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ABSTRACT
Evidence of tumor-resident mature B cell and antibody compartments and reports of associations with
favorable prognosis in malignant melanoma suggest that humoral immunity could participate in
antitumor defense. Likely striving to confer immunological protection while being subjected to tumor-
promoting immune tolerance, B cells may engender multiple functions, including antigen processing and
presentation, cytokine-mediated signaling, antibody class switching, expression and secretion. We review
key evidence in support of multifaceted immunological mechanisms by which B cells may counter or
contribute to malignant melanoma, and we discuss their potential translational implications. Dissecting
the contributions of tumor-associated humoral responses can inform future treatment avenues.
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Malignant melanoma and immune responses in the
clinical landscape

Rising incidence (global incidence reported in 2013 in 15–25
individuals in every 100,000) and the worst patient survival
rates of all skin tumors continue to make malignant melanoma
treatment clinically challenging, despite recent breakthroughs
in targeted therapies.1 Multiple moles, family history of mela-
noma and unprotected or intense exposure to UV light,2 espe-
cially UVB-induced somatic DNA mutations, such as cytidine
to thymidine (C>T) transitions,3 are among the risk factors.
Mutation of genes such as BRAF and NRAS involved in the
MAPK kinase pathway are present in more than 50% of the
melanoma tumors.4-6 Until 5 y ago, development of distant
metastases was generally associated with a historic median sur-
vival of less than one year.7 Recent breakthroughs in the under-
standing of the molecular and immunological basis of
melanoma have contributed to the development of new MAPK
pathway inhibitors, small molecule inhibitor drugs and check-
point blockade antibody treatments, improving clinical out-
comes in subsets of patients.8

Reports of tumor-resident and systemic immune responses
in melanoma patients, clinical observations of partial lesion
regressions and spontaneous remissions, increased rates of
malignant melanoma in immunosuppressed patients (organ
transplant recipients and HIV-infected individuals),9,10 as well
as partial successes of early immunostimulating treatments

such as interleukin-2 (IL-2) and interferon-a2b (IFNa-2b)
reported over many years, together support the presence of an
active immune surveillance in patients with melanoma.11,12

Investigations into the drivers of immune responses to mela-
noma elucidated not only a set of tumor-specific melanoma-
antigen-encoding gene families (MAGE, BAGE, GAGE), but
also several antigenic epitopes derived from human melanocyte
lineage-specific proteins (MART-l/Melan-A, gpl00, gp75 and
tyrosinase) recognized by CD8C and CD4C T cells.13-15 Various
peptide-based vaccination therapy approaches have been tri-
aled in patients using these antigens, often in conjunction with
cytokines, toll-like receptor (TLR) agonists and adjuvants,
some demonstrating circumscribed success.16 Evidence for a
correlation between antitumor T cell responses17-19 and height-
ened lymphocytic infiltrates within melanoma lesions20 with
longer patient survival have maintained interest in the search
for therapies based on counteracting peripheral tolerance. Sev-
eral personalized therapeutic approaches have been developed
for melanoma involving adoptive cell therapy (ACT) with T
cells.21-23 Some promising outcomes have been reported in
small-scale studies of patients with malignant melanoma
treated with autologous tumor-infiltrating lymphocyte (TIL)-
based ACT, with larger, randomized phase III clinical trials to
ascertain broader clinical benefits still required.

More recently, immunotherapeutic antibodies that block
immune checkpoint molecules have led to the regulatory
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approval of the anti-cytotoxic T lymphocyte antigen-4 (CTLA-4)
antibody ipilimumab for the treatment of metastatic
melanoma,24,25 followed by the anti-programmed cell death pro-
tein 1 (PD1) receptor antibodies nivolumab and pembrolizu-
mab.26,27 These agents function through blocking inhibitory
molecules on the T cell surface, thereby counteracting immune
suppressive signals.28,29 In 2016, the FDA approved the drug ate-
zolizumab for bladder and lung cancers. Atezolizumab is an
inhibitor of the PD1 ligand (PD-L1), expressed on tumor cells
that is thought to restrict T cell activation through recognition
and engagement with PD1 on T cells.30 This has opened the way
for several phase I clinical trials currently looking at efficacy of
this class of agents in patients with melanoma. The emergence of
these checkpoint inhibitor antibodies has been an important clin-
ical breakthrough, bringing cancer immunotherapy to the fore-
front of clinical oncology. Numerous reports have drawn
correlations between patient responses to checkpoint inhibitors
and the presence and nature of tumor-infiltrating T lymphocytes
and T cell responses to melanoma tumor antigens.31

