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Abstract

Information-rich genomic data have transformed the study of genetic
variants but have affected investigations of gene-environment interplay less,
partly due to the multiple testing involved in genome-wide interaction
studies. This thesis explores alternative uses of genome-wide techniques to

investigate gene-environment interplay.

Genetic associations with individual differences in response to an
environment can be examined by performing genome-wide association
studies in individuals with a shared exposure. Cognitive behavioural
therapy is a controllable environment that can be studied prospectively.
Genetic variants and RNA transcript expression were used to predict
therapeutic outcome. No significant predictors were identified, suggesting

that effects are likely to be small.

Genome-wide association studies remain underpowered to detect small
effects, despite increasingly large cohorts. Polygenic risk scores
incorporating variants below traditional thresholds of statistical significance
can capture true signal. These scores can act as a proxy for the effect of the
genome in genome-by-environment interaction studies, and were used in
this thesis to dissect the observed increase in body mass index in individuals

with depression. Results suggest that this relationship is likely to result



primarily from causes other than the additive effects of common genetic

variation.

Polygenic risk scores were also used to assess the effects of social
environmental and genetic influences on body mass index before and during
adolescence, using a risk score primarily derived from adult participants.
Positive associations between this risk score and adolescent body mass index
phenotypes suggest a stable genetic influence on body mass. Social
environmental influences on body mass had small effects, with weak
evidence for an interaction between socioeconomic status and genetic risk

influencing body mass.

Statistical limitations on genomic analyses can be reduced by using
alternative methods to complement genome-wide interaction studies. These
approaches provide insight into the interactive effects of the genome and the

environment on behavioural phenotypes.
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Chapter 1: Introduction

1.1 Quantitative genetics, molecular genetics, and the relative roles of

genetics and environment

1.1.1. Quantitative genetics describes genetic and environmental influences

on human behaviour as a complex trait

The desire to understand the aetiology of behaviour has been a major
theme within the field of genetics since its inception. A vital contribution to
this endeavour was the creation of quantitative genetics, which seeks to
understand the relative contributions of genetic and environmental
influences to trait variance. The development of quantitative genetic theory
reconciled the particulate genetic inheritance suggested by the work of
Mendel with the more complex patterns of inheritance observed by
biometricians such as Galton (Galton, 1869; Mendel, 1866). Quantitative
genetics proposes that apparently complex traits result from the
combinatorial effects of many factors, each of which obeys Mendelian laws
of inheritance. These factors combine to generate a distribution of liability
that underlies variation in complex traits (Fisher, 1918; Plomin, DeFries,
Knopik, et al, 2012; Sarkar & Pfeifer, 2006; Wright, 1921). Observed within-
family similarities in complex traits can be explained by the combination of
multiple genetic variants with additive effects in the presence of additional

factors (Fisher, 1918). Such non-genetic factors are usually referred to as
10



environmental influences, although there is also a contribution from non-
additive genetic effects and from the random stochastic error that inaccurate
measurement and observation necessarily incur. As such, the word
“environment” can refer both to this "inferred component" and to specific
effects stemming from the environment to which individuals are exposed
("measured environments"). This latter concept is predominantly used
within this thesis — where the intended meaning is not obvious from context,

it is explicitly stated.

The quantitative genetic model assumes the underlying influences on
complex traits sum to a continuous distribution of liability, regardless of the
presentation of the trait. In the case of discrete phenotypes (such as mental
illnesses), a liability-threshold model can explain the apparent dichotomy,
with the disorder manifesting above a certain amount of risk (the threshold;
Falconer, 1965). This threshold could be defined by multiple factors, both
genetic and environmental. If liability is modelled as a normal distribution,
its variance can be partitioned among constituent factors (Figure 1; Plomin,
DeFries, Knopik, et al, 2012). At the simplest level, two main components
can be defined: the genetic component (also referred to as broad-sense
heritability) and the environmental component. Again, it is important to note

that environment in this context is defined negatively as all of the variance in

11



the phenotype not explained by genetic factors, rather than the summed

effects of multiple environmental influences.

Frequency

Threshold
Liability
Figure 1: Liability-threshold model for a discrete trait, showing
the normal distribution of risk and the threshold, to the right of

which the trait presents. Imagined contributions of genetic (below)
and environmental (above) influences are also shown.

Related individuals shared genetic variants, and the degree of sharing
(relatedness) can be determined from genetic theory. Relatedness is
important to quantitative genetic methods because it allows the genetic and
environmental components of variance to be inferred from the observed
phenotypic variance. An individual is expected to share half of their genome
with each of their parents, and with any full siblings, due to the independent

assortment of chromosomes during gamete formation (Alberts, 2002;

12



Mendel, 1866). Identical twins, however, develop from a single zygote, and

as such share all of their genome (ignoring rare early mutational events).

This sharing is crucial to the design of one of the most prominent
quantitative genetic methods, the classical twin study (reviewed in
Boomsma, Busjahn & Peltonen, 2002). The correlation between the
phenotypes of pairs of identical twins (which can be observed empirically) is
the sum of genetic and shared environmental components (that is, factors
that make the twins more alike). If any pairs have discordant phenotypes,
the influencing factor must stem from the environmental component
(because their genetic component is shared). Non-identical twins share only
half of their genome (on average), so the genetic contribution to the
correlation between pairs of non-identical twins is expected to be
proportionally lower. From these observations and theories, the
environmental and genetic components of variance can be inferred (Neale &

Cardon, 1992; Plomin, DeFries, Knopik, et al, 2012).

1.1.2 Molecular genetics enables the dissection of the heritable component

Although quantitative genetic approaches can demonstrate that
genetic effects influence behavioural traits, they cannot be used to determine
which exact areas of the genome contribute. That is the preserve of molecular
genetic methods. Initially, such methods relied either on the linkage of broad

regions of the genome with outcomes of interest (linkage studies) or on
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targeted examination of the effects of specific mutations (association studies).
However, both of these approaches have considerable limitations. Linkage
studies use variable number tandem repeats (repeated sequences of a few
nucleotides), which are limited in number across the genome, resulting in
low resolution and restricting linkage of traits to sections of chromosomes
only, rather than to specific nucleotides (Botstein, White, Skolnick, et al,
1980). Association studies can examine the genome at a much finer scale by
assessing the effects of single nucleotide polymorphisms (SNPs). Initially,
however, they were limited by the number of SNPs identified and by the
technological capacity to assay them. As a result, early association studies
focussed on candidate genes. However, this approach relies on potentially
erroneous assumptions about which genes are relevant to a given trait, and
such studies often only assess a few variants out of the many that may
influence the action of the gene (Dick, Agrawal, Keller, et al, 2015; Munafo,
2006). In the absence of likely effect size estimates, the cohorts examined
were usually too small (in the context of effect size estimates from later
genomic studies; Dick, Agrawal, Keller, ef al, 2015). As a result, many of the
findings from candidate gene studies have failed to replicate in more recent,
genomic studies, and reported effect sizes have been over-estimated, a
phenomenon known as winner's curse (Chabris, Hebert, Benjamin, et al,
2012; Dunn, Brown, Daij, et al, 2015; Hirschhorn, Lohmueller, Byrne, et al,

2002; Ioannidis, 2005; Ioannidis, 2014; Zollner & Pritchard, 2007).
14



The use of molecular genetics in the study of behaviour was altered
considerably by the technological and statistical innovation that occurred
during the Human Genome Project and following its completion (Lander,
Linton, Birren, et al, 2001; McCarthy, Das, Kretzschmar, et al, 2016; Venter,
Adams, Myers, et al, 2001). The consequent development of microarray-
based genome-wide genotyping and a more sophisticated knowledge of the
multiple testing load made genome-wide association studies (GWAS)
possible (Klein, Zeiss, Chew, et al, 2005; Wellcome Trust Case Control, 2007).
GWAS combine the agnosticism of linkage studies with the precision of
single-variant association studies. Large sample sizes are required to identify
associated loci; consequently, psychiatric genomics has been driven almost

from the outset by large-scale collaborations (Sullivan, 2010).

1.1.3 The "four laws of behavior genetics" describe the relative importance of

genetic and environmental components

The accumulated evidence from quantitative and molecular studies in
human behavioural genetics was pithily summarised as the three "laws of

behavior genetics", with a fourth law recently added. These laws are:

e Behaviour is heritable (Turkheimer, 2000; Turkheimer &
Gottesman, 1991)

e Shared environments are less important than shared genetics

(Turkheimer, 2000)
15



e Non-shared environments contribute considerably to
phenotypic variance (Turkheimer, 2000).

e Variance in behavioural traits is associated with many genetic
variants with very small individual effects (Chabris, Lee,

Cesarini, et al, 2015).

The success of behavioural genomics inspired the suggestion of the
fourth law; although many behavioural traits await genomic study, the
evidence from those studied to date argues that polygenicity is expected. The
polygenic model (incorporating variation across the allele frequency
spectrum) explains findings to date better than competing models, such as a
high excess of common or of rare mutations (Gratten, Wray, Keller, et al,
2014; Sullivan, Daly & O'Donovan, 2012; Visscher, Goddard, Derks, et al,
2012; Yang, Visscher & Wray, 2010). Unlike the more seriously proposed
fourth law, the original laws were deliberately simplistic and designed to
highlight the probabilistic nature of genetic results, and the inherent biases
of the methods used (Turkheimer, 2000). Nevertheless, the laws are an
accurate summary of the field. Meta-analysis of twin studies conducted
between 1958 and 2012 report an average effect of shared environmental
component of 17% across all mental and behavioural disorders (819 traits,
1599455 twin pairs), compared to an average heritability of 47% and

therefore an average effect of the non-shared environmental component of

16



36% (Polderman, Benyamin, de Leeuw, et al, 2015). The effect of non-shared
environment appears to be substantial. However, this component contains
stochastic error, and as such its importance could reflect the imperfection of
the model (Plomin, 1994; Plomin & Daniels, 2010; Turkheimer, 2000;

Turkheimer & Waldron, 2000).

1.2 Genetic and environmental influences on the disorders of interest

Psychiatric genomics has begun to yield valuable results, despite the
initial disappointment that resulted from the unexpectedly small effect sizes
of individual variants associated with psychiatric phenotypes. Schizophrenia
has been the pioneer disorder, with the most recent large international meta-
analysis reporting associations at 108 genetic loci (Schizophrenia Working
Group of the Psychiatric Genomics, 2014). Theoretical estimations from this
data suggest there are likely to be thousands of associated loci (although
estimation is biassed by the assumed genetic architecture). The recent
completion of large-scale genotyping projects is expected to boost
considerably the power to detect these loci (Aas, Blokland, Chawner, et al,

2016; Gratten, Wray, Keller, et al, 2014).
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1.2.1. Studying the genetics of major depressive disorder is constrained by

heterogeneity

Genomics has been slower to produce results in other psychiatric
disorders, particularly those with lower heritability. The archetypal example
of this is depression; the heritability of depression as estimated from twin
studies is approximately 40%, around half that estimated in schizophrenia
(Polderman, Benyamin, de Leeuw, et al, 2015). Estimates differ by the
classification of depression — "depressive episode” has a reported heritability
around 30%, compared to an estimate of 45% for the chronic "recurrent
depressive disorder" (Polderman, Benyamin, de Leeuw, et al, 2015).
Furthermore, the average correlation between dizygotic twin pairs for
recurrent depressive disorder was less than half that between monozygotic
twin pairs, indicating the potential for non-additive genetic effects

(Polderman, Benyamin, de Leeuw, et al, 2015).

Until recently, genomics had been largely unsuccessful in depression.
Despite a comparable cohort size to the successful efforts in schizophrenia
(roughly nine thousand cases and nine thousand controls), the initial PGC
mega-analysis of depression did not identify any variants at genome-wide
levels of significance (Major Depressive Disorder Working Group of the
Psychiatric, Ripke, Wray, et al, 2013; Schizophrenia Psychiatric Genome-

Wide Association Study, 2011). Although genomic studies have been

18



relatively unsuccessful in identifying genetic variants associated with
depression, there have been hundreds of variants suggested by hypothesis-
driven "candidate gene" analyses (Lopez-Leon, Janssens, Gonzalez-Zuloeta
Ladd, et al, 2008). Variants have been implicated near genes associated with
neurotransmission, both transporters (such as SLC6A3/DAT and
SLC6A4/5HTT) and receptors (including the dopamine receptors DRD2 and
DRD#4), as well as with signal transduction (like the G-protein GNB3), risk
processes (including MTHFR, involved in folate metabolism), and comorbid
disorders (such as APOE in Alzheimer's disease; Lopez-Leon, Janssens,
Gonzalez-Zuloeta Ladd, et al, 2008). However, very few such variants are

supported by evidence from GWAS (Dunn, Brown, Daj, et al, 2015).

The success of genomics in depression has been limited by both the
lower heritability and the phenotypic heterogeneity of the disorder.
Although ostensibly a single disorder, depression is frequently split into
subtypes according to the recurrence of the disorder or the symptoms with
which individuals present. Recurrence is conflated with severity, duration
and impairment — recurrent depression is usually more severe, longer lasting
and causes a greater reduction in quality of life, including a higher
occurrence of suicide attempts (Kessler, Zhao, Blazer, et al, 1997; Merikangas,
Wicki & Angst, 1994). Depression can present with features including low

mood, irritation, loss of pleasure (anhedonia), weight change, disrupted
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sleep and activity, fatigue, guilt, loss of concentration and suicidality
(Association, 2013). A diagnosis of depression requires as a minimum
unusual and impairing low mood or anhedonia, as well as at least four out of
the other seven features described above (Association, 2013). As such, a
diagnosis of depression can result from 105 different combinations of
symptoms. Furthermore, certain of these features, particularly weight and
appetite, have no inherent direction in diagnosis. Depression featuring
reductions in these areas is termed "typical" because such reductions are
conceptually more similar to other depressive symptoms like loss of pleasure
and low mood. Conversely, a vegetative state featuring weight gain and
reduced activity is characteristic of atypical depression (Davidson, Miller,
Turnbull, et al, 1982). Latent class factor analysis can distinguish separate
classes within depression that can be labelled as typical and atypical, and
which vary in severity (Kendler, Eaves, Walters, et al, 1996; Sullivan, Kessler
& Kendler, 2014). The relationship between these classes and the clinically
described subtypes is unclear, however, and such analyses usually also
identify intermediate classes that show a mixture of depressive features.
Subtypes may be arbitrary groupings of a continuous spectrum, effectively
the result of defining multiple thresholds on the underlying liability
distribution (Kessler, Zhao, Blazer, et al, 1997; Merikangas, Wicki & Angst,

1994). As such, depression demonstrates clinical heterogeneity, and is
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composed of grouped sets of features that are distinguishable within studied

cohorts of individuals with depression.

A further potential source of heterogeneity in meta-analyses of genetic
studies of depression is the influence of measured environmental factors.
Predominant among such factors are stressful life events, a broad range of
influences that can include the death of loved ones, difficulties in social
relationships, injury or illness, and historical or present neglect or abuse
(Holmes and Rahe, 1967; Brown & Harris, 1978). The occurrence of such
events has been consistently and robustly observed at a greater rate in
individuals with depression compared to population controls (Mazure, 1998;
Nanni, Uher & Danese, 2012). As such events tend to occur prior to the onset
of depression, they are frequently hypothesised to have a causal role. This
hypothesis has been tested by contrasting independent events (that is, events
out of the individual's control) and dependent events, which the individual
influences to some extent (Kendler, Karkowski & Prescott, 1999). Individuals
with depression had experienced more independent stressful life events than
population controls, suggesting a causal effect. However, the relationship
was noticeably stronger when considering dependent events, suggesting that
there is also a non-causal component, such as could be produced by a gene-
environment correlation in which individuals genetically predisposed to

depression are more likely to generate dependent stressful life events, even
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prior to depression (Kendler, Karkowski & Prescott, 1999). Such
environmental factors may influence not just the onset and course of disease,
but the effectiveness of treatment. For example, a meta-analysis of published
studies suggests childhood maltreatment is associated with poorer response
to pharmacotherapy (with or without psychotherapy) in depression (Nanni,

Uher & Danese, 2012).

Beyond stressful life events, there is considerable evidence that the
social environment (that is, an individual's interactions with others) many
influence depression, particularly in childhood. Studies of expressed
emotion (the hostility or warmth towards an individual from others, usually
family members), although initially most closely associated with
schizophrenia, have been extended to study depression (Hooley, Orley &
Teasdale, 1986; Vaughn & Leff, 1976). Such studies generally conclude that
individuals with depression were more likely to relapse after experiencing a
hostile, critical social environment (Wearden, Tarrier, Barrowclough et al,
2000; Hooley, 2007). An association with relapse does not imply an
association with the aetiology of the disorder. The evidence supporting a
causal role for critical expressed emotion in depression is mixed. A
prospective study of a child cohort found children in high-criticism families
were more likely to develop depressive symptoms than those in low-

criticism families, suggesting expressed emotion may be a risk factor for the
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development, as well as the maintenance, of depression (Burkhouse, Uhrlass,
Stone et al, 2012). Similarly, high rates of maternal criticism have been
reported in cohorts of children with or at risk for depression (Silk, Ziegler,
Whalen et al, 2009; Tompson, Pierre, Dingman Boger et al, 2010). However,
other longitudinal studies have highlighted the potential for reciprocal
effects. Associations have been identified (albeit inconsistently) between past
critical parenting and later childhood depression, and between earlier
depression and increased harsh parenting, with the latter effects arguably
the stronger (Hale, Keijsers, Klimstra et al, 2011, Nelemans, Hale, Branje, et al,
2014; but see null findings from Frye & Garber, 2005). It should also be noted
that this relationship is confounded with shared genetics between parent and
offspring (Lau & Eley, 2008). There therefore appears to be a complex

relationship between critical social relationships and depression.

The influence of the parent-child relationship is an important
component of the general effect of the social environment and of expressed
emotion. Parenting is a multi-faceted and complex phenomenon that can be
conceptualised in a number of different ways. For example, one aspect of
parental strategy is the level of control within the parent-child relationship,
which in turn has sub-dimensions encompassing withdrawal of the parent
from the child, hostility towards the child, and warmth in parent-child

interactions (McLeod, Weisz & Wood, 2007). This complexity has spawned a
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broad literature on the effects of parenting on juvenile depression, but this
literature is difficult to reconcile to identify consistent findings, partly as a
result of the wide array of parenting constructs. Nonetheless, multiple meta-
analyses have suggested an effect of hostile parenting associated with
increased rates of depression in young people (McLeod, Weisz & Wood,

2007; Yap, Pilkington, Ryan et al, 2014).

Variability in the definition of depression, and the influence of
environmental factors like stressful life events, can create heterogeneity that
reduces the power of meta-analyses of genetic studies. Examining the genetic
correlations between independent GWA studies of schizophrenia results in
very high correlations = 0.9; despite clinical concerns about heterogeneity in
the presentation of schizophrenia, there appears to be at least genetic
consistency between studies (Cross-Disorder Group of the Psychiatric
Genomics, 2013; Gratten, Wray, Keller, et al, 2014). However, performing the
same analysis in the PGC depression cohorts yields much lower correlations
=~ 0.55, reflecting phenotypic heterogeneity (Cross-Disorder Group of the

Psychiatric Genomics, 2013; Gratten, Wray, Keller, et al, 2014).

Recently, however, depression genomics has begun to produce
results. The most recent PGC mega-analysis (with a considerable increase in
the number of individuals studied) has identified a number of associated

variants (although the final details were still unpublished at the submission
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of this thesis; Lewis, 2015). Other significant associations have been
identified by taking alternative approaches to increasing power. A GWAS in
a population cohort of ~300,000 European individuals identified 15 loci at
genome-wide significance in meta-analysis with existing data,
demonstrating the power of large cohorts (Hyde, Nagle, Tian, et al, 2016).
Actively reducing heterogeneity has also yielded success in studying
depression, which demonstrates that increasing phenotype specificity can
yield better power even if the cohort size is reduced (Traylor, Markus &
Lewis, 2015). For example, selecting cases with an age-of-onset later than 27
years identified a variant on chromosome 3 which reached genome-wide
significance (Power, Tansey, Buttenschon, et al, 2016). Restricting the
depression case group to women with severe melancholic depression in a
Chinese sample yielded two variants at genome-wide significance
(Consortium, 2015a). Contrasting approaches to increasing power
(interrogating larger cohorts and directly addressing heterogeneity) are
yielding insights into the specific genetic variants underlying variance in

depression.

1.2.2. The genetics of anxiety disorders may mirror those of depression

As well as high heterogeneity, depression also exhibits high
comorbidity with other psychiatric disorders, particularly anxiety (Kessler,

Berglund, Demler, et al, 2003). The two disorders are frequently studied
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together as internalising disorders (in contrast with the externalising
disorders: attention-deficit hyperactivity disorder, conduct disorder and
oppositional-defiant disorder), and the DSM-5 has a specific diagnosis of
anxious depression (Association, 2013). Furthermore, there is evidence of
high genetic overlap between depression and generalised anxiety disorder,
suggesting that the different presentation of these disorders may result
primarily from environmental influences (that is, those not attributable to the
additive effect of genetics; Kendler, 1996; Kendler, Gardner, Gatz, et al, 2007;

Kendler, Neale, Kessler, ef al, 1992b).

Anxiety also mirrors the heterogeneity seen in depression. Unlike
depression, pathological anxiety is typically separated into distinct disorders:
generalised anxiety disorder, panic disorder, agoraphobia, social anxiety
disorder and specific phobias, as well as a childhood-specific disorder,
selective mutism. Traditionally, obsessive-compulsive disorder and post-
traumatic stress disorder were included within the anxiety disorders.
However, the distinct characteristics of these disorders resulted in their
separation from the anxiety disorders (and from each other) in DSM-5
(Association, 2013). Given the relative recency of this decision, many studies
of anxiety disorders have included OCD and PTSD. A further disorder,
separation anxiety disorder, was moved into the anxiety disorders from the

childhood-onset disorders during the creation of DSM-5, an
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acknowledgement of evidence that this disorder occurs (and has its onset) in
adults as well as children (Association, 2013; Shear, Jin, Ruscio, et al, 2006;

Silove, Alonso, Bromet, et al, 2015).

The diagnostic boundaries between the anxiety disorders are
particularly blurred in childhood, where affected individuals are frequently
comorbid for several anxiety disorders, and transition between disorders is
common (Rapee, Schniering & Hudson, 2009). Phobias, social anxiety
disorder, and separation anxiety disorder typically have their onset in
childhood, while generalised anxiety disorder, panic disorder and
agoraphobia show an average age of onset in adolescence or early adulthood
(Kessler, Angermeyer, Anthony, et al, 2007; Kessler, Berglund, Demler, et al,
2005; Shear, Jin, Ruscio, et al, 2006). Not all juvenile anxiety disorders persist
into adulthood but, because childhood represents a crucial developmental
period, they are a risk factor for physical and psychiatric illnesses in later life,
including adult anxiety disorder and major depressive disorder (Bardone,
Moffitt, Caspi, et al, 1998; Gregory, Caspi, Moffitt, et al, 2007; Lewinsohn,
Holm-Denoma, Small, et al, 2008). However, a caveat applies, namely that
juvenile anxiety disorders are highly comorbid both within the anxiety
disorders and with other disorders (such as major depressive disorder,
conduct disorder and attention-deficit hyperactivity disorder) and as such

associations between childhood anxiety and later adverse outcomes may be
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confounded (Angold, Costello & Erkanli, 1999; Costello, Egger & Angold,

2005).

Heritability estimates for the anxiety disorders as a group and for the
disorders individually are typically 30-40%, again mirroring depression
(Hettema, Neale & Kendler, 2001; Kendler, Myers, Prescott, et al, 2001;
Kendler, Neale, Kessler, et al, 1992a; Polderman, Benyamin, de Leeuw, et al,
2015; Scaini, Belotti & Ogliari, 2014; Shimada-Sugimoto, Otowa & Hettema,
2015; Tambs, Czajkowsky, Roysamb, et al, 2009; Van Houtem, Laine,
Boomsma, et al, 2013). Attempts to identify specific genetic loci that
contribute to this heritability have followed a familiar pattern, with
equivocal candidate gene studies gradually giving way to better-powered
genomic studies. The majority of well-powered studies have focussed on
panic disorder; a recent meta-analysis identified 107 genes investigated in
candidate gene studies (and GWAS), of which 23 variants in 20 genes had
been studied regularly enough to justify meta-analysis (Howe, Buttenschon,
Bani-Fatemi, et al, 2016; McGrath, Weill, Robinson, et al, 2012; Shimada-
Sugimoto, Otowa & Hettema, 2015). Of these, variants in the COMT (rs4680)
and TMEM132D (rs7309727/rs11060369) genes were significantly associated
with panic disorder (although only in European participants) after
controlling for multiple testing (Howe, Buttenschon, Bani-Fatemi, et al, 2016).

For the majority of associations from the candidate literature, replication has
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either not been attempted or has failed (Howe, Buttenschon, Bani-Fatemi, et
al, 2016; Shimada-Sugimoto, Otowa & Hettema, 2015). This conclusion
extends to the broader anxiety genetics literature — many studies have been
published, but their results are contradictory, and no robust associations can

be discerned (McGrath, Weill, Robinson, et al, 2012).

Furthermore, as with depression and schizophrenia, findings from the
candidate gene literature have failed to replicate in the emerging GWAS
literature. A caveat to this is that anxiety genomics is still in its infancy. A
GWAS of phobia in 11000 individuals did not identify any associations at
genome-wide significance (Walter, Glymour, Koenen, et al, 2013). In contrast,
a series of studies of panic disorder in European samples have implicated the
aforementioned rs7309727 variant in TMEM132D (p=1.05x10% OR=1.45 (95%
CI: 1.20-1.72); Erhardt, Akula, Schumacher, et al, 2012; Erhardt, Czibere,
Roeske, et al, 2011). Some additional support for this association comes from
a family-based genome-wide linkage study of a broad anxiety phenotype in
a Mexican-American cohort, which identified the 12q24.32-q24.33 region
(which contains TMEM132D, amongst other candidates) at genome-wide
significance (Hodgson, Almasy, Knowles, et al, 2016). Additional analyses of
this variant in a Japanese cohort initially suggested no effect of this variant in
Japanese samples (Erhardt, Akula, Schumacher, et al, 2012). However, recent

analyses tentatively suggest that there may be a gene-by-gene interaction.
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The HLA-DRB1*13:02 allele is significantly enriched in panic disorder cases
compared to controls within this cohort (p = 2.50x10* Shimada-Sugimoto,
Otowa, Miyagawa, et al, 2015). Examining only individuals without this
allele identified a significant association between panic disorder and
rs7309727 (p = 5.02x10-; Shimada-Sugimoto, Otowa, Miyagawa, et al, 2016).
Additional analyses in this Japanese sample have also implicated a variant in
the TMEM16B gene (Otowa, Kawamura, Nishida, et al, 2012). However, the
findings in Japanese cohorts to date stem from a single cohort, and as such
require independent replication. The COMT variant discussed above has not

reached genome-wide significance in GWAS of panic disorder to date.

Recently, GWAS of anxiety disorders as a heterogeneous group have
emerged, including a large meta-analysis with a cohort size approaching
those of the early PGC studies, which used both a case-control and a
quantitative factor score approach to defining the phenotype (Otowa, Hek,
Lee, et al, 2016; Otowa, Maher, Aggen, et al, 2014). These approaches yielded
separate loci at genome-wide significance in multi-gene loci on
chromosomes 3 and 2 respectively (case-control: rs1709393, p = 1.65x105;
factor score: 11067327, p = 2.86x10%), with nominal significance for each

locus in the alternative analysis (Otowa, Hek, Lee, et al, 2016).

Moderate heritability implies that a considerable portion of the

variance in anxiety results from influences beyond the additive effect of

30



genetic variants. One potential source of such variance is the combined effect
of specific environments. Perhaps unsurprisingly, many of the risk factors
for depression also appear to be associated with anxiety. For example, a
higher rate of stressful life events has been reported in individuals with
anxiety disorders. The cumulative impact of multiple life events, particularly
those related to threat, loss and poor health, are enriched in individuals
suffering from panic disorder (Klauke, Deckert, Reif, et al, 2010). Associations
with other specific life events, particularly childhood sexual abuse and
violence, have been reported in specific phobia and social anxiety (Magee,
1999). Prospective studies have suggested that children with anxiety
disorders experience a greater number of negative life events in the twelve
months prior to the onset of their disorder than do unaffected children
(Goodyer, Wright and Altham, 1988). In childhood, ditficulties in social
relationships, particularly between the child and their parents, have been
associated with a broad anxiety phenotype (Goodyer, Wright & Altham,
1990; Van Der Bruggen, Stams & Bogels, 2008), as has experiencing multiple
stressful life events and having poorer general health (Ford, Goodman &
Meltzer, 2004; Phillips, Hammen Brennan et al, 2005). As such, stressful life
events and the early-life social environment appear to contribute to anxiety

as well as to depression.
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The effect of the early environment on the development of anxiety has
been of considerable interest to investigators, partly because several anxiety
disorders have their onset in childhood (Kessler, Angermeyer, Anthony, et al,
2007; Kessler, Berglund, Demler, et al, 2005). Again, parenting represents a
particular area of interest. The influences of warmth and control show
similar effects to those observed in depression, although the evidence for a
negative influence of lack of warmth is less consistent, and the role of over-
control is more prominent (McLeod, Weisz & Wood, 2007; Murray, Creswell
& Cooper, 2009). In addition, parents provide a model for children. In this
way, parental displays of anxious behaviour or of anxious interpretations of
ambiguous stimuli can lead to increased anxiety in children (although a
child-to-parent effect could also contribute; Eley, McAdams, Rijsdijk et
al,2015; Moore, Whaley & Sigman, 2014; Muris, Steernmen, Merckelbach et

al, 1996; Suveg, Zeman, Flannery-Schroeder et al 2005).

1.2.3. Behavioural genetics may be informative in understanding the

aetiology of body mass index

Genomic studies in depression and anxiety are beginning to yield
interesting findings, but progress has been limited, not least due to the
subjective nature of the phenotypes. Genomics has had more rapid success in
other complex traits and has begun to provide slightly unexpected insights.

For example, body mass index (BMI) is superficially an anthropomorphic
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trait but may have a behavioural component to its aetiology. Evidence from
neuroendocrinological approaches suggests that BMI is closely linked to
energy homoeostasis, regarding both the storage and use of energy in the
body and the behavioural control of satiety and appetite (Llewellyn &
Wardle, 2015; Lustig, 2001). These components are not mutually exclusive,
and the importance of both has been supported by secondary genomic
analyses of BMI (Locke, Kahali, Berndt, et al, 2015; Speliotes, Willer, Berndt,

et al, 2010).

Gene-based analyses suggest a separable behavioural component to
BMI when compared to other weight-related phenotypes. Body fat
distribution (measured independently of BMI) was associated with genetic
variants proximal to genes involved in adiposity (Shungin, Winkler,
Croteau-Chonka, et al, 2015). In contrast, variants associated with BMI were
enriched for genes highly expressed in the hypothalamus and pituitary
gland, and the hippocampus and limbic system (Locke, Kahali, Berndt, et al,
2015; Shungin, Winkler, Croteau-Chonka, et al, 2015). These systems were
previously implicated in the control of BMI by animal studies and clinical
observations. For example, individuals with damaged hypothalami show
increased appetite, and the appetitive hormone leptin binds to hypothalamic
neurones to regulate metabolism via the melanocortic system (Anand &

Brobeck, 1951; Farooqji, 2014; Schwartz, Woods, Porte, et al, 2000; Zhang,
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Proenca, Maffei, et al, 1994). Disruptions to this system (in the form of rare
gene-altering mutations) cause severe obesity in humans, although they do
not explain the heritable component of BMI alone (Locke, Kahali, Berndt, et
al, 2015; Montague, Farooqi, Whitehead, et al, 1997). Evidence from studies of
both common and rare genetic variation thus supports an appetitive

influence on BMI.

Additional support comes from examining the genome as a whole.
The heritability detectable from GWAS analysis can be partitioned into
functional components by annotating genetic variants to tissue-specific
epigenetic marks. Performing this analysis in BMI identified a significant
enrichment of central nervous system cell types, reinforcing the role of
neural processes in BMI (Finucane, Bulik-Sullivan, Gusev, et al, 2015;

Speliotes, Willer, Berndyt, et al, 2010).

Finally, genetic correlations have been examined between BMI and
multiple traits (Bulik-Sullivan, Finucane, Anttila, et al, 2015). When
compared to psychiatric traits, BMI has a significant positive correlation with
anorexia and schizophrenia, and a significant negative correlation with
ADHD (Anttila, Bulik-Sullivan, Finucane, et al, 2016; Bulik-Sullivan,
Finucane, Anttila, et al, 2015). The original paper describing the method of
assessing genetic correlation reported only the anorexia correlation, while all

three were reported in a second paper, which used a larger BMI cohort
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(Anttila, Bulik-Sullivan, Finucane, et al, 2016; Bulik-Sullivan, Finucane,
Anttila, et al, 2015). This latter study also tentatively suggests that BMI is
correlated more strongly with traditional psychiatric phenotypes than with
neurological disorders. However, the relationship between BMI and

psychiatric traits is still emerging.

BMI has attractive properties as a phenotype for genetic study,
compared to psychiatric disorders. It is a continuous phenotype and can be
calculated objectively (via measurements of height and weight that have
external validity) in large numbers of individuals. Evidence from twin
studies suggests that BMI has a heritability around 60% (Polderman,
Benyamin, de Leeuw, et al, 2015). However, designs, assessing correlations
between distant relatives suggest estimates from twin and family studies
may be inflated due to unmodelled effects such as assortative mating, and
that the heritability of BMI could be closer to 30-40% (Hemani, Yang,
Vinkhuyzen, et al, 2013; Visscher, McEvoy & Yang, 2010; Yang, Bakshi, Zhu,
et al, 2015; Zaitlen, Kraft, Patterson, et al, 2013). These arguments concern the
fundamental design of quantitative genetic studies, and as such extend to all

traits.

Genomics has been successful in studying BMI, with the most recent
meta-analysis identifying 97 significant loci (Locke, Kahali, Berndt, et al,

2015). These loci capture = 2.7% of the variance in BMI (= 4-10% of the genetic
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component, depending on the estimate of heritability), which compares
favourably to schizophrenia (108 loci, = 3.4% variance and = 5% heritability,
respectively; (Locke, Kahali, Berndt, et al, 2015; Schizophrenia Working
Group of the Psychiatric Genomics, 2014). The genetic architecture of BMI
also seems to mirror that of schizophrenia in part, with a common genetic
component comprising many variants of small effect, and a single locus of
larger effect. In the case of schizophrenia this lies in the major
histocompatibility complex (MHC) gene cluster, while the strongest
association in BMI GWAS is found in the FTO gene (Frayling, Timpson,
Weedon, et al, 2007; Locke, Kahali, Berndt, et al, 2015; Schizophrenia Working
Group of the Psychiatric Genomics, 2014). Curiously, there is now robust
evidence that neither of these prominent associations acts via the genes in
which they lie. The variant lying in the MHC appears to affect the C4A and
C4B complement components rather than the more well-known HLA genes,
while that near FTO alters the expression of the IRX3 transcription factor

(Sekar, Bialas, de Rivera, et al, 2016; Smemo, Tena, Kim, et al, 2014).

Unlike depression and anxiety, in which stressful life events are the
most robustly-associated environmental influences, BMI is influenced by a
broad range of environments (likely due to the metabolic aspects of the
phenotype). Central among these is an energy-positive (as opposed to

energy-balanced) environment, characterised by lower energy use from a
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sedentary lifestyle with less physical activity and a diet rich in fat and sugar
(Bray, 2004). Accurate measurement of the impact of these influences is
confounded by the complexity of both concept and measurement in diet and
activity, and reciprocal effects between the energy-positive environment and
higher BMI (Rennie & Wareham, 1998; Ruel, 2003; Wareham, van Sluijs &
Ekelund, 2005). A systematic review of the evidence for an effect of inactivity
suggests overweight individuals typically engage in less physical activity,
but that this pattern is limited by the confounding and reverse causality
described above (Wareham, van Sluijs & Ekelund, 2005). Robust population-
level evidence exists to support higher BMI in individuals following a meat-
rich (Spencer, Appleby, Davey, et al, 2003) or sugar-rich diet (Te Morenga,
Mallard & Mann, 2013), although this is similarly limited by uncontrollable

confounding.

Beyond the energy-positive environment, there is a growing body of
research suggesting that poorer sleep quality is associated with greater BMI
independent of diet, with a number of hypotheses proposed to explain this
association, including increased energy demands, alterations to the
appetitive system, desynchrony of circadian rhythms, and comorbidity with
psychological distress (Cespedes, Hu, Redline, et al,2016; Chan, 2017;
Chaput, 2014). The association between poor sleep quality and increased

BMl is further supported by evidence of a genetic correlation of 0.15 between
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BMI and insomnia symptoms from a recent sleep quality GWAS (Lane,
Liang, Vlasac et al, 2017). While not as predominant as in depression and
anxiety, an increased incidence of stressful life events has also been reported
with increased BMI, independent of sleep quality and activity levels

(Sampasa-Kanyinga & Chaput, 2017).

1.3 Gene-environment interplay

1.3.1. Genetic and environmental influences are not independent

The accumulated evidence argues that both genetic and
environmental factors have important influences on human behavioural
traits. The inherent assumption is that their actions are independent, which
may not be the case; a proportion of variance in behavioural traits could be
attributable to the combined effects of genetics and environment. This
relationship has been discussed for over a century, with much of the debate
concerning the relative importance of different types of interplay, the
appropriate way to model interactions, and the relevance of statistical
interactions to functional effects (Garrod, 1902, as described in Hunter, 2005;

Kendler & Gardner, 2010; Rutter, 2010).

The interdependent effects of genetic and environmental factors are
usually framed as gene-environment interactions and gene-environment

correlations. Gene-environment interactions describe a case where the effect
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of one set of factors differs depending on the other. For example, exposure to
sunlight has a greater effect on skin cancer risk in those with lighter skin
(Adami, Hunter & Trichopoulos, 2008; Hunter, 2005). Gene-environment
correlations describe instances when specific pairings of genetic and
environmental influences co-occur at a rate greater than that expected by
chance (Plomin, DeFries & Loehlin, 1977). One such correlation affects
musical achievement; the frequency of practising an instrument is a heritable
phenotype that in turn affects achievement (Hambrick & Tucker-Drob, 2015).
Note that the examples given above refer to the influence of specific
environments, rather than the broader meaning generally used in
quantitative genetics. However, gene-environment interplay can also be
studied using a quantitative genetic approach and modelling the
environmental influence as all influences not attributable to the additive

effects of genetics.

Gene-environment interplay can bias the results of genetic association
studies (including GWAS) when not modelled explicitly (Cooley, Clark &
Folsom, 2014; Marigorta & Gibson, 2014). To give an extreme example, a
genetic locus in the CHRNA5-A3-B4 gene cluster is robustly associated with
an increased number of cigarettes per day in smokers (Ware, van den Bree &
Munafo, 2011). The effect of this genetic variant is conditional entirely on

whether the individual smokes (Hirschhorn, Lohmueller, Byrne, et al, 2002).
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Such an association is impossible to discover in non-smokers and is a perfect
gene-environment correlation (which is confounding). Non-independence
between the effects of genetic variants and the environment can result in
incorrect interpretations of evidence. For example, the CHRNA5-A3-B4 locus
is associated with lung cancer. The locus might be pleiotropic, having effects
on both phenotypes. If this were true, there could also be a gene-
environment interaction, with smokers having an increased risk of lung
cancer if they carry this variant (Dudbridge & Fletcher, 2014). However, the
weight of evidence favours confounding as the explanation, suggesting that
the association results from the inclusion (intentional or otherwise) of
smokers in lung cancer GWAS (Dudbridge & Fletcher, 2014; Gage, Davey
Smith, Ware, et al, 2016; Hallden, Sjogren, Hedblad, et al, 2016; VanderWeele,

Asomaning, Tchetgen Tchetgen, et al, 2012).

Classically, the effects of gene-environment interactions have been
modelled in a diathesis-stress framework, in which bearing certain genetic
variants (the diathesis) places an individual at risk of negative outcomes
when exposed to negative environments or stress (Bleuler, 1963; Meehl, 1962;
Rosenthal, 1963). This idea has been criticised as only accounting for the
negative role of genes (Belsky & Pluess, 2009). Instead, a differential
susceptibility hypothesis is posited, extending the diathesis-stress model to

acknowledge the potential for a genetic predisposition to positive responses
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in positive environments, a concept termed vantage sensitivity (Pluess &

Belsky, 2013). Rather than vulnerability genes, leading to negative outcomes

in negative environments, the differential susceptibility hypothesis suggests

the existence of sensitivity genes, which increase responsivity to the

environment in general (Figure 2; Bakermans-Kranenburg & van IJzendoorn,

2015). As such, individuals with a high load of sensitivity genes would be

vulnerable to negative outcomes in negative environments, but would also

benefit in positive environments. This hypothesis has found some support in

human and animal studies (Bakermans-Kranenburg & van IJzendoorn, 2015;

Kastner, Richter, Lesch, et al, 2015).
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Gene-environment interactions have been a topic of interest within
human behavioural genetics for decades, and a moderately-sized literature
on the effects of individual variants in a variety of environments has been
produced (Dick, Agrawal, Keller, et al, 2015; Duncan & Keller, 2011).
However, the majority of these have made use of the candidate gene
approach and show the same lack of power and inflated effect size estimates
that limits genetic associations studies using this method (Munafo, 2015).
The limitations on power are even greater in gene-environment studies, as
the incorporation of an environmental exposure (with an inherent
assumption of relevance) increases the level of multiple testing (Dick,

Agrawal, Keller, et al, 2015; Duncan & Keller, 2011; Munafo, 2015).

Arguably the most robust candidate gene-environment interaction in
psychiatric genetics is also the most controversial. The serotonin transporter
promoter polymorphism (SHTTLPR) was initially implicated in the
differential effect of life stress on depression in a longitudinal population
cohort. Carriers of one or two copies of the short allele (which is associated
with reduced transporter activity) were more likely to exhibit a variety of
depression-related phenotypes following stressful life events than were
carriers of two long alleles (Caspi, Sugden, Moffitt, et al, 2003; Heils, Teufel,
Petri, et al, 1996). Since this first study, over 81 studies have attempted to

replicate the finding, with mixed success (Sharpley, Palanisamy, Glyde, et al,
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2014). The robustness of this interaction has become controversial, with some
meta-analyses suggesting no effect and others confirming the original
finding, with disagreement over the correct criteria for including studies in
each meta-analysis (Duncan & Keller, 2011; Karg, Burmeister, Shedden, et al,
2011; Munafo, Durrant, Lewis, et al, 2009; Risch, Herrell, Lehner, et al, 2009;
Sharpley, Palanisamy, Glyde, et al, 2014; Uher & McGuffin, 2010). The most
recent meta-analysis reported a significant increase in depressive outcomes
in S allele carriers exposed to stress (p=9x107), robust to the nature and
measurement of the stressor and the design of the study (Sharpley,
Palanisamy, Glyde, et al, 2014). A number of criticisms of this evidence have
previously been advanced. These include the potential risk of publication
bias and undisclosed multiple testing, the observation that larger studies
were more likely to be negative, and heterogeneity of study design and
analysis (Munafo, Durrant, Lewis, et al, 2009; Munafo, Zammit & Flint, 2014;
Risch, Herrell, Lehner, et al, 2009). The most recent meta-analysis addresses
these concerns in part (Sharpley, Palanisamy, Glyde, et al, 2014). It seems
unlikely that the observed result could be explained by publication bias: the
data showed a fail-safe ratio of 45 non-published negative studies for every
study included (Sharpley, Palanisamy, Glyde, et al, 2014). Negative studies in
the meta-analysis had a significantly larger sample size than positive studies,
and studies using self-report data to assess depression and stress (rather than

an interview or objective measures) were more likely to be negative; these
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factors are inter-related, as has been previously noted (Sharpley, Palanisamy,
Glyde, et al, 2014; Uher & McGuffin, 2010). Nonetheless, there are several
potential confounders (such as inter-study heterogeneity) that remain
difficult to control (Sharpley, Palanisamy, Glyde, et al, 2014). Furthermore,
reliance on a single meta-analysis is inadvisable, because differences in
approach can translate to differences in outcome, as is apparent from the
example of the SHTTLPR (Taylor & Munafo, 2016). The validity of SHTTLPR
meta-analyses was recently tested using p-curve analysis (which investigates
the distribution of p-values in studies reporting positive findings; Karg,
Burmeister, Shedden, et al, 2011; Simonsohn, Nelson & Simmons, 2014;
Taylor & Munafo, 2016). This alternative method provided weak evidence
for an effect of the SHTTLPR, which was very dependent on the lowest
reported p-values. Given these results, the remaining doubt, and current
understanding of the nature of genetic influences in psychiatry, the effect of
the SHTTLPR is still not fully resolved. The conclusion made by one
commentary on the subject is probably the most reasonable: after addressing
the confounding from various methodological artefacts, there appears to be a
real, but probably small, effect of the SHTTLPR (McGuffin, Alsabban &

Uher, 2011).
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1.3.2. Limitations on genome-wide analysis of gene-environment interplay

Using a genomic approach could allow gene-environment interactions
to be studied with the hypothesis-neutral philosophy that has yielded
success in exploring main effects on behaviour. However, this presents some
problems in practice. Unlike the case for genetic traits, it is difficult to see
how an agnostic approach could be taken in selecting environmental
exposures, as there is no obvious finite amount of possible factors. Including
multiple environmental influences in genome-wide interaction analyses
increases the number of tests considerably. Assuming that a million
independent signals result from genetic variation, every environmental
factor tested adds a million new tests (Dudbridge & Gusnanto, 2008; The
International HapMap, 2005). A two-step approach, whereby variants with
main effects are identified and then tested for gene-environment interactions
could reduce this burden (Ege & Strachan, 2013). However, the relative
paucity of robustly identified main effects in behavioural phenotypes has
limited the application of this process to date, and applying this method
makes an inherent assumption that variants that interact with environmental
influences will also show a main effect, which is contentious (Domingue &

Boardman, 2016).

A genome-wide study of gene-environment interaction would not

necessarily require all possible environments to be examined. It might be of
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interest to assess the effects of genome-wide genetic variation on a specific
environmental exposure. The choice of exposure would be hypothesis-
driven, violating the agnostic approach of genome-wide studies in general.
Therefore, proposing candidate environments requires an empirically robust
association between the environmental and the trait under study (whether
directly or via a gene-environment interaction; Dick, Agrawal, Keller, et al,
2015). In general, candidate environments fulfil this requirement better than
candidate genetic variants. For example, there is robust evidence that
childhood maltreatment is associated with later life depression (Nanni, Uher

& Danese, 2012).

1.4 Alternative methods for leveraging genomic data to study gene-

environment interplay

While genome-wide interaction studies (GWIS or GEWIS) are possible
to perform (and have the potential to yield valuable results), they
demonstrate some limitations. As such, it might be more informative to
study these effects using alternative study designs, and leveraging the data-
rich output from GWAS (Boardman, Domingue, Blalock, et al, 2014; Thomas,
2010). Although some of the caveats will remain, others can be reduced or
removed with the analytical design. Within this thesis, two approaches are
explored, making use of genomic and phenotypic data at varying depths.

Specifically, a GWAS is conducted within a controllable environment
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(cognitive behavioural therapy for anxiety disorders), to attempt to identify
genetic variants predisposing to sensitivity to the environment (Chapter 3;
Coleman, Lester, Keers, et al, 2016). This paradigm is then extended to using
gene expression data, which represents a natural integration of genetic and
environmental influences (Chapter 4; Coleman, Lester, Roberts, et al, 2016).
Secondly, polygenic risk scores are used as proxies for the genetic
component of variance in depression and BMI to dissect the correlation
between these traits into genetic and environmental components (Chapter 5).
Finally, more detailed measures of the social environment are used to
explore genome-environment interactions predicting BMI in adolescence
directly, using polygenic risk scores to reduce the multiple testing burden

(and so increase power; Chapter 6).

1.4.1. GWAS in a controllable environment: the genetics of response to

cognitive behavioural therapy

One of the major issues concerning gene-environment interactions is
the difficulty in controlling the environment. It is not uncommon for critics
of gene-environment studies (and of behavioural genetics in general) to
compare investigations in humans to the more interpretable "common-
garden" methods of studying animal behaviour (Gottlieb, 2003; Turkheimer,
2000). However, controllable environments exist (Eley, 2014). Studying the

effects of genetics within a cohort who have all received a given exposure
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can be informative about the genetic basis of differential response. This
approach has been used with success in GWAS of trauma-exposed
individuals to identify variants associated with the development of post-
traumatic stress disorder (Ashley-Koch, Garrett, Gibson, et al, 2015; Guffanti,
Galea, Yan, et al, 2013; Logue, Baldwin, Guffanti, et al, 2013; Nievergelt,
Maihofer, Mustapic, et al, 2015; Solovieff, Roberts, Ratanatharathorn, et al,
2014; Stein, Chen, Ursano, et al, 2016; Sumner, Pietrzak, Aiello, et al, 2014;
Wolf, Rasmusson, Mitchell, et al, 2014; Xie, Kranzler, Yang, et al, 2013).
However, trauma is not a controllable exposure, which introduces

heterogeneity into the approach.

Cognitive behavioural therapy (CBT) represents a positive
environmental exposure that is more predictable and controllable than the
majority of non-experimental environmental exposures studied. CBT is a
psychological treatment in which the recipient (in a controlled, supportive
atmosphere) identifies negative cognitive processes and behaviours
underlying distressing outcomes and learns techniques to mitigate against
these negative schema and relieve distress (Beck, 2005; Hofmann,
Asmundson & Beck, 2013). Furthermore, it is possible to design prospective
studies of response because CBT is provided in predictable sessions. The last
decade has seen an increase in the use of cognitive behavioural therapy as a

treatment for internalising disorders. For example, the UK's Improving
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Access to Psychological Treatment program aims to offer CBT to at least 15%
of those suffering from anxiety or depression in the community (Baldwin,
Anderson, Nutt, ef al, 2014; Bandelow, Lichte, Rudolf, et al, 2014; Bandelow,
Lichte, Rudolf, et al, 2015; Clark, 2011; NCCMH, 2011). The increasing use of
CBT has resulted in part from evidence that the technique is effective and
demonstrates cost-efficacy. Meta-analyses of randomised control trials of
CBT for anxiety in children have shown a significantly greater response
immediately post-treatment compared to untreated waitlist controls
(remission of disorder: odds ratio (OR) = 7.85, reduction in anxiety
symptoms: standardised mean difference (SMD) = -0.98; James, James,
Cowdrey, et al, 2013). Analyses of the adult literature show similar results
comparing CBT to placebo (remission of disorder: OR = 4.06, reduction in
anxiety symptoms: SMD = -0.73; sign of SMD reversed for comparison with
child data; Hofmann & Smits, 2008). Estimates of efficacy are usually greater
when considering completing participants only versus including all
participants in intention-to-treat analyses. For example, the intention-to-treat
results from the adult literature for disorder remission (OR = 1.84) and
reduction in anxiety symptoms (SMD = -0.33) are smaller, although still

significant (Hofmann & Smits, 2008).

Treating individuals with anxiety using CBT is effective compared to

no treatment at all. Nevertheless, remission rates are rarely if ever 100%. CBT
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treatment for childhood anxiety shows an average remission rate of 56%
post-treatment, with very weak evidence suggesting a small increase with
time after treatment (James, James, Cowdrey, et al, 2013). Similar remission
rates have been reported in a meta-analysis of CBT for adults, 49.5% post-
treatment rising to 53.6% at follow-up (Loerinc, Meuret, Twohig, et al, 2015).
Remission rates are greater than those reported for placebo, waitlist or
treatment as usual conditions, which range from 14-28% (Hofmann, Asnaani,

Vonk, et al, 2012).

