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Abstract—Spectral clustering is a technique that uses the
spectrum of a similarity graph to cluster data. Part of this proce-
dure involves calculating the similarity between data points and
creating a similarity graph from the resulting similarity matrix.
This is ordinarily achieved by creating a k-nearest neighbour
(kNN) graph. In this paper, we show the benefits of using a
different similarity graph, namely the union of the kNN graph
and the minimum spanning tree of the negated similarity matrix
(kNN-MST). We show that this has some distinct advantages
on both synthetic and real datasets. Specifically, the clustering
accuracy of kNN-MST is less dependent on the choice of k than
kNN is.

I. INTRODUCTION

Clustering is an important task in data exploration, with the
aim being to group objects or observations in such a way that
objects within the same group are broadly more similar to one
another than they are to objects in other groups.

Spectral clustering is a group of methods that use the
spectrum of a similarity matrix, or a matrix derived from it,
to cluster the data. One of the most basic variants is described
as follows [1]. Given a matrix A ∈ Rm×n containing m
observations with n features, a similarity between each pair i, j
of observations can be computed using a similarity measure.
One such measure in common use is the Gaussian similarity
measure [2]. Given that xi is the i-th row of A, then the
similarity between observations i and j is defined as:

s(xi, xj) = exp

�
−�xi − xj�2

2σ2

�
(1)

Where xi, xj ∈ Rn and �xi − xj� is the Euclidean distance
between the two vectors and σ controls the width of the neigh-
bourhoods [1]. There are various suggestions for choosing σ;
a common choice is for σ to be the standard deviation of the
observations �xi − xj�, which is what we will use in this
paper. [3]

In this way, the similarity between every pair i, j can be
computed and a similarity matrix S can be constructed where
Sij = s(xi, xj).

At this point, a similarity graph G is constructed. The graph
G = (V,E) consists of a finite set V = {v1 . . . vn} of vertices
and a finite set E of edges, where each edge is an unordered
pair connecting two vertices in V . There are many ways in
which to construct G. The aim is to construct a graph such

that similar observations are closely connected and dissimilar
observations are not. The clustering problem then becomes that
of finding a partition of the graph G such that edges between
different clusters have low weight (low similarity).

One such similarity graph, and the one we focus on
in this paper, is the k-nearest neighbour graph. For each
i ∈ {1 . . .m}, the edges to the k observations with highest
similarities to i in S are added to the graph.

Due to useful spectral properties exhibited by the graph
Laplacian [4], the spectrum is calculated for the Laplacian
of the similarity graph, rather than on the similarity graph
itself. Given that W be the adjacency matrix of G, then the
unnormalised Laplacian Lun of W is:

Lun = D−W (2)

Where D is the diagonal matrix containing the degree of each
vertex on its diagonal. The degree di of vertex i is the sum of
the entries in the i-th row of W.

If we wish to divide the data into l clusters, we now compute
the first l eigenvectors of Lun, that is, the l eigenvectors
corresponding to the l lowest eigenvalues. Let U ∈ Rm×l

be the matrix containing the first l eigenvectors (u1, ..., ul) as
columns.

Let yi be the i-th row of U. The clusters are then found by
using k-means clustering to cluster the points (yi)i=1,...,m ∈
Rl into clusters C1, ..., Cl.

There are many varieties of spectral clustering, most no-
tably, by changing the type of Laplacian used. Using the
unnormalised Laplacian Lun as described above is known as
unnormalised spectral clustering. Two popular variations that
are based around normalised Laplacians are the normalised
random walk spectral clustering [5] and normalised symmetric
spectral clustering [2] that use Lrw and Lsym respectively:

Lrw = D−1Lun (3)

Lsym = D−1/2LunD
−1/2 (4)

We will use Lsym throughout this paper. The focus of this
paper is the step of creating the similarity graph. We will
show that by including the minimum spanning tree (MST)



of the negated similarity matrix into the k-nearest neighbour
(kNN) similarity graph, the quality of the clusters detected by
the spectral clustering procedure becomes less sensitive to the
choice of k.

A. Sensitivity to k

When using kNN as the similarity graph in spectral clus-
tering, the choice of k can have a significant influence on the
accuracy of the detected clusters when compared to the ground
truth. A key reason for this is the connectivity of the similarity
graph.