Although insights into the roles of T cells in antitumor
responses have been widely studied and accepted as an essential
immunological dimension in anti-cancer immunity, the roles of
B cells and of the humoral response remain insufficiently eluci-
dated. B cells confer a broad array of functions, which include
antigen processing and presentation, cytokine-mediated signal-
ing, immune regulation, expression and secretion of antibodies.
These attributes can contribute to antitumor immunity and to
treatment responses or, on the other hand, tumors can co-opt
inhibitory immune pathways aimed at maintaining B cell
immune tolerance. The characteristics affecting these opposite
outcomes still need to be fully uncovered. Here, we review evi-
dence from human clinical investigations and from murine
cancer models in support of multifaceted immunological mecha-
nisms by which B cells may respond or contribute to melanoma.

B cells in melanoma tumor inflammation

B cell infiltration

Lymphocyte populations are found in and around many solid
tumor lesions including melanomas. While T cells are the most
prominent, infiltrating human B cells are increasingly being
reported in melanomas and other tumor types.32-37

In an immunohistochemical study of 106 primary human
melanoma samples, the majority of tumor tissues contained sig-
nificant amounts of infiltrating CD20C cells, thought to be B
lymphocytes, dispersed in the stroma immediately around the
tumor.37 Denser B cell infiltration correlated with activated T
cells, which could imply potential activation of an antitumor
response. The percentage of both intra-tumoral and peri-
tumoral B cell infiltration also positively correlated with patient
survival, since patients’ samples with significantly higher levels
of B cell infiltration failed to develop visceral metastasis over the
subsequent 5-y window of observation.37 In concordance, a
study following a patient cohort over 5-y since primary mela-
noma tumor resection, found that initial larger B cell infiltration
in primary tumors of patients positively correlated with subse-
quent improved disease-free survival after cancer vaccine ther-
apy.38 A similar correlation was found in a study on two cohorts

of 57 and 41 patients with primary cutaneous melanoma.39 An
earlier report, however, found no significant correlation between
B cell infiltration and survival, although there was a significant
association between total infiltrating TILs and disease progres-
sion in a cohort of 58 patients with malignant melanoma.40 A
study from a cohort of 91 patients with a clinical follow up of at
least 10 y found instead an increased tumor progression and
decreased overall survival in those patients with more than 15%
B cell density among TILs in primary cutaneous melanoma.41

Possible explanations for these discrepancies among studies
could include the different tumor locations analyzed (primary
cutaneous melanomas, distal or lymph node metastases), the
way data were analyzed (cell frequencies reported as absolute
numbers or as a proportion of TILs) and B cell detection
markers (e.g., the pan-B cell marker CD20 alone may not be suf-
ficient). The latter aspect may be crucial toward building mean-
ingful correlations and a wider understanding of the B cell
subsets and their markers would probably be required.

Although these observations support the idea that the level
of B cell infiltration may, overall, be representative of the host’s
potential to develop antitumor responses, it remains to be
determined whether higher lymphocyte infiltration is a result
of a tumor antigen-specific immune response or merely recruit-
ment of lymphocytes to tumor microenvironments in response
to inflammation. Such contrasting findings point to a complex
relationship between humoral responses and tumors.

B cells in human melanoma-associated tertiary lymphoid
structures (TLS)

Activation of lymphocytes during adaptive immune responses
typically occurs in secondary lymphoid structures such as lymph
nodes, spleen andmucosal-associated lymphoid tissues. Chronic
inflammation, however, can be accompanied by the formation
of tertiary lymphoid structures (TLS) at lesion sites in both
mouse models and humans.42 These structures can vary in size
and organizational structure, from disordered mixtures of den-
dritic cells (DCs), T and B cells to highly ordered structures bear-
ing striking resemblance to germinal centers typically found in
lymphoid organs.43 TLS can be found at sites of inflammation in
almost any organ of the body and are thought to facilitate rapid
and robust immune responses44 (Fig. 1).

