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Abstract: 

The human microbiome is a diverse and complex ecosystem integral for healthy human 

development. Recent advances in next-generation sequencing technology have paved the 

way for a ‘multi-omics’ era of microbiome research, uncovering associations between 

microbial dysbiosis and disease. Our ability to harness the full potential of these ‘multi-

omics’ datasets are currently constrained by several technical, analytical, computational and 

bioinformatics factors. However, it may be possible to overcome such limitations through 

the use of novel systems biology thinking and approaches, to integrate and analyse these 

large ‘multi-omics’ datasets. Thus, the question arises - can systems biology approaches 

pave the way to a new era in microbiome research; determining underlying mechanisms in 

health and disease, and identifying key microbial interactions and causalities? 
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Introduction: 

The past decade has been a golden age for microbiome research. Advances in next-

generation sequencing and bioinformatics techniques have set the stage for ‘multi-omics’ 

approaches for studying the human microbiome in both health and disease [1,2]. Multi-

omics approaches extend beyond “traditional” microbial diversity and composition analysis 

as generated by 16S rRNA data sets, advancing into metagenomics, host-microbial 

interactions, and functional modelling with the aim of elucidating disease causalities [1,3-6]. 

These advances are all underpinned by bacterial ecology and systems biology concepts, 

which have been adapted to characterize and fully elucidate the role of the human 

microbiome in health and disease.  

To-date, systems-level approaches have focused on genome reconstructions, where 

genome-scale models have been built to model the functional relationships of highly 

abundant microorganisms within an ecosystem [7,8].  In these models, whole-genome 

assembly data is used in an attempt to link annotated genes to functional categories, 

functional gene networks, host-microbial interactions, and microbial-microbial interactions 

[3]. Such approaches, however, rely heavily on the quality of genome sequences and the 

availability of curated genome databases, as well as the quality of gene and genome 

annotation data. Here we discuss the current state of metagenomics research in the context 

of ‘multi-omics’ analysis and systems biology. 

 

Main Text: 

Advances in next-generation sequencing technology, have led to the establishment of the 

field of metagenomics. In its simplest form, metagenomics refers to the study of the genetic 

material recovered directly from the totality of organisms present in an environmental 

sample or microbial community [9]. In metagenomic studies, genomic DNA is isolated from 

the sample of interest, and randomly sheared before being shot-gun sequenced. The 

resulting output is a mass of short sequencing reads that need to be "trimmed" for quality, 

assembled, and mapped to gene databases allowing identification of the microbial 

population structure (taxonomy) and function (gene annotations). Despite there being 

numerous platforms available for metagenomic sequencing (Ie. Illumina, Ion Proton), there 

is a bottle neck for metagenomic studies in the lack of downstream resources for read 

mapping and subsequent bioinformatics analysis of the generated datasets. 

 

< Developing Reference Gene Catalogues > 

In the early 2000’s, international initiatives; the Human Microbiome Project (HMP) [10,11], 

and the International Human Microbiome Consortium (IHMC) [2], were established to 

generate sequencing resources that would aid in the characterisation of the human 
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microbiome. One of the main aims of these initiatives was to generate and curate genome 

databases for taxonomic discrimination of microbial communities, as well as mapping and 

annotating a large number of entire microbial genomes (Figure 1A) [10]. To date, even 

though there are several well established 16S rRNA gene databases (ie. SILVA  [12], 

Greengenes [13]) which can be used for taxonomic binning of sequencing reads, the curated 

resources available for analysing metagenomics and ‘multi-omics’ datasets have been 

limited. Reference gene catalogues are, however, becoming increasingly available - albeit 

primarily focused on the bacterial constituents of the gut microbiome in humans [10,14,15], 

and other mammals [16-18].  

In 2010, the first of these microbial gene catalogues for the human gut metagenome was 

published [14]. This catalogue contained 3.3 million non-redundant microbial genes, 99.91% 

of which represented genes of bacterial origin, with the remainder of archaeal, eukaryotic 

or viral origin [14]. Generated from data obtained by sequencing faecal samples from 124 

European individuals, this gene catalogue was estimated to cover the entire genomes of up 

to ~1,000 of the dominant bacterial species identified in the human gut [14]. Li and 

colleagues [15] built on this work by curating a human gut reference catalogue containing 

9,879,896 genes [15]. This Integrated Gene Catalogue (IGC) composes near complete sets of 

genes from the most abundant gut microbes identified in individuals from three continents 

[15]. Although, this catalogue is considerably more complete than the previous gut 

catalogues of Qin [14] and HMP [10,11], it is still primarily focused on the bacterial 

constituents of the gut microbiome. Until a curated gene catalogue representing gut 

bacterial, archaeal, viral and fungal genes and genomes is established, the full potential of 

microbiome research will not be realised [19]. Analogously, there is a need to establish 

reference gene catalogues specific for other body sites including the oral cavity, skin, and 

vagina [19]. The paucity of genes and genomes from non-bacterial origins in these 

catalogues means that despite covering many of the genes present in the microbiome, 

current catalogues under-represent many distinct gene families from entirely different 

evolutionary paths - e.g. eukaryotic genes. Further, although these catalogues are now 

being created and curated, the next big question is what do we do with this data to achieve 

its maximum potential? As we begin to answer this, we need to develop a variety of systems 

biology tools and platforms to take us in to the next phase of analyses. 

