
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1093/bioinformatics/btx209

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Heliou, A., Pissis, S. P., & Puglisi, S. J. (2017). emMAW: Computing Minimal Absent Words in External Memory.
BIOINFORMATICS, 33(17), 2746–2749. https://doi.org/10.1093/bioinformatics/btx209

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 26. Dec. 2024

https://doi.org/10.1093/bioinformatics/btx209
https://kclpure.kcl.ac.uk/portal/en/publications/603b76a2-7264-4b45-a21b-ef73f2b85a20
https://doi.org/10.1093/bioinformatics/btx209


“main_appnote” — 2017/4/17 — page 1 — #1

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Applications Note

Subject Section

emMAW: Computing Minimal Absent Words in
External Memory
Alice Heliou 1,∗, Solon P. Pissis 2,∗ and Simon J. Puglisi 3

1Inria Saclay & Laboratoire d’Informatique de l’École Polytechnique (LIX), CNRS UMR 7161, France
2Department of Informatics, King’s College London, London WC2R 2LS, UK and
3Department of Computer Science, University of Helsinki, Helsinki FI-00014, Finland

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: The biological significance of minimal absent words has been investigated in genomes of
organisms from all domains of life. For instance, three minimal absent words of the human genome were
found in Ebola virus genomes (Silva et al., Bioinf., 2015). There exists an O(n)-time and O(n)-space
algorithm for computing all minimal absent words of a sequence of length n on a fixed-sized alphabet
based on suffix arrays (Barton et al., BMC Bioinf., 2014). A standard implementation of this algorithm,
when applied to a large sequence of length n, requires more than 20n bytes of RAM. Such memory
requirements are a significant hurdle to the computation of minimal absent words in large data sets.
Results: We present emMAW, the first external-memory algorithm for computing minimal absent words.
A free open-source implementation of our algorithm is made available. This allows for computation of
minimal absent words on far bigger data sets than was previously possible. Our implementation requires
less than 3 hours on a standard workstation to process the full human genome when as little as 1 GB of
RAM is made available. We stress that our implementation, despite making use of external memory, is
fast; indeed, even on relatively smaller data sets when enough RAM is available to hold all necessary data
structures, it is less than two times slower than state-of-the-art internal-memory implementations.
Availability: https://github.com/solonas13/maw (Free software under the terms of the GNU GPL)
Contact: alice.heliou@lix.polytechnique.fr, solon.pissis@kcl.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Computational methods for the study and detection of absent or
avoided words in genomic sequences have received much attention
recently (Almirantis et al., 2017; Belazzougui and Cunial, 2015).

From a combinatorial perspective, given a sequence y of length n, an
absent word is any word that does not occur as a factor (subword) of y. The
number of absent words (of length at mostn) is exponential inn. However,
the number of certain classes (subsets) of these words is only linear in n.
This is the case for minimal absent words; that is, words absent from y

whose all proper factors occur in y (Béal et al., 2000). An upper bound on
the number of minimal absent words is known to beO(σn) (Crochemore
et al., 1998), where σ is the alphabet’s size. This bound is asymptotically
tight (Almirantis et al., 2017; Mignosi et al., 2002).

From a biological perspective, absent or avoided words may represent
a spectrum of information. They can be hardly-tolerated nucleotide
sequences because their structure influences negatively the stability of the
chromatin or other functional genomic conformation; they can represent
targets of restriction endonucleases; or, more generally, their presence
in wide parts of the genome may be hardly tolerated for less known
reasons (Almirantis et al., 2017). There have been many studies on the
biological significance of such words (Hampikian and Andersen, 2007;
Silva et al., 2015; Almirantis et al., 2017).

On the algorithmic side, an O(n)-time and O(n)-space algorithm
for computing minimal absent words (on a fixed-sized alphabet) based
on automata is known for some time (Crochemore et al., 1998). More
recently, computation of minimal absent words using more space-efficient
data structures, such as the Burrows-Wheeler transform (Belazzougui
et al., 2013) or suffix arrays (Barton et al., 2014), has been considered;

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1



“main_appnote” — 2017/4/17 — page 2 — #2

2 Heliou et al.

and a few O(n)-time and O(n)-space suffix-array-based algorithms are
known (Barton et al., 2014, 2015). Of these algorithms, an implementation
of the algorithm presented in (Barton et al., 2014) is currently, and to the
best of our knowledge, the fastest available for computing minimal absent
words. The advantage of suffix-array-based algorithms for computing
minimal absent words is that they are very fast in practice and they are more
space-efficient than tree/automata-based algorithms. However, the internal
memory requirements of these algorithms, when applied to large data sets,
make computation impossible without using large-scale computer clusters.

