329 chr9:21816528 CDKN2A cg14548963 0.118 0.068 MTAP Body - 3.6

Melanoma rs1393350 chr11:89011046 TYR cg03508346 -0.118 0.142 NOX4 3’UTR - -48.8

Melanoma rs17119461 chr10:107516352 NR cg18758405 -0.29 0.333 - - - 65

Melanoma rs1889497 chr6:65432283 EYS cg11999886 -0.026 0.76 EYS Body - 90.8

End of Table
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5.4 Discussion

In this chapter, skin DNA methylomes of 322 healthy females were

investigated in relation to total number of naevi across the body, the strongest risk

factor for melanoma. This is the first study to explore DNA methylation in healthy

skin tissue for naevus count. Moreover, the study was performed using the largest

available skin tissue dataset to date. It provides an extra layer to our current

understanding of the genomic biology behind the number of naevi in individuals

on top of that previously obtained via GWAS. The healthy skin biopsies were first

shown to represent the dermal layer via their epigenetic signature. Then DNA

methylation variation, n-DMPs and n-DMRs, were identified at genes novel to

naevi biology as well as known genes in naevi formation or melanoma. The top

most associated results were enriched for strong enhancers in NHEK cell lines of

ENCODE and for CGI shores, known to be more dynamic and functional regions in

both cancer [52] and stem cell reprogramming [54]. Furthermore, these sites were

not directly associated with age. Approximately half of the n-DMRs were correlated

with gene expression in cis within the same biopsy. Finally, DNA methylation

variation in cis associated with known GWAS SNPs for both naevi number and

melanoma risk.

Many differentially methylated genomic loci were identified with total body

naevus count and a substantial subset were highly relevant in melanocyte biology,

melanoma, and cancer in general. Three are highlighted in this section. One of

these, the n-DMR in CTC1, involves an already established link between longer

telomeres and higher total body naevus count as well as melanoma risk [269]. This

gene plays a role in telomere maintenance and has been associated with telomere

length via GWAS [291]. Moreover, a genetic score from seven SNPs associated with

telomere length have been shown to be robustly associated with melanoma risk

[292]. This suggests that healthy skin may also have longer telomeres in individuals
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with high naevus counts and supports previous work on the importance of this

terminal chromosomal region in melanoma biology [293, 294]. This may also link

the observations of lesser photo-ageing of the skin in individuals diagnosed with

melanoma (excluding head and neck).

The n-DMP in RAF1 draws attention to the well known and important

genetic pathway in melanoma, the MAP/ ERK pathway, which includes the proto-

oncogene BRAF. BRAF is mutated and subsequently activated in approximately

half of all melanomas and its mutational presence or absence influences major ther-

apeutic decisions [285]. The oncogene RAF1 on the other hand, is rarely mutated

in human cancers [295]. It is however, a therapeutic target and leads to apoptosis in

BRAF negative melanomas. Here, hypomethylation at the TSS of RAF1 is found

with an increase in the number of naevi, and could be an indication of an altered

pathway in skin that has an increased disposition to the formation of naevi. Addi-

tionally, it could be of use in addition to using mutational status of BRAF alone in

clinical assessment of advanced melanoma [112, 190, 296].

Increased DNA methylation levels were also observed at the promoter

of ARRDC1, both epigenome-wide significant at a single CpG and regional level.

ARRDC1 is part of a highly conserved pathway in cell signaling, NOTCH, that is

a key player in embryogenesis for cell-fate determination for many organ systems

as well as in tissue maintenance. Low expression levels have been identified of

Notch1, one player in the NOTCH pathway, in melanocytes and naevi and higher

expression levels have been identified and associated with melanoma pathogenesis

[283, 284]. The role of ARRDC1 is pivotal in Itch E3 ubiquitin ligase mediated

NOTCH receptor degradation [282]. Increased DNA methylation at the promoter

of ARRDC1 is observed in this study makes an intriguing connection with NOTCH

pathway.