Analysable variance in response and remission following CBT exists
between individuals, and a number of predictors of response have been
posited (Haby, Donnelly, Corry, et al, 2006; Hudson, Keers, Roberts, et al,
2015; Mausbach, Moore, Roesch, et al, 2010; Olatunji, Cisler & Tolin, 2010).
Meta-regression across 33 studies of CBT for depression, generalised anxiety
disorder, and panic disorder assessed the effect of disorder, disorder
severity, treatment type, treatment intensity, and therapist characteristics, as
well as factors related to the conduct of the trial (Haby, Donnelly, Corry, et
al, 2006). Of these potential covariates, only higher disorder severity was a
significant predictor of (poorer) response. However, this study did not
investigate some potential predictors suggested elsewhere. Engagement with
therapy, in the form of homework compliance, was a significant predictor of

outcome across disorders and within the anxiety disorders in a separate
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meta-analysis (Mausbach, Moore, Roesch, et al, 2010). In another study,
psychiatric comorbidity did not show an effect on treatment outcome at
post-treatment or follow-up for anxiety disorders in general, but a negative
correlation between comorbidity and treatment outcome was reported in
mixed anxiety disorder specifically (Olatunji, Cisler & Tolin, 2010). These
findings contrast with results from the cohort studied in Chapter 3, in which
comorbid mood and externalising disorders predicted poorer outcome at
post-treatment and at follow-up (Hudson, Keers, Roberts, et al, 2015). In
addition, individuals with social anxiety disorder had a significantly poorer
response than those with generalised anxiety disorder, as did participants
whose illness was more initially more severe (Hudson, Keers, Roberts, et al,
2015). However, these latter results came from a mega-analysis of children
receiving cognitive behavioural therapy for a range of anxiety disorders,
incorporating studies from eleven sites across the globe. The strength of
evidence for different predictors of CBT response differs between adults and
children, and so differences between this study and others are unsurprising
(Rapee, Schniering & Hudson, 2009). The potential for confounding by
uncontrolled factors (such as the effect of the therapist) also cannot be
excluded (Hudson, Keers, Roberts, et al, 2015). This last point extends to the
literature in general — the many influencing factors and inherent
heterogeneity in studying CBT limits the ability of meta-analysis and mega-

analysis to detect predictors (Taylor, Abramowitz & McKay, 2012).
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Nevertheless, the evidence suggests that a number of factors, particularly
initial disorder severity and engagement with treatment, may predict

differential response to CBT in anxiety disorders.

Given the uncertainty of phenotype-level predictors of treatment
response, and the frequent time-specificity of such influences, examining
genetic variation has value in understanding CBT response, as well as in
broader behavioural genetic theory. Unlike environmental factors, the DNA
code is fixed from birth, and as such does not alter with experience or time,
suggesting genetic variants might predict response more generally and with

greater stability than environmental alternatives.

The genetic study of response to CBT for internalising disorders has
focussed on individual variants (the candidate gene approach), a field
termed "therapygenetics" in one of the first such papers (Eley, Hudson,
Creswell, et al, 2012). To date, variation near 19 genes has been investigated
in studies of CBT or related psychotherapies for internalising disorders
(Lester & Eley, 2013; Lueken, Zierhut, Hahn, et al, 2016). The most promising
association, and the one most publications have explored, is the SHTTLPR.
Even for this variant, findings have been equivocal, with studies identifying
improved response, poorer response, or no effect of the S allele or SS
genotype (Andersson, Ruck, Lavebratt, et al, 2013; Bockting, Mocking, Lok, et

al, 2013; Bryant, Felmingham, Falconer, et al, 2010; Cicchetti, Toth & Handley,
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2015; Eley, Hudson, Creswell, et al, 2012; Felmingham, Dobson-Stone,
Schofield, et al, 2013; Furmark, Carlbring, Hammer, et al, 2010; Hedman,
Andersson, Ljotsson, et al, 2012; Kohen, Cain, Buzaitis, et al, 2011; Lester,
Roberts, Keers, et al, 2016; Lonsdorf, Ruck, Bergstrom, et al, 2010; Sakolsky,
2011; Wang, Harrer, Tuerk, et al, 2009). In part, this may be attributable to a
failure to control for the nearby rs25531 variant (which also reduces the effect
of the long allele, making it functionally similar to the short allele;
Nakamura, Ueno, Sano, et al, 2000). This is compounded by inconsistent use
of a genotypic model (SS vs LS vs LL), a recessive model (SS vs others) or an
allelic model (S vs L). The study of the SHTTLPR, and the therapygenetics
literature in general, is limited by its reliance on the candidate gene method
and the associated tendency to explore a few variants in a limited set of
genes, using a small cohort (Chabris, Hebert, Benjamin, et al, 2012; loannidis,
2005; Munafo, 2006). As such, the veracity of reported associations is unclear.
The relative paucity of studies and the high heterogeneity in the design and
nature thereof makes meta-analysis of findings difficult (which would, in
turn, allow assessment of potential publication bias; Munafo, Clark & Flint,

2004).

The therapygenetics literature reflects the limitations of the candidate
gene method. Given the robust associations identified by GWAS in the

aetiology of behavioural traits, moving the therapygenetics field into
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genomics has two objectives. Firstly, it provides a test of the exposure-only
GWAS paradigm, which is valuable for assessing the effects of genetic
variants on differential response to the environment. It should also have the
practical benefit of improving the reliability of therapygenetic discoveries.
Accordingly, Chapter 3 presents the first GWAS of CBT response study,
using a cohort of 980 children recruited from sites across the world

(Coleman, Lester, Keers, et al, 2016; Hudson, Keers, Roberts, et al, 2015).

1.4.2. Gene expression could be informative in exposed-only genome-wide

studies

Genetic variants are attractive as possible predictors of CBT response,
and genome-wide genotype data have applications beyond individual-
variant association studies, such as polygenic risk scoring and the calculation
of genetic correlations with other traits. Nonetheless, genetic effects are often
difficult to interpret (Ward & Kellis, 2012). One of the most interesting
findings from genomic studies is that the majority of significant variants lie
in non-coding areas of the genome, suggesting some causal variants may
exert their effects through altering the regulation of transcription or
translation, the processes by which the DNA code determines the production
of RNA and proteins (Hindorff, Sethupathy, Junkins, et al, 2009; Maurano,
Humbert, Rynes, et al, 2012). However, it is not straightforward to identify

the causal variant tagged by an association, nor to infer its functional effect.
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As such, discovering a significant variant does not necessarily mean

understanding why it is significant (Westra, Peters, Esko, et al, 2013).

Given the apparently regulatory role of many implicated genetic
variants, it could be valuable to investigate differential RNA levels resulting
from alterations in DNA transcription. Analysing the expression of genes
shifts focus from the effects of a single variant (usually with only a minor
influence on a highly polygenic trait) to those of many variants. Transcripts
with significant differences in expression should be expected to explain more
phenotypic variance than individual variants, and represent a potential
biological marker of the combined effect of genetic and environmental
influences (Emilsson, Thorleifsson, Zhang, et al, 2008; Rockman & Kruglyak,
2006). Reported raw correlations between RNA expression levels and protein
abundance are modest (ranging between 0.3-0.6 in a study of more than 6000
proteins across 12 tissues; Wilhelm, Schlegl, Hahne et al, 2014). This may
represent an effect of the rate of action of the translational machinery,
differing between tissues and between specific gene products (Wilhelm,
Schlegl, Hahne et al, 2014). Although the abundance of RNA transcripts and
proteins differs between tissues, the gene-specific ratio of RNA to protein is
consistent (Wilhelm, Schlegl, Hahne et al, 2014). Protein abundances

predicted from RNA expression weighted by this ratio correlate strongly
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with observed protein levels (r > 0.8; Edfors, Danielsson, Hallstrom, et al,

2016; Wilhelm, Schlegl, Hahne et al, 2014).

However, the analysis of RNA transcripts is limited by spatial and
temporal restrictions to their effects. Changes in transcription are subject to a
"hit-and-run" effect, whereby relevant changes are only detectable at the time
they are occurring and in specific tissues (Stanworth, Roberts, Sharpe, et al,
1995). This latter issue (termed the tissue of interest problem) is a major
limitation in investigating transcriptional and epigenetic biomarkers for
behavioural traits (Davies, Volta, Pidsley, et al, 2012; Heijmans & Mill, 2012;
Roth, Hevezi, Lee, et al, 2006; Sullivan, Fan & Perou, 2006). Brain tissue
would be the ideal substrate in investigations of behaviour, as it is the most
likely site for relevant biological variation. As extracting brain tissue from
living subjects has obvious technical and ethical impediments, proxy tissues
must be used. On the other hand, while tissue specificity may limit the
insight that behavioural studies of gene expression can have into brain
biology, this may not affect the study of response to cognitive behavioural
therapy to a great degree. Robust associations between peripheral gene
expression and response to therapy would have predictive value, even if

they offered limited biological insight.

Variation in gene expression can be studied within the context of CBT

response to provide a stronger indicator of the combined effects of genetic
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and environmental variation. Only one study (from the cohort studied in
Chapter 4) has examined gene expression in the context of CBT response for
anxiety disorders. A genome-wide examination of change in expression
across exposure treatment for panic disorder and specific phobia showed no
association of treatment response with individual gene expression nor with
co-expressed clusters (Roberts, Wong, Keers, et al, Under Review). Other
studies have focussed on treatment response in PTSD and depression. An
association between increased expression of FKBP5 and response to CBT in
PTSD has been reported in two independent candidate studies, albeit in
small samples (Levy-Gigi, Szabo, Kelemen, et al, 2013; Yehuda, Daskalakis,
Desarnaud, et al, 2013). Combined scores from a biomarker panel (previously
associated with depression) were assessed in individuals with depression
before and after CBT (Keri, Szabo & Kelemen, 2014a; Le-Niculescu, Kurian,
Yehyawi, et al, 2009). After CBT, scores in cases were significantly greater,
although still significantly lower than those in controls. Change in score was
associated with a change in depressive severity on the Hamilton Depression
questionnaire (Keri, Szabo & Kelemen, 2014a). The same group also assessed
the effects of pro-inflammatory markers (Tol-like receptor genes and NF-«3)
on CBT for depression (Keri, Szabo & Kelemen, 2014b). A decrease in TLR4
and NF-«f expression (but not TLR2 expression) was observed in treated
individuals compared to controls, along with a dose-response effect, with

greater reduction in pro-inflammatory markers associated with better
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response to CBT. Gene expression analyses in CBT response are in their
infancy and show early promise, but initial findings have come from
candidate studies, and replication in larger, hypothesis-neutral studies is

required.

Studying RNA transcripts and DNA variation individually has
benefits and limitations for predicting differential response to CBT. Variation
in DNA is effectively unchanging between tissues and does not alter with
time, providing a source of predictors that can be validly assessed at any
point before or after treatment. In comparison, the expression of RNA
transcripts is spatially and temporally restricted and as such must be
assessed prior to treatment, with careful consideration of which tissue to
assess. However, statistical associations between a phenotypic outcome and
DNA variation are often difficult to translate into specific causal variants and
functional effects. In comparison, RNA transcript levels can be used to
predict protein levels, which has clearer biological relevance for
understanding the aetiology, and potentially modulation, of treatment

response.

Combining these analyses can increase power and yield a greater
understanding of the role of both sources of variation (Ritchie, Holzinger, Li,
et al, 2015). If significant variants from a GWAS are also associated with gene

expression, this suggests a potential function (and a route for further
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investigation). Conversely, understanding which genetic variants alter the
expression of a significant transcript may offer insights into the differential

control of transcription.

RNA transcripts provide an indicator of the integration of genetic and
environmental influences. As such, gene expression analyses within the
context of CBT response could provide insight into the combined effects of
genes and a controllable positive environment. Integrating genetic variation
into this model in the context of expression quantitative trait locus analyses
could provide further genomic context. In Chapter 4, a cohort of adults
undergoing CBT for anxiety disorders, who provided DNA and RNA
samples from whole blood, were investigated to assess the combined role of
genetic variants and RNA transcripts (Chapter 4; Coleman, Lester, Roberts,

et al, 2016).

1.4.3. Polygenic risk scores as a proxy for the genetic contribution to variance

Genomic studies provide a data-rich output, which can be used to
perform additional analyses beyond the initial association study. A popular
example of this higher-order approach is polygenic risk scoring (PRS), in
which genetic variants within the study of interest (the target) are weighted
by their association with a second phenotype, usually obtained from a
separate association study (the base; Dudbridge, 2013; Euesden, Lewis &

O'Reilly, 2015; International Schizophrenia, Purcell, Wray, et al, 2009; Wray,
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Lee, Mehta, et al, 2014). The PRS strategy has two primary applications: it can
be used within-trait to validate a phenotype, or across traits to compare the
relationship between two phenotypes. It is this second use exemplified

within this thesis.

1.4.4. Dissecting the genetic component of phenotypic correlation using

polygenic risk scores

As discussed above, a major limiting factor in depression genomics to
date has been the phenotypic heterogeneity of the disorder. Appetite
dysregulation and altered weight are features of major depressive disorder,
and the direction of this dysregulation has been proposed to generate a
typical-atypical spectrum (Davidson, Miller, Turnbull, et al, 1982; Sullivan,
Kessler & Kendler, 2014). The precise relationship between depression and
BMI is unclear. Studies suggest a bidirectional, longitudinal pattern whereby
high BMI predicts later, persistent depression and depression predicts later
obesity, although the strength of the relationship depends on the precise
measurement of depression and obesity (Gibson-Smith, Bot, Paans, et al,
2016; Luppino, de Wit, Bouvy, et al, 2010). Reported effect sizes are relatively
small (largest OR = 1.58 for depression predicting obesity), which is
concordant with inconsistencies seen between individual studies (Faith,
Matz & Jorge, 2002; Luppino, de Wit, Bouvy, et al, 2010). Meta-analysis of

these individual studies suggests there is a significant interaction, such that
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individuals with depression typically have higher BMI, although there is
also evidence for a U-shaped relationship (de Wit, Luppino, van Straten, et
al, 2010; de Wit, van Straten, van Herten, et al, 2009; Luppino, de Wit, Bouvy,

et al, 2010).

The phenotypic relationship between BMI and depression is complex,
and the causal direction is unclear. Genetic variation is a potential source of
shared aetiology. Twins studies of the relationship have suggested a small
genetic correlation exists, estimated around 12% (Afari, Noonan, Goldberg,
et al, 2010; Jokela, Berg, Silventoinen, et al, 2016; Schur, Godfrey, Dansie, et al,
2013). A series of studies have examined the potential genetic correlation
between BMI and depression, largely focussing on genetic variants
associated with BMI (Hung, Breen, Czamara, et al, 2015; Hung, Rivera,
Craddock, et al, 2014; Jokela, Elovainio, Keltikangas-Jarvinen, et al, 2012;
Rivera, Cohen-Woods, Kapur, et al, 2012; Samaan, Anand, Zhang, et al, 2013;
Samaan, Lee, Gerstein, et al, 2015). Although approaches have explored a
variety of variants both individually and in concert, they have provided only
tentative evidence that genetic variants associated with BMI are associated
with depression, primarily focussing on variants around the FTO and TAL1
genes (Samaan, Anand, Zhang, et al, 2013; Samaan, Lee, Gerstein, et al, 2015).
Variants in the FTO gene and a polygenic risk score of 32 BMI-associated

variants have both shown increased association with BMI in depression
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cases over controls, suggesting the depression status may interact with
genetic risk to increase BMI (Hung, Breen, Czamara, et al, 2015; Rivera,

Cohen-Woods, Kapur, et al, 2012).

Using polygenic risk scores as a proxy for the genetic component of
each trait allows the assessment of the role of genetics and of environment
(that is, influences beyond the additive effect of genetics) independently and
together. If there were a shared aetiology between the two disorders, one
would expect significant cross-disorder prediction using polygenic risk
analyses, as well as within-trait genetic correlations. The absence of such a
genetic relationship would argue instead for a more prominent role of other
factors. These could be shared environmental effects, for instance an
environmental insult that increased BMI as well as causing depression, or
this could reflect the causal effect of one disorder on the other (such as
higher BMI causing depression). Alternatively, there could still be a genetic
relationship, but one that involved unmodelled factors like rare variants not
captured by the common variants comprising the risk score. Identifying an
interaction (for example between the polygenic risk for BMI and depression
status, affecting BMI) might suggest a shared genetic sensitivity to the

environment underlying the phenotypic correlation.

The role of genetics in this context was recently assessed in two

independent studies. In the first, the association between polygenic risk
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scores and depression was assessed in a cohort of depressed individuals
stratified into typical and atypical conditions (Milaneschi, Lamers, Peyrot, et
al, 2016). While case status in individuals with typical depression was only
associated with polygenic risk scores from psychiatric disorders, polygenic
risk scores from metabolic traits (including BMI) were associated with
atypical depression (Milaneschi, Lamers, Peyrot, et al, 2016). The second
publication, from the Generation Scotland study, explored the relationship
between depression and BMI (in the context of neuroticism and general
health) using polygenic risk scores from the 2010 GIANT BMI and the PGC
major depressive disorder analyses (Clarke, Hall, Fernandez-Pujals, et al,
2015). Polygenic risk scores predicted within trait but did not predict across
trait. A significant interaction was identified between BMI polygenic risk and
depression status predicting BMI, and stratified analyses demonstrated an
increased effect of polygenic risk for BMI predicting BMI within depression

cases.

To add to this growing literature, I sought to perform similar analyses
in the UK Biobank cohort, which provides a large sample independent of the
previously studied cohorts. More powerful polygenic risk scores have also
become available following the publication of these previous studies (Locke,

Kahali, Berndt, et al, 2015). Accordingly, Chapter 6 presents an analysis of the
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association between BMI and depression, including their respective

polygenic risk scores in the model as well as their interaction terms.

1.4.5. Polygenic risk-environment interactions

Using polygenic risk scores as proxies for the genetic contribution to
variance in a trait provides insight into the environmental contributions, but
only inasmuch as the variance not accounted for by the genetic component is
assumed to be environmental. If a well-defined environmental influence is
available in a genomic dataset, however, it is possible to explore direct
polygenic risk-by-environment interactions. Polygenic interaction studies are
becoming increasing popular, and have been applied to test the interaction of
genetic risk and stressful life events on the development of depression
(Mullins, Power, Fisher, et al, 2016; Musliner, Seifuddin, Judy, et al, 2015;
Peyrot, Milaneschi, Abdellaoui, et al, 2014; Vrshek-Schallhorn, Stroud,
Mineka, et al, 2015). An interaction between PRS and childhood trauma has
been reported, but failed to replicate in an independent cohort, potentially
reflecting differences in study design (Mullins, Power, Fisher, et al, 2016;
Peyrot, Milaneschi, Abdellaoui, et al, 2014). In behavioural genetics more
generally, this approach has provided evidence that lifetime trauma
exposure interacts with genetic risk for externalising behaviours such that
highly traumatised individuals at high genetic risk show poorer working

memory than others with low genetic risk (Sadeh, Wolf, Logue, et al, 2015). A
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pair of studies on externalising behaviour and problematic alcohol use in
adolescents suggests that peer deviance and low parental monitoring
exacerbate genetic risk for both phenotypes (Salvatore, Aliev, Bucholz, et al,
2015; Salvatore, Aliev, Edwards, et al, 2014). Further investigations report
that polygenic risk for alcohol dependence is associated with reduced verbal
ability in individuals from socially deprived areas; that early adoption of
heavy smoking in adolescence mediates the effect of genetic risk on smoking
problems in adulthood; and that traumatic events and low neighbourhood
social cohesion are associated with more cigarette smoking in individuals
with high genetic risk (Belsky, Moffitt, Baker, et al, 2013; Clarke, Smith,

Gelernter, et al, 2016; Meyers, Cerda, Galea, et al, 2013).

Although the use of this approach is growing and providing
interesting insights, the limitations and assumptions of measuring and
analysing a candidate environment in gene-environment interaction
previously referenced still apply (Dick, Agrawal, Keller, et al, 2015).
Obtaining a high-quality environmental measure in a cohort of sufficient size
to perform genome-wide analysis requires a considerable investment. BMI is
a useful phenotype in which to explore polygenic risk-environment
interactions, as the relative ease of defining the phenotype allows greater
investment in defining environmental measures. This ease of definition has

also contributed to large GWAS analyses, enabling the generation of
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powerful polygenic risk scores (Felix, Bradfield, Monnereau, et al, 2016;
Locke, Kahali, Berndt, et al, 2015). Furthermore, many potential candidate
environments might influence BMI. Previous studies have examined the
effect on BMI of genetic risk interacting with education (no interaction);
intake of sugary drinks (greater effect of genetic risk with more frequent
intake); diet (greater effect of genetic risk in diets higher in saturated fat and
fried food); and physical activity (smaller effect of genetic risk in more active,
and less sedentary, individuals, although negative findings have also been
reported; Ahmad, Rukh, Varga, et al, 2013; Casas-Agustench, Arnett, Smith,
et al, 2014; Johnson, Ong, Elks, et al, 2014; Li, Zhao, Luan, et al, 2010; Liu,
Walter, Marden, et al, 2015; Qi, Chu, Kang, et al, 2014; Qi, Chu, Kang, et al,

2012; Qi, Li, Chomistek, et al, 2012; Reddon, Gerstein, Engert, et al, 2016).

Exploring such interactions may be easier in children and adolescents,
where environmental influences tend to be more restricted and controlled
(due to the reduced autonomy of childhood). One example of such an
environment is parenting style, which can influence child BMI via multiple
pathways. Direct influences include parental control of child energy intake
(through the regulation of eating behaviours) and energy use (such as by
providing opportunities for exercise; Davison & Birch, 2001; Rhee, 2008).
Parental style can also affect child BMI through more indirect means,

including influencing child energy-related and self-regulatory behaviours
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(Rhee, 2008; Rhee, Lumeng, Appugliese, et al, 2006). There is evidence that
authoritative parenting (characterised by warmth and clear discipline) is
associated with positive child energy behaviours (increased physical activity,
healthier diet and lower BMI; Shloim, Edelson, Martin, et al, 2015). A recent
study in the Twins Early Development Study (TEDS) cohort demonstrated
an association between juvenile emotional difficulties and the interaction
between colder, more punitive parenting style and a genetic risk score
proposed to capture sensitivity to the environment (Keers, Coleman, Lester
et al, 2016). As such, parental style can be considered an environment that
has genetically-sensitive effects on behavioural phenotypes. The cohort and
measure used in this study are also used in Chapter 6. Building on this
sensitivity effect, the evidence suggesting parental style affects psychiatric
phenotypes such as depression and anxiety in childhood, and the proposed
role for parenting style in influencing childhood BMI, Chapter 6 investigates
whether the effects of parental style on childhood BMI are influenced by the

genetic influences.

However, parenting style is only one aspect of the more general
influence of the social environment on juvenile BMI, and so there may be
benefits to using a broader measure, such as parental SES, to capture this
general effect. Previous studies, using a lifetime measure of socioeconomic

status have suggested a greater effect of genetic risk and so higher BMI in
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individuals with lower socioeconomic status (Liu & Guo, 2015). This is also
reflected in epidemiological studies, including those in adolescents and
young adults. Studies tend to report lower SES in late childhood associated
with higher BMI, and the persistence and potentially the strengthening of
this effect into adulthood (Braddon, Rodgers, Wadsworth, et al, 1986; Hardy,
Wadsworth & Kuh, 2000; Monteiro, Moura, Conde, et al, 2004; Parsons,
Power, Logan, et al, 1999; Shrewsbury & Wardle, 2008; Sobal & Stunkard,
1989; Sundquist & Johansson, 1998; Wang, Kim, Gonzalez, et al, 2007).
However, the magnitude and direction of effects varies across
epidemiological studies, most likely due to differences in related factors such
as ethnicity, age and gender, and due to variability in the definition of SES.
There are also apparent cohort effects, with null results more common in
cohorts ascertained less recently, and the opposite direction of effect (that is,
higher BMI associated with higher SES) more commonly seen in developing
compared with developed countries (Blane, Hart, Smith, et al, 1996; Laitinen,
Power & Jarvelin, 2001; Lauderdale & Rathouz, 2000; Monteiro, Moura,
Conde, et al, 2004; Parsons, Power & Manor, 2001; Power & Moynihan, 1987;
Shrewsbury & Wardle, 2008; Sobal & Stunkard, 1989). Nonetheless, in
contemporary juvenile cohorts from developed countries, lower SES appears
to be usually associated with higher BMI, and Chapter 6 seeks (as a
secondary analysis) to investigate whether this relationship differs with the

genetic predisposition to BMIL
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Given that the social environment and genetics may both influence
BMI through behavioural processes, it may be informative to investigate this
genome-environment interaction. Therefore, adding to the growing
polygenic risk-environment interactions literature in BMI, Chapter 6
examines the effect of the interaction of specific (parental style) and general
effects of the social environment (parental SES) with genetic risk to predict

BMI in late childhood and adolescence.

1.5 Summary and Aims

There is convincing evidence that both genetic variation and
environmental factors affect behavioural traits, including psychiatric
disorders and their treatment. It seems very unlikely that such influences act
in isolation, but progress in understanding how such factors interact has
been slow, in part due to concerns over the low power provided by genome-
wide interactional studies. The chapters of this thesis explore alternative
ways to use the data-rich output of genomic studies to investigate such
effects, with the aim of adding to genetic theory and beginning to inform the

pragmatic goal of improved decision-making in mental health.

Chapter 3 describes a genome-wide association study of response to
treatment with cognitive behavioural therapy. This aims to identify any
common variants present in the genome that can be captured using a low-

coverage microarray, and which have a large effect (considered in an
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additive model) on response to a shared environmental exposure. There are
also three secondary aims of the study: to replicate positive associations from
the candidate gene therapygenetic literature (some of which were reported
with large effect sizes); to quantify the common additive genetic influence on
CBT response via GCTA-GREML; and to establish whether polygenic risk
scores generated from schizophrenia (the most powerful psychiatric
polygenic risk scores available), depression (the psychiatric disorder with
genomic data most closely associated with CBT response in patients with
anxiety), and anti-depressant response (the phenotype with genomic data

most similar to CBT response) were associated with response to CBT.

Chapter 4 extends the paradigm used in Chapter 3 to include
individual differences in RNA expression, which result from the integration
of genetic and environmental influences. Specifically, it examines the
association of genetic variants and RNA expression levels (individually and
together) with response to CBT. The principal aims of the study are to
identify whether the level of expression of any RNA transcript is associated
with CBT response; whether data- and literature-defined groups of
transcripts are associated with CBT response; and to identify genetic variants
that interact with CBT response to predict RNA expression. The ability of

polygenic risk scores derived from Chapter 3 to predict response to CBT in
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this cohort is tested as a secondary aim. Similarly, the association of PRS

derived from one treatment group to predict response in the other is tested.

In the first two results chapters, genetic variants are assayed genome-
wide, but primarily modelled as individual influences on response to an
environmental exposure. The latter two results chapters examine polygenic
risk scores as proxies for the overall effect of genetic variation genome-wide
(although this is limited to common effects modelled additively). Chapter 5
uses polygenic risk scores to control for the genetic component of the
phenotypic relationship between BMI and depression. If controlling for this
component attenuates the association between BMI and depression, this
implies that the relationship is principally genetic, and does not involve a
substantial contribution from non-genetic influences ("environmental"
influences, although including non-additive genetic effects and effects from
rare variants). Specifically, this chapter aimed to investigate whether
modelling the genetic influences on BMI and depression as optimised
polygenic risk scores from the largest publically-available GWAS of these
traits attenuated the association between BMI and depression observed in
the absence of modelled genetic effects. Furthermore, this analysis also
aimed to identify interactions between increased genetic risk for BMI and
depression status associated with variance in BMI, and similar interactions

associated with depression status. Secondary aims test whether the common-
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variant heritability of BMI differs between depression cases and controls,

and whether a genetic correlation exists between BMI and depression.

Finally, Chapter 6 seeks to assess directly the interaction between the
genome-wide effect of common variants (modelled as a polygenic risk score)
and a specific environment, parental warmth and punitive discipline, on pre-
adolescent BMI, and on the change in BMI across adolescence. The main aim
of the study is to identify whether the child's genetic predisposition to higher
BMI is differentially associated with the BMI phenotypes of interest
dependent on parental style. A secondary aim was to establish whether these
effects differed according to the sex of the child. In the course of these
analyses, it became clear that investigating socio-economic status as a
broader measure of the social environment is valuable. Accordingly,
secondary analyses are performed using parental socio-economic status at

the birth of the child in the place of parenting, with the same aims.

This thesis seeks to exemplify that genome-wide genotype data can be
used to examine the relationship between genetic and environmental
influences on traits of psychiatric interest, in ways other than performing a
genome-wide gene-environment interactional study. Specifically it examines
genetic predictors of differential response to an environmental exposure
(Chapter 3), the association of RNA expression on response to an

environmental exposure (with and without genetic variation; Chapter 4), the
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importance of the genetic component (compared to the environmental
component) in the relationship between depression and BMI (Chapter 5) and
assesses the interaction between genetic effects combined across the genome

and a specific environment on BMI phenotypes in childhood (Chapter 6).
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Chapter 2: Methodology

2.1 Genome-wide genetics

2.1.1. Linkage disequilibrium underlies genomic studies

The phenomenon of linkage disequilibrium is essential to the design
and understanding of genome-wide studies. During the process of cell
division, chromosome pairs align at the cell equator and are then pulled to
opposite ends of the dividing cell (Remak, 1862; Weismann, Poulton,
Schonland, et al, 1891). This separation can cause part of each chromosome to
break off the main body and reanneal to the sister chromosome, a process
called recombination (Holliday, 1964). Over multiple generations, repeated
recombination events occur, resulting in a chromosome made up of stretches
of DNA that originated on different chromosomes, known as haplotype
blocks, linkage regions or regions of high linkage disequilibrium (Daly,
Rioux, Schaffner, et al, 2001). Breakages are not equally likely along the
length of the chromosome, resulting in recombination hotspots (Myers &
Stahl, 1994; Sun, Treco, Schultes, et al, 1989). Consequently, the size of these
linkage regions varies. Variants in linkage disequilibrium violate Mendel's
law of independent assortment; sections of the genome in the same region
are more likely to be inherited together than expected given their frequencies
in the population (Bateson, Saunders & Punnett, 1906; Geiringer, 1944;

Morgan, 1917). The identities of variants in linkage disequilibrium are highly
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correlated, such that the identity of one variant can be used to predict
another. This enables the genetic mapping of genomes and the dissection of

heritability.

2.1.2. Whole genome sequencing enabled the development of microarrays

The Human Genome Project, and the genome-wide sequence data
that resulted from it, was fundamental to the development of microarray-
based genome-wide genetic studies for two broad reasons (Gabriel,
Schaffner, Nguyen, et al, 2002; Lander, Linton, Birren, et al, 2001; Myers,
Bottolo, Freeman, et al, 2005; Venter, Adams, Myers, et al, 2001). Firstly, it
identified thousands of SNPs and their surrounding sequence, enabling the
design of SNP-detecting probes that could be chemically bonded to a
microarray to assay genetic variation genome-wide (Gunderson, Steemers,
Lee, et al, 2005; Sapolsky, Hsie, Berno, et al, 1999; Steemers, Chang, Lee, et al,
2006). Furthermore, whole-genome sequence data provided an improved
reference for mapping linkage disequilibrium across the genome.
Consequently, the identity of millions of SNPs not present on microarrays
can now be imputed (estimated with a quantifiable degree of confidence)
from the known identities of assayed SNPs with which they are in linkage
disequilibrium. A better understanding of the architecture of variation in the
genome enabled the estimation of an appropriate threshold to control for the

multiple testing inherent in genome-wide studies (Dudbridge & Gusnanto,
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2008; Myers, Bottolo, Freeman, et al, 2005). The conventional genome-wide
significance threshold of p=5x10® was derived from this theoretical work,
and has been established through its use by the large collaborations that
have come to dominate the field (Collins & Sullivan, 2013; Fadista, Manning,

Florez, et al, 2016; Psychiatric, Cichon, Craddock, et al, 2009; Sullivan, 2010).

2.1.3. Microarray-based genome-wide association studies

Whole-genome sequencing directly genotypes many more variants
than sparse, proxy-reliant microarray-based genotyping. However, it is
currently prohibitively expensive for the assessment of the tens of thousands
of individuals required for the study of common complex behavioural traits
(Corvin, Craddock & Sullivan, 2010; Spencer, Su, Donnelly, et al, 2009).
Microarray-based genotyping, followed by imputation to a sequenced
reference panel, can accurately estimate the identities of millions of genetic
variants across the genome comparatively cheaply (Marchini & Howie, 2010;
Spencer, Su, Donnelly, et al, 2009). For this reason, microarray-based GWAS
has driven the rapid development of the field of psychiatric and behavioural
genetics in the last decade (Smoller, 2014). It is central to the work presented
in this thesis, both directly in the generation of new genomic data in
Chapters 3 and 4, and indirectly in the use of existing data in Chapters 5

and 6.
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Assaying many variants also provides large amounts of data that can
be used to control for confounds such as between sample relatedness, quality
of genotyping, and sample contamination. These data also allow studies to
progress beyond individual association tests and integrate external
information from other genomic datasets to examine associations between
the phenotype and higher-order genetic variation. In this way, the genome-
wide approach can assess the role of genetic variation ranging from
individual variants to studying the effect of the entire genome (Visscher,

Brown, McCarthy, et al, 2012; Wray, Goddard & Visscher, 2007).

Generating high-quality data from the output of microarray-based
genotyping requires a careful process of both automated and manual
inspection of variants (recalling), as well as several quality control steps
(Anderson, Pettersson, Clarke, et al, 2010; Teo, 2008; Weale, 2010). These
processes are described in the Appendix to this chapter (Appendix I),
published as Coleman, Euesden, Patel, et al (2016). Specifically, this paper
describes and justifies a process of excluding variants and individuals
according to thresholds related to minor allele frequency (or count); missing
variant calls; deviations from the expected pattern of Hardy-Weinberg
equilibrium; sample relatedness; incorrect assignment of gender;

heterozygosity of variants; and population stratification. It then describes the
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process of imputing thousands (or millions) of variants, and describes

secondary quality control and basic association analyses.

2.1.4. Measuring inter-individual relatedness using genomic data

The studies within this thesis use more advanced techniques than
those described in Appendix I, which is a guide to the essential steps to
perform a GWAS, not an exhaustive review of the field (which has also
advanced considerably since the submission of that protocol). Appendix I
describes the strategy for controlling for population stratification using
principal components from genotyped variants (having removed variants in
linkage disequilibrium; Menozzi, Piazza & Cavalli-Sforza, 1978; Price,
Patterson, Plenge, et al, 2006). Although principal component analysis is an
effective means by which to control for population stratification, a finer-scale
method has since been developed based on genomic-relatedness matrices
(GRMs; Kang, Sul, Service, et al, 2010; Yang, Benyamin, McEvoy, et al, 2010;
Yang, Lee, Goddard, et al, 2011; Yang, Zaitlen, Goddard, et al, 2014). In this
approach, individuals are scored at each SNP according to how different the
number of reference alleles they carry is from the average in the cohort,
weighted by the heterozygosity of the variant (Yang, Lee, Goddard, et al,
2011). These scores are summed across all variants to give an overall score
per individual, which can then be compared to assess how similar any two

individuals are within the cohort. In this way, GRMs provide an alternative
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and more sensitive method of identifying sample relatedness and population
stratification than does principal component analysis (Kang, Sul, Service, et
al, 2010; Yang, Benyamin, McEvoy, et al, 2010; Yang, Lee, Goddard, et al,
2011). However, principal component analysis captures additional variance,
resulting from confounding effects independent of sample relatedness such
as genotyping batch effects. As such, some studies now recommend
including fixed effects from principal components as well as the random
effect of the GRM in mixed association models, or conducting more
sophisticated integration of the two approaches (Yang, Zaitlen, Goddard, et

al, 2014; Zhang & Pan, 2015).

The relatedness coefficient from the GRM can be entered into mixed
linear models as a random effect to perform association analyses (MLMA;
Yang, Zaitlen, Goddard, et al, 2014). In MLMA, the association of each
variant with the phenotype of interest is examined in the context of the gross
genetic similarity between individuals (Kang, Sul, Service, et al, 2010; Yang,
Zaitlen, Goddard, et al, 2014). As a further refinement to this approach,
regions of the genome close to the variant of interest can be excluded from
the calculation of the GRM, increasing power (Listgarten, Lippert, Kadie, et
al, 2012; Yang, Zaitlen, Goddard, et al, 2014). The specific example of this
general approach used in this thesis is the leave-one-chromosome-out

approach, in which GRMs are calculated from the whole genome excluding
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the chromosome bearing the variant of interest (Yang, Lee, Goddard, et al,

2011).

Despite the recent success of genomic studies, variants identified at
genome-wide significance generally explain only a small proportion of
heritability (Manolio, Collins, Cox, et al, 2009). However, this “missing
heritability” problem can be explored by using GRMs. By providing a
measure of the small degrees of relatedness between population samples
(compared to the higher relatedness of family members), GRMs allow
estimation of the genetic component of variance via a process referred to as
genomic relatedness matrix-based restricted estimation of maximum
likelihood or GREML (Yang, Lee, Goddard, et al, 2011). The effects of all
SNPs are entered into a mixed linear model as random effects weighted by
the GRM, and the components of variance estimated by an iterative
algorithm designed to maximise the likelihood of the estimate (Yang, Lee,
Goddard, et al, 2011). The ability to estimate variance in this manner frees
heritability estimation from requiring related samples (Visscher, Yang &
Goddard, 2010). However, the resulting estimates are limited to the
proportion of variance able to be captured by variants on microarrays
(Visscher, Yang & Goddard, 2010). Additionally, the original method relies
on several assumptions concerning the allele frequency distribution of causal

variants and the effect of linkage disequilibrium. Violations of these

80



assumptions will bias the results of GREML studies. Improvements have
been made to address these biases, by using multiple GRMs stratified by
allele frequency and average linkage disequilibrium (Yang, Bakshi, Zhu, et al,

2015).

2.1.5. Secondary analyses using summary statistics (LD score regression)

Although GRM-based methods have been extremely influential and
valuable to the field, they require individual-level genotype data to produce.
While this is feasible for local datasets (such as those generated in Chapters 3
and 4), this becomes more burdensome for combining multiple studies,
where data sharing may be limited by logistical or ethical concerns, or by the
computational burden of analysing large amounts of genotype data
(Finucane, Bulik-Sullivan, Gusev, et al, 2015; Loh, Bhatia, Gusev, et al, 2015).
These difficulties motivated the development of methods that use summary

statistics from association studies.

One particularly prominent method that has emerged in the last few
years is LD score regression (Bulik-Sullivan, Finucane, Anttila, et al, 2015;
Bulik-Sullivan, Loh, Finucane, et al, 2015; Finucane, Bulik-Sullivan, Gusev, et
al, 2015; Loh, Bhatia, Gusev, et al, 2015; Loh, Tucker, Bulik-Sullivan, et al,
2015; Yang, Bakshi, Zhu, et al, 2015). Variants in linkage disequilibrium with
causal variants show increased effect sizes in association studies (Pritchard &

Przeworski, 2001; Sham, Cherny, Purcell, et al, 2000; Yang, Weedon, Purcell,
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et al, 2011). In regions where many variants are in high linkage
disequilibrium, the chances of one of those variants being causal (and so
increasing the effect size of all other variants) is greater than in areas of
sparse linkage disequilibrium. There is, therefore, a positive correlation
between the average linkage disequilibrium of a variant (its LD score) and its
effect size. The p-values obtained from a GWAS are expected to follow a
uniform null distribution, and deviation from this expectation is known as
genomic inflation. Inflation can result from the combined effect of true
signals and from confounding processes such as population stratification or
batch effects. These confounding effects are uncorrelated with linkage
disequilibrium, and so, by regressing the effect sizes of variants on their LD
score, it is possible to differentiate the polygenic effect of true signal (as
captured by the LD score) from inflation due to confounds. This separation is
the principle purpose of LD score regression, but it has a variety of other
applications, including estimating heritability from genome-wide data (or
from specific regions of the genome) and assessing genetic correlations
between traits (Bulik-Sullivan, Finucane, Anttila, et al, 2015; Bulik-Sullivan,

Loh, Finucane, et al, 2015; Loh, Bhatia, Gusev, et al, 2015).

LD score regression is a valuable approach and represents one
method in an expanding arsenal of summary statistic-based methods.

However, although such methods require less complex data to use than
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genotype-reliant methods, they show reduced power (Bulik-Sullivan, Loh,
Finucane, et al, 2015). As such, the most appropriate approach is determined
both by data availability and by the intended analysis. In cases where
genotypic data is available, using both methods (for example, to estimate

heritability) can be valuable as a means of technical validation.

2.1.6. Polygenic risk scoring

The work in this thesis (particularly the latter two chapters) makes
regular use of one particular secondary analysis from GWAS data. Polygenic
risk scoring (PRS) combines both the genotype-level and summary statistic-
based approaches discussed above (although versions of the technique using
summary statistics only have been developed; Johnson, 2013; Palla &

Dudbridge, 2015).

Even with the large sample sizes available to international consortia,
genomic studies of behavioural phenotypes remain underpowered to detect
all associated variants (International Schizophrenia, Purcell, Wray, et al, 2009;
Palla & Dudbridge, 2015; Wray, Lee, Mehta, et al, 2014). Each variant within
a study theoretically falls into one of four groups: true positives (variants
capturing real effects that are called as significant), false positives (variants of
no effect called as significant by chance), true negatives (variants of no effect
that are not significantly associated with the phenotype), and false negatives

(variants of real effect that miss significance within the study). The
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conventional threshold of genome-wide significance (p=5x10-¥) aims to

reduce the number of false positives, at the expense of increasing false

negatives. As such, there may be valuable information beneath the

significance threshold (false negatives). Incrementally increasing this

threshold may gradually capture more signal, but at the expense of

increasing statistical noise (true negatives becoming false positives; Figure 3).
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Figure 3: Imagined distribution of true positives (red) in GWAS results,

showing the potential signal accessible beneath the
conventional significance threshold (red line).
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To create a polygenic risk score, variants from an existing GWAS (the
base) are grouped by the p-value, and each effect allele is weighted by its
effect size (Wray, Lee, Mehta, et al, 2014). Within the dataset of interest (the
target), the weighted alleles are summed to give a total genetic risk score per
individual. This score is then regressed on the target phenotype to assess the
relationship between genetic risk for the base phenotype (determined by the
p-values and effect sizes used in generating the score) and the target
phenotype. Typically, this process is performed multiple times, with
increasingly relaxed thresholds for including variants in the score (Wray,
Lee, Mehta, et al, 2014). Within this thesis, polygenic risk scores were
generated on genotyped data (or hard-called imputed data), using mean
imputation for missing genotypes, and calculating the score as the mean
average of each per-allele score (Chang, Chow, Tellier et al, 2015; Purcell,

Neale, Todd-Brown et al, 2007).

As discussed in the introduction, PRS has two uses, within-trait and
cross-trait. As an example, if the target were a case-control study of
schizophrenia, results from the most recent PGC schizophrenia mega-
analysis could be used as the base. The genetic risk would be expected to
predict schizophrenia case status in the target dataset; were this not the case,
it might then raise questions about the genetics (or diagnosis) of

schizophrenia within the target cohort. The same logic applies when
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investigating across traits, but in this instance, the results may be more
informative about pleiotropy and shared genetic aetiology between the base

and target phenotypes.

Examining the pattern of association between different risk scores and
the phenotype can be informative about the target sample and about the
base. Assuming the association study used as the base were well-powered,
different traits would show different patterns. For a truly Mendelian trait,
where a single variant captures all of the heritability (pi0 — 1 in Figure 4),
risk scores constructed at the lowest significance thresholds would explain
all of the genetic variance, and this would gradually decline as the threshold
was increased and the signal was lost in the accumulating noise. At the
opposite extreme, a highly polygenic trait underlain by many variants of
small effect (pi0 — 0 in Figure 4) would show a different risk profile, one in
which the proportion of variance explained gradually increased with more
variants until an unknown tipping point was reached. At this point, the
noise added by raising the threshold would negate the increase in signal
(Figure 4; Dudbridge, 2013). As the power of the base study increases, the
likelihood that any false negative becomes a true positive increases, and as
such, the PRS profile of the polygenic trait is expected to become more like
that of the Mendelian trait (Dudbridge, 2013; International Schizophrenia,

Purcell, Wray, et al, 2009; Wray, Lee, Mehta, et al, 2014).
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Figure 4: Expected p-values (y-axis) of multiple risk scores including variants
with p-values between 0-p1 (x-axis), assuming different proportions of
variants with no effect on the phenotype (pi0) and moderate (but not full)
power to detect true positives. Reproduced from (Dudbridge, 2013).

The pattern of multiple risk scores can, therefore, be informative. In
other instances, it is useful to define the optimal risk score (that is, the one
that describes the most variance in the target). If a limited set of risk scores
are assessed, it is likely that the optimal score will be missed, or that a
misleading pattern is described. For this reason, high-resolution scoring
approaches were developed, which extend the basic PRS method to examine
thousands of scores, and apply a suitable correction for multiple testing

(Euesden, Lewis & O'Reilly, 2015). In Chapters 3 and 4, risk scores are used
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as proxies of the genetic component of variance, and as such it is valuable to

identify the optimal risk score using high-resolution approaches.

2.2 Interaction modelling with linear and logistic regression

The second half of this thesis relies on modelling interactions between
polygenic risk scores (as proxies for the effect of the genome) and measures
of the environment (both inferred components and measured environments).
Although the linear and logistic regression methods that underlie this
approach are robust, commonplace statistical approaches, there are some

considerations that must be made in performing such studies.

A statistical interaction is best defined (in this case) as a deviation
from an additive function of genetic and environmental effects, on a given
scale (Plomin, DeFries & Loehlin, 1977; Thomas, 2004). This does not
translate directly into a specific mathematical operation. For example, many
studies model interactions as multiplicative effects, where the effects are
modelled on the logarithmic scale, and so the combined risk of both
influences is expected to be the product of the risk from each influence alone.
This is an analytical choice, rather than an inherent part of studying gene-
environment interplay (Kendler & Gardner, 2010; Yang & Khoury, 1997).
Particularly in the field of public health, modelling gene-environment
interactions as additive (where significant interactions deviate from the sum

of the risks from each influence) can be informative (Li & Chambless, 2007).
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The appropriate way to model a given interaction is not always
obvious. One solution would be to model all interactions as multiplicative
effects (Thomas, 2010). This would be akin to standard practices in main-
effects GWAS, where the multiplicative model of SNP effects has come to
dominate. It would also have the benefit of reducing the multiple testing
incurred by testing multiple models of interaction (Lewis & Knight, 2012;
Zammit, Lewis, Dalman, et al, 2010). However, an inappropriate model may
lead to false positive findings, or prevent the discovery of real effects
(Rothman, Greenland & Walker, 1980). Furthermore, rejecting the null
hypothesis in a study of gene-environment interaction only means that the
interaction deviates from the modelled expectation — this may be entirely
uninformative about the mechanism of any interaction that exists (Kendler &

Gardner, 2010; Zammit, Lewis, Dalman, et al, 2010).

Modelling gene-environment interactions is scale-dependent, and so
relies on the construction of the genetic and environmental variables. For
example, environmental variables can range in the length, type, and precise
measure of the exposure (Dick, Agrawal, Keller, et al, 2015). Especially in
studies of human behaviour, the environmental variable may not have an
obvious scale; while weight has a clear interval scale (kg), the severity of
depression is a complex phenomenon usually described with an arbitrary

ordinal scale (Dick, Agrawal, Keller, et al, 2015; Falconer & Mackay, 1996;
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Lynch & Walsh, 1998). The nature of the scale is extremely important — for
example, a multiplicative interaction between gene and environment
becomes additive if the environmental variable is log-transformed (which
may be an arbitrary decision), potentially changing the interpretation
entirely (Dick, Agrawal, Keller, et al, 2015). Such variability in the
environmental exposure produces a source of heterogeneity that will at best
reduce the power of large-scale meta-analysis, and may result in true
interactive effects between specific environments and genetic variants being
lost (Dick, Agrawal, Keller, et al, 2015). Finally, most (if not all) of the
statistical concerns surrounding candidate gene-environment interactions

also apply to genome-wide studies (Dick, Agrawal, Keller, et al, 2015).

Gene-environment interaction studies have traditionally included
covariates within their models but frequently have included these as main
effects only (Keller, 2014; Yzerbyt, Muller & Judd, 2004). To control for the
effects of these covariates on the interaction term, it is necessary to include
gene x covariate and environment x covariate effects as well, with the
resulting increase in terms in the model and degradation of evidence for the
interaction term (Keller, 2014; Yzerbyt, Muller & Judd, 2004). Although this
correction was proposed to address off-target gene-environment correlations
in single-variant gene-by-environment interaction studies, the logic extends

to genome-by-environment interaction studies as well.
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Gene-by-environment interaction models assume that the genetic and
environmental components are independent (Dudbridge & Fletcher, 2014). If
this assumption is false, the results of the interaction may be biassed such
that a spurious interaction could be generated or a true interaction obscured
(Dudbridge & Fletcher, 2014; Jaffee & Price, 2007; Purcell, 2002).
Accordingly, it is necessary to test for gene-environment correlations when
exploring gene-environment interactions, and to interpret the results

appropriately (Jaffee & Price, 2007).

2.3 Gene expression analyses

Much as is the case for genomic studies, whole-genome expression
studies have benefited from increased knowledge from the Human Genome
Project and from technological advancement, particularly the development
of DNA microarray technology (Kuhn, Baker, Chudin, et al, 2004; Schena,
Shalon, Davis, et al, 1995). Genome-wide investigations require certain
considerations regardless of the exact biology studied. Just as GWAS
requires large sample sizes and consistency in the way that DNA is obtained,
so does genome-wide gene expression analysis. Although the sample size
requirement may be smaller (because there are fewer RNA transcripts
compared to genetic variants), the requirement for consistency is arguably
greater. There are two reasons for this. The tissue-specificity issue previously

discussed constrains analyses to a single tissue or else requires adequate
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control for cross-tissue analysis (Heijmans & Mill, 2012). Single-stranded
RNA is also a less stable molecule than double-stranded DNA, and as such
requires more immediate analysis following extraction, with a resultant
increase in the potential for technical artefacts (batch effects; Leek, Scharpf,

Bravo, et al, 2010; Scherer, 2009; Tsui, Ng & Lo, 2002).

Genome-wide expression analysis involves assessing associations
between the phenotype of interest and synthesised DNA complementary to
RNA transcripts. Typically, gene expression studies have focussed on a
differential expression approach, assuming a dichotomous phenotype or
different cell types for comparison (Ritchie, Phipson, Wu, et al, 2015).
However, the analysis of continuous phenotypes is straightforward, and at

the simplest level can be performed with correlation or regression analyses.

In addition to analysing individual transcripts, network-based
examinations of the combined effects of multiple genes can be performed
(Butte & Kohane, 2000; Eisen, Spellman, Brown, et al, 1998; Zhang &
Horvath, 2005). The gene sets studied can be drawn from the literature or
through observing how the empirical data clusters (Butte & Kohane, 2000;
Eisen, Spellman, Brown, et al, 1998; Subramanian, Tamayo, Mootha, et al,
2005; Zhang & Horvath, 2005). Multiple sources of information can be used
to construct and define sets of related genes, including genomic features

(such as DNase hypersensitivity sites), co-expression of RNA transcripts, or

92



interactions of the resulting proteins. These approaches have the benefit of
highlighting patterns of enrichment that are obscured by focussing on single
transcripts, and which may be biologically relevant. Collapsing the results
from many individual data points into fewer sets also reduces the number of

tests it is necessary to perform on the data.