The following is true for the spectrum of all three Laplacians
discussed, Lun, Lsym and Lrw. If a similarity graph G has c
disconnected components, then the multiplicity of the eigen-
value 0 is equal to the number of disconnected components c.
The first c eigenvectors work to separate those components.
Therefore, if one were to look for l clusters, but c > l, then this
results in less accurate clustering as only the first l eigenvectors
are used in the spectral clustering algorithm.

Therefore, it is important to choose a good value for k
to ensure at the very least, that the kNN similarity graph is
connected. In general, the optimal choice of k does not have
a closed form solution. But due to asymptotic connectivity
results, it is common to choose �log n� for k [6].

The key result in this paper is to make the search for the
optimal k less important. By adding the minimum spanning
tree to the kNN similarity graph, connectivity is guaranteed.
There will be no disconnected components. In this paper we
will show empirically that doing this leads to more consistent
results.

In section II we introduce the kNN-MST method and in
section III we demonstrate our argument on the well known
Iris dataset from Fisher. We then look at both synthetic and real
datasets in section IV. The conclusion is outlined in section
V.

II. MINIMUM SPANNING TREES AND K-NEAREST
NEIGHBOURS

In this paper we show that spectral clustering on a similarity
graph consisting of the union of 1) the kNN similarity graph
[7] and 2) the minimum spanning tree [8] of the negated
complete similarity matrix, tends to perform better than kNN.

Given a similarity matrix S, we can produce the
adjacency matrix W(k) corresponding to the k-nearest
neighbour similarity graph with a simple procedure. Let�
x
(p)
i , p ∈ {1 . . . (n− 1)}

�
be the sequence of the n − 1

neighbours of i ordered from the closest to the furthest
neighbour; from the most similar to the least similar. That
is, x(p)

i is the index of the p-th most similar neighbour to i.
We can then define the matrix W(k) as follows:

W
(k)
ij =

�
Sij if j ∈ {x(1)

i , .., x
(k)
i }

0 otherwise

W(k) is the adjacency matrix corresponding to the kNN
similarity graph for S.

A minimum spanning tree (MST) is a tree (connected
undirected graph with no cycles) that spans a graph such
that the sum of edge weights is less than or equal to that of
any other tree of the graph. If we treat the negated complete
similarity matrix −S as an adjacency matrix for a graph, then
that graph G will be a complete graph. Let G(MST ) be the
MST for that graph, and let W(MST ) be the adjacency matrix
of G(MST ). Note that the minimum spanning tree was taken
for the negated similarity matrix so that the minimum spanning
tree contains the edges representing the highest similarities.

The second MST can be found by removing from −S the
elements that are part of the MST of −S, and then finding the
minimum spanning tree for that modified version of −S. We
define kMST to be the similarity graph defined as the union
of the first k minimum spanning trees of −S.

We will look at kMST in our results to demonstrate that the
use of the kNN-MST similarity graph leads to more accurate
clusters both due to the MST portion and the kNN portion.
That is, kNN-MST performs better than either kNN or kMST
individually.

Let kNN-MST be the similarity graph created by taking
the union of the first MST of the negated complete similarity
matrix and the kNN similarity graph. That is, let the kNN-
MST similarity graph be defined as G(kNNMST ) = (V,E),
where V is the set of n vertices and E is defined as:

E(G(kNNMST )) = E(G(MST )) ∪ E(G(kNN))

Let W(kNNMST ) be the adjacency matrix of G(kNNMST ).
In the next sections, we will show that the use of G(kNNMST )

as a similarity graph in spectral clustering has advantages over
using G(kNN).

III. AN EXAMPLE USING FISHER’S IRIS DATASET

Fisher’s Iris Flower dataset consists of 150 observations
with 4 features [9]. Each of the 150 observations is classified
as being part of one of three species of Iris, namely Iris setosa,
Iris Virginica and Iris versicolor.

We will use the adjusted Rand index to quantify the ac-
curacy of the clusters determined by the spectral clustering
algorithms [10]. A value of 1 indicates perfect agreement
between the ground truth clusters and the clusters identified
by the clustering algorithm. A value close to 0 indicates that
any agreement is mostly due to chance.

Figure 1 shows the adjusted Rand index of the clusters
identified by spectral clustering with the use of kNN, kMST
and kNN-MST as the similarity graphs for the Iris dataset.

The key point is that while equally good clusters can be
found using kNN spectral clustering, by combining it with the
MST, the result is more stable, and less sensitive to the choice
of k.