As tumor lesions bear characteristics consistent with chronic
inflammation, the presence of tumor-associated TLS, which
contain B cell infiltrates, reported in different tumor types
including melanomas, may not be surprising.37,45 In a study of
106 primary human melanoma lesions, 26% contained histo-
logically visible aggregates.37 Cipponi et al. recovered and
micro-dissected highly ordered TLS, defined as lymphoid fol-
licles which contained clusters of B cells, follicular DCs, T cells
and mature DCs from 7 out of 29 human melanoma metasta-
ses.45 Sequencing of the immunoglobulin (Ig) repertoire of the
lymphoid follicles revealed clonal amplification, isotype switch-
ing and somatic hypermutation, suggesting a local antigen-
driven response45 (Fig. 1). These hallmarks of local B cell
maturation have also been observed in immunohistochemical
analyses of extra-nodal TLS from human germ cell tumors46

and breast carcinomas.47 In an analysis of TLS in non-small
cell lung cancer, characterization of B cell subsets by
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immunohistochemistry and flow cytometry detected a preva-
lence of memory B cells and plasma cells producing tumor-spe-
cific antibodies, with the density of the follicle correlating with
the number of mature plasma cells present.48 In concordance,
TLS were found to be prognostic of more favorable patient
outcomes.43,48

Collectively, these findings may indicate a role of TLS as
local sites of B cell maturation, fostering the generation of in
situ adaptive host immune responses.

Evidence for B cells and their functions in experimental
models

Murine models of melanoma and other tumors
Initial studies in murine models of melanoma and of other can-
cers suggest that B cellsmay exert both pro- and antitumor effects,
often depending on the in vivo model system. Reported tumor-
permissive properties of B cells include B cell-dependent inhibi-
tion of antitumor immunity in lymphoma and melanoma (but
not in sarcoma), through a CD40L-dependent mechanism that
affects IL-10 secretion in vitro.49 Other studies provide evidence

that B cells may support lymphangiogenesis in in vivo lymphoma
and melanoma mouse models50 and angiogenesis in vitro and
also in vivo in melanoma, bladder and lung carcinoma murine
tumor models.51 In a murine model of squamous cell carcinoma,
antitumor autoantibodies were reported to induce acute inflam-
mation when organized in immune complexes. According to this
study, the inflammatory environment regulates recruitment and
induces pro-tumoral functions of leukocytes surrounding neo-
plastic tissue through engagement of Fc gamma receptors (FcgRs)
expressed by immune cells52 (Fig. 1). These pro-tumoral func-
tions engendered by an abnormal secretion of Ig could be reversed
by administration of an anti-CD20 treatment in a combined ther-
apy with a chemotherapy agent, which ablated B cells, reprog-
rammed the chemokine expression profiles of macrophages and
increased CD8C T cell infiltration into mouse tumors.53 In con-
trast, several other studies suggest that B cells can augment T cell-
mediated antitumor responses in in vivo models of melanoma,
lymphoma, colorectal andmammary carcinoma.54-58

These in vivo studies not only suggest that B cells can
strongly contribute to tumor rejection, but also acquire
tolerant or pro-tumorigenic characteristics with disease

Figure 1. Proposed B cell functions in the melanoma tumor microenvironment. B cells may arise from the local immune surveillance environment or migrate to the tumor
from blood vessels. B cells may accumulate and expand in tumor-associated lymphoid structures (TLS), where they can encounter APCs and T cells, and undergo affinity
maturation and clonal amplification. Within the tumor, plasma cells can secrete tumor-specific IgG1 antibodies, effective in inducing ADCC, ADCP and complement-medi-
ated cytotoxicity. On the other hand, in the tumor microenvironment, B cells can be differentially activated to secrete antibody isotypes such as IgA, IgG2 and IgG4, which
may induce a weaker immune response through (a) inability to activate the complement cascade, (b) lower affinities for activatory FcRs, (c) higher affinities for inhibitory
FcRs, (d) lower potency in triggering ADCC and ADCP compared with IgG1 isotype antibodies and (e) in the case of IgG4, Fab-arm exchange, resulting in antibodies with
low antigenic affinity. The tumor microenvironment may also differentially polarize B cells toward a regulatory phenotype (Breg) through the secretion of soluble factors
such as IL-10, which, in turn, negatively influences immune cell activation and antibody class switching.
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progression (Fig. 1). It is therefore tempting to envisage a
complex orchestration of the immune response mediated by
different B cell subsets, perhaps including B cells with
immunoregulatory properties, as is the case for different T
cell subsets.

