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Abstract 
Motivation: Unlike conventional microscopy which produces pixelated images, SMLM produces data 

in the form of a list of localization coordinates – a spatial point pattern (SPP). Often, such SPPs are 

analyzed using cluster analysis algorithms to quantify molecular clustering within, for example, the 

plasma membrane. While SMLM cluster analysis is now well developed, techniques for analyzing fi-

brous structures remain poorly explored.   

Results: Here, we demonstrate statistical methodology, based on Ripley’s K-function to quantitatively 

assess fibrous structures in 2D SMLM data sets. Using simulated data, we present the underlying 

theory to describe fiber spatial arrangements and show how these descriptions can be quantitatively 

derived from pointillist data sets. We also demonstrate the techniques on experimental data acquired 

using the image reconstruction by integrating exchangeable single-molecule localization (IRIS) ap-

proach to SMLM, in the context of the fibrous actin meshwork at the T cell immunological synapse, 

whose structure has been shown to be important for T cell activation. 

Availability: Analysis code available on request.  

Contact: dylan.owen@kcl.ac.uk 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  

Conventional fluorescence microscopy methods produce images of an ar-

ray of fluorophores within the specimen convolved with the point-spread 

function (PSF) of the microscope. Whilst modern fluorescence micro-

scopes are capable of detecting photons originating from a single fluoro-

phore, the diffraction limit of light impedes the ability of these instruments 

to spatially resolve such information, thereby imposing an image resolu-

tion of approximately 200 nm under ideal conditions. Recently, several 

key technologies capable of circumventing the ‘diffraction barrier’ have 

been developed; ‘super resolution’ microscopy. In particular, single-mol-

ecule localization microscopy (SMLM) methods are capable of approxi-

mately 10 - 30 nm lateral resolution, achieved through the temporal sepa-

ration of individual PSFs thereby preventing multiple PSF overlap at the 

detector, which would otherwise degrade image quality (Betzig, et al., 

2006; Hess, et al., 2006; Rust, et al., 2006). SMLM techniques are highly 

dependent upon physiochemical properties (Dempsey, et al., 2011; 

Heilemann, et al., 2008) of fluorescent dyes and powerful localization al-

gorithms (Sage, et al., 2015). Unlike conventional microscopy methods, 
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which produce raster images with pixel values representative of local flu-

orescence intensity, SMLM images comprise of a list of Cartesian molec-

ular coordinates of all localized emitters, each with an associated esti-

mated uncertainty (Thompson, et al., 2002). The analysis of spatial point 

patterns (SPPs) therefore necessitates a different statistical approach to 

conventional microscopy. 

 

Several strategies for SPP analysis exist and have been well tested for ex-

amining molecular clustering across diverse biological systems. Common 

statistical methods of 2D SPP analysis rely upon correlation functions to 

identify clustered, dispersed or random distribution patterns. A widely 

used correlation-based analysis is the pair correlation function (PCF) 

(Sengupta, et al., 2011), which computes the probability that the location 

of one event is within a distance r of another event. Another method of 

SPP analysis is based upon Ripley’s K-function (Owen, et al., 2010; 

Ripley, 1977). The K-function function is closely related to the PCF, in 

the sense that both methods measure spatial association of events, within 

cumulative circles (K-function) or tori (PCF). This method (K-function 

analysis) predates super resolution microscopy, having been previously 

used in electron micrograph studies of proteins in the plasma membrane 

(Prior, et al., 2003) and more recently to describe surface protein hetero-

geneity in SMLM data sets (Owen, et al., 2010). The unique feature Rip-

ley’s K-function is its ability to characterize the dominance of spatial point 

processes over a wide range of distances; information that often pertains 

to cellular response. Mathematically, the K-function is estimated as: 
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Where δij is unity if the point-to-point distance of the ith and jth events is 

less than r, and n is the number of events in area A, for i ≠ j. The weighting 

term wij accounts for edge effects. For a completely spatially random 

(CSR) distributed SPPs, ⟨K(r)⟩= πr2 for all r. Linearization of the K-func-

tion, L(r)= √(K(r)/π), is often easier to interpret, since under CSR, L(r)=r 

and its variance remains constant. Normalization of the K-function results 

in the H-function, H(r)=L(r)-r, often used to determine deviations from the 

expectation value ⟨H(r)⟩ evaluated at each r to test for randomness. For a 

SPP consisting of clusters, H(r) exhibits a maximum at a characteristic r, 

correlated to the cluster size. Descriptors of molecular clustering are com-

monly extracted using K-function analysis, however quantification of fi-

brous structures, rather than clusters, in SPPs generated by SMLM re-

mains unstudied. 

