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ABSTRACT: Mass spectrometry (MS) has become an indis-
pensable tool for investigating the architectures and dynamics of
macromolecular assemblies. Here we show that covalent labeling
of solvent accessible residues followed by their MS-based
identification yields modeling restraints that allow mapping the
location and orientation of subunits within protein assemblies.
Together with complementary restraints derived from cross-
linking and native MS, we built native-like models of four
heterocomplexes with known subunit structures and compared
them with available X-ray crystal structures. The results
demonstrated that covalent labeling followed by MS markedly increased the predictive power of the integrative modeling
strategy enabling more accurate protein assembly models. We applied this strategy to the F-type ATP synthase from spinach
chloroplasts (cATPase) providing a structural basis for its function as a nanomotor. By subjecting the models generated by our
restraint-based strategy to molecular dynamics (MD) simulations, we revealed the conformational states of the peripheral stalk
and assigned flexible regions in the enzyme. Our strategy can readily incorporate complementary chemical labeling strategies and
we anticipate that it will be applicable to many other systems providing new insights into the structure and function of protein
complexes.

Mass spectrometry (MS) is an emerging technique in
biophysics, and in the last two decades, it has gained in

importance when studying the structure and dynamics of
macromolecular protein assemblies.1 Particularly those assem-
blies which exhibit a certain flexibility and heterogeneity or
undergo dynamic interactions with their ligands are the primary
targets of structural MS.2 Various MS techniques each
addressing a different question have evolved and are now
commonly employed to gain information on composition,
stoichiometry, topology, conformation and dynamics.
Most commonly applied is chemical cross-linking,3−5 a

technique which involves covalent linkage of two amino acid
side chains in close proximity thus allowing the identification of
protein interactions by sequencing the cross-linked dipeptides
after enzymatic digestion. MS of intact protein complexes, also
called native MS, delivers protein stoichiometries and stable
interaction modules enabling the generation of protein
interaction networks.6,7 Together with ion mobility (IM),
native MS yields conformation and topology of proteins and
their complexes.8−10 Combining complementary information
from chemical cross-linking and native MS delivers valuable

insights into the structural arrangements of protein com-
plexes.11−13

While cross-linking and native MS identify protein
interactions, labeling strategies such as covalent labeling14 or
hydrogen−deuterium exchange (HDX)15,16 explore solvent
accessible surfaces of protein−ligand assemblies. This is of
particular interest when studying the dynamics of proteins and
their conformational changes,17,18 for instance upon ligand
binding.19 HDX utilizes the ability of protons to be exchanged
with deuterium in solution. The slow exchange rate of protein
backbone amide protons causes a mass shift of the protein/
peptide, which can be probed by MS. Likewise, chemical
labeling approaches introduce modifications to amino acid side
chains which can be identified by standard proteomics. Very
prominent is hydroxyl radical footprinting involving oxidation
of various amino acid side chains.20 Other labeling strategies
employ chemical reagents which are reactive toward specific
amino acid side chains.14
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Diethylpyrocarbonate (DEPC), employed in this study, was
initially used to modify histidine residues. However, DEPC also
modifies, with different reactivity, lysine, arginine, tyrosine,
threonine and cysteine residues.21,22 It is an efficient labeling
reagent and can probe up to 30% of the protein amino acid
sequence. Under acidic and basic conditions or in the presence
of nucleophiles, however, DEPC labeling is reversible23 and
experimental conditions have to be carefully optimized.24

Structural modeling of proteins and their assemblies includes
various computational techniques such as homology modeling,
coarse-grained modeling, docking studies or structure pre-
diction.25−28 In addition, computational simulations can
improve our understanding on the dynamic behavior of
proteins and their ligands in solution29 or in the gas phase.30

The combination of MS approaches and computational
methods is increasingly used to study protein complex
structures and dynamics. Recent success of hybrid approaches
is demonstrated by novel structures of the proteasome,31,32 the
ribosome,33,34 eukaryotic initiation factors,35,36 amyloid
oligomers,37 and ATP synthases.38 A milestone in integrative
analysis was the merging of complementary methods39 and
their integration with molecular electron microscopy (EM)
maps35 enabling atomic-level characterization of protein
complexes.
We introduce a strategy to study protein complex dynamics

by extending the structural toolbox and integrating covalent
labeling, cross-linking and native MS with computational
modeling. For this, we convert the respective MS data into
modeling restraints, which in turn were used to inform a
scoring function for generating candidate model structures,
while we analyze the prospective models using molecular