The search for regulatory B cells (Bregs): insights from
animal models
Mizoguchi et al. first described a subset of gut-associated
CD1d-expressing B cells that could suppress inflammatory pro-
gression of colitis in mice by secreting the immune regulatory
cytokine IL-10, thus coining the term “regulatory B cell”
(B10)59 (Figs. 1 and 2). In later studies, B10-like IL-10-produc-
ing B cells were reported in peripheral human blood60 and early
findings suggest that these cells may also be present in human
metastatic melanoma.61 However, possible roles of regulatory
B10-like B cells in cancer have to-date only been described in
animal models.62,63 A study in a transgenic murine model of
prostate cancer identified PD-L1 and IL-10, expressed by a sub-
population of plasma cells, as the factors responsible for CTL
inhibition after treatment with the immunogenic chemothera-
peutic drug oxaliplatin.64 Bregs have also been shown to regu-
late immunity to murine breast tumors independently of IL-10
in vivo and in vitro.65,66 Although the exact mechanism of this
IL-10-independent immune suppression is yet unknown, some
evidence links Breg activity and CD25C FoxP3C T regulatory
cell accumulation at tumor sites in murine breast tumors.66,67

Moreover, a subset of murine B220C CD19C CD25C Bregs was
shown to be enriched in 4T1 breast tumor-bearing mice and to
polarize T cells in culture toward a regulatory T cell (Treg)-like
phenotype, again in an IL-10-independent manner.65 Tumor-
derived Bregs and Tregs were consequently suggested to inter-
act with myeloid-derived suppressor cells, possibly further
potentiating Treg responses, thus amplifying immunosuppres-
sion and promoting disease progression.65 In the study of Khan
et al., Bregs expressing high levels of PD-L1 were observed to
inhibit development and expansion of follicular T helper cells

in an autoimmune disease in vivo model in mice and ex vivo in
human blood, resulting in reduced B cell maturation and T
cell-dependent humoral immune responses68 (Fig. 2).

Although pointing to potential roles for Bregs in tumor
immune escape, results obtained in animal models are yet to be
fully confirmed and elucidated in the human melanoma patient
context.

B cells in melanoma immune surveillance

Evidence for reactive mature B cell responses and tumor-
specific antibodies

B cells straddle both innate and adaptive immunity, acting as
critical effectors of the humoral immune response through the
secretion of antibodies.69 In several cancer types, TILs and
peripheral B cells have the ability to produce antibodies that
could recognize autologous tumor targets, some of which have
been investigated as potential diagnostic biomarkers.70-72 The
development of the serological identification of recombinant
expression cloning (SEREX) approach, a phage display of
cDNA libraries derived from tumor samples screened with
autologous cancer patient sera, constituted a powerful tool that
allowed the identification of more than one hundred melanoma
antigens and autoantibodies to these. Findings from SEREX
studies supported the notion that tumors such as melanoma
are immunogenic and induce temporal tumor-reactive humoral
responses.73,74 However, whether tumor-reactive antibodies in
vivo have any antitumor protective functions remains under
debate. Mature B cells from melanoma patients were able to
produce IgG antibodies that recognize melanoma cells, and ex
vivo these antibodies could mediate tumor cell cytotoxicity75

(Fig. 2). There is also evidence of a gradual reduction of the
human B cell compartment and of tumor-reactive antibodies
with melanoma disease progression. This may indicate some
functional roles for B cells early on in the disease which may
perhaps be modulated as a part of tumor-associated immune
escape processes.76 In this regard, Oaks and colleagues
described for several human cancers an active anti-inflamma-
tory role of sialylated tumor-specific IgGs that may promote
tumor growth.77

Saul et al. report higher mRNA expression of mature B cell
markers in human melanoma lesions compared with normal
skin and a distinct affinity-matured antibody repertoire. Anti-
bodies from melanoma lesions featured shorter complementar-
ity-determining region 3 (CDR3) sequences, clonal expansion
characteristics and differential antigen recognition patterns
(demonstrated by homology modeling), suggesting a distinct
melanoma-associated B cell response78 (Fig. 1).