Enrichment for DNA methylation changes previously identified in
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melanomas [288, 289] was observed in this study’s naevi-associated DNA methy-

lome signature in normal skin tissue. This may represent a priming or predisposition

in skin with higher numbers of naevi to melanoma as risk factor associated DNA

methylation changes, such as BMI and smoking, have already been observed in

healthy colon as well as colon tumours [127].

Approximately half of the 26 unique SNPs from GWAS for the number of

naevi or melanoma risk (from the GWAS catalogue [272, 273, 290]) were associated

with DNA methylation variation in cis within 100 kb. These included three out

of four SNPs previously associated with naevi numbers that are reported at two

genes, PLA2G6 and NID1. PLA2G6 is robustly linked to both naevi numbers and

melanoma risk by three unique SNPs. For all three SNPs, eQTLs have also been

reported either in skin and/or transformed fibroblasts, impacting the expression

of not only PLA2G6, but also neighbouring MAFF, TMEM184B, and BAIAP2L2.

All of these genes also showed differential methylation associated with these SNPs

in this study, highlighting the usefulness of including DNA methylation variation

with genetic variants identified by GWAS. Moreover, DNA methylation variation

was also associated with SNPs in novel genes without previously reported eQTLs.

One of the limitations of this study is the absence of replication or vali-

dation of these results. These steps are paramount in arriving at robust findings

and EWAS is no exception. Unfortunately, a skin biopsy is an invasive technique

and very few healthy tissues have been collected. To date, none exist that have

been profiled for genome-wide DNA methylation as well as detailed naevus counts

performed on these individuals. In this chapter all possible individuals were used

to maximise the power to detect true DNA methylation modifications, rather than

divide the dataset to attempt to provide internal replication. However, new biopsies

are being collected in the TwinsUK as part of a follow up of the same individuals that

could provide new insights by performing for example longitudinal analysis for these
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results. Future studies could aim to profile the DNA methylomes of these skin biop-

sies and perform longitudinal analyses for these individuals or provide replication of

independent samples.

This study is the largest healthy skin DNA methylome study to date [277,

297, 298], and also benefits from the extensive data for naevus counts collected by

trained dermatology nurses of healthy individuals. It also has the advantage of

including only women, as they have a different pattern of naevi distribution across

the body [264] as well as known (autosomal) DNA methylation differences compared

to men [299]. In contrast to blood-based EWASs, this EWAS investigates a tissue

directly associated with the phenotype of interest and can offer an in-depth view of

biological pathways implicated with the phenotype of naevus count.
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5.5 Conclusion

This novel study has investigated naevi number in 322 healthy females

using the DNA methylome, transcriptome, and genetic variants from GWAS for

the same individuals. Novel genes and pathways were identified as well as genes

known to be involved in melanocyte biology or melanoma progression. This thereby

adds additional information to the genetic basis and biological processes underlying

the number of naevi and melanoma pathogenesis. These findings may open new

pathways to explore, to understand not only why some individuals have higher

numbers of naevi, but how this phenotype contributes to melanoma risk.
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Discussion

Over the last decade, epigenomic analysis has gained momentum with the

implementation of array and second generation sequencing techniques. Epigenomic

maps across human tissues and cell lines of DNA methylation, histone modifications,

and DNase-I sensitive sites have been generated by large projects now coordinated in

the International Human Epigenome Consortium (IHEC), such as ENCODE [300],

Roadmap Epigenomics Program [301], and BLUEPRINT [302]. These reference

datasets have identified key cellular states associated with healthy tissues, potential

mechanisms relevant to diseases, and provide an encyclopedia of these elements

across the genome. EWAS have contributed an additional wealth of data regarding

variability associated with diseases, environmental factors, and ageing.

This thesis adds to the current state of knowledge by investigating the

DNA methylome for systemic changes associated with cancer pathogenesis that are

independent of genetic variation, and specific changes in skin associated with cancer

risk factors. This was achieved via two main research questions:

1. Analysis of peripheral blood DNA methylomes in cancer discordant MZ twin-

pairs for potential biomarkers of disease or disease risk.

