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Abstract—An analysis of the correlation between the returns of
different securities is of fundamental importance in many areas
of finance, such as portfolio optimisation. The most commonly
used measure of correlation is the Pearson correlation coefficient;
however, this suffers from several problems when applied to
data from the real world. We propose an alternative estimator
— the Biweight Mid Correlation (Bicor) — as a more robust
measure for capturing the relationship between returns. We
systematically evaluate Bicor empirically using data from the
FTSE 100 constituents, and show that it is more robust when
compared with the Pearson correlation coefficient. Finally, we
demonstrate that Bicor can be used to improve a graph-based
method of portfolio construction. Specifically, we show that when
treating the correlation matrix as an adjacency matrix for a
graph and using graph centrality to construct portfolios, the use
of Bicor leads to better performing portfolios.

I. INTRODUCTION

There has been a significant body of work studying the cross
correlation structure of stock returns, and looking at extracting
useful information from it using graph-theoretic methods. One
of the earliest such papers [1], investigates the hierarchical
structure of the minimum spanning tree (MST) calculated
from the Pearson correlation matrix between the log returns
of stocks within the Dow Jones Industrial Average portfolio.

The procedure that was introduced can be described as
follows. Given N stocks and a time window w containing
T periods, we define the return vector riw of a stock i ∈ 1..N
to be the vector of log returns for that stock in time window w.
The tth element in riw is riw(t) = lnPiw(t)− lnPiw(t− 1),
where Piw(t) is the price of asset i at time period t in window
w, and t ∈ 1..T .

For any pair of stocks i, j ∈ 1..N , the Pearson correlation
between their log returns in the period 1..T in window w is
calculated as:

ρw(i, j) =

�T
t=1(riw(t)− r̄iw)(rjw(t)− r̄jw)��T

t=1(riw(t)− r̄iw)2
��T

t=1(rjw(t)− r̄jw)2

(1)
Where r̄iw is the sample mean for riw, that is r̄iw =

(1/T )
�T

t=1 riw(t). If this is calculated for every pair i, j ∈
1..N , then the N ×N correlation matrix A(w) for window w
can be constructed, with elements A

(w)
ij = ρw(i, j).

The correlation matrix can easily be transformed into an
adjacency matrix A(w)� by setting the diagonal to zero:

A
(w)�

ij =

�
A

(w)
ij i �= j

0 i = j
(2)

This then allows us to interpret the correlations as the edge
weights of an undirected graph.

The goal of filtering this complete graph is to extract or
identify the key structure of underlying correlations in the
system. This filtering is sometimes performed on the distance
matrix instead of the correlation matrix. The distance matrix
D(w) is typically constructed from the correlation matrix A(w)

by setting D
(w)
ij =

�
2(1−A

(w)
ij ).

The filtering and analysis of these graphs have been used
to improve portfolio optimisation [2] and centrality based
portfolio selection [3]. The evolution of the graphs through
market crashes have shown how topological properties change
before, during and after such a crash [4].

The minimum spanning tree (MST) is one of the earlier
methods of filtering the distance matrix [1]. A tree is a
connected undirected graph with no cycles. If G is the graph
created from the distance matrix, then a spanning tree T
of G is a tree that includes all the vertices of G. The
minimum spanning tree of G is the spanning tree that has the
smallest sum of edge weights included in the tree. The planar
maximally filtered graph (PMFG) is defined to be the graph
constructed by connecting the most highly correlated stocks
under the topological constraint of keeping the resulting graph
planar [5], [6]. This is shown to be a less aggressive filtering
compared to the MST and to contain more information, while
retaining the hierarchical structure of the MST. Other studies
[7] filter A(w) by applying a threshold τ such that correlation
values below this value are removed.

A natural next step is to look at the evolution over time of
the correlation matrix and filtered versions thereof, as shown
by [8]. In the notation introduced in this paper, that involves
looking at the evolution of A(w) for consecutive windows w.
Given N stocks, each with k periods of data, we can split
those k periods into M windows, each of size T ≤ k. We
can create multiple windows with a difference of δT periods
between them. Note that if δT < T , then there is some overlap



between consecutive windows. The number of windows M
will depend on the choice of T and δT and the total periods
k available in the data.