 

A requirement of all SMLM techniques is achieving a high enough label-

ling density for high-fidelity image reconstruction and detection of events, 

in unison with high localization precision. A recently developed SMLM 

method, IRIS (Kiuchi, et al., 2015), has demonstrated unparalleled label-

ling density across various cellular structures, thereby offering a consid-

erable improvement to conventional probe methods. IRIS probes are small 

fluorescently labelled protein fragments which rapidly bind and unbind to 

their specific target structures. Transiently bound probe can be imaged in 

total internal refection mode (TIRF) and integrated over many frames to 

form a pointillist map of localizations. Using the IRIS approach to SMLM, 

we are able to observe the distribution of filamentous (F-) actin at the T 

cell immunological synapse. This dense actin network forms directly be-

neath the plasma membrane (Babich, et al., 2012; Burkhardt, et al., 2008) 

and has been shown to be crucial for multifarious cellular processes. Spe-

cifically, it has been demonstrated that actin plays an important role in T 

cell activation; vital when mounting an immune response. Immunological 

synapse formation is typically initiated though the coupling of peptide-

bound major histocompatibility complexes (pMHC) on the surface of an-

tigen presenting cells (APC), with the cognate T cell receptor (TCR). Trig-

gering of the TCR initiates a cascade of signaling effectors which drive 

extensive remodeling of the actin cytoskeleton (Beemiller and Krummel, 

2010). Understanding the nanoscale architecture of this network, in a 

quantitative manner, is vital to furthering our understanding of the T cell 

activation process. 

 

Here, we present statistical methodology based upon Ripley’s K-function 

to identify key descriptors of fibrous SPPs. We demonstrate, using a vari-

ety simulated SPPs, that we can accurately evaluate inter-fiber spacing 

through K-function analysis. We present a novel modification of Ripley’s 

K-function which considers the relative density of points within a specific 

angular range. Ripley’s K-function analysis based on angular dispersion, 

termed K(α), provides a method of determining fiber characteristics. We 

then use this technique to analyze the fibrous distribution of F-actin at the 

T cell immunological synapse: the distribution of which is of great interest 

and importance for T cell activation. 

2 Methods 

2.1 Cell culture 

Jurkat E6.1 T cells (ATCC TIB-152) were cultured in Roswell Park Me-

morial Institute (RPMI-1640) medium supplemented with 10% fetal bo-

vine serum (FBS) and 1% Penicillin/Streptomycin. To create T cell syn-

apses, 8-well chamber slides were coated with anti-CD3 (clone OKT3) 

and anti-CD28 (clone 28.2) antibodies (Cambridge Bioscience and BD 

Bioscience, UK) in phosphate buffered saline (PBS) at a concentration of 

2 μg/mL and 5 μg/mL respectively and left overnight at 4°C.  

 

2.2 IRIS and dSTORM imaging 

Prior to imaging, stimulatory (anti-CD3/anti-CD28 coated) coverslips 

were gently washed with PBS to remove surplus antibody in suspension. 

Coverslips were temperature equilibrated prior to plating the cells. Cells 

were seeded at 3×105 cells/mL and re-suspended in pre-warmed RPMI 

supplemented with 10% FBS. Cells were placed on the stimulatory co-

verslip for 2 or 10 minutes at 37°C to allow synapse formation 

(Williamson, et al., 2011). Surplus medium was then removed and the at-

tached cells were quickly fixed with pre-warmed cytoskeletal buffer (CB; 

10 mM MES (6.1 pH), 5 mM EGTA, 5 mM fresh glucose, 150 mM NaCl 

pH. 7.0) containing 4% paraformaldehyde (PFA) for 15 minutes at 37°C. 

Post fixation, synapses were washed with CB several times and cells per-

meabilized with 0.1% Triton-X-100 for 5 minutes at 4°C. The sample was 

washed 6 times with PBS and blocked with Image iT-FX signal enhancer 

(ThermoFisher) for 30 minutes at room temperature. The blocking agent 

was removed and the LifeAct-Atto655N IRIS (Kiuchi, et al., 2015) probe 

added at 0.5 nM in PBS. For dSTORM, cells were fixed, permeabilised, 

washed 6 times with PBS and labelled with phalloidin conjugated 

AlexaFluor 647 (Thermo Fisher, USA) at a final concentration of 165 nM 

overnight at 4°C. The sample was washed in PBS 6 times and imaged in 

an oxygen-scavenging buffer system consisting of: 20 μg/ml catalase, 

10% glucose, 4 % Tris (2-carboxyethyl) phosphine hydrochloride, 50 % 

glycerol, 25 mM potassium chloride, 20 mM pH 7.5 Tris and 1mg/ml glu-

cose oxidase in diH20, and 1 M Cysteamine-HydroChloride. 