Emerging evidence suggests that the state of maturation of
the B cell compartment and subsequent isotype expression of
tumor-reactive antibodies can prevent the host from mounting
an efficient immune response.79 Depending on the soluble sig-
nals released in the tumor microenvironment, B cells can be
polarized to undergo class switching and express potentially
weak immune-activating antibody isotypes such as IgG480 or
IgG2 and IgA,45 as part of chronic inflammation and immune-
escape processes associated with human melanoma79 (Figs. 1
and 2). It is noteworthy that a subtype of murine B cells

Figure 2. Potential pro- and antitumor functions of tumor-infiltrating B cells.
Tumor-infiltrating B cells may either promote or inhibit growth and metastasis
through various immune mechanisms, involving secretion of antibodies, cytokine-
mediated activation and recruitment of other immune effector cells and engage-
ment and activation of T cells through antigen presentation via MHC in the pres-
ence of co-stimulatory molecules. Regulatory functions may be engendered
through secretion of cytokines such as IL-10, T cell inhibition by PD-L1 expression
or class switching and production of immunoglobulin isotypes with low immune
effector stimulating functions.
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(B-1 cells) have been shown to secrete IgM antibodies in a
T cell-independent manner after recognition of evolutionally
conserved structures of microbial origin through TLR in
vitro.81,82 T cell-independent and BAFF-dependent activation
has been reported to support production of IgG4 antibodies by
human B cells in autoimmune pancreatitis.83 Such innate anti-
body response triggers may also be envisaged in the context of
melanoma tumors, and may give rise to B cell expansion in the
absence of specific tumor antigen signal.

IgG4, one of the antibody isotypes produced in melano-
mas, is known to have poor immune-activating properties,
including inability to activate complement,84 a lower
capacity to mediate effector functions compared with other
isotypes85 and phagocytosis (ADCP) compared with IgG1.
These have been associated with specific structural charac-
teristics of IgG4, which determine its poor capacity to
bind C1q, its poor affinity for activating receptor FcgRIIa
(known to be involved in antibody-dependent macro-
phage-mediated phagocytosis, ADCP),86 and FcgRIIIa
(crucial for NK cell-mediated ADCC functions).87 Struc-
tural characteristics of IgG4 are also responsible for rela-
tively high affinity to the inhibitory Fc receptor FcgRIIb,
compared with other subclasses, and ability to undergo
Fab-arm exchange with other IgG4 molecules.88-90 Collec-
tively, through such functional attributes, IgG4 isotype
antibodies are thought to have immunomodulatory proper-
ties, and to impair antibody effector functions in can-
cer.80,91 Elevated IgG4 levels in patient circulation even in
the early stages of melanoma has been associated with dis-
ease progression and less favorable clinical outcome.80,92

IgG4C B cells and IgG4s were detected in melanoma
tumor microenvironments together with IL-10, IL-4 and
vascular endothelial growth factor (VEGF). Ex vivo co-cul-
ture experiments with human B cells and melanoma cells
suggest that melanoma cells have the ability to promote
Th2-biased conditions to support IgG4 production by B
cells.80,92 (Figs. 1 and 2).

Human melanoma lesion-resident B cells have also been
reported to express IgA class antibodies.45 IgA class switching
is normally observed in secondary lymphoid organs that drain
mucosal tissue and is associated with a tolerance induction to
commensal microbiota in the gut.93 IgA class switching is often
associated with chronic exposure to antigens and this could
facilitate a form of immune subversion mediated by the inflam-
matory milieu, much like that of the IgG4 class switching. IgA
is a poor inducer of complement, ADCC and ADCP.93 A study
in a murine model of prostate cancer describes a subset of
plasma cells expressing IgA in the tumor region and having
immune regulatory functions.64 Yet, more work is needed to
investigate the role human IgA response plays in tumor immu-
nity (Figs. 1 and 2).

Based on our current knowledge, it is possible that, depend-
ing on immune context and microenvironment, B cells will be
able to respond to cytokine stimuli in the presence or absence
of specific antigenic challenge, to either promote or counteract
tumor development. The tumor microenvironment could sig-
nal B cells in germinal centers and TLSs to undergo skewed
class switching, leading to the secretion of Th2-biased isotypes
and thus dampening immune response.

Could B cells act as antigen-presenting cells to enhance T
cell responses?