This paper is structured as follows. In section II we sum-
marise potential problems that could arise from using Pearson
correlation to calculate the correlations between stock returns
and demonstrate empirically how prevalent such issues are. In
section III we define Biweight Mid Correlation (Bicor) as a
more robust measure of correlation. The definition of Bicor
involves a constant K which is ordinarily set to K = 9 as
that has been shown to exhibit high efficiency, in general,
across a variety of distributions. In section III-B we show the
reasoning for this choice and in section IV we demonstrate
that some different values of K provide further improvements
in efficiency when looking at stock return data specifically.
In section V we present the improvements in robustness
achieved in calculating the correlations between stock returns
for the FTSE 100 constituents by using Bicor. Section VI
demonstrates the benefit of using Bicor instead of Pearson
in graph based portfolio construction.

II. EMPIRICAL SINGLE OBSERVATION INFLUENCE ON
PEARSON

One important problem with Pearson correlation is its
behaviour when applied to data having fat-tailed distributions
or containing outliers. It is known that in the presence of such
distributions and outliers, Pearson correlation is not robust.
Given that we know the distribution of stock returns exhibit
fat tails [9], [10], it is likely that this lack of robustness could
lead to misleading correlations. In this section we formalise
the notion of robustness, and analyse the robustness of the
Pearson correlation using empirical data.

The breakdown point of an estimator is one of a variety
of measures of statistical robustness. Intuitively, it is the
proportion of observations that can be made arbitrarily large
before the estimator provides an incorrect result. For example,
the mean as an estimator of location has a breakdown point
of 0 as even a single large observation will make the mean
arbitrarily large also. In contrast, the median as an estimator
of location has a breakdown point of 0.5 as up to half the
observations can be made arbitrarily large without affecting
the result [11].

An empirical influence curve can be used to visualise how
the value of an estimator is affected by a single arbitrary
observation. For some vector x of data, the empirical influence
curve can be shown by setting (for some arbitrary l) xl to
an increasingly large (positive or negative) value, and then
calculating the value for the estimator of interest on each of
those instances. Plotting the estimator against a range of values
for xl will show its sensitivity to an increasingly large outlier.
Examples of this can be found in [11].

In the following, we use a similar method to provide insight
into the robustness of Pearson correlation for stock returns.

For every stock i in the FTSE 100 between 2003-03-21 and
2013-12-31, let riw be the vector of log daily returns for that
stock in window w. Each window w contains T = 60 periods

of daily returns (3 months of trading days). Let the step size
δT = 60 days. Thus, we have M = 43 consecutive adjacent
windows of 3 months per window. For each of these windows
we have approximately 100 return vectors, riw, i ∈ 1..100.

For every window w ∈ 1..43, let ρw(i, j) be the Pearson
correlation between stocks i, j in window w. For every pair
i, j in every window w, we calculate how much ρw(i, j) can
change by the removal of a single datapoint in riw and rjw.

Let r
(l)
iw and r

(l)
jw be the vectors riw and rjw respectively

with the datapoint at index l ∈ 1..T removed. Note that this
means the vectors r

(l)
iw and r

(l)
jw contain T − 1 elements. Let

ρ
(l)
w (i, j) be defined as the Pearson correlation between r

(l)
iw

and r
(l)
jw:

ρ(l)w (i, j) =

�T−1
t=1 (r

(l)
iw(t)− s̄iw)(r

(l)
jw(t)− s̄jw)

��T−1
t=1 (r

(l)
iw(t)− s̄iw)2

��T−1
t=1 (r

(l)
jw(t)− s̄jw)2

(3)
Where s̄iw is the sample mean for r

(l)
iw. That is, s̄iw =

[1/(T − 1)]
�T−1

t=1 r
(l)
iw(t).

When for a given pair of stocks i, j in window w, the
Pearson correlation ρ

(l)
w (i, j) is calculated for every l ∈ 1..T ,

then the maximum change in Pearson correlation Δw(i, j)
caused by the removal of a single observation is defined as:

Δw(i, j) = max
l∈1..T

|ρw(i, j)− ρ(l)w (i, j)| (4)

That is, Δw(i, j) is the largest absolute change in the
Pearson correlation between stocks i, j in window w, caused
by the removal of a single data point in the vectors of returns
for stocks i and j.

We found that between 2003 and 2013 in the 3 month
windows of correlations, in 20% of all Pearson correlations,
the change of a single observation in 3 months (60 datapoints)
of data caused a change ≥ ±0.09. In 5% of correlations, 1
datapoint could cause a change ≥ ±0.14, and in 1 out of 100
Pearson correlations, a single data point was able to cause a
change of ≥ ±0.21.

This shows that a small proportion of stock correlations
are significantly affected by just 1 data point; in this case by
just 1 day in a 3 month period. In the following two sections
we will introduce Biweight Mid Correlation as a more robust
measure of correlation, and show to what extent it can remedy
the problems discussed thus far.