 

2.3 Microscope settings 
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A commercial N-STORM system (Nikon, Japan) was used in TIRF mode 

to perform all IRIS imaging, with a 100×1.49 NA oil-immersion objective 

lens. After selecting an appropriate region of interest (ROI) (512×512 pix-

els), the 647 nm laser was applied at 50% power (approximately 1.125 

kW/cm2), to limit signal acquired from freely diffusive unbound probe. 

Images were acquired at 50 ms integration time for 100,000 frames. For 

dSTORM, 50,000 frames were acquired with an integration time of 20 ms 

and imaged using 100% laser power.  

 

 

 

 

Fig. 1: Ripley’s H(r) and H(α) analysis of regular, perpendicular FSPPs of varying inter-fiber spacing’s. Simulations of 1250 nm (A), 555 nm (B) 

and 260 nm (C) inter-fiber spacing’s were generated with points added to each fiber every 15 nm with up to 15 nm localization uncertainty. The entire 

FSPP was then subject to background containing 30% of the number of localizations assigned to fibers. Ripley’s H(r) curves were computed (ii) and their 

corresponding power spectra (iii). Ripley’s H(α) curves (iv) and their spectra (v) are also presented for the three simulations.  

 

2.4 Image reconstruction 

All image reconstruction and post-processing was performed using the 

ImageJ plug-in ThunderSTORM (Ovesný, et al., 2014). Images were fil-

tered using a 3rd order B-spline wavelet filter. Single molecule localiza-

tions were estimated using a local maximum method with 8-neighbour-

hood connectivity. The PSF method of sub-pixel localization was used 

with a least-square fitting approach. Post processing consisted of drift cor-

rection via cross correlation and uncertainty filtering retaining localiza-

tions less than 15 nm, as calculated by the method of Thompson et al 

(Thompson, et al., 2002). Localizations that appeared in more than 20 con-

secutive frames within a radius of 20 nm were merged. 

3 Results 

3.1 Regular perpendicular fibrous patterns 

We begin by defining the classification of a square ROI (5 x 5 μm) con-

taining fibrous spatial point patterns (FSPPs) into three distinct classes: 

Regular, Random and Bundled. First, we consider the case of a Regular 

FSPP, consisting of an equal number of horizontal and vertical fibers ar-

ranged orthogonal to one another and to the axis of intersection (Fig. 1). 

Here, we simulated Regular FSPPs with various inter-fiber spacing’s. 

Points were placed at regular intervals, every 15 nm, along each fiber. All 

point positions were then scrambled by up to 15 nm to simulate localiza-

tion uncertainty. The whole pattern was then overlaid with a CSR distri-

bution of non-fibrous points accounting for 30% of the total number of 

fibrous points. The inter-fiber spacing of a Regular FSPP is consistent 

along both x and y axes, and can be recovered through Ripley’s H(r) anal-

ysis (Fig. 1) despite localization uncertainty and noise. The FSPPs for an 

inter-fiber spacing of 1250 nm (Fig. 1A), 555 nm (Fig. 1B) and 260 nm 

(Fig. 1C) are shown in Fig. 1i. The resulting Ripley’s H-function curves 

(Fig. 1ii) demonstrate a clear periodic pattern, with minima reflective of 

the simulated inter-fiber spacing. The power spectral density of a physical 

process, in this case defined by H(r), encompasses fundamental infor-

mation pertaining to the nature of the H-function. Computing the power 

spectral density spectrum transforms H(r) into the frequency domain (Fig. 

1iii). In this case, the regular position of peaks within the frequency spec-

trum is reflective of the periodic nature of H-function. Therefore, the time 

period of the power spectral density function is inherently related to the 

occurrence of fibers within the SPP: the inter-fiber spacing. In this case 
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(Fig. 1A), the separation of peaks in the power spectrum is 0.8 mHz cor-

responding to a period in the H-function of 1250 nm, i.e. the specific sim-

ulated inter-fiber spacing. 