dynamic simulations (Figure 1). We exemplify this strategy on
four well-characterized protein complexes, tryptophan synthase,
carbamoyl phosphate synthetase (CPS), the RvB1/RvB2
complex and the catalytic core of cATPase, for which crystal
structures are available (Figure S1). We then utilize available
information from previous studies together with novel findings
on surface accessibility obtained here from covalent labeling
and generate a model of the intact F-type ATP synthase
purified from spinach chloroplasts. We also subject the top-
scoring model to molecular dynamics simulations and identified
dynamic and flexible regions within the macromolecular
assembly, delivering insights into its function as a nanomotor.
The strategy described here is applicable to any protein
assembly and provides new opportunities in structural biology
linking macromolecular models and their structural dynamics.

■ EXPERIMENTAL SECTION

Protein Purification. Purified tryptophan synthase was a
gift of I. Schlichting, Max Planck Institute for Medical Research,
Heidelberg, Germany. The RvB1/RvB2 complex was a gift of
Karl-Peter Hopfner, Ludwig Maximilian University, Munich,
Germany. CPS was provided by F. Raushel, Texas A&M
University, College Station. cATPase was purified from spinach
leaves and reconstituted in DDM detergent micelles as
described previously.12,40

DEPC Labeling. Approximately 10 μM of the purified
protein complexes were incubated with 8.75, 17.5, 35, or 70 μM
DEPC for 1 min at 37 °C. The reaction was quenched by
addition of 10 mM imidazole. After quenching the reaction
mixture was kept on ice. The proteins were then precipitated
with ethanol for 2 h and subsequently digested with trypsin in

Figure 1. Strategy for protein assembly modeling. (A) Solvent accessibility, inter-residue proximities and disassembly pathways are encoded into
modeling restraints. (B) A Bayesian scoring function is employed to build an ensemble of models that match the input data. (C) A representative
structure within the top scoring models is subjected to MD simulations enabling to probe the conformational dynamics of the assembly.
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the presence of RapiGest (Waters) according to manufacturer’s
protocols.
LC-MS/MS. Dried peptides of cATPase and tryptophan

synthase were dissolved in 1% (v/v) formic acid and separated
by nanoflow-liquid chromatography on an Dionex UltiMate
3000 RSLC nano System (Thermo Scientific); mobile phase A,
0.1% (v/v) formic acid (FA); mobile phase B, 80% (v/v)
acetonitrile 0.1% (v/v) FA. The peptides were loaded onto a
precolumn (HPLC column Acclaim PepMap 100, C18, 100 μm
I.D. particle size 5 μm; Thermo Scientific) and separated on an
analytical column (50 cm, HPLC column Acclaim PepMap 100,
C18, 75 μm I.D. particle size 3 μm; Thermo Scientific) at a flow
rate of 300 nL/min with a gradient of 5−80% solvent B over 80
min. Peptides were directly eluted into an LTQ-Orbitrap XL
hybrid mass spectrometer (Thermo Scientific).
MS conditions were: spray voltage of 1.6 kV; capillary

temperature of 180 °C; normalized collision energy 35% (q =
0.25, activation time 30 ms). The LTQ-Orbitrap XL was
operated in data-dependent mode. MS spectra were acquired in
the orbitrap (m/z 300−2000) with a resolution of 30 000 at m/
z 400 and an automatic gain control target of 106. The five most
intense ions were selected for CID fragmentation in the linear
ion trap at an automatic gain control target of 30 000.
Previously selected ions were dynamically excluded for 30 s.
Singly charged ions as well as ions with unrecognized charge
state were also excluded. Internal calibration of the orbitrap was
performed using the lock mass option.41

Peptides and labeled sites were identified using MassMatrix
Database Search Engine.42 Search parameters were as follows:
tryptic peptides with a maximum of two missed cleavage sites;
carbamidomethylation of cysteine, oxidation of methionine and
DEPC-labeled serine, threonine, tyrosine and histidine as
variable modifications; mass accuracy filter, 10 ppm for
precursor ions, 0.8 Da for fragment ions; minimum pp and
pp2 values 5.0, minimum pptag 1.3.
Dried peptides of RvB1/2 and CPS complexes were