III. BIWEIGHT MID CORRELATION

A. Definition

In order to define Biweight Mid Correlation, it is helpful to
first define Biweight Mid Variance.

The influence function of M-estimators of location can be
used to define an entire class of measures of dispersion, details
of which can be found in [11]. One such measure is the
Biweight Mid Variance (Bivar).

As part of defining Bivar, it is helpful to set up two
intermediary vectors. Firstly, for a random variable X with



median MX and a constant K (the value of which will be
discussed later), let the elements of U be:

Ui =
Xi −MX

K × MADX
(5)

Where MADX = median(|X − MX |), that is, the median
of the absolute deviations from the median of X. Notice that
the magnitude of Ui is proportional to the distance between
Xi and the median of X.

Secondly, we define the elements of vector a to be:

ai =

�
1, if |Ui| < 1

0, if |Ui| ≥ 1
(6)

ai will be 0 for any Xi more than K median absolute
deviations away from the median of X, and 1 otherwise.

We can now define Bivar as:

ζ̂2bi =
n
�

ai(Xi −MX)2(1− U2
i )

4

(
�

ai(1− U2
i )(1− 5U2

i ))
2

(7)

Given our earlier definitions of Ui and ai, we can see that
datapoints more than K median absolute deviations away from
the median of X do not influence the Bivar. Furthermore,
the influence of the remaining datapoints on the Bivar are
weighted by their distance from the median of X.

It has been shown empirically that ζ̂2bi has a breakdown
point of 0.5, but a formal proof does not yet exist [12]. Bivar
has been shown to be a good choice as a robust dispersion
measure in practice, as it has a high tri-efficiency compared to
many other measures of dispersion when the constant K = 9
is chosen [13] [14]. We will define tri-efficiency and discuss
the choice of K = 9 further in section III-B.

We can now define the Biweight Mid Covariance (Bicov)
and Biweight Mid Correlation (Bicor). Let X and Y be two
random variables and let MX ,MY and MADX ,MADY be
the medians and median absolute deviations respectively for
X and Y. Similarly to how we constructed Bivar, let U, V,
a and b be intermediary vectors, with their elements defined
as:

Ui = (Xi −MX)/(K × MADX)

Vi = (Yi −MY )/(K × MADY )

ai =

�
1, if |Ui| < 1

0, if |Ui| ≥ 1
bi =

�
1, if |Vi| < 1

0, if |Vi| ≥ 1

(8)

Where K is a constant as before. Furthermore, let the
elements of vectors p and q be:

pi = ai(1− U2
i )

qi = bi(1− V 2
i )

(9)

Using the above vectors, equations (10) and (11) define
the Biweight Mid Covariance and Biweight Mid Correlation
respectively.

sB(X,Y ) =
n
�

p2i (Xi −Mx)q
2
i (Yi −My)

[
�

pi(1− 5U2
i )][

�
qi(1− 5V 2

i )]
(10)

rB(X,Y ) = sB(X,Y )/
�
sB(X,X)sB(Y, Y ) (11)

The choice of parameter K will be discussed next.

B. Bicor Parameter K

In 1985, Lax [13] compared 150 methods of estimating
measures of dispersion, including Bivar with various values
for the parameter K. A more recent reproduction in 2008 [14]
of the Lax study added more dispersion measures to the com-
parison and made use of modern computational techniques.

In these studies, the robustness of the measures of dispersion
was tested on three distributions. These ”corner” distributions
are considered to represent important cases in sampling, details
of which can be found in [15].

The tri-efficiency of each measure of dispersion under
investigation was calculated as follows. Let ζ̂2i be the ith

measure of dispersion investigated. Each corner distribution
d was sampled k times; and every estimator ζ̂2i was then
calculated for each of those samples.

Let X
(d)
i be the k-sized vector containing the value of

dispersion estimator i on corner distribution d for the k
samples.

For a given corner distribution d, let:

V
(d)
min = min

i

�
Var(ln(X

(d)
i ))

�
(12)

Where Var calculates variance. That is, for every estimator
i, the variance of the log of estimator i for the k samples of
distribution d is Var(ln(X

(d)
i )). V (d)

min is set to the minimum
variance found out of all the estimators.

The efficiency of each estimator i for distribution d is:

E
(d)
i = 100

�
V

(d)
min

Var(ln(X
(d)
i ))

�
(13)

Each estimator has three efficiency values, one for each
of the three corner distributions. The smallest of those three
values is defined to be the tri-efficiency of the estimator:

Trii = min
d

(E
(d)
i ) (14)

In previous studies, the most efficient measure of dispersion
has been shown to be the Biweight Mid Variance with K = 9,
having a tri-efficiency of 85.8 [13] [14].