 

By using a variant of Ripley’s H(r)-function based upon angular disper-

sion, termed H(α), one can ascertain the nature of an SPP. This involves 

computing the K (r = 200 nm) function within a specific angular range (in 

this case 5° intervals) starting from a reference vector aligned with the y- 

axis for each point in the SPP. H(α) is defined in a similar way to H(r), but 

incorporating a correction term to account for the differing area in which 

points are counted such that the K-function is calculated using: 

 

 

 

 

Fig. 2: Ripley’s H(r) and H(α) analysis of random fibrous spatial point patterns of varying bundling properties. A representative example (from 

n=50 simulations) of 10 randomly placed fibers per axis (A). Representative examples (from n=50 simulations) of bundled fibrous distributions, (B) and 

(C), simulated with 5 bundles per axis with 3 fibers per bundle in (B) and 10 per axis with 5 fibers per bundle in (C). A representative example (n=50 

simulations) of 10 bundled fibrous distributions with 3 fibers per bundle generated at random angles across the ROI (D). All fibers were generated with 

points added to each fiber every 15 nm with up to 15 nm localization uncertainty. The entire FSPP was then subject to 30% non-fibrous background. 

Averaged Ripley’s H(r) curves were computed (ii) and their corresponding power spectra (iii). Averaged Ripley’s H(α) curves (iv) and their spectra (v) 

are also presented for the three FSPP classes. 
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The mean H(α) value for all points in the SPP is then calculated for each 

value of α: For regularly spaced, perpendicular fibers, one would expect 

that H(α) exhibit maxima at 90° intervals from the normal reference vec-

tor. This result is indicative of perpendicular fibrous structures (Fig. 1iv). 

In this case, a peak is observed every 90° as expected, regardless of inter-

fiber spacing. As with the H(r)-function, we are able to compute the power 

spectral density function for H(α) (Fig. 1v). Again, peak spacing in this 

spectrum corresponds to periodicity in the H(α) function. In Fig. 1A for 

example, peak spacing is 11.1 mHz, corresponding to a periodicity of 90°. 

To test the effect of varying the fixed radius (here 200 nm), we repeated 
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the analysis for the Standard Condition data set (Figure 1A) for a range of 

radii, from 0 to 2500 nm. Supplementary Figure 1 demonstrates that the 

calculated values of H(α) are largely insensitive to this choice of parameter 

up to ~750 nm where the diagonals across the fibrous mesh are detected 

at intervals of 45°. Further, we tested the effect of increasing the percent-

age of non-fibrous background localisations on the analysis (Supplemen-

tary Figure 2). For each condition (A = 30%, B=60%, C=90% of localisa-

tions in the background), the peak spacing in the power spectrum corre-

sponds to the simulated inter-fiber spacing demonstrating that the analysis 

is robust even when up to 90% of points are in the non-fibrous back-

ground. Finally, to better represent experimental data, we simulated fibers 

in which the labelling efficiency is uneven such that there is a varying 

density of points along the fibers. Supplementary Figure 3 shows analysis 

of Standard Condition data sets in which the labelling efficiency is 100% 

of that in Figure 1A (Supplementary Figure 3A), reduced by 50% (Sup-

plementary Figure 3B) and reduced by 75% (Supplementary Figure 3C). 

The analysis is robust to these conditions.  

3.2 Random perpendicular FSPPs 

In the next case, we examine randomly arranged perpendicular fibers. 

These have their axis intersection positions defined by a 1D CSR distribu-

tion. An example of such an arrangement (from a total of n = 50 simula-

tions) is shown in Fig. 2A. The resulting mean H(r)-function from all 50 

simulations is displayed (Fig. 2Aii), and its associated power-spectral den-

sity function (Fig. 2Aiii). In this case no periodicity is observed in the 

H(r)-function, as expected for such a random arrangement. Therefore, the 

conventional H-function and its power spectrum provides a way to distin-

guish between regular and random perpendicular fibers. As in the regular 

case, the angular H-function, H(α), (Fig. 2Aiv) and its power spectrum 

(Fig. 2Av) demonstrate that the fibers are perpendicular to one another 

and to the axis of intersection. 

3.3 Random bundled FSPPs 

The final interesting case for linear, perpendicular fibers is a FSPP in 

which fibers form bundles (Fig. 2B-C). To form our Bundled FSPP, we 

define the number of bundles (5 per axis in Fig. 2B and 10 per axis in 2C) 

and the number of fibers assigned to each bundle. The bundling behaviour 

of actin has been shown to be important for a range of cellular processes 

(Bathe, et al., 2008; Claessens, et al., 2006; Gowrishankar, et al., 2012). 