2. Analysis of skin DNA methylomes to investigate the skin’s predisposition to

the number of naevi across the body, the strongest risk factor for melanoma.
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6.1 Peripheral Blood DNA Methylome Changes in

Cancer Discordant MZ Twin-pairs

DNA methylomes of peripheral blood or specific blood cell types have al-

ready been investigated and associated with a range of cancer risk factors [33, 66,

68–70, 164–166] as well as with cancer development at primary locations including

breast [134, 137, 217–222], colon [138], bladder [139], and ovary [140]. However, the

vast majority of these studies have used a population-based design. Whilst this does

not diminish the value of identified biomarkers, causal genetic variation underlying

these differences in DNA methylation cannot be excluded. Here, the aim was to de-

termine the presence of "pure" DNA methylome changes, i.e excluding obligatory or

facilitated DNA methylation associations [60] by using discordant MZ twin-designs.

In the first research chapter of this thesis, pan-cancer CpG site-specific

changes in peripheral blood DNA methylomes were identified by using 41 cancer

discordant MZ twin-pairs. This is the first study to date to investigate peripheral

blood DNA methylome changes not specific to only one type of cancer, but focused

on identifying pan-cancer biomarkers. The results included one epigenome-wide

significant DMP and a further three DMPs that passed a suggestive significance

threshold. These candidate regions are of interest for further research into their full

potential as the identified changes were present years prior to cancer diagnosis.

In the second research chapter, breast cancer specific DNA methylation

regions were identified through two epigenome-wide DNA methylation profiling

techniques: 450k for 28 breast cancer discordant MZ twin-pairs and MeDIP-seq for

26 twin-pairs. The sample size here is approximately double of that included in the

only previous breast cancer discordant MZ twin-pair study [137]. This work sets

itself apart by investigating only DNA methylation changes obtained from blood

samples preceding diagnosis. Additionally by using the two technologies to assay the

breast cancer blood methylome, genome coverage was significantly improved. The
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results included three epigenome-wide significant novel bc-DMRs, two suggestive

bc-DMRs, and four suggestive bc-DMPs. These candidate regions are of particular

interest because they are present in peripheral blood preceding diagnosis. Their

potential requires further research in future prognostic and diagnostic studies.

The most associated peripheral blood DNA methylome signatures for both

the pan-cancer and early breast cancer studies did not overlap. This could be a result

of the limited number of twin-pairs used in each analysis. Each study presented in

this thesis is the largest available to date, however to reach 80% power to identify

genome-wide significant DNA methylation changes, more discordant MZ twin-pairs

are needed. This highlights the necessity for EWAS to replicate results in other

cohorts. The regions and CpG sites identified in these chapters should undergo

further analysis to explore their potential application as biomarkers.

6.2 Skin DNA Methylome Changes Association

With Naevus Count

The second part of this thesis focused on identifying changes in the DNA

methylome associated with the skin’s disposition to greater number of naevi. This

work built on previous observations that healthy tissue DNA methylomes can show

risk-factor related signatures that are similar to what has been observed in ma-

lignant tissue [127]. Therefore, these DNA methylation signatures can potentially

indicate altered mechanisms of disease development. The healthy human skin DNA

methylome had not been previously investigated for a potential risk factor signature

of increased total body naevus count.

Here, this novel EWAS for total body naevus count identified 48 n-DMPs

and 48 n-DMRs in 322 healthy female individuals. Approximately half of the n-

DMRs were also correlated with gene expression in cis from the same biopsy. Fur-
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thermore, DNA methylation variation in cis was identified for the majority of GWAS

SNPs for both naevus count and melanoma risk.

This is not only the first study for total body naevus count but it also uses

the largest available healthy skin DNA methylome dataset. The skin DNA methy-

lome signature associated with naevus count comprises novel genes and pathways as

well as genes known to be involved in melanocyte biology or melanoma progression.

This helps support both the validity of the design of the study as well as contribut-

ing new information regarding risk factor DNA methylation status at these genes.

This identified naevus count signature can help to understand how this phenotype

might arise and contribute biologically to melanoma risk.