The analysis presented in Chapter 4 uses two methods of network
analysis to examine data-driven and literature-driven groupings
respectively. Weighted Gene Network Co-Expression Analysis (WGCNA) is
a suite of analysis methods built around a data-driven clustering algorithm
that groups genes with similar expression into modules (although this
method can cluster any data associated with a continuous metric; Langfelder
& Horvath, 2008; Zhang & Horvath, 2005). This approach has become
popular as a means of assessing inter-gene correlations because it relies
heavily on networks, which are a familiar concept in biology and the
mathematics of which can accurately describe observed biological patterns
(Barabasi & Albert, 1999; Bergmann, Ihmels & Barkai, 2004; Jeong, Tombor,
Albert, et al, 2000; Langfelder & Horvath, 2008; Tanaka, 2005; Zhang &

Horvath, 2005).

WGCNA is built around a weighted network in which expressed
transcripts are the nodes. Transcripts are connected to each other by edges,

with each edge weighted by a continuous value (the adjacency of the two
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nodes). In the simplest instance, this adjacency is determined by the
correlation between expression levels of the two transcripts, raised to a
power that optimises scale-free topology while still retaining a high number
of connections between nodes (Langfelder & Horvath, 2008; Zhang &
Horvath, 2005). Once a network is constructed, co-expression modules can
be defined by linking strongly-connected genes together in a hierarchical
manner (Langfelder, Zhang & Horvath, 2008). Associations can then be
determined between the modules and the phenotype, with clear reductions

in multiple testing compared to transcript-level analyses.

Modules provide a means of dimensional reduction in analysing
expression data, and can also be biologically meaningful. Gene annotations
from the literature (described in repositories such as Gene Ontology) can be
used to identify enrichment for biological pathways in modules, as is
implemented in WGCNA (Ashburner, Ball, Blake, et al, 2000; Langfelder &
Horvath, 2008). Such analysis is not limited to modules, and many programs
exist to conduct literature-driven clustering or pathway analysis at the level
of individual transcripts. The method used in Chapter 4 is GOrilla (Eden,
Navon, Steinfeld, et al, 2009). Unlike many methods for literature-based
annotation, GOrilla can identify GO term enrichment in ranked lists of genes
without requiring separate target and background sets (Eden, Navon,

Steinfeld, et al, 2009). This is achieved by an algorithm that takes all listed
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genes as the background set, defines all possible target sets with a stepwise
inclusion of genes from the top of the list, and then identifies the target set
that gives the strongest enrichment (Eden, Lipson, Yogev, et al, 2007). The p-
value for this enrichment is then corrected for the multiple thresholding the
algorithm involves (Eden, Lipson, Yogev, et al, 2007; Eden, Navon, Steinfeld,
et al, 2009). Accordingly, GOrilla identifies enrichment of GO terms at the top
of a ranked list, which is valuable for identifying potential biological signals
of interest in the absence of a clearly defined target set. However, because
GOrilla uses rankings rather than any weighting (for example, by the effect
size of the association to the phenotype), the results of the enrichment
analysis require careful interpretation, taking into consideration how the
ranking was performed. In addition, the ranking of genes could be
performed agnostic to the direction of effect (such as ranking by ascending
p-value) or with regard to the direction of effect (such as by ranking on
Pearson's r; Hong, Zhang, Li et al, 2013). Different rankings may yield
different results. The published analyses in Chapter 4 used p-value based
ranking; additional analyses ranking on Pearson's r are included in

Appendix III.

Further insight into the importance of individual or group differences
in expression in the context of a given phenotype can be gained by

integrating genomic data into the analysis (which in turn provides new
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information about the genomic data; Ritchie, Holzinger, Li, et al, 2015; Zhu,
Zhang, Hu, et al, 2016). This can be achieved by context-dependent
expression trait locus (eQTL) analysis. eQTL studies are effectively a special
case of multivariate GWAS, using the expression of all RNA transcripts as
the phenotypes (Jansen & Nap, 2001; Schadt, Monks, Drake, et al, 2003).
Investigations can be restricted to associations between transcripts and
variants local to the relevant coding region (cis-eQTLs), or can be truly
genome-wide (incorporating trans-eQTLs). Performing such studies requires
a considerable number of tests, especially in the case of genome-wide eQTL
studies; however, efficient software for performing such interactions has
been developed, such as the MatrixEQTL R package used in this thesis

(Shabalin, 2012).

Genotype-environment interactions are integral to biology, and eQTL
associations tend to be of large effect and detectable in cohorts comprising
only tens of individuals (Monks, Leonardson, Zhu, et al, 2004; Morley,
Molony, Weber, et al, 2004). However, it is the relationship between eQTLs
and phenotypes that is of most interest. Such relationships can be used to
annotate significant findings from association analyses; identifying a

significant SNP from GWAS as an eQTL might provide functional insight.

It would be useful to perform a full interaction analysis, assessing

whether genetic variation and differential gene expression together influence
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a separate phenotype. However, this increases the number of tests
performed. Every factor in a genome-wide interaction analysis incurs a
million additional tests. Assuming twenty thousand transcripts are tested,
billions of tests must be performed. For traits such as BMI, where
measurement is straightforward and there are minimal ascertainment
differences in participants, this level of multiple testing might be acceptable.
In traits where sample sizes are limited and ascertainment is more complex
(including most behavioural phenotypes), focussing on interactions between
local SNPs and transcripts (or examining only cis-eQTLs and their associated
transcript) can reduce the number of tests required (Consortium, 2015b).
However, this comes at the expense of missing potential long-distance
interactions. An alternative approach, limiting analyses only to SNPs already
robustly associated with the disorder, has been successful in physical
disorders but is limited by the current small numbers of associated SNPs in

behavioural traits (Westra, Peters, Esko, et al, 2013).

Alternatively, genotype-by-phenotype interactions could be used to
predict gene expression. These effects identify eQTLs that are context-
dependent, and the effects tend to be considerably smaller and harder to
detect than those of eQTLs in general. Selecting a subset of interactions to
examine increases the power to detect significant interactions (although at

the expense of missing true interactions that are not selected). Such selection
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could be determined by location (favouring local cis- interactions over
distant trans- interactions), or by the effects of individual components, such
as including only those eQTLs where either the genotype or the transcript is
associated with a main effect or including only known eQTLs (Hernandez,

Nalls, Moore, et al, 2012).
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with anxiety disorders

Background

Anxiety disorders are common, and cognitive-behavioural
therapy (CBT) is a first-line treatment. Candidate gene studies
have suggested a genetic basis to treatment response, but
findings have been inconsistent.

Aims

To perform the first genome-wide association study (GWAS)
of psychological treatment response in children with anxiety
disorders (n=980).

Method

Presence and severity of anxiety was assessed using semi-
structured interview at baseline, on completion of treatment
(post-treatment), and 3 to 12 months after treatment
completion (follow-up). DNA was genotyped using the
lllumina Human Core Exome-12v1.0 array. Linear mixed
models were used to test associations between genetic
variants and response (change in symptom severity)
immediately post-treatment and at 6-month follow-up.

Results
No variants passed a genome-wide significance threshold
(P=5x107) in either analysis. Four variants met criteria for
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suggestive significance (P<5x 107 in association with
response post-treatment, and three variants in the 6-month
follow-up analysis.

conclusions

This is the first genome-wide therapygenetic study. It
suggests no common variants of very high effect underlie
response to CBT. Future investigations should maximise
power to detect single-variant and polygenic effects by
using larger, more homogeneous cohorts.
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Anxiety disorders are the most common psychiatric disorders,
with a lifetime prevalence of ~30%." They are a major cause of
global disability, and impose considerable economic burdens on
society.”> They commonly have their onset in childhood or
adolescence and have been linked to the occurrence of later
disorders, including depression and conduct disorder."”* Adults
with anxiety disorders show rates of childhood anxiety diagnoses
significantly above baseline.” Given this potential gateway effect,
and the distress caused by these disorders, there is a need to
optimise and understand treatment effectiveness in childhood.
Cognitive-behavioural therapy (CBT) is a first-line treatment
for anxiety disorders in the UK, with 59% remission reported
immediately post-treatment.®’ Despite this high reported efficacy,
variability exists in patient response that may be influenced in part
by genetic variants. Multiple studies examining the genetics of
differential response to psychological therapies (therapygenetics®)
have been undertaken, and variants in seven genes (SHTT/
SLC6A4, TPH2, MAOA, COMT, NGF, BDNF and GRIK4) have
been implicated at least once in studies of CBT for anxiety
disorders.” However, findings have proven difficult to replicate,"
and the direction of effects found inconsistent. These problems
may result from the low power of small cohort sizes, resulting

*These authors contributed equally to the work

in a high rate of false positives, and a narrow focus on a few genes
that may have limited relevance to the phenotype.

Genome-wide association studies (GWAS) provide a
hypothesis-neutral alternative, agnostic to prior assumptions of
relevance and with the potential to discover novel findings at a
single variant level. By analysing thousands of variants across
the genome, GWAS yield more information than the candidate
gene approach, allowing for the acknowledgement and control
of confounds such as ancestry and the quality of genotyping.
Genome-wide information can also be used to investigate
associations between phenotypic change and different levels of
the genetic architecture, including the effect of all variants in a
given gene, and the effect of all genotyped variants across the
genome. However, the explicit requirement for multiple testing
correction in GWAS imposes a need for large sample sizes.

Although GWAS have not been used to study response to CBT,
they have shown early promise in studying anxiety disorders.
Genetic influences on the development of anxiety disorders may
indicate processes underlying treatment response, and provide
interesting genetic candidates.'’ A detailed review of the genetics
of anxiety disorders is available elsewhere.'” In brief, one variant,
1rs7309727 (TMEM132D), was associated with panic disorder in a
cohort of European ancestry (P=1.1x10"% odds ratio
(OR)=1.45 (95% CI 1.20-1.72)."* A variant in the TMEMI16B
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gene was reported at genome-wide significance in a Japanese
cohort with panic disorder, but was not significant in replication
analyses.14 Two GWAS of post-traumatic stress disorder (PTSD)
have identified variants at genome-wide significance in the TLLI
gene (rs6812849, P=3.13x 10~°, OR not 1reported)15 and
PRTFEDCI (rs6482463, P=2.04 x 107°, OR=1.47 (95% CI 1.35—
1.59)).'° However, these results require replication in larger
studies; for example, variants in the RORA gene previously
implicated in a GWAS of PTSD failed to attain significance in a
larger replication effort.'” No significant findings from the anxiety
literature to date had previously been considered in candidate
gene studies.'

To our knowledge, this is the first GWAS to examine response
to psychological therapy in any disorder, and the first to examine
treatment response of any kind in anxiety disorders. Participants
were drawn from the Genes for Treatment (GxT) study, an
international, multisite investigation of clinical, demographic
and genetic predictors of response to CBT for anxiety in
childhood and adolescence.'”'® Two analyses of association
between single nucleotide polymorphisms (SNPs) and response
to CBT were conducted, investigating change in symptom
severity between baseline and immediately post-treatment (post-
treatment), and between baseline and 6 months after treatment
cessation (follow-up).

Method

Study design and sample

A detailed description of the participants and the treatment
programmes from which they were drawn is provided elsewhere
(online supplemental material).'® In brief, participants provided
DNA for the GxT study between 2005 and 2013, at 11 sites across
the USA, Australia and Western Europe. Children and adolescents
(5-17 years old, 94% aged 5-13) were included if they met
DSM-1V criteria'® for a primary anxiety disorder diagnosis, with
further psychiatric diagnoses made as appropriate. Exclusion
criteria were significant physical or intellectual impairment, and
the presence of psychotic symptoms. All participants completed
a full course of individual-based CBT (with or without parental
involvement), group-based CBT or guided self-help either as part
of a trial or as treatment as usual within a clinical research depart-
ment. All treatments were manualised and treatment protocols
across all sites were comparable for core elements of CBT including
teaching of coping skills, cognitive restructuring, and exposure.

Assessments were made using the Anxiety Disorders Interview
Schedule for DSM-1V, Parent and Child Versions (ADIS-IV-C/P),?
except at Bochum (Germany) and Basel (Switzerland) where the
German equivalent, Kinder-DIPS,?! was used. All participants
were assessed prior to and immediately after treatment, with
further assessments made at 3-, 6- or 12-month follow-up where
possible. Output from the ADIS (or equivalent) was converted
into Clinical Severity Ratings (CSR) on a scale of 0-8. A diagnosis
was made when the child met the diagnostic criteria and received a
CSR of 4 or more, usually based on a composite of parent and
child report. Diagnoses were made from the ADIS for multiple
anxiety disorders, and primary status allocated to the most severe,
defined as the highest CSR, with ties resolved by clinical
judgement (online Table DS1(b) and (c)).

To minimise differential assessment across sites, raters at
Reading (UK), Oxford (UK) and Aarhus (Denmark) all received
training in evaluation from the Sydney (Australia) site, and
clinicians at Aarhus received additional training in the ADIS from
W.K.S., principal investigator of the Florida (USA) site. As such,
standardised assessments were made for at least 85% of the
analysed sample (for further details see the online supplement).

Definition of the treatment response phenotype

As in previous analyses of the GxT sample, outcome was assessed
across two periods: baseline to post-treatment and baseline to
follow-up. Although dichotomised treatment outcomes are often
used in clinical decision making in treatment response, a
continuous measure of change in severity provides substantially
more power for analyses.”?

Response post-treatment was therefore defined as percentage
change in CSR score between baseline and immediately following
treatment. Percentage change, rather than absolute change, was
used as it has been shown to better reflect clinical ratings of
improvement by its successful use in pharmacogenetics GWAS.>
For follow-up analyses, a range of time points were available;
assessments taken at the 6-month time point were used, as these
were the most complete (n=483). Missing data at this time
point was imputed using the best linear unbiased estimates from
linear mixture models fitted to the GxT data as part of analyses
predicting response from clinical variables alone.'® The mixture
models included the linear and quadratic effects of time as well
as gender, age, primary diagnosis, treatment type and the random
effects of individual and trial (for a full explanation, see Hudson et
al'®). This allowed us to compute response at follow-up as the
percentage improvement in CSR score from baseline to 6 months
after the end of treatment. Analyses were performed on residual
scores generated from a linear regression of the percentage change
measure adjusted for baseline severity, age, gender, treatment type,
diagnosis and trial.

Both sets of residual scores were created as output variables
from our previous study, which found a number of significant
non-genetic influences on treatment outcome (online supplement).'*

DNA extraction and genotyping

DNA was collected and extracted using standard protocols, from
buccal swabs>* and saliva kits (OG-500 / PrepitL2P, DNAgenotek,
Kanata, Canada). Sample preparation (including concentration
and quantification) prior to genotyping is described in the
online supplement. Genotyping was performed on Illumina
HumanCoreExome-12v1.0 microarrays (Illumina, San Diego,
California, USA), using a standard protocol.ZS Samples were
genotyped in two batches, and randomized by site on each
microarray.

Quality control

SNPs were mapped to build version 37/hgl9 of the human
genome. Initial genotype calls were made with GenCall software
(GenomeStudio, Ilumina, San Diego, California, USA),
reprocessed to remove poorly performing samples, re-clustered,
and manually recalled where appropriate. Further recalling,
targeted at improving the identification of rare variants (such as
the exonic content of the microarray) was performed using
ZCall.*® Following recalling, the data were transferred to a
multinode computing cluster, and quality control was performed
following previously published protocols (online supplement).

Quality controlled data were imputed to the December 2013
release of the 1000 Genomes Project reference (for autosomes;
March 2012 release for the X chromosome®), using the
posterior-sampling method in IMPUTE2 with concurrent
phasing.”® SNPs imputed with an info metric >0.8 and a minor
allele frequency (MAF) >1% were considered best-guess
genotypes, and converted back to PLINK binary format using
GTOOL (Freeman and Marchini, available at www.well.ox.ac.uk/
~cfreeman/software/gwas/gtool.html). SNPs with a genotype
probability of <0.9 were set as missing, and those present in
<98% of the sample were excluded from the analysis.
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Statistical analysis

Two analyses were performed, examining adjusted percentage
change in CSR score from baseline to post-treatment, and from
baseline to 6-month follow-up, as described above. Principal
component analysis (PCA) of the genotype data was performed
to attempt to control for population stratification. However, this
yielded components that were not sensitive to differences in
outcome. This was likely due to the quantitative nature of the
phenotype, the fact that multiple covariates were controlled for
in constructing the phenotype, and because participants were
drawn from a variety of sites across the globe (online supplement).
Accordingly, PCA was deemed unsuitable for controlling for
population stratification, prompting the adoption of mixed linear
modelling for the association analyses (MLMA). MLMA uses
genome-wide genotype data to derive a genomic relationship
matrix (GRM), which is used to control for genetic similarity
between participants as a random effect.”

MLMA association analysis was performed in GCTA, using the
mlma-loco option for autosomes and the mlma option for the X
chromosome (online supplement).’® For each SNP in the study,
percentage change in CSR was regressed on the number of copies
of the reference allele of the SNP (0, 1 or 2), weighted by its
additive effect. A random effect of genetic similarity (from the
GRM) was included as a covariate, as were fixed effects of sample
concentration at genotyping, sample type (buccal swab or saliva),
and ultrafiltration status (whether the sample was filtered in
preparation for genotyping; online supplement). Using the
assumptions of this approach, power for the GWAS was estimated
using the Genetic Power Calculator.”’ The sample of 980
participants has 80% power to detect a variant explaining ~4%
of variance and 1% power to detect variants explaining 1%.

Results from the association analysis were clumped according
to P-value using PLINK.>*?* Each clump is represented by a
sentinel SNP (that with the lowest P-value in the clump), and
contains all SNPs in linkage disequilibrium with the sentinel
(R*>0.25, within 250kb of the sentinel). One imputed sentinel
SNP in the 6-month follow-up analysis was on the borderline of
genome-wide significance (rs72850669, P=7.54 x 10~%), and
was re-genotyped post hoc (LGC Genomics, Teddington, UK). This
showed the genotype calling of rs72850669 was unreliable (data
not shown), and it was removed from the analyses.

To assess the ability of the GWAS to replicate previous
findings, the association of SNPs implicated in CBT response in
previous candidate gene studies was examined.” Exploratory
secondary analyses were performed to assess the combined effects
of SNPs on response (details can be found in the online
supplement). The proportion of variance in CSR change across
time accounted for by all the SNPs in the study was assessed with
univariate genomic-relatedness-matrix  restricted ~maximum

likelihood (GREML), performed in GCTA using the GRM derived
for the GWAS. Polygenic risk score profiling was used to
investigate the ability of external data-sets to predict CBT
response, using risk profiles from publicly available GWAS of

major depressive disorder® and schizophrenia,® as well as from
a meta-analysis of response to antidepressants.®® To test the ability
of the GxT data to predict response to CBT, five analyses were
performed. Participants with generalised anxiety disorder,
separation anxiety, social phobia and specific phobia, and those
from the Reading (UK) site, were separately removed from the
dataset and risk profiles derived from the remaining participants.
Each profile was then used to predict outcome in the relevant set
of removed participants.

Ethics

All trials and collection of samples were approved by site-specific
human ethics and biosafety committees. Parents provided
informed consent, children provided assent. The storage and
analysis of DNA was approved by the King’s College London
Psychiatry, Nursing and Midwifery Research Ethics Sub-Committee.

Results

Sample and SNP exclusions are shown in online Fig. DSI.
Phenotype and high-quality genotype data were available for
939 participants in the analysis post-treatment, with an additional
41 participants available for analysis at 6-month follow-up
(1=980). Baseline demographic information for these 980
participants is described in online Table DS1(a). The position of
the samples on principal component axes derived from the
HapMap reference populations suggests 92% of the sample are
of White Western European ancestry.”” A total of 260824 common
SNPs passed quality control, which rose to 3017604 SNPs when
imputed genotypes were added.

No SNPs were found at formal genome-wide significance for
either analysis (all P>5x107%). In the post-treatment analysis,
four independent clumps passed threshold for suggestive
significance (P<5x 10~ Table 1 and Fig. 1). Quantile—quantile
plots show no departure from the chi-squared distribution of
P-values expected under the null hypothesis, suggesting there is
no underlying inflation of association statistics by uncontrolled
confounds (lambda median=0.972, Fig. 2). Three independent
clumps were suggestive of significance in the 6-month follow-up
analysis (Table 2 and Fig. 3), with no evidence of inflation
(lambda = 1.02, Fig. 4). All clumps with P<1 x 10~ are displayed
in online Table DS2.

A secondary analysis with increased power was performed
restricted to nine SNPs previously associated with response to
CBT in candidate gene studies (five other SNPs have been
previously implicated in CBT response, but did not pass quality
control). Assuming a significance threshold of 0.005455 (0.05/9),
none of the nine previously associated SNPs was significant (Table
3 and online supplement). The sample had 80% power to detect
an SNP accounting for 1.4% of variance at this significance
threshold, suggesting any effect of these SNPs in this data-set is
smaller than this.

Table 1 Independent clumps associated with cognitive-behavioural therapy response at post-treatment with P<5x10~¢

Sentinel Sentinel Sentinel SNP
Sentinel SNP CHR Clump BP SNP P SNP MAF information Genes +/-100kb
rs10881475 1 108113663-108203647 2.45x10°° 0.187 0.993 NTNG1, VAV3
rs11834041 12 128232721-128239057 350x10 ¢ 0.135 Genotyped -
rs12464559 2 152498699-152679462 409x107° 0.0410 0.941 NEB, ARL5A, CACNB4
rs881301 8 38322346-38332318 4.46x107° 0.403 Genotyped WHSC1L1, LETM2, FGFR1, C80rf86
SNP, single nucleotide polymorphism; CHR, chromosome; BP, base pair; MAF, minor allele frequency.
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Fig. 1 Manhattan plot of genetic associations with cognitive-behavioural therapy response baseline to post-treatment.

X-axis shows the top million most associated single nucleotide po(\)ymorphisms, arranged by position on the chromosome. Lines show conventional thresholds for genome-wide

significance (P=5x 10~?) and suggestive significance (P=5x 10~9).

Independent clumps associated with cognitive-behavioural therapy response at 6-month follow-up with P<5x 10~¢

Table 2

Sentinel
Sentinel SNP CHR Clump BP SNP P
rs72711240 4 135657189-135695807 4.49x107
rs9875578 3 13707416-13810670 1.43x10°¢
s6813264 4 146509970-146631854 4.68x10°°

Sentinel Sentinel SNP
SNP MAF information Genes +/-100kb
0.0269 0.903 -
0.424 0.994 FBLN2, WNT7A
0.410 Genotyped SMAD1, MMAA, C4orf51, ZNF827

SNP, single nucleotide polymorphism; CHR, chromosome; BP, base pair; MAF, minor allele frequency.

Exploratory secondary analyses (GREML, gene-wide analyses
and polygenic risk score profiling) were performed. No significant
estimate of SNP heritability could be obtained from GREML, and
the effect of adding principal components was minimal. In the
post-treatment analysis, all estimates were non-significant. In
the 6-month follow-up data the highest estimate was 0.0797
(95% CI —0.194 to 0.35) without principal components. The
power of univariate GREML in the sample was estimated for a
range of true heritabilities.”® Power ranged from 9 to 46%
assuming true heritability between 0.2 and 0.6. To achieve 80%
power within this range of heritabilities will require 1450-4450
samples (for heritabilities between 0.6 and 0.2).

Polygenic risk score profiling failed to generate predictions
that were consistently significant, either for external GWAS or in
the internal predictions of response.

Discussion

Main findings

We report the first genome-wide association study of psychological
therapy. Although no region reached genome-wide significance, the
single SNP and polygenic results are consistent with the wider
literature of treatment genetics in psychiatry, given the sample size

studied. Genome-wide significant variants detected in GWAS of
psychiatric phenotypes have shown small effect sizes (with the
exception of late-onset dementia), requiring thousands of
participants to discover. The pattern of results in psychiatric
genomics to date suggests that a critical number of participants
(varying by disorder) are required before robust findings begin
to be made. In studies of schizophrenia, this critical number
was ~9000 cases.”® Our results, although preliminary, suggest
response to CBT could be a complex phenotype at the early point
of this trajectory, although the critical sample size is not yet clear.

The purpose of this study was to identify genetic variants
capable of predicting change in symptom severity during
treatment. No common, high-effect SNPs were identified,
suggesting that it is very unlikely a single variant could be used
as a predictor. This also places an upper bound on expected effect
sizes in studies of CBT response. This is relevant considering that
neither GWAS replicated previous findings from the literature.
This does not appear to be due to insufficient statistical power.
For example, the COMT vall58met polymorphism (rs6265) was
reported to account for 8% of variance in CBT response in adults
with panic disorder, well above the 4% of variance explained for
which this GWAS was powered.*’ Failure to replicate previous
findings from the candidate gene literature has proved common
in psychiatric genetics, whereas GWAS 1is proving more
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Fig. 2 Quantile-quantile plot of P-values (pruned for linkage

disequilibrium) from genetic associations with cognitive—
behavioural therapy response post-treatment.

X-axis shows spread of P-values expected under the null chi-squared distribution.
Y-axis shows observed data. Grey region shows rough 95% confidence intervals
around each point on the line x=y. Lambda median is a measure of inflation of the
observed distribution of associations compared with expected null distribution.
Lambda <1 implies no inflation.

reliable.’*' The failure to replicate any published variants

suggests previous assumptions of gene relevance may be
erroneous, resulting from underpowered candidate gene studies
that overestimated the likely effect sizes of studied variants, and
that reported variants are likely to be false positives, or to have
effect sizes inflated due to winner’s curse.*? Proximity to a gene
does not imply an effect on gene expression, so the failure to
replicate the effects of candidate SNPs does not exclude a role
for candidate genes, as the SNPs assessed may not capture true
functional variation.

Not all candidate variants are SNPs, and one limitation of
GWAS is the difficulty of assessing structural variants not captured

by the probes on microarrays. For example, we cannot comment
on the previously reported role of the MAOA-u variable number
tandem repeat in CBT response.*’ Nor could we assess the effect of
the 5SHTTLPR variant of SLC6A4, previously associated with
remission from anxiety disorders at follow-up; however, we
directly genotyped this variant in this cohort, and were unable
to replicate our earlier finding.*'

Although small when compared with high-profile studies such
as the PGC studies in schizophrenia and depression,’*** our sample
is similar in size to studies in the depression pharmacogenetic
literature.”>** The first of these used a multistage design
(n=1532) and identified several associations at nominal
significance, but none remained significant after correction for
multiple testing,44 The second (n=706) found one genome-wide
significant locus (for response to nortryptiline treatment) and six
loci at suggestive significance across four subanalyses.”” More
recent meta-analyses were unable to find genome-wide significant
variants.”® However, a significant GREML estimate of SNP-chip
heritability of 42% (95% CI 6%-78%) was identified, suggesting
useful information about treatment response can be obtained at
the whole-genome level.** Future studies in psychological therapy-
genetics should aim to build a cohort of sufficient size to estimate
SNP-chip heritability and bivariate genetic correlations, enabling
further comparison with pharmacogenetic studies. Such a cohort
could act as a target data-set for polygenic risk scoring, exploring
the predictive value of variants associated with potentially relevant
phenotypes assessed in other GWAS.

Limitations

There are parallels between the antidepressant GWAS literature
and this study, including the necessity of combining many
studies to obtain sufficient participants for analysis. Herein, we
examined a naturalistic clinical cohort, drawn from CBT trials
or from treatment as usual. As all participants received CBT, there
was no placebo group for comparison. Therefore, the results may
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Fig. 3 Manhattan plot of genetic associations with cognitive—behavioural therapy response baseline to 6 months after treatment.
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Fig. 4 Quantile-quantile plot of P-values from genetic

associations with cognitive-behavioural therapy response
baseline to 6-month follow-up, including lambda median.

reflect natural regression to the mean, rather than an effect of
treatment. Theoretically, a parallel GWAS of change in severity
could be performed on wait-list controls to identify associations
with regression to the mean. Results from the GWAS of CBT
response could be weighted by the likelihood that any given
association resulted from regression to the mean. However, this
would require deliberate non-treatment of thousands of wait-list
controls over a period of at least 7 months for the purpose of
comparison only. As CBT is effective in this age group, with
significant improvement seen in treated groups relative to wait-list
controls, non-treatment would raise serious ethical concerns.”
The aim of therapygenetics is to discover predictors of differential
response to treatment. These predictors need not capture a
treatment effect per se; they may describe processes separate to
treatment that nonetheless lead to better (or worse) response.
Nevertheless, in the absence of a control group, this study
specifically examines the association between genetic variation
and change in CSR across the period of CBT treatment and
follow-up, not the biological mechanism of response to CBT.
The naturalistic nature of the cohort creates heterogeneity,
including differences in the details of the treatment given, the
target disorder of the treatment, and several participant
characteristics. The effectiveness of CBT is influenced by a variety

of environmental factors. Some of these can be considered within
the design, such as treatment type, diagnosis and severity. Others
are less easily accounted for, including therapeutic alliance and
other social influences, which may only be partly controlled for
by the inclusion of trial as a covariate.'"®*® This reduces the
statistical power of analyses, but should not be viewed as an
argument against therapygenetics. The ability to offer personalised
advice to patients about treatment could avoid considerable
amounts of unnecessary distress and expense. Obtaining a set of
genes able to assist in clinical prediction will require a cohort that
is powerful enough to detect true variants while remaining
clinically representative. Thus, a degree of heterogeneity is
unavoidable in studying response to CBT, and similar difficulties
in pharmacogenetic GWAS suggest this limitation applies to
treatment response genomics more generally.

Combining data from trials at multiple sites necessitated
compromises in study design. Participants were included if they
completed treatment, but drop-out from treatment is common
and likely to be related to poorer response. As such, future studies
should aim to include severity data for non-completing
participants. This would require appropriate modelling of the
treatment period, and the proportion of the treatment process
completed, before participation ceased. Similarly, combining
measurements from different sites and from participants with
varying diagnoses required the use of a general, widely applicable
outcome measure. The ADIS fit these requirements well, but relies
on clinical judgement derived from parent and child report. It
may be less sensitive to the effects of CBT than a self-report
measure, and be more vulnerable to site-specific biases. However,
a suitable diagnosis-general self-report scale was unavailable, and
standardising outcomes to combine multiple diagnosis-specific
scales is likely to lead to a generalised and difficult-to-interpret
result.

Future directions

This study represents the first GWAS of psychological therapy.
Although no genome-wide significant findings emerged, the
spread of significance in the associations captured is similar to
other early general psychiatric and pharmacogenetic GWAS. The
best approach in the immediate future is to increase the sample
size available through combining existing cohorts in mega- and
meta-analyses. Such a cohort would allow replication of the
findings presented in this paper to be attempted, which currently
is not possible due to the lack of an independent cohort of suitable

Table 3 Genome-wide association study P-values of single nucleotide polymorphisms (SNPs) previously associated with

cognitive-behavioural therapy response.'?:?

Gene SNP
SLC6A4 rs25531
HTR2A rs6311
rs6313
rsé314
1s7997012
TPH2 rs4570625
COMT rs4680
NGF rs6330
BDNF rs6265 (val158met)
17934165
r$1519480
rs11030104
GRIN2B r$1019385
GRIK4 11954787
a. No P-value is significant after multiple testing correction.

Completeness after imputation <0.98
Completeness after imputation <0.98

P (post-treatment) P (follow-up)

Imputed with info <0.8
0.4717
0.5451

Imputed with info <0.8

Imputed with info <0.8
0.9692
0.8109
Imputed with info <0.8
Completeness after imputation <0.98

Completeness after imputation <0.98

0.7699 0.5956
0.5093 0.4559
0.3408 0.9078
0.5231 0.9880
0.8211 0.5013
0.3158 0.9675
Imputed with info <0.8 Imputed with info <0.8
0.1315 0.1914
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size. However, individual variants are likely to have small effect
sizes, so future studies should utilise higher-order approaches such
as polygenic risk scoring and GREML to leverage the predictive
effects of the whole genome. This would also provide an estimate
of heritability, which is difficult to obtain through traditional
family-based approaches. If the heritability of CBT response were
around 30% (similar to that of anxiety disorders), a high-powered
polygenic risk score could capture 10-15% of variance, which
could be clinically useful when combined with known
environmental risk factors.*” However, creating such a score will
require a sample size of at least 10000, which would involve
considerable effort to obtain.

Alternative approaches may also yield interesting findings.
Response to CBT is a behavioural change following exposure to
a positive environment, so epigenetic studies investigating how
these exposures influence gene expression via DNA methylation
will be informative.”® Similarly, it will be useful to examine
changes in gene transcript expression across treatment and in
the longer term. Used in parallel to these approaches, studying
specific genetic variants remains a potential method of predicting
response to CBT (and understanding its biological basis) and
genome-wide investigations represent the most promising avenue
in which to focus the gathering momentum of therapygenetics.*’
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Addendum: GRMs and principal components

The analyses in Chapter 3 used a random effect derived from a
genomic relatedness matrix (GRM) to control for population stratification in
the multi-ethnic sample. The rationale behind this was that the multiple
ethnicities in the sample resulted in principal components (PCs) that
primarily separated samples of African or East Asian ancestry from those of
White Western European (WWE) ancestry (Figures DS2a and DS2b).
Accordingly, the WWE samples (which represent 92% of the cohort) were
poorly separated by PCs. One approach to addressing this would have been
to remove samples that lay outside the WWE cluster on the PC plot (red box
in Figure DS2b), and re-run PC analysis to obtain WWE-specific components
for use in the final analysis. Controlling for gross genetic similarity between
samples using the GRM offered a means to address better both fine-scale and
broad-scale inter-sample relatedness (compared to PC-based control; Wang,

Hu & Peng, 2013) whilst retaining sample size (and so statistical power).

The use of GRMs to control for population stratification has become
much more common since the analysis in Chapter 3 was performed, and the
validity of using GRMs in the presence of population stratification has come
under greater scrutiny. Although GRM-based control is generally robust in
the presence of population stratification, it fails in the presence of extreme
differences in allele frequency between populations (Price, Zaitlen, Reich et
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al, 2010). As such, this method may not appropriately control for population
stratification in this instance. The robustness of GRM-based correction in the
case of unbalanced population stratification (that is, the situation in Chapter
3) has not been explicitly tested. As such, it may be the case that the results of
Chapter 3 are limited by inadequate control for population stratification, and
that outlier removal would have been a better strategy for analysis in this
instance. Accordingly, I performed sensitivity analyses, limiting the cohort to
WWE samples only. This yields results that are largely concordant with
those reported - 5/7 loci have p<10®in pre to post-treatment analyses in the
full cohort and limited to the WWE samples only, and 6/7 loci have p<10°in
the analyses to follow-up. All loci reported in Tables 1 and 2 have p <5x10°
in the WWE analysis. The conclusions of the analysis are not substantially
biased due to the method used, although the precision of the associations
differs when considering the WWE samples only. In the analysis limited to
WWE samples, as in the analyses in the full sample, there are no variants of
large effect, and there are a number of loci at a suggestive level of
significance, although any true signal cannot be disentangled from
associations due to chance. Loci with p<I1x10+ in the sensitivity analyses are

provided in Tables DS3a and DS3b, in the Addendum to Appendix II.
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ABSTRACT

Objectives: Exposure-based cognitive behavioural therapy (eCBT) is an effective treatment for
anxiety disorders. Response varies between individuals. Gene expression integrates genetic and
environmental influences. We analysed the effect of gene expression and genetic markers separ-
ately and together on treatment response.

Methods: Adult participants (n < 181) diagnosed with panic disorder or a specific phobia under-
went eCBT as part of standard care. Percentage decrease in the Clinical Global Impression severity
rating was assessed across treatment, and between baseline and a 6-month follow-up.
Associations with treatment response were assessed using expression data from 3,233 probes, and
expression profiles clustered in a data- and literature-driven manner. A total of 3,343,497 genetic
variants were used to predict treatment response alone and combined in polygenic risk scores.
Genotype and expression data were combined in expression quantitative trait loci (€QTL) analyses.
Results: Expression levels were not associated with either treatment phenotype in any analysis.
A total of 1,492 eQTLs were identified with g < 0.05, but interactions between genetic variants
and treatment response did not affect expression levels significantly. Genetic variants did not
significantly predict treatment response alone or in polygenic risk scores.

Conclusions: We assessed gene expression alone and alongside genetic variants. No associations
with treatment outcome were identified. Future studies require larger sample sizes to discover
associations.
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Introduction Exposure-based cognitive behavioural therapy (eCBT)
is a common treatment, and shows large effect sizes
across the anxiety disorders, comparable to or better
than those obtained by anxiolytic medication (Norton

and Price 2007; Stewart and Chambless 2009; Barlow

Anxiety disorders are the most common group of men-
tal illnesses, with lifetime prevalence estimates ranging
between 10 and 30% (Kessler et al. 2007; Michael et al.
2007). They are an economic burden on society and the

sixth largest cause of disability globally (Fineberg et al.
2013; Baxter et al. 2014). Suffering from an anxiety dis-
order is distressing, with affected individuals reporting
adverse effects on quality of life comparable to suffer-
ers of major depressive disorder, and in excess of the
population norm (Mendlowicz and Stein 2000).
Treatment of anxiety disorders uses a variety of
pharmacological and  psychological =~ modalities
(National Collaborating Centre for Mental Health 2011).

et al. 2013; Cuijpers et al. 2013; Margraf and Zlomuzica
2015). During eCBT, participants confront the object of
their anxiety (whether literally, referred to as in vivo,
or through imagination or virtual reality, referred to as
in sensu), within a carefully managed and supportive
environment. They identify the cognitive and behav-
ioural processes underlying their anxious response,
and develop strategies to mitigate against these nega-
tive schema and to cope with their anxiety (Otto et al.
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2004). Rates of response (in terms of a reduction in
symptom severity) and of remission (no longer meet-
ing diagnostic criteria) vary between specific disorders
and studies, but are invariably less than 100%
(Ballenger 1999; Olatunji et al. 2010; Hofmann et al.
2012; Loerinc et al. 2015).

Numerous influences have been proposed to lead
to poorer treatment outcome, including high initial
severity, Axis | and Axis Il comorbidity, illness duration,
low expectancy of treatment success, poor treatment
compliance and therapeutic alliance, and general inter-
personal difficulties (Newman et al. 2013). However,
studies disagree on the importance and validity of
such predictors (Taylor et al. 2012; Olatuniji et al. 2013;
Schneider et al. 2015). The success of any specific
treatment for a given participant is difficult to predict.
This is relevant given the high costs (both economic
and emotional) of pursuing unsuccessful treatment
(Otto et al. 2000). It is of clear interest to develop reli-
able predictors of treatment response.

Genetic variants represent a potential source of pre-
dictors. The study of such variants (termed therapyge-
netics) has largely been confined to candidate gene
studies (Eley et al. 2012; Lester and Eley 2013).
However, these findings have proven difficult to repli-
cate, and the direction of effect found has been incon-
sistent between studies (Lester et al. 2016). Recently,
we published a genome-wide association study (GWAS)
of therapy response in a cohort of children with anxiety
disorders (Coleman et al. 2016). Although underpow-
ered to identify the small-effect variants typical of
behavioural phenotypes, sufficient power was available
to test some effect sizes reported in the therapyge-
netics literature. No variants were found at conven-
tional genome-wide significance, and candidate
variants were not replicated. Therefore, the effects of
individual genetic variants on response to CBT are likely
to be small, and the predictive effects of such variants
are likely to be negligible when used alone.

Studying the differential expression of gene tran-
scripts may be more useful for predicting treatment
response. Multiple factors affect gene expression,
potentially including genetic variants and environmen-
tal influences. Gene expression represents a biologic-
ally relevant means of combining genetic and
environmental variation to predict response to CBT for
anxiety disorders. Two studies have found an associ-
ation between increased expression of FKBP5 and
response to CBT for post-traumatic stress disorder
(PTSD; Levy-Gigi et al. 2013; Yehuda et al. 2013). A
recent analysis of change across treatment including a
subset of the cohort presented within this paper
showed no association between treatment response

and individual gene expression, nor when expression
was clustered according to similarities in expression in
the data (Roberts et al. under review).

This investigation combines genetic and gene-
expression approaches to predict response to eCBT. It
assesses the interaction of differential gene expression
at baseline (both of individual transcripts, and using
data- and literature-driven clustering methods) and
genetic variation to assess the outcome of eCBT for
panic disorder (PD) and specific phobias (SPs).

Method
Participants and therapeutic procedure

Two hundred and forty-four participants diagnosed
with PD or a SP completed one of four eCBT treatment
programmes at the Mental Health Research and
Treatment Center, Ruhr-Universitat Bochum, Germany
as part of standard care. In all programmes, diagnoses
were made according to DSM-IV criteria using the
Diagnostisches Interview bei psychischen Storungen
(DIPS) and Mini-DIPS, structured interviews with well-
established reliability, validity and patient acceptance
(Margraf 1994; In-Albon et al. 2008; Suppiger et al.
2008; Suppiger et al. 2009; Bruchmuller et al. 2011;
Schneider and Margraf 2011). All treatment pro-
grammes featured core elements of exposure therapy,
including psychoeducation, applied relaxation and
exposure (in vivo or in sensu). Specifics of each treat-
ment programme are described below. All treatments
were regularly supervised by experienced senior clini-
cians using audio-visual recordings in order to ensure
treatment protocol integrity.

Individuals diagnosed with a SP of receiving dental
treatment, not secondary to a separate diagnosis (such
as PTSD or injection phobia), were treated in a dental
anxiety-specific (DA) programme (Wannemuller and
Johren 2015). Treatment was given in five weekly ses-
sions comprising an initial diagnostic and psychoeduca-
tion session, a session developing relaxation techniques,
and three in sensu exposure sessions related to dental
treatment. Participants were not excluded on the basis
of concurrent treatment with anxiolytic medication.

Participants with a SP not primarily associated with
dental fear were treated in a longer-term programme
covering up to 30 sessions, split into five initial sessions
of diagnosis and psychoeducation, and 25 sessions of
in vivo exposure (relevant to their SP) with elements of
cognitive restructuring. Participants were excluded
from the study if they were using anxiolytic medication.

Participants with a primary diagnosis of PD with
agoraphobia, or agoraphobia alone, were randomised
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either to eCBT (PD-CBT; akin to the SP group) or to an
exposure-alone condition without any element of cog-
nitive restructuring (PD-exposure [EXP]; Clinical Trials:
NCT01680327). Participants in both conditions were
excluded if they were using anxiolytic medication.
Bodily sensation was used as the specific exposure
stimulus for participants suffering from PD. However,
as there were no patients with PD without agorapho-
bia in the trial, interoceptive exposure was always
combined with in vivo exposure.

Prior to receiving exposure, immediately following
completion of the treatment programme, and at a fol-
low-up assessment approximately 6 months after treat-
ment completion, all participants completed a range
of questionnaire measures. In addition, peripheral
blood was drawn for DNA and RNA extraction.

Phenotype definition

Treatment response was defined as percentage
improvement in the clinician-rated severity scale of
the Clinical Global Impression-Severity (CGI-S) rating,
and was examined pre-treatment to post-treatment,
and pre-treatment to follow-up. The CGI-S ranges from
1 to 7, with a score of 1 representing no symptoms of
concern and a score of 7 representing extremely
severe illness requiring hospitalisation (Guy 1976). The
scale was chosen as it was used in all treatment
groups, and was expected to capture severity in a dis-
order-independent fashion.

The CGI-S was rescaled to range from 0 to 6 to
allow outcome to be defined as percentage decrease
in severity across time (as this has previously been
used successfully in pharmacogenetic GWAS) with
100% indicating full remission (Uher et al. 2010). For
both  phenotypes, correlations were calculated
between percentage improvement and a variety of
covariates: age, gender, severity at baseline, presence
of comorbid mental disorders, number of treatment

sessions attended, treatment period (days between
pre-treatment and post-treatment assessment), follow-
up period (days between post-treatment assessment
and follow-up assessment), use of psychoactive medi-
cation at pre-treatment, use of any other medication
pre-treatment, body mass index (BMI) and whether the
participant smoked. Although the use of concurrent
anxiolytic medication was an exclusion criterion for
the SP, PD-CBT and PD-EXP groups, some participants
were using other medications which may have a psy-
chotropic effect, so this covariate was not restricted to
the DA group (Table 1).

Of these covariates, severity at baseline, presence of
comorbid mental disorders, use of psychoactive medi-
cation and follow-up period were correlated with at
least one phenotype in the whole cohort (Table 2). In
secondary examinations within each treatment group,
treatment period was associated with at least one
phenotype in both the PD-CBT (P=0.014) and SP
groups (P=0.012). BMI was weakly associated
(P=0.0424) with response at post-treatment in the
PD-CBT group; however, as this effect was not seen in
any other group nor in the whole cohort, BMI was not
included as a covariate.

Table 2. Correlations between clinical covariates and treat-
ment response phenotypes for the whole cohort (N =187).

Post-treatment Follow-up

Variable r P r P
Age (years) —0.0536  0.469 0.0212 0816
Gender 0.045 0.543 0.0497  0.585
Baseline CGl severity 0.112 0.128 0.303 710"
Treatment sessions 0.129 0.0818 0.106 0.255
Treatment duration (days) 0.117 0.111 0.0189  0.835
Follow-up duration (days) —0.178 0.0409 —0.0411  0.6614
Psychoactive medication (use) ~ —0.205 0.00521  —0.203 0.0243
Other medication (use) —0.0483 0514 —-0.117 0.200
Mental comorbidity (yes/no) —0.210 0.00407 —0.188 0.0379
Body mass index 0.0572  0.440 0.0008  0.993
Smoker (yes/no) —0.0317  0.687 0.0146  0.880

Correlations with nominal significance (P< 0.05) are highlighted in bold.

Table 1. Demographic and treatment information on participants with genotype and/or expression data.

Variable wcC DA SP PD-CBT PD-EXP Test Stat P

N 187 95 38 25 29 - - -

Age in years (Mean [SD]) 39.2 [11.4] 405 [104] 37.81[13.2] 384[11.9] 37.4[11.9] ANOVA 0.831 0.478
Gender (N male [%]) 67 [35.8] 35 [36.8] 9 [23.7] 13 [52.0] 10 [34.5] Chi square 535 0.148
Baseline CGI-S (Mean [SD]) 470 [1.13] 483 [1.27] 4.16 [0.973] 4.80 [0.707] 4.86 [0.915] ANOVA 3.80 0.0112°
Treatment duration in days (Mean [SD]) 200 [184]  47.6[32.8] 340 [152] 351 [118] 383 [137] ANOVA 151 315 % 107*°
Follow-up duration in days (Mean [SD]) 215 [62.7] 249 [72] 191 [41.4] 190 [35.4] 191 [44.7] ANOVA 114 432x1077°
Psychoactive medication at baseline (N taking [%]) 20 [10.7] 18 [18.9] 1 [2.63] 1 [4.00] 0 [0.00]  Fisher's exact test 0.00247¢
Mental disorder comorbidities (N [%]) 72 [38.5] 46 [48.4] 8 [21.1] 9 [36.0] 9 [31.0] Chisquare 9.58 0.0225¢

Post hoc t-tests (variances assumed unequal; Bonferroni corrected significance threshold = 0.00834; significant results in bold).

2SP lower: vs. DA: t = —3.29, P=10.00143; vs. PD-CBT: t = —3.03, P=0.00361; vs. PD-EXP: t = —3.04, P=0.00350.

PDA shorter: vs. SP: t = —11.7, P=2.79 x 10 "% vs. PD-CBT: t = —12.8, P=1.93 x 10~'% vs. PD-EXP: t = —13.0, P=1.19 x 10" "3,
DA longer: vs. SP: t =4.96, P=3.19 x 10~ vs. PD-CBT: t =4.86, P=6.93 x 10~%; vs. PD-EXP: t =4.48, P=2.74 x 10°.

dHigher rate in DA: vs. SP: t=3.38, P=9.47 x 10~ % vs. PD-CBT: t=2.63, P = 0.0103; vs. PD-EXP: t = 4.69, P=9.33 x 107,

Higher rate in DA: vs. SP: t =3.24, P=0.00174; vs. PD-CBT: t=1.12, P=0.269; vs. PD-EXP: t=1.71, P=0.0930.

WC, whole cohort; DA, dental anxiety; SP, specific phobia; PD-CBT, panic disorder CBT; PD-EXP, panic disorder exposure.
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The phenotypes for analysis were defined as the
residuals from two linear mixed regressions investigat-
ing change in severity between pre-treatment and
post-treatment, and pre-treatment and follow-up.
Percentage decrease in severity was regressed on fixed
effects of baseline severity, presence of comorbid
mental disorders, use of psychoactive medication,
treatment period (and follow-up period in the analysis
pre-treatment to follow-up), and a higher-order ran-
dom effect of treatment group (to account for differ-
ences between treatment groups).

Genotyping

DNA was extracted from peripheral blood drawn pre-
treatment using FlexiGene DNA Kits, following the
protocol provided by the manufacturer (QIAGEN,
Manchester, UK). DNA concentration was quantified
using spectrophotometry (NanoDrop 1000, NanoDrop,
Wilmington, DE, USA), and samples diluted to 40 pl at
a concentration of 75ng/ul for genotyping.
Genotyping was performed using the Illumina
PsychChip microarray (lllumina, San Diego, CA, USA), a
modified version of the Illlumina HumanCoreExome
microarray with additional content of interest in psy-
chiatric genomics. All laboratory procedures were per-
formed at the Institute of Psychiatry, Psychology and
Neuroscience, King's College London.

Genotype quality control

Quality control was performed following a previously
published protocol (Coleman et al. 2015). In brief,
genotype data were called using Illumina
GenomeStudio software, with manual recalling where
appropriate. Rare variants were recalled using ZCall
(Goldstein et al. 2012). Variants were removed from
the analysis if they were rare (minor allele frequency
<0.05), present in <99% of individuals, or deviated
substantially from  Hardy-Weinberg  equilibrium
(Hardy-Weinberg test P<1x 107°). Individuals were
excluded if they had genotype calls for <99% of var-
iants, where reported gender differed from that indi-
cated by the genotypes, or if genome-wide estimates
of heterozygosity >3 standard deviations from the
sample mean. Additional exclusions were made if the
individual showed cryptic relatedness to other individ-
uals in the study (identity by descent [IBD]>0.1875)
or had an average proportion of variants shared IBD
with the cohort as a whole >6 standard deviations
above the cohort mean.

Following quality control, variants were imputed
to the Phase 3 release from the 1000 Genomes
Project, using IMPUTE2 with concurrent phasing

(1000GenomesConsortium 2012; Howie et al. 2012).
X chromosome variants were imputed using the March
2012 Phase 1 release (1000GenomesConsortium 2012;
Howie et al. 2012). Imputed variants were imported
into PLINK2 for analysis, and filtered to remove uncer-
tain variants (posterior-probability <0.8) and poorly
imputed variants (info <0.8) (Chang et al. 2015).
Following hard-calling, variants present in <98% of the
cohort were dropped from analysis.

Gene expression

Whole blood samples were drawn at pre-treatment
using PAXgene blood RNA tubes. Blood RNA was iso-
lated and purified using the PAXgene Blood miRNA Kit
according to the manufacturer’'s protocol using the
QlAcube (QIAGEN). RNA quality was measured using
spectrophotometry (NanoDrop 1000, NanoDrop) and
integrity using an Agilent 2100 Bioanalyzer (Agilent,
Santa Clara, CA, USA). Genome-wide expression levels
were measured from 750ng total RNA using the
lllumina HumanHT-12v4 Expression BeadChip (lllumina).