Therefore, quantitative knowledge on the bundling behavior of fibers 

could be of great interest. We begin by generating random positions for 

the centers of each bundle on each axis. For the individual fibers (3 per 

bundle in the case of Fig. 2B, and 5 in the case of Fig. 2C), we draw a 

random number that determines the fiber position from a normal distribu-

tion with mean parameter µ (the center of the bundle) and standard devia-

tion σ (the bundle width, 100 nm in this case). For the case of low bundling 

(Fig. 2B), the H(r)-function height is increased with respect to unbundled 

fibers,  

 

 

 

Fig. 3: Ripley’s H(r) and H(α) analysis of FSPPs of varying fiber architectures. A representative example (from  n = 50 simulations) of 15 randomly 

placed linear fibers across the ROI, (A). A regular curved (radius of curvature = 5000 nm) perpendicular FSPP is presented in (B) and an example (from 

n = 50 simulations) of a random, non-perpendicular FSPP with the same radius of curvature is presented (C). All fibers were generated with points added 

to each fiber every 15 nm with up to 15 nm localization uncertainty. The entire FSPPs were then subject to background containing 30% of the number of 

localizations assigned to fibers. Ripley’s H(r) curves were computed (ii) and their corresponding power spectra (iii). Ripley’s H(α) curves (iv) and their 

spectra (v) and the shift corrected analogues (vi) and (vii) are also presented for the three representative FSPPs classes. The results for a regular, linear, 

perpendicular FSPP of the same simulation conditions as (Bi) is also shown (red dashed line) for direct comparison. In addition, both results for the 

random FSPPs with curvature (C) (black lines) and the random linear FSPPs shown in (A) are presented (blue dashed lines) for clear comparison.   

 

indicative of increased clustering of points. As the bundle density in-

creases, the height of H(r) decreases and its width increases as the ROI 

becomes increasingly fiber abundant. The angular H-function (Fig. 2iv) 

and its power spectrum (Fig. 2v) continue to show perpendicular fibers. 

Simulations of non-perpendicular fibrous bundles were performed and an-

alyzed using H(r) and H(α) (Fig. 2D). In this case, the lack of perpendic-

ularity of the fibrous structures was evidenced by the H(α) curve (Fig. 2D 
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iv). Further, we tested the analysis with simulated data of increasing bun-

dling widths (Supplementary Figure 4A-C) and differing bundling widths 

within the same ROI (Supplementary Figure 4D). The H(r) analysis 

demonstrated a broadening and a shift to higher radii as the bundle width 

increased. The H(α) analysis accurately identified the presence of perpen-

dicular fibrous structures. 

 

In the case of almost any biological system, FSPPs do not consistently 

display perpendicular fiber architecture. Hence, we next simulated non-

perpendicular FSPPs (Fig. 3A), wherein fibers are placed at random across 

the ROI. This condition is achieved through generating two uniformly dis-

tributed random coordinates within the ROI, for each fiber. A fiber is 

placed to intersect both points and extrapolated across the ROI. An exam-

ple (from n = 50 simulations) of such a distribution is shown in in Fig. 

3Ai. As expected, the mean H(r)-function (Fig. 3Aii) and its power spec-

trum (Fig. 3Aiii), do not show any periodic behavior. Importantly, the 

H(α) curve (Fig. 3Aiv) and its power spectrum (Fig. 3Av), do not show 

periodic behavior demonstrating that these fibers are not orthogonally ar-

ranged. H(α) is therefore a useful tool to discriminate between perpendic-

ular and non-perpendicular fiber arrangements. For heterogeneous fiber 

orientations such as this, it is possible to further modify the H(α) function 

to generate additional information. The H(α)-function for each point in the 

FSPP can be shifted such that its maxima lies at α = 0˚, before averaging 

the curves from each event. This becomes necessary as the H(r)-function 

has an intrinsic start at r = 0 nm whereas H(α) has α = 0° at an arbitrary 

vector position in the FSPP (along the y axis). In this way, we are able to 

demonstrate the presence of a fibrous pattern, even for randomly arranged 

fibers, as they will display a prominent peak in the shift corrected H(α)-

function at α=180°. In this case, the shifted H(α)-function (Fig. 3Avi) and 

its power spectrum (Fig. 3Avii), do indeed display periodicity with a pe-

riod of 180°. 

 

In terms of biological context, the next level of complexity involved gen-

erating non-linear FSPPs. We began by simulating a regularly spaced 

curved FSPP, by generating horizontal and vertical counter-clockwise cir-

cular arcs at equally spaced intervals along both the x and y axis, across 

the ROI (Fig. 3B). The radius of curvature was globally set to 5000 nm. 