Our Contributions. We present emMAW, the first external-memory
algorithm for computing minimal absent words. A free open-source
implementation of our algorithm is made available. This allows for
computation of minimal absent words on far bigger data sets than was
previously possible on commodity desktop computers. We also provide
here benchmark results using real data (in addition to these, see also
the Supplementary data). Specifically, we show that our implementation
requires less than 3 hours to process the full (forward and reverse
complement) human genome when as little as 1 GB of RAM is made
available. Note that the state-of-the-art implementation of (Barton et al.,
2014) requires more than 140 GB of RAM for the same assignment. Even
on relatively smaller data sets when enough RAM is available to hold all
necessary data structures, we show that our new implementation is still
competitive with state-of-the-art internal-memory implementations.

2 Methods
Let y = y[0]y[1] . . y[n − 1] be a word of length n = |y| on a finite
ordered alphabet Σ of size σ = |Σ| = O(1). For two positions i and j on
y, we denote by y[i . . j] = y[i] . . y[j] the factor of y that starts at position
i and ends at position j. A suffix is a factor that ends at position n−1, and
a proper factor is a factor different from y itself. Let x be a word of length
0 < m ≤ n. We say that x occurs at the starting position i in y when
x = y[i . . i+m−1]; and that x is an absent word of y if it does not occur
in y. The absent word x of y is minimal iff all its proper factors occur in
y. A repeated pair R in y is a triple (i, j, w) such that i and j are starting
positions of word w in y. Moreover we have that: R is left maximal iff
y[i − 1] 6= y[j − 1]; R is right maximal iff y[i + |w|] 6= y[j + |w|];
R is maximal iff it is left maximal and right maximal. We denote by SA
the suffix array of y of length n, that is, an array of size n storing the
starting positions of all (lexicographically) sorted suffixes of y, i.e. for
all 1 ≤ r < n, we have y[SA[r − 1] . . n − 1] < y[SA[r] . . n − 1].
Its inverse bijection is denoted by iSA. The Burrows-Wheeler transform,
denoted by BWT, is defined by BWT[i] = y[SA[i]−1], unless SA[i] = 0,
in which case BWT[i] = #, where # is a letter not from Σ. Let lcp(r, s)

denote the length of the longest common prefix between y[SA[r] . . n−1]

and y[SA[s] . . n − 1], for all positions r, s on y, and 0 otherwise. We
denote by LCP the longest common prefix array of y defined by LCP[r] =

lcp(r − 1, r), for all 1 ≤ r < n, and LCP[0] = 0.
We analyse the proposed algorithm in the external memory (EM) model

of computation; see (Vitter, 2006) for details. By M we denote the RAM
(internal memory) size and by B the disk (external memory) block size,
both measured in units of Θ(logn)-bit words. We further assume that
M = Ω(logn) and M = O(n). In the EM model, each transfer of
B words between internal and external memory is called an IO, and,
hence, an algorithm’s complexity is mainly measured in IOs; see, for
instance, Kärkkäinen et al. (2017) for constructing SA in the EM model.

Lemma 2.1. Let (i, j, w) be a right maximal repeated pair of a word
y. There exist 0 ≤ k < ` < |y|, y[i . . i + |w|] = y[SA[k] . . SA[k] +

LCP[k + 1]] and y[j . . j + |w|] = y[SA[`] . . SA[`] + LCP[`]].

Proof. Without loss of generality we consider that iSA[i] < iSA[j]. We
have |w| = lcp(iSA[i], iSA[j]), thus there exist m ∈ (iSA[i], iSA[j]],
such that |w| = LCP[m]. We denote by ` the largest of these indices and

by k + 1 the smallest; they can be equal. Thus lcp(iSA[i], k) > |w| and
lcp(`, iSA[j]) > |w|, consequently the equalities hold.

By Lemma 2.1, we can focus on the following 2n factors: F2i =

y[SA[i] . . SA[i] + LCP[i]], with i ∈ [0 : n − 1]; F2i+1 =

y[SA[i] . . SA[i] + LCP[i + 1]], with i ∈ [0 : n − 1]. For each Fj ,
with j ∈ [0 : 2n − 1], we denote by: B1[j] the set of letters that occur
right before the occurrences of Fj ;B2[j] the set of letters that occur right
before the occurrences of the longest proper prefix of Fj .

Lemma 2.2 ((Barton et al., 2014)). awb is a minimal absent word of y,
with a, b ∈ Σ andw a word, iff there exists j such that a ∈ B2[j]\B1[j]

and wb = Fj .

Next, we provide the details of our algorithm for computing minimal
absent words in external memory, which we denote by emMAW.