6.3 Thesis Strengths

The strength of both chapters on biomarkers in peripheral blood lies partly

in the use of a discordant MZ twin-pair design. This design can detect changes inde-

pendent of host genetic variation and could therefore find CpG sites more vulnerable

to environmental factors compared to population-based designs that are influenced

by underlying genetic structure. It benefits from the advantage of the TwinsUK

cohort that has blood samples stored that were obtained prior to diagnosis. These

types of samples are generally only available from cohorts that routinely collect or

have stored blood samples of healthy individuals. TwinsUK also has the advan-

tage that it is linked to the ONS for official cancer diagnosis and cause of death

(if deceased). Questionnaire data on cancer diagnosis was available, however, it

did not correspond with the official records in approximately a quarter of cases.

This discrepancy shows a trend towards misreporting in questionnaires that is sim-

ilar to what is observed for chronic diseases, where misreporting was found to be

considerable and differed by respondents level of education [303].

One of the major strengths for the integrative skin DNA methylome study
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is the use of the tissue of interest to melanoma and naevus count. This allowed in-

terpretation beyond surrogate changes that might be observed in peripheral blood,

and offers a more in-depth biological view of total body naevus count. TwinsUK is

one of the few cohorts in the world with total body naevus count data that is col-

lected by dermatology research nurses via an established and repeatable protocol. It

also profited from the available expression data from the same biopsy that the DNA

methylation was assayed in and that a large number of individuals were genotyped

allowing integration of these with data.

Finally, the TwinsUK cohort is a deeply phenotyped cohort. As such data

for was available measured over multiple time points in important factors such as

BMI, smoking status, and drinking habits.

6.4 Thesis Limitations

Ideally, greater numbers of cancer discordant twin-pairs for both the dis-

covery analysis and replication analysis would increase the power of detecting true

differences in DNA methylation. Unfortunately, blood samples obtained before diag-

nosis of MZ twin-pairs are rare worldwide. The future potential of combined consor-

tia could enable pooling of more samples across cohorts for more powerful analyses.

It is now well acknowledged that an important factor to consider in EWAS is cellular

heterogeneity, particularly for peripheral blood samples, in order to reduce results

that are in fact due to cell composition. Cellular heterogeneity in the peripheral

blood samples was estimated and adjusted for in the 450k analyses in this thesis,

but it was not corrected for in the main reported breast cancer results assessed by

MeDIP-seq as blood cell counts from the same time point were not available for

the majority of samples. Detection of cell type composition changes or higher levels

of rare subtypes [79] does not diminish the potential value as a biomarker if this

composition is consistently seen in individuals and if it is cost-effective in the clinic.
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Although further analyses in specific cell types should also be performed for more

detailed biological interpretation of the results.

Regarding the MeDIP-seq dataset, an increased read coverage would have

increased the power of the study by improving the robustness of the data. This

dataset could also have benefited by an addition of methylation-sensitive restriction

enzyme sequencing (MRE-seq) on the same samples that would enable an approxi-

mate prediction of DNA methylation at regions more comparable to 450k andWGBS

[304, 305].

The skin DNA methylome study could be improved by replication and

validation of the results. Unfortunately, no healthy skin dataset exists to date

that has been profiled for genome-wide DNA methylation and that also possesses

the phenotype information of detailed naevus counts. In this study, all possible

individuals were used to maximise the power to detect naevus count related DNA

methylation modifications, rather than dividing the dataset into two smaller subsets

that would have lower power to detect associations in order to attempt to provide

internal replication. Recently, new skin biopsies have been collected in a subset of

the same individuals analysed here as part of a follow up study. Future studies could

aim to profile the DNA methylomes of these skin biopsies and perform longitudinal

analyses for these individuals or provide replication in independent samples.

6.5 Future Perspective

Our knowledge of the epigenome and genomic regulation has been expo-

nentially increasing. Advances in new techniques to interrogate the genome and

the epigenome are the driving factor behind this. At the same time, the costs of

epigenome-wide approaches, array or NGS based, have been decreasing. As more

knowledge is gained about the DNA methylome, for example identification of regions

in the genome that are potentially more dynamic [41], more approaches can be tai-
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lored to interrogate the DNA methylome cost-effectively. The Illumina beadchips

for example, have considerably changed the distribution in the genome of CpG sites

interrogated from the widely used epigenome-wide beadchip, the 27k beadchip, to

their most recent version in 2016, the EPIC beadchip [75]. For genome-wide NGS

approaches, the lower costs for second generation sequencing is also enabling an in-

crease in the number of samples analysed by methods such as WGBS, MeDIP-seq,

and RRBS. The epigenomic field is rapidly refining its research questions based on

the dynamics observed.