An example of such a simulation is shown (Fig. 3Bi). Ripley’s H(r)-func-

tion (Fig.3Bii) and its power spectrum (Fig. 3Biii) demonstrates that the 

inter-fiber spacing for the curved FSPP can be accurately determined in 

the presence of localization uncertainty, in the same way as for linear fi-

bers. In this case, the spacing was set to 500 nm, and this is recovered from 

H(r) and its spectrum. By examining the H(α) curve (Fig. 3Biv) and its 

spectrum (Fig. 3Bv), the presence of regular fibers is observed. Interest-

ingly, in comparison to linear fibers (red dashed lines), the height (defined 

as the distance from the curve minimum to its maximum) of the H(α) 

peaks are decreased from 162.40 ± 0.31 to 64.46 ± 0.33 nm (S.E.M, n=50, 

p<0.0001) indicating the presence of high-density points at a greater range 

of angular positions; the hallmark of curvature. This behavior is also re-

flected in the angular shift corrected H(α) curve analysis (Figs. 3B vi and 

vii) in which the height of the central peak is decreased from 200.80 ± 

0.40 to 187.40 ± 0.57 nm (S.E.M, n=50, p<0.0001). 

 

Finally, we generate FSPPs consisting of 25 randomly placed fibers of 

known curvature (R = 5000nm). We define randomly placed fibers by 

generating two randomly selected arc intersection coordinates within the 

ROI for each fiber, and randomly choosing either a counter-clockwise or 

clockwise circular arc. An example of such an FSPP is shown (Fig. 3Ci) 

(representative from n = 50 simulations). Similar to the case of randomly 

placed, non-perpendicular linear fibers (Fig. 3A), no periodic behavior is 

observed in the H(r) curve (Fig. 3Cii) or its power spectrum (Fig. 3Ciii),  
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Fig. 4: Application of Ripley’s H(r) and H(α) functions to experimental data using the IRIS technique.  Jurkat T cell synapses (10-minute activation) 

were engineered on stimulatory coverslips (see Methods) and imaged using the IRIS approach to SMLM. A representative IRIS image of the F-actin 

distribution at the mature T cell synapse is shown in (i), from which three (3×3 μm) ROIs of the synapse periphery were selected (A-C ii). Conventional 

H(r) analysis was performed (iii) and power spectra generated (iv). Ripley’s H(α) curves (iv) and their power spectra (v) and the shift corrected analogues 

(vi) and (vii) are also displayed. 

 

as expected. Likewise, H(α) (Fig. 3Civ) and its spectrum (Fig. 3Cv) do not 

demonstrate the presence of perpendicular fibers, but the shift corrected 

curves (Fig. 3Cvi and vii) display a peak at 180° of height (64.46 ± 0.33 

nm which is less prominent than the linear fiber case (blue dashed lines, 

112.30 ± 0.99 nm, S.E.M, n=50, p<0.0001), indicative of curvature. 

 

Using simulated data, we have demonstrated that H(r) and H(α) are capa-

ble of discerning perpendicularity and curvature in structures generated 

from FSPPs. We next apply our methodology to experimental biological 

data. As an example, we have chosen to analyze the cortical actin mesh-

work at the T cell immunological synapse (Bromley, et al., 2001). Data 

was acquired using the IRIS (Kiuchi, et al., 2015) approach to SMLM pro-

ducing FSPPs of the distribution of F-actin. A representative example of 

an IRIS image of F-actin at the T cell synapse is shown in Fig. 4i, from 

which three regions were selected for analysis (Fig. 4ii). The H(r) curves 

(Fig. 4iii), their power spectra (Fig. 4iv), the non-shifted H(α) curves (Fig. 

4v) and their spectra (Fig. 4vi) and finally the shift corrected H(α) curves 

(Fig. 4vii) and their spectra (Fig. 4viii) are displayed. The H(r) spectra 

show that there is no periodicity in the H-function, unlike a regular, per-

pendicular FSPP, indicating a non-regular arrangement of actin at the T 

cell synapse. Examining the non-shifted H(α) curves and their spectra re-

veals that whilst the fibers are not perpendicular, they are also not ran-



R. Peters et al. 

domly orientated. This is evidenced by the periodicity in H(α) with char-

acteristic peak separation of 180°, which is also evidence of a fibrous ra-

ther than a clustered distribution. In contrast to the perpendicular fibers  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5: Post-processing of H(α) reveals fiber orientation across multiple ROIs. Schematic representation (A) of the mature (10 minute) T cell synapse 

constituting the central region (depicted dark grey) and the cell periphery (depicted light grey) in which F-actin forms concentric ring-like structures. 