Gene expression quality control

Raw expression data were processed following internal
pipelines (available at https://github.com/snewhouse/
BRC_MH_Bioinformatics). Samples with detection rates
dissimilar from the rest of the cohort were identified
and removed in GenomeStudio (lllumina). Raw data
were imported into R for quality control primarily
using the lumi package (Du et al. 2008; Team 2012).
Expression data were background corrected using
module-based background correction for BeadArrays
(Ding et al. 2008). Probes with an expression level >2
standard deviations above the background mean were
defined as detected. XIST gene expression (specific to
females) and Y chromosome gene expression (specific
to males) was compared to reported gender and gen-
der inferred from genotyping, and discordant samples
removed. Expression data were log2 transformed and
normalised using robust splines normalisation from
the lumi package (Du et al. 2008; Schmid et al. 2010).
Sample co-expression relationships were assessed, and
samples with connectivity <2 standard deviations from
the cohort mean were excluded (Oldham et al. 2012).
Associations between covariates and the first principal
component of the expression data were assessed
using stepwise linear regression bootstrapped 100
times, with randomised order of covariates in the
regression. Covariates included batch variables (expres-
sion microarray, sample position on microarray, date
of RNA extraction, date of expression measurement,
machine used in RNA isolation, RNA integrity (RIN)
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value, RNA vyield, amplified concentration of RNA,
whether the sample required additional treatment to
remove DNA and whether the blood sample was the
first or second drawn) and demographic covariates
(BMI and smoking). The effect of associated covariates
was regressed out of the expression data, using the
sva ComBat package in the case of categorical varia-
bles (extraction date) and linear regression (with
RcppArmadillo) in the case of continuous variables
(RIN value, RNA yield, amplified concentration of RNA)
(Johnson et al. 2007; Eddelbuettel and Sanderson
2014). Probes detected in <80% of the sample were
removed. As expression data were generated from
whole blood without assessment of cellular compos-
ition, deconvolution methods implemented in CellMix
were used to assess the origin of RNA transcripts
before and after differentially expressed probes were
selected (Gaujoux and Seoighe 2013). Correlations
between the estimated final proportions of leukocytes
(neutrophils, lymphocytes and monocytes) and the
two CBT response phenotypes were calculated.
Additional exclusion of probes was performed to allow
combined  analysis  with  genotyped variants.
Specifically, probes were excluded if they were not
annotated in the ENSEMBL hg19 build, if they con-
tained any genetic variant genotyped in the cohort, or
if they did not map to a unique site on the genome.
Probes were identified using nucleotide universal iden-
tifiers (nulDs), which are unique to the DNA sequence
of the probe (Du et al. 2007).

Statistical analysis

Following quality control, the association of genome-
wide genotyping data with both response phenotypes
was assessed in GWAS. The participants in the study
were of Central or Eastern European ancestry.
Genomic estimation of ancestry was established using
principal components analysis  performed in
EIGENSOFT (Price et al. 2006). No principal component
was correlated with either of the phenotypes at a level
greater than chance. To account for finer-scale popula-
tion stratification, analyses were run using a linear
mixed model incorporating a random effect of gross
genetic similarity between individuals (the mima-loco
option in GCTA; Yang et al. 2011). Results were
clumped in PLINK2, pruning all variants in linkage dis-
equilibrium (#>0.25, + 250kb) of a variant with a
lower P value.

Genotype information was used as a target dataset
in polygenic risk scoring. Specifically, the results of a
previous GWAS of CBT response in children were used
to predict both phenotypes in the whole cohort using

PRSice, which performs high-resolution polygenic risk
scoring to identify the most predictive risk score
(Euesden et al. 2015; Coleman et al. 2016). Further
GWAS were performed on the cohort minus individu-
als treated for DA, and the results from these subset
GWAS were used to predict response to treatment in
the DA subgroup.

Probe-level expression data were imported into R,
and analysed using weighted gene correlation network
analysis (WGCNA; Langfelder and Horvath 2008). Data-
driven clustering of co-expressed probes was per-
formed using an automatically-constructed signed
network from the blockwiseModules function in
WGCNA (details on this procedure are provided in the
Supplemental Material available online; Langfelder and
Horvath 2008). Correlations between individual probes
and both response phenotypes, and between WGCNA
module eigengenes and response phenotypes, were
calculated. Local false discovery rates were calculated
to account for multiple testing using the qvalue pack-
age in R (Dabney et al. 2004).

Probe-level correlations were mapped to HUGO
gene names, ranked according to significance and
used in gene ontology (GO) enrichment analysis in
GOrilla (Eden et al. 2009). Where multiple probes
mapped to the same gene, the highest-ranked was
retained. Details of the enrichment analysis performed
by GOrilla are provided in the Supplemental Material.
Significance was set as the Bonferroni correction for
the 8746 GO terms tested (P=5.72x107°), with
results reported below P=5x10"%  Results
were pruned for redundancy in REVIGO, with results
with >50% dispensability dropped (Supek et al. 2011).

Probe-level expression data were combined using a
machine-learning approach in WEKA, to assess the via-
bility of prediction from expression probe data alone
(Hall et al. 2009). Classical machine learning algorithms
were used to predict outcome using the full dataset
(3,233 expression probes, 166 participants for baseline
to post-treatment analysis, 110 participants for base-
line to follow-up analysis). Five approaches were used:
mean prediction with ZeroR; inverse distance weight-
ing with a nearest neighbours algorithm (kNN), with
and without subset evaluation; linear kernel-based
regression with regression SVM (SMOReg) and a 500-
tree Random Forest algorithm. Multiple algorithms
were chosen as they optimise different aspects of the
learning process. All analyses were performed using
10-fold cross-validation (splitting the cohort into 80%
training and 20% test subsamples), repeated 5 times.

Probe-level expression data and genotype data
were imported into R for eQTL analyses using the
MatrixEQTL package (Shabalin 2012). All transcripts
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captured by the assessed probes were mapped to the
hg19 build of the human genome. Analyses were per-
formed using a two-stage design. Cis-eQTLs were cal-
culated independent of the phenotype, using the
modelLINEAR option and genotypes from a window +
100kb of the transcript. Linkage-independent results
were obtained by clumping using PLINK2 (250 kb win-
dow, r* <0.25), and by performing conditional eQTL
analyses (Chang et al. 2015). Both techniques identi-
fied the same sentinel SNPs (data not shown).
Clumped results were retained for the second, pheno-

type-dependent, stage. SNP-by-treatment response
interactions predicting expression change were
assessed  for both  phenotypes, using the

modelLINEAR_CROSS option in MatrixEQTL, to investi-
gate whether the effect of eQTLs in the data differed
in relation to treatment response.

Power analyses for the expression analyses were
performed using the pwr package in R.

Ethics

Ethics approval for this study was received from the
Ethics Committee at the Faculty of Psychology, Ruhr-
Universitat Bochum, from the London-Bentham NRES
Committee and from the King's College London
Psychiatry, Nursing and Midwifery Research Ethics Sub-
Committee. All participants provided informed con-
sent. The study was conducted in accordance with the
principles outlined in the Declaration of Helsinki.

Results

Phenotype data were available on 187 participants (185
at post-treatment; 122 at follow-up). Following quality
control, genotype data were available on 3,343,497 var-
iants (267,037 genotyped) for 181 participants for the
post-treatment analysis (122 were available for the ana-
lysis at follow-up). Data from 3,233 expression probes
were available on 166 (110) participants. Both data
types were available on 162 (110) participants.

Demographics and clinical covariates

Demographic data on the cohort are displayed in
Table 1. Individuals in the SP group had lower baseline
severity than all other groups. Groups also differed by
mental disorder comorbidity, with individuals in the
DA group exhibiting more comorbidity than other
groups, and significantly more than the SP group
(details of mental comorbidities are provided in
Supplemental Table 1, available online). As expected,
there was a higher rate of psychoactive medication
use in the DA group compared to all others.
Treatment duration also differed significantly across
the groups, with shorter treatment in the DA group
than in all others. Follow-up duration was significantly
longer in the DA group. All covariates showing inter-
group differences were included as covariates when
defining the treatment response phenotypes (as was a
random effect of treatment group; Table 2).

Changes in CGl from pre-treatment to post-treat-
ment and to follow-up are described in Table 3. All
treatments were generally effective, with most partici-
pants improving on the CGI-S between pre-treatment
and post-treatment, and between pre-treatment and
follow-up. However, there was considerable variance in
the percentage change shown between individuals.
Demographic differences between response groups
following treatment are described for the whole
cohort in Supplemental Table 2 (available online).
Significantly lower baseline severity and higher comor-
bidity was observed in those deteriorating compared
to those improving. No other significant differences
were observed.

GWAS and polygenic risk score analysis

Results from both GWAS are shown in Supplemental
Table 3 and Supplemental Figures 1 and 2 (available
online). No variants passed the threshold for genome-
wide significance (P=>5 x 1078), but three independent

Table 3. Treatment response as percentage change in CGI-S, and grouped by improvement (percentage change positive), no
change, and deterioration (percentage change negative), in the whole cohort and each treatment.

Whole cohort DA PD-CBT PD-EXP Test Stat P

Response post-treatment
185 95 24 29 - - -

% change in CGI (Mean [SD]) 67.4 [34.6] 62.0 [32.1] 77 [39.5] 67.1 [37.1] 729 [31.8] ANOVA 2.01 0.115
Improved (N [%]) 165 [89.2] 84 [88.4] 33 [89.2] 21 [87.5] 27 [93.1] Fisher's exact test 0.613
No change (N [%]) 16 [8.65] 10 [10.5] 2 [5.41] 2[8.33] 2 [6.90]
Deteriorated (N [%}) 4 [2.16] 1[1.05] 2 [5.41] 1[417] 0 [0.00]
Response at follow-up
N 122 54 17 19 - -
% change in CGI (Mean [SD]) 59.7 [46.2] 52.3 [54.5] 71.4 [37.9] 71.5 [30.7] 49.8 [41.2] ANOVA 1.90 0.134
Improved (N [%]) 101 [82.8] 42 [77.8] 28 [87.5] 16 [94.1] 15 [78.9] Fisher's exact test 0.641
No change (N [%]) 11 [9.02] 5 [9.26] 3[9.38] 1[5.88] 2 [10.5]
Deteriorated (N [%]) 10 [8.20] 7 [13.0] 1[3.13] 0 [0.00] 2 [10.5]

Groups did not differ on treatment response by either measure.

114



loci in the analysis to post-treatment and four loci in
the analysis to follow-up reached a suggestive level of
significance (P < 5 x 107°). Quantile-quantile plots indi-
cated no substantial genomic inflation in either
analysis.

Polygenic risk score analysis from an independent
GWAS of response to CBT in children failed to predict
response in the whole cohort with P<0.001
(Supplemental Table 4a, available online, threshold
adjusted for multiple testing; Euesden et al. 2015).
Prediction between the DA treatment group and all
other treatment groups explained more variance in
outcome than the analysis using the independent
GWAS, but predictors were not significant
(Supplemental Table 4b, available online). Further dis-
cussion of the GWAS and PRSice analyses are included
in the Supplemental Material available online.

Individual expression probes

No probes were significantly associated with either
phenotype after correcting for multiple testing (all
g > 0.05; Table 4). The probes with the lowest g values
in this analysis showed no overlap with those reported
in a parallel analysis of this cohort, examining change
in expression over the course of treatment (Roberts
et al. under review).

Power analyses indicated the analyses have 80%
power to detect associations capturing at least 14.8%
(post-treatment), and 19.6% (follow-up) of variance
respectively, where o =1.55 x 107> (Bonferroni correc-
tion for 3,233 tests).

Data-driven network-based analyses

Clustering by co-expression patterns yielded eight net-
work modules ranging from 750 to 63 probes and a
further “grey” module of 459 probes that did not fall
into any cluster. Although different clusters showed

cluster was associated with either treatment response
phenotype (all P> 0.05; Figure 1).

Literature-driven GO analysis

HUGO gene names were assigned to 2,652 probes
associated with at least one GO term (process, func-
tion or component). No significant pathways were
found after correction for multiple testing (all
P>5.72x107%). Following removal of redundant GO
terms, five processes and one function were associated
with P <5 x 10~* in the analysis from baseline to post-
treatment. From baseline to follow-up, eight processes
and two functions were associated with P<5x 10~*
(Supplemental Table 5, available online).

Classical machine learning analyses

Classical machine learning methods did not outper-
form the null model in either analysis. The most
effective model was random forest classification (root-
mean-square error [RMSE]: 31.3, post-treatment; 42.7,
follow-up) but this did not outperform ZeroR, which
predicts the mean (RMSE: 30.6, post-treatment; 42.3,
follow-up).

Expression quantitative trait loci

Expression quantitative trait loci (eQTL) analysis identi-
fied 42,868 cis-eQTLs with g < 0.05, independent of
phenotype. Following the removal of variants in link-
age disequilibrium with more strongly associated
eQTLs, 1,492 variants were present with g<0.05
(Table 5, Supplemental Table 5, available online).
Phenotype-dependent analyses of the interaction
between these variants and treatment response pre-
dicting expression levels yielded no associations with
g < 0.05 (Table 6). One interaction was identified with
g <0.2 (rs10498246 x treatment response baseline to

associations with a variety of sample characteristics, no follow-up, predicting SP110 (probe nulD:

Table 4. Largest correlations between individual expression probes and the treatment response phenotypes.

Associations between expression probes and treatment outcome

Probe nulD Gene WGCNA module Pearson's r P q

Baseline — post-treatment

TkiTOuUa.K4LZ5M7h4 FDFT1 blue 0.282 234%10°* 0.756
0Z7unqgF.KAuA5K4ggU FDFT1 grey 0.241 0.00175 1

Eqx.SXEEVcl.VLrWJI IL18RAP grey 0.237 0.00211 1

Te4VVO0giY1VcQur17E RNASE6 grey —0.216 0.00515 1

QuyngD354KD6IAXvnk YIPF4 grey —0.214 0.00550 1

Baseline — follow-up

TXm4UjVovoAQ4ApVQo myc grey —0.346 217 x107* 0.702

Krrborr9LgDhB.rPoo HNRNPA1P33 brown —0.294 0.00180 1

Ew_iK7UunWqlbOnFeE AlF1 grey 0.265 0.00518 1
6dFQSN.UitTrolYwV4 MAL grey —0.240 0.0115 1

TOupGOh1A5dC87MXtU PPP6C turquoise 0.235 0.0136 1

WGCNA modules refer to the data-driven clusters to which each probe belongs.
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Figure 1. Correlations between expression profiles of module eigengenes from WGCNA and treatment phenotypes (and covari-
ates). Positive correlations are shown in red, negative correlations in blue, with colour intensity indicating strength of correlation.
No module expression profile is associated with a treatment response phenotype (all P> 0.05).

Table 5. Raw and clumped results from the expression QTL
analysis, by false discovery rate.

Linkage-dependent and -independent blood eQTLs

FDR g threshold ~ No. of variants ~ No. of linkage-independent variants

0.01 26,566 788
0.05 42,868 1492
0.1 54,795 2159
0.5 61,799 2503

fcV3S0U751f1e30p0U) expression, B=—0.0041, P=2.
23 x 107>, g=0.103).

Discussion

We performed genome-wide analysis of genetic vari-
ation and pre-treatment gene expression to assess
independent and combined effects on response to CBT
for anxiety disorders in a cohort of adult participants.
This is the first analysis to integrate this data in study-
ing psychological treatment response, and (together
with a companion paper; Roberts et al. under review) is
an analysis of the largest psychological treatment

cohort in which gene expression analyses have been
performed. Despite this, no variants or expression pro-
files were associated (at a genome-wide level of signifi-
cance) with treatment response across the treatment
period or at a 6-month follow-up.

The cohort is larger than previous studies of the
effect of gene expression on response to CBT in anx-
iety disorder (Levy-Gigi et al. 2013; Yehuda et al.
2013). However, it is clear that this study is underpow-
ered to detect all but the largest effects on response,
and that robust prediction requires larger cohort sizes.
Integrating data from two different approaches (that
is, genotyping and gene expression) increases power,
but requires two sets of quality control, resulting in
fewer samples with full data available (Ritchie et al.
2015). Obtaining a large sample size for a study such
as this is non-trivial. Prospective recruitment results in
a high rate of attrition as participants withdraw from
treatment or are lost to follow-up. Furthermore, this
attrition is likely to be related to poor treatment
response.
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Table 6. Top six results from eQTL-outcome interactions predicting expression level.

eQTL x treatment response predicting gene expression

SNP Probe nulD Gene B P q
Baseline — post-treatment
rs11260538 94gYDdn0tHeWCmeGk0 SDF4 0.00394 7.86 x 107* 1
rs3129996 1IGfH57t5ug93Xe1XU KIAA1949 —0.00431 0.00126 1
rs16965033 onsnvop.hKDoejReHU HERPUD1 —0.00528 0.00155 1
153743888 95ft35eUe7g2mGiR5E AXINT 0.00270 0.00163 1
rs11850781 NoXN6F3SR7AMv_v_6Q NIN —0.00577 0.00164 1
Baseline - follow-up
rs10498246 fcV3S0U751f1e30p0U SP110 —0.00414 223%107° 0.103
rs6701295 cXI3ddwDJC3qA16ri4 SMG5 0.00249 226 % 107* 0.523
rs1737046 Tt5hug2hqZcdZgzRSc HCG4 —0.00318 3.99 x 107* 0.616
154602357 60l0oHit00T3Imfo5U CEP63 0.00251 594 % 10~* 0.688
rs12343854 fpnvXIHteCO40rrGPO SEMA4D 0.00231 9.24x 107" 0.784

No interactions are significant at g < 0.05.

The aim of this investigation was to study genetic
and transcriptomic correlates of response to exposure-
based therapy, which may act across diagnostic boun-
daries. We sought to increase power by recruiting from
treatment studies for two disorders with differing treat-
ment procedures. Studying anxiety disorders as a het-
erogeneous group has been effective in genomics
(Otowa et al. 2016). However, combining groups
increases  heterogeneity, partially negating the
increased power from the enlarged sample size. The
disorders studied are conceptually distinct, and treat-
ment is tailored to the needs of the participant, differ-
ing between and within diagnostic groups. Combining
across disorder groups incurs disorder-specific differen-
ces, such as the lower baseline severity of the SP group
and higher comorbidity in the DA group herein. These
differences reflect the varying nature of the disorders
and recruitment to treatment - for example, the high
comorbidity of the DA group is likely to result from sec-
ondary consequences of avoiding dental treatment,
such as a phobia of vomiting or social anxiety about
visiting the dentist. Although we have sought to con-
trol for this heterogeneity statistically, it limits the con-
clusions of this investigation. Furthermore, many social
and environmental influences on treatment response
have been proposed, and the covariates controlled for
within this analysis cannot correct for all possible con-
founds. Nevertheless, investigating biological correlates
of therapy requires a pragmatic approach. Cohorts of
individuals receiving psychological therapies, particu-
larly those outside of clinical trials, are prone to hetero-
geneity and attrition. For any biological predictor to
contribute valuably to therapeutic decision-making, it
must be robust to these limitations.

Although no genome-wide gene expression studies
have investigated response to CBT, single-gene studies
have suggested a role for differential FKBP5 expression
in response to CBT for PTSD (Levy-Gigi et al. 2013;
Yehuda et al. 2013). One probe in this study,

Zd145S5e3VG7s869FKo, captures expression of FKBP5,
but was not associated with either outcome (baseline
to post-treatment: P =0.0533, g =0.999; baseline to fol-
low-up: P=0.607, g =0.997). However, the low power
of the analysis (and differences between this cohort
and those examined previously), limit strong
conclusion.

Gene expression differs between different tissues
and organs; expression observed in peripheral blood
may not reflect that in the brain. Previous studies sug-
gest moderate correlation between gene expression in
different tissues, varying by individual genes (Sullivan
et al. 2006). The emergence of reference panels such as
the GTEx Portal has made in silico assessment of
blood-brain expression correlations at the individual
gene level viable (Consortium 2015). As such, peripheral
blood gene expression can provide relevant insights
into gene expression in the brain, and this will improve
as further brain expression samples are added to the
reference. From a pragmatic standpoint, gene expres-
sion markers of treatment response will only be useful
if they can be obtained from peripheral tissues — while
the effect of gene expression in brain tissues is of bio-
logical interest, it cannot be of practical utility in this
case.

Assessing the severity of anxiety disorders can be
performed using different rating scales, with varying
characteristics. No consensus regarding the best means
of measuring response to CBT exists (Loerinc et al.
2015). In this study, the CGI-S was used as a measure of
clinical concern across treatment groups, allowing a sin-
gle measure to be used to assess general functioning.
However, this measure bears a number of limitations. It
is a subjective measure of clinical judgement that may
fail to capture the participant's anxiety as appropriately
as a self-report measure. Treatment response is likely to
involve multiple components, including reduction in
fear and increase in functioning, that a single measure
may not capture. One potential solution is to combine
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a number of scales using different assessors and assess-
ing different aspects of treatment response. However,
this increases the complexity of the analysis and the
potential for spurious results. In addition, it would be
difficult to interpret in a useful manner.

Anxiety disorders are widespread and disabling, and
CBT is a first-line treatment for these conditions. CBT
involves a considerable investment from the recipient,
and a significant minority of those receiving it do not
respond adequately. Stable pre-treatment predictors of
outcome are required. To date, genetic variants and
gene expression levels have not provided these predic-
tors, individually or in combination. However, this does
not argue against the continued study of the biology
underlying CBT response. The pattern of findings to
date is consistent with the highly polygenic model that
has been proposed to influence behavioural traits
(Chabris et al. 2015). Although individual genetic var-
iants seem extremely unlikely to be valuable predictors,
prediction might be achieved through the combined
effect of many genetic variants, at multiple levels of
analysis.

Response to CBT is likely to be influenced by genes
and by the environment, and continued research to
define reliable environmental and clinical predictors of
response is vital — genetics can only be clinically useful
in the context of known environmental and clinical
risk factors (Hudson et al. 2015). Studies of genetic
variation, gene expression and epigenetics should
either adopt a hypothesis-neutral approach (exploring
variation genome-wide), or be informed by robust
associations in related traits (rather than assumed bio-
logical relevance). The effects of individual transcript
differences are likely to be small. For these insights to
be discovered, cohorts of thousands of individuals
must be treated in as homogenous a manner as pos-
sible from recruitment to the analysis of the resulting
data. This is not straightforward (especially given the
heterogeneity inherent to CBT) but the example of the
many international consortia driving advances in com-
plex trait genetics demonstrates such investigations
can yield valuable insights.
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Chapter 5: The relationship between depression and body mass index in

the UK Biobank, and the contribution of polygenic risk

5.1 Introduction

Depression and obesity are severe and growing public health
concerns. Depressive disorders account for approximately 3% of the total
global burden of disease and are the largest single contributor to years lived
with disability (Whiteford, Degenhardt, Rehm, et al, 2013). While the global
burden of disease has decreased in relative terms in the last twenty years, the
burden of depressive disorders has increased (Murray, Vos, Lozano, et al,
2012). The effect of high body mass index (BMI) shows a similar pattern,
accounting (indirectly) for around 4% of the global burden of disease, and
increasing substantially from 1990 to 2010 (Lim, Vos, Flaxman, et al, 2013;

Ng, Fleming, Robinson, et al, 2014).

Variation in BMI and depression are not independent. Although
individual studies often show contradictory results, large-scale meta-
analyses have repeatedly shown a small positive correlation between
depression and BMI (de Wit, Luppino, van Straten, et al, 2010; Luppino, de
Wit, Bouvy, et al, 2010; Scott, Bruffaerts, Simon, et al, 2007; Simon, Von Korff,
Saunders, et al, 2006). Furthermore, diagnostic criteria for depression include
BMI-related processes such as weight change, dysregulated appetite, and

unusual sleep and activity patterns (Association, 2013). As these criteria have
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no inherent directionality, both reductions (termed typical depression) and
increases (atypical depression) in these aspects can be present in depression
(Sullivan, Prescott & Kendler, 2002). As such, variation in BMI is not merely
associated with depression, but can also be an inherent part of the diagnosis.
However, the causal nature and direction of the relationship remains
unclear, and many potential mediators or moderators have been suggested
(Faith, Butryn, Wadden, et al, 2011; Faith, Matz & Jorge, 2002; Gibson-Smith,

Bot, Paans, et al, 2016; Konttinen, Kiviruusu, Huurre, et al, 2014).

Insights into the relationship between depression and BMI could be
gained by analysing the genetic contribution to variance in each trait, and
assessing to what extent these contributions are shared. Evidence from the
twin literature suggests that BMI and depression may share a small genetic
component, resulting in a genetic correlation around 12% (Afari, Noonan,
Goldberg, et al, 2010; Jokela, Berg, Silventoinen, et al, 2016). Studies seeking
to identify genetic variants have suggested a role for common (and
potentially for rare) variants, but such findings await robust replication
(Jokela, Elovainio, Keltikangas-Jarvinen, et al, 2012; Milaneschi, Lamers, Bot,

et al, 2015; Samaan, Lee, Gerstein, et al, 2015).

Molecular genetic studies of BMI and depression have differed in
their rate of success to date. Studies of BMI have successfully detected high-

effect rare variants (such as perturbations in the leptin system) and identified
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a considerable amount of the contribution of common genetic variants
(Zhang, Proenca, Maffei, et al, 1994). Much of this latter success has been
driven by meta-analyses from the GIANT consortium, the most recent of
which identified 97 associated genetic loci and a genome-wide heritability
estimate from genome-wide genotype data of ~20%(Locke, Kahali, Berndt, et
al, 2015). In contrast, the progress of genomics in studying depression has
been slower despite considerable research effort (Major Depressive Disorder
Working Group of the Psychiatric, Ripke, Wray, et al, 2013). However,
genome-wide significant loci are emerging. A detailed study of severe
depression in Han Chinese participants yielded 2 variants at genome-wide
significance (Cai, Bigdeli, Kretzschmar, et al, 2015). An investigation of self-
reported data from users of the 23&Me consumer genotyping service
(limited to those with European-ancestry) identified 15 loci in meta-analysis
with previous studies from the Psychiatric Genomics Consortium (PGC;
Hyde, Nagle, Tian, et al, 2016). The next iteration of the PGC depression
genomic mega-analysis is expected to yield further associations (Lewis,

2015).

Genomic data have uses beyond identifying genome-wide significant
loci. Genomic studies are typically underpowered because individual genetic
variants have small effects; as a result, loci with real effects will be enriched

at p-value thresholds below conventional significance. Although these
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cannot be specifically identified, the predictive power of such loci can be
leveraged through building polygenic risk scores, which use the results of
established genome-wide association studies (such as those mentioned
above) to weight variants in a target cohort, and thus enable the calculation
of genetic risk for a disorder in a novel cohort (Dudbridge, 2013; Euesden,
Lewis & O'Reilly, 2015; International Schizophrenia, Purcell, Wray, et al,
2009). Such risk scores can also be used to examine the relationship between
disorders. A similar approach has been carried out previously in the
Generation Scotland cohort, in which variance in BMI was predicted using
genetic risk scores for depression and for BMI (Clarke, Hall, Fernandez-
Pujals, et al, 2015). The study found no effect of genetic risk of depression on
BMI (nor of genetic risk for BMI on depression) but did find a significant
interaction between (unweighted) BMI polygenic profile scores and
depressive disorder predicting BMI, with a greater effect of BMI genetic risk

in the case group compared to controls.

Recently, there has been increased interest in BMI as a behavioural
phenotype. Most antipsychotic and some anti-depressant drugs alter BMI,
potentially implying shared biological pathways, and a combined role of
metabolic and psychiatric influences has been proposed in a variety of
psychiatric disorders (Fava, 2000; Khansari & Sperlagh, 2012; Yao & Reddy,

2005). One of the most intriguing pieces of evidence has emerged from the
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field of complex genetics. The common additive component of the genetic
contribution to variance in a trait (sometimes referred to as “chip”
heritability) can be partitioned into cell-type-specific components according
to the annotation of genetic variants to cell-type-specific histone
modifications (Finucane, Bulik-Sullivan, Gusev, et al, 2015). When this
procedure was performed on the results from a large meta-analysis of BMI
genomic studies, significant enrichment was found for central nervous
system cell types (in comparison to enrichment of adrenal and pancreatic cell
types with variance in fasting glucose levels; Finucane, Bulik-Sullivan,
Gusev, et al, 2015; Speliotes, Willer, Berndyt, et al, 2010). This reinforces the
potential for a shared behavioural genetic component between BMI and

psychological or psychiatric phenotypes.

Within this study, we investigated the relationship between BMI and
depression using polygenic risk scores in a large population cohort, the UK
Biobank (Sudlow, Gallacher, Allen, et al, 2015). The results of this study add
to recent analyses to provide additional insight into this complex
relationship and address the relevance of genetic factors within that
relationship (Clarke, Hall, Fernandez-Pujals, et al, 2015; Milaneschi, Lamers,

Peyrot, et al, 2016).
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5.2 Materials and methods

5.2.1 Cohort Description

The UK Biobank is a prospectively sampled population cohort of
approximately 500,000 adult individuals (aged between 40-69) from the UK,
with data collected on an extensive range of health-related phenotypes
(Sudlow, Gallacher, Allen, et al, 2015). Data were made available from the
baseline assessment of the full cohort, as well as a targeted re-assessment of a
subset of individuals. Health data were gathered via an extensive
touchscreen questionnaire, with specific details on prescription medications
and health conditions obtained during interviews with a nurse. Additional
information was available from electronic health records detailing inpatient
hospital episodes data. Full details on the collection of the UK Biobank

cohort can be found on the project website (http://www.ukbiobank.ac.uk/).

5.2.2 Phenotype definitions

Data on BMI and covariates were available from UK Biobank.
Individuals reporting regular use of antipsychotic or mood stabilising
medications, reporting cancer of any kind or reporting an eating disorder (all
of which may alter BMI) were excluded from analysis. Raw BMI scores were

transformed with a natural logarithm to increase normality.
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Depression was defined as any reported primary diagnosis of
depression from inpatient hospital episodes data (ICD 10 subchapters F32
and F33) or meeting criteria from a previous publication on the UK Biobank
cohort (Smith, Nicholl, Cullen, et al, 2013). These latter criteria required
participants to report (as part of their general assessment) a previous visit to
a GP or psychiatrist for stress, anxiety or depression, and at least one period
of depression or anhedonia lasting at least two weeks. Depression cases were
excluded if they self-reported (or had a hospitalisation primarily for) bipolar
disorder, psychosis, multiple personality disorder, autism or intellectual
disability. Depression controls were defined as individuals who did not meet
the criteria for case status, did not report depression, anxiety or the excluded
conditions outlined above, and did not report taking medication with an
antidepressant or anxiolytic indication. Individuals who did not provide
sufficient data to establish depression case status were excluded from

analysis.

5.2.3. Genotyping and imputation

Genome-wide genotyping of the cohort was performed by Affymetrix
using two customised microarrays, the UK BILEVE and UKB Axiom arrays,
which have very similar content and assay over 800,000 variants. Details of
the genotyping and quality control processes are available at

http://www.ukbiobank.ac.uk/wp-
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content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-
web.pdf. Genotype data were imputed to a combined reference panel of the
UK10K and 1000 Genomes Phase 3. Imputation analyses were performed as
part of the UK Biobank project using IMPUTE3 software; full details of this
procedure are available at

http://biobank.ctsu.ox.ac.uk/showcase/docs/impute_ukb_v1.pdf.

5.2.4. Genotype quality control

Preliminary quality control was performed by Affymetrix during and
after genotyping, and centrally by the UK Biobank team before and
following imputation, and is described in the previously noted references.
Further quality control specific to this study was performed using PLINK2
and QCTOOL (Chang, Chow, Tellier, et al, 2015;
http://www.well.ox.ac.uk/~gav/qctool). The cohort was limited to depression
cases and controls who self-identified as British and were of White Western
European ancestry (as inferred from principal components analysis by UK
Biobank). No participants were substantially related in this subset of the
cohort (all pairwise KING relatedness coefficient < 0.044, equivalent to a
greater separation than third-degree relatives). Participants were retained in
the analysis if they had > 98% of genotyped variants available and had
genome-wide heterozygosity (as inferred from genotyped variants) within

three standard deviations of the sample mean. Imputed variants were
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retained for the analysis if they were common (minor allele frequency > 0.01),
imputed with high certainty (info > 0.9) and did not deviate substantially
from Hardy-Weinberg equilibrium (Hardy-Weinberg equilibrium test

p 2 1x10°).

5.2.5. Generation of polygenic risk scores

Polygenic risk scores (PRS) were derived for the analyses using the
default settings of PRSice, which performs high-resolution scoring to identify
the most predictive PRS (Euesden, Lewis & O'Reilly, 2015). The depression
PRS was derived from the PGC1 mega-analysis of major depression, and the
BMI PRS from the GIANT 2015 trans-ethnic analysis (Locke, Kahali, Berndt,
et al, 2015; Major Depressive Disorder Working Group of the Psychiatric,
Ripke, Wray, et al, 2013). Variants were retained for the analysis if present in
the relevant base dataset and the UK Biobank dataset, which were merged
and then clumped to address linkage disequilibrium. Scores were calculated
at p-value thresholds extending from 0.0001 to 0.5, with intervals of 0.00005.
Analyses were performed within- and across-trait. The most predictive PRS
was identified by comparing the R?of the model containing the PRS and
genotyping batch, assessment centre, and the first eight principal
components (to address potential confounding by technical artefacts and
population stratification) with that not including the PRS. As fewer

covariates were included, PRS were calculated on a slightly larger cohort
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than was assessed in the main analysis. Variance explained for depression is
reported by PRSice as Nagelkerke's pseudo-R? (on the observed scale). This
was back-converted to the Cox-Snell pseudo-R?, and then converted to the
liability scale using the software package GEAR, assuming a population
prevalence of 12% (Chen, 2014; Fernandex-Pujals, Adams, Thomson, et al,
2015; Lee, Goddard, Wray, et al, 2012). Variance explained for log-BMI is on
the liability scale. The multiple testing incurred by the PRSice method
suggests an adjusted alpha threshold of 0.001 (derived by permutation)
should be used for a single test (Euesden, Lewis & O'Reilly, 2015). To
account for the four tests performed, the correlation matrix between the
most-predictive PRS from each analysis was spectrally decomposed and the
Nyholt-Sidak calculation of the effective number of independent tests was

performed (Nyholt, 2004).

5.2.6 Analyses

Statistical analyses were performed in R. The most predictive within-
trait PRS were used as proxies for the genetic components of each trait.
Depression case-control status was regressed on the depression PRS, on the
BMI PRS, on log-BMI as a trait, and on the interaction between the three
components, using a logistic model (to assess main effects and multiplicative
interactions) and a linear model (to assess additive interactions; Mullins,

Power, Fisher, et al, 2016; Rothman, Greenland & Lash, 2008). A linear model
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was used to assess the effects of BMI PRS, depression PRS, depression case
status and the interaction between the dependent variables on log-BMI. All
analyses featured as covariates fixed effects of sex, age in years (at baseline
assessment), Townsend Deprivation Index, the first eight principal
components (as derived by UK Biobank from the genotype data), and
unordered factors accounting for region of birth, assessment centre and
genotyping batch. The Townsend Deprivation Index is a measure of
neighbourhood deprivation, where a higher score on the index represents
more unemployment, less vehicle or home ownership, and more home
overcrowding (Townsend, Phillimore & Beattie, 1988). Region of birth was
converted from Cartesian coordinates (as received from UK Biobank) into
eight factors by k-means clustering using the pamk function from the fpc R
package(Kaufman & Rousseeuw, 2009;
https://cran.r-project.org/web/packages/fpc/fpc.pdf). Where the model
included an interaction between the trait and either or both PRS, all
covariate-by-trait and covariate-by-PRS interactions were included in the
model (Keller, 2014). All continuous variables were normalised for analysis.
Following the initial analysis of log-BMI, the cohort was stratified into
depression cases and controls to assess differential effects of PRS on log-BMI
within these groups. Significance for each test was set at 0.0125 (Bonferroni
correction for four tests, assessing association with depression, with BMI and

stratifying the tests with BMI into cases and controls).

131



In addition to the linear models as described above, genome-wide
association analyses (GWAS) of depression and of log-BMI (in the whole
cohort and stratified by depression status) were performed. GWAS was
performed using the "frequentist” option in SNPTEST and probabilistic
dosage estimates from the imputed genotypes (Marchini & Howie, 2010).
The variables of interest (log-BMI and depression) were separately regressed
on the covariates from the linear models, and the resulting residuals used as
the phenotype for GWAS. The results of GWAS were used to calculate
genetic correlation and to estimate differences in heritability. Specifically,
genetic correlations between the residuals for depression and for log-BMI,
and between the residuals for log-BMI in depression cases and in controls,
were calculated using LDScore, which also provides an estimate of
heritability (Bulik-Sullivan, Loh, Finucane, et al, 2015). Analyses were
performed without constraining the intercept of the LD score regression, and
constraining the intercepts for heritability to 1 and genetic covariance to
0.0625 (the correlation between the residuals for depression and for log-
BMI). Additional estimates of heritability were calculated from imputed
genotypes (hard-called using the thresholds used in GWAS) using GCTA-
GREML (Lee, Yang, Goddard, et al, 2012; Yang, Lee, Goddard, et al, 2011).
Estimates of log-BMI heritability were compared between depression cases

and controls.
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Sensitivity analyses were performed to assess the importance of
antidepressant or anxiolytic use in the case group. Medications were
classified as weight-increasing, weight-decreasing, weight-modulating (both
increasing and decreasing) or weight-neutral (Supplementary Material).
Additional analyses were performed by removing all cases reporting
medication use, and by adding the different categories of medication as

covariates in the model.

Post-hoc power analyses were conducted in R using the pwr package.
Cohen's f2 at 80% and 90% power, and power to detect observed effects of
each variable of interest, was calculated for each analysis (Cohen, 1988;
Selya, Rose, Dierker, et al, 2012). Cohen's f? is a measure of effect size suitable
for assessing the contribution of a single variable in a multiple regression

(Cohen, 1992).

The BMI PRS analyses presented in this paper mirror previous work
performed in the Generation Scotland cohort (Clarke, Hall, Fernandez-
Pujals, et al, 2015). However, this previous analysis used an earlier meta-
analysis of BMI GWAS (Speliotes, Willer, Berndyt, et al, 2010). As this GWAS
did not list betas for each variant, the PRS produced is unweighted, differing
from that used in this analysis. As such, there may be differences between
the results of Clarke et al and this analysis that are attributable to the

different PRS. To test this, the analyses in this study were repeated with the
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older, unweighted PRS (all betas = 1), and the analyses in Generation
Scotland were repeated using the new BMI PRS (Locke, Kahali, Berndt, et al,
2015). Analyses in Generation Scotland were performed in 18850 individuals,
of whom 2605 were defined as depression cases, with 16245 controls. Age,
sex and 4 multi-dimensional scaling components were included as
covariates. As in the UKBB cohort, the optimal PRS was identified using the

default settings in PRSice (Euesden, Lewis & O'Reilly, 2015).

5.3 Results

5.3.1. Cohort characteristics

The interim release of the genotyping data contained genotypes for
152,734 individuals, from which 7,009 depression cases and 14,030 controls
were available with full phenotypic data following quality control
(Supplementary Figure 1). Imputed genotype data were available on

8,747,914 variants following quality control.

A higher proportion of depression cases than controls were female
and cases tended to have higher BMI than controls. Cases were also younger
and tended to live in more deprived areas (Table 1). All covariates were
associated with at least one variable of interest: log(BMI), depression status

or either PRS (Table 2).
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5.3.2. Polygenic risk score analyses

The Nyholt-Siddk method indicated that the within-trait and cross-
trait PRS analyses were largely independent (3.75 effective tests), resulting in
an adjusted alpha threshold of p =2.67x10 (Euesden, Lewis & O'Reilly, 2015;
Nyholt, 2004). PRS were significantly associated within-trait, but not cross-
trait (Table 3). The optimal within-trait PRS (bold in Table 3) were taken
forward for further analyses, including calculating correlations with

covariates (Table 2).

5.3.3. Effects on depression

Depression and log-BMI had a small but significant positive
correlation at the phenotype level (Table 2). In the linear and logistic
analyses of depression, no interactions (neither the three-way interaction
between depression status, depression PRS and BMI PRS, nor the two-way
interactions alone or in combination) were significantly associated with
outcome when modelled as multiplicative, nor when modelled as additive
(Table 4). BMI PRS was not significantly associated with depression status,
although log-BMI and depression PRS were associated alone and together

(Table 4).
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5.3.4. Effects on log-BMI

In the analysis of log-BMI, no interactions were significantly
associated with variance in log-BMI. Depression status and BMI PRS were
significantly associated included together and separately (Table 5). The
polygenic risk for depression was not significantly associated with log-BMI.
Analyses stratified by depression case status show a nominally significant
effect of depression PRS in controls, but this does not survive correction for

multiple testing (Table 5).

5.3.5. Stratified heritability and genetic correlations

Heritability estimates for log-BMI did not differ substantially between
depression cases (16.8%, 95% Cls: 3.56-30.1%) and controls (18.8%, 95% Cls:
11.9-25.7%), and the genetic correlation between the two groups = 1 when
intercepts were not constrained. Constraining the intercepts did not alter the
results substantially (cases =19.9%, 95% Cls: 10.8-29.0%; controls = 18.5%,

95% Cls: 13.4-23.6).

When the intercepts were not constrained, the genetic correlation
between depression and log-BMI was not statistically significant (rg = 1.26%,
95 ClIs: -21.5% — 24.1%). Variance explained by common genetic variants in
the cohort was estimated at 11.3% for depression (95 Cls: 6.03-16.5%; liability

scale, assuming population prevalence of 12%), and at 18.4% for BMI (95 Cls:
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13.4-23.4%; estimates from LDScore, similar estimates from GCTA not
shown). Defining the intercepts had minimal effect on the estimation of
heritability (depression = 13.1%, 95% Cls: 9.6-16.6%; log-BMI = 20.5%, 95%
ClIs: 16.8-24.2%), but altered the estimate of genetic correlation, although this

did not pass statistical significance (rs = 10.7%, 95 ClIs: -5.05% — 26.5%).

5.3.6. Sensitivity analyses concerning antidepressant use

Antidepressant or anxiolytic medication use was reported by 1368
(19.5%) individuals with depression (some of whom were taking more than
one drug). Analyses were performed excluding individuals using medication
(Supplementary Tables 5, 6), and including the medication categories as
covariates (Supplementary Tables 7). Controlling for medication use did not

alter the conclusions from any analysis.

5.3.7. Power

The main analyses were powered to detect very small effects at 90%
power (f2=0.000521), as were the analyses of BMI stratified by depression
case status (f>=0.00154 and 0.000764 in cases and controls respectively).

Cohen suggested f>=0.02 should be considered "small" (Cohen, 1988).

5.3.8. Replication of Clarke et al (2015)

BMI analyses were repeated using the Speliotes GWAS as the base,

and assuming all betas =1 to create an unweighted risk score (Speliotes,
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Willer, Berndt, et al, 2010). Overall, results did not differ from the main
analysis: BMI PRS was associated with log-BMI and not with depression
status, regardless of other additions to the null model, and no interactions
were significant (Supplementary Tables 8 and 9). However, the interaction
between BMI PRS and depression status predicting log-BMI was nominally
significant with the same direction of effect as was observed in Clarke et al

(2015).

Additional analyses were performed in the Generation Scotland
cohort using a weighted PRS derived from the most recent GIANT BMI
GWAS meta-analysis (Supplementary Table 10; Locke, Kahali, Berndt, et al,
2015). The BMI PRS was strongly associated with BMI in the cohort, but not
with depression, and the depression PRS was associated with depression but
not BMI. The interaction between BMI PRS and depression status remained
significant, but had a diminished effect compared to that reported in Clarke

et al (2015).

5.4. Discussion

A small but significant positive correlation was observed between
BMI and depression status, such that individuals with depression have an
increased BMI on average. Polygenic risk scores capture within-trait variance
in the cohort, apparently independently of the phenotype-level relationship

between BMI and depression. Genetic risk for increased BMI does not appear
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to affect depression status, nor is there a significant interaction between PRS-
BMI and PRS-MDD to predict depression status or BMI. This argues that the
mechanism of association between BMI and depression is not accounted

substantially by the shared additive effect of common genetic variants.

The results suggest that the association between depression and BMI
does not result from a genetic relationship that would arise from a genetic
correlation greater than 25% (that is, greater than the 95% confidence interval
of the observed genetic correlation). This is concordant with the estimate of
genetic correlation around 12% reported in the twin literature. More modest
genetic correlations will be detectable when the full UK Biobank data are
released. A further caveat to this is that the genetic component studied
herein results from an additive model of the effects of common variants
captured by (or imputed from) genome-wide microarrays. As such, a
relationship resulting from rare variation or non-additive scale (dominance)
or interaction (epistatic) effects would not be captured in this study.
Furthermore, although the PRS used in this study were generated from the
largest relevant studies published to date, they still do not capture the full
contribution of additive genetic effects. The absence of a sizable genetic
component to the association between depression and BMI argues for

increased study of non-genetic factors, including the effects of physical
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illnesses that are correlated with both traits, as well as the environmental

(including social) risks driving higher BMI in the context of depression.

The effect of genomic risk on the relationship between BMI and
depression has previously been examined in the Generation Scotland cohort,
a similar (but largely independent) study to the UK Biobank (Clarke, Hall,
Fernandez-Pujals, et al, 2015). The Generation Scotland study found no cross-
trait associations of PRS, in accordance with the results of this study, but
differed in that a significant interaction between BMI polygenic profile scores
and MDD predicting BMI was identified, with higher BMI PRS in the case
group compared with the controls. Although the two cohorts are similar, the
BMI PRS used in the Generation Scotland study was from a previous GIANT
BMI meta-analysis compared to that used in this study, and the PRS
produced was a summed risk score, not weighted by beta values (which
were not available in the data release). Repeating the relevant analyses in the
UK Biobank and in Generation Scotland (such that both PRS were used in
both studies) suggests that the use of the unweighted PRS explains some, but
not all of this disparity. No distinction was made for differing symptoms of
depression in either this study or in Clarke et al (2015), and inter-study
differences are likely to account for the rest of the inconsistency in results. In
particular, depression associated with increased appetite and weight gain

("atypical depression") might be more common in the Generation Scotland
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cohort than in UK Biobank. If so, this could explain some of the observed
difference between the cohorts. This is supported by a further investigation
in an independent cohort, which dissected depression into typical and
atypical subtypes (and more specifically low vs high appetite subtypes) and
showed no effect of metabolic PRS (including BMI PRS) on depression status
overall, but found an effect of BMI PRS when the atypical group was

considered alone (Milaneschi, Lamers, Peyrot, et al, 2016).

An important difference between the results of this analysis and those
of Clarke et al was the use of weighted versus unweighted polygenic risk
scores (Clarke, Hall, Fernandez-Pujals, et al, 2015). The most appropriate
score depends on the power of the analysis. The accuracy of weighted risk
scores can be limited if the base dataset is underpowered to detect the true
effect sizes of variants associated with the phenotype, as is usually the case
in psychiatric genetics. Underpowered GWAS are vulnerable to winner's
curse (the overestimation of significant effect sizes when multiple tests are
performed), which biases simple weighting by effect size (Vilhjalmsson,
Yang, Finucane et al, 2015; Shi, Park, Duan, et al, 2016). More sophisticated
weighting of variants could be performed, such as shrinking the reported
effect size to a prior distribution reflecting the genetic architecture of the
trait, but this may be inaccurate if the true genetic architecture differs from

that modelled (Vilhjalmsson, Yang, Finucane et al, 2015). Assuming simple
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weighting by effect size, unweighted scores are more robust to confounds
like winner's curse (Dudbridge, 2013). However, as the power of the base
dataset increases, the sampling error of the weighted score reduces to zero,
unlike that of the unweighted score, and weighted scores become superior
(Dudbridge, 2013). Additional complexity is added by the use of risk scores
to perform cross-trait analyses. The weighting of the risk score is trained to
the base phenotype, and reflects the observed distribution of effects. In
comparison, an unweighted score would capture only which variants are
associated, without imposing any effect size distribution on them.
Accordingly, the precise hypothesis tested by cross-trait PRS differs if the
score is weighted ("those at greater genetic risk of the base phenotype are
more likely to exhibit the target phenotype") or unweighted ("the variants
associated with the base phenotype are also associated with the target
phenotype"). As such, the reported differences between results obtained
with the Speliotes unweighted BMI risk score (Speliotes, Willer, Berndt, et al,
2010) and the Locke weighted risk score (Locke, Kahali, Berndt, et al, 2015)
reflect differences in the method used as well as the power of the base

studies.

This study represents an initial study on the pilot data of the UK
Biobank, which will become an increasingly valuable resource as new data

are added, especially when genetic data are available on the full cohort.
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However, the breadth of the cohort results in some limitations, particularly
in the diagnosis of depression. Although the definition of depression used
herein has a high genetic correlation with the results of the PGC MDD meta-
analysis (0.738, 95 ClIs: 0.404-1.07), suggesting external validity on a genetic
level, the lack of a formal psychiatric diagnostic assessment makes it difficult
to assess the clinical validity of depression as defined (Major Depressive
Disorder Working Group of the Psychiatric, Ripke, Wray, et al, 2013). In
addition, dissection into symptom groups was not possible, as mentioned
above. Finally, although this represents a large cohort for study, the final
sample size is still underpowered to detect a very small contribution to
variance from the genetic factors (particularly in the case of depression), and
so we cannot exclude such effects. However, future analyses in the full UK

Biobank cohort could be informative about such effects,

A small but significant positive correlation exists between BMI and
depression, and this does not result from a substantial effect of shared
common genetic variants. The effect of genetic risk for depression or for BMI
does not appear to be influenced substantially by variance in the opposite
trait, although this does not replicate previous findings; this disparity may
result from unmeasured cohort-specific effects. Understanding the

relationship between BMI and depression, and the effects of non-genetic
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factors on these traits, may provide insight into two areas of growing

concern for public health.
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5.6. Tables

5.6.1. Table 1
. Depression Depression
Variable Full Cohort | Females Males t-test p t-test p
Cases Controls
N 21039 10232 10807 ] 7009 14030 ]
Female sex (N [%]) 10232 [48.6] ] ] - 4250 [60.6] 5982 [42.6] | <10
Age (mean, SD) 56.9[7.95] | 56.4[7.85] | 57.4[8.01] | 2.26x10% 55.9 [7.79] 57.4[7.98] | 7.92x10%
T d Ind ,
ownsen 51;) ex(mean, | oo o7e | 154275 | 156 280] | 0522 -1.19 [2.94] 1.73[2.67] | 1.31x10%
BMI (mean, SD) 275[4.68] | 27.0[5.101 | 27.9[4.21] | 3.65x104 27.9 [5.11] 27.3[4.44] | 8.99x10"

Table 1: Demographic variables in the full cohort, and split by gender and depression case status. Significant differences between

genders and between depression cases and controls are marked in bold (p < 0.05, t-tests not assuming equality of variance).
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5.6.2. Table 2

Variable log(BMI) Depression BMI PRS Depression PRS
r P r p r p r p
log(BMI) - - 0.0539 | 4.88x107"° 0.240 <10 0.0130 0.0598
Depression 0.0539 4.89x101 - - 0.0103 0.137 0.0505 | 2.22x103
BMI PRS 0.240 <10 0.0103 0.137 - - 0.00172 0.803
Depression PRS 0.0130 0.0598 0.0505 | 2.22x10% | 0.00172 0.803 - -
Male gender 0.113 <10 -0.170 <100 0.0106 0.125 | -0.00262 0.704
Age (years) 0.0477 4.59x102 | -0.0891 | 2.56x10-%¢ | 0.000138 0.984 -0.0201 | 0.00361
Townsend Index 0.0871 <10 0.0912 <10° 0.0317 4.39x10¢ | 0.0165 0.0167
Centre * -0.0509 1.42x10 | 0.0365 | 1.18x107 -0.0182 0.00846 | 0.0468 | 1.14x10"
Birth Cluster * -0.0478 4.04x102 | 0.0207 0.00273 -0.0245 | 0.000379 | -0.0601 | 2.51x10'®
Batch * 0.0277 6.04x10° | -0.0133 0.0542 0.0276 6.24x10° | -0.0167 0.0155
PC1 -0.0130 0.0595 ] 0.000341 0.961 0.0263 0.000136 | -0.0204 | 0.00301
PC2 0.00109 0.874 0.00682 0.323 0.00835 0.226 0.0271 | 8.24x10°
PC3 -0.0000125 0.999 -0.00259 0.707 -0.000322 0.963 | -0.00558 0.419
PC4 0.0261 1.56x10* | 0.00398 0.564 0.00571 0.408 0.115 <100
PC5 -0.0264 1.30x10* | -0.00281 0.684 -0.0111 0.109 -0.174 <100
PC6 -0.00604 0.381 -0.0129 0.0614 -0.00260 0.706 0.00881 0.201
PC7 -0.00141 0.838 0.00604 0.381 -0.0112 0.106 -0.0179 | 0.00952
PC8 0.00133 0.847 -0.00599 0.385 0.0310 7.09x10° | 0.0903 <10

Table 2: Pairwise univariate correlations between the variables under study. Correlations with p <0.05 are marked in bold.