 

< Application of Systems Biology Approaches to study Host-Microbiome Interactions > 

Microbiome association studies have shown links between certain microorganisms and 

chronic conditions including Type 2 Diabetes [20,21], liver cirrhosis [22] and colon cancer 

[23]. None, however, have moved beyond this and elucidated the causalities [20-23]. There 

is now great interest in using systems biology approaches to elucidate the causalities 

between microbial species and their individual contribution to the overall ecosystem’s 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

phenotype and interactions with diet and host [24]. Key in the systems biology are genome 

scale models. 

Genome-scale models are the common denominator of systems biology, and have been 

applied as a powerful scaffold to identify the genotype-phenotype relationships in both 

individual bacterial species and microbial communities [25]. These models are set up to 

describe the complex cellular functions through the integration of ‘multi-omics’ data and 

specific objective-functions. Reconstruction of Genome-scale metabolic Models (GEMs) has 

become well-established over the last decade for a variety of microbial species and host 

tissues/cell line interactions [26-28]. Since most of the bacterial species in the human 

microbiome are typically challenging to culture in vitro, mainly bottom-up reconstruction 

methods have been used.  Genome sequences and similarity based annotations are the 

main data input required for such reconstructions. As Figure 1B illustrates, GEMs consist of 

biochemical reactions with their gene-protein associations of the target organism. For 

mathematical representations of GEMs, the stoichiometric coefficients are used to construct 

a stoichiometric (S) matrix. Rows and columns in the S matrix consist of “all” the involved 

metabolites and reactions in the network. The S matrix plays a key role in different systems 

biology tools and applications since it enables the mathematical formulation of the different 

biological networks. Several GEMs have been reconstructed in bottom-up approaches for 

bacteria that are constituents of different human microbiomes. In this regard, having a well-

established gene catalogue and integrating it with ‘multi-omics’ data forms an important 

complement to high-quality systems biology models. Unfortunately, GEMs are currently 

only applied to microbial networks, although a limited number of studies are beginning to 

integrate microbial datasets with both host and fungal networks.  

Figure 1C shows a GEM as a well-connected network that can be applied for network 

dependent analysis using ‘multi-omics’ data or through constraints implementation assisting 

in determining the phenotypic potential of a target organism. GEMs are widely applied in 

constraint-based modelling, referred to as Flux Balance Analysis (FBA), to predict and 

interpret physiological data and moreover, used in design and discovery [29,30]. Like host 

modelling, the application of microbiome GEMs has been mainly evolved in two paths. 

Using the network properties and contextualizing of high-throughput data through mapping 

‘multi-omics’ data to GEM to identify reporter metabolites and/or sub-networks [31,32]. 

Another path is applying constraint-based modelling to predict the cellular phenotypes[33].  

Using both applications in microbiome studies, has made it possible to elucidate the 

interactions between different microbial species, and the overall contribution of individual 

microorganisms to microbiome metabolism, host phenotype and nutrients uptake [34]. 

Generating GEMs for bacteria from the predominant taxa identified in the human 

microbiome and subsequently performing FBA to predict interactions, demonstrated how 

the gut microbiome and diet interact and influence amino acid profiles seen in the plasma 

[34,35]. This modelling approach can be validated using the data from mono and co-

colonized bacteria in germ free mice. Several optimization algorithms have been created to 
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predict the interactions between individual, while the overall microbial community and each 

bacterium are optimized [33,34,36]. This type of community and systems-level optimization 

has been applied to the human gut microbiome and successfully predicted the profile of key 

metabolites in faeces and plasma [34]. Further, this approach has been applied to 

determine the best diet to "improve" a host phenotype using the abundances of an 

individual’s gut microbiome. In addition, compartmentalizing the microbiome metabolism 

based on each species, enables integrative analyses using transcript data and the 

investigation of how transcriptional responses between microorganisms within the 

community vary in different conditions. Such analyses allow for the identification of 

different diagnostic biomarkers and novel therapeutic targets for metabolic diseases that 

are associated with the microbiome (Figure 1D)[37]. 

 

Nowhere is the new world of possibilities being opened up by GEMs and other modelling 

analysis techniques more evident than in the genesis of explorations of the antimicrobial 

resistance gene (ARG) profile of a microbiome, otherwise known as the "resistome" [38]. 

Between 2005 and 2010, there were 28 papers mentioning resistome on Pubmed. In 

contrast, the next 5 years (2011 - 2015) had 150 papers with almost two thirds of these 

investigating the resistome in the environment. In 2016 alone, there were 92 papers with 

half now relating to the resistome in host organisms.  