Correcting the H(α) curves for each region (i, ii, iii) by their corresponding angular displacement (Θi, Θii and Θiii) from the y axis reference (depicted 

solid red) enables a clear description of global fiber orientation; the two extremes of which are radial and tangential, with respect to the reference vector. 

For the 10-minute T cell synapse (Fig. 4), a summation of post-processed H(α) curves for the cell peripheral regions is presented (B), normalised by their 

average H(α), from the three ROIs depicted in (Fig. 4A-C). A summation of post-processed H(α) curves for the cell central regions (Supp. Fig 5) is also 

presented (C). For the 2-minute T cell synapse (Supp. Fig. 7), a summation of post processed curves, normalised by their average H(α), is presented (D) 

from the three ROIs (Supp. Fig 7). All post-processed curves are overlaid with an 8th order fitting polynomial. 

 

considered earlier, the non-shifted H(α) curves exhibit two prominent 

peaks rather than four, an indication that the majority of fibers are orien-

tated in a similar direction. In the case of Fig. 4A for example, at approx-

imately 20° relative to the y-axis. Examination of the shifted H(α) curves 

and their spectra demonstrate a characteristic central peak at 180° which 

is low (77.66 ± 8.22 nm, S.E.M, n = 3), earlier demonstrated to be evidence 

for curvature. In these examples, the most extreme case of curvature is 

found in Fig. 4C. To test the sensitivity of the method, we repeated the 

analysis for 3 regions in the synapse center (Supplementary Figure 5). 

Analysis of the shifted H () curved demonstrate a decrease in height from 

77.66 ± 8.22 nm in the peripheral regions to 38.55 ± 11.07 nm in central 

regions (S.E.M, n=3, p = 0.047). This indicates a subtle change in fiber 

architecture in which fibers display increased curvature in peripheral re-

gions. To validate the necessity of using IRIS, we also acquired data using 

dSTORM via phalloidin coupled to Alexa-647 (Supplementary Figure 6). 

The data confirms that acquired by IRIS i.e. the presence of non-perpen-

dicular fibrous structures. However, in agreement with our simulated data 

(Supplementary Figure 3) while the analysis remains robust to the lower 

labelling density generated by dSTORM, signal-to-noise is degraded mak-

ing the description of the structure more challenging.    

 

Further post-processing of the non-shifted H(α) values provides additional 

information regarding fiber orientation with respect to the entire T cell. A 

cell reference vector can be defined between the cell center and the ROI 

center (Fig. 5A). The H(α) analysis can then further discriminate between 

tangential and radial fibrous structures. We began by computing the angle 

between the cell reference vector and the y axis, termed θi, for the ith ROI. 

These θi values were then used to translate the corresponding H(α) values 

to compensate for angular disparities in the position of ROIs within the 

cell periphery. Using this method, we can assess the dominance of fiber 

orientation, at different time-points of synapse maturation. Early synapses 

(2 mins post-activation) were analyzed using conventional H(r) and H() 

(Supplementary Figure 7) and compared to 10 minute synapses using the 

post-processing method (Fig. 5). The resultant H(α) curves from each of 
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three ROIs per condition could then be summed and normalized to assess 

the dominance of fiber alignments within the cell, with respect to the cell 

reference vector. This enables the direct comparison of fibrous structures 

observed within different ROIs between conditions.  

 

In terms of our biological system, for mature synapses we expected that 

the majority of fibrous structures would be observed at angles orthogonal 

to the cell reference vector, since F-actin forms a series of concentric fi-

bers around the cell periphery at this synapse maturation stage (Babich, et 

al., 2012; Burkhardt, et al., 2008). For the three ROIs (Fig. 4A-C), the 

dominance of tangential fibers at the cell periphery was evidenced by the 

two prominent peaks in the post-processed H(α) curve (Fig. 5B) at 90° and 

270° with modulation depth 0.98 ± 0.25 nm (S.E.M, n = 3). Interestingly, 

no peaks were observed at 0° and 180°, therefore suggesting that there was 

not a subpopulation of radial fibers within the three given ROIs. When we 

select and analyze central regions (Supplementary Figure 5) however, we 

detect a difference in fibre orientation with respect to peripheral regions, 

as evidenced by peaks in the post-processed H(α) curves at 0° and 180° 

(Fig. 5C, modulation depth 0.17 ± 0.03 nm, S.E.M, n = 3). In early stage 

synapse (2-minute post-activation) formation (Fig. 5D), the modulation 

depth is significantly decreased to 0.10 ± 0.01 (p = 0.0307 relative to pe-

ripheral regions in the 10 min case). This indicates that there is a lower 

dominance of tangential fibers at this time-point. While it is in principle 

possible to analyze a whole cell as a ROI, due to very heterogeneous fiber 

architectures, subtle variations between regions will be averaged out. 