For factors (marked with *), the most significant correlation is reported.
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5.6.3. Table 3

Polygenic risk scoring results within and between traits
K
External Bi(:ljoank Best p-value at best | Variance explained
GWAS threshold threshold (R?»)
Phenotype

PGC Depression | 0.1811 8.56x1015 0.00310 (0.00343)

MDD P . . . .

PGC

MDD log-BMI 0.0001 0.0349 0.000202
GIANT | log-BMI 0.04795 <1050 0.0559
GIANT | Depression | 0.0055 8.67x10+* 0.000570 (0.000631)

Table 3: Polygenic risk scoring results within and between traits. Within-trait

analyses were significant (bold, p <2.67x10*), cross-trait analyses were non-

significant. Variance explained is reported on the liability scale where the

phenotype was log-BMI. Where the phenotype is depression, pseudo-R?

transformed to the liability scale is reported, with the untransformed

Nagelkerke's pseudo-R?*in parentheses.
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5.6.4. Table 4

(Additive)

Coefficient B SE p
Null model See Supplementary Table 1
... + depression PRS 0.112 0.0154 4.37x101
... + BMI PRS 0.0161 0.0151 0.287
S log-BMI 0.144 0.0151 1.09x1021
... + depression PRS 0.111 0.0154 5.66x10"
U log-BMI 0.144 0.0151 1.41x1021
ion PRS x log-BMI
+ depression PRS x log-BM 00287 | 00157 0.0680
(Multiplicative)
i log-
+ depression PRS x log-BMI -0.00548 | 0.00332 0.0984
(Additive)
... + BMI PRS -0.0192 0.0156 0.217
eee + log-BMI 0.149 0.0155 9.17x1022
...+ BMI PRS x log-BMI
+ BMIPRS x log 0.00268 | 0.0150 0.858
(Multiplicative)
... + BMI PRS x log-BMI
-8. 104 . 17 787
(Additive) 8.55 x10 0.003 0.78
... + depression PRS 0.112 0.0154 4.24x101
...+ BMI PRS 0.0165 0.0151 0.274
ion PRS x BMI PR
+depression PRS x BMIPRS -0.0150 0.0158 0.343
(Multiplicative)
...+d ion PRS x BMI PRS
cpression tEo X -0.00301 | 0.00330 0.362
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(Table 4 continued)

... + depression PRS 0.111 0.0154 5.90x10
...+ BMI PRS -0.0187 0.0156 0.230
... +log-BMI 0.148 0.0155 1.27x102
.. + depression PRS x BMI PRS
" ?Multiphcaﬁve) & -0.0239 0.0163 0.142
..+ BMI PRS x log. BMI 0.00274 0.0150 0.855
(Multiplicative)
o+ depression PRS x BMI PRS
© de reé‘zgjlltj;g)x ooy | 0:00165 | 0.00340 0.627
T aep Additive & -0.00450 | 0.00342 0.189
4
..+ BMI PRS x log-EMI 9.08x10 0.00317 0.774
(Additive)
L +d ion PRS x BMI PR
+ depression PRSX BMIPRS | 50705 | 0.0148 0.590
x log-BMI (Multiplicative)
.. + depression PRS x BMI PRS
00142 00311 64
x log-BMI (Additive) 0.00 0.003 0.648

Table 4: Effects of adding variables and interactions to the null model (effects
shown in Supplementary Table 1) predicting variance in depression status.
Significant (p < 0.0125) terms are in bold. Interactions include all main effects,

covariates and covariate interaction terms (Keller, 2014).
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5.6.5. Table 5

depression

Coefficient B SE p
Null model See Supplementary Table 2
... + BMI PRS 0.233 0.00661 <100
... + depression PRS 0.00809 0.00691 0.242
... + depression 0.144 0.0147 1.30x10-22
... + BMI PRS 0.232 0.00660 <1050
... + depression 0.140 0.0143 1.13x10-
... + BMI PRS x depression 0.0192 0.0143 0.182
... + depression PRS 0.00474 0.00691 0.493
... + depression 0.144 0.0147 4.93x1022
... + depression PRS x depression -0.0278 0.0150 0.0642
... + BMI PRS 0.232 0.00664 <100
... + depression PRS 0.00874 0.00672 0.193
... + BMI PRS x depression PRS -4.24x10+4 0.00686 0.951
... + BMI PRS 0.232 0.00660 <100
... + depression PRS 0.00548 0.00671 0.414
... + depression 0.140 0.0143 1.90x10-2
... + depression PRS x BMI PRS -1.92x10° 0.00686 0.998
... + BMI PRS x depression 0.0190 0.0144 0.186
...+ depression PRS x depression -0.0244 0.0146 0.0941
..+d ion PRS x BMI PRS
CpressIon T *| 000869 | 0.0140 0.536
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(Table 5 continued)

Cases

Null model See Supplementary Table 3
... + BMI PRS 0.238 0.0116 <10%
... + depression PRS -0.0162 0.0120 0.178
... + BMI PRS 0.238 0.0116 <10
... + depression PRS -0.0129 0.0117 0.270
.. + BMI PRS x depression 0.00217 0.0118 0.854

PRS
Controls

Null model See Supplementary Table 4
... + BMI PRS 0.230 0.00807 <1050
... + depression PRS 0.0171 0.00844 0.0432
... + BMI PRS 0.230 0.00807 <100
... + depression PRS 0.0168 0.00821 0.0432
-+ BMI PI;SR’; depression | 00030 | 0.00853 0.788

Table 5: Effects of adding variables and interactions to the null model (effects
shown in Supplementary Table 2) predicting variance in log-BMI, and
stratified analyses of log-BMI within depression cases and controls.
Significant (p < 0.0125) terms are in bold. Interactions include all main effects,

covariates and covariate interaction terms.
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Chapter 6: Interactions between social environment and polygenic risk

scores for body mass index predicting variance in adolescent body mass

index

6.1. Introduction

The prevalence of overweight and obesity is increasing in children
and adolescents in developed countries, such that over 20% of individuals
under the age of nineteen have a body mass index (BMI) > 25 (Ng, Fleming,
Robinson, et al, 2014). High BMI in this period is associated with
psychosocial discrimination, and with socioeconomic hardship and
increased cardiometabolic morbidity in later life (Ebbeling, Pawlak &
Ludwig, 2002; Gortmaker, Must, Perrin, et al, 1993; Hill & Silver, 1995; Reilly
& Kelly, 2011; Wabitsch, 2000). Understanding the aetiology of juvenile BMI
and of factors influencing change in BMI across adolescence could be
informative in developing interventions, and alleviating current and future
personal and economic costs (Lobstein, Jackson-Leach, Moodie, et al, 2015;

Lustig, 2001).

There is robust evidence that variation in BMI is influenced by genetic
factors, both from studies of rare variants (such as perturbations in the leptin
signalling pathway) and from large genome-wide association studies in
adults and in children (Chua Jr, Chung, Wu-Peng, et al, 1996; Felix, Bradfield,

Monnereau, et al, 2016; Llewellyn, Trzaskowski, Plomin, et al, 2013; Locke,
154



Kahali, Berndt, et al, 2015; Yang & Barouch, 2007). Evidence from both
neuroendocrinological and statistical genetic approaches suggest brain
expressed genes may underlie variation in BMI, potentially through
controlling energy homoeostasis directly within the body as well as via

behavioural processes such as eating and exercise (Finucane, Bulik-Sullivan,

Gusev, et al, 2015; Lustig, 2001).

The rapid increase in obesity in the last three decades argues for a role
of environmental factors, potentially acting to mediate genetic
predispositions (Ebbeling, Pawlak & Ludwig, 2002; Lustig, 2001). Parenting
is one factor that can influence childhood BMI directly through diet and via
learnt food-related behaviours in children, including dietary self-control and
regulation of active and sedentary behaviours (Davison & Birch, 2001).
However, excessive parental control over food intake behaviours can have a
rebound effect when that control is relaxed, such that children over-indulge
in previously restricted foodstuffs (Birch & Fisher, 1998; Fisher & Birch,
1999). Much of the research on parenting style and BMI has focussed on the
related concepts of parental control and involvement, with some evidence
suggesting a controlled disciplinary style and positive parent-child
interactions are associated with greater control over BMI levels in childhood
(Hughes, Power, Orlet Fisher, et al, 2005; Shloim, Edelson, Martin et al, 2015;

Sleddens, Gerards, Thijs, et al, 2011; Vollmer & Mobley, 2013). The presence
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of this effect is relatively consistent across studies (although not all studies
report a significant effect), but the approaches taken to assessing such effects,
and the reported measures of effect, are varied and inconsistent (Shloim,
Edelson, Martin et al, 2015; Volmer & Mobley, 2013). There are a broad range
of measures used in the assessment of parental style (Vollmer & Mobley,
2013), and a focus on specific relationships and populations (specifically
maternal influences in White, Western, affluent populations; Gicevic,
Aftosmes-Tobio, Manganello et al, 2016) that potentially limit the

generalisability of findings in the field as a whole.

Parenting style represents one part of the wider influence of
socioeconomic environment on child development (Davison & Birch, 2001).
Broader measures, such as parental socioeconomic status (SES), may capture
this more general influence. In the particular case of BMI, low SES has been
associated with higher BMI, particularly in adolescents and young adults
(Braddon, Rodgers, Wadsworth, et al, 1986; Hardy, Wadsworth & Kuh, 2000;
Sundquist & Johansson, 1998; Wang, Kim, Gonzalez, et al, 2007). However,
reported results vary according to gender, ethnicity and nationality, and
there is a potential cohort effect, with null results more common in cohorts
ascertained less recently (Blane, Hart, Smith, et al, 1996; Laitinen, Power &
Jarvelin, 2001; Lauderdale & Rathouz, 2000; Parsons, Power & Manor, 2001;

Power & Moynihan, 1987).
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There is an observable difference in BMI pre-adolescence between
females and males, due in part to the earlier onset of puberty in females, and
there is an ongoing debate whether the genetic aetiology of pre-adolescent
BMI is sex-specific (Nan, Guo, Warner, et al, 2012; Schousboe, Willemsen,
Kyvik, et al, 2003). A combined analysis of twin studies examining BMI in
pre-adolescence did not identify any difference in heritability between sexes,
but lacked necessary data (such as opposite-sex dizygotic twin pairs) to
make strong conclusions (Nan, Guo, Warner, et al, 2012). In contrast, a larger,
multi-national study of young adult twin pairs found higher heritability for
BMI in females, with results largely consistent across national studies

(Schousboe, Willemsen, Kyvik, et al, 2003).

Evidence that genetic and environmental influences contribute to the
aetiology of BMI before adolescence have prompted a considerable number
of studies exploring gene-by-environment interactions (Ahmad, Varga &
Franks, 2013). Of these, the interaction between variation in the FTO gene
and physical activity is the most robust, although the functional mechanism
of this interaction remains an area of active research (Andreasen, Stender-
Petersen, Mogensen, et al, 2008; Franks, Pearson & Florez, 2013). Beyond this
interaction, most studies have explored the effects of single variants in the
context of many different environments (Ahmad, Varga & Franks, 2013).

However, this approach has been limited due to small sample sizes (and
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hence low power), inadequate sampling of variation at the genetic locus of
interest, and a potentially incorrect hypothesis-driven approach (Dick,
Agrawal, Keller, et al, 2015; Duncan & Keller, 2011). Recent studies have
begun to address this criticism by using gene scores that include associated
variants from genome-wide meta-analyses of BMI (Hung, Rivera, Craddock,
et al, 2014; Qi, Chu, Kang, et al, 2012; Qi, Li, Chomistek, et al, 2012). This
technique can be extended by using weighted polygenic risk scores, which
use genome-wide genotypes to construct scores, weighting each variant
(commonly by its effect size in genome-wide association study meta-

analyses; Purcell, Wray, Stone, et al, 2009).

I investigated the independent and interactive effects of parental
warmth and discipline and genetic influences on BMI pre-adolescence, and
on the rate of change in BMI across adolescence, in a cohort of unrelated
adolescents representative of the population of the United Kingdom (the
Twins Early Development Study: TEDS; Haworth, Davis & Plomin, 2013;
Krapohl, Rimfeld, Shakeshaft, et al, 2014; Llewellyn, Trzaskowski, Plomin, et
al, 2014). The contribution of genetic factors to phenotypic variance was
estimated using the most associated polygenic risk score from the largest
genome-wide association study meta-analysis in BMI published to date
(Locke, Kahali, Berndt, et al, 2015). During these analyses, it became apparent

that SES contributes to the aetiology of BMI in a manner that overlaps with
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the effect of parental warmth and punitive discipline. As such, secondary

analyses were performed assessing the effect of SES in the place of parenting.

6.2. Materials and methods

6.2.1. Analysis sample

Data on BMI at 11 years old, child perceptions of parental warmth and
punitive discipline, covariates of interest (including parental socioeconomic
status) and genome-wide genotype data was available for 3414 unrelated
participants from TEDS. The sample was restricted to individuals self-
identifying as White Western European (Appendix V; Trzaskowski, Eley,

Davis, et al, 2013).

6.2.2. Genotype data

Genome-wide genotyping data was obtained in two waves of
genotyping, and imputed using minimac3 to the Haplotype Reference
Consortium reference data (Appendix V; Fuchsberger, Abecasis & Hinds,
2014; Howie, Fuchsberger, Stephens, et al, 2012; McCarthy, Das,
Kretzschmar, et al, 2016; Trzaskowski, Eley, Davis, et al, 2013). Details on
quality control and imputation are included in Appendix V. Following QC,
genotyped or imputed data from 5,147,884 variants was available on 6710

participants.
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6.2.3. Polygenic risk scoring

Polygenic risk scores (PRS) were generated in the TEDS cohort using
the results from the largest published meta-analysis of BMI genome-wide
association studies (Locke, Kahali, Berndt, et al, 2015). The risk score
capturing the most variance in BMI at 11 years old was obtained using the
default settings in PRSice, which identifies the most predictive score by high-
resolution polygenic risk scoring (Euesden, Lewis & O'Reilly, 2015). Eight
principal components were included in PRSice analyses to control for
population stratification. A binary variable was also included to capture

differences between genotyping waves.

Alternative meta-analyses were considered for generating polygenic
risk scores. These were the European subset of the same meta-analysis, and
the meta-analysis of a smaller cohort of children (Felix, Bradfield,
Monnereau, et al, 2016; Locke, Kahali, Berndt, et al, 2015). However, the
cross-ethnic meta-analysis was selected as it was largest and expected to
provide the most power. Sensitivity analyses were performed using the

alternative sources, with no major differences observed (Appendix V).

Much of the literature on the effect of gene-environment interactions
on BMI has examined variation in the FTO gene, particularly the variants
rs1558902 and rs9939609 (which have shown strong associations with BMI in

different GWAS; Ahmad, Varga & Franks, 2013; Andreasen, Stender-
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Petersen, Mogensen, et al, 2008; Franks, Pearson & Florez, 2013; Frayling,
Timpson, Weedon, et al, 2007; Locke, Kahali, Berndt, et al, 2015). To allow
comparison with the literature, analyses were repeated with each variant in

place of the PRS (Appendix V).

6.2.4. Phenotype definition

BMI was calculated from self-reported height and weight, and
transformed using a natural logarithm to increase the normality of the
distribution. Parenting was defined as the combined results from the child-
report sections of the shortened Parental Feelings Questionnaire (PFQ) and
the Parental Strategies Questionnaire (PSQ), which measure parental
warmth and quality of parental discipline respectively (Deater-Deckard,
2000; Deater-Deckard, Dodge, Bates, et al, 1998). The PFQ consists of seven
statements designed to assess the warmth of the parent-child relationship
(for example, "I feel close to my Mum/Dad", answered very true / quite true /
not true). Similarly, the PSQ contains four three-point scales assessing
parental actions when the child misbehaved, such as "When I misbehave I
am told off or shouted at", answered not true / quite true / very true). Both
scales were scored such that higher scores reflected less parental warmth and
more punitive discipline respectively. Total scores were standardised and
summed to give an overall parenting style variable (Keers, Coleman, Lester,

et al, 2016).
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Covariates were included to control for the effects of age (in days) at
assessment, sex, pubertal development and SES at birth, in addition to the
covariates used in PRSice analyses. Pubertal development was assessed
using the Petersen Pubertal Development Scale (PDS), which has five items
assessing the progress of markers of puberty (Petersen, Crockett, Richards, et
al, 1988). This includes three general questions (for example "would you say
your growth-spurt has not yet bequn / barely begun / definitely bequn / completed”)
and two sex-specific questions (assessing breast development and
menstruation in females, and hair growth and voice deepening in males).

The overall score is a mean average of these five items.

A composite measure of SES was derived at the birth of the
participants based on measures of maternal and paternal qualifications and
occupations, and maternal age at first childbirth, which were standardised
and summed (Petrill, Pike, Tom, et al, 2004). Specifically, maternal and
paternal qualifications at birth were scored from 1 (no qualifications) to 8
(postgraduate qualifications), and occupations were scored from 1
(unskilled) to 9 (managerial). Maternal age at first childbirth was encoded in

years. Higher composite scores reflect higher SES.

6.2.5. Statistical analysis

Linear models were constructed in R to test the individual and

interactive effects of parenting and genetic risk on BMI at 11. Continuous
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variables and covariates (that is, all except sex and genotyping wave) were
standardised to produce standardised betas. Pairwise correlations between
variables and covariates were calculated to assess the impact of
multicollinearity. When interactions between parenting and genetic risk
were included in the linear model, all covariate-by-parenting and covariate-

by-genetic risk interactions were also included (Keller, 2014).

A subset of the cohort (N = 1943) had BMI data at a later assessment
(14 years old, 16 years old, or both). 154 individuals with BMI data at 16 had
no age information recorded, so their age at 16 was imputed from age at 11
in a twenty-fold multiple imputation use the mi package in R (Graham,
Olchowski & Gilreath, 2007; Rubin, 2004; Su, Gelman, Hill, et al, 2011). BMI
was regressed on time from initial assessment in random effects models
(random intercepts and random slopes, one model for each random
imputation) using the Ime4 package in R (Bates, Machler, Bolker, et al, 2014).
The random coefficient associated with time for each individual was
averaged across the twenty models. The average coefficient was then used as
the phenotype in further linear models to determine the effects of genetic
risk and parenting at 11 years old on change in BMI across adolescence,

controlling for covariates as in the previous analysis.

Stratified secondary analyses were performed to assess sex-specific

effects on BMI at 11 years and on change in BMI across adolescence. Post-hoc
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power calculations were performed using the pwr package in R to assess the
strength of evidence provided by this study. Specifically, the minimum f?
values that the analyses had 80% and 90% power to detect were calculated,
and the power of the analysis to detect observed f? values for social
environmental variables and genetic risk were calculated (Cohen, 1988;

Selya, Rose, Dierker, et al, 2012).

During analysis with parental warmth and discipline, it became clear
that SES competed with parenting to explain variance in BMI at 11. When
SES was included as a covariate in the model, the proportion of variance
explained by parenting was diminished compared to when SES was not
included. Analyses were thus repeated with SES as the environmental
variable of interest (and parenting as a covariate). In total, twelve analyses
were performed, with three basic models (full model, female-only and male-
only) for two phenotypes (BMI at 11 and change in BMI across adolescence)

with two environments of interest (parenting and SES).

6.2.6. Ethics

Parents provided informed consent for each part of the study before
data collection. King’s College London’s Ethics Committee provided ethical

approval.
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6.3. Results

6.3.1. Demographics

Demographic data on the full cohort and subsets are available in
Table 1. The subset of the cohort in which change in BMI across adolescence
was assessed was significantly older than the main cohort. Although both
SES and pubertal development were higher in the subset, the difference was
not significant after multiple testing (Welch two sample t-test, Bonferroni
correction for 17 tests, p = 0.00294; Table 1a). Females were significantly more
developed than males, reported less harsh and punitive parenting, and had
higher BMI, although the difference in BMI was not significant in the subset

with multiple BMI assessments (Table 1b).

Correlations between variables included in the analyses are displayed
in Supplementary Table 1 in Appendix V. Genotyping wave was strongly
correlated with the first principal component (r = 0.71), and BMI at 11 was
strongly correlated with change in BMI across adulthood (r =-0.51).
Repeating the analyses without including genotyping wave as a covariate
did not alter the conclusions of the study. BMI at 11 is also strongly
correlated with the random intercepts used in the construction of the change
phenotype (r = 0.9). As such, BMI at 11 is an integral part of the change

phenotype, and the inclusion of this covariate is required for the proper
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interpretation of these analyses. No other strong correlations were observed

(all r < 0.5).

6.3.2. Polygenic risk scoring

Polygenic risk analyses identified a score comprised of 2321
independent variants with p<0.0032 in the GIANT 2015 all ancestries GWAS,
which predicted a significant proportion of variance in BMI at 11 years of
age (p = 4.55x1032, R?>= 0.0425; Locke, Kahali, Berndt, et al, 2015). This is
consistent with previous estimations of polygenic risk in the TEDS cohort at
age 16 (Krapohl, Euesden, Zabaneh, et al, 2015). In cross-trait analyses, scores
from the GIANT GWAS were not associated with parenting (best threshold =
0.0845, Nsnes = 18336, p=0.0663, R? = 9.89x10+). Similar analyses with SES
identified a significant association with the BMI polygenic score when it was
optimised for SES (threshold = 0.0795, Nsnes = 17580, p=9.18x10°,
R?=0.00445), but not when it was optimised for BMI (threshold = 0.0032,
Nsnes = 2321, p=0.154, R? = 5.93x10*). The score optimised for BMI is reported

in all main analyses.

6.3.3. BMI at 11

Higher genetic risk was associated with higher BMI at 11 years old
(Table 2). A nominally significant effect of colder and more punitive

parenting associated with higher BMI was observed, but was not significant
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after Bonferroni correction for twelve tests (p = 0.05/12 = 0.00417). No
interaction between risk and parenting was identified in the main analysis,
or after stratifying by sex (Supplementary Table 2a). In secondary analyses
with SES as the environment of interest, lower SES was associated with
higher BMI. The effect of SES was largely independent of the effect of genetic
risk; the inclusion of both variables in the model did not substantially alter
the effect sizes observed when each variable was included alone. The
interaction between SES and genetic risk was nominally significant, but did
not survive correction for multiple testing. No sex-specific effects were

observed (Supplementary Table 2b).

6.3.4. Change in BMI during adolescence

Higher genetic risk was associated with a greater increase in BMI
(Table 3). Genetic risk was significantly associated with change in BMI in
females but not in males (Supplementary Table 3a). However, the interaction
between PRS and sex was not significant in the main analysis (p = 0.240). No
interaction between genetic risk and parental warmth and discipline was
observed. In secondary analyses with SES as the environment of interest,
there was no significant main effect of SES. The interaction between genetic
risk and SES was nominally significant when both sexes were analysed

together and in females only (Supplementary Table 3b). However, neither
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the interaction in the full analysis nor that in the female-only subset was

significant after correction for multiple testing.

6.3.5. Power

Post-hoc power calculations suggested that the full sample was
powered to detect small effects (80% power to detect Cohen's {2 = 0.00229 at
age 11, f2=0.00410 for change in BMI), as were sex-stratified analyses (BMI at
age 11: f2=0.00452 and f2 = 0.00475; change in BMI across adolescence: f2 =

0.00806 and f2 = 0.00832 for females and males respectively).

6.4. Discussion

6.4.1. Summary of findings

This study examined the relationship between genetic and social
environmental effects (individually and in combination) and two BMI
phenotypes: BMI prior to adolescence and the rate of change in BMI between
11 and 16. Genetic effects associated with higher BMI in the largest cohort
published to date (the 2015 GIANT consortium meta-analysis) were
associated with higher BMI before adolescence, and with a greater increase
in BMI across adolescence (Locke, Kahali, Berndt, et al, 2015). In contrast,
child perceptions of parental warmth and discipline were not significantly
associated with pre-adolescent BMI or with change in BMI across
adolescence in this study. However, lower parental SES, as a more general
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measure of childhood social environment, was associated with higher BMI

pre-adolescence, but not with change in BMI.

6.4.2. Limitations

The measures used in this study are unlikely to capture the full
component of variance they each represent. The PRS is limited to the effects
of common variants on BMI in an additive model, and only to those regions
of the genome that are captured adequately by both the GIANT BMI GWAS
and the TEDS study genotyping (Appendix V; Locke, Kahali, Berndt, et al,
2015). In addition, only a small proportion of the genetic component of
variance in BMI was captured by the PRS in this study (7-14%, assuming a
heritability of BMI of 30-60%; Polderman, Benyamin, de Leeuw, et al, 2015;
Yang, Bakshi, Zhu, et al, 2015). Finally, these analyses used the optimal PRS
(that is, the one explaining the most variance in BMI as a main effect).
Multiple PRS, generated using a variety of p-value thresholds, could be used
in PRS-by-environment interaction studies. Using the optimal PRS is an
analytical choice akin to only examining variables with main effects in any

interaction analysis.

An alternative BMI PRS (specifically, one optimised to predict SES)
was significantly associated with SES. This demonstrates both that SES can
be predicted from genetic data, and that there is an overlap of the genetic

influences on BMI and SES (Krapohl & Plomin, 2015). The analyses in this
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study used the PRS optimised for BMI (which was not significantly
associated with SES) as this best captures the overall influence of the genome
on BMI. The modelled interaction term then examines how this genomic
effect alters in the presence of the social environment. It would be possible to
use the PRS optimised for SES instead. This would focus on the genetic
overlap between the two traits; however, the interaction term would then
examine how this shared genetic component altered in the presence of the
environment with which it is associated. It is unclear what the implications

of a significant interaction would be in this case.

Height and weight were ascertained in this cohort via self-report from
the participants, as part of a larger questionnaire booklet (Haworth, Davis &
Plomin, 2013). Studies comparing self-reported to objectively-measured BMI
report a general trend for height to be overestimated and weight to be
underestimated, which consequently results in underestimates of BMI
(Connor Gorber, Tremblay, Moher, et al, 2007). Discrepancies tend to be
greater in females, and increase with weight and age (Connor Gorber,
Tremblay, Moher, et al, 2007). Although this discrepancy has largely been
observed in adults, there is also similar evidence reported in children
(Goodman, Hinden & Khandelwal, 2000; Strauss, 1999). Therefore, although
reported discrepancies tend to be small (the correlation with ascertained

measures is approximately 0.8), the precision of the BMI calculation within
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this study is likely to be impaired by the self-reported collection. Due to the
breadth of phenotype collection in TEDS, it was not practical for all
phenotypes to be collected via objective measurement, nor was a subsample

measured to allow for correction of the bias.

A central issue of gene-environment interaction studies is the
definition of the environment (Dick, Agrawal, Keller, et al, 2015). Although
the measures of parenting and SES used in this analysis have previously
been used successfully to capture their respective constructs, they both differ
from possible alternatives (Keers, Coleman, Lester, et al, 2016; Petrill, Pike,
Tom, et al, 2004). Previous research on the effect of parenting style on BMI
has examined parental control and involvement. The concepts of punitive
parental discipline and parental warmth used in this analysis are similar.
However, parental control reflects aspects of both constructive and punitive
discipline, whereas the discipline measure used in this analysis focusses on
punitive discipline alone. As such, the parenting style measure used in this
analysis differs from that used elsewhere in the BMI literature. Furthermore,
parenting behaviour is highly complex and multi-faceted, and the measure
of parental style used herein can only approximate the overall effect of
parenting. In part, the secondary analyses performed using SES as the
environment of interest reflects the need to examine the broader effects of the

social environment. However, this measure is also only one means of
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capturing a complex construct, and different measures of the social

environment could yield different results.

Results from the study of change across adolescence need careful
interpretation. The random intercepts used in the construction of the change
phenotype are highly correlated with BMI at age 11 (r = 0.9). As such, the
inclusion of BMI at 11 as a covariate in the analysis of BMI change largely
accounts for influences on pre-adolescent BMI. The non-significant
association of social environment with this phenotype may thus reflect the
continuation of effects from pre-adolescence, rather than an absence of effect

during adolescence.

6.4.3. Interpretation

Genetic risk, modelled as a PRS derived from a cohort mostly
comprising adult participants, captures a significant amount of variance both
in BMI pre-adolescence and in change in BMI across adolescence. This
suggests that the genetic effects on BMI are (at least partly) stable across the
lifespan. This is consistent with findings from quantitative genetic studies,
which suggest a sizable component of genetic influence on BMI remains
from childhood into adulthood, and with high genetic correlations (rs = 0.73)
reported in a meta-analysis of GWAS studies in children (Felix, Bradfield,
Monnereau, et al, 2016; Llewellyn, Trzaskowski, Plomin, et al, 2014;

Silventoinen & Kaprio, 2009). The TEDS cohort, as a longitudinal study,
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could be of considerable value in testing this hypothesised stable component,
as genetic associations with BMI would eventually be able to be tested in a
within-subject, repeated measures design across the entire lifespan. Such
analyses would also be able to consider a broad range of potential
environments as covariates and confounds. In the shorter term, growing
cohort sizes for adult and particularly for child GWAS of BMI will allow
increased precision in the estimate of the genetic correlation. The
development of statistical analysis techniques such as partitioned heritability
could be extended to identify the precise regions of the genome common
between children and adults (and, perhaps more interestingly, those that are
distinct); such techniques could also be informative about the biology of
these shared and distinct components (Finucane, Bulik-Sullivan, Gusev, et al,

2015; Finucane, Reshef, Antitila, et al 2017).

Stratified analyses did not suggest a sex-specific effect in this study.
Although genetic risk was significantly associated with change in BMI across
adolescence in females only, the absence of a significant genetic risk-by-sex
interaction in the main analysis suggests this could result from measurement
error alone. However, the demographic differences between females and
males observed in the cohort argue that stratifying analyses by sex is
appropriate in studying influences (genetic and otherwise) on BMI at this

age.
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The effect of parental warmth and discipline in this study was of
nominal significance and did not pass correction for multiple testing.
However, when SES is not included in the model, the effect is larger (and
would have passed correction for multiple testing had secondary analyses
with SES not been performed). The analyses presented have reasonable
power. Cohen suggested f2=0.02 as a small effect, and all post hoc power
calculations show all analyses within this paper had lower f?>than this
(Cohen, 1992). As such, while we cannot exclude an effect of parental
warmth and punitive discipline on BM]I, these results suggest any such effect

is likely to be very small.

In contrast to the effect of parenting in this analysis, parental SES was
associated with BMI at 11, suggesting an effect of the social environment
from sources other than parenting style alone. Furthermore, the interaction
between genetic influences and SES reached a nominal level of significance
in the analysis of BMI change across adolescence, and it may be of interest to
explore this interaction in a larger cohort. However, conclusions from the
analysis using SES must be tempered by the fact that these are secondary
analyses, related to the initial hypothesis (that BMI and parenting act

together to influence BMI) but not explicitly specified.

The components of variance captured by parenting and SES appear to

overlap (as including one in the model diminishes the effect of the other).
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The social environment is a complex construct that is likely to reflect and to
be influenced by many factors in the wider environment. As such, further
investigation to identify the precise component of the social environment

that influences juvenile BMI would be of value.

The increasing rate of obesity is a developing public health crisis, and
BMI, although imperfect, is a useful proxy for overall metabolic health
(Janssen, Katzmarzyk & Ross, 2004). An improved understanding of the
factors affecting BMI in late childhood and adolescence could provide useful
information in addressing this crisis. It is likely that the majority of obesity
does not stem from single factor causes (such as mutations in the leptin
system), but rather from the upper extreme of the normal population
distribution of BMI (Grarup, Sandholt, Hansen, et al, 2014). TEDS is a
population cohort, and is not enriched for juvenile obesity. However,
studying this cohort can yield insight about the aetiology of BMI within the
normal distribution, which may, in turn, be informative about the extremes

of that distribution.

The generalisability of genetic findings from a population cohort to
the genetics of obesity relies on the assumption that the genetic factors that
predispose individuals to extreme BMI influence variance across the BMI
spectrum. Yet it may be that distinct genetic influences predispose to

extremely low and extremely high BMI (Berndt, Gustafsson, Mégi et al,
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2013). Other anthropometric traits show evidence for distinct contributions
of (often rare or non-additive) genetic effects at the extremes. For example,
extremely short individuals show less depletion of a polygenic risk score for
height than would be expected from their position in the overall spectrum,
indicating a stronger influence of rare or non-additive effects (genetic or
otherwise) at this extreme (Chan, Holmen, Dauber et al, 2011). However, a
reanalysis of the GIANT BMI GWAS, comparing genetic influences in the
tails of the distribution with those in the distribution as a whole reported no
systematic differences in the additive effects of common variants (although
this does not preclude rare variant effects or effects acting in a non-additive
manner; Berndt, Gustafsson, Magi et al, 2013). This mirrors similar findings
in young adults (Paternoster, Evans, Nohr, et al, 2011). Furthermore, the most
recent genomic study of anorexia nervosa (which is characterised in part by
extremely low BMI) identified negative genetic correlations with extremely
high BMI (rg =-0.29) and with BMI in the normal range (rs = -0.25; Duncan,
Yilmaz, Walters et al, 2016). Together, these data provide tentative evidence
supporting a role for a shared, common, additive genetic effect across the
range of BMI (although genetic correlations are not necessarily transitive;

Weiner, Wigdor, Ripke et al, 2016).

Common, additive genetic influences on BMI may differ between

children, in whom BMI is affected both by growth and by weight changes,
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and adults, whose height is stable. As such, using PRS derived from studies
of BMI in adult participants may fail to capture important aspects of the
common genetic influence on childhood BMI (the reported genetic
correlation of 0.73 notwithstanding; Felix, Bradfield, Monnereau, et al, 2016).
One possible solution to this is to use a combined polygenic risk score from
multiple sources (Krapohl, Patel, Newhouse et al, Under Review). This could
be performed in a hypothesis-driven manner, such as combining BMI and
height scores in adults to better capture variation in children, or machine-
learning approaches could be taken to allow the most predictive score to be
generated from a large initial set of polygenic risk scores (with appropriate
model fitting). In both cases, it would be necessary to use statistical
techniques robust to correlated variables (such as penalised regression), as it

is possible that the PRS may be correlated.

This study has shown a stable effect of genetic variants (from a meta-
analysis predominantly of adult genome-wide association studies of BMI)
capturing variance in BMI in children entering adolescence, and also
capturing variance in the trajectory of BMI growth across adolescence. SES is
associated with BMI pre-adolescence, but parenting style has at most a small
effect. The availability of powerful genome-wide meta-analyses and the
decreasing cost of obtaining genome-wide genotype data have increased the

potential for performing genome-by-environment interaction studies to

177



identify influential factors underlying important phenotypes in public

health.
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6.6. Tables

6.6.1. Table 1a

BMI Change
Variable Full Cohort t-test p
Subset
N 3414 1943 -
Female sex (%) 51.3 53.7 0.0881
Age (mean, SD) 11.3 (0.695) 11.5 (0.616) 1.52x107%

SES at birth (mean, SD) 0.235 (0.961) 0.289 (0.958) 0.0474
Pubertal development (mean, SD) | 1.69 (0.554) 1.74 (0.567) 0.00310

BMI (mean, SD) 17.8 (3.07) 17.9 (3.101) 0.188

Parenting style (mean, SD) 0 (1.71) -0.0733 (1.70) 0.131

Change in BMI (mean, SD)

0.580 (0.0995)

Table 1a: Demographic data of the full cohort and subset in which change in

BMI was studied. Age was significantly higher in the subset after multiple

testing correction; SES and pubertal development were greater in the subset,

but did not pass multiple testing correction (Welch two sample t-test, p =

0.05/17 = 0.00294).
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Table 1b

Full Cohort
Variable t-test p
Females Males
N 1750 1664 -
Age (mean, SD) 11.3 (0.693) 11.2 (0.697) 0.550
SES at birth (mean, SD) 0.232 (0.957) | 0.238 (0.965) 0.862
Pubertal development (mean, SD) | 1.85 (0.589) | 1.52 (0.457) | 1.79x107"
BMI (mean, SD) 17.9 (3.22) 17.6 (2.90) 0.00179
Parenting style (mean, SD) -0.152 (1.69) 0.160 (1.73) 9.87x10®
BMI Change Subset
Variable t-test p
Females Males
N 1043 900 -
Age (mean, SD) 11.4 (0.633) 11.5(0.584) 0.126
SES at birth (mean, SD) 0.294 (0.947) | 0.283 (0.970) 0.805
Pubertal development (mean, SD) | 1.90 (0.600) 1.56 (0.465) 1.06x10™*
BMI (mean, SD) 18.0 (3.33) 17.8 (2.83) 0.206
Parenting style (mean, SD) -0.234 (1.67) 0.113 (1.72) 7.53x10°°
Change in BMI (mean, SD) 0.581 (0.103) | 0.580 (0.0951) 0.764

Table 1b: Demographic data of the full cohort and subset in which change in

BMI was studied, stratified by sex. Females were significantly more

developed and reported less harsh and punitive parenting, and exhibited
high BMI (the last of which only in the full cohort; Welch two sample t-tests,

p =0.05/17 = 0.00294).
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6.6.2. Table 2

Coefficient B SE p Adjusted R
BMI at 11 years old, with parenting
Null model Supplementary Table 2a 0.0667
(Null model)
+ Parental style 0.0378 0.0167 0.0239 0.0678
(Null model) -37
+ BMI PRS 0.210 0.0162 1.59x10 0.110
+(§;1;nr‘21(1)(§;)le 0.0360 0.0163 0.0273 o111
37 .
+ BMI PRS 0.210 0.0162 1.83x10
(Null model) +
Parental style x 0.00642 0.0172 0.709 0.113
BMI PRS

BMI at 11 years old, with SES

Null model Supplementary Table 2b 0.0628
Nullsnllzosdel " -0.0729 0.0167 1.33x10° 0.0678
Null model + 38

BMI PRS 0.211 0.0162 7.95x10 0.107

N“ils%"sdel -0.0682 0.0163 3.11x10° o111

+ BMI PRS 0.210 0.0162 1.83x10
Null model +

SES x BMIPRS | 00336 0.0165 0.0413 0.112

Table 2: Effects of adding variables and interactions to the null model
predicting variance in BMI at 11 years old, with parental style (top) and SES
(bottom) as the environments of interest. Significant (p<0.00417) terms are in

bold. Interactions include all main effects, covariates and covariate

interaction terms (Keller, 2014).
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6.6.3. Table 3

Coefficient B SE p Adjusted R?
BMI change, with parenting
Null model Supplementary Table 3a 0.277
(Null model) = 5248 0.0196 0.666 0.277
Parental style
(Null model) 6
+ BMI PRS 0.0902 0.0197 4.96x10 0.284
(Ilj;gnr?a(l)if;)ls -0.00969 0.0195 0.620 0984
-6 .
+ BMI PRS 0.0903 0.0197 4.84x10
(Null model) +
Parental style 0.000551 0.0207 0.979 0.285
x BMI PRS
BMI change, with SES
Null model Supplementary Table 3b 0.277
Null model
+ SES 0.0106 0.0196 0.591 0.277
Null model -6
+ BMI PRS 0.0904 0.0197 4.70x10 0.284
N“ES“;EOSdel 0.00965 0.0195 0622 0984
+ BMI PRS 0.0903 0.0197 4.84x10
Null model +
SES x BMI -0.0494 0.0205 0.0159 0.289
PRS

Table 3: Effects of adding variables and interactions to the null model

(uppermost line) predicting variance in the linear trajectory of change in BMI

between 11 and 16 years old, with parental style (top) and SES (bottom) as

the environment of interest. Significant (p<0.00417) terms are in bold.

Interactions include all main effects, covariates and covariate interaction

terms (Keller, 2014).
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Chapter 7: Discussion

7.1 Summary of the work

The work presented in this thesis seeks to demonstrate the value of
information-rich genomic data in exploring questions about the interplay of
genetic and environmental influences on behaviour. Within that overarching
aim, it has explored two specific themes: employing exposed-only GWAS to
identify biological predictors of response to CBT, and assessing genome-

environment relationships using polygenic risk scores.

The genetic study of response to CBT (therapygenetics) has relied
almost entirely on the candidate gene method (Eley, Hudson, Creswell, et al,
2012; Lester & Eley, 2013; Lueken, Zierhut, Hahn, et al, 2016). The GWAS
described in Chapter 3 was the first in the field, and the genome-wide
studies that follow in Chapter 4 extend these investigations to gene
expression (along with a sister paper that investigated change in expression
across the course of treatment; Roberts, Wong, Keers, et al, Under Review).
Chapter 3 partially achieved its initial aim (to identify any large-effect
common variants able to be captured using a low-coverage microarray). The
analysis presented had sufficient power to examine large effects on response
to CBT (4% of phenotypic variance), and the null results suggest such effects
are unlikely to exist. However, the analysis was underpowered to detect all

but the largest effects from common variants seen elsewhere in the
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behavioural genetic literature. For example, the 97 loci significantly
associated with BMI only explain 2.7% of the variance combined, and the 108
loci significant loci in schizophrenia explain 3.4% of the variance (Locke,
Kahali, Berndt, et al, 2015; Schizophrenia Working Group of the Psychiatric
Genomics, 2014). Although the APOE locus accounts for approximately 5%
of the phenotypic variance in late-onset Alzheimer's disease, this is an
unusually large effect for a complex behavioural trait (Escott-Price, Shoai,
Pither et al, 2017). If common variants of similar effect influence response to
CBT, the analysis in Chapter 3 did not detect them, most likely due to a lack
of power. The results of Chapter 3 are concordant with a polygenic model of
behavioural phenotypes, comprising many variants of very small individual
effect (Chabris, Lee, Cesarini, et al, 2015; Visscher, Goddard, Derks, et al,
2012). However, they are also concordant with the absence of a genetic
component to CBT. The analysis did not achieve its secondary aim to
quantify such a component, and polygenic risk scores derived from relevant
psychiatric phenotypes were not associated with treatment outcome.
Significant associations with individual SNPs had been previously reported
in the candidate gene literature, some of which were tested in Chapter 3 as a
secondary aim. The lack of effect shown by these variants calls into question

the generalizability of these earlier findings (Lester & Eley, 2013).
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Chapter 4 sought to increase power to detect significant predictors by
combining two sources of information, genetic variants and measures of
gene expression (Ritchie, Holzinger, Li, et al, 2015). Again, the analysis had
sufficient power only to examine large effects on response to CBT, and the
null results suggest such effects are unlikely to exist. The absence of a
significant predictor in these results argues that no single genetic locus
accounts for large amounts of variance in response to CBT, whether this
quantified as the expression level of the related RNA transcript, or as a
context-dependant eQTL. In addition, increasing power through
dimensional reduction (specifically, grouping transcript expression levels by
literature-driven and data-driven means) did not yield associations, and
polygenic risk scoring between the results of Chapters 3 and 4 did not yield
significant predictors. As such, Chapter 4 did not achieve its aims to identify
correlates of treatment response, beyond casting doubt on the existence of

loci of large effect.

Polygenic risk scores can be used as a proxy for the overall effect of
common genetic variation on phenotypic variation (in an additive model;
McGrath, Mortensen, Visscher, et al, 2013). This was the principal aim of
Chapter 5, which sought to use risk scores to assess the genetic contribution
to the complex relationship between BMI and depression, using a large

population cohort. A significant correlation was observed, such that
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individuals with depression had higher BMI on average, but polygenic risk
scores were associated with BMI, and with depression, only in within-trait
analyses. The correlation between the traits was not attenuated by
concurrently modelling the genetic influences on either trait, neither through
diminishing the main effects nor through the presence of a significant gene-
by-trait interaction. As such, the results of this analysis did not support the
hypothesis that the relationship is affected by a shared common additive
genetic component. The strength of this conclusion is limited by the small
amounts of variance captured by the polygenic risk scores used, although
similar estimates of the heritability of BMI in depression cases and controls
provides further counter-evidence. The estimated genetic correlation
between depression and BMI was also not significantly different from zero,
yet this may be limited by the power of the study. Thus, the combined
evidence from the study suggests that any shared common additive genetic
component between BMI and depression is small. This suggests the
increased BMI observed in depression cases results from another cause, of
which many candidates exist, including shared physical comorbidities or a
(potentially bidirectional) causal relationship, although the influence of gene-
environment correlation and rare or non-additive genetic effects cannot be

excluded (Luppino, de Wit, Bouvy, et al, 2010).
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The approach taken in Chapter 5 examines the relationship between
broad measures of the overall influence of genetic and non-genetic factors.
Polygenic scores may also be valuable in assessing the interaction of effects
from candidate environments with those from the genome as a whole, and
this concept was tested in Chapter 6, assessing the independent and
combined impact of social environments and genomic risk on BMI in late
childhood and across adolescence. Known genomic influences on BMI were
associated with both pre-adolescent BMI and change in BMI across
adolescence. These influences were identified from a study composed
predominantly of adults; as such, this may suggest a stable genetic
component to variance in BMI, although this was not tested explicitly within
Chapter 6. The initial aim of the investigation was focussed on parental style,
which showed only a small effect on BMI pre-adolescence (such that the
effect was not significant after correction for multiple testing), and did not
affect change in BMI across adolescence, nor did this effect differ
significantly dependent on the polygenic risk score for BMI. However, the
inclusion of measures of parental socioeconomic status in the model
diminished the effect of parenting style. A more punitive parenting style was
significantly correlated with lower socioeconomic status in the cohort, and as
such the components of variance captured by these measures are not
independent of one another, and may reflect a more general effect of the

social environment. Repeating the analyses with socioeconomic status (as a
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secondary analysis) identified an effect on BMI pre-adolescence. The effect of
interactions between genomic risk and socioeconomic status on pre-
adolescent BMI and change in BMI across adolescence were of nominal
significance, although not sufficiently strong to pass correction for multiple
testing. Together, these argue for a general effect of social environment on
BMI in adolescence (which may involve parental style in part, but must have
contributions from other sources), which is smaller than the combined effect
of the genome, and which differ only minimally in the context of the
polygenic risk score for BMI. Stratifying the analyses by gender, as a

secondary aim, did not yield qualitatively different results.

7.2 Limitations and points of debate

The effects of individual genetic variants on behaviour are very small,
and (at least at the moment) the summed effects of those variants only
explain part of the estimated heritability (Dudbridge, 2013; Wray, Yang,
Hayes, et al, 2013). Similarly, individual environmental influences, while
larger in effect than those of individual SNPs, are often smaller than the
overall effect of the genome (although this is confounded by differences in
the measurement of genetic and environmental effects; Dick, Agrawal,
Keller, et al, 2015). The power required to estimate small effects is

considerable, and they are vulnerable to confounding (Dudbridge, 2013). The
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studies within this thesis attempt to address these concerns, but are each

impaired by them to some extent.

Genetic research into CBT suffers considerably from a lack of
participants (Lester & Eley, 2013; Lueken, Zierhut, Hahn, et al, 2016).
Although the studies described in Chapters 3 and 4 are drawn from the
largest cohorts of their type to date, they are not an exception to this. To
estimate heritability, and to identify individual genetic variants and gene
transcripts associated with response to psychological therapies, will require
the recruitment of thousands of participants (Visscher, Hemani, Vinkhuyzen,
et al, 2014). This is non-trivial in the study of psychological therapies. Using a
prospective design in examining response to CBT is beneficial for studying
genetics in the context of an environmental exposure, but it results in a
considerable degree of attrition. Participants drop out of psychological
therapy for a wide variety of reasons. Poor therapy response is a major cause
of dropout, and this is of clear relevance to studying differential response
(Loerinc, Meuret, Twohig, et al, 2015). Studies can be designed to allow the
appropriate inclusion of participants who drop out (through intention-to-
treat analyses and last-observation-carried-forward), but this comes at an

increased financial burden, which in turn limits the cohort size attainable.

Alongside attrition, the power of therapygenetic cohorts is limited by

heterogeneity. Psychological therapy is focussed on the needs of the
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participant, meaning that the same therapy given to different participants
will result in a different therapeutic experience, even when ostensibly the
same program is delivered by the same therapist (Rice & Greenberg, 1984;
Shirk & Saiz, 1992). Obtaining the necessary cohort size to conduct genetic
studies is likely to require combining multiple smaller cohorts, with
participants treated by different therapists, and experiencing a variety of
different therapeutic regimens. Again, the studies described in Chapters 3
and 4 are vulnerable to this limitation. However, this must be balanced
against the generalisability of findings. The provision of psychological
therapy is riven with heterogeneity; any predictor must be robust to that
heterogeneity. As such, the brute force approach of overwhelming
heterogeneity with sample size, while crude, may be the most appropriate

approach in this instance.

Chapters 3 and 4 study the phenotype of “response to psychological
therapy”. However, this is far from an objective phenotype. No gold-
standard approach to the definition of "therapy response" as a phenotype
exists, and even the precise terms are not well-defined (Creswell & Waite,
2016; Loerinc, Meuret, Twohig, et al, 2015). "Response” and "remission" are
occasionally used interchangeably, but usually refer to distinct features.
Response is often defined as a change in a given measure from baseline, but

the exact size of the change required, and whether this is measured in
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absolute units or as a percentage, varies (Loerinc, Meuret, Twohig, et al, 2015;
Prien, Carpenter & Kupfer, 1991). In contrast, “remission” is usually a
dichotomous variable meaning that the participant has passed some low
threshold of severity. This distinction means that, depending on the
definitions used in the study, it is often possible for an individual to respond
but not remit or vice versa (Loerinc, Meuret, Twohig, et al, 2015). Remission
often implies the individual no longer meet diagnostic criteria, although
even this simple definition shows considerable heterogeneity in application,
with the diagnosis in question ranging from the primary source of
therapeutic concern to all possible inclusion criteria for the study (Creswell
& Waite, 2016). Given the high comorbidity seen in individuals with anxiety
disorders (particularly children), these different meanings of remission
introduce heterogeneity when comparing between studies, and this is
compounded yet further when comparing studies of response and remission
(Creswell & Waite, 2016; Waite & Creswell, 2014). Furthermore, although
CBT studies are based on a core framework, programs vary in length and
may focus on different aspects of treatment (Barrett, Turner & Lowry-
Webster, 2000; Bogels, 2008; Kendall & Hedtke, 2006; Schneider, Blatter-
Meunier, Herren, et al, 2013). Again, the resulting heterogeneity hampers
combined analysis across programs (Creswell & Waite, 2016; Haby,
Donnelly, Corry, et al, 2006; Hudson, Keers, Roberts, et al, 2015; Loerinc,

Meuret, Twohig, et al, 2015).
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As a direct result of the way in which they are defined, response and
remission are measure-dependent (Prien, Carpenter & Kupfer, 1991). Even
within this thesis, however, the two empirical chapters studying
psychological therapy response employ different measures of the phenotype,
and this reflects the use of a variety of measures in studies more generally
(Loerinc, Meuret, Twohig, et al, 2015). This variation has definable effects;
those studies combining multiple measures of the same type report
significantly lower response rates on average, as do intention-to-treat
analyses compared to those limited to treatment completers only (Loerinc,
Meuret, Twohig, et al, 2015). Combining measures using different reporters
or measurement techniques (for example, a diagnostic scale and a
behavioural marker) increases the validity of the outcome measure, as does
the independent assessment of response (Loerinc, Meuret, Twohig, et al,

2015).