IV. EMPIRICAL EFFICIENCY ON STOCK RETURN DATA

We can apply the same methodology as [13] to find the
parameter K that leads to the most efficient version of Bivar
when applied to our stock return data. Instead of using the
three corner distributions, we use empirical stock return dis-
tributions to determine the efficiency of dispersion measures.

The measures of dispersion ζ̂2i we will consider are Variance
σ2 and Bivar ζ̂2bi with parameters K ∈ {1..20}.

Our analysis is on the return of all stocks in the FTSE 100
between 2003 and 2013 in windows of size T = 1 year with
step size δT = 6 months. This leads to M = 20 windows.
Each window w contains 100 distributions, one for each stock.
Each of those distributions is sampled 1000 times.

Let X(ws)
i be the vector of size 1000, containing the values

for dispersion estimator i for the 1000 samples of the return
distribution for stock s in window w.

Let V (ws)
min be:

V
(ws)
min = min

i

�
Var(ln(X

(ws)
i ))

�
(15)

We define E
(ws)
i as the efficiency of dispersion measure i

in window w for stock s.

E
(ws)
i =

V
(ws)
min

Var(lnX(ws)
i )

(16)

We define the minimum window efficiency J
(w)
i for an

estimator i in window w to be:

J
(w)
i = min

s
E

(ws)
i (17)

The distribution of minimum window efficiency J
(w)
i in the

M = 20 windows for all 20 estimators is shown in figure 1.
This shows that Biweight Mid Variance with K = 12 or

K = 13 appears to be the most efficient estimator to use for
our stock data. Figure 2 shows that this result is relatively
constant over time from 2003 to 2013.

In the remainder of this paper, we show how Bicor K = 9
and Bicor K = 13 compare to Pearson correlation. In the next
section, we show the improved single observation influence.

V. IMPROVED EMPIRICAL ROBUSTNESS IN STOCK
RETURN DATA

In Section II we investigated the empirical single observa-
tion influence on the Pearson correlation between all pairs of
stocks i, j in the FTSE 100 between 2003 and 2013. If we
reproduce this analysis for Bicor with K = 9 and K = 13,
we find a much improved situation as shown in figure 3 and
in table I. When Bicor is used to calculate the correlation
between stock returns, the maximum influence that a single
daily return has on the value of the 3-month correlation is
reduced. Hence, the use of Bicor is more robust to outliers.
Note that Bicor with K = 13 has a higher single observation
influence than Bicor with K = 9. This is due to the fact that
when K = 9, observations 9 median absolute deviations away
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Fig. 1: The distribution of minimum window efficiency for
variance (v) and the 20 Bivar measures with K = 1..20.
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Fig. 2: Consistency of Minimum Window Efficiency Over
Time for Variance and Bicor with various K.

from the median are not considered, but when K = 13, this
increases to 13.

In the previous section, we have shown Bivar, the dispersion
estimator used for Bicor, to be a more efficient estimator than
variance. In this section, we have shown that Bicor is more
robust than Pearson correlation in terms of single observation



50% 80% 90% 95% 99%

Pearson 0.06 0.09 0.11 0.14 0.21
Bicor K = 9 0.05 0.06 0.07 0.07 0.08
Bicor K = 13 0.05 0.07 0.08 0.09 0.11

TABLE I: Quantiles of the largest absolute change in the
Pearson, Bicor with K = 9 and Bicor with K = 13 correlation
between the returns of all stocks i, j in all windows w, caused
by the removal of a single data point in the vectors of returns
for stocks i and j in window w.

influence. In the next section we show that these improved
properties lead to better graph based portfolio construction.
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Fig. 3: The empirical CDF of maximum change in correlation
between daily stock returns, caused by the removal of 1
observation in 3 month windows.

VI. IMPROVED PERIPHERAL STOCK PORTFOLIOS

Here we show that the use of Biweight Mid Correlation can
improve the selection of stocks based on network centrality
[16]. A previous study [3] shows that when the Pearson
correlation matrix of the stocks is transformed to a distance
matrix and then filtered using MST or PMFG, portfolios built
with lower centrality stocks perform better than those made
up of high centrality stocks. Here we show a similar result
and demonstrate how this can be further improved by using
Bicor to measure correlation between stock returns.