In recent years, single-cell omic profiling techniques have become techni-

cally possible. Methods have now been developed for detecting single-cell cytosine

modifications, histone modifications, DNA accessibility, and chromosome conforma-

tion (see Figure 6.1) [306]. The field of single-cell epigenomics is still in its early

stage of development, however, this is expected to rapidly progress due to the devel-

opment and refinement of these new techniques. One of the advantages of single-cell

epigenomics is that it will allow more precise correlation between regulatory epi-

genetic marks and expression. Therefore it could refine the function of different

epigenetic marks such as DNA methylation for example.

Structural views of chromosome folding provided by chromosome confor-

mation capture (3C)-based methods reveal the interactions between chromosomal

loci. Hi-C coupled with NGS provides a genome-wide spatial interaction map of

nuclear organisation and chromosome architecture [307, 308]. This knowledge will

be essential to incorporate into functional genomics and epigenomics.

Third generation sequencing has been developed recently that is distin-

guished by its ability to directly sequence single molecule strands of DNA over tens

of kb. Two methods are currently employed, the use of single-molecule real-time

sequencing [309] and the use of electrostatic charge while passing through a pro-

tein nano-pore [310]. Its application may not only change genomic analysis but

most likely also affect how modifications of DNA can be interrogated. If these new
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Figure 6.1: The epigenomics spectrum of single-cell sequencing technologies.

Reproduced from Clark et al. [306].

methods can distinguish 5mC or the other rarer cytosine modifications with high

sensitivity and specificity, this approach will revolutionise the DNA methylation

field by removing the need for an intermediate step to identify DNA modifications.

These steps introduce bias, including for example CpG density that influences an-

tibody binding efficiency for MeDIP-seq, bisulphite conversion efficiency for WGBS

and RRBS, and sequence dependent restriction enzymes for RRBS. Moreover, longer

reads are easier to align to a reference genome, particularly for repetitive regions

that are predominantly methylated, and enable epigenetic haplotype variation to be
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more accurately assessed. These advances will also strongly benefit single-cell omic

approaches.

The EWAS "era" has moved rapidly from assessing single markers, such as

DNA methylation and single histone modifications, to integrative studies including

multiple facets of epigenomics and/or genomics [311–313]. Ultimately, epigenomics

contributes to our understanding of genomic regulation in health and disease. With

the application of these new techniques and the knowledge that will arise from the

findings, the coming years will bring exciting new understanding of the function of

the epigenome. This will potentially enable the future application of epigenomic

biomarkers in clinical assessment and highly accurate epigenome modifiers in treat-

ment.
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Supplementary Figures
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Figure S1: Women’s Cancer statistics in 2013 from Cancer Research UK. Reproduced from Cancer Research UK [314].209



Appendix B

Supplementary Tables
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Table S1: Total body naevus count DMPs that passed FDR 10%.

Begin of multi-page Table

Rank CpG Position (hg19) Gene Location
CpG

density
Beta St. Error P value FDR

1 cg06244240 chr17:8,1058,948 - - Shore 0.0052 9 x 10-4 5.5 x 10-8 5%

2 cg06123942 chr15:45,722,795 C15orf48 5’UTR Island -0.0074 0.0014 2.2 x 10-7 5%

3 cg25384157 chr9:140,499,131 ARRDC1 TSS 1500 Shore 0.0063 0.0012 3.1 x 10-7 5%

4 cg11297934 chr3:12,705,868 RAF1 TSS 200 Island -0.0046 9 x 10-4 1.2 x 10-6 10%

5 cg14762973 chr2:187,714,067 ZSWIM2 TSS 200 Island 0.0069 0.0014 1.49 x 10-6 10%

6 cg15977816 chr19:44,285,297 KCNN4 5’UTR; 1st Exon - 0.0061 0.0013 2.2 x 10-6 10%