The primary reason that adding the MST to the kNN
similarity graph improves the accuracy of spectral clustering is
that it ensures that the resulting similarity graph is connected.
Figure 2 shows the 2NN similarity graph and the 2NN-MST
similarity graph for the Iris dataset. The fact that the 2NN



graph has seven disconnected components leads to the first
seven eigenvectors of the Laplacian of that graph to separate
the components. This does not work well if the goal is to find
l clusters where l < 7. In figure 1 it is clear that with a low
value of k, the clusters found using spectral clustering on the
kNN similarity graph are not accurate. But adding the MST
to those same kNN graphs drastically improves the result.
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Fig. 1: The adjusted Rand index of the three clusters found
through spectral clustering when compared with the known
ground truth for the Iris dataset. Comparing the use of the
kNN, kMST and kNN-MST similarity graphs for various
values of k.

We will now show that the use of kNN-MST as the
similarity graph yields similar benefits on a selection of other
datasets.

IV. RESULTS

A. Datasets

We will use both synthetic and real datasets to demonstrate
empirically the benefit of adding the MST to kNN similarity
graphs in spectral clustering.

First, we will use the Fundamental Clustering Problem Suite
(FCPS) [11], which consists of ten synthetic classification
problems each representing a unique clustering challenge.

Secondly, we will investigate the improvement in robustness
to cluster separation by clustering a ChainLink dataset where
we decrease the separation between two clusters.

And thirdly, we will look at some well known real life
datasets that are often used for demonstrating clustering tech-
niques.

A

B

Fig. 2: The main problem with the kNN similarity graph is
that it may not be connected. (A) shows the disconnected
2NN Similarity Graph and (B) shows the connected 2NN-
MST Similarity Graph.

B. Fundamental Clustering Problem Suite (FCPS)

The Fundamental Clustering Problem Suite (FCPS) [11]
consists of ten synthetic classification problems; each of these
represents a different clustering challenge such as different
cluster densities, clusters that are not linearly separable, data
with outliers and so forth.

The size of the ten problems, and the challenges they exhibit
are summarised in table I.

For these datasets, we performed spectral clustering with
the kNN and the kNN-MST similarity graphs with k ∈
{1, . . . , 10}. In order to compare the Rand index for the
various datasets, the adjusted Rand index results for each
dataset are normalised through feature scaling. That is, given
that x ∈ R20 is the vector containing the 20 adjusted Rand
index results (10 for kNN and 10 for kNN-MST) for one
particular dataset, then we define the vector y ∈ R20 to be:

y =
x−min(x)

max(x)−min(x)
(5)

Figure 3 shows the mean normalised adjusted Rand index
for all the datasets within the FCPS when spectral cluster-
ing was performed using the kNN and kNN-MST similarity
graphs. kNN-MST outperforms kNN on its own, for every
k ∈ {1, . . . , 10}, but significantly so for lower values of k.



Name n d cl Problem Summary
Atom 800 3 2 Different variances. Lin-

ear not separable.
ChainLink 1000 3 2 Linear not separable.
EngyTime 4096 2 2 Gaussian mixture over-

lap.
GolfBall 4002 3 1 One large cluster.
Hepta 212 3 7 Clearly defined clusters.

Different variances.
Lsun 400 2 3 Different variances and

inter-cluster distances.
Target 770 2 6 Outliers.
Tetra 400 3 4 Almost touching clus-

ters.
TwoDiamonds 800 2 2 Cluster borders defined

by density.
WingNut 1070 2 2 Density vs Distance

TABLE I: Summary of the problems within the Fundamental
Clustering Problem Suite, where n is the number of data
points, d is the number of dimensions and cl the number of
clusters.
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Fig. 3: The average normalised adjusted Rand index for the
ten FCPS datasets when using spectral clustering with kNN
vs kNN-MST for the similarity graph.

C. Noisy ChainLink

In this section we will look in detail at a synthetic ChainLink
dataset (see figure 4). This dataset has two clusters; each
is a ring in 3 dimensional space. The location of each data
point on the circumference of the ring is determined from
a uniform distribution. Each data point is then relocated from

its position on the circumference. The magnitude and direction
of this relocation for the three dimensions are determined by
sampling from N(0,σ2). We will generate ChainLink datasets
with various standard deviations to demonstrate how kNN and
kNN-MST perform when the two clusters become less and less
clearly defined; when each ring becomes noisier.