As such, convincing arguments have been made that the most
powerful and robust method to study response is to combine multiple
measures (preferably from different modalities) to create a single response
variable (Loerinc, Meuret, Twohig, et al, 2015). It will be noted that this is not
the approach taken within this thesis. Power is an important concern in
studying psychological therapy response, and Chapters 3 and 4 used a

continuous measure of response (rather than creating a dichotomy) for this
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reason. However, response was encoded using a single measure in both
cases. The combined measure of response suggested in the literature may be
more valid as a measure of improvement following therapy. However,
unless the set of measures that are combined to create this composite are
used as standard across studies, the gain in power from this combination is
arguably negated by the loss in interpretability and comparability between
studies. If the outcome of therapygenetic studies is to be useful, it must be
understandable outside of the context of a single study (Eley, 2014; Paulus,
2015). This said, it is likely that the phenotype definition in Chapters 3 and 4
is anti-conservative, resulting in better treatment outcomes than would be
obtained using a combined measure of response or intention-to-treat

analyses.

Individuals recruited to receive psychological therapy are usually
severely unwell (hence their need for therapy). This generates a potential
confound, namely regression to the mean (Barnett, van der Pols & Dobson,
2005). Illness severity fluctuates over time, and individuals seeking therapy
are more likely to be at the severe end of that fluctuation. As such, when they
are assessed several weeks later (following the end of their therapy), they
may be less severely ill simply because they have descended from the peak
of their fluctuation, rather than due to the therapy. In studying the efficacy of

therapy, this can be (and has been) countered using a matched waitlist
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control group (Hofmann & Smits, 2008; James, James, Cowdrey, et al, 2013).
The same approach could be taken to account for regression to the mean
when investigating predictors of response to therapy. However, allocating
individuals to a provably inferior treatment condition (such as a waitlist)
would be ethically unsound, as scientific gains would come at the expense of
prolonged distress to the participants (Emanuel & Miller, 2001). The studies
contained in Chapters 3 and 4 are thus exposed-only studies, where all
participants received treatment. The results must be interpreted carefully.
The studies examined change in illness severity from the onset of a shared
exposure to its completion (and beyond into follow-up), but this change is
not necessarily a response to that exposure. However, a robust predictor of
treatment response would have value regardless of its relevance to the
underlying mechanisms. This reflects a general point concerning statistical
modelling, namely that models are rarely “right”, but can be useful —a
robust predictor of regression to the mean would be largely irrelevant to the
mechanisms of therapy response, but would be of considerable value in

clinical decision making (Box, 1976; Paulus, 2015).

A further consequence of the absence of a control group in Chapters 3
and 4 is that all participants are exposed to the specific environment (CBT).
Genetic variants (or differences in RNA transcript expression) might be

associated with change in severity independently of the environmental
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exposure (including variants associated with regression to the mean as
discussed above). Accordingly, such case-only studies cannot truly
investigate gene-environment interactions, as the environmental exposure
does not vary between individuals (For much the same reason, such studies
also do not examine gene-environment correlation.) A gene-environment
interaction can be inferred by assuming that the change in severity results
only from exposure to CBT - if this is true, then a genetic association with
change in severity is an association with exposure, and as such represents an
instance of gene-environment interplay. However, to demonstrate this
robustly would require performing a parallel GWAS in an untreated control
group and comparing the results, which has ethical impediments as
discussed above. One possibility to address this would be to take a
naturalistic approach. CBT is commonly over-subscribed, and so waitlists
exist independently of the necessity for a control condition, and could be
used for parallel genetic studies. However, there would be potential

limitations of this approach, not least that there may be a negative "nocebo

effect of being placed on waitlist (Furukawa, Noma, Caldwell, et al, 2014).

In general, genomics can overwhelm the subtlety of behavioural
phenotypes by brute force. With enough power and robust statistical
methods, genetic effects can be identified in spite of heterogeneity produced

by confounders not included in the model (Manchia, Cullis, Turecki, et al,
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2013). Response to cognitive behavioural therapy is an example of this:
response results from factors relating not just to the recipient, but also to the
therapist (and to the interaction between them; Ackerman & Hilsenroth,
2003; Ilardi & Craighead, 1994; Martin, Garske & Davis, 2000). However,
with enough power, it should be possible to identify genetic effects (which

are recipient-based) regardless of the context of the therapist.

Chapter 4 studied RNA transcripts as a measure of the combined
effect of genetic and environmental influences on response to therapy. It
extended therapygenetic investigations a step closer to studying the
multifactorial and highly interactive network of influences that is likely to
underlie therapeutic response. However, there are a number of factors that
make RNA transcripts less attractive than DNA variation as a source of
biological predictors. Chief among these is the dynamic nature of RNA
expression. Unlike genetic variation (which is stable across the lifespan, and
effectively identical between tissues), RNA expression levels can show
considerable temporal variability within an individual (Raj & van
Oudenaarden, 2008). In addition to stochastic variability, variation in gene
expression can result from confounds such as temperature or general health.
Statistical noise thus has a greater effect on differences in gene expression
than on differences in genetic variation between individuals. Gene

expression is also spatially variable, and not all tissues will be of interest in
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studying behavioural phenotypes. There remains controversy concerning
which of blood, saliva and buccal cells represent the best proxy for variation
in brain tissues (Davies, Volta, Pidsley, et al, 2012; Lowe, Gemma, Beyan, et
al, 2013; Smith, Kilaru, Klengel, et al, 2015; Sullivan, Fan & Perou, 2006). Brain
tissue would be preferable, but is inaccessible as a living tissue. Blood is
inferior to brain tissue, but is feasible to use in living participants and shows
more consistency in collection compared to buccal cells (Hansen, Simonsen,
Nielsen, et al, 2007). Saliva provides a less invasive method of collection than
blood and is also more consistent than buccal cells. When combined, the
temporal and spatial variability of gene expression partly negates the
increased power individual gene expression measures might be expected to
show over individual genetic variants. The logistic and technical difficulties
of collecting RNA samples are likely to limit the possible cohort size
attainable, rendering expression studies inferior to genetic studies in this

context.

The latter chapters of the thesis make use of polygenic risk scoring to
explore genome-environment interactions. Specifically, the optimal risk score
is used, as determined by high-resolution scoring across 10000 thresholds
(Euesden, Lewis & O'Reilly, 2015). The use of the optimal score as a proxy
for the genome is an analytical choice, and a range of risk scores could be

used instead (at the cost of increasing the number of tests performed). Using
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the optimal score is conceptually similar to the general two-stage strategy of
only testing for interactions between variables whose main effects pass a
given threshold for significance (Bourgon, Gentleman & Huber, 2010; Dai,
Kooperberg, Leblanc, et al, 2012; Ege & Strachan, 2013; Kooperberg &
Leblanc, 2008). Such filtering strategies increase power at the expense of
neglecting potential interactions with variables that do not pass the filter
(Domingue & Boardman, 2016). Testing for interactions using a genome-
wide risk score differs from testing for interactions using individual variants
because all possible risk scores are correlated (as is addressed in the use of
the empirically-derived family-wise error correction from Euesden, Lewis &
O'Reilly, 2015). Therefore, using the optimal risk score explicitly tests the
hypothesis that the overall genetic component of phenotypic variance
interacts with an environmental effect, while controlling appropriately for

multiple testing.

Optimisation maximises the phenotypic variance explained by the
polygenic risk score as a main effect. Nonetheless, none of the scores used in
this thesis captures a majority of the heritability of the relevant trait. Even
scores generated from the GIANT BMI GWAS (over 300,000 individuals) into
the UK Biobank (21039 individuals in Chapter 5) only captured around 5.6%
of the variance (9-18% of the estimated 30-60% of variance accounted for by

genetic influences; Polderman, Benyamin, de Leeuw, et al, 2015; Yang,
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Bakshi, Zhu, et al, 2015). As such, polygenic risk scores can only be
considered weak proxies for the effect of the genome at present. This is, to an
extent, a temporary limitation that will be reduced by the use of larger base
GWAS in polygenic scoring, as is demonstrated by the increase in variance
explained by polygenic risk scores in more recent schizophrenia GWAS
(Dudbridge, 2013; Schizophrenia Working Group of the Psychiatric
Genomics, 2014). However, the construction of polygenic risk scores,
particularly the accumulation of errors through summing the effects of many
variants, may limit the amount of variance they can ever explain
(Dudbridge, 2013; Wray, Yang, Hayes, et al, 2013). An alternative would be
to use whole-genome regression to construct genetic best linear unbiased
predictors (gBLUPS), which estimate the overall genomic influence on a trait
as a random effect from a GRM (de los Campos, Vazquez, Fernando, et al,
2013). However, this method requires individual-level genotype data for
prediction (rather than summary statistics), which limits its generalisability
and applicability between datasets (Moser, Lee, Hayes, et al, 2015; Speed &

Balding, 2014).

The study of genetic effects in this thesis focusses on common variants
present on (or imputable from) microarrays. Furthermore, the effect of these
variants is modelled additively, both when considered individually in

GWAS, and when combined in genome-environment interaction analyses. It
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is assumed that the effects of the genome can be modelled as a single risk
score, constructed from common variants. However, this assumption does

not take into account the role of rare variation, nor of non-additive effects.

There is a growing appreciation that variants across the allelic
frequency spectrum contribute to the genetic component of variance
(Gratten, Wray, Keller et al, 2014; Hoischen, Krumm & Eichler, 2014). Much
of the genome-wide assessment of rare variants has come from whole exome
sequencing studies, with the most in-depth studies in psychiatric genomics
focussing on schizophrenia and autism (Hoischen, Krumm & Eichler, 2014).
Current cohort sizes are not yet sufficient to make broad statements about
the role of rare variation in behavioural disorders, but findings from these
initial studies suggests they might contribute considerably to the genetic
component of variance. In reference to depression specifically, it has
required very large cohort sizes for common variant discovery to begin, and
so it is likely that even larger cohorts will be needed to understand the
genome-wide contribution of rare variation in this disorder. An analysis of
the genetic component of variance in BMI suggested that rare (MAF < 0.01)
variants able to be imputed from genome-wide microarrays capture around
5% of variance in BMI (Yang, Bakshi, Zhu et al, 2015). Given that the same
study estimated the heritability of BMI to be approximately 27%, and that

around 32% of variation at rare variants couldn't be captured by imputation,
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this rare component in BMI might capture as much as a third of the total
heritability (Yang, Bakshi, Zhu et al, 2015). As such, it is reasonable to expect
a sizable proportion of the genomic influence on the traits studied in this
thesis will stem from rare variation inadequately assayed by the methods

used herein.

Similarly, non-additive genetic effects may influence the traits
examined in this thesis. For example, a meta-analysis of twin studies
reported the average correlation between dizygotic twin pairs for recurrent
depressive disorder was less than half that of monozygotic twin pairs,
suggesting that the correlation between identical twins may be increased by
non-additive genetic effects (Polderman, Benyamin, de Leeuw, et al, 2015).
This finding is potentially confounded by the age of assessment in the
constituent twin studies of this meta-analysis. Specifically, studies in
children and adolescents were more likely to report dizygotic twin pair
correlations indicative of shared environmental effects, whereas studies in
adults were more likely to support non-additive genetic effects. All of data in
the recurrent depressive analysis assessed by Polderman et al (2015) comes
from adults, compared to 54% in the depressive episode analysis (the results
of which are most consistent with a model of additive genetics alone), and
14% in the "other anxiety disorders" analysis (which reported a pattern of

twin correlations supporting shared environmental effects; Polderman,
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Benyamin, de Leeuw, et al, 2015). One explanation for this may be that there
is a stable non-additive genetic effect, which is masked in studies of children
by the presence of shared environmental effects. As each member of a twin
pair becomes exposed to different environments across adolescence, the
shared effect of environment on a given trait may decline, allowing the non-
additive environmental effect to be observed. This hypothesis is difficult to
test with the twin method, which lacks sufficient sources of variance to fit the
full ACDE model (Neale & Cardon, 1992). However, studies of genome-wide
gene-gene interactions are becoming increasing tractable thorough
computational and analytical developments (Wei, Hemani & Haley, 2014).
As such, exploring the role of non-additive genetic effects on depression
from a genotype-level perspective may represent a valuable, if challenging,

avenue for future research.

The interaction models used in chapters 5 and 6 assume that the
interacting variables are independent. Gene-environment correlation violates
this assumption, and could bias the results and interpretation of the
interaction term (Dudbridge & Fletcher, 2014; Jaffee & Price, 2007; Purcell,
2002). The effects of gene-environment interactions are likely to be small, and
as such even correlations that do not meet significance may have an effect on
the interaction term (Jaffee & Price, 2007). Given the relative novelty of

polygenic-risk-by-environment interaction studies, it remains unclear to
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what degree correlations will affect interaction terms when the genetic
variable captures variation genome-wide. Furthermore, genetic effects from
genome-wide association studies are heavily dependent on the estimation of
the effect of causal variants via marker variants in linkage disequilibrium.
This introduces a misclassification problem, whereby the true effect of a
locus is estimated with a degree of error due to imperfect linkage
disequilibrium between the causal variant and its markers (Dudbridge &
Fletcher, 2014). This misclassification can lead to spurious marker-by-
environment interactions when the causal variant is associated with the
environment of interest, even when no causal variant-by-environment
interaction exists (Dudbridge & Fletcher, 2014). Polygenic scores are
constructed from multiple markers, and so the misclassification problem is
also likely to have an effect on polygenic-risk-by-environment interactions.
As such, and despite the fact that the correlations between the interacting
variables in both chapters were non-significant, it is possible that the effects
of the interaction models in this thesis are confounded by gene-environment
correlations. It would be valuable to define theoretically the underlying

mathematics of this bias in polygenic-risk-by-environment interactions.

A motivating factor behind the studies presented in Chapters 5 and 6
was the developing public health crisis caused by increasing rates of obesity.

However, some of the negative consequences of obesity may result from
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generally poor physical health, and the suitability of BMI as a measure of
this phenotype is debatable. BMI is biassed by muscle mass (which is heavier
than fat mass) and oversimplifies the complexities of human body shape
(Nevill, Stewart, Olds, et al, 2006). Alternative phenotypes, such as waist
circumference or fat mass may better reflect the health risk represented by
obesity (Janssen, Katzmarzyk & Ross, 2004). Nonetheless, high BMI is
associated with the negative health outcomes from obesity, and also with
comorbidities such as depression (Luppino, de Wit, Bouvy, et al, 2010;
Taylor, Ebrahim, Ben-Shlomo, et al, 2010). Given the relative ease of defining
BMI, and the need for pragmatic measures to obtain the required cohort sizes
for genomic studies, BMI remains a reasonable proxy for studying the
genetics of obesity in the context of comorbidity and environmental

influences (Taylor, Ebrahim, Ben-Shlomo, et al, 2010).

7.3 The work in the context of the field, and future directions suggested

Studying response to therapy represents a prospective, controllable
approach to the exposed-only genomic method, which has been successful in
the study of post-traumatic stress disorder (where the exposure is
unpredictable and uncontrollable; Ashley-Koch, Garrett, Gibson, et al, 2015;
Guffanti, Galea, Yan, et al, 2013; Logue, Baldwin, Guffanti, et al, 2013;
Nievergelt, Maihofer, Mustapic, et al, 2015; Solovieff, Roberts,

Ratanatharathorn, et al, 2014; Stein, Chen, Ursano, et al, 2016; Sumner,
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Pietrzak, Aiello, et al, 2014; Wolf, Rasmusson, Mitchell, et al, 2014; Xie,
Kranzler, Yang, et al, 2013). The use of robust statistical genetic methods in
therapygenetics should improve the quality of evidence produced by such
studies. This is not of abstract importance; anxiety is a considerable burden
on the individual and society both financially and regarding quality of life,
and can be a chronic issue from childhood into adulthood (Baxter, Vos, Scott,
et al, 2014; Bittner, Egger, Erkanli, et al, 2007; Fineberg, Haddad, Carpenter, et
al, 2013; Gregory, Caspi, Moffitt, et al, 2007; Remes, Brayne, van der Linde, et
al, 2016). Improving the quality of treatment for anxiety, especially in
childhood, would have broad and important societal and public health

effects.

“Therapygenomic” studies can have practical utility in providing
potential prognostic information for individuals undergoing psychological
therapy, as well as value in demonstrating theoretical concepts. Perhaps the
key example of this lies in determining the extent of the genetic component
to response to CBT, including demonstrating that such a component exists.
In behavioural genetics more broadly, this has been achieved using family-
based methods, particularly twin studies. However, in the case of
psychological therapy response, such methods are limited by the availability
of appropriate participants. Obtaining large cohorts from clinical therapy

settings is difficult; limiting recruitment to parent-child triads or twin pairs
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(to allow heritability to be estimated) would be sufficient to make any such
study impractical. There would also be discordance between related
individuals at the disorder level, as well as the treatment response level, and
appropriately modelling this would be non-trivial (Plomin & Haworth, 2010;
Tansey, Guipponi, Hu, et al, 2013). An alternative approach would be to give
psychological therapy to twin pairs or family members without a target
disorder, which could alleviate both of these limitations. However, it may
prove difficult to demonstrate that these genetic effects generalise to therapy-
seeking individuals. Alternatively, an epidemiological approach might be
undertaken, potentially with a genetic component. For example, electronic
health records listing individuals receiving psychological therapy could be
combined with either genetic data from biobanking efforts or with additional
registers of family relationships to allow the assessment of heritability or
familiality (which would be conflated with shared environment). However,
there are likely to be few, if any, suitable datasets for such a study,
controlling for confounding effects such as initial severity could be
challenging, and the possible outcome measures would potentially be
limited to overarching measures of quality of life such as employment status.
Genomic data provides a potentially workable solution to identifying a
heritable component to CBT response, via approaches such as GREML or LD
score regression (Bulik-Sullivan, Loh, Finucane, et al, 2015; Yang, Lee,

Goddard, et al, 2011). Although this will require cohort sizes in the
210



thousands to achieve sufficient power, it seems more achievable than the

alternatives.

Both investigations in Chapters 3 and 4 demonstrate that it is feasible
to study therapygenetics using genomic methods, improving the standard of
evidence for identifying predictors of treatment response. This is crucial to
identifying associated variants robustly, as has been demonstrated by the
general failure to replicate the findings of candidate gene studies in genomic
studies, and the consistent direction of effect for associated variants across
the component studies in large GWAS meta-analyses (Bosker, Hartman,
Nolte, et al, 2011; Farrell, Werge, SKlar, et al, 2015; Schizophrenia Working
Group of the Psychiatric Genomics, 2014). Adopting the genomic approach is
not straightforward, but many earlier limitations (particularly cost) have
been removed by technological developments across the last decade. The
primary barriers to future genomic studies are cohort size and heterogeneity.
The former could be addressed by the formation of an international
collaboration of clinical studies, such as have yielded success in other areas
of behavioural genomics. However, the heterogeneity involved in such an
effort would be high. The development of large psychological therapy
programs and the increasing popularity of internet-delivered therapies
provide an interesting alternative. Such programs generally have fewer

exclusion criteria than randomised control trials (RCTs; Clark, 2011;
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Cromarty, Drummond, Francis, et al, 2016; Hepgul, King, Amarasinghe, et al,
2016). Although individual studies of this type are likely to experience more
heterogeneity than do RCTs, greater accessibility provides larger numbers,
and as such there would be less need to combine multiple trials, resulting in
potentially less heterogeneity overall. However, power is in part a trade-off
between sample size and heterogeneity, and if sample sizes were sufficiently
large, combining different types of programs could be worthwhile despite

the increase in heterogeneity.

The most appropriate biological substrate for studying treatment
response remains up for debate. As argued above, gene transcripts are likely
to be less useful than genetic variants; however, other alternatives exist.
Epigenetic marks, particularly DNA methylation but also histone
modifications, show some of the variability that limits the use of gene
expression measures but are more stable over time. As such they may
represent a useful intermediate between gene expression and genetic
variants that is worthy of further exploration. However, the appropriate
tissue in which to study epigenetic marks is not obvious, and would need to
be taken into consideration when designing any future study. This is
especially important given the relatively novelty of the field of epigenomics,
and the likely need for thousands of samples to obtain adequate power to

detect the effects of individual epigenetic marks.
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Study design is the primary means to increase statistical power to
identify real effects. However, this can also be achieved (arguably to a lesser
extent) through analytical methods, as was attempted in Chapter 4.
Dimensional reduction techniques aim to combine the variable-rich output of
genomic studies in meaningful ways, and in doing so reduce the multiple
testing load of such investigations. Data-driven or literature-driven
clustering (such as are implemented in WGCNA or GOrilla respectively) can
provide insight into the combined effects of high-dimensional data.
Typically these methods are used on gene expression or DNA methylation
data, but they could be extended to incorporate genetic variation, or even to
incorporate both biological and environmental variables. This has clear
implications in the context of gene-environment interplay — clusters
featuring both environmental and biological factors may provide valuable
targets for further study. Alternatively, dimensional reduction could be
extended by identifying the main component of variance within clusters. For
example, the first principal component of variance in a gene expression
module from WGCNA could be used as an endophenotype in GWAS
analyses. This might enable the identification of genetic influences on the
action of a biological pathway in general, rather than focussing on the
expression of a single gene. However, adopting any dimensional reduction
methods requires an appreciation of the underlying statistical model. For

example, while WGCNA has become a popular method for data-driven
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clustering, it assumes that biological networks of interaction are best
modelled with scale-free topology, which is disputed (Khanin & Wit, 2006;

Stumpf, Wiuf & May, 2005).

Attempts to increase power through dimensional reduction also
underlie the use of polygenic risk scores in this thesis. Rather than examining
thousands of independent variants, risk scoring allows a single proxy for the
effect of the genome to be defined. Chapters 5 and 6 differ in the way they
treat the environment. In Chapter 5, environmental effects are not explicitly
modelled, but instead are reflected in the robustness of the relationship
between BMI and depression, even when the effect of the polygenic risk
score is taken into account. This has parallels with the manner in which
environment is defined in quantitative genetic analyses. In contrast, Chapter
6 explicitly defines environmental effects. Although only two environmental
effects were defined in this study, multiple environments could be included
in this approach, limited only by the increased burden of multiple testing. As
such, the method used in Chapter 6 is equivalent to a GWIS with the genetic

component collapsed into a single variable.

The subject explored in Chapter 5 has considerable external relevance
—both depression and being overweight contribute considerably and
increasingly to the burden of ill health (Lim, Vos, Flaxman, et al, 2013;

Murray, Vos, Lozano, et al, 2012; Ng, Fleming, Robinson, et al, 2014;
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Whiteford, Degenhardt, Rehm, et al, 2013). Furthermore, understanding the
relationship between these traits could inform treatment - there is evidence
to suggest a differential effect of monoamine oxidase inhibitory
antidepressants on depression depending on weight status (Liebowitz,
Quitkin, Stewart, et al, 1988; Quitkin, Stewart, McGrath, et al, 1993). Equally,
different approaches might be taken to manage weight in individuals with
depression if there is a direct causal relationship between the traits than if
they are both common outcomes from stem from an alternative cause (for
example, both might result from a low-quality diet; Lopresti, Hood &
Drummond, 2013; Penninx, 2016). However, Chapter 5 is far from the first
study of this question. Aside from the decades of study of the phenotypic
and clinical relationship between depression and BM]I, there is a growing
literature regarding the genetic component of this relationship. Chapter 5
employs a similar method to a recent paper from the Generation Scotland
study and includes attempts to cross-replicate findings from Generation
Scotland and UK Biobank (Clarke, Hall, Fernandez-Pujals, et al, 2015). Chief
among these was the presence of a significant interaction such that genetic
influences on BMI were greater in individuals with depression than in
controls, which was observed in Generation Scotland but not in UK Biobank.
While this was in part due to an analytical artefact (the use of different
polygenic risk scores), the fact that this disparity remained when the same

approach was used in both studies suggests that the composition of the
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depression case group differed between UK Biobank and Generation
Scotland. The results from Chapter 5 in the context of the field thus suggest
that studying the relationship between BMI and depression may first require
dissection of the depression group into more homogeneous subsets. This is
supported by other recent work, which suggested that genetic risk for
metabolic phenotypes was associated with depression in individuals with
atypical depression, but not in those with typical depression (Milaneschi,
Lamers, Bot, et al, 2015; Milaneschi, Lamers, Peyrot, et al, 2016). Depression is
far from being the only heterogeneous behavioural phenotype. The necessity
to identify homogeneous subgroups is a major theme in behavioural

genetics, and this extends to the study of gene-environment interplay.

Chapter 6 demonstrates an important point concerning BMI
development, which may be informative about behavioural development in
general. Within the study, there are two related phenotypes, BMI at age 11
and the slope of change between 11 and 16 (modelled linearly). The latter
phenotype is dependent on the first, and so BMI at 11 was included as a
covariate in the analysis of change across adolescence. As a result, the effects
of variables of interest (in this instance, genetic risk and social environmental
factors) before 11 years old are captured by the inclusion of BMI at 11 as a
covariate, and so some insight into the stability of these effects can be

gleaned from the results. In the instance of BM]I, this suggested relatively
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stable influences of parenting and SES, and a genetic influence with both
stable and novel components (because a PRS derived from an adult sample
shows an effect both at 11 and across adolescence, despite the inclusion of
BMI at 11 as a variable in the latter analysis). This provides an interesting
corroboration of traditional longitudinal modelling approaches, which also
argue for both stable and time-specific effects of genetics on BMI (Haworth,

Carnell, Meaburn, et al, 2008; Hjelmborg, Fagnani, Silventoinen, et al, 2008).

7.4 Gene-environment interplay in the behavioural genomic era

Decades of behavioural genetic research strongly argues that both
genetic and non-genetic influences have important roles in behaviour.
Although specific, robust examples of gene-environment interaction are few,
it seems unlikely that these different components act entirely independently.
Genome-wide association studies have strengthened the study of genetic
factors as main effects, providing multiple examples of common variants
that influence behavioural traits. The field of gene-environment interplay is

now beginning to catch up, and to adopt genome-wide methods.

Within this thesis, I have explored alternatives to genome-wide
interaction studies (GWIS), which are the most direct way of using genomics
to study gene-environment interplay. The potential to examine multiple
environmental influences using GWIS is limited by power. However, it has

become feasible to perform GWIS focussed on specific environmental
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influences, and such studies may prove valuable in identifying interactions
(Dunn, Wiste, Radmanesh, et al, 2016; Winkler, Justice, Graff, et al, 2015).
Although focussing on a single environment violates the hypothesis-neutral
ethos of genomic studies, there is a broader evidence basis for candidate
environments than for candidate genetic variants, including the role of
childhood maltreatment in depression and cannabis use in schizophrenia

(Green, Young & Kavanagh, 2005; Nanni, Uher & Danese, 2012).

Genomic data is information-rich, and alternative approaches that use
genomics complement the GWIS approach. Fundamentally, the aim of such
research is to identify genetic variants or an overall genomic effect that is
contingent on environmental context. Exposed-only GWAS achieve this aim
directly, by using differential response to a shared environment as the
phenotype. Cognitive behavioural therapy provides a theoretically attractive
phenotype for pursuing such studies. The studies presented in Chapters 3
and 4 demonstrate that genomic studies can be used to investigate genetic
associations with response to cognitive behavioural therapy as an
environmental exposure. The results provide an exclusionary upper
threshold for proposed effect sizes; future studies must be designed with
sufficient power to test the likely small effect sizes that can be inferred from
behavioural genomic studies more generally. Much the same conclusions can

be applied to the study of RNA transcripts in Chapter 4.
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Using polygenic risk scores to dissect relationships between phenotypes
allows environmental effects to be inferred by the removal of genetic effects,
and as such gives insight into the broad effect of (additive) genetic and non-
genetic factors on that relationship. Chapter 5 demonstrated that this
approach can be informative of the likely components of the relationship
between depression and BMI. Such an approach will become more effective
as polygenic risk scores capture a greater proportion of variance, and could
be extended to incorporate alternative methods to use genotype data as a
proxy for the overall effect of the genome (such as the summarised GBLUPs

proposed by Speed & Balding (2014)).

Finally, studying genetic risk-by-environment interactions allows a direct
test of the effect of environmental context, while reducing the multiple
testing inherent in the GWIS approach. Polygenic risk-by-environment
interaction studies of this kind are becoming popular, and Chapter 6 adds to
this literature. However, it also demonstrates the difficulties of combining
the cohort sizes needed for genomic study with the precise environmental

definitions needed to robustly assess gene-environment interplay.

The concept of gene-environment interplay is intuitively attractive, and
fits within the broader theory of systems biology - that is, that influences on
biological phenotypes are not independent, but exist within a broad network

of many interacting components. However, the evidence to date in support
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of gene-environment interplay in behavioural phenotypes, including from
the studies in this thesis, is underwhelming. There are few, if any, robust
gene-by-environment interactions in the behavioural literature. The
SHTTLPR-by-stressful life event interaction associated with depression may
be an exception, but the variability in the environments studied, the different
genotypic models used in such analyses, and the amount of analytical
variability in meta-analysis of this association is sufficient to prevent a strong
conclusion on the veracity of that association (Sharpley, Palanisamy, Glyde et
al, 2014; Taylor & Munafo, 2016). In part, this lack of evidence reflects the
slow movement of the field as a whole away from the candidate gene
method, the limitations of which (focus on a small number of genes,
tendency to use small sample sizes, vulnerability to winner's curse) have
already been discussed in this thesis (Dick, Agrawal, Keller et al 2015). This is
compounded further by the general difficulties that large-scale
environmental research presents - adopting a gold-standard measure of a
specific environment and obtaining this on sufficient participants to capture

small genetic influences has proved a considerable challenge.

However, some of the issues that have impaired gene-environment
research in the past can be addressed by adopting a genome-wide approach.
The polygenic risk score-by-environment approach, although it did not yield

conclusive results when used in this thesis, removes the necessity to select a

220



genetic variant of interest. As the base datasets used to develop risk scores
become larger, and risk scores begin to capture more variance, risk score-by-
environment interactions may become more meaningful. A caveat to this is
that the current approach effectively assumes genetic homogeneity of the
trait under study (at least in within-trait analyses), which may not be the case
- the risk score as a whole may not interact with a given environment even if
a subset of variants truly do. However, the growing general interest in the
partitioning of variance components is likely to spread to PRS, and this may
provide opportunities for extending the PRS-by-environment interaction

paradigm to account for genetic heterogeneity in traits under study.

A further issue that has limited candidate gene-environment interaction
studies has been a limited appreciation of multiple testing and the low prior
probability that a given interaction is truly associated with the outcome.
Although it was not the focus of this thesis, the GWIS approach is now
becoming tractable, and yielding findings (Dunn, Wiste, Radmanesh et al,
2016). Too few GWIS studies have been done to date to know whether such
findings will prove robust, but the general replicability of findings from
main effects GWAS gives reason to be hopeful that single-variant genome-
wide approaches, in concert with variant-grouping methods like PRS, may

identify gene-environment interactions (Vinkhuyzen & Wray, 2015).
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By incorporating environmental measurements into genetic studies (and
vice versa), it might be possible to gain important insights into the
fundamental, and highly complex, nature of behaviour. It is unlikely that a
single investigation will ever serve to answer a question of biological interest
because no method is a perfect model of the underlying system, but applying
multiple approaches can provide a richer evidence base than using a single
method alone. Through such cumulative steps, we will begin to understand

behaviour.
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Abstract

The decreasing cost of performing genome-wide association studies has made gencmics widely accessible, However, there
is a paucity of guidance for best practice in conducting such analyses. For the results of a study to be valid and replicable,
multiple biases must be addressed in the course of data preparation and analysis. In addition, standardizing methods
across small, independent studies would increase comparability and the potential for effective meta-analysis. This article
proevides a discussion of important aspects of quality contrel, imputation and analysis of genome-wide data from a low-
coverage microarray, as well as a straight-forward guide to performing a genome-wide association study. A detailed proto-
col is provided online, with example scripts available at https://github.com/JoniColeman/gwas_scripts.

Key words: GWAS, methods; low-coverage microarray; imputation; analysis

Introduction
Genome-wide assocdation studies (GWAS) are widely used to

long term, the costs of Tunning a GWAS are currently an order of
magnitude smaller than those for sequencing, suggesting GWAS

assess the impact of common genetic variation on a variety of
phenotypes [1, 2]. Low-cost microarrays designed to assay thou-
sands of variants and to be imputable to millions, such as the
Mumina HumanCoreExome microarray {{llumina, San Diege, GA,
USA), have increased the accessibility of this technology.
Although the rapid development and falling cost of whole-
genome sequencing is likely to reduce the use of GWAS in the

will remain an impertant technigue into the near future [3].
However, there ia a paucity of information on best practice for
using the data resulting from microarray-based genotyping
Excellent theoretical and practical protocals for the quality control
of gencme-wide genotype data exist [4, 5], and most commonly
used software have well-constructed user manuals, but structured
advice to guide analysis is missing from the literature. To date, a
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congiderable proportion of the analysis of such data has been con-
centrated within large consortia (such as the Psychiatric Genomics
Censortium}, with experienced analysts and in-house protocols [6,
7]. However, such guidance is not easily available to groups outside
these consortia. As the accessibility of genome-wide data increases,
80 musgt the accessibility of advice on its analysis, Furthermore, 2
standardized approach would increase comparshility between
studies, facilitating further investigations such as meta-analysis
and augmenting the value of each individual study [B].

The choices made in conducting the analysis of genotype data
affect the final result. At worst, poor quality control can lead to
systematic biases in outcome and increased false-positive (and
false-negative) associations [4]. However, the effects can be more
nuanced; for example, association testing using a mived linear
model may use a genetic relatedness matrix {GRM) to cantrol for
gross genetic similarity between individuals [9, 10]. The precise
pairwisge relationships will differ subtly depending on whether
the GRM iz made uging the genotype data before or after irnput-
ation {as well as on the programme used), and so the results of
the assodation study will also differ slightly. Neither choice in
this context is wrong, but the choice made has consequences,
and as such needs to be considered and reported [11].

Recently, we performed the fist genome-wide association
study of response to cognitive behavioural therapy, using the
HumanCoreExome microarray (Coleman et al, Under Review). In
this protocal, we have used that experience to provide suggestions
for the quality control, imputation and analysis of data from this
micrarray, agsuming careful recalling of the raw intengity data
has been performed. The atepa are Likely to be applicable to data
from other arrays, with the caveat that differences in array content
may require alteration of the various threshelds discussed. The
analysis of genome-wide data remains a data-driven activity, and,
where appropriate, we have provided advice on making informed
choices from the data, Furthermore, we recornmend consulting
graphical representations of the data when defining thresholds.

Pre-analytical procedures: genotyping, calling
and recalling

This protocol describes the basic analytical steps required to
conduct a genome-wide association study; it is expected that
DNA genotyping end genotype recalling have already been per-
formed. In this context, genotyping refers to the hybridization
of genomic DNA to oligonucleotide probes targeted at a poly-
morphic region, and the extension of these probes to encom-
pass this region. This extension uses chemically labelled
nucleotides that are specific to the different alleles of the poly-
torphistn and that bind either red or green fluorescent agents,
which can be read using a fluorescence-sensitive scanner. The
end product of genotyping is the raw intensity data of these
fluorescent agents at each polymorphic site [12]. To determine
the identity of the alleles at these sites, the raw intensity data
must be called—clusters of samples with similar intensgities are
identified, and the clusters are labelled according to the design
of the microarray. This initial calling is performed by automated
software—however, the algorithms to perform this calling
sometimes fail to identify valid clusters, especially when pat-
terns of clustering are unusual. As such, some clusters must be
identified by manual recalling by a bicinformatician. Recalling
is an extremely important step—badly called genotypes create
biases that severely impair the quality control and analysis of
data. The complexities of genotyping and recalling are beyond
the scope of this protocol, but guidance iz available from array
manufacturers and as referenced in the online protocol [13].

Considerations in conducting a study

The value of any finding in molecular genetics is reliant on the
ability to replicate it in an independent cohort, and the first step
to successful replication is to minimize the likelihood that
reported findings are false positives, Given that thousands of
variants are assessed in a GWAS, and the potential for random
error in genotyping and recalling {(as discussed above), it is
necessary to impose stringent thresholds on the quality of data
to be taken forward to analysis [4]. Pre-analytical steps partly
inform these thresholds. When a more varisble method of col-
lection has been used, it is advisable to consider more stringent
quality control parameters; for example, collection using buccal
swabs produces poorer quality DNA than extractions from
whole blood or saliva [14].

Quality control: selecting variants by allele
frequency

Following genotyping and the recalling of genotypes, most
GWAS studies begin by filtering the variants by the frequency of
the less-commeon allele {minor allele frequency or MAF}. Variant
MAF has many effects on later analysis, as allele frequency is
agsocigted with time since mutation, the structure of local link-
ape disequilibrium (ED) and the relative size of the associstion
statistic [15, 16]. The chances of an error in genotype calling
increase with decreasing MAF, as the certainty of manual and
automatic clustering falls with fewer variants in each cluster
[17]. At the most extreme level, if all but one variant cluster
together, it is difficult to assess whether the lone variant is truly
a different genotype, or whether it is a missed call. For this rea-
son, the rarest variants should be discarded from the analysis.
What constitutes ‘rare’ depends on the size of the studied
cohort—assuming perfect Hardy-Weinberg equilibrium, the
minor allele of a variant with MAF =0,1% would be expected to
be present in 19 heterozygotes and 1 homozygote in a cohort of
10000 individuals, but only one or two heterozygotes would be
expected in a cohort of 1000 individuals. In smaller cohorts, a
mare stringent MAF cut-off is recommended, as the minor allele
count will be lower, which limits the value of conclugions from
the analysis of these variants. For the smallest studies, where
fewer than 1000 individuals are investigated, a cut-off of 5%
should be considered—this is in line with the analysis program
GenAbel, for example, which uses a minor allele count of 5 as
its cut-off [18]. Typically, many studies define rare single nu-
cleotide polymorphisms (SNPs) as having a MAF «<13%, which
has historical roots in the HapMap project [19]. It is worth noting
that the exonic content of the HumanCoreExcme chip was spe-
cifically designed to target coding varants, with much of this
content having a population MAF <1% [17]. Therefore, using this
micrearray in smaller cohorts and impesing a MAF cut-off of 1%
or higher will result in discarding most of the exonic content.

Quality control: removing variants and
samples with missing data

It is necessary to remnove rare variants from GWAS because the
certainty of the genotype call is reduced by their low minor
allele count Even in cornmon variants, however, genotyping
and genotype recalling are subject to technical error, with the
result that a proportion of variants and samples are of low qual-
ity, and should be removed from the analysis. Removal of such
migsing variants and samples is best conducted in an iterative
manner, Temoving varianis genotyped in «<90% of the samples,
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Figure 1. Frequency polygon showing the number of variants at each info value post-imputation, including poor-quality variants to be excluded (info <0.15) and

higher-quality variants that should be kept (info >0.85).
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Figure 2. Cumulative frequency curve showing the same data as Figure 1.

then samples with <90% of variants and continuing with
increasing stringency to a user-defined final threshold (typically
in the range of 95-99% completeness, depending on the
required stringency of quality control). This has benefits over
removing all variants and samples beneath the final threshold,
as fewer samples are lost using the iterative procedure (at the
expense of a slight increase in variant exclusions).

Quality control: assessing deviation from
Hardy-Weinberg equilibrium

Thresholds that identify missing variants do not necessarily
exclude miscalled variants. For example, clustering algorithms
can incorrectly define a group of samples as heterozygous. One
method to detect this is to evaluate the deviation from Hardy-
Weinberg equilibrium at each variant. Although such deviations
can be caused by processes that may be of interest within the
study, such as selection pressure, the expected size of such
deviations is small. Setting the threshold for the P-value of the
Hardy-Weinberg test to be low (P < 1 x 10~°) decreases the prob-
ability of excluding deviations that result from processes of
interest. In case-control studies, it is recommended to remove
SNPs deviant in controls only (this is the default behaviour in
PLINK?2). Deviations from Hardy-Weinberg equilibrium as a

0.50 0.75 1.00
Info

result of genotyping artefacts are not expected to differ between
cases and controls, but biologically relevant deviations are more
likely to occur in cases [5]. The threshold for the P-value cut-off
can be determined empirically, by examining the spread of
P-values from the Hardy-Weinberg test in the data, and select-
ing a threshold under which there are a greater number of vari-
ants than expected by chance (in our experience, with small
data sets, this is typically around P=1 x 10 °).

Quality control: pruning for LD and removing
related samples

The initial quality control steps described above correct for the
random errors introduced by genotyping and recalling. Further
steps are required to address cryptic structure, the presence of
similarities between individuals independent of the phenotype
under study, which present a source of potential bias in the out-
come of association tests. Such structure is commonly envisaged
as two interconnected concepts, high relatedness between indi-
viduals (determined by the proportion of their genomes identical-
by-descent—IBD) and population stratification. The presence of
structure is inferred from examining genome-wide genotype
data. However, the phenomenon of LD can exaggerate or obscure
similarities, as a shared region of high LD results in more shared
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Figure 3. Histograms of the info metric of imputed variants on chromosome 9, split by MAF at 0.01.

variants than one of low LD, even if the two regions are the same
size. Accordingly, it is necessary to prune the data for LD before
assessing IBD and population stratification. This can be achieved
using a pairwise comparison method, comparing each possible
pair of variants in a given window of variants and removing one
of the pair if the LD between them is above a given cut-off. This
protocol uses a window of 1500 variants, shifted by 10% for each
new round of comparisons, and a threshold of R?>0.2. The win-
dow size of 1500 variants corresponds to the large, high LD
chromosome 8 inversion, while the shift of 10% represents a
trade-off between efficiency and thoroughness [5].

Once an LD-pruned data set is obtained, individuals can be
compared pairwise to establish the proportion of variants they
share identical-by-state (IBS). Closely related individuals share
more of their genome than a randomly chosen pair of individ-
uals from the population, and are likely to be more phenotypic-
ally similar. As a result, including closely related individuals
can skew analysis; genetic variants shared because of close
relatedness can become falsely associated with phenotypic
similarity that also results from close relatedness.

With a sufficiently homogeneous cohort assayed at thou-
sands of variants, IBS information can be used to infer vari-
ants that are shared identical-by-descent (IBD) [20].
Individuals with an IBD metric (pi-hat) >0.1875 (halfway be-
tween a second and third degree relative [4]) should be
removed, as well as individuals with unusually high average
IBD with all other individuals, which may indicate sample
contamination or genotype recalling error leading to too
many heterozygote calls [20]. The IBD threshold suggested
here is designed to remove the most closely related individ-
uals, while avoiding removing large numbers of samples
through being overly stringent. It is worth noting that some
downstream analysis programs impose much more severe
IBD cut-offs (GREML estimation in GCTA, which produces an
estimate of heritability from all assayed variants, uses
0.025), while other analyses account for between-sample re-
latedness as part of the analysis [9, 21]. What quality control
is appropriate depends on the nature of the cohort, the ques-
tion being asked and the analysis methods intended to be
used.
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Figure 4. Cumulative frequency plot of call rate of hard-called imputed SNPs (genome wide).

Quality control: confirming sample gender and
assessing the inbreeding coefficient

Samples whose reported gender differs from that suggested by
their genes are likely to have been assigned the wrong identity.
This leads to reduced power, as the sample’s genotype becomes
effectively randomized in respect to the phenotype. The average
homozygosity of variants on the X chromosome (the X-
chromosome F statistic) can be used to indicate sample gender.
Much as it confounds estimates of IBD, patterns of LD will also
impair chromosome-specific (and genome-wide) tests of homo-
zygosity, and so it is necessary to perform this test following
pruning for LD. The F statistic is a function of the deviation of
the observed number of heterozygote variants from that ex-
pected under Hardy-Weinberg equilibrium. In males, F~1, be-
cause all X chromosome variants are hemizygous, and so no
heterozygotes are observed. Females are expected to have lower
values of F, distributed normally around 0 [22]. However, this is
an imprecise measure—female subjects with high F have been
reported in the 1000 Genomes reference population (https://
www.cog-genomics.org/plink2/basic_stats). As such, it is recom-
mended that the <0.2F threshold for females (as used by PLINK)
is treated as guidance, and that further checks (such as counting
the number of Y chromosome SNPs with data) are made, and
that the phenotypic gender of discordant samples is confirmed
with the collecting site where possible [20, 23].

In addition to using a chromosome-specific homozygosity
check to confirm gender, a whole-genome F should also be
calculated. This statistic is also referred to as an ‘inbreeding
coefficient’, as inbreeding results in reduced numbers of hetero-
zygotes. Individuals with particularly high or low inbreeding
coefficients should be removed from analyses, as this is likely
to be an artefact caused by genotyping error. However, caution
is advised when studying cohorts in which consanguineous
relationships are common, as high inbreeding coefficients are
expected in these samples.

Quality control: controlling for population
stratification

Similarities exist between the false genotype-phenotype correl-
ations created by close between-sample relatedness and those

created by population stratification, where phenotypic and
genotypic similarity are correlated because of geographical loca-
tion, rather than a true association. A variety of methods exist
to control for population stratification, of which the most com-
mon is to perform principal component analysis on the
genome-wide data, and then use the resulting components as
covariates in association analysis. However, there is little guid-
ance as to which components to choose, and this is often deter-
mined empirically in individual studies through piecemeal
inclusion of principal components into the analysis until meas-
ures of genomic inflation fall below a chosen threshold (usually
until the genomic inflation statistic lambda ~ 1 [24]). We suggest
an alternative, regressing principal components on outcome
directly, and keeping only those that explain variance in the
outcome at a rate above chance for use as covariates in the
GWAS. This then leaves the question of what should be done if
no component is associated with outcome. Recent computa-
tional developments have enabled an alternative means of con-
trol through the construction of genomic relatedness matrices
[11]. This method compares the deviation of each individual
from the population mean at each variant in the data set, and
then compares individuals pairwise to establish a value for
overall genetic similarity. This can then be entered into the ana-
lysis as a random variable in a mixed linear regression, and has
the benefit of capturing population variance at a finer-scale
level than principal component analysis [11] (for an in-depth
discussion of the comparison between principal component
analysis and genetic relatedness matrices, see [25]).

Imputation to the 1000 Genomes reference
population

The main benefits of the HumanCoreExome as a low-cost micro-
array are twofold. First, the exonic content allows rare coding
variation to be assayed in large numbers of samples without the
high costs of sequencing these variants [26]. However, this relies
on large sample sizes to allow for reliable calling of the geno-
types. The value of the array in smaller cohorts is in providing an
inexpensive means to assay thousands of variants that are in
high LD with a considerably greater number. To make effective
use of the array in this manner requires imputation of the data to
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a reference population, most commonly the 1000 Genomes
Reference [27]. However, the advent of larpe-scale sequencing
studies such as UK10K {http//wwwukliCkorg/ and Genomics
England {(httpy//rwrw.genomicsengland.couks}, and the increas-
ing availability of sequence data on specific populations, is likely
to result in alterations to imputation practice in the near future.

The gnline protocol uses IMPUTEZ [28, 29] to impute 1o the
full 1000 Genomes Reference population. This is performed
without pre-phasing, as there is evidence that this is the most
accurate method {albeit somewhat slower than pre-phasing;
http://blog. goldenhelix.com/?p=1911). It also assumes access to
a multi-node computing cluster, altheugh jobs could be run se-
quentially (with considerable increases in computational time).
The imputed data that regult from these methods are provided
in a probabilistic ‘dosage’ format, which is an atiractive format
from a statistical perspective, as it allows for the variable cer-
tainty of each imputed call to be considered within the assod-
ation model. Programs exist that allow for the direct use of
dosage data in association analyses, such as SNPTEST and
ProbABEL  (htips//mathgen.stats.ox.ac.uk/genetics_software/
snptest/old/snptest html, [30]). However, this format remains
computationally burdensome at present—for example, it is not
yet possible to store dosage data as a file input type in PLINK,
akin to the PLINK binary format As such, the protocol converts
these probabilistic calls to binary ‘hard’ calls, marking less-
certain calls ag migsing. This increases downstream flexibility
at the expense of losing the more informative probabilistic calls.
With increasing computationsl sophistication, it is likely that
the use of dosage data as an input file type will become possible
and commonplace; to this end, readers are advised to consult
the PLINK2 website (https://www.cog-genomics.org/plink2/).

Post-imputation quality control:
monomorphic, rare and missing variants

Following imputation, data are provided for a large number of
variantg (83 million in the latest release of the 1000 Genomes
Project). As such, there is a necessity to perform past-imputation
quality control Monomorphic variants should be removed
{MAF = 0}, as well as variants that are extremely rare in the cohort
{see the earlier discussion of MAF removals). IMPUTE2 provides
an ‘Info’ score related to the quality of the imputation for each
variant, Different sources recornmend different thresholds to ex-
clude poorly irnputed data. The selection of this threshold should
be made taking into account the overall quality of the data {poor-
quality data require greater quality control, and so a higher info
threshold should be used}. The bast method is to plot a frequency
curve (Figure 1} or cumulative distribution (Figure 2) of the info
score and assign the threshold at the inflexion point. For ex-
ample, the graphs below show most of the worst-performing
variants have info<0.15, and there is an enrichment of high-
quality variants with info :»0.85. The threshold chosen should fall
between these two. There is a relationship between MAF and
info, and it is valuable to examine these metrics together—rarer
variants usually show lower info scores, and often the appropri-
ate cut-off is obvicus from plotting info in MAF bins (Figure 3}. In
this exarmple, a MAF cut-off of 0.01 appears to remove moest of the
SNPs with low info scores. Finally, it is necessary to exclude vari-
ants missing in multiple samples when using hard-called data,
as variants imputed with a certainty below threshold are marked
as missing rather than being excluded. Defining the threshceld for
completeness again benefits from plotting the data: in the ex-
ample shown in Figure 4, a cut-off of 98% completeness appears
to be an acceptable trade-off between retaining variants in the

analysis and reducing the variation in sample size between ana-
lyses of each variant. Again, the threshold chosen should be in-
formed by the necessary stringency of the quality control and the
proposed downstream analysis.

Association analyses

The final step presented in this protocol is to perform the asso-
ciation analyais itself. The exact analysis performed depends on
the resemrch queston being invesdgated and the covariates
included. The flexibility of PLINK2 for running multiple statis-
tical models and including covariates in a variety of different
ways, coupled with a user-friendly implementation, arguably
means it remains the first choice for performing analyses.
However, many other progams exist, and It iz worthwhile
investigating whether a piece of software particularly suited to
the planned analysis is available. The introduction of mixed lin-
ear model association analysis is an example of this, allowing
for an approach te control for population structure that is as yet
not available in PLINK2, although the implementation of GCTA
code Into PLINK2 is expected in the near future [5, 11, 23]. The
development of agsociation analysis software i3 an sctive area
of research, with programs such as FasT-LMM and BOLT-LMM
providing alternative implementations to GCTA [31, 32].