As professional antigen presenting cells (APC), B cells are able
to induce antigen-specific T cell priming, which requires both
recognition of antigens by their Ig-membrane bound B cell
receptor (BCR), as well as engagement of the co-stimulatory
molecule CD40 by a CD4C helper T cell. This is followed by B
cell maturation, antigen internalization, processing and presen-
tation on major histocompatibility complexes (MHC)94-98

(Fig. 2).
Depending on their activation status, B cells can also secrete

an array of cytokines, notably tumor necrosis factor-a (TNF-
a), IL-10, lymphotoxin (LT), IL-2, IL-6, IL-4 and interferon-g
(IFNg). Through cytokine secretion, B cells can exert dynamic
effects on both the local microenvironment and the systemic
immune response99-103 (Fig. 2). In allograft rejection, potent T
cell responses are a pivotal component in pathogenesis and tis-
sue destruction. Allograft tissue-reactive B cells can enhance T
cell response through antigen presentation and co-stimula-
tion.104,105 Gene-expression profile studies in renal allograft
biopsies, corroborated by immunohistochemical analyses, have
shown that B cell signatures (comprising of CD20, CD74 and
Ig) are associated with acute organ rejection. Similarly, immu-
nohistochemical evaluations revealed dense interstitial CD20C

B cell aggregates in 53% (17/32) of core biopsy samples with
graft rejection.105

B cell activation may also be critical for tumor regression in
melanoma. Primary human B cells activated in vitro with
CD40 ligand and subsequently pulsed with melanoma tumor
antigens, efficiently processed and presented MHC class II-
restricted peptides to specific CD4C T cell clones, generating
melanoma-specific T cells.106 Ex vivo studies by Von Bergwelt-
Baildon et al. on human blood-derived lymphocytes also sug-
gest that in the context of tumor immunology, B cells have the
ability to operate as efficient APCs, driving the expansion of
both memory and naive tumor-associated antigen-specific
CD4C and CD8C T cells96 (Fig. 2). B cells have also been
reported to possess direct cytotoxic killing ability against
murine 4TI breast cancer cells in a Fas/FasL-dependent manner
in the absence of IL-10107 and also in the presence of IL-2.108

B cells may thus potentially contribute a wide variety of
functions, including antigen presentation, to promote autoim-
munity or tumor rejection.

Therapeutic avenues focused on B cells

Although our understanding of the crosstalk between humoral
immunity and melanoma remains incomplete, several thera-
peutic treatments have been attempted with a view of modula
ting the B cell compartment to stimulate anticancer immunity.
The anti-CD20 monoclonal antibody (mAb) rituximab was
administered in 15 patients with renal cell carcinoma and 6
with melanoma before treatment with low doses of IL-2 in a
clinical trial, without conferring any beneficial effects.109 In the
context of other tumor types, a case study of a primary cutane-
ous T cell lymphoma showed a temporary remission after a
combination therapy with rituximab and chemotherapy, asso-
ciated with decrease in Tregs and increase in CD8C T cells.110
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In a pilot study on a small cohort of nine stage IV melanoma
patients, treatment with rituximab increased the median time
without recurrences from 6 to 42 mo (no recurrence in 5 out of
9 patients at 42 mo).111 No correlation was found though
between patients with recurrences and immune cell responses.
The authors suggested that treatment benefits are due to the
antibody’s ability to target a subpopulation of CD20-expressing
cancer stem cells instead. There are currently several on-going
clinical trials testing antibodies targeting CD20 for the indica-
tion of metastatic melanoma (e.g., NCT01376713,
NCT02142335; www.clinicaltrials.gov). It is the authors’ opin-
ion that, apart from anti-CD20 treatments potentially eliminat-
ing cancer stem cell populations, generally targeting a widely
expressed molecule such as CD20 does not take into account
the complex contributions of different B cell subpopulations in
cancer. Thus, more fine-tuned approaches to perhaps target
specific subpopulations of B cells (e.g., regulatory or IL-10-pro-
ducing B cells) or inhibitory elements on B cells could consti-
tute possible strategies.

CD40–CD40L interactions have also been the focus of some
immunotherapies aimed at driving B cell proliferation and pro-
ducing sufficient quantities of B cells in vitro for adoptive ther-
apy.112 CD40L-stimulated CD40-expressing B cells can be
expanded from small volumes of blood and have been reported
to generate antitumor CD8C T cells.113 In a preclinical setting,
adoptive transfer of B cells isolated from draining lymph nodes
of 4TI tumor-bearing mice and activated in vitro with LPS and
anti-CD40, have been shown to prevent spontaneous metastasis
of 4TI breast tumor cells to mouse lungs.114 Given encouraging
results from clinical trials and regulatory approval of the adop-
tive T cell therapy sipeleucel T for the treatment of prostate
cancer, it is tempting to consider the possibility that, in future,
activated B cells could be used as an adjuvant in adoptive T cell
therapies.