We have generated the ChainLink dataset using a normal
distribution N(0,σ2) with σ ∈ {0, 0.01, . . . , 0.19, 0.2}. For
each σ we generated 100 instances and averaged the adjusted
Rand index results over those 100 instances.

Figures 4 and 5 show two examples of the ChainLink
dataset, one with σ = 0.1 and the other with σ = 0.2.

x
y

z

Fig. 4: A ChainLink dataset with standard deviation σ = 0.1.

x
y

z

Fig. 5: A ChainLink dataset with standard deviation σ = 0.2.

The heatmap in figure 6 shows the improvement of the
adjusted Rand index when kNN-MST is used instead of kNN.
This is shown for various values of k and σ.



It is clear that using kNN-MST instead of kNN alone leads
to a significant improvement in the clusters found for lower
values of k. As before, this is primarily due to the MST
ensuring that the similarity graph is connected. For higher
values of k, the resulting clusters from using kNN-MST are
either better or equally as good as using kNN alone. This result
holds both for ChainLink instances that are well separated and
also for instances that are not well separated. However, it is
especially noticeable in the well separated case.
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Fig. 6: Heatmap showing the improvement in the clusters iden-
tified by spectral clustering when using kNN-MST instead of
kNN, for ChainLink instances that are well separated (towards
the top) and instances that are less well separated (towards the
bottom). Dark red means there is no improvement. Lighter
colours demonstrate that there is.

D. Real Datasets

Finally, in addition to the Iris dataset used in section III, we
use four other real life datasets, namely the Leaf [12], Wine,
Seeds, and Breast Cancer [13] datasets as found in the UCI
machine learning repository [14].

Table II summarises the real life datasets we test the spectral
clustering algorithms on.

As with the results on synthetic data, using the kNN-
MST similarity graph in the spectral clustering algorithm
also improved the clusters detected for these four datasets
we tested. As in the previous two sections, by using kNN-
MST, the quality of the detected clusters is less sensitive to
the choice of k. This is illustrated by figure 7, which shows
how kNN, kMST and kNN-MST compare on the datasets with
k = 1, . . . , �log n�+ 3.

Name n d cl
Iris 150 4 3
Leaf 340 14 30
Wine 178 13 3
Seeds 210 7 3
Breast Cancer 683 9 2

TABLE II: Summary of the real life datasets, where n is the
number of data points, d is the number of dimensions and cl
the number of clusters.
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Fig. 7: Adjusted Rand Index comparing the ground truth for
the datasets with the clusters found by spectral clustering.
Comparing the use of kNN, kMST and kNN-MST as the
similarity graphs in the spectral clustering algorithm.



V. CONCLUSION

The spectrum of the Laplacian of the kNN similarity graph
is widely used for spectral clustering. One of the problems
associated with this, is choosing a good value for k. A common
suggestion is to choose k = �log n�, but there is no guarantee
that this will lead to a good clustering. Furthermore, the final
quality of the clusters is very sensitive to the choice of k,
especially if the chosen value is low. This is primarily due to
the similarity graph not being connected.

We have shown in this paper that the sensitivity to the choice
of k can be reduced if the kNN-MST similarity graph is used
in the spectral clustering algorithm, instead of kNN. The kNN-
MST graph represents the union of the minimum spanning tree
of the negated similarity matrix and the kNN similarity graph.

Our key result is that by adding the MST to the kNN
similarity graph, the sensitivity to the choice of k is reduced.
This is mostly due to ensuring that the final similarity graph is
connected. Furthermore, our empirical tests show that adding
the MST to the kNN similarity graph leads to good clustering
accuracy even for a low choice of k that would ordinarily
lead to especially inaccurate results. Therefore, we recommend
using the kNN-MST similarity graph instead of kNN in
spectral clustering.

The use of kNN-MST has been shown to detect clusters
that are equally good, or better than, the clusters detected
when kNN is used. This is the case in both synthetic and
real datasets.

In future work, it is worth investigating kMST, as our work
here shows that multiple minimum spanning trees also have
the potential to work as good similarity graphs. Furthermore,
while the primary reason that kNN-MST outperforms kNN
as a similarity graph is due to the kNN-MST graph being
connected, there are instances where kNN-MST continues to
perform better even compared to connected kNN graphs. There
is potential for investigating this.
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