Pre-processing: Computing SA, LCP, and BWT. In our
implementation we make use of the pSAscan algorithm due to Kärkkäinen
et al. (2015) to compute SA and the Sparse-Φ algorithm due to Kärkkäinen
and Kempa (2016) to compute LCP in external memory. For computing
BWT we use the following easy-to-implement method. If the RAM is not
enough for the word to fit inside, we compute BWT block by block. We
store in memorym pairs of the form (i, SA[i]) such that they fit in RAM,
and we sort the pairs with respect to the SA[i] field. Then we scan y and
the list of sorted pairs. During the scan, we replace the SA[i] field of each
pair with letter y[SA[i]−1] (except if SA[i] = 0, in which case we replace
it with a letter # not from Σ). Finally, we sort the pairs with respect to
the i field. The letters are a contiguous segment of BWT, and so we store
them. We repeat the process, until we have the whole BWT.

Stage 1: Computing sets B1[j] and B2[j]. Given the word y and its
SA and LCP in internal memory, computing sets B1[j] and B2[j] can be
done in internal memory in time and space O(n) (Barton et al., 2014).
Here we adapt this algorithm to compute setsB1[j] andB2[j] in external
memory when having SA, LCP, and BWT precomputed and stored in
external memory. The main difference is that we do not use the word y
itself but rather its BWT. To compute the setsB1[j] andB2[j], we scan SA,
LCP, and BWT twice: top-down and bottom-up. These data structures are
always accessed sequentially. Thus we can store them in external memory
and then scan or modify them by transferring in RAM only a segment of
entries, whose number is proportional to M . Transferring n words from
or to external memory requires timeO(n) withO( n

B
) IOs (Vitter, 2006).

Stage 2: Computing the set of minimal absent words. At this point
we have stored in external memory the setsB1[j] andB2[j] for all j ∈ [0 :

2n− 1]. By applying Lemma 2.2 we can obtain all minimal absent words
of y by computing the difference B2[j] \B1[j] for all j ∈ [0 : 2n− 1].

Theorem 2.3. Given a word of length n and its SA, LCP, and BWT in
external memory, algorithm emMAW computes all minimal absent words
in timeO(n), withO( n

B
) IOs, and usingO(n) space in external memory.

3 Results
We implemented algorithm emMAW as a program to compute all minimal
absent words of a given sequence. The program was implemented in the
C programming language. It is available at http://github.com/
solonas13/maw under the GNU GPL terms. We used the following two
machines in order to evaluate our implementation. The first one, denoted
by M1, is a desktop PC with 1 × 8 cores of Intel(R) Core(TM) i7-4790
CPU at 3.60GHz with 8M Cache and 16GB of DDR3 RAM under 64-bit
GNU/Linux. M1 is equipped with a single SSD disk with capacity 256GB.
The second one, denoted by M2, is a single node of a cluster computer
with 2× 10 cores of Intel(R) Xeon(R) CPU E5-2660 v3 at 2.60GHz with
25M Cache and 384GB of DDR3 RAM under 64-bit GNU/Linux. M2 is
equipped with a disk array with HDD disks with total capacity 524TB.



“main_appnote” — 2017/4/17 — page 3 — #3

emMAW: Computing Minimal Absent Words in External Memory 3

 10

 20

 30

 40

 50

 60

 70

 80

 90

 5x10
7

 1x10
8

 1.5x10
8

 2x10
8

 2.5x10
8

T
im

e
 [

s
]

Length [-]

All Homo sapiens chromosomes

(a) Elapsed time of emMAW in external memory

 0

 2000

 4000

 6000

 8000

 10000

 12000

Homo sapiens Gorilla gorilla Mus musculus

T
im

e
 [

s
]

Sequence

MAW
emMAW -c 1
emMAW -c 0

(b) Elapsed time of MAW and emMAW in internal memory

Fig. 1. Computing minimal absent words in internal and external memory

External memory. Our first task was to validate our theoretical findings
(Theorem 2.3). To this end, we used as input all chromosome sequences
of the Homo sapiens genome obtained from the NCBI database (ftp://
ftp.ncbi.nih.gov/genomes/). We computed all minimal absent
words of length at most 11 for each sequence separately. We considered
only the 5′ → 3′ DNA strand. We had first pre-computed and stored
in external memory the necessary data structures. This set of runs
was conducted on M1. Fig. 1(a) depicts elapsed-time measurements of
emMAW (without accounting for the time to construct the data structures)
using only 500 MiB of internal memory. The results confirm our theoretical
findings: the elapsed time increases linearly with the length of the input
sequence. To further evaluate the efficiency of our implementation, we
used as input the full genome of Homo sapiens without pre-computing the
necessary data structures. We computed all minimal absent words of length
at most 11 using only 1, 000 MiB of internal memory. We considered both
DNA strands. The whole assignment (accounting for the time to construct
the data structures) took 9, 219 seconds on M1 and 9, 282 on M2.