Let A(P )
w be the Pearson correlation matrix in window w for

the constituents of the FTSE 100. Let A(BK)
w be the correlation

matrix for Bicor with parameter K. We have calculated these
matrices for windows w of size T = 12 months every 1 month
between 2003 and 2013.

Both correlation matrices are transformed to a distance
matrix and then filtered using the PMFG method described
in the introduction [5]. Let G

(P )
w be the graph obtained by

transforming A
(P )
w to a distance matrix and then filtered using

the PMFG method. That is, G
(P )
w is the planar graph that

contains the edges that represent the highest correlations, under
the constraint that the graph is planar. Let G

(BK)
w be the

equivalent for A(BK)
w .

The closeness centrality of a vertex (stock) v in a graph is
defined as:

Cv =


�

i�=v

d(v, i)




−1

(18)

Where d(v, i) is the shortest distance from vertex (stock) v
to a vertex (stock) i in the graph. This closeness centrality
can be calculated for every stock in the graphs G

(P )
w and

G
(BK)
w . A portfolio size m can be chosen, and then based

on the closeness centrality, equally weighted portfolios made
up of the m most peripheral stocks and m most central stocks
can then be constructed from the two graphs.

For each portfolio p, for the t = 1..250 days after building
the portfolio, we calculate the return per unit risk, R(p)

t /σ
(p)
t ,

where R
(p)
t = (P

(p)
t − P

(p)
1 )/P

(p)
1 and σ

(p)
t is the standard

deviation of the daily returns for portfolio p between period
1 and t. P (p)

t is the value of the portfolio at time t, which is
calculated as the sample mean of the price of the constituent
stocks within the portfolio.

Figure 4 shows the mean performance of the portfolios
of the 14 most peripheral and 14 most central stocks in
the Pearson and Bicor K = 9 PMFG filtered graphs in
the windows between 2003 and 2013. This confirms earlier
findings [3] that portfolios built from periphery stocks perform
better than portfolios built from central stocks. Furthermore it
shows that this gap is widened when using Bicor.

While figure 4 shows the portfolio based on Bicor with
K = 9, note that the portfolios based on the Bicor matrix
where Bicor was calculated with 7 ≤ K ≤ 16 all performed
better than the Pearson based periphery portfolios when the
portfolio size was 12 or greater.

There are many choices for K when calculating the Bi-
weight Mid Correlation, and many possible choices for the
portfolio size m. Figure 5 shows the relationship between
the combinations of Bicor K and portfolio size m, and the
mean portfolio performance 250 trading days after portfolio
construction. This demonstrates that on average, the optimal
portfolio made up of FTSE 100 stocks, is the one consisting
of the m = 14 least central stocks in the PMFG based on
the Bicor K = 9 correlation matrix. Portfolios containing the
14 most peripheral stocks in the PMFG of A

(B9)
w have on

average a better return to risk ratio 250 trading days after
portfolio construction than the market portfolio over the same
period (p = 0.047).

VII. CONCLUSION AND FUTURE WORK

We have shown that Biweight Mid Variance is a more robust
choice of dispersion metric when applied on stock return
data, and Biweight Mid Correlation a more robust correlation
metric. The definition of Bivar includes a constant K, the usual
choice for this being K = 9. While Bivar with K = 9 is
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significantly more efficient than variance, it is not the optimal
choice when applied to stock return data. Our experiments
revealed that Bivar with K = 13 is the most efficient choice.
In any case, whether the usual K = 9 or K = 13 is chosen,
Bivar is a significantly more efficient dispersion estimator than
Variance.

We demonstrated that existing methods of graph based
portfolio construction can be improved by using Bicor as
the correlation metric. In our study on the FTSE 100 stocks
between 2003 and 2013, we have found the optimal portfolio
to be that made up of the 14 most peripheral stocks in the
PMFG of the Bicor K = 9 correlation matrix. However, many
choices of K lead to improved portfolios when compared to
the market portfolio or the peripheral portfolio based on the
Pearson correlations.

It is noted that while Bicor K = 9 was the optimal choice

for peripheral portfolio performance, this choice of constant
was not shown to be the most statistically efficient for the
Bivar dispersion measure on which Bicor is based.

A topic that requires further analysis in a future study is
the relationship between the graph centrality based portfolio
performance and models of returns such as the single index
model. It would be interesting to understand how market risk
β and individual risk α relate to centrality measures in these
correlation matrices.

Finally, there is scope for a comprehensive study of the
various methods of filtering the correlation matrix. An in depth
analysis on what information the filtering methods retain,
remove or uncover, is needed. Currently, the filtering methods
are primarily judged by their usefulness when applied.
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