 

In this work, we present the use of Ripley’s K-function and a novel varia-

tion thereof, for the analysis of pointillist patterns with fibrous structures, 

such as those generated by SMLM. SMLM achieves an image resolution 

in the range 10 – 30 nm, an order of magnitude higher than conventional 

resolution microscopy. This permits the study of fine fibrous structures 

whose inter-fiber spacing is otherwise unresolvable and therefore unquan-

tifiable. 

 

Using simulated data of various FSPP architectures we are able to discrim-

inate between perpendicular, non-perpendicular and randomly orientated 

fibers. In the case of perpendicular, regularly spaced fibers, the method is 

able to accurately determine the inter-fiber spacing despite the presence of 

localization uncertainty and background signal originating from non-fiber 

associated points. In addition, our method is able to discern between reg-

ular, random and bundled fiber distributions. Introducing fiber curvature, 

we demonstrate that the method can discriminate between linear and 

curved FSPPs, in addition to perpendicularity.  

 

We tested our approach using data generated by IRIS imaging of F-actin, 

whose distribution has been shown to be important for the regulation of 

membrane protein diffusion and clustering via the so-called Picket Fence 

Model (Kusumi, et al., 2005; Murase, et al., 2004). By exploiting the IRIS 

technique, not only are we are routinely able to achieve a lateral resolution 

of approximately 10 nm, we are also able to achieve extremely high label-

ling density of target structures, thereby revealing the nanoscale architec-

ture of fine F-actin. In this case, we demonstrated our method by quanti-

fying F-actin architecture at the T cell immunological synapse.  

 

Previous studies have attempted to analyse fibrous structures arising from 

SMLM techniques. These have included the use of polarisation-resolved 

imaging to extract the direction of fluorophore dipoles (Valades Cruz, et 

al., 2016) and the use of Ripley’s cross-correlation and Fourier transforms 

to detect co-orientation between fibers detected in separate colour-chan-

nels (Nieuwenhuizen, et al., 2015). The method presented here is the first 

to extract global information from spatial-point patterns including mesh 

spacing, curvature and fiber co-orientation. Here, we analyzed actin struc-

tures at T cell synapses using the IRIS approach to SMLM (Kiuchi, et al., 

2015). This has the advantage over more traditional PALM/dSTORM 

(Betzig, et al., 2006; Heilemann, et al., 2008) that the number of available 

fluorophores is very high, allowing dense labelling of the underlying 

structures. Further, the small size of the probe and the ability to select only 

those localizations with high theoretically-calculated localization preci-

sions maximizes image resolution. IRIS also does not require the over-

expression of actin which can affect cell morphology and behaviour. Like 

all SMLM methods, IRIS may be subject to the problem of multiple-blink-

ing of fluorophores such as that reported for dSTORM and PALM meth-

ods (Annibale, et al., 2010; van de Linde, et al., 2010). While there are a 

number of palliative approaches to this problem (Annibale, et al., 2011; 

Annibale, et al., 2011; Baumgart, et al., 2016), these are not necessary 

here, since the absolute number of localizations is not a required output 

for the analysis. 

 

Our results indicate that cortical actin at the peripheral region of the syn-

apse is curved but possesses co-linearity, showing an organized architec-

ture in which the fibers are not randomly arranged. We have demonstrated 

that further post-processing of H(α) enables a quantitative description of 

fiber orientation across multiple ROIs. Correcting for ROI angular dispar-

ity with respect to the center of the immune synapse provides a clear dis-

crimination between tangential and radial fibrous structures. Our analysis 

indicates that peripheral regions of the immunological synapse present a 

clear abundance of tangential fibrous structures.  

 

The H(α) analysis provides additional information to conventional H(r) 

for detecting curvature, periodicity and fiber orientation. This makes it an 

important advance for the study of fibrous point patterns generated by 

SMLM. In conclusion, while statistical analysis of fibrous SPPs produced 

by SMLM techniques remains unstudied, relative to their clustered coun-

terparts, we have demonstrated here that existing techniques can be mod-

ified to extract quantitative descriptions of FSPPs. 
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