7 cg03755177 chr7:44,349,389 CAMK2B Body Island -0.0066 0.0014 2.3 x 10-6 10%

8 cg01880437 chr4:26,321,873 RBPJ TSS 1500 Island -0.0057 0.0012 3.1 x 10-6 10%

9 cg02683509 chr6:156,950,855 - - Shore 0.0059 0.0012 3.2 x 10-6 10%

10 cg18401367 chr5:176,107,201 - - Island -0.0063 0.0013 3.3 x 10-6 10%

11 cg11074933 chr15:26,915,414 GABRB3 Body Island -0.0063 0.0013 3.7 x 10-6 10%

12 cg03163343 chr1:45,118,395 - - Shore 0.0049 0.001 4.7 x 10-6 10%

13 cg20093198 chr19:24,182,837 - - - 0.0053 0.0011 5.1 x 10-6 10%

Continuation of Table on next page
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Continuation of Table S1

Rank CpG Position (hg19) Gene Location
CpG

density
Beta St. Error P value FDR

14 cg06569947 chr13:114,126,889 DCUN1D2 Body - -0.006 0.0013 5.3 x 10-6 10%

15 cg09536336 chr5:168,439,657 SLIT3 Body - 0.0053 0.0012 5.7 x 10-6 10%

15 cg09536336 chr5:168,439,657 SLIT3 Body - 0.0053 0.0012 5.7 x 10-6 10%

16 cg25343280 chr2:44,314,198 - - Shore 0.0055 0.0012 6.1 x 10-6 10%

17 cg21068480 chr2:85,980,500 ATOH8 TSS 1500 Island 0.0057 0.0012 6.5 x 10-6 10%

18 cg22534759 chr10:32,403,029 - - Shelf 0.0044 0.001 6.5 x 10-6 10%

19 cg00347643 chr7:75,957,202 YWHAG 3’UTR Shore -0.0053 0.0011 6.8 x 10-6 10%

20 cg02236913 chr1:20,005,598 HTR6 Body Island 0.0059 0.0013 6.8 x 10-6 10%

21 cg25720825 chr1:2,849,682 - - Shore 0.0053 0.0012 7.5 x 10-6 10%

22 cg23082845 chr1:1,159,282 SDF4 Body Island 0.0056 0.0012 7.8 x 10-6 10%

23 cg14278345 chr22:50,451,054 IL17REL 5’UTR; 1st Exon Shore 0.0046 0.001 7.9 x 10-6 10%

24 cg10139717 chr8:2,363,092 - - - -0.0056 0.0012 8.1 x 10-6 10%

25 cg10929758 chr2:54,857,270 SPTBN1 Body Shore 0.0051 0.0011 8.2 x 10-6 10%

26 cg06739855 chr1:17,240,204 - - Island -0.0057 0.0013 8.5 x 10-6 10%

Continuation of Table on next page
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Continuation of Table S1

Rank CpG Position (hg19) Gene Location
CpG

density
Beta St. Error P value FDR

27 cg02496234 chr7:20,826,128 SP8 5’UTR Shore 0.0061 0.0013 8.8 x 10-6 10%

28 cg09456289 chr2:43,038,399 - - Island -0.0063 0.0014 9.4 x 10-6 10%

29 cg03315230 chr2:27,346,938 ABHD1 Body Shore 0.0045 0.001 9.6 x 10-6 10%

30 cg07821574 chr19:18,208,505 MAST3 TSS 200 Shore -0.0042 9 x 10-4 9.7 x 10-6 10%

31 cg22985929 chr19:6,227,536 MLLT1 Body Shelf 0.005 0.0011 9.7 x 10-6 10%

32 cg04685954 chr12:10,515,574 - - - 0.0043 0.001 9.8 x 10-6 10%

33 cg20193802 chr22:19709696 SEPT5 ; Body; Island 0.005 0.0011 1.0 x 10-5 10%

GP1BB TSS 1500

34 cg21220374 chr9:100,396,777 TSTD2 ; TSS 1500; Shore 0.0058 0.0013 1.1 x 10-5 10%