dissolved in 2% (v/v) ACN, 0.1% FA and separated by
nanoflow-liquid chromatography on an Dionex UltiMate 3000
RSLC nano System (Thermo Scientific); mobile phase A, 0.1%
(v/v) formic acid (FA); mobile phase B, 80% (v/v)
acetonitrile/0.1% (v/v) FA. The peptides were loaded onto a
precolumn (HPLC column Acclaim PepMap 100, C18, 100 μm
I.D. particle size 5 μm; Thermo Scientific) and separated on an
analytical column (50 cm, HPLC column Acclaim PepMap 100,
C18, 75 μm I.D. particle size 3 μm; Thermo Scientific) at a flow
rate of 300 nL/min with a gradient of 8−90% solvent B over 62
min. Peptides were directly eluted into a Q Exactive Plus
Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo
Scientific).
MS conditions were as follows: spray voltage of 1.6 kV;

capillary temperature of 250 °C; normalized collision energy
30. The Q Exactive Plus mass spectrometer was operated in
data-dependent mode. MS spectra were acquired in the
orbitrap (m/z 350−1600) with a resolution of 70 000 and an
automatic gain control target of 3 × 106. The 20 most intense
ions were selected for HCD fragmentation in HCD at an
automatic gain control target of 1 × 105. Previously selected
ions were dynamically excluded for 30 s. Singly charged ions, as
well as ions with unrecognized charge state, were also excluded.
Internal calibration of the orbitrap was performed using the
lock mass option.41

Peptides and labeled sites were identified using Mascot
Search Engine v2.3.02. Search parameters were: Tryptic

peptides with a maximum of two missed cleavage sites.
Carbamidomethylation of cysteine, oxidation of methionine
and DEPC-labeled serine, threonine, tyrosine, and histidine as
variable modifications. Mass accuracy filter: 10 ppm for
precursor ions, 0.02 Da for fragment ions.

Chemical Cross-Linking of Tryptophan Synthase.
Twenty microliters of 20 μM tryptophan synthase were
incubated with 20 μL of 2.5 mM bis(sulfosuccinimidyl)suberate
(BS3) cross-linker for 1 h at 25 °C at 350 rpm in a
thermomixer. After cross-linking, proteins were precipitated
with ethanol and digested with trypsin in the presence of
RapiGest (Waters) according to manufacturer’s protocols.
Cross-linked peptides were further separated using SCX Stage
Tips (Thermo Scientific) according to the manufacturer’s
protocol. Peptides were then analyzed by MS and identified as
described previously.12

Chemical Cross-Linking of CPS and RvB1/B2 Com-
plexes. Ten microliters of 10 μM CPS and 5 μL of 25 μM
RvB1/2 were incubated with various concentrations of BS3
cross-linker (final concentrations = 0.5, 0.83, and 1.25 mM) for
1 h at 25 °C at 350 rpm in a thermomixer. Cross-linked
proteins were separated by gel electrophoresis (NuPAGE,
Invitrogen) and digested in gel as described.43 Peptides were
then analyzed by MS and identified as described previously.12

Native Mass Spectrometry. Native MS experiments on
tryptophan synthase, CPS, and RvB1/2 were performed on a
quadrupole time-of-flight mass spectrometer (Synapt G2Si
HDMS, Waters Corp., Manchester, UK). Ten micromolar
purified sample was buffer-exchanged in 200 mM ammonium
acetate and electrosprayed using gold coated glass capillaries
prepared in-house.44 Typical MS parameters were capillary
voltage 1.5−1.7 kV, sampling cone voltage 25−40 V, collision
voltage 20 V, bias voltage 20 V, trap collision energy 5 V. MS
spectra were processed and analyzed using Masslynx 4.1
(Waters). The spectra were calibrated externally using CsI.
Backing pressure: 3.84 mbar. Trap: 0.04 mbar. Helium cell: 3.5
mbar. IMS: 2.6 mbar.
In solution disruption was performed by addition of an

organic solvent to the protein complex in ammonium acetate
(AA) buffer as described elsewhere.45 Subcomplexes were
generated using 10−40% methanol, dimethyl sulfoxide
(DMSO), and acetonitrile (ACN).

Modeling Restraints from Covalent-Labeling MS.
Solvent accessibility information from covalent labeling
followed by MS was converted into modeling restraints using
in-house developed code (https://github.com/apolitis/
covalent_labelling_MS). This code iteratively estimates the
solvent accessible surface area (SASA) for each residue within
all models generated using our sampling algorithm. To calculate
the SASA on the surface of each residue we simulated the
rolling motion of sphere using a solvent accessible surface
function (see Figure S-3). In this function the probe radius of
the sphere was 1.8 Å and 5.0 sampling density/ Å2 for area
estimation. The function uses a set of nodal points attributed by
xyz coordinates and radius to compute the SASA values.
Overall, we report a dimensionless SASA ratio defined as