Conclusgion

GWAS remains a valuabile technique for understanding the role
of genetic variants in explaining phenotypic variation, and ig
likely to persist as an affordable alternative as the field moves
into the sequencing era. The analysis of thousands of variants
allows novel findings to be made, and targets for replication to
be established. Minimizing false-positive findings from GWAS
will allow for more efficient use of research effort through
reducing the likelihood of failed replication.

This protocel is intended as an introduction to the concepts
and processes of analysing novel data from microarrays—qual-
ity control, imputation and analysis are areas of constant statis-
tical and computaticnal innovation, and advanced techniques
that may be more appropriate for a given data set are regularly
posited in the literature. We hope that the provision of this sim-
ple protocol will ensure the general standard of GWAS remains
high, and will simplify the combination of independent studies
into the coilaborative meta-analyses that have become a hall-
mark of success in genomics.

Key Points

* Replication, including combining individual studies in
meta-analyses is central to genomics.

* Well-executed recalling and quality control of geno-
type data reduces biases within GWAS studies and in-
creases the probability of successful replicatfon.

* Quality control, imputation and analysis of genotype
data are data-driven activities.

* The protocol provided with this article provides a
straightforward introduction to the basics of GWAS
that will increase standardization of GWAS studies
between different groups.

* Example scripts are provided at htipsy//github.com/
JoniColeman/gwas_scripts.
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Appendix II:

Data supplement to Coleman et al. Genome-wide association study of response to
cognitive—behavioural therapy in children with anxiety disorders. Br J Psychiatry doi:

10.1192/bjp.bp.115.168229

Supplemental material

Site information

Unless otherwise specified, clinical trials included all primary anxiety disorder diagnoses. All

sites made secondary anxiety disorder diagnoses where appropriate.

Sydney, Australia

Participants aged 6-18 were recruited from the Centre for Emotional Health, Macquarie
University, Sydney. All participants completed the Cool Kids program(1), with 10-12 family
sessions involving the parents (the majority of which were conducted in groups; 8% of the
sample’s DNA were collected retrospectively). Variations on this treatment program include
a subgroup from previous randomized trials who received group, individual or phone-based
CBT sessions(2, 3); participants from a guided self-help trial with phone support for children
in rural Australia(4); a group from a trial with additional parental anxiety management (5);
and those recruited from an ongoing randomized trial of progressive allocation to treatment

(Stepped Care).

Reading and Oxford, UK

Participants aged 5-18 were recruited jointly from Reading and Oxford from eight trials at
the Berkshire Child Anxiety Clinic (University of Reading) and the Oxfordshire Primary Child
and Adolescent Mental Health Service. Participants received treatment in three main
themes; one focusing on children with anxious mothers; a set of trials using a parent-guided

self-help CBT program; and an online CBT program for adolescents.

The Mother and Child (MaCh) project(6). Children whose mother also had a current anxiety

disorder completed an 8 session manual-based CBT treatment based on the Cool Kids
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program(7). The mothers of these children also received extra sessions focusing on their
own anxiety and on mother-child interactions.

Overcoming. Children were treated with a parent-guided self-help CBT program, comprised
of the same primary components as the Cool Kids program (7, 8). This consisted of 2-4 in-
person sessions and 2-4 telephone sessions. A sub-set of this group with a primary anxiety
disorder diagnosis of Social Phobia also received targeted Cognitive Bias Modification
Training (CBM-1,(9)). Additionally, participants with highly anxious parents (screened using
DASS or by meeting ADIS criteria) were randomized to groups in a trial including additional
sessions for the parents which focused on strategies for tolerating children’s negative
emotions. In Oxford, treatment was based on the same basic program, and delivered by

primary health workers as part of a feasibility trial(10).

BRAVE. The final treatment group completed a therapist-supported online CBT program for
adolescents (BRAVE), consisting of 10 sessions, half with 5 additional parent sessions and

half without parent sessions.

Aarhus, Denmark

Participants aged 7-17 years were recruited from the Department of Psychology and
Behavioural Sciences, Aarhus University, and all anxiety disorder diagnoses were included.
Participants received CBT using the Cool Kids manual (including the adolescent version
where appropriate (7, 11)). Participants came from two groups; one aged 7-17, from a trial
including treatment and waitlist conditions; and another group aged 7-12 from a trial
comparing efficacy of traditional group-based treatment with Cool Kids versus a guided self-
help version with clinician support (bibliotherapy). In both trials only participants that

received in-person CBT were included.

Bergen, Norway

Participants aged 5-13 were recruited from the child part of the “Assessment and Treatment
— Anxiety in Children and Adults” study, Haukeland University Hospital, Bergen. Patients
referred to outpatient mental health clinics in Western Norway, with a primary diagnosis of
separation anxiety, social phobia, or generalized anxiety, received group or individual
treatment with the FRIENDS program (4th edition(12, 13)) in a randomized control trial

comparing active treatment with a waitlist condition(14).
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Bochum, Germany

Participants aged 5-18 were recruited from the Research and Treatment Centre for Mental
Health, Ruhr-Universitdt Bochum. Participants received either exposure-based CBT (8-25
sessions, with sessions occurring at least every 2 weeks), the Coping Cat program (15), or a
family-based version of CBT specifically designed to target separation anxiety disorder
(TAFF (16, 17)). Diagnoses were provided separately for parent- and child-report. The
primary diagnosis was selected as being the most severe from either reporter. If the most
severe disorder reported by each was of equal severity but was a different diagnosis, the

parent-reported diagnosis was selected.

Basel, Switzerland

Participants aged 5-13 (all with a primary diagnosis of Separation Anxiety Disorder) were
recruited from the Faculty of Psychology, University of Basel. All participants took part in a
randomized control trial comparing a family-based version of CBT specifically designed to
target separation anxiety disorder (TAFF (16, 17)with Coping Cat(15)). All participants

received 16 sessions over 12 weeks.

Groningen, The Netherlands

Participants aged 8 to 17 were recruited from the Department of Child and Adolescent
Psychiatry, University of Groningen. All participants were treated within a randomized
control trial of Coping Cat (Dutch version (18)) including 12 individual child sessions and 2

parent sessions.

Florida, USA

Participants aged 7 to 16 (including all primary anxiety disorder diagnoses except PTSD)
were recruited from the Child Anxiety and Phobia Program, Florida International University,
Miami. All participants received 12 to 14 hour-long sessions of individual manualized CBT.
Additionally, two conditions included parental involvement focusing on different parent

skills (Relationship Skills Training or Reinforcement Skills Training).
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Cambridge, UK

Participants aged 8-17 were recruited from the MRC Cognition and Brain Sciences Unit,
Cambridge, UK. Participants were taking part in the ASPECTS trial, which recruited
individuals exposed to a recent (i.e. in the previous six months) traumatic stressor (i.e. any
event that involve the threat of death, severe injury, or threat to bodily integrity, or
witnessing such an event). Those that developed PTSD were randomized to a 10-week
waitlist or individual PTSD-specific CBT(19), which consisted of up to 10 sessions over a 10

week period. Only participants that received treatment were included.

Amsterdam, The Netherlands

Participants aged 10-14 were recruited from the Academic Treatment Centre for Parent and
Child, University of Amsterdam UvA Minds and received either 12 weeks of CBT in individual
sessions or 8 weeks of CBT in group sessions, according to the Dutch protocol Discussing +
Doing = Daring(20). Diagnoses were provided separately for parent- and child-report with

the primary diagnosis selected from these data by the trial manager.

Assessment of treatment response

At all sites, an experienced diagnostician trained the independent assessors using
observation, feedback and supervision, and clearly specified guidelines for allocating
diagnoses and CSRs were used. Inter-site consistency between the two largest sites, Sydney
and Reading/Oxford (hereafter referred to as Reading), was established through initial
training of assessors at Reading using video-recorded assessments from Sydney. In addition,
detailed guidance provided by the Sydney site was used in assessments at Reading
throughout the study. The principal investigator at the Aarhus site (Mikael Thastum) was
trained in Sydney, and assessors in Aarhus received additional training from the principal
investigator at the Florida site (Wendy Silverman). As such, treatment response for
participants at these four sites, which comprise 85% of the sample, was assessed with a
consistent methodology. Within-site inter-rater reliability for the primary anxiety diagnosis
ranged from 0.72-1.00, demonstrating that inter-rater agreement was high.

Clinical Severity Ratings across time (and number of participants assessed) by site are
shown in Supplementary Table 1c. Overall, mean severity decreased from pre-treatment to

post-treatment, and then roughly plateaued across the three follow-up assessments.
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However, the results at each follow-up assessment are dependent on which sites performed
the assessment; therefore, this should not be considered a general trajectory of treatment
response. Similarly, although the mean CSR at each assessment varies between sites, the
95% confidence intervals of each mean overlap, suggesting mean CSRs do not vary
significantly. The follow-up phenotype presented in this paper is imputed from this

information, as described in the main text.

Non-genetic influences on treatment outcome

A diagnosis of specific phobia was associated with poorer response (percentage change in
CSR score over time) and non-remission (CSR>4) at post-treatment, and a diagnosis of social
phobia was associated with poorer outcome on both measures at post-treatment and at
follow-up (both compared to a diagnosis of generalized anxiety disorder). Comorbid mood
and externalizing disorders predicted poorer outcomes at both time-points, and parental
psychopathology (self-reported anxious and depressive symptoms) interacted with time
since treatment, showing little effect post-treatment but associated with poorer response at

follow-up. For further information, see (21).

Sample preparation

DNA concentration was quantified before genotyping by fluorometry using PicoGreen
(Invitrogen). Samples below 50ng/ul were concentrated using ultrafiltration and re-
suspension. 3600ng of each sample (usually as 300ul at 12ng/ul, although this was adjusted
as sample characteristics dictated) was dispensed using a customized Beckman FX robot,
and then pipetted via a manual multichannel pipette into a 96-well filtration plate, which
captured DNA fragments above 500bp (Multiwell 96-well PCR clean-up plate, Millipore).
Samples were filtered under 750mBar of pressure until wells were dry. Following filtration,
samples were re-suspended in 40ul of Tris-EDTA buffer with vigorous shaking, and DNA
concentration re-quantified using spectroscopy (Nanodrop). Samples with concentration
above 50ng/ul continued to genotyping on the Illumina Human Core Exome-12v1.0
microarray, which assays approximately 250 000 common SNPs and 250 000 exomic SNPs

located across the genome.
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Quality control

In addition to recalling of rare variants with ZCall, recalling was also performed in Opticall

(22). The two methods were concordant for 99.78% of cases.

Quality control post-recalling was performed in PLINK (23) and PLINK2 (24), with reference
to previously published protocols (25, 26). SNPs were excluded if the frequency of the minor
allele was <5%, or if the frequencies of both alleles were out of Hardy-Weinberg
equilibrium, with a threshold of p<10™. Samples and SNPs were excluded if call rate was
<99%. Samples were excluded if phenotypic gender was inconsistent with X-chromosome
homozygosity (F-statistic), if genome-wide heterozygosity was >3 standard deviations from
the sample mean, if more than 18.75% of variants were shared by descent (pi-hat) between
two samples, or if the average pi-hat of the sample differed from the mean by >6 standard
deviations (Supplementary Figure 1). Reported sample gender was compared with X
chromosome heterozygosity calculated from genotypes. Male samples are expected to be
homozygous for X chromosome SNPs, while females are expected to be heterozygous — the
standard PLINK thresholds of >0.8 and <0.2 respectively were used as guidance. Two
samples were just outside these thresholds, but were retained as their phenotypic gender

matched that suggested by the genotypes.

Principal component analysis (PCA) was performed in EIGENSTRAT (27, 28) on the dataset,
pruned for linkage disequilibrium (25). Specifically, SNPs were compared pairwise in
windows of 1500 SNPs, and one of each pair removed if R > 0.2, and the procedure
repeated after a shift of 150 SNPs (23). Initially, PCA was performed with the intention of
using principal components to control for population stratification within the dataset.
However, the use of quantitative phenotypes from which site differences had been
regressed, combined with the fact that participants were recruited from across the globe,
prevented the use of principal components for this purpose. The top 100 principal
components were not associated with either phenotype beyond a level expected by chance.
However, the principal components capture the different ethnicities in the sample,
confirming participant self-reported ancestry. The majority (92.4%) of the sample are of
White Western European descent (Supplementary Figure 2a, 2b; Supplementary Table 1).

The recent development of software to perform mixed linear model association analyses in
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genome-wide data provided a better alternative to control for background genetic similarity

between individuals (29).

Association analyses were performed on phenotypes indicative of sample quality (sample
concentration at entry into genotyping, and whether the sample was collected as a buccal
swab or as saliva) as a quality control step. QQ plots were generated using R (script adapted
from M. Weale, available at http://sites.google.com/site/mikeweale) and lambda-median
values calculated to assess inflation. SNPs showing a lower p-value than expected under the
null (those below thresholds p<0.01 and p<0.001, respectively) for either sample quality

phenotype were excluded from the final analysis.

Statistical analysis

GWAS was performed using mixed linear model association analysis (MLMA), which derives
a genomic relationship matrix (GRM) from genome-wide genotype data, and uses it to
model the overall genetic contribution to phenotypic correlation between participants as a
random effect. The mIima-loco option in GCTA was used to perform a leave-one-
chromosome-out marker-excluded analysis on the autosomes, in which the GRM was
produced excluding variants on the same chromosome at the SNP being tested. This
prevents any effect of the variant of interest being partly captured by the GRM (which
would reduce the measured effect of the variant). X-chromosome SNPs were assessed using
the mima option and a GRM produced from all autosomes. The X chromosome results were

then merged with the autosomal data.

The ability of the GWAS to replicate previous findings was explored. Variants previously
implicated in CBT response in mood disorders were examined, as well as further variants in
HTR2A that have been linked to anxiety disorders more generally (see Table 2). Fourteen
SNPs were identified, of which nine passed quality control in the GWAS, none of which was
nominally associated with either phenotype (all p>0.05). Other variants, such as VNTRs in
SLC6A4 (STin2) and MAOA cannot be captured by GWAS. This is also true of the SLC6A4
SHTTLPR, which was explored elsewhere (30). In addition to individual assessment, the
effect of the SNPs as a set in a linear regression in PLINK was examined. This regression used

the same phenotypes and covariates as the main GWAS analyses, but used 10 PCs to control
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for further confounds. The effect of the set was not significant (p=1). However, population
stratification was not controlled for in this analysis, as it is not currently possible to include a
set-based test in the MLMA-GWAS, so it is possible the results of the set-based test were

population-confounded.

The GRM produced in the main analysis from all autosomes was used to perform univariate
genomic-relatedness-matrix restricted maximum likelihood (GREML) estimation. GREML
estimates the heritability captured by the SNPs investigated within the study; this is a
fraction of the total heritability in the phenotype, as genotyping will not capture the full
effect of variants in imperfect linkage disequilibrium with genotyped SNPs (31). GREML was

performed with iterative inclusion of zero to twenty principal components.

Polygenic risk score profiling (implemented in PRSice (32)) was used to investigate the
predictive power of the dataset. For each dataset, SNP positions were converted to hgl9
where necessary and SNPs not present in the GxT GWAS discarded. The remaining SNPs
were clumped by the top p-value using PLINK, such that no SNP that remained was in
linkage disequilibrium (r?>0.1, distance <250kb) with a more significant SNP (33). Risk
profiles were created in PLINK, using SNPs with external GWAS p ranging from 0.0001 to 0.5,
in increments of 0.00005. Risk was weighted by multiplying risk allele number by beta or
log(OR), depending on the dataset. The proportion of variance (adjusted R?) was calculated

from a linear regression of score on outcome for each p-value threshold.

Leave-one-out polygenic risk score profile analyses was performed to test prediction within
the dataset. In separate analyses, participants with GAD, separation anxiety disorder, social
phobia and specific phobias were secondarily excluded from the data, and MLMA analysis
performed on the remaining participants. Profile scores were calculated using the method
described above, and the resulting profiles used to predict response in the excluded
individuals. The same technique was also used to predict response in participants from

Reading, using a profile derived from the participants at other sites.
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Table DS1(a) Demographic details for the 980 participants included in the follow-up GWAS

Mean Age White Western European ancestry (N,
Site N % Female

(95% Cl) %)
Reading 229 [55.02 9.57 (6.02-13.12) 208 (91%)
Sydney 467 [53.10 9.42 (5.56-13.28) 435 (93%)
Oxford 14 57.14 9.21 (6.37-12.06) 14 (100%)
Florida 25 48.00 9.24 (4.95-13.53)  [13 (52%)
Aarhus 96 59.38 11.12 (5.98-16.27) 93 (97%)
Amsterdam |3 0.00 12.67 (9.61-15.72) |3 (100%)
Groningen |25 56.00 11.64 (5.62-17.66) [24 (96%)
Bochum 37 56.76 11.22 (5.72-16.72) B4 (92%)
Basel 38 52.63 8.42 (4.19-12.65) 38 (100%)
Bergen 36 61.11 11.44 (7.38-15.51) B5 (97%)
Cambridge |10 70.00 13.4(8.79-18.01)  [10 (100%)
Total 980 |54.69 9.82 (5.39-14.25) D06 (92%)
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Table DS1(b) Treatment and diagnosis of the 980 participants included in the follow-up GWAS

Treatment Primary Anxiety Diagnosis
Site

Individual CBT |Group CBT |Guided Self-Help |SAD [Social Phobia |Specific Phobia |GAD |Other Anxiety Disorder
Reading 103 0 126 57 48 40 67 |17
Sydney 24 382 61 64 92 31 247 |33
Oxford 0 0 14 5 6 1 1 1
Florida 25 0 0 9 5 3 6 2
Aarhus 1 95 0 25 13 16 27 |15
Amsterdam |1 2 0 1 1 1 0 0
Groningen |25 0 0 5 11 3 4 2
Bochum 37 0 0 9 11 13 3 0
HBaseI 38 0 0 38 [0 0 0o I
Bergen 20 16 0 11 16 0 9 0
Cambridge |10 0 0 0 0 0 0 10
Total 284 495 201 224 203 108 364 |81
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Table DS1(c) Mean Clinical Severity Rating and 95% confidence intervals for the participants split by site and assessment

Severity by assessment

Site Pre Post 3 months Six months 12 months

Mean N |Mean N |Mean N [Mean N [Mean N
Reading 5.64 (4.07-7.21) 229 2.69 (-2.05-7.44) 227 } - 1.90 (-2.65-6.45) (143 .11 (-2.70-6.91) [76
Sydney 6.33 (4.57-8.09) 467 [3.21(-0.33-6.75) {432 .85(-1.54-7.25) |41 [2.78(-0.63-6.19) (324 R.76(-1.29-6.81) 46
Oxford 5.64 (3.79-7.50) |14 [.36(-2.64-7.36) [14 | - |0.00(0.00-0.00) P | -
Florida 6.84 (4.34-9.34) 25 P.72(-0.84-6.27) [25 | - b - 5.50(2.04-8.96) W
Aarhus 6.45 (3.97-8.93) |96 [2.71(-2.64-8.06) |96 [1.97 (-3.19-7.14) |92 | - .40 (1.07-1.72) |7
Amsterdam 5.00 (3.00-7.00) 3 [|5.00(-3.72-13.72) B } - - - - -
Groningen 6.24 (4.48-8.00) 25 [2.75(-0.37-5.87) [25 [0.43(-2.51-3.38) 23 | - - -
Bochum 6.86 (4.65-9.08) 37 [2.00(-2.40-6.40) 34 [1.63(1.33-1.93) (17 [1.57(-2.63-5.78) (14 [1.52(1.23-1.81) |21
Basel 5.92 (4.42-7.42) 38 [2.18(-0.37-4.73) [38 | - - - A.67 (2.36-6.98) 3
Bergen 6.81(4.42-9.19) 36 [4.80(0.25-9.35) (35 | S - 3.58 (-1.50-8.65) [33
Cambridge 6.40 (4.05-8.75) 10 [2.24 (-0.41-4.89) [0 |} - - - - -
Total 6.20 (4.20-8.20) 980 .96 (-1.28-7.20) (939 [1.94 (-2.72-6.61) [173 .47 (-1.43-6.37) {483 .54 (-1.98-7.07) (190
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Addendum: Discussion of inter-site variability in response to CBT

As can be seen in Table DS1(c), although a general pattern of response to
CBT can be observed (decreasing across treatment, and then roughly plateauing
across follow-up, as described under "Assessment of treatment response”
above), there is considerable inter-site variability. There are multiple potential
reasons why this variability may exist, as there are a number of differences
between sites. The type of treatment delivered, and the specific anxiety disorder
of the participants varied between sites (Table DS1(b)). Although all sites used
manualised forms of CBT, therapy was delivered by site-specific therapists,
confounding therapist-specific influences with site. The number of participants
varied considerably between sites, and as such the average severity at smaller
sites is likely to be more affected by participants who responded particularly
well or poorly (Table DS1(c)). Within the GWAS analysis contained in Chapter
3, variables for treatment type, disorder, and trial (which is nested within site)
were included as covariates in order to mitigate against this variability in

treatment response.

267



Table DS2 Clumps with association p-value < 1x10™ in the GWAS, extending Tables 1 and 2

a) Independent clumps associated with CBT response post-treatment with p<1x10™

Sentinel SNP | Sentinel SNP | Sentinel SNP | Genes +/-
Sentinel SNP | CHR | Clump BP
p MAF Info 100kb
108113663- .
rs10881475 1 2.45x10 0.187 0.993 NTNG1, VAV3
108203647
128232821-
rs11834041 | 12 3.50x10° 0.135 Genotyped | -
128239057
152498699- NEB, ARLSA,
rs12464559 2 4.09x10° 0.0410 0.941
152679462 CACNB4
WHSC1L1,
38322346- .
rs881301 8 4.46x10° 0.403 Genotyped LETM2, FGFR1,
38332318
C8orf86
115335684-
rs16823934 3 5.62x10° 0.238 Genotyped GAP43
115340900
39962001- .
rs460214 21 6.01x10 0.269 0.988 ERG
40059734
99095611-
rs11581859 1 9.18x10° 0.218 0.981 SNX7, LPPR5
99393710
166021956- s
rs3856211 1 1.18x10 0.394 Genotyped FAM78B
166047333
158829527- s
rs12188300 |5 1.61x10° 0.0801 Genotyped IL12B
158848071
18283857-
rs2095842 1 1.71x10° 0.231 Genotyped | -
18297688
90710099- s
rs2619372 4 2.53x10° 0.279 0.994 SNCA, MMRN1
90779823
TCERG],
145822073- s
rs4705334 5 2.64x10° 0.166 Genotyped GPR151,
145904225
PPP2R2B
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146905987- DPYSL3,
rs17106850 |5 6.02x10° 0.169 0.998
146920247 JAKMIP2
53180775-
rs73127355 |7 6.04x10° 0.0200 0.930 POM121L12
53653377
77589901-
rs433156 2 6.59x10° 0.368 Genotyped LRRTM4
77627119
28683174-
rs35048888 | 2 6.72x10° 0.498 0.992 FOSL2, PLB1
28689459
128804780- s SAP130, UGGT],
rs148631369 | 2 7.06x10° 0.0110 0.927
128929492 HS6ST1
71618855-
rs6900853 6 8.14x10° 0.306 Genotyped SMAP1, B3GAT2
71729332
RCAN2,
CYP39A1,
46519020-
rs35884480 |6 8.49x10” 0.0587 Genotyped SLC25A27,
46632594
TDRD6, PLA2G7,
ANKRD66
48728634- DUT, FBN1,
rs143836403 | 15 8.66x10° 0.0820 0.951
48941542 CEP152
114711649-
rs4766728 12 8.88x10” 0.152 0.988 TBX5
114725149
36689181-
rs7734294 5 9.01x10” 0.197 Genotyped SLC1A3
36768602
26759980- s CAAP1, PLAA,
rs1336336 9 9.17x10 0.474 Genotyped
26918113 IFT74, LRRC19
162668979- s
rs6536613 4 9.47x10° 0.0230 0.931 FSTLS
162729203
60899849-
rs12410507 |1 9.72x10° 0.177 0.978 -
61041875
156374432- CCT3, RHBG,
rs59085393 |1 9.88x10” 0.0390 0.949
156390617 MEF2D
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b) Independent clumps associated with CBT response at six-month follow-up with p<1x10™

Sentinel SNP | Sentinel SNP | Sentinel SNP | Genes +/-
Sentinel SNP | CHR | Clump BP
p MAF Info 100kb
135657189-
rs72711240 |4 4.49x107 0.0269 0.903 -
135695807
13707416 -
rs9875578 3 1.43x10°® 0.424 0.994 FBLN2, WNT7A
13810670
SMAD1, MMAA,
146509970- .
rs6813264 4 4.68x10° 0.410 Genotyped C4orf51,
146631854
ZNF827
145130635- .
rs12850751 | X 6.64x10 0.0655 0.952 -
145161195
162300286- PSMD14, TBR1,
rs13432654 |2 8.40x10° 0.0939 Genotyped
162411997 SLC4A10
53613961- s
rs76635837 | 15 1.00x10° 0.0376 0.956 -
53636281
58750680- s
rs1795708 12 1.04x10 0.344 Genotyped -
58836631
FOXA3,
IRF2BP1,
MYPOP,
46468703- s
rs7257625 19 1.05x10 0.189 Genotyped NANOS2,
46474428
NOVA2,
CCDC61,
PGLYRP1, IGFL4
98637504- s TMEM131,
rs17025778 2 1.23x10° 0.0821 Genotyped
98701594 VWA3B
99052579-
rs56090036 | 15 1.65x107 0.0457 0.931 FAM169B
99054173
89764480-
rs111589871 | 8 1.87x107 0.0459 0.955 -
90195838
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CTDSPL, VILL,
PLCD1, DLEC],

37982687- s
rs73060838 | 3 2.18x10 0.0487 0.970 ACAA1, MYD88,
38221526
OXSR1,
SLC22A13
36361696- s
rs11949603 |5 2.67x10 0.307 0.994 RANBP3L
36383780
54310901-
rs7766941 6 2.70x10” 0.339 0.991 TINAG, FAM83B
54702870
9627908-
rs6133736 20 2.79x10” 0.133 0.968 PAK7
9726640
MRPS7,
MIF4GD,
73362147- SLC25A19,
rs55776604 | 17 3.11x10° 0.0532 0.965
73411596 GRB2,
KIAA0195,
CASKIN2
142038521-
rs10484917 | 6 3.14x10° 0.122 0.978 -
142110406
R3HDM1,
136393157-
rs61470941 |2 3.24x10” 0.0958 0.984 UBXN4, LCT,
136747085
MCM6, DARS
GATA4, NEIL2,
FDFT1, CTSB,
11527910- s DEFB136,
rs11784693 8 3.40x10 0.291 Genotyped
11832769 DEFB135,
DEFB134,
DEFB130
174069668- s
rs13163544 |5 3.44x10 0.426 Genotyped MSX2
174126415
rs9472259 6 44291641- | 3.50x107 0.327 0.989 SLC29A1,
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44355423

HSP90AB1,
SLC35B2,
NFKBIE,
TMEM151B,
TCTE1, AARS2,
SPATS1, CDCS5L

8417400-

rs6971364 7 3.69x10” 0.438 0.993 NXPH1
8453313
25288549-

rs2690112 6 3.81x107 0.372 0.985 LRRC16A
25328790
46172701-

rs1486171 7 3.97x107 0.392 0.996 -
46211646
151676820-

rs6804426 3 4.00x10° 0.224 0.988 SUCNR1
151780935
9842272-

rs13237987 |7 4.83x10” 0.278 0.994 -
9875208

rs4686487 3 188341678 | 5.03x10” 0.199 Genotyped LPP
24058226-

rs114726046 | 6 5.16x10” 0.0130 0.819 NRSN1, DCDC2
24083141
154875787- 5

rs11155986 |6 5.21x10° 0.244 Genotyped CNKSR3
154953972
23892555-

rs4770433 13 5.27x10” 0.439 Genotyped SGCG, SACS
23916736

rs12855797 | X 10723386 5.28x107 0.125 Genotyped MID1

SMCO4, CP295,

93322831- s TAF1D,

rs7131178 11 5.46x10° 0.181 Genotyped
93473333 cllorf54,

MED17, VSTM5

132282553- 5

rs202245865 | 6 6.03x10° 0.00980 0.828 ENPP1, CTGF
132336972

rs7784698 7 98253847- | 6.17x10” 0.0608 0.993 NPTX2

272




98311136

19063114- CXADR, BTG3,
rs56118623 |21 6.21x10” 0.0906 0.946
19085866 c2lorf91
SIGLECL1,
IGLONS,
VSIG10L, ETFB,
51850290- s
rs12985380 | 19 6.91x10 0.475 Genotyped CLDND2, NKG7,
51869346
LI2, c190rf84,
SIGLEC10,
SIGLEC8
27028555-
rs4417554 16 6.97x10” 0.417 0.983 cl6orf82
27034201
97981705-
rs875104 13 7.04x10° 0.115 0.980 MBNL2, RAP2A
98028784
81066500- s
rs1279690 1 7.13x10° 0.300 Genotyped -
81154515
43199190-
rs115613292 | 4 7.40x10° 0.170 0.979 -
43330931
76726202- PDE8B, WDR41,
rs6453323 5 7.42x10° 0.364 Genotyped
76877496 oTP
22255898- VWAS3A, EEF2K,
rs8047148 16 7.45x10° 0.225 Genotyped
22377003 POLR3E, CDR2
64381461- PTP4A1, PHF3,
rs321505 6 7.91x10° 0.407 0.996
64741820 EYS
23274466- s
rs9393387 6 8.11x10 0.497 Genotyped -
23320458
ACO1, DDX58,
32454368- s
rs17289116 |9 8.33x10 0.206 0.977 TOPORS,
32546117
NDUFB6
12611030-
rs6862501 5 8.72x107 0.155 0.973 -
12778499
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109070672-

rs2343115 8.99x10° 0.462 Genotyped LEF1
109111726
122425522-
rs6608068 9.08x10” 0.184 Genotyped GRIA3
122503729
FAM153B,
SIMC1,
175607631-
rs75403290 9.33x10” 0.0203 0.910 KIAA1191,
175839232
ARL10, NOP16,
CLTB, FAF2
108955150- s CYP2U1, HADH,
rs62312236 9.58x10° 0.0594 0.984
109017528 LEF1
111189290-
rs26571 9.70x10” 0.0428 0.958 NREP, EPB41L4A
111668828
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Table DS3 Clumps with association p-value < 1x10*in the GWAS limited to

White Western European individuals

a) Independent clumps associated with CBT response at post-treatment with p <10+

] Sentinel SNP Genes +/-
Sentinel SNP | CHR | Clump BP
P MAF Info 100kb
99095611-
rs11581859 1 2.26x10° | 0.225 0.981 SNX7 LPPR5
99310566
108181596- NTNG1
rs10881475 1 4.52x10° | 0.182 0.993
108181947 VAV3
39975924-
rs460214 21 4.56x10° | 0.261 0.988 ERG
40008668
128232821-
rs7138026 12 6.40x10° | 0.122 0.936 -
128239057
rs16823934 115335684 | 8.38x10° 0.24 Genotyped GAP43
rs12188300 158829527 | 9.31x10° | 0.0844 | Genotyped IL12B
MAGEA5
151284910-
rs688067 X 9.71x10° | 0.148 0.975 MAGEA10
151313926
GABRA3
861255-
rs142445243 3 1.12x10° | 0.334 0.988 -
873247
28684316- FOSL2
rs35048888 2 1.39x10° | 0.493 0.992
28689459 PLB1
34970164-
rs78885728 11 2.08x10° | 0.0738 0.969 APIP PDHX
35015437
94309145-
rs10777556 12 2.16x105 | 0.0519 | Genotyped CRADD
94316320
LHX3
rs34141319 9 139147174 | 2.89x10° | 0.144 | Genotyped QSOX2
GPSM1
NEB
152597660-
rs12464559 2 3.02x105 | 0.0392 0.941 ARL5A
152632574
CACNB4
38332249- WHSC1L1
rs881301 8 3.15x10° | 0.407 | Genotyped
38332318 LETM2
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FGFR1

C8orf86
rs433156 2 77627119 | 3.25x105 | 0.366 | Genotyped LRRTM4
IL16
81625385-
rs11636318 15 3.73x105 | 0.237 | Genotyped STARD5
81637284
T™MC3
162117403-
15245607 5 4.03x10° | 0.338 0.999 -
162156149
TMEM167BS
CARNA2
Clorf194
109721684-
rs2093933 1 419x10° | 0.221 | Genotyped | KIAA1324
109723188
SARS
CELSR2
PSRC
90349848-
rs11770698 7 4.32x10° | 0.384 0.987 CDK14
90364067
18297407-
152095842 1 4.35x105 | 0.239 | Genotyped -
18297688
33809508-
rs2506818 X 4.57x10° | 0.199 0.975 -
33869539
92741266-
rs12785983 11 4.63x10° | 0.301 | Genotyped MTNR1B
92742731
93233511- CCDCo67
rs34580908 11 5.00x105 | 0.163 0.987
93249941 SMCO4
90724869- SNCA
rs2619372 4 5.88x105 | 0.269 0.994
90740878 MMRNI1
181623822-
rs6433860 2 5.90x10° | 0.289 0.943 -
181626750
MAP3K7CLB
rs9983768 21 30616480 | 6.83x105 | 0.0613 | Genotyped
ACHI1
145822515- TCERG1
rs1529692 5 7.10x10° | 0.164 0.954
145841466 GPR151
53421770-
rs73127355 7 7.14x10° | 0.0202 0.930 -
53466859
rs4939881 18 47161733 | 7.56x10° | 0.413 0.985 LIPG
rs17106850 5 146906766 | 7.73x105 | 0.165 | Genotyped DPYSL3
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JAKMIP2

19116610-

rs1556113 10 7.81x10° | 0.386 0.993 -
19169229
HLA-DQA1
HLA-DQB1
rs3892710 6 32682862 | 8.09x10° | 0.170 | Genotyped | HLA-DQA2
HLA-DQB2
HLA-DOB
rs4591151 16 72354029 | 8.54x105 | 0.0112 0.858 -
rs10978931 9 110346728 | 8.62x10° | 0.431 | Genotyped KLF4
76161146-
rs111988532 12 8.72x105 | 0.00730 0.855 -
76170322
AMMECRIL
rs141980060 2 128737920 | 8.86x10° | 0.0118 0.834
SAP130
rs6465600 7 97139357 | 9.38x105 | 0.325 | Genotyped -
4730637-
rs17133411 10 9.61x10° | 0.119 0.964 -
4731224
HECTD1
rs727675 14 31733642 | 9.65x10° | 0.424 | Genotyped
HEATR5A
MGLL
rs9882669 3 127578497 | 9.75x10° | 0.174 0.982
KBTBD12
rs11118645 1 221150673 | 9.97x10° | 0.122 0.972 HLX
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b) Independent clumps associated with CBT response at follow-up with p <10+

Sentinel Sentinel SNP
CHR | Clump BP Genes +/- 100kb
SNP P MAF Info
135657189-
rs72711240 4 1.16x10° | 0.0286 0.903 -
135695807
FOXA3
IRF2BP1
MYPOP
46468703- NANOS2
156509245 19 3.28x10° | 0.184 0.971
46474428 NOVA2
CCDCé61
PGLYRP1
IGFL4
39389992-
rs9380865 6 3.80x10° | 0.0303 0.909
39666704
13689452- FBLN2
rs9875578 3 4.43x10° | 0.419 0.994
13810670 WNT7A
53613961-
rs7169126 15 6.32x10° | 0.0368 0.960 -
53636281
PSMD14
162300286-
rs13432654 2 7.25x10¢ | 0.0966 | Genotyped TBR1
162411997
SLC4A10
SLC29A1
HSP90AB1
SLC35B2
NFKBIE
44291641-
159472259 6 1.97x105 | 0.323 0.989 TMEM151B
44355423
TCTE1
AARS2
SPATS1
CDC5L
SMAD1
146524560- MMAA
rs6813264 4 2.13x10° | 0.401 | Genotyped
146631854 C4orf51
ZNF827
23274466-
rs9393387 6 2.26x10° | 0.489 | Genotyped -
23320458
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81066500-

rs1279690 1 2.41x10° | 0.289 | Genotyped -
81154515
23892555- SGCG
rs4770433 13 2.61x105 | 0.444 | Genotyped
23916736 SACS
54310901- TINAG
1s7766941 6 2.61x10° | 0.334 0.991
54721617 FAMS83D
CTDSPL
VILL
PLCD1
37982687- DLEC1
1561755441 3 3.44x10° | 0.0497 | Genotyped
38221526 ACAA1
MYD88
OXSR1
SLC22A13
145130635-
rs12836210 X 3.51x10° | 0.0587 0.971 -
145161195
rs9956331 18 62581797 | 4.13x10° | 0.493 | Genotyped -
122425522-
rs6608068 X 4.50x10° | 0.178 | Genotyped GRIA3
122503729
151676820-
rs6804426 3 4.83x10° | 0.225 0.988 SUCNRI1
151780935
98637504- TMEM131
rs17025778 2 4.96x10° | 0.0828 | Genotyped
98701594 VWAS3B
rs4686487 3 188341678 | 5.42x10° | 0.194 | Genotyped LPP
PDESB
76717417-
rs6453323 5 5.81x10° | 0.356 | Genotyped WDR41
76877496
oTpP
142038521-
rs10484917 6 6.02x10° | 0.119 0.978 -
142110406
89764480-
rs111589871 8 6.08x10°5 | 0.0496 0.955 -
90194404
R3HDM1
UBXN4
136393157-
rs3213871 2 6.28x10° | 0.0977 | Genotyped LCT
136747085
MCM6
DARS
rs1795708 12 58750680- | 6.50x105 | 0.343 | Genotyped -
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58836631

24021811- NRSN1
rs114726046 6 6.92x10° | 0.0134 0.819
24083141 DCDC2
154875787-
rs11155986 6 7.22x10° | 0.247 | Genotyped CNKSR3
154953972
98253847-
157784698 7 7.54x10° | 0.0546 0.993 NPTX2
98311136
39670986- KIF6
rs74439728 6 7.81x10° | 0.0333 0.954
39698821 DAAM?2
8417400-
rs6971364 7 7.82x10° | 0.444 0.993 NXPH1
8453313
22389762- ANO5
rs7942333 11 7.97x10° | 0.265 0.981
22525721 SLC17A6
99052579-
rs56090036 15 8.07x10° | 0.046 0.931 FAM169B
99054173
SIGLECL1
IGLONS
VSIG10L
ETFB
51850290- CLDND2
rs12985380 19 8.19x10° | 0.461 | Genotyped
51869346 NKG7
LI2
c19orf84
SIGLEC10
SIGLECS
SMCO4
CP295
93322831- TAF1D
rs7131178 11 8.27x10° | 0.177 | Genotyped
93473333 cllorf54
MED17
VSTM5
97981705- MBNL2
rs875104 13 8.34x105 | 0.112 0.980
98028784 RAP2A
CEP112
64210757-
rs4527055 17 8.64x10° | 0.0854 0.966 APOH
64331957
PRKCA
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109017528- HADH
rs2343115 4 8.66x10° | 0.479 | Genotyped
109111726 LEF1
CXADR
19063114~
rs56118623 21 8.69x10° | 0.0886 0.946 BTG3
19085866
c21orf91
135454396-
rs6817483 4 8.76x10° | 0.190 0.978 -
135648802
55164542-
rs8064192 16 9.15x10° | 0.480 | Genotyped -
55184874
87562882- ZCCHC14
rs2334201 16 9.22x10° | 0.404 | Genotyped
87608253 JPH3
18283857-
rs871644 1 9.51x10° | 0.238 0.990 -
18297688
74515796- ZNF236
rs77413226 18 9.91x10° | 0.0112 0.895
74653603 MBP
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Fig. DS1 Exclusion of samples (top) and single nucleotide polymorphisms (bottom).
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Fig. DS2(a) Samples projected on the first two principal components derived from the study

samples.
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Fig. DS2(b) Samples projected on the first two principal components derived from the
HapMap3 samples, showing that the majority cluster in a White Western European group
(red box), with admixed samples descending down to East Asian ancestry (right), and to

African ancestry (left).
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Appendix III: Supplementary information from Chapter 4: Separate and

combined effects of genetic variants and pre-treatment whole blood gene

expression on response to exposure-based cognitive behavioural therapy for

anxiety disorders.

IILI Supplementary Methods

II.LI. Construction of the co-expression matrix in WGCNA

Data-driven clustering of co-expressed probes was performed using an
automatically-constructed signed network from the blockwiseModules function in
WGCNA. An unsigned topological overlap matrix and a signed network were
specified to obtain expression modules with a shared direction of effect within
the modules. The adjacency function for the network used a soft thresholding
power of 13, obtained from the network topology analysis function
(pickSoftThreshold), which identifies the lowest power at which the fit of the
network to scale-free topology has R>>0.9. A dendrogram of probe relationships
was constructed using average linkage hierarchical clustering, and modules
defined via a dynamic hybrid tree cutting approach (Langfelder and Horvath
2008). The cutting threshold for module definition was set to 0.25 and a
minimum module size of 30 was specified. Genes were assigned to modules

according to the significance of their correlation with the module eigengene
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(that is, pamRespectsDendro=FALSE and reassignThreshold=0). All other
arguments to the blockwiseModules function were set as default (Langfelder and

Horvath 2008).

III.III. Enrichment analysis in GOrilla

GOirilla identifies enrichment in ranked lists of genes by calculating a minimum
hypergeometric score. The ranked list is split into a target set (the first x genes)
and the background set (the entire list). This is performed iteratively, adding
each gene into the target set until all genes are included. The enrichment score is
calculated from the optimal target set, using a hypergeometric distribution,
correcting for the multiple thresholding involved in the method (Eden et al
2009). GOrilla reports false discovery rate g-values; however, the distribution of
p-values resulting from these analyses was skewed and could not be controlled
appropriately using false discovery rate. Accordingly, significance was set as

the Bonferroni correction for the 8746 GO terms tested (p=5.72x10%).

Addendum to IIL.LIT Up-regulated and down-regulated genes

Following the publication of chapter 4, it was suggested that ranking by signed
effect size (in this case, Pearson's r) may be more powerful for assessing gene-set
enrichment than ranking by p-value. Although I am unconvinced of the

evidence for increased power from this method (at least in the case of
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continuous data), it does allow for additional exploration of gene set
enrichment. Accordingly, the GOrilla analyses in Chapter 4 were re-run,
ranking by Pearson's r, and calculating scores from the top of the list to the
bottom (capturing up-regulated genes; Supplementary Table 5b) and bottom-to-
top (capturing down-regulated genes; Supplementary Table 5c). As the Gene
Ontology database had been updated since the original analyses, GOrilla
analyses ranking by p-value were also re-run (Supplementary Table 5a, which

differs from the published Supplementary Table 5).

Performing these analyses allows dissection of the reported gene set findings -
for example, the enrichment of genes involved in apoptosis signalling in the
post-treatment analyses appears to be driven more specifically by the up-
regulation of cysteine-type endopeptidase activity. New gene sets are also
implicated, including a trend towards the down-regulation of histone
acetylation in post-treatment. However, it should be noted that (with one
exception), the findings of the up-regulated and down-regulated gene set
enrichment analyses are only nominally significant (as were the original
analyses), and that the increased number of enriched gene sets is partly a
function of the increased number of tests performed. The most striking
difference between the two methods of assessing gene set enrichment is that the

up-regulation of immune system process genes was significantly associated
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with response at follow-up, even taking into account the number of tests
performed. This gene set was originally nominally associated with response at
follow-up, although this effect was diminished when the analyses ranking by p-
value were re-run. Although this is interesting, conclusions concerning this
association should be cautious, particularly given the extensive roles played by
the immune system, and the broad, exploratory nature of the analyses in

Chapter 4.

IILLIII. GWAS and polygenic risk scoring analyses

No individual genetic variants were identified with genome-wide significance
(Supplementary Table 3). This was expected, and is in line with a previous
GWAS of CBT response (Coleman et al 2016). This cohort was too small to
provide the necessary power to detect the anticipated small effect sizes of
individual genetic variants underlying treatment response to psychiatric
disorders. Associations of potential biological interest were identified near
ADCY?2 and GDNF. The rs17826816 variant in adenylate cyclase 2 (ADCY2) has
previously been implicated in a large GWAS of bipolar disorder (Muhleisen et al
2014). Glial cell-line derived neurotrophic factor (GDNF) is a signalling
molecule, expressed in the cerebellum and involved in the promotion of

dopamine uptake (Lin et al 1993). Although both of these regions are plausibly
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involved in psychiatric phenotypes, the small sample size and lack of genome-
wide significance means these associations with treatment response could be
the result of chance alone. More broadly, this is supported by the lack of
concordance between these results and those from our previous GWAS of CBT

response (see below).

The purpose of including genetic data in this analysis was twofold: to enrich
expression analyses (as discussed in the main text), and to enable polygenic risk
score analysis between this cohort and our previous study of CBT response in
children (Supplementary Table 4a; Coleman et al 2016). However, results from
our previous study did not significantly predict variance in treatment response
in this analysis. There are a number of potential explanations for this. Power
estimation in polygenic risk scoring relies on a large number of variables, and
accordingly power estimates in this analysis should be treated with caution.
Assuming an underlying true heritability of response to CBT of 30%, perfect
genetic correlation between the two samples, a highly polygenic model in which
95% of variants have an effect, and an alpha threshold of 0.001, estimates using
polygenescore in R suggests the follow-up results from the child study have
~5% power to predict response at follow-up in the adult study (the most
predictive estimate in this analysis; Dudbridge 2013; Palla and Dudbridge 2015).

Therefore, we can conclude that this analysis was underpowered in general. In
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addition, the two analyses are dissimilar. The participants in this paper were
adults, recruited from Germany, entirely of White Western European ancestry,
and undergoing treatment for panic disorder and specific phobias. The
treatment featured a considerable element of exposure, and the treatment
response phenotype was derived from the Clinical Global Impressions severity
scale. In comparison, the children in the previous analysis were recruited from
across the globe, mostly not German (although predominantly were of White
Western European ancestry), and were undergoing treatment for a range of
anxiety disorders, very few of which were panic disorder (and it is likely that
the specific phobias the children were treated for differed considerably from
those for which the adults were treated). Treatments were not primarily
exposure-based, and the response phenotype was derived from the Anxiety
Disorders Interview Schedule (Silverman and Albano 1996). Consequently,
there are a variety of differences between the two groups which may explain the
lack of prediction. We cannot exclude the possibility that no genetic component
to CBT response exists; however, there are sufficient alternative reasons for the
observed lack of concordance (and the absence of a genetic component would
be sufficiently surprising) that we cannot conclude that no such component

exists.

290



To reduce the difference between the two groups compared using polygenic
risk scoring, a within-cohort analysis was undertaken, using the results from the
dental treatment group to predict response in all other groups (Supplementary
Table 4b). The results here, while non-significant, are superficially more
promising, explaining a higher proportion of variance and being less likely to
have occurred by chance. However, it would be wrong to conclude anything
substantial from these results — the analysis is very likely to be underpowered
due to the small sample sizes, and the optimisation provided by the PRSice
method results in the best prediction being reported. This combination is likely
to result in false positives, despite the rigorous correction for multiple testing

recommended.
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IILIII. Supplementary Tables

IILIILI Supplementary Table 1

Comorbidity WC | DA | SP | PD-CBT | PD-EXP
N 72 46 8 9 9
Panic disorder with agoraphobia 7 6 1 0 0
Panic disorder without agoraphobia 5 4 1 0 0
Agoraphobia without panic disorder 5 5 0 0 0
Specific phobia 30 13 7 5 5
Social anxiety disorder 13 6 0 3 4
Generalised anxiety disorder 1 1 0 0 0
Major depressive disorder 13 6 1 1 5
Post-traumatic stress disorder 3 3 0 0 0
Substance abuse 7 7 0 0 0
Hypochondriasis 5 2 0 2 1
Personality disorder NOS 3 3 0 0 0
Bulimia nervosa 2 2 0 0 0
Somatisation disorder 1 1 0 0 0
Mild intellectual disability 1 1 0 0 0
Insomnia 1 0 0 1 0

Supplementary Table 1: Comorbidities in the whole cohort, and by treatment
group. Some individuals had multiple mental comorbidities, so individual

comorbidities do not sum to N. NOS = not otherwise specified.
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HLIILIL Supplementary Table 2

Response post-treatment Improved | No Change | Deteriorated Test Stat )
N 165 16 4 - - -
Age in years (Mean [SD]) 389[11.5]| 38.9[9.65] | 43.3[13.6] ANOVA | 0.284 0.753
Gender (N male [%]) 61 [37.0] 4 125.0] 1[25.0] Fisher's exact test 0.646
Baseline CGI severity (Mean [SD]) 474 [1.11] | 4.50[1.37] | 3.75[0.500] | ANOVA 1.78 0.172
Treatment duration in days (Mean [SD]) 198 [181] 157 [190] 284 [229] ANOVA 0.836 0.435
Follow-up duration in days (Mean [SD]) 213 [57.5] | 235[65.4] 262 [173] ANOVA 1.62 0.202
Psychoactive medication at baseline (N taking [%]) 15[9.09] 4 125.0] 1 [25.0] Fisher's exact test 0.0742
Mental disorder comorbidities (N [%]) 61 [37.0] 8 [50.0] 2 [50.0] Fisher's exact test 0.547
Response at follow-up Improved | No Change | Deteriorated Test Stat P
N 101 11 10 - - -
Age in years (Mean [SD]) 39.1[12.1] | 39.3[12.7] | 39.7[13.2] ANOVA | 0.00977 0.990
Gender (N male [%]) 351[34.7] 4 [36.4] 2 [20.0] Fisher's exact test 0.748
Baseline CGI severity (Mean [SD]) 4.69[1.00] | 4.36[1.29] | 3.80[0.422] | ANOVA 3.99 0.0211 *
Treatment duration in days (Mean [SD]) 225[186] 273 [244] 141 [130] ANOVA 1.34 0.265
Follow-up duration in days (Mean [SD]) 212 [50.6] | 204 [57.1] 232 [115] ANOVA | 0.681 0.508
Psychoactive medication at baseline (N taking [%]) 7[6.93] 1 [9.09] 3 [30.0] Fisher's exact test 0.0446
Mental disorder comorbidities (N [%]) 34 [33.7] 3[27.3] 8 [80.0] Fisher's exact test 0.0144 +

Supplementary Table 2: Demographic information on the whole cohort, split by response to treatment group.
Post-hoc t-tests (variances assumed unequal; Bonferroni-corrected threshold p = 0.0125; significant differences in bold):

* Deteriorated lower: vs improved: #=-5.37, p=2.44x10, vs no change: t=-1.37, p=0.194

T Higher rate in deteriorated: vs improved: #=3.28, p= 0.00708, vs no change: t=2.72, p=0.0136)
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ILIILIIT. Supplementary Table 3

a) Independent clumps associated with CBT response at post-treatment with p<5x10°

Sentinel Sentinel SNP Genes +/-
Al HR 1 BP
SNP ¢ Clump Z » MAF | Info 100kb
52998001 - P
rs373527574 T 7 53003188 -5.11 | 3.27x10 0.0225 0.927 POMI121L12
7519298 - 6
rs17826816 G 5 7583156 -4.66 | 3.14x10 0.262 0.996 ADCY?2
RILPL2,
SNRNP35,
RILPL1,
MIR3908,
TMED?2
124015832 - ’
1s7298068 T 12 124200135 -4.63 | 3.68x10° | 0.0395 0919 DDXS5S5,
EIF2B1,
GTF2H3,
TCTN2,
ATP6VO0OA2,
DNAHI10
b) Independent clumps associated with CBT response at six-month follow-up with p<5x10'°
Sentinel Sentinel SNP Genes +/-
Al HR 1 BP
SNP ¢ Clump zZ P MAF | Info 100kb
19231227 - %
rs145019082 T 4 19480588 -4.86 | 1.19x10 0.103 0.973 -
37912995 - %
rs11959616 T 5 37915720 -4.73 | 2.27x10 0.164 Gen. GDNF
169498498- %
rs55749034 G 6 169546063 4.60 | 4.20x10 0.374 0.992 THBS2
MUT,
CENPQ,
49261273-
1s9381793 A 6 9261273 -4.60 | 4.27x10° | 0.361 Gen. GLYATLS3,
49494241
Cé6orfl41,
RHAG

Supplementary Table 3: Variants with p<5x10-¢ in the GWAS from pre-

treatment to a) post-treatment and b) follow-up. Variants in linkage

disequilibrium (r? > 0.25) with a more associated variant are not shown.