Internal memory. We next compared the efficiency of emMAW against
the corresponding one of MAW (Barton et al., 2014), the fastest internal-
memory implementation, when both exclusively use internal memory
(150,000 MiB) for their computations. We considered the full genomes
of Homo sapiens, Gorilla gorilla, and Mus musculus genomes, obtained
from the NCBI database. We computed all minimal absent words of length
at most 11 for each sequence. We considered both DNA strands. For this

set of runs, we used M2 to ensure that the necessary data structures can
be constructed and stored in internal memory. We used two options for
emMAW: (i) -c 1 denoting that the necessary data structures must be
constructed; (ii) -c 0 denoting that they have already been pre-computed
and can be read from disk. Elapsed-time comparisons are illustrated in
Fig. 1(b). The results show that emMAW is less than two times slower
than MAW with -c 1; most importantly, we see that emMAW becomes
faster than MAW with -c 0.

4 Conclusion
We presented algorithm emMAW, the first external-memory algorithm
for computing minimal absent words. Given a sequence of length n

and its SA, LCP, and BWT in external memory, emMAW computes
all minimal absent words in time O(n), with O( n

B
) IOs, and using

O(n) space in external memory. We also made available an open-source
implementation of emMAW. We provided benchmark results showing that
our implementation requires less than 3 hours on a standard workstation
to process the full human genome when as little as 1 GB of RAM is made
available. Our implementation, despite making use of external memory,
is fast; indeed, even on relatively smaller data sets when enough RAM
is available to hold all necessary data structures, it is less than two times
slower than state-of-the-art internal-memory implementations.

Funding
This work was partially supported by the Academy of Finland via grants
2845984 and 294143.

References
Almirantis, Y., Charalampopoulos, P., Gao, J., Iliopoulos, C. S., Mohamed, M.,

Pissis, S. P., and Polychronopoulos, D. (2017). On avoided words, absent words,
and their application to biological sequence analysis. Algorithms for Molecular
Biology, 12(1), 5.

Barton, C., Heliou, A., Mouchard, L., and Pissis, S. P. (2014). Linear-time
computation of minimal absent words using suffix array. BMC Bioinformatics,
15, 388.

Barton, C., Heliou, A., Mouchard, L., and Pissis, S. P. (2015). Parallelising the
computation of minimal absent words. In PPAM, Part II , volume 9574 of LNCS,
pages 243–253. Springer.

Béal, M., Mignosi, F., Restivo, A., and Sciortino, M. (2000). Forbidden words in
symbolic dynamics. Advances in Applied Mathematics, 25(2), 163–193.

Belazzougui, D. and Cunial, F. (2015). Space-efficient detection of unusual words.
In SPIRE, volume 9309 of LNCS, pages 222–233. Springer.

Belazzougui, D., Cunial, F., Kärkkäinen, J., and Mäkinen, V. (2013). Versatile
succinct representations of the bidirectional Burrows–Wheeler transform. In ESA,
volume 8125 of LNCS, pages 133–144. Springer.

Crochemore, M., Mignosi, F., and Restivo, A. (1998). Automata and forbidden
words. Information Processing Letters, 67, 111–117.

Hampikian, G. and Andersen, T. (2007). Absent sequences: Nullomers and primes.
In PCB, pages 355–366. World Scientific.

Kärkkäinen, J. and Kempa, D. (2016). Faster external memory LCP array
construction. In ESA 2016, volume 57 of LIPIcs, pages 61:1–61:16. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik.

Kärkkäinen, J., Kempa, D., and Puglisi, S. J. (2015). Parallel external memory suffix
sorting. In CPM, volume 9133 of LNCS, pages 329–342. Springer.

Kärkkäinen, J., Kempa, D., Puglisi, S. J., and Zhukova, B. (2017). Engineering
external memory induced suffix sorting. In ALENEX , pages 98–108. SIAM.

Mignosi, F., Restivo, A., and Sciortino, M. (2002). Words and forbidden factors.
Theoretical Computer Science, 273(1-2), 99–117.

Silva, R. M., Pratas, D., Castro, L., Pinho, A. J., and Ferreira, P. J. S. G. (2015).
Three minimal sequences found in Ebola virus genomes and absent from human
DNA. Bioinformatics, 31(15), 2421–2425.

Vitter, J. S. (2006). Algorithms and data structures for external memory. Foundations
and Trends in Theoretical Computer Science, 2(4), 305–474.