Insights from the humoral response in melanoma for
the development of future immuno-oncology
treatments

B cells play multifaceted roles in melanoma immunity through
several signaling and immunological pathways. In this review,
we showed numerous evidences supporting this concept, also
making parallels with different disease models. Yet, further
studies will be needed to dissect the mechanisms by which dif-
ferent components of B cell functions operate in melanoma,
and thus offering the potential to identify previously unappreci-
ated translational insights. Initial approaches may involve in-
depth dissection of specific B cell subsets and modulatory
markers which may affect cell differentiation, migration, func-
tions, antibody expression, maturation, class switching and
secretion. Immunologically relevant disease models and ex vivo
systems could in future also help delineate specific mechanisms
which could be responsible for immunosuppression or for acti-
vation of humoral immunity in melanoma.

As melanoma cells may be able to escape host immune
responses,115-117 the B cell repertoire and antibodies expressed
in the patient context may not be effective enough to confer
tumor clearance. Antibody isotypes such as IgG4 and IgA may
regulate immune effector functions and support immune

evasion. Melanoma-associated IgG4 could perhaps act by
restricting Fc-mediated functions of IgG therapeutic antibodies
in the circulation and in tumor lesions. These mechanisms
should be taken into consideration when designing antibody
therapeutic agents. For example, recently approved mAbs for
the treatment of melanoma target immune checkpoint mole-
cules on T cells and are designed to act through their Fab-medi-
ated effects, by removing T cell inhibitory signals. However, the
potency and mechanisms by which mAbs may also engage
immune effector cells through their Fc regions are less well
understood. Given the array of Fc receptors expressed by effec-
tor cells, including those infiltrating tumors, it may be impor-
tant to understand how antibodies and effector cells that form
part of tumor immune surveillance may influence antitumor
immunity, and how they affect the efficacy of therapeutic anti-
bodies.118 Furthermore, it is also tempting to consider new
therapeutic opportunities through the design of therapeutic
antibodies perhaps less prone to cancer-associated immuno-
suppressive forces or those better equipped to mount effector
functions in the Th2-biased tumor microenvironment. These
may include engineered antibodies with enhanced binding to
activatory Fc receptors on immune effector cells to redirect
them against cancer, or those antibodies with Fc regions of dif-
ferent isotypes such as IgE, perhaps better able to exert immu-
nological surveillance in tissue tumors such as melanoma.119

Underpinning effective therapeutic interventions in mela-
noma will be the ability to avoid potential tumor blockade
mechanisms and enable the host to mount a robust immune
response toward a heterogeneous tumor population. In light of
encouraging advancements with the use of individual and com-
bination treatments with checkpoint blocking agents, the
potential for using B cells and the antibodies they express for
therapy or as prognostic or predictive biomarkers of treatment
responses remain largely unexplored possibilities. In future,
delineating the presence of different subsets of B cells and their
impact on immune responses against melanoma could provide
opportunities, such as targeting specific populations for elimi-
nation (e.g., Bregs or IL-10-producing B cells) or activation
(e.g., tumor antigen-specific mature memory B cells), or the use
of particular B cell subsets in adoptive therapy regimens. For
instance, studies describing checkpoint molecules such as PD-
L1 expressed by certain subsets of B cells raise the possibility to
exploit specific checkpoint inhibitors to target modulated cell
subsets as a strategy that could potentially re-kindle the antitu-
mor functions of these cells. Furthermore, designing molecules
that counteract immunosuppressive cytokines such as IL-10,
VEGF or TGF-ß from the tumor microenvironment could
revert a wider group of immune cells, including B cells, to
engage in tumor rejection. Removal of these cytokines may
allow B cells to undergo class switching to activatory antibody
isotypes (e.g., IgG1), perhaps better able to engage effector cells
against tumors. A wider immunotherapy or vaccination
approach may also aim to re-establish the antitumor functions
of different immune cell populations, to achieve simultaneous
stimulation of tumor-neutralizing CTL and humoral immune
responses against cancer antigens.

With melanoma continuing to provide the paradigm for
clinical translation of cancer treatments based on triggering the
activatory potential of T cells, more in-depth focusing on other
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immune cells including B cells and harnessing their antitumor
functions may be of key importance for the development of the
next generation of immuno-oncology agents. Dissecting B cells
and the patients’ humoral immunity and understanding how
different compartments may contribute to tumor inflamma-
tion, immune responses and clinical course, warrant renewed
attention and offer the possibility to widen the scope of
immune-based therapies for melanoma and other cancers.
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