Analysis of the resistome relies on the gene sequence detail that is increasingly available via 

metagenomics to define the presence and abundance of specific gene sets representing the 

resistome. This provides an ability to track the development and spread of specific 

antimicrobial resistance genes through different communities and habitats [39-41]. Whilst it 

may seem counter-intuitive to be using GEMs in analysing the resistome, given the 

involvement of these genes in resistance to antimicrobial drugs, however, if we consider 

what many of these genes are predominantly involved in, the use of GEMs becomes more 

obvious when we realise the primary function for many of these genes.  Although they are 

important for resistance to antimicrobial drugs, many of these genes in their unmutated 

form are either direct targets for these drugs, or involved in the cellular pathways targeted 

by these drugs.  Likewise, many of the targets for antimicrobial drugs are either directly or 

indirectly involved in metabolic pathways or other essential cellular processes. Thus, they 

are amenable to analysis in two different ways - both through analysis of the development 

and movement of these genes, as well as the pattern of the genes.  Using systems biology 

approaches such as GEMs to analyse the resistome has immense predictive power, for 

example in defining how our microbiota will affect our responses to xenobiotics (drugs, 

dietary compounds and toxins) [42]. As such, this moves well beyond a simple 

understanding of gene presence and abundance, and provides an unprecedented 

opportunity to examine the resistome transmission from the environment to human or 

animal hosts, and even between individuals, as well as the selection pressures and 

mechanisms of evolution of these genes within a community. Given the global concern 
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relating to antimicrobial resistance and its rapid spread, this represents a particularly 

important tool set [43]. As such, we are now beginning to explore the concepts of functional 

pools of genes within microbial communities, along with the potential for the transfer of 

these genes between different species and communities, as well as the way these pools of 

genes may change in dysbiotic conditions associated with host disease states.   

 

Conclusions: 

The current focus of human host-microbiome studies is centred around generating ‘multi-

omics’ datasets to investigate the role of the microbiome in human health and diseases. 

Generating such data is remarkably important in the microbiome field for understanding the 

interactions between microbes and their host. A recent study has used GEMs of host and 

microbiome data on conventionally raised and germ-free mice and showed that global 

metabolic differences in mice tissues was influenced by the gut microbiome [44]. This 

therefore highlights the benefits of systems biology approaches and its capabilities for 

describing mechanistic relationships in the microbiome and host-microbial interactions. This 

is a necessary step-forward in microbiome research allowing for a better explanation of the 

role of the microbiome in associated diseases. In this concept, Genome-scale metabolic 

science is a great platform to understand causalities, perform integrative analysis, 

simulations, design, discovery, clinical interventions.  
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Figure 1 Caption: 

< A proposed framework for the integrative analysis of multi-omics microbiome data using 

genome-scale modelling to understand causality of the ecosystem and elucidate the 

interactions. > 

After microbiome sampling of healthy and diseased individuals, different high-throughput 

(HT) analysis can be applied to the samples (A). Metagenomic outputs assist in the 

construction of catalogues for reference genes at different human microbiome sites. All of 

the ‘multi-omics’ data sets generated are interpreted individually and the results will depict 

any associations between the microbiome and health and disease. Most microbiome studies 

focus on this particular area and their data can be used as an input to the GEMs 

reconstruction process. (B). Based on availability of whole genome sequence data for the 

target microorganism, a GEM can be generated. The high-quality reads can be used to 

construct gene and pathway summaries [45], and this needs to be implemented in the 

process of GEMs generation. Since the individual phenotypic knowledge for most of these 

microbes is missing, omics data is used to compile a set of metabolic tasks for evaluation 

and validation of GEMs functionality. (C). To perform simulations with GEMs, it is necessary 

to introduce an objective function and maximizing biomass yield is the most relevant one 

for microbes metabolic modelling. The steps for high quality GEMs reconstruction has been 

extensively reviewed in different articles [46]. FBA is applied to simulated-ready GEMs for 

microbiome to predict the target organism phenotype under certain constraints. GEMs, as 

fully connected and functional networks are a great platform to perform integrative analysis 

of clinical data for identification of relevant predictive biomarkers as well as novel 

therapeutic targets for microbiome associated diseases. (D). The GEMs’ generated 

hypothesis can be in the form of probiotic and prebiotic design or gene knock. In-vivo and 

in-vitro experiments would assist in evaluating the GEMs predictions at the first stage and 

the confirmed could be used for clinical trials. Using the generated GEMs on human 

tissue/cells, one can explore the effect of a generated hypothesis on human host physiology 

using the simulated-ready tissue/cell GEMs [47]. Overall, this proposed pipeline can 

effectively speed up the generation of specific diagnosis and treatments in microbiome 

studies, although it requires more dedicated data generation for constructing high quality 

models.  
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Title: 

Using systems biology approaches to elucidate cause and effect in host-microbiome 

interactions 

 

 

Highlights: 

 

• Metagenomic gene catalogues to include archaea, fungi and bacteria proposed. 

• System-level framework for processing multi-omics data sets developed.  

• Review of Systems Biology approaches for studying host-microbiome interactions.  