Negative Z scores indicate worse response with each effect allele (A1).
Gen. = Genotyped SNP
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HLIILIV. Supplementary Tables 4a and 4b

a) Polygenic risk scores child GWAS -> Whole cohort

Base: Child CBT Target: Adult CBT Best threshold | p-value | Variance explained (RY
Baseline — Post-treatment Baseline — Post-treatment 0.10445 0.329 0.00536
Baseline — Follow-up Baseline — Post-treatment 0.0021 0.221 0.00848
Baseline — Post-treatment Baseline — Follow-up 0.0315 0.123 0.0199
Baseline — Follow-up Baseline — Follow-up 0.0012 0.0372 0.0364

Supplementary Table 4a: Variance explained by the most predictive polygenic risk scores from a GWAS of CBT response in

children predicting response in the whole cohort (Chapter 3). No threshold passes the recommended a = 0.001 for a single test

(Euesden et al 2015).
b) Polygenic risk scores DA <-> other treatment groups
Base: SP + PD-CBT + PD-EXP Target: DA Best threshold | p-value | Variance explained (R
Baseline — Post-treatment Baseline — Post-treatment 9x10™ 0.0458 0.0427
Baseline — Post-treatment Baseline — Follow-up 0.06545 0.263 0.0240
Baseline — Follow-up Baseline — Post-treatment 0.01155 0.0408 0.0447
Baseline — Follow-up Baseline — Follow-up 1.5x10™ 0.258 0.0246
Base: DA Target: SP + PD-CBT + PD-EXP | Best threshold | p-value | Variance explained (R
Baseline — Post-treatment Baseline — Post-treatment 0.18425 0.0523 0.0436
Baseline — Post-treatment Baseline — Follow-up 0.01475 0.0219 0.0770
Baseline — Follow-up Baseline — Post-treatment 0.01425 0.0266 0.0565
Baseline — Follow-up Baseline — Follow-up 0.0196 0.0764 0.0468

Supplementary Table 4b: Variance explained by the most predictive polygenic risk scores between the DA group and all others. No

threshold passes the recommended o« = 0.001 for a single test (Euesden et al 2015).
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IILIILV. Supplementary Table 5a

GO Term ‘ Description D Enrichment # Genes
GO Process terms nominally associated with treatment response baseline-post-
treatment
GO:2001233 |  regulation ofapoptotic 7.23x10° 6.69 9/34
signaling pathway
G0:0009966 regulation of signal 8.39x10° 1.68 62/184
transduction
f 1 diphosphat
G0:0045338 arnesyl diphosphate 3.77x10* 2652 1/1
metabolic process*
G0:0072044 | collecting duct development 4.22x10™ 68 2/39
GO:1903902 | POsttIve reguiit;&n ofviral life |- 4 5¢ 10+ 11.84 5/35

treatment

GO Function terms nominally associated with treatment response baseline-post-

GO0:0004311

farnesyltranstransferase
activity™®

3.77x10*

2652

111

GO Process terms nominally associated with treatment response baseline-follow-up

regulation of extracellular

activity

GO:0010715 o 7.74x107 156 2/17
matrix disassembly
G0:0043966 histone H3 acetylation 7.93x10” 25.38 4/38
G0:0002376 immune system process 8.13x107 1.26 215/743
G0:0050920 regulation of chemotaxis 8.54x107 2.37 19/851
G0:0048678 response to axon injury 1.17x10™ 52 3/17
GO:0006915 | 2Poptotic process involvedin ) 4y ) s 106.08 2125
patterning of blood vessels
GO:0006955 immune response 2.49x10™ 1.77 48/312
G0:0050921 response to wounding 2.51x10™ 21.83 4/18
GO:0007166 | CCll surface receptor signaling | -5 ) o4 137 122/555
pathway
GO:0060033 anatomical structure 4.62x10™ 15.98 3/166
regression

GO Function terms nominally associated with treatment response baseline-follow-up
G0:0045295 gamma-catenin binding 1.71x10™ 106.08 2/25
GO:0019899 enzyme binding 3.76x10™ 3.29 13/25
GO:0022857 | ransmembrane transporter |5 o ) o4 1.90 37/523

Supplementary Table 5a: Gene ontology terms with p<5x10+ in either

analysis. Final column (b/n) shows the optimal number of top genes from the

ranking (n) to maximise the enrichment of genes from the pathway (b). * A

single gene (FDFT1) gene set - all GO terms referring to this gene set are

collapsed into these exemplars.
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Supplementary Table 5b

GO Term

Description

P

Enrichment

# Genes

treatment considering up-regulated genes

GO Process terms nominally associated with treatment response baseline-post-

regulation of cysteine-type
endopeptidase activity

activation

G0:2001267 | ) _ 1.02x10™ 4433 3/30
involved in apoptotic
signaling pathway
GO:1903306 |  Megativercgulationof ) oy o 21.45 3/93
regulated secretory pathway
lation of mast cell
GO:0033003 | oetaton ot mastee 4.99x10™ 10.44 5/91

treatment considering down-regulated genes

GO Process terms nominally associated with treatment response baseline-post-

regulation of histone

metabolic process*

GO:0035065 . 1.44x10™ 3.32 10/729
acetylation
GO:003649 | [ RE1-mediated unfolded ) g 2.57 16/752
protein response
GO:0045338 farnesyl diphosphate 3.76x10™ 2660 1/1

GO Function terms nominally associate

post-treatment considering down-regulated genes

d with treatment response baseline-

tein disulphid
GO:000237¢ | Prowin disulphide 2.16x10™ 133 2/10
1somerase activity
f: Itranstransf
GO:0004311 | T TCSYTITANSHARSIEIESE ) 3 76x107 2660 1/1
activity™®
GO Component terms nominally associated with treatment response baseline-
post-treatment considering down-regulated genes

GO:0005737 cytoplasm 4.16x10™ 1.17 319/919

Supplementary Table 5b: Gene ontology terms with p<5x10+ in the post-

treatment analysis, assessing up-regulated and down-regulated genes

separately. * A single gene (FDFT1) gene set - all GO terms referring to this

gene set are collapsed into these exemplars.
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Supplementary Table 5¢

GO Term

Description

P

Enrichment

# Genes

GO Process terms nominally associated with treatment response baseline-
follow-up considering up-regulated genes

G0:0002376 | immune system process | 1.47x107 1.47 153/456

G0:0002252 | immune effector process 1.39x107 1.57 90/456

GO:0048583 | Tegulationofresponseto | ) oo 121 298/908
stimulus

G0:0006887 exocytosis 2.34x10°7 1.42 117/818

GO:1902600 hydrogen ion 2.98x10° 2.92 19/481

transmembrane transport

G0:0048678 response to axon injury 3.54x107 73.89 3/12

GO:0006818 hydrogen transport 4.69x107 2.70 21/481

GO:0009966 |  regulation of signal 8.11x10° 1.24 226/908

transduction
G0:0006952 defence response 9.35x107 1.65 65/435
GO:0051258 protein polymerisation 1.02x10™ 3.32 12/601
ingl ism cellul

GO:0044763 | © 8¢ OTBAMSICCRUAL ) 4ex107 1.16 298/457
Process

GO:0051340 | regulation of ligase 4.41x10* 66.5 2/40
activity

G0:0006935 chemotaxis 4.88x10" 2.03 28/622

GO:0035455 | responsetonterferon- ) g0 ) 54 4.47 8/397

alpha

GO Function terms nominally associated with treatment response baseline-
follow-up considering up-regulated genes

GO:0005507 copper ion binding 2.90x10™ 38.55 3/23
hydrogen ion

GO0:0015078 | transmembrane transporter | 3.75x10™ 2.69 17/481
activity

GO Component terms nominally associated with treatment response baseline-

post-treatment considering up-regulated genes

G0:0098796 membrane protein 8.03x10° 1.72 60/461

complex
inner mitochondrial

GO:0098800 membrane protein 3.42x10™ 2.33 22/545
complex

G0:0044425 membrane part 3.49x10™ 1.41 92/186

299




GO Process terms nominally associated with treatment response baseline-
follow-up considering down-regulated genes

GO:0090304 | Mucleicacidmetabolic 1y go s 127 222/706
process

GO:00028g5 |  Positiveregulationof 5 3 s 32.44 3/82

hypersensitivity
GO:1901360 | Or&anic cyclic compound |y gq ) o4 121 270/748
metabolic process

GO:1004g37 | Ceta-catenin-TCE complex |, 5 ) ;4 152 2/5
assembly

G0O:0006396 RNA processing 3.38x10™ 1.46 86/737

fibroblast growth factor

G0:0008543 receptor signalling 3.92x10™ 18.67 4/30
pathway

G0:0006413 translational initiation 4.59x10™ 1.90 32/711

GO Function terms nominally associated with treatment response baseline-
follow-up considering down-regulated genes
G0:0003676 nucleic acid binding 5.71x107 1.24 243/711
GO0:0003723 RNA binding 8.19x107 1.32 163/711

Supplementary Table 5c: Gene ontology terms with p<5x10 in the follow-up

analysis, assessing up-regulated and down-regulated genes separately.
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IILIILVI. Supplementary Table 6

Removed for space concerns — available at

http://www.tandfonline.com/doi/suppl/10.1080/15622975.2016.1208841?scroll=top

Supplementary Table 6: Linkage-independent blood eQTLs with g<0.05.
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IILIV. Supplementary Figures

IILIV.I. Supplementary Figure 1 (Post-treatment)
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Supplementary Figure 1a: Manhattan plot of associations between treatment
response baseline to post-treatment and genetic variants. X-axis shows
position of genetic variants by chromosome. Y-axis is —log p-value, with top
line showing the threshold for genome-wide significance (p = 5x10%), and

bottom suggestive significance (p = 5x10).
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Supplementary Figure 1b: Quantile-quantile plot of associations between
treatment response baseline to post-treatment and genetic variants. X-axis
shows log p-value distribution expected under the null hypothesis. Y-axis
shows observed log p-values. Lambda median is a measure of genomic
inflation. Lambda = 1, indicating minimal inflation due to confounds.
Observed p-values do not deviate from the distribution expected under the

null hypothesis.
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ILIV.II. Supplementary Figure 2 (Follow-up)
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Supplementary Figure 2a: Manhattan plot of associations between treatment

response baseline to follow-up and genetic variants.
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Supplementary Figure 2b: Quantile-quantile plot of associations between

treatment response baseline to follow-up and genetic variants.

Note that this plot includes all assayed variants (that is, variants in high
linkage disequilibrium are retained), in order to assess the distribution of the
observed results. 106 variants on chromosome 4 are in very high linkage
disequilibrium and have an association p-value of 5.37x10. Accordingly,
they appear as a single point in the Manhattan plot (Supplementary Figure
2a), but form a kink in this QQ plot.

Compare Supplementary Figure 2c below, which removes variants in high

linkage disequilibrium with more strongly associated variants.
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Supplementary Figure 2c: Supplementary Figure 2b replotted after removing
all variants in very high linkage disequilibrium with a more strongly
associated variant (r2 > 0.99, + 250kb).
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Appendix IV: Supplementary information from Chapter 5: The

relationship between depression and body mass index in the UK Biobank,

and the contribution of polygenic risk

IV.I Supplementary Notes

IV.LI. Antidepressant use

Medication was classified into weight-increasing (amitriptyline, paroxetine,
mirtazapine, clomipramine, nortriptyline and imipramine; N = 409), weight-
decreasing (fluoxetine and venlafaxine; N = 348), weight-modulating
(citalopram, sertraline, trazodone, duloxetine and fluvoxamine; N = 489) and
weight-neutral (dosulepin/dothiepin, escitalopram, lofepramine,
trimipramine, reboxetine, flupentixol/flupenthixol, doxepin,
tranylcypromine, tryptophan, hypericum, buspirone, chlordiazepoxide,
diazepam, lorazepam and nitrazepam; N=229). Drugs were assigned a
weight effect if such was reported as frequent (or more common) in the
SIDER drug side-effects database (with confirmation by searching the
associated warning literature; Kuhn, Letunic, Jensen, et al, 2016). If a drug
was not present in the database, assessment was made by a PubMed
literature search for "drug AND (weight AND (gain OR loss))" and

inspection of the resulting articles for reported weight effects.
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IV.LII. BMI PRS

The BMI PRS in this study was derived from the all ancestries analyses from
the GIANT BMI consortium (Locke, Kahali, Berndt, et al, 2015). This
consortium also published analyses in a European-only cohort (Locke,
Kahali, Berndt, et al, 2015). The analyses in this paper were repeated using

this European-only PRS, with no effect on the conclusions drawn.

IV.IL. Supplementary References

Kuhn, M., Letunic, l., Jensen, L. J., et al (2016) The SIDER database of drugs and side
effects. Nucleic Acids Res, 44, D1075-1079.

Locke, A. E., Kahali, B., Berndt, S. I., et al (2015) Genetic studies of body mass index yield
new insights for obesity biology. Nature, 518, 197-206.
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IV.III. Supplementary Tables

IV.IILIL Supplementary Table 1

Coefficient B SE p

Male gender -0.364 0.0152 <10
Age (years) -0.158 0.0151 8.55x102¢
Townsend Index 0.189 0.0152 1.73x10-%

Centre * 1.86 1.25 0.137
Birth Cluster * 0.386 0.112 5.53x10*

Batch * 0.279 0.122 0.0221

PC1 0.00121 0.0156 0.938

PC2 0.0127 0.0152 0.403

PC3 0.00308 0.0157 0.845

PC4 0.00266 0.0208 0.898

PC5 -0.00806 0.0211 0.702

PCé6 -0.0279 0.0157 0.0746

PC7 0.0158 0.0161 0.326

PC8 -0.0283 0.0177 0.110

Supplementary Table 1: Effects of covariates in the null model predicting

variance in depression status. Significant (p < 0.0125) effects in bold.
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IV.IILII. Supplementary Table 2

Coefficient B SE p
Male gender 0.106 0.00682 <10
Age (years) 0.0477 0.00686 3.73x1012
Townsend Index 0.0954 0.00700 3.70x10-4
Centre * 0.634 0.212 0.00283
Birth Cluster * 0.144 0.0515 0.00525
Batch * 0.206 0.0557 2.13x10+*
PC1 -0.00426 0.00706 0.546
PC2 1.52x10+ 0.00687 0.982
PC3 0.00869 0.00712 0.222
PC4 0.00814 0.00940 0.387
PC5 -0.0197 0.00953 0.0385
PCé6 -0.00540 0.00706 0.444
PC7 -0.00585 0.00726 0.326
PC8 -0.00312 0.00793 0.110

Supplementary Table 2: Effects of covariates in the null model predicting

variance in log-BMI. Significant (p < 0.0125) effects in bold.
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IV.IILII Supplementary Table 3

Coefficient B SE p
Male gender 0.0711 0.0119 2.38x10°
Age (years) 0.0395 0.0120 9.83x10*
Townsend Index 0.0919 0.0122 6.46x10
Centre * 0.775 0.339 0.0222
Birth Cluster * 0.155 0.0948 0.103
Batch * 0.320 0.0983 0.00113
PC1 -0.0159 0.0123 0.196
PC2 -0.00850 0.0120 0.479
PC3 0.00656 0.0125 0.599
PC4 0.0119 0.0165 0.471
PC5 -0.0273 0.0167 0.103
PCé6 -6.66x10° 0.0123 0.996
PC7 -0.0146 0.0126 0.246
PC8 0.00182 0.0139 0.896

Supplementary Table 3: Effects of covariates in the null model predicting

variance in log-BMI in depression cases. Significant (p < 0.0125) effects in

bold.
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IV.IIL.IV. Supplementary Table 4

Coefficient B SE p

Male gender 0.141 0.00833 <10
Age (years) 0.0596 0.00835 9.81x10
Townsend Index 0.0868 0.00853 3.21x10-%

Centre * 0.618 0.258 0.0164

Birth Cluster * 0.123 0.0593 0.0381

Batch * 0.151 0.0684 0.0271

PC1 0.00263 0.00861 0.760

PC2 0.00464 0.00838 0.580

PC3 0.00978 0.00866 0.259

PC4 0.00449 0.0115 0.695

PC5 -0.0153 0.0116 0.189

PCé6 -0.00688 0.00862 0.425

PC7 -0.00212 0.00889 0.811

PC8 -0.00411 0.00968 0.671

Supplementary Table 4: Effects of covariates in the null model predicting

variance in log-BMI in depression controls. Significant (p < 0.0125) effects in

bold.
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IV.IIL.V. Supplementary Table 5

Coefficient

(Additive)

B SE p
Null model See Supplementary Table 1
... + depression PRS 0.108 0.0165 | 5.32x10
... +tBMI PRS 0.0137 0.0162 0.395
... +log-BMI 0.104 0.0161 | 9.28x10"
... + depression PRS 0.108 0.0165 | 7.44x101
... +log-BMI 0.103 0.0161 | 1.30x10%°
... + depression PRS x log-BMI (Multiplicative) -0.0202 0.0167 0.227
... + depression PRS x log-BMI (Additive) -0.00349 | 0.00331 0.292
... +tBMI PRS -0.0116 0.0167 0.486
... +log-BMI 0.107 0.0165 | 1.06x10-'°
... + BMI PRS x log-BMI (Multiplicative) 9.82x10+ | 0.0160 0.951
... + BMI PRS x log-BMI (Additive) 5.44x10+ | 0.00318 0.864
... + depression PRS 0.108 0.0165 | 5.23x10
... + BMIPRS 0.0141 0.0162 0.385
... + depression PRS x BMI PRS (Multiplicative) -0.0155 0.0170 0.362
... + depression PRS x BMI PRS (Additive) 0.00271 | 0.00330 0.412
... + depression PRS 0.108 0.0165 | 7.61x101
... +tBMI PRS -0.0111 0.0167 0.506
... +log-BMI 0.106 0.0165 | 1.54x10-%°
... + depression PRS x BMI PRS (Multiplicative) 0.0116 0.0161 0.510
... + depression PRS x log-BMI (Multiplicative) -0.0151 0.0173 0.382
...+ BMI PRS x log-BMI (Multiplicative) 6.65x10* | 0.0176 0.967
... + depression PRS x BMI PRS (Additive) -0.00202 | 0.00340 0.553
.. + depression PRS x log-BMI (Additive) -0.00254 | 0.00341 0.457
...+ BMI PRS x log-BMI (Additive) 5.12x10+ | 0.00318 0.872
.. + depression PR.S X BMI PRS x log-BMI 0.00628 0.0157 0.689
(Multiplicative)
.. + depression PRS x BMI PRS x log-BMI 0.00101 | 0.00310 0.746

Supplementary Table 5: Effects of adding variables and interactions to the
null model predicting variance in depression status, excluding individuals
on medication. Significant (p < 0.0125) terms are in bold. Interactions include

all main effects, covariates and covariate interaction terms.
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IV.III.VI. Supplementary Table 6

Coefficient B SE p
Null model See Supplementary Table 2
... + BMI PRS 0.232 0.00684 <100
... + depression PRS 0.0115 0.00715 0.107
... + depression 0.105 0.0158 | 3.41x10
... + BMI PRS 0.232 0.00683 <1050
... + depression 0.101 0.0153 3.95x10-1
... + BMI PRS x depression 0.00147 0.0154 0.339
... + depression PRS 0.00934 0.00715 0.192
... + depression 0.104 0.0158 | 5.39x10
... + depression PRS x depression -0.0200 0.0161 0.215
... + BMI PRS 0.232 0.00684 <100
... + depression PRS 0.0120 0.00695 0.083
... + BMI PRS x depression PRS -3.09x104 | 0.00710 0.965
... + BMI PRS 0.232 0.00683 <10
... + depression PRS 0.00993 0.00695 0.153
... + depression 0.100 0.0154 6.47x101
... + depression PRS x BMI PRS -3.31x10# | 0.00711 0.963
... + BMI PRS x depression 0.0146 0.0154 0.343
...+ depression PRS x depression -0.0163 0.0157 0.300
.. + depression PRS x BMI PRS x depression 0.00907 0.0151 0.548
Cases
Null model See Supplementary Table 3
... + BMI PRS 0.238 0.0129 <10
... + depression PRS -0.00830 0.0135 0.538
... + BMI PRS 0.238 0.0129 <10
... + depression PRS -0.00472 0.0131 0.719
... + BMI PRS x depression PRS -3.41x10+4 0.0133 0.979

Supplementary Table 6: Effects of adding variables and interactions to the
null model predicting variance in log-BMI (in the whole sample and
depression cases only), excluding individuals on medication. Significant (p <
0.0125) terms are in bold. Interactions include all main effects, covariates and
covariate interaction terms.
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IV.IIL.VIIL. Supplementary Table 7

Coefficient B SE p
Null model See Supplementary Table 2
...+ weight increaser 0.308 0.0497 5.92x10-1°
... + weight decreaser 0.299 0.0533 2.10x10®
... + weight modulator 0.272 0.0452 1.84x10~°
... + weight neutral 0.0585 0.0670 0.383
... + BMI PRS 0.232 0.00660 <1050
... + depression PRS 0.00659 0.00690 0.340
... + depression 0.105 0.0157 1.75x1011
...+ BMIPRS 0.232 0.00659 <10%°
... + depression 0.102 0.0152 1.80x10-1
... + BMI PRS x depression 0.0153 0.0153 0.317
... + depression PRS 0.00449 0.00690 0.515
... + depression 0.105 0.0157 2.25x1011
... + depression PRS x depression -0.0218 0.0160 0.171
... + BMI PRS 0.232 0.00660 <1050
... + depression PRS 0.00729 0.00670 0.277
... + BMI PRS x depression PRS -2.43x104 ] 0.00684 0.972
... + BMI PRS 0.232 0.00659 <1050
... + depression PRS 0.00526 0.00670 0.433
... + depression 0.102 0.0152 2.41x1011
... + depression PRS x BMI PRS 2.12x10+ | 0.00685 0.975
... + BMI PRS x depression 0.0153 0.0153 0.317
...+ depression PRS x depression -0.0194 0.0155 0.211
... + depression PRS x BMI PRS x depression | 0.00954 0.0140 0.496
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(Supplementary Table 7 continued)

Cases
Null model See Supplementary Table 3

...+ weight increaser 0.229 0.0508 6.89x10-¢
.. + weight decreaser 0.219 0.0545 6.11x10-°
.. + weight modulator 0.192 0.0466 3.73x10

... + weight neutral -9.15x10+ 0.0680 0.999

... + BMI PRS 0.238 0.0115 <1050

.. + depression PRS -0.0169 0.0120 0.159

... + BMI PRS 0.238 0.0115 <1050

.. + depression PRS -0.0135 0.0117 0.245

... + BMI PRS x depression PRS 0.00273 0.0118 0.817

Supplementary Table 7: Effects of adding variables and interactions to the

null model predicting variance in log-BMI (in the whole sample and

stratified by depression status), adding covariates for medication status.

Significant (p < 0.0125) terms are in bold. Interactions include all main

effects, covariates and covariate interaction terms.
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IV.III.VIIL. Supplementary Table 8

BMI (Additive)

Coefficient B SE p
Null model See Supplementary Table 1
... + BMI PRS (Speliotes) 0.00642 0.0151 0.670
... + BMI PRS (Speliotes) -0.0221 0.0154 0.151
... +log-BMI 0.149 0.0154 | 4.32x10-22
... + BMI PRS (Spe}m@s) x log-BMI 0.0141 0.0153 0.357
(Multiplicative)
... + BMI PRS (Speliotes) x log-BMI (Additive) 0.00316 0.00324 0.330
... + depression PRS 0.0758 0.0153 | 7.01x107
... + BMI PRS (Speliotes) 0.00650 0.0151 0.667
... + depression PR$ x'BMI PRS (Speliotes) 20,0059 0.0155 0.700
(Multiplicative)
... + depression PRS X ].3MI PRS (Speliotes) 000142 | 000323 0.661
(Additive)
... + depression PRS 0.0785 0.0153 | 2.92x107
... + BMI PRS (Speliotes) -0.0223 0.0154 0.148
... +log-BMI 0.150 0.0154 | 1.85x10-%2
... + depression PRS x BMI PRS (Speliotes)
(Multiplicative) -7.48x10+ | 0.0158 0.962
... + depression PRS x log-BMI (Multiplicative) -0.0164 0.0160 0.307
... + BMI PRS (Speliotes) x log-BMI 0.0153 0.0154 0.321
(Multiplicative)
... + depression Zf;d)ifx)l PRS (Speliotes) 1.09x104 | 0.00328 0.901
-0. . 37
...+ depression PRS x log-BMI (Additive) (()) (;) (;) 32 3958 8 88332 8 g 02
... + BMI PRS (Speliotes) x log-BMI (Additive) ' ' '
... + depression PRS x BMI PRS (Speliotes) x log- -0.00556 0.0152 0.714
BMI (Multiplicative)
... + depression PRS x BMI PRS (Speliotes) x log- 000118 | 0.00320 0.712

Supplementary Table 8: Effects of adding variables and interactions to the
null model (effects shown in Supplementary Table 2) predicting variance in
depression status, with the BMI PRS from Speliotes et al (2010). Significant (p
< 0.05) terms are in bold. Interactions include all main effects, covariates and

covariate interaction terms.
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IV.IILIX. Supplementary Table 9

Coefficient

B SE P

Null model See Supplementary Table 2

.. + BMI PRS (Speliotes) 0.188 0.00668 | <10

.. + BMI PRS (Speliotes) 0.188 0.00666 | <10

... + depression 0.143 0.0145 | 5.07x10

.. + BMI PRS x depression 0.0280 0.0145 0.0542

.. + BMI PRS (Speliotes) 0.188 0.00668 | <10
... + depression PRS -0.0137 | 0.00675 | 0.0427

... + BMI PRS x depression PRS -0.00762 | 0.00678 0.261

... + BMI PRS (Speliotes) 0.188 0.00666 | <10

... + depression PRS -0.0160 | 0.00674 | 0.0178

... + depression 0.144 0.0145 | 2.36x10
... + depression PRS x BMI PRS (Speliotes) -0.00720 | 0.00677 0.287
... + BMI PRS (Speliotes)x depression 0.0288 0.0146 0.0478
...+ depression PRS x depression -0.0167 | 0.0148 0.257
ion PRS x BMI PR li
+ depression PRS x M S (Speliotes) x 000628 | 00141 0.657
depression
Cases

Null model See Supplementary Table 3

... + BMI PRS (Speliotes) 0.200 0.0116 <1050

... + BMI PRS (Speliotes) 0.199 0.0116 <1050

... + depression PRS -0.0302 | 0.0117 0.0100

... + BMI PRS x depression PRS -0.0101 0.0117 0.389

Controls

Null model See Supplementary Table 4

... + BMI PRS (Speliotes) 0.182 0.00816 | <10

... + BMI PRS (Speliotes) 0.182 0.00816 | <10

... + depression PRS -0.00767 | 0.00826 0.354

... + BMI PRS (Speliotes) x depression PRS -0.0613 | 0.00841 0.466

Supplementary Table 9: Effects of adding variables and interactions to the null
model predicting variance in log-BMI, with the BMI PRS from Speliotes et al (2010),
and stratifying by depression case status. Significant (p <0.0125) terms are in bold.

Interactions include all main effects, covariates and covariate interaction terms.
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IV.IIL.X. Supplementary Table 10

Coefficient B SE p
Depression
BMI PRS 0.005 0.003 0.062
Depression PRS 0.01 0.003 1.01 x 10
log-BMI
BMI PRS 0.26 0.007 <1050
Depression PRS 0.01 0.008 0.072
BMI PRS x depression 0.046 0.019 0.016
log-BMI in depression cases
BMI PRS 0.31 0.02 1.84 x 10%
log-BMI in depression controls
BMI PRS 0.25 0.008 <10

Supplementary Table 10: Analyses from the Generation Scotland cohort,

using the BMI PRS derived from Locke et al (2015). For the BMI PRS x

depression interaction, MDD and covariate-by-PRS and covariate-by-

depression interactions were included (not shown).
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IV.IV. Supplementary Figures

IV.IV.L. Supplementary Figure 1
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Supplementary Figure 1: Sample exclusions during quality control




Appendix V: Supplementary information from Chapter 6: Interactions

between social environment and polygenic risk scores for body mass

index predicting variance in adolescent body mass index

V.I Supplementary Methods

V.LI Genotyping protocol and quality control (as described in Selzam,

Krapohl, von Stumm, et al, 2016)

Genome-wide genotype data was obtained in two waves of collection. In the
first wave, DNA from 3,665 samples was extracted from buccal cheek swabs
and genotyped at Affymetrix, Santa Clara, California, USA. Samples were
successfully hybridised to Affymetrix Gene Chip 6.0 SNP genotyping arrays
using experimental protocols recommended by the manufacturer
(Affymetrix Inc., Santa Clara, CA). The raw image data from the arrays were
normalised and preprocessed at the Wellcome Trust Sanger Institute,
Hinxton, UK for genotyping as part of the Wellcome Trust Case Control
Consortium 2 (https://www.wtccc.org.uk/ccc2/) according to the
manufacturer’s guidelines
(http://www.affymetrix.com/support/downloads/manuals/genomewidesnp6
_manual.pdf). Genotypes were called using CHIAMO

(https://mathgen.stats.ox.ac.uk/genetics_software/chiamo/chiamo.html).
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In the second wave, DNA for 4,649 individuals was extracted from saliva
samples and hybridised to HumanOmniExpressExome-8v1.2 genotyping
arrays at the Institute of Psychiatry, Psychology and Neuroscience Genomics
& Biomarker Core Facility. The raw image data from the array were
normalised, preprocessed, and filtered in GenomeStudio following internal
protocols
(http://confluence.brc.iop.kcl.ac.uk:8090/display/PUB/Productiont+Version%3
A+Illumina+Exome+Chip+SOP+v1.4). Prior to genotype calling, 869 multi-
mapping SNPs and 353 samples with call rate <.95 were removed. ZCall was
used to augment the genotype calling for samples and SNPs that passed the

initial QC (Goldstein, Crenshaw, Carey, et al, 2012).

After initial quality control and genotype calling, the same quality control
was separately performed on samples from both waves using PLINK, R and
vcftools (Chang, Chow, Tellier, et al, 2015; Danecek, Auton, Abecasis, et al,

2011; Purcell, Neale, Todd-Brown, et al, 2007; Team, 2014).

Samples were removed from subsequent analyses on the basis of call rate
(<0.99), suspected non-European ancestry, heterozygosity, array signal
intensity, and relatedness. SNPs were excluded if the minor allele frequency
was <.05%, if more than 1% of genotype data were missing, or if the Hardy
Weinberg p-value was lower than 10-5. Non-autosomal markers and

insertion-deletions were removed. Association between the SNP and the
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array, batch, or plate on which samples were genotyped was calculated;
SNPs with an effect p-value < 10 were excluded. A total sample of 6,710
samples, with 3,617 individuals and 600,034 SNPs genotyped on Illumina
and 3,093 individuals and 525,859 SNPs genotyped on Affymetrix remained

after quality control.

Genotypes from the two arrays were separately imputed using the
Haplotype Reference Consortium (McCarthy, Das, Kretzschmar, et al, 2016)
and Minimac3 1.0.13 (Fuchsberger, Abecasis & Hinds, 2014; Howie,
Fuchsberger, Stephens, et al, 2012) available on the Michigan Imputation
Server as reference data. A series of quality checks was performed before
data from the two waves were merged (e.g. array effects, allele frequencies
by imputation quality). For the present analyses we limited our analyses to
variants genotyped or imputed at info > 0.95 on both arrays, allele frequency
difference between arrays smaller than 5%, and Hardy Weinberg

p-value was greater than 10°. Using these criteria, 5,147,884 genotyped and

well-imputed SNPs were retained for the analyses.

Principal component analysis was performed on a subset of 42,859 common
(MAF>5%) autosomal SNPs found on the HapMap3 data (Consortium, 2010),
after stringent pruning to remove markers in high linkage disequilibrium (r?
> 0.1) and excluding high linkage disequilibrium genomic regions so as to

ensure that only genome-wide effects were detected.
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V.II Supplementary Notes

V.ILI Sensitivity analyses using alternative PRS

The main analyses used a PRS derived from the all-ancestries analysis of the
GIANT adult BMI GWAS meta-analysis (Locke, Kahali, Berndt, et al, 2015).
There are good justifications to consider the European-only analyses from
the adult GWAS (as the TEDS sample is predominantly of White Western
European ancestry) and a recent child BMI GWAS meta-analysis as
alternative base GWAS for generating PRS (Felix, Bradfield, Monnereau, et
al, 2016; Locke, Kahali, Berndt, et al, 2015; Trzaskowski, Eley, Davis, et al,
2013). Analyses were repeated using these PRS. Conclusions from the
replication with the European subset PRS differed in that the main effect of
socioeconomic status on change in BMI across adolescence in males was not
significant when PRS was in the model (p = 0.00451). Using the child BMI
PRS from Felix et al (2016) did not alter the conclusions from the main

analyses.

V.ILIL Interaction analyses with FTO rs1558902

To enable comparison to this previous literature, analyses were re-run using
the number of A alleles of 151558902 (and rs9939609) in place of the
polygenic risk score. Conclusions from the analysis of 11558902 and

rs9939609 did not differ, as these variants are in strong linkage

324



disequilibrium (r? > 0.9), and so only results from rs9939609 are shown.
Results were similar to those obtained with the full polygenic risk score, but

showed smaller effects (Supplementary Tables 4 and 5).
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V.IV. Supplementary Tables
V.IV.L. Supplementary Table 1

BMI

BMI

log(BMI) Change PRS Parenting SES Sex Age Puberty | Wave PC1 PC2 PC3 PC4 PC5 PC6 PC7 | PC8
log(BMI) - 3.3x107% | 1.9x10% | 0.026 | 4.0 x10® | 0.0029 | 2.3x107® | 1.1x10* | 0.93 0.60 0.90 0.63 0.36 0.46 0.44 | 0.035 | 0.88
Cﬁxée -0.52 - 0.26 0.054 0.0016 0.77 0.0089 | 1.9x10° | 0.22 | 0.024 0.56 0.83 0.0051 | 0.79 0.63 | 0.042 | 0.80
];gg 0.22 -0.026 - 0.43 0.13 0.54 0.35 0.078 0.81 | 0.037 0.80 0.45 0.77 0.77 081 | 0.80 | 0.48
Parenting | 0.038 -0.044 0.013 - 3.7x10® | 9.7x10% | 0.0025 0.63 0.97 0.91 0.61 0.93 0.71 0.14 0.45 | 037 | 0.86
SES -0.094 0.072 -0.026 -0.094 - 0.86 | 1.8x10° | 2.3x10* | 0.14 0.18 0.19 | 1.4x10° | 091 0.42 0.10 | 0.78 | 0.33
Sex -0.051 -0.0067 0.010 0.091 0.0030 - 0.55 |9.2x107* | 0.12 | 0.071 0.32 0.24 0.98 0.75 025 | 0.13 | 0.76
Age 0.15 -0.059 -0.016 -0.052 -0.073 -0.01 - 3.7x1077 | 031 0.14 0.60 0.58 0.28 0.92 0.77 | 0.86 | 0.32
Puberty 0.24 -0.097 0.030 -0.0083 | -0.063 -0.30 0.31 - 0.57 0.58 0.88 0.25 0.47 0.50 0.43 | 0.45 | 098
Wavel | -0.0016 0.028 -0.0042 | -6.0x10* | 0.025 -0.027 | -0.017 | -0.0099 - <10™" | 5.1x10** | 0.00032 | 022 0.95 0.10 | 031 | 0.28
PC1 -0.0090 0.051 -0.036 0.0020 0.023 -0.031 0.025 0.0096 | 0.72 - 0.79 0.18 0.56 0.26 022 | 079 | 0.23
PC2 0.0022 -0.013 0.0044 | 0.0088 -0.022 | -0.017 | 0.0091 | -0.0027 | 0.34 | -0.0045 - 0.63 0.70 0.40 029 | 0.28 | 0.12
PC3 0.0083 0.0049 -0.013 | -0.0016 0.074 0.020 | -0.0096 | -0.020 | 0.061 | -0.023 | 0.0081 - 0.19 0.42 0.10 | 0.70 | 0.68
PC4 0.016 -0.064 0.0050 | -0.0064 | -0.0019 | -4.6x10*| -0.018 | -0.012 |-0.021 | -0.0099 | -0.0066 | 0.023 - 0.25 0.86 | 0.92 | 0.87
PC5 -0.013 0.0059 0.0051 0.025 -0.014 | -0.0054 | 0.0018 | -0.012 | 0.001 | 0.019 | -0.015 -0.014 | -0.020 - 094 | 0.68 | 0.60
PC6 0.013 0.011 -0.0041 | -0.013 0.028 0.020 | 0.0051 | -0.014 |-0.028 | -0.021 | -0.018 0.028 | -0.0031 | 0.0012 - 0.84 | 0.28
PC7 -0.036 -0.046 0.0044 0.015 0.0047 0.026 | -0.0030 | -0.013 |-0.017 | -0.0046 | -0.018 | -0.0066 | -0.0018 | 0.0071 | -0.0034 | - | 0.13
PC8 0.0026 0.0058 -0.012 0.0030 0.017 | -0.0052 | -0.017 | -4.0x10™ | 0.018 | 0.021 | -0.026 | -0.0072 | 0.0030 | -0.0089 | 0.019 | 0.026 | -

Supplementary Table 1: Correlations between phenotypes and variables in the analyses (Pearson pairwise product-moment

correlation; lower triangle) and associated p-values (upper triangle). Nominally significant correlations are marked in bold
(p <0.05).
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V.IV.Il Supplementary Table 2a

BMI at 11 years old, with parenting

Full cohort (N = 3414)

Females (N = 1750)

Males (N = 1664)

Coefficient B SE p B SE p B SE p
Sex 0.0260 0.0349 0.457 - - - - - -
Age 0.0795 0.0176 | 6.12x10°° 0.0346 0.0248 0.162 0.126 0.0249 | 4.90x107
SES -0.0766 | 0.0167 | 4.42x10° -0.0740 0.0230 0.00131 -0.0796 | 0.0243 | 0.00106
Pubertal development 0.211 0.0183 | 5.44x10™° 0.276 0.0247 4.38x10 0.106 0.0249 | 2.30x10°
Wave 0.0598 0.0566 0.291 0.151 0.0780 0.0532 -0.0566 | 0.0826 0.493
Null PC1 -0.0312 | 0.0260 0.230 -0.0443 0.0353 0.211 -0.0107 | 0.0386 0.782
Model PC2 -0.00982 | 0.0191 0.607 -0.0429 0.0262 0.102 0.0267 0.0280 0.340
PC3 0.0149 0.0167 0.372 0.0190 0.0231 0.410 0.00822 | 0.0244 0.736
PC4 0.0193 0.0166 0.245 0.00107 0.0229 0.963 0.0402 0.0241 0.0954
PC5 -0.0101 0.0166 0.541 -0.00566 0.0229 0.805 -0.0148 | 0.0241 0.538
PC6 0.0169 0.0166 0.307 0.0246 0.0229 0.281 0.00705 | 0.0241 0.770
PC7 -0.0329 | 0.0166 0.0472 -0.0190 0.0229 0.407 -0.0461 0.0240 0.0553
PCS8 0.00575 | 0.0166 0.728 0.0181 0.0229 0.431 -0.0155 | 0.0241 0.520
Null model + parental style 0.0378 0.0167 0.0239 0.0413 0.0230 0.0730 0.0364 0.0242 0.133
Null model + BMI PRS 0.210 0.0162 | 1.59x10Y 0.192 0.0224 3.04x10" 0.231 0.0234 | 2.68x10°*
Null model + Parental style 0.0360 0.0163 0.0273 0.0407 0.0225 0.0712 0.0330 0.0235 0.160
+ BMI PRS 0.210 0.0162 | 1.83x10°Y 0.191 0.0224 3.03x10™"7 0.230 0.0234 | 3.19x1022
Null model + Parental style x BMI PRS 0.00642 | 0.0172 0.709 -0.00627 0.0240 0.794 0.0296 0.0252 0.241

Supplementary Table 2a: Effects of adding variables and interactions to the null model (uppermost line) predicting variance in BMI
at 11 years old, with parenting as the environment of interest. Significant (p<0.00417) terms are in bold. Interactions include all

main effects, covariates and covariate interaction terms (Keller, 2014).
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Supplementary Table 2b

BMI at 11 years old, with socioeconomic status

Full cohort (N = 3414)

Females (N = 1750)

Males (N = 1664)

Coefficient B SE P B SE D B SE P
Sex 0.0187 0.0351 0.594 - - - - - -
Age 0.0868 0.0176 8.39x107 0.0401 0.0248 0.107 0.135 0.0250 | 7.18x10°
Parenting 0.0448 0.0167 0.00726 0.0490 0.0229 0.0326 0.0426 0.0242 0.0784
Pubertal development 0.212 0.0184 2.43x107° 0.279 0.0247 1.22x107% 0.106 0.0250 | 2.46x10°
Wave 0.0581 0.0567 0.306 0.142 0.0781 0.0687 -0.0507 0.0829 0.540
Null PC1 -0.0329 0.0261 0.207 -0.0421 0.0354 0.235 -0.0170 0.0387 0.660
Model PC2 -0.00838 0.0191 0.661 -0.0384 0.0262 0.143 0.0247 0.0280 0.379
PC3 0.00950 0.0167 0.57 0.0143 0.0231 0.536 0.00178 0.0243 0.942
PC4 0.0199 0.0166 0.229 0.00277 0.0229 0.904 0.0399 0.0242 0.0991
PC5 -0.0102 0.0166 0.538 -0.00473 0.0229 0.837 -0.0164 0.0241 0.497
PC6 0.0156 0.0166 0.349 0.0254 0.0229 0.268 0.00354 0.0242 0.884
PC7 -0.0338 0.0166 0.0418 -0.0200 0.0229 0.382 -0.0466 0.0241 0.0532
PCS8 0.00455 0.0166 0.784 0.0174 0.0230 0.449 -0.0173 0.0241 0.473
Null model + SES -0.0729 0.0167 1.33x10°° -0.0694 0.0231 0.00274 -0.0766 0.0243 0.00167
Null model + BMI PRS 0.211 0.0162 7.95x103% 0.192 0.0225 2.38x10"7 0.232 0.0235 | 1.75x10%
Null model + SES -0.0682 0.0163 3.11x10° -0.0663 0.0227 0.00349 -0.0701 0.0237 0.00309
+ BMI PRS 0.210 0.0162 1.83x10™Y 0.191 0.0224 3.03x10™" 0.230 0.0234 | 3.19x10%
Null model + SES x BMI PRS -0.0336 0.0165 0.0413 -0.0230 0.0233 0.324 -0.0382 0.0239 0.111

Supplementary Table 2b: Effects of adding variables and interactions to the null model (uppermost line) predicting variance in BMI
at 11 years old, with socioeconomic status as the environment of interest. Significant (p<0.00417) terms are in bold. Interactions
include all main effects, covariates and covariate interaction terms (Keller, 2014).
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V.IV.III Supplementary Table 3a

BMI change across adolescence, with parenting

Full cohort (N = 1943)

Females (N = 1043)

Males (N = 900)

Coefficient B SE p B SE p B SE p
BMI at 11 -0.528 0.0201 | 1.56x107™"° -0.546 0.0275 1.56x107 -0.505 0.0296 | 1.55x10™°
Sex -0.0281 0.0410 0.493 - - - - - -
Age 0.0178 0.0205 0.386 -0.0138 0.0286 0.628 0.0547 0.0298 | 0.0673
SES 0.0113 0.0196 0.565 -0.0120 0.0264 0.650 0.0407 0.0294 | 0.167
Pubertal development 0.0126 0.0218 0.562 0.0206 0.0293 0.482 0.0128 0.0298 0.669
Wave -0.0135 0.0665 0.839 0.0749 0.0901 0.406 -0.130 0.0992 0.190
Null PC1 0.0353 0.0303 0.244 -0.00625 0.0404 0.877 0.0890 0.0461 | 0.0536
Model PC2 -0.0157 0.0224 0.483 -0.00365 0.0303 0.904 -0.0306 | 0.0335 0.362
PC3 0.0105 0.0197 0.594 -0.00693 0.0266 0.794 0.0290 0.0295 0.326
PC4 -0.0588 0.0193 0.00242 -0.0593 0.0263 0.0243 20.0536 | 0.0290 | 0.0650
PC5 -0.00878 | 0.0193 0.650 -0.0234 0.0263 0.373 0.00648 | 0.0288 0.822
PC6 0.00908 0.0193 0.639 0.0134 0.0262 0.611 -0.00208 | 0.0290 | 0.943
PC7 -0.0710 0.0194 | 0.000251 -0.0666 0.0263 0.0114 -0.0708 | 0.0289 | 0.0144
PCS8 0.00997 0.0193 0.606 0.00450 0.0262 0.864 0.0207 0.0289 0.473
Null model + parental style -0.00848 | 0.0196 0.666 -0.0147 0.0265 0.580 -9.79x10° | 0.0291 0.997
Null model + BMI PRS 0.0902 0.0197 | 4.96x10° 0.105 0.0266 8.12x10°° 0.0738 0.0295 | 0.0124
Null model + parental style -0.00969 | 0.0195 0.620 -0.0159 0.0263 0.546 -0.00134 | 0.0290 | 0.963
+ BMI PRS 0.0903 0.0197 | 4.84x10° 0.105 0.0266 7.94x10°° 0.0738 0.0295 | 0.0125
Null model + Parental style x BMI PRS 0.000551 | 0.0207 0.979 0.0209 0.0285 0.463 -0.0416 | 0.0309 0.179

Supplementary Table 3a: Effects of adding variables and interactions to the null model (uppermost line) predicting change in BMI
across adolescence, with parenting as the environment of interest. Significant (p<0.00417) terms are in bold. Interactions include all

main effects, covariates and covariate interaction terms (Keller, 2014).
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Supplementary Table 3b

BMI change across adolescence, with socioeconomic status

Full cohort (N = 1943)

Females (N = 1043)

Males (N = 900)

Coefficient B SE p B SE P B SE p
BMI at 11 -0.528 0.0200 2.99x10™"! -0.544 0.0275 3.36x107* -0.509 0.0295 1.11x10™
Sex -0.0265 0.0412 0.521 - - - - - -
Age 0.0162 0.0206 0.432 -0.0146 0.0286 0.611 0.0516 0.0301 0.0862
Parental style -0.00936 0.0196 0.632 -0.0133 0.0264 0.613 -0.00262 0.0291 0.928
Pubertal development | 0.0125 0.0218 0.569 0.0206 0.0293 0.484 0.0104 0.0299 0.727
Wave -0.0121 0.0664 0.855 0.0754 0.0901 0.403 -0.131 0.0993 0.189
Null PC1 0.0351 0.0303 0.246 -0.00668 0.0404 0.869 0.0915 0.0461 0.0475
Model PC2 -0.0161 0.0224 0.470 -0.00342 0.0303 0.910 -0.0307 0.0336 0.360
PC3 0.0111 0.0196 0.572 -0.00733 0.0265 0.783 0.0326 0.0294 0.267
PC4 -0.0587 0.0193 0.00246 -0.0591 0.0263 0.0249 -0.0520 0.0290 0.0738
PC5 -0.00854 0.0193 0.659 -0.0228 0.0263 0.387 0.00784 0.0289 0.786
PC6 0.00938 0.0193 0.628 0.0128 0.0262 0.624 -4.49x10° 0.0290 0.999
PC7 -0.0708 0.0194 0.000262 -0.0670 0.0263 0.0109 -0.0709 0.0289 0.0144
PCS8 0.00955 0.0193 0.621 0.00486 0.0262 0.853 0.0198 0.0289 0.493
Null model + SES 0.0106 0.0196 0.591 -0.0135 0.0265 0.612 0.0407 0.0295 0.168
Null model + BMI PRS 0.0904 0.0197 4.70x10°° 0.105 0.0266 8.19x10°° 0.0739 0.0295 0.0124
Null model + SES 0.00965 0.0195 0.622 -0.0152 0.0264 0.565 0.0405 0.0294 0.168
+ BMI PRS 0.0903 0.0197 4.84x10°° 0.105 0.0266 7.94x10°° 0.0738 0.0295 0.0125
Null model + SES x BMI PRS -0.0494 0.0205 0.0159 -0.0724 0.0282 0.0103 -0.0152 0.0311 0.626

Supplementary Table 3b: Effects of adding variables and interactions to the null model (uppermost line) predicting change in BMI
across adolescence, with socioeconomic status as the environment of interest. Significant (p<0.00417) terms are in bold. Interactions

include all main effects, covariates and covariate interaction terms (Keller, 2014).
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V.IV.IV. Supplementary Table 4

Coefficient B SE p Adjusted R?
BMI at 11 years old, with parenting
Null model Supplementary Table 2a 0.0667
(Null model) + Parental style 0.0378 0.0167 0.0239 0.0678
(Null model) + rs9939609 0.150 0.0239 4.64x10™"° 0.0770
(Null model) + Parental style 0.0374 0.0166 0.0247_10 0.0781
+rs9939609 0.149 0.0239 5.28x10
(Null m"dfs%;gzge;“al style x -0.0208 0.0245 0.395 0.0800
BMI at 11 years old, with SES
Null model Supplementary Table 2b 0.0628
Null model + SES -0.0729 0.0167 1.33x107 0.0678
Null model + rs9939609 0.149 0.0240 6.08x10™" 0.0734
Null model + SES -0.0714 0.0167 1.89x107
+1s9939609 0.149 0.0239 5.28x10™"° 0.0781
Null model + SES x rs9939609 -0.0237 0.0242 0.328 0.0794

Supplementary Table 4: Effects of adding variables and interactions to the null model predicting variance in BMI at 11 years old,

with parenting as the environment of interest and FTO variant rs9939609 as the genotype of interest. Significant (p<0.00417) terms

are in bold. Interactions include all main effects, covariates and covariate interaction terms (Keller, 2014).
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V.IV.V. Supplementary Table 5

Coefficient B SE p Adjusted R?
BMI change, with parenting
Null model Supplementary Table 3a 0.277
(Null model) + Parental style -0.00848 0.0196 0.666 0.277
(Null model) + rs9939609 0.0450 0.0285 0.114 0.277
(Null model) + Parental style -0.00702 0.0196 0.720 0277
+ 159939609 0.0452 0.0285 0.112
(Null m“fg;;;g‘roe;“al style x 0.00651 0.0289 0.821 0.274
BMI change, with SES
Null model Supplementary Table 3b 0.277
Null model + SES 0.0106 0.0196 0.591 0.277
Null model + rs9939609 0.0454 0.0285 0.111 0.277
Null model + SES 0.0121 0.0196 0.616 0277
+ 159939609 0.0452 0.0285 0.112
Null model + SES x rs9939609 0.0180 0.0293 0.541 0.279

Supplementary Table 5: Effects of adding variables and interactions to the null model predicting variance in BMI at 11 years old,

with SES as the environment of interest and FTO variant rs9939609 as the genotype of interest. Significant (p<0.00417) terms are in

bold. Interactions include all main effects, covariates and covariate interaction terms (Keller, 2014).
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