NCBP1 Body

35 cg19179973 chr6:83,775,554 UBE2CBP TSS 200 Island 0.004 9 x 10-4 1.1 x 10-5 10%

36 cg04587829 chr17:80,692,947 FN3K TSS 1500 Shore 0.0048 0.0011 1.1 x 10-5 10%

37 cg01505254 chr6:36,853,867 C6orf89 Body Island -0.0053 0.0012 1.2 x 10-5 10%

38 cg25369015 chr1:9,599,256 SLC25A33 TSS 1500 Shore -0.0063 0.0014 1.3 x 10-5 10%

Continuation of Table on next page
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Continuation of Table S1

Rank CpG Position (hg19) Gene Location
CpG

density
Beta St. Error P value FDR

39 cg22494876 chr1:247,618,161 - - Shelf 0.006 0.0014 1.3 x 10-5 10%

40 cg13631572 chr14:24,803,903 ADCY4 TSS 200 Island -0.0058 0.0013 1.4 x 10-5 10%

41 cg03166286 chr9:88,555,512 NAA35 TSS 1500 Shore 0.0058 0.0013 1.4 x 10-5 10%

42 cg15375596 chr15:99,434,736 IGF1R Body Island 0.0053 0.0012 1.4 x 10-5 10%

43 cg22617002 chr13:112,275,633 - - Island 0.0054 0.0012 1.5 x 10-5 10%

44 cg18421356 chr3:134,204,114 ANAPC13 ; 5’UTR; Shore -0.005 0.0011 1.5 x 10-5 10%

CEP63 TSS 1500

45 cg13650689 chr19:54,618,596 PRPF31 ; TSS 200; Shore -0.0049 0.0011 1.5 x 10-5 10%

TFPT Body

46 cg10339152 chr20:749,452 C20orf54 TSS 1500 - 0.0041 9 x 10-4 1.5 x 10-5 10%

47 cg02208506 chr17:4,634,804 MED11 1st Exon Island -0.0055 0.0013 1.6 x 10-5 10%

48 cg12836303 chr11:63,756,920 OTUB1 Body Shelf 0.0059 0.0013 1.6 x 10-5 10%

End of Table
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Table S2: Total body naevus count DMRs with p value <0.01.

Begin of multi-page Table

Rank Position (hg19) Gene Location
CpG

density

Number

of CpGs
Direction P value

Direction

CpG sites

1 chr9:140,499,132-140,500,813 ARRDC1 TSS 1500 - Body Island 7 + 2.6 x 10-5 ++ - - - ++

2 chr10:14,647,154-14,647,530 FAM107B Body Shore 3 + 2.5 x 10-4 +++

3 chr19:44,285,297-44,285,568 KCNN4 TSS 200 - 1st Exon - 3 + 2.9 x 10-4 +++

4 chr17:8,129,997-8,130,356 CTC1 3’UTR Shelf 3 - 6.3 x 10-4 - - -

5 chr15:26,915,414-26,915,752 GABRB3 Body Island 3 - 8.3 x 10-4 - - -

6 chr1:165,513,318-165,513,343 LOC400794 ; Body; - 3 + 9.6 x 10-4 +++

LRRC52 TSS 200

7 chr7:44,349,389-44,349,389 CAMK2B Body Island 1 - 0.0012 -

8 chr8:130,995,990-130,996,123 - - Island 3 - 0.0012 - - -

9 chr13:114,126,889-114,126,889 DCUN1D2 Body - 1 - 0.0013 -

10 chr11:64,739,320-64,739,343 - - Island 3 - 0.0018 - - -

11 chr10:102,279,455-102,279,694 SEC31B TSS 200 - 5’UTR Island 3 - 0.0022 - - -

12 chr19:43,968,133-43,968,495 LYPD3 Body Island 2 - 0.0022 - -

13 chr2:4,600,947-4,601,053 - - - 3 + 0.0025 +++

Continuation of Table on next page
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Continuation of Table S2