= x
x

SASA
accessible surface area of residue

total surface area of residuex

The returned SASA value per residue is implemented as a
structural restraint using a threshold value of 0.25, where if
SASAx > 0.25, then the residue x is exposed, or if SASAx < 0.25,
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then the residue x is buried, where x denotes the amino-acid
residue.
We iteratively applied this algorithm to all structural models

of cATPase, tryptophan synthase, CPS, and RvB1/B2
generated using our Monte Carlo-based strategy. Briefly, we
used the list of labeled residues from our covalent labeling mass
spectrometry experiments (Tables S4−S7) to interrogate the
structural models by satisfaction of modeling restraints. A
model was considered if it satisfies the restraint for a specific
labeled residue x (histidine, threonine, tyrosine or serine) when
the SASA for this residue is greater than 0.25, whereas it
violates such restraint for SASA if less than 0.25. For each
model structure generated we examined all restraints
corresponding to labeled residues and the total score was
calculated as

= −S 1
RS
RTiSASA,

where SSASA,i is the score for each model structure i (i = 1, 2, 3,
...) which takes values 0 or 1, RS the number of covalent
labeling restraints satisfied in the structure and RT the number
of all restraints used, which correspond to the labeled residues
from covalent labeling experiments.
The SASA scoring algorithm was implemented within the

Integrative Modelling Platform (IMP).25

Integrative Modeling. We used an integrative modeling
strategy for MS data.36,39 Structural models of the assemblies
were generated using a Monte Carlo search algorithm
developed in-house and implemented into IMP.25 The model
building was guided by a scoring function, which estimates the
probability of a structural model given existing knowledge of
the investigated system and the MS data acquired. The
posterior probability P(M|DMS, PI) for MS Data (DMS) and
prior information (PI) is

| ∝ | |P M D P M P D M( , PI) ( PI) ( , PI)MS MS

where P(M|PI) is the prior, the probability of a model given
only existing information on the system and P(DMS|M, PI) is
the likelihood function, expressed as the probability of
observing MS data given a structural model and knowledge
of the system in question. The score is calculated as the
negative logarithm of the likelihood and the existing
information (called prior)

= − | |M P D M P Mscore( ) log[ ( , PI)log ( PI)]MS

The most likely structural model scores higher according to the
posterior distribution. The prior P(M|PI) is the prior
probability P(M) accounting for intersubunit connectivities,
solvent accessibility, distance restraints and an additional
parameter composed of uncertainties; these are the false
positives for native MS, cross-linking and covalent labeling MS.
The likelihood function P(DMS|M, PI) for a data point of a data
set D of experimentally measured connectivites (native MS,
cross-linking MS), distance restraints (cross-linking MS) and
solvent accessibilities (CL-MS) is given as

α σ
ω

σ
| = −

−⎛
⎝⎜

⎞
⎠⎟P d Y

d f Y
( , , ) exp

( [ , ])

2n n n
n n

n
2

where Y is the structure coordinates, σn the uncertainty, αn
denotes other parameters, such as ambiguities due to
flexibilities, and ω is the weight. The forward function ( f n)
predicts the data points, that is, randomly picking a residue that

is solvent exposed for a given time point in the experimental
measurement (CL-MS) and adopts a conformation consistent
with the given connectivities and distance restraints. The
uncertainty corresponds to the data points from both
measurements that are inconsistent with the structure Y.
We judged the uniqueness of the ensemble of generated

models by performing ensemble analysis (e.g., clustering of
best-ranking solutions), and the final solution was selected from
the major cluster.45 The Visual Molecular Dynamics (VMD)
and the UCSF Chimera packages were used for visualization of
the model structures.46

Distance Restraints from Cross-Linking MS. Upper
bound distance restraints (35 Å) specified from the identified
cross-links by applying a cross-linking strategy followed by
MS.36,43 The individual links were implemented into our
modeling approach enabling us to guide the search for
candidate model structures that fit the input MS data.

Simulations in Explicit Solvent. Explicit solvent MD of
the ATPase protein complex were performed and analyzed
using the GROMACS 4.6 program47 using the Amber99sb*-
ildn force field parameters.48 The input structure of the F1
cATPase was assembled from its individual components
(crystal structure and homology models) using an MS-
restrained strategy as described elsewhere.39 The initial
complex structure, consisting of 56,826 protein heavy atoms,
was solvated and minimized in a dodecahedral periodic box of
952 838 TIP3P water molecules49 with a minimum distance of
1.0 nm between any protein atom and the periodic box. The
system charge was neutralized by adding 75 sodium counter-
ions to the solvent. The equations of motion were integrated
using the leapfrog method50 with a 2 fs time step. The
equilibration protocol hereafter outlined was used: an initial
500 steps of steepest descent energy minimization in solution.
This was followed by an equilibration of the system in the
canonical ensemble with harmonic positional restraints on the
protein heavy atoms using a force constant of 10 000 kJ/mol/
nm2 and gradually reduced to 1000 kJ/mol/nm2, while
increasing the temperature from 50 to 300 K at a constant
volume. During this NVT ensemble equilibration, the
Berendsen algorithm50 was employed to regulate the temper-
ature and pressure of the system with coupling constants of 0.2
and 0.5 ps, respectively. A 5 ns NVT equilibration run at 300 K
and 1 bar was then performed, following with 2 ns of
equilibration in NPT conditions. After successful equilibration
of the system, the cATPase complex was then simulated for 40
ns under constant pressure and temperature conditions.
Temperature was regulated using the velocity-rescaling
algorithm,51 with a coupling constant (τ) of 0.1. All protein
covalent bonds were frozen with the LINCS method,52 while
SETTLE53 was used for water molecules. Electrostatic
interactions were calculated with the particle mesh Ewald
method,54 with a 1.4 nm cutoff for direct space sums, a 0.12 nm
FFT grid spacing and a four-order interpolation polynomial for
the reciprocal space sums. van der Waals interactions were
measured using a 1.4 nm cutoff. The neighbor list for
noncovalent interactions were updated every five integration
steps.

Modeling of the Peripheral Stalk. We performed
homology modeling of the peripheral stalks using the
MODELLER package.55 We obtained a reliable homology
model (sequence identity >25%) using as templates the
Thermus thermophilus H-type (PDB ID 3V6I) and bovine
mitochondrial (PDB ID 2CLY) ATPases. To compensate for
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the lack of lower part of stalks linking the core with the
transmembrane ring, we modeled in the helices using as guide
the distance estimated from the missing residues. Homology
models for of ε, δ, and γ subunits were also utilized as
previously described.12

Modeling Scripts, Data, and Results. Our integrative
method was implemented in the open source IMP software
package (http://integrativemodeling.org). The input data files,
modeling scripts, and output models for the tryptophan
synthase and cATPase complex are available at https://
github.com/apolitis/covalent_labelling_MS. This will allow
keen scientists to use our data and/or integrate with their
own results for protein assembly modeling.

■ RESULTS AND DISCUSSION

Integrating Covalent Labeling into Computational
Modeling. We assessed the predictive power of our integrative
method for three-dimensional protein modeling based on
structural MS restraints on four protein complexes previously
characterized by X-ray crystallography: the 143 kDa tryptophan
synthase from Salmonella typhimurium (PDB ID 1WBJ),56 the
α4β4 CPS (PDB ID 1BXR, ∼640 kDa), the double-
heterohexameric ring RvB1/2 (PDB ID 4WVY; 621 kDa)
(Figure S1) and the hexameric α3β3-head of cATPase from
Spinacia oleracea (PDB ID 1FX0; ∼328 kDa).57 Covalent
labeling using DEPC, cross-linking with BS3 (Figure S-2) and
native MS (Figure S-3) allowed us to label serine, threonine,
tyrosine, and histidine residues on the surface of the complex,

Figure 2. Benchmark analysis on tryptophan synthase. (A) Native MS of the intact complex yielded disassembly pathway. (B) Cross-linking circular
plot. (C) The precision of the methodology was estimated by calculating positive predictive values (PPVs) for different amount of theoretical
covalent labeling restraints while we use the experimentally available restraints from native and cross-linking MS. (D) ROC curves, plotting the true
positive rate (sensitivity) versus false positive rate (1-specificity), to evaluate the confidence level of the restraints. (E) Peptide level analysis plotting
the frequency of the DEPC total labeled residues and the number of spectra per concentration shows increase in the labeling residues/spectra with
increased concentrations (F) Representative model of the tetrameric tryptophan synthase and its corresponding crystal structure. Inter-residue
proximities (XL-MS) and residue solvent accessibilities (CL-MS) are highlighted. The structural similarity of the model to the X-ray structure was
assessed using their pairwise r.m.s.d.
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map cross-linked lysines and define stable subcomplexes,
respectively. Overall, we identified inter- and intrasubunit
cross-links (Tables S1−S3), up to 151 labeled residues (Tables
S4, S5, and S7) and several (sub)complexes for tryptophan
synthase, CPS and RvB1/2, respectively (Figure 2A, 3A and B,
and S4). For the cATPase hexameric head we used previously
published cross-linking results and native mass spectrometry12

and in this study identified 58 solvent-exposed residues (Table
S7). With the complementary MS-based data in hand, we
applied a computational workflow by first encoding our data
into modeling restraints (Figure 1A) and then using a scoring
function to guide generation of structural models (Figures 1B
and S5 and Experimental Section).
The covalent labeling experiments enabled solvent accessible

surface area (SASA) restraints. A SASA restraint is considered
to be satisfied if, for each experimentally labeled residue, the
theoretically predicted SASA is greater than 25% (Figure S6
and Experimental Section). We plotted the fraction of satisfied
residues on the corresponding crystal structure as a function of

the percentage of SASA providing justification for its use as a
lower bound restraint for modeling (Figure S6). The cutoff is
defined as the highest SASA score that gives <10% false
positives while the true positives remain over 80% of the total
models. The cross-linking experiments allowed upper bound
distance restraints (<35 Å).39 This distance breaks down into
11.4 Å for the linker (BS3), approximately 13 Å for the two
lysine side chains and an additional tolerance of 10 Å
accounting for flexibility due to protein’s motion. The resulting
models from application of these restraints were considered to
match the data and added to the ensemble that is passed on to
the next stage for additional analysis. Clustering analysis36,45

revealed an ensemble of models with close similarity to the
reference crystal structure (r.m.s.d. ranging from 9 to 15 Å)
(Figures 2 and 3C and D). Finally, a representative structure
from the ensemble was used as a starting model for explicit
solvent MD simulations (Figure 1C).

Evaluation of the modeling approach. Having estab-
lished the validity of using SASA restraints for modeling, we

Figure 3. Benchmark analysis on phosphate synthetase (CPS) and RVB1/B2 heterododecamer (A, B) Native and cross-linking MS reveal distinct
(sub)complexes and intra- and intersubunit amino-acid level proximities. Identified oligomeric cross-links are shown in the inset small circular (C,
D). Integrative modeling results in models in good agreement with the reference crystal structures. (E, F) Peptide level analysis plotting the
frequency of the DEPC total labeled residues and the number of spectra per concentration shows increase in the labeling residues/spectra with
increased concentrations.
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examined the ability of our approach to predict high-resolution
models using different levels of theoretically labeled residues
ranging from 25% to 100%. Complete theoretical labeling
information was extracted from the corresponding crystal
structure by assuming as labeled those serines, threonines,
tyrosines and histidines with theoretical SASA larger than 25%.
The residues with SASA less than 25% were considered buried
and therefore were not processed further. A model is defined
“good” when it exhibits high structural similarity to the
reference crystal structure as calculated by Cα atoms (r.m.s.d. <
12 Å).39 We estimated ∼90% positive predictive value (PPV)
within the top-scoring models when all theoretical information
was used and a difference of less than 10% PPV when the
experimental available data were used (Figure 2C).
To investigate the merit of modeling restraints in predicting

the correct structure of the three training complexes
(tryptophan synthase, CPS and RvB1/2), we determined
receiver-operating characteristic (ROC) plots for the MS
techniques employed (Figures 2D and S7). This enabled us
to test the ability of our method in generating correct model
structures on systems with diverse topological features that
include symmetry, ring-like geometries and heteromeric
subunits. The area under each curve was determined as a
measure of the information content of each restraint, where 0.5
indicates that correct and incorrect structures cannot be
discriminated.45,58 The ROC plots of all three complexes
studied here show that inclusion of solvent accessibility
restraints from covalent labeling markedly increased (∼8−
11%) the accuracy of structural prediction (Figures 2D and S7).
Increasing the accuracy of the predictions by approximately
10% is an important improvement of the method particularly
when building models of multiprotein systems requires a large
number of models. For instance, if 10 000 models are
generated, a 10% higher accuracy means that the structural
prediction leads to 1000 less false positive and false negative
models and therefore allows an increased number of “good
models” within the top-scoring model structures. This is
particularly important for assembling multicomponent systems
in a stepwise manner where degeneracy can significantly hinder
the accuracy of the resulting predictions.
Concentration Dependence of DEPC Labeling. To

assess the effect of concentration on the labeling efficiency, we
covalently labeled solvent accessible residues on the three
training complexes using a range of labeling concentrations
(8.75−70 μM) (Figures 2E, 3E and F, and S8). Using DEPC
we targeted histidine, threonine, tyrosine and serine residues,
covering ∼15−20% of the complex sequence. We plotted the
number of experimentally labeled residues over the range of
experimental concentrations revealing a significant increase of
the labeled residues (10−30%) at higher concentrations
(Figures 2E, 3E and F, and S8). A similar trend was found
by counting the total number of spectra measured at each
concentration used for the experiments (Figures 2E and 3E and
F). We overall estimated a 5−10% of the total residues uniquely
identified in the two lower concentrations. For modeling
purposes we accounted for all labeled residues appearing in at
least in one concentration.
To study the accuracy and precision of SASA restraint from

covalent labeling followed by MS, we projected the labeled
serines, threonines, tyrosines and histidines on the crystal
structures of tryptophan synthase and the cATPase head and
examined their SASA (Figure 4). We revealed high accuracy
(>85%) and precision (>80%), confirming the lower bound

SASA as a confident restraint for modeling in all benchmark
complexes examined in the study.

Solvent Accessibility and Modeling of cATPase. Next,
we assembled a model of the intact cATPase from Spinacia
oleracea. The cATPase generates ATP from ADP and inorganic
phosphate using an electrochemical proton gradient across the
thylakoid membrane.57 Its stoichiometry is α3 β3 γδε−I−II−
III14−IV;

12 however, structural information is limited to crystal
structures of the soluble catalytic head (α3 β3)

57 and the III14
transmembrane ring.59 Little is known about the structural
dynamics of the individual subunits within the assembly. From
studies on other ATP synthases, we expect enhanced dynamics
for the peripheral stalk, a stator that links soluble and
membrane domains and counteracts the torque from
“wobbling” of the soluble head during motor rotation60 of
the γ-subunit.61

Figure 4. Benchmark analysis of SASA restraint derived from covalent
labeling MS experiments. We assessed (A) the sensitivity, specificity,
and accuracy and (B) the negative predictive value (NPV), positive
predictive value (PPV), and false discovery rate (FDR) using SASA as
a restraint through the existing crystal structures of tryptophan
synthase, CPS and RVB1/B2 and cATPase (F1) as references models.
SASA area for all residues in the above structures were calculated and
compared to the identified labeled sites from covalent labeling MS. A
positive or correctly labeled residue is defined as a residue with SASA
more than 0.25. False positives or incorrectly labeled residues are
identified with calculated SASA below 0.25. Nonexperimentally labeled
residues with calculated SASA below 0.25 in the corresponding
structure represent true negatives, while false negatives have SASA
above 0.25. Sensitivity = TP/(TP + FN), specificity = TN/(TN + FP),
accuracy = (TP + TN)/(TP + FP + TN + FN), FDR = FP/(TP +
FP), NPV = TN/(TN + FN), and PPV = TP/(TP + FP). TP: True
positive. FP: False positive. FN: False negative. TN: True negative.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.6b02875
Anal. Chem. 2017, 89, 1459−1468

1465

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.6b02875/suppl_file/ac6b02875_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.6b02875/suppl_file/ac6b02875_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.6b02875/suppl_file/ac6b02875_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.6b02875/suppl_file/ac6b02875_si_001.pdf
http://dx.doi.org/10.1021/acs.analchem.6b02875


We covalently labeled solvent accessible residues on the
surface of cATPase (Figure 5A and B). Different concentrations

of DEPC (8.75−70 μM), yielded 75 labeled residues (Table
S7) in all protein subunits except ring subunit III. The lack of
labeled residues in the membrane ring subunit is attributed to
the protective layer of the detergent micelle. However, we
identified one labeling site on membrane subunit IV (Tyr 160).
We used cross-links and dissociation pathways from native

MS reported previously12 providing 11 subcomplexes and a
connectivity map (Figures S9 and S10).36 Covalent labeling
data were encoded into modeling restraints and together with
distance restraints from cross-linking, enabled us to map the
inter-residue proximities and SASA of the cATPase (Figure
5B). By employing our restraint-based modeling approach, we
brought together complementary restraints (Experimental
Section) allowing us to assemble a structural model of the
cATPase (Figure 5B). As input we used the crystal structure of
α3β3 and ring III14 subcomplexes and homology models of
subunits I, II, δ, γ, and ε (Experimental Section). We were
unable to position subunit IV as only one residue was labeled
and no cross-links or subcomplexes were observed. However,
we unambiguously defined the orientation and proximities of
the other subunits showing a slight tilting (∼4°) of the central
axis of the catalytic head with respect to the axis of the
membrane ring,60 consistent with crystal structures of
mitochondrial ATPase62−65 and a model of the V-type ATPase
(Figure S11).60,38,66

MD Simulations Reveal Flexibility of cATPase.We used
the assembled model of cATPase as a starting structure for
explicit solvent MD simulations allowing us to examine the
architecture and dynamics of the enzyme. Similar to other
ATPases, the cATPase γ stalk subunit consists of a globular
domain interacting with the α/β-head and δ subunits. Their
extended α helices link the F1 (head) and FO (transmembrane)
domains. To allow for movements of the rotor during the
catalytic cycle, the peripheral stalk must exhibit conformational
flexibility. We therefore performed simulations for the F1
domain (α3β3γδε-I II) (Figure S12 and Experimental Section).
Consistent with other ATPases60,66 we revealed significant
flexibility of subunits I, II, γ and δ as calculated by the r.m.s.d.
and r.m.s.f. (Figures 6A and B and S13). We projected the
r.m.s.f profiles on the surface of the cATPase visualizing
dynamic regions in the assembly. Particularly flexible regions
were found within the peripheral stalk and γ subunits (Figure
6B). In line with a recent study67 these regions are connected
through a rigid section, which may allow the stalk and the γ
subunit to retain their rigidity whereas accommodating the
wobbling motion from rotary catalysis. The γ subunit contains
an additional loop compared with other ATPases, which is
responsible for its deactivation in the absence of light.61

Interestingly, the fluctuation of the γ subunit predicted by our
method includes the ∼40 amino acid long loop segment
(residues 197−240). It is interesting to speculate that the
flexibility of this loop may be related to its role in activation/
deactivation of the enzyme suggesting conformational changes
during transition from one state to another.
To reduce the high dimensionality of the MD trajectories

and to identify the dominant molecular motions of the
peripheral stalks, we performed principal component analysis
(PCA). We showed that both peripheral stalks undergo a
“bending” motion with particular flexible regions located at the
initial and terminal ends of the stalks (Figure 6C). The
flexibility of stalks is likely to be an intrinsic property enabling
them to adjust during the catalytic rotation of the molecular
motor. This is consistent with the twisting motion of the
catalytic head of an A-ATPase proposed previously60 and may
be related to the intermediate states of rotary ATPases during
ATP synthesis.68,69

■ CONCLUSIONS
We presented here a strategy for interrogating the structure and
dynamics of multiprotein assemblies. These assemblies are
difficult to study by traditional tools, which limits our
knowledge of their function. In our strategy, we incorporated
modeling restraints derived from covalent labeling MS in the
form of SASA. We integrated, using a scoring function, the
SASA restraint with the connectivity and distance restraints
from native and chemical cross-linking MS, respectively.
We assessed the predictive power of the method by

reconstructing the 3D assembly structure of tryptophan
synthase, CPS and RvB1/2 with high accuracy and precision.
The integration of a novel combination of MS-based methods
markedly increased the predictability of the method as shown
by ROC plots and enabled us to suggest a confident model of
cATPase, a particularly challenging target in structural biology.
We observed a ∼10% increase in the overall predictability of
the integrative methodology when covalent labeling was added
to native and cross-linking MS. Such an increase may have a
significant effect in differentiating between closely related states
and in cases where ambiguous or incomplete data sets exist. In

Figure 5. Covalent labeling and cross-linking of cATPase. (A)
Example spectrum of a labeled cATPase peptide. B- and y-ions are
assigned. Fragment ions containing the DEPC-modification are shown
in red. (B) Covalent labeling analysis reveals solvent accessible
residues (gray space fillings) on the surface of the intact enzyme (left
and middle panel. Complementary structural information was
obtained from chemical cross-linking (right panel).
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principle, our workflow allows the incorporation of every
labeling strategy and we expect that the application of
complementary techniques targeting different amino acid side
chains will improve the predictability even further. Such an
increase in predictability can lead to high confident models of
multiprotein complexes and is primarily important for those
systems where limited information are attained by other
biophysical methods, such as the cATPase.
We provided an additional dimension by subjecting the

cATPase model structure to solution phase simulations,
allowing us to assign flexible regions within the complex.
Performing such simulations were possible by the assembly of a
confident model of cATPase from our restraint-based strategy,
thus demonstrating how static structural predictions and
dynamic simulations can be integrated for understanding
complex biological systems. Even though the main strength
of our strategy is its ability to simultaneously incorporate
various labeling methods, it becomes more powerful when
combined with high-resolution information on the individual
assembly subunits.70 We envision that the combination of
labeling MS with accurate modeling and simulations may be
used in future to study many other multiprotein complexes
currently eluding structure determination.
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