Rank Position (hg19) Gene Location
CpG

density

Number

of CpGs
Direction P value

Direction

CpG sites

14 chr20:5,485,270-5,485,294 LOC149837 TSS 200 - 3 - 0.0026 - - -

15 chr7:152,063,901-152,063,974 MLL3 Body Island 3 - 0.0026 - - -

16 chr7:98,030,324-98,030,641 BAIAP2L1 TSS 1500 - TSS 200 Shore 4 + 0.0028 ++ - +

17 chr1:151,693,222-151,693,261 C1orf230 TSS 1500 Shore 2 - 0.0028 - -

18 chr1:17,240,204-17,240,204 - - Island 1 - 0.0029 -

19 chr8:82,633,130-82,633,568 ZFAND1 TSS 200 - Body Island 4 - 0.003 - + - -

20 chr11:102,576,469-102,576,508 MMP27 TSS 200 - 2 + 0.0034 ++

21 chr2:85,980,500-85,980,500 ATOH8 TSS 1500 Island 1 + 0.0034 +

22 chr1:27,729,801-27,729,992 - - - 2 + 0.0035 ++

23 chr14:38,091,400-38,091,470 - - Shore 2 - 0.0038 - -

24 chr4:26,321,873-26,321,873 RBPJ TSS 1500 Island 1 - 0.0038 -

25 chr12:1,905,735-1,906,097 CACNA2D4 Body Island 2 + 0.0038 ++

26 chr18:56,296,449-56,296,607 ALPK2 TSS 1500 - 4 + 0.0039 ++++

27 chr22:45,598,944-45,599,059 C22orf9 Body Island 2 + 0.0039 ++

Continuation of Table on next page
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Continuation of Table S2

Rank Position (hg19) Gene Location
CpG

density

Number

of CpGs
Direction P value

Direction

CpG sites

28 chr1:9,599,256-9,599,276 SLC25A33 TSS 1500 Shore 2 - 0.0042 - -

29 chr7:105,331,648-105,331,690 ATXN7L1 Body - 2 - 0.0042 - -

30 chr16:2,502,146-2,502,146 CCNF Body - 1 - 0.0044 -

31 chr1:1,159,282-1,159,282 SDF4 Body Island 1 + 0.0048 +

32 chr1:43,770,557-43,770,707 TIE1 Body Island 2 - 0.0051 - -

33 chr17:4,634,804-4,634,804 MED11 1st Exon Island 1 - 0.0055 -

34 chr1:162,039,224-162,039,224 NOS1AP TSS 1500 Shore 1 - 0.0056 -

35 chr14:6,5016,591-65,016,602 C14orf50 TSS 200 Island 3 + 0.0059 +++

36 chr12:54,132,255-54,132,568 - - Shore 3 - 0.0064 - - -

37 chr17:6,347,533-6,347,533 FAM64A TSS 1500 Island 1 - 0.0067 -

38 chr2:44,314,198-44,314,198 - - Shore 1 + 0.0069 +

39 chr16:28,565,199-28,565,206 CCDC101 TSS 200 Island 2 - 0.0072 - -

40 chr4:55,092,375-55,092,556 - - Shore 2 + 0.0074 ++

Continuation of Table on next page
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Continuation of Table S2

Rank Position (hg19) Gene Location
CpG

density

Number

of CpGs
Direction P value

Direction

CpG sites

41 chr7:152,456,579-152,456,597 ACTR3B TSS 1500 Shore 2 + 0.0082 ++

42 chr22:39,712,694-39,712,730 RPL3 ; Body; Shelf 2 + 0.0084 ++

SNORD83A TSS 1500 ++

43 chr9:100,396,777-100,396,777 TSTD2 ; TSS 1500; Shore 1 + 0.0089 +

NCBP1 Body

44 chr17:78,865,087-78,866,235 RPTOR Body Shore 8 + 0.0089 ++++++++

45 chr18:43,548,144-43,548,144 KIAA1632 TSS 1500 Shore 1 + 0.0091 +

46 chr12:52,695,412-52,695,515 KRT86 TSS 200 Shore 2 - 0.0094 - -

47 chr2:3,471,345-3,471,345 TTC15 Body - 1 + 0.0097 +

48 chr6:31,743,928-31,743,952 C6orf27 Body - 2 + 0.0098 ++

